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An omnichannel retailer with a network of physical stores and online fulfillment centers facing two demands

(online and in-store) has to make important, interlinked decisions – how much inventory to keep at each

location and where to fulfill each online order from, as online demand can be fulfilled from any location

with available inventory. We consider inventory decisions at the start of the selling horizon for a seasonal

product, with online fulfillment decisions made multiple times over the horizon. To address the intractability

in considering inventory and fulfillment decisions together, we relax the problem using a hindsight-optimal

bound, for which the inventory decision can be made independent of the optimal fulfillment decisions, while

still incorporating virtual pooling of online demands across locations. We develop a computationally fast and

scalable inventory heuristic for the multi-location problem based on the two-store analysis. The inventory

heuristic directly informs dynamic fulfillment decisions that guide online demand fulfillment from stores.

Using a numerical study based on a fictitious network embedded in the USA, we show that our heuristic

significantly outperforms traditional strategies. The value of centralized inventory planning is highest when

there is a moderate mix of online and in-store demands leading to synergies between pooling within and across

locations, and this value increases with the size of the network. The inventory-aware fulfillment heuristic

considerably outperforms myopic policies seen in practice, and is found to be near-optimal under a wide

range of problem parameters.
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1. Introduction

In 2019, e-commerce sales accounted for around 11% of the total retail sales in the United

States (U.S. Census Bureau 2019). Although this is a small portion of the total sales,

online sales have been increasing at a rapid year-to-year growth rate around 18% in 2019

(Young 2019), and projected to account for 22% of all retail sales within the next five

years (Chaffey 2019). With customers increasingly favoring the online channel, traditional

brick-and-mortar (B&M) retail firms are equipping themselves with the ability to fulfill

online orders from multiple inventory nodes (stores, fulfillment centers, etc.).

1
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Omnichannel refers to this seamless integration of a retailer’s sales channels, such as

in-store and online. Customers can purchase an item in different ways, including placing

an order through the online store (websites), through mobile devices (mobile apps), as well

as through the traditional practice of walking into physical stores. In addition, customers

placing orders online can also choose how they receive the item: they can pick up their

items from a nearby physical store (in-store pickup) or from designated self-service kiosks

like Amazon Lockers, or simply have the item shipped directly to their homes (ship-to-

customer). There is an industry-wide shift to omnichannel retailing, with one-time B&M

firms like Macy’s and Walmart integrating an online channel by leveraging their existing

network of retail stores (Nash 2015); the e-commerce giant Amazon has also added a

network of physical stores through the purchase of Whole Foods Market.

A key aspect of omnichannel operations is store fulfillment, which is the use of physical

stores to fulfill online orders. An online customer who chooses ship-to-customer fulfillment

may receive a package originating from, in theory, any inventory node in the network. Usu-

ally, the closest node is used since the shipping rate increases with the distance. However,

when the closest node stocks out, the demand would “spill over” to other nodes (Acimovic

and Graves 2017), guaranteeing that the demand is not lost while there is inventory still

remaining in the retail network. This risk pooling across inventory nodes is reminiscent of

transshipments between B&M stores; a distinction is that e-commerce fulfillment allows

for this flexibility without prepositioning the inventory in a customer location.

Allowing demand spillovers essentially pools the geographically separate inventories.

Since traditional inventory models do not account for demand spillovers, they overesti-

mate the inventory required across the network. Indeed, this is reflected in the fact that,

from 2010 to 2014, even as retail and online sales increased, inventory turnover decreased

(Samuel 2017). Therefore, to reduce the burden of carrying too much inventory, omnichan-

nel inventory planning must use network-based models that capture fulfillment flexibility.

In this paper, we develop network-based strategies (that take into account online demand

spillover) to optimize inventory levels and fulfillment decisions for an omnichannel firm. In

particular, this firm has a network of physical stores and online fulfillment centers facing

online (ship-to-customer) demands and in-store demands.

We consider the problem for a single, seasonal product with long lead times, such that

inventory decisions are only made once for the start of the selling horizon. We assume that
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the selling horizon is divided into multiple periods, with the following dynamic in each

period: in-store demands are fulfilled as they arrive; online fulfillment decisions (assigning

online orders to fulfillment locations) are made at the end of the period with the available

inventory; and unmet demands are lost. This assumption can be used to approximate

the continuous-time problem, as the length of these periods can be arbitrarily small such

that at most one unit of demand arrives in any period. This model leads to a multi-stage

stochastic programming problem, and is intractable due to the size of the state space as

well as complexities in the action space.

Our main contribution is a joint heuristic that co-ordinates network-based inventory

and fulfillment decisions for omnichannel retailers. We derive the inventory heuristic based

on a two-stage approximation that allows optimization of the inventory levels for the

hindsight-optimal fulfillment policy. The fulfillment heuristic provides location-specific,

time-varying inventory thresholds (calculated with the help of the inventory heuristic)

which dictate the rationing of store inventory between in-store and online demands. We

show by means of numerical studies on realistic inventory networks embedded in the USA,

that by virtue of taking into account demand spillovers, our heuristic solution outperforms

traditional decentralized strategies. The inventory-aware fulfillment heuristic is shown to be

near-optimal under a variety of problem parameters, and provides significant cost savings

compared to the myopic policy commonly seen in practice. Our solutions are highly scalable

and easy to understand, which are of utmost importance in practice for retail networks.

We show that the value of such centralized planning (taking demand spillovers into

account) is highest when there is a moderate mix of online and in-store demands that

takes advantage of synergies in pooling across locations (demand spillovers) and within

each location (in-store and online). Based on our analysis, for the current state of the

industry (with around 10% of sales occurring online and growing quickly), we emphasize

that retailers can significantly benefit by switching to centralized planning strategies that

take into account online demand spillover.

We organize the paper as follows. We discuss relevant literature in Section 2, and intro-

duce the general problem in Section 3. In Section 4, we develop the replenishment policy

for the multi-location problem based on the two-stage hindsight-optimal approximation.

In Section 5, we develop fulfillment thresholds informed by the inventory solution to guide

dynamic fulfillment of online orders from stores. In Section 6, using realistic retail networks,
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we numerically test our heuristics against the benchmark solution and the hindsight opti-

mal bound. Finally, we conclude with Section 7 discussing extensions and future research.

2. Literature Review

Omnichannel retailing is a relatively new area in operations management literature, and

has been gaining traction in recent years. Readers are referred to Rigby (2011) and Bryn-

jolfsson et al. (2013) for comprehensive reviews of the topic. There have been a number of

papers that have focussed on customer behavior – Gao and Su (2017) study the impact

of implementing store pickup on store operations, and Gallino et al. (2017) focus on sales

dispersion from implementing store pickup. Other papers study the impact from the cus-

tomers’ point of view: Bell et al. (2017), Ansari et al. (2008), and Gallino and Moreno

(2014) study customer migration due to product information, and Gao and Su (2016)

analyze the effect of information provided to strategic omnichannel customers on store

operations. Nageswaran et al. (2020) consider optimal return policies for omnichannel firms

when customers can return items in physical stores that were bought online.

Optimal fulfillment decisions for e-commerce demand has enjoyed recent attention in

literature: Acimovic and Graves (2017) study the optimal allocation of replenishment to

fulfillment centers to reduce shipping costs and mitigate costly spillovers; Lei et al. (2018)

consider the joint pricing and fulfillment strategy to maximize the expected profits (rev-

enue minus shipping costs); Acimovic and Graves (2014) focus on fulfillment strategies

to minimize outbound shipping costs; DeValve et al. (2018) study the benefit of adding

fulfillment flexibility to a large online retailer’s network by combining an allocation policy

based on a stochastic program with a fulfillment policy which restricts the spillover demand

that is fulfilled; and Bayram and Cesaret (2020) consider the optimal dynamic fulfillment

decisions for an omnichannel retail network when the initial inventory levels are given, by

modeling shipping costs from each location as independent random variables.

There have been some studies which discuss integration of online demand to physical

stores by means of a separate online fulfillment center, as this was the primary mode of

fulfillment in the e-commerce channel in its nascent stages. Seifert et al. (2006) consider

the inventory management of a system where an online warehouse handles online orders,

and in case of stockouts, stores can fill these orders. Chen et al. (2011) consider a three

location system consisting of two stores and an etailer, with a hierarchy to fulfillment - the

etailer can fulfill online orders with the least cost, followed by store 1 and then store 2.
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We consider a generalized setting representing the current retailing situation wherein

physical stores are the primary ports of online fulfillment, and we consider the problem

of deciding inventory levels across the network in the presence of e-commerce fulfillment

flexibility. To the best of our knowledge, the study closest to ours is Jalilipour Alishah

et al. (2017), who consider a single store with online and in-store demands, and ana-

lyze decisions at three levels — fulfillment structure, inventory optimization and inven-

tory rationing. They show that the optimal rationing policy between in-store and online

demands is threshold-based. They propose (without theoretical guarantees) using these

rationing policies when there are multiple stores and a single online fulfillment center, with

fulfillment costs not dependent on shipping distances. In contrast, we analyze the problem

for general networks with multiple stores and fulfillment centers, with realistic fulfillment

costs that depend shipping distances, which introduces complexity due to an additional

rationing decision - online orders from other regions.

The key feature that online demands can be fulfilled from any store in the system is

analogous to a reactive transshipment setting with zero transshipment lead time, as pointed

out by Yang and Qin (2007), who called this ‘virtual lateral transshipment’. In addition, our

problem has multiple demand classes (online and in-store), where some classes of demand

(in-store) cannot be subject to transshipment. For an extensive review of the transshipment

literature, the readers are referred to Paterson et al. (2011). Transshipment problems are

infamously hard to solve, and analytical approaches can be done only for simplified cases

with zero replenishment and transshipment leadtimes and two regions (Tagaras 1989) or

identical shipping costs across regions (Dong and Rudi 2004). Tagaras and Cohen (1992)

show that when there is positive replenishment leadtime, the problem becomes intractable

even for two regions due to the interdependence of optimal decisions on demands during

the leadtime, on-hand inventory and in-transit inventory.

Obtaining optimal order-up-to policies are by extension intractable as well, as they need

to be calculated based on the optimal transshipment policy. Yao et al. (2016) have recently

considered the optimal joint initial stocking and transshipment decisions for the two-store

case. Their analysis is limited to two stores, as key mathematical properties like submod-

ularity do not extend to multiple regions. Lim et al. (2020) consider a robust optimization

approach to the joint allocation-fulfillment problem for e-commerce networks. They con-

sider a two-step approach to optimization, wherein the periods in which replenishments
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Ss - Traditional B&M Stores Sso - Omnichannel Stores So - Online FCs

In-store Customers - Dis

Online Customers - Dio

Figure 1 Three types of facilities in an omnichannel fulfillment network a) Traditional brick-and-mortar stores

(Ss), b) Omnichannel stores (Sso), and c) Online Fulfillment Centers (So).

arrive are optimized first, followed by the allocation and fulfillment decisions. To the best

of our knowledge, our paper is the first to consider the multi-location omnichannel inven-

tory and fulfillment problem, where we provide provably scalable and easy-to-implement

policies that coordinate inventory and fulfillment strategies.

3. The General Problem - Model and Assumptions

Consider a firm selling a single product to multiple customer regions. We assume that a

facility (inventory node) is located in each customer region. Customer regions without a

facility in it can also be incorporated as zero-inventory facilities. We consider the problem of

optimizing inventory and fulfillment decisions for this single product. Considering multiple

products introduces complex combinatorial features to the fulfillment problem as a multi-

item order can be fulfilled in different ways (Jasin and Sinha 2015); we disregard this in

our analysis to better study the interplay between inventory and fulfillment decisions.

There are two classes of demand originating in each customer region i, modeled by

non-negative and continuous random variables:

1. the in-store demand (Dis) consists of customers picking items off the shelves (all the

inventory is available on the shelf), with unmet demand lost immediately, and

2. the online (ship-to-customer) demand (Dio), consisting of customers ordering through

the website or mobile app, expecting items to be delivered directly to their homes.

The demands are exogenous and are temporally independent, but can have any general

channel or location correlation structure. A typical retail fulfillment network is shown in
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Figure 1, where dashed lines represent customers visiting physical stores and solid lines

represent items shipped to customers’ homes. We consider three different types of facilities

described by the following sets:

• Ss - physical stores which handle only in-store demand.

• So - online fulfillment centers (OFCs) which handle only online orders.

• Sso - omnichannel physical stores which handle both online and in-store demands.

Since traditional B&M stores plan for inventory independent of other facilities in the

network, we exclude regions with such stores from our analysis. We are only interested in

regions where the facility is involved in online fulfillment, namely omnichannel stores and

online fulfillment centers. Let S = So∪Sso be the set of regions with omnichannel facilities.

We denote N = |S| as its cardinality. We refer to the regions in S as R1, . . . ,RN .

There are two important features to be noted in the omnichannel problem. The first

feature is that unfulfilled in-store demand at one region cannot be fulfilled by facilities in

other regions. The second feature is that a facility in S with available inventory can fulfill

online orders from any customer region. Hence, there is risk pooling of online demands

across regions, as well as risk pooling of in-store and online demands within each region.

3.1. Sequence of Events

We consider a seasonal product for which the replenishment lead time is longer than the

selling season, and hence there is only one chance at the start of the selling season to

decide the inventory levels y1, . . . , yN across the network. We divide the selling season into

T fulfillment periods. In each period t∈ [T ], in-store demand (Dt
is) is fulfilled as it arrives,

whereas fulfillment decisions to satisfy the online demands (Dt
io) are made at the end of

the period with the available inventory in the network, and unmet demands are lost.

We note that the length of these periods can be arbitrarily small such that at most one

unit of demand arrives in any period, and hence we can model the case where fulfillment

decisions need to be made as soon as online orders arrive. In some cases, batch fulfillment

of online orders also makes practical sense – most stores still rely on third party carriers

such as UPS and FedEx to ship items to customers. Online orders to be shipped are loaded

onto these trucks once a day from the store backroom, usually towards the end of the day.

3.2. Cost Parameters

We consider a per-unit fulfillment cost sij for online demand from region j fulfilled by Ri,

which encapsulates the cost of picking the item off the shelf, packing and labelling, as well
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as the shipping cost for delivery. We have sij = sji and sij ≥ sii for any i, j ∈ [N ] since it is

costlier to ship an item over longer distances. We will refer to sii (within the same region)

as in-location shipping costs, and sij (across regions) as cross-shipping costs.

We assume that the in-location shipping costs are identical across regions: sii = s for all

i∈ [N ]. This assumption makes sense from a practical perspective, as the fixed component

of the fulfillment cost (pick-pack-and-label) dominates for shipping over small distances,

as this is usually done through human labor. At the end of a fulfillment period, each unit

of unfulfilled in-store and online demands incurs penalty costs ps and po, respectively. We

assume that ps > po− s > 0, as in-store demand is fulfilled first and is costlier to lose, and

cross-shipping always leads to a myopic reduction in cost: sij <po for all i, j ∈ [N ]. At the

end of the selling horizon, each unit of unsold inventory incurs an overage cost h. We ignore

the purchasing cost, but this can be added easily through linear terms. We summarize our

assumptions on cost parameters in the set Ψ:

Ψ=
{

ps > po− sij > 0, ∀i, j ∈ [N ]; sij ≥ s, ∀i, j ∈ [N ] with j 6= i
}

. (1)

3.3. Stochastic Programming Formulation

We next develop the joint inventory planning and fulfillment problem of the seller as a

stochastic program. In fulfillment period t ∈ [T ], let the starting inventory levels be denoted

by xt = (xt
i)i, and D̃t = (Dt

is,D
t
io)i denote the demands. From a facility in region Ri, let

zti be the amount of inventory used to fulfill the in-store demand, and Zt
ij be the amount

of inventory shipped to fulfill online demand from region Rj . If region Ri has an OFC

facility, then this region has no in-store demand, hence zti =Dt
is = 0. We denote the period

t fulfillment decisions in vector form as zt,Zt respectively.

Suppose the seller starts the season with inventory levels y1, . . . , yN . The optimal ful-

fillment decisions can be found by solving a (T + 1)-stage stochastic program which can

be solved through dynamic programming. Note that physical stores always prioritize in-

store demand (since ps > po− s) and online fulfillment is decided at the end of the period.

Therefore, without loss of generality, we can assume that zt,Zt is decided with knowledge

of the demand realization D̃t. Hence, (xt, D̃t) is the state of the dynamic program. The

optimal cost-to-go function in period t can be written as:

Ct(x
t, D̃t) = min

zt,Zt∈∆t

[

P (xt, D̃t,zt,Zt)+ECt+1

(

(
xt
i− zti −

N∑

j=1

Zt
ij

)

i
, D̃t+1

)]

(2)
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where P (xt, D̃t,zt,Zt) is the total cost in fulfillment period t, given by:

P (xt, D̃t,zt,Zt) =

N∑

i=1

ps(D
t
is− zti)+

N∑

j=1

po

(

Dt
jo−

N∑

i=1

Zt
ij

)

+

N∑

i=1

sZt
ii +

N∑

i=1

N∑

j=1,j 6=i

sijZ
t
ij

(3)

and ∆t is the set of feasible fulfillment decisions in period t, described by the following set

of constraints:

zti +

N∑

j=1

Zt
ij ≤ xt

i, ∀i∈ [N ]

zti ≤Dt
is, ∀i∈ [N ]

N∑

i=1

Zt
ij ≤Dt

jo, ∀j ∈ [N ]

zt,Zt ≥ 0.

(4)

The first inequality in ∆t represents the supply constraint (where x0
i = yi for all i ∈ [N ]),

and the second and third inequalities model the fulfillment constraints. Note that the online

demand in one region can be fulfilled from any facility in the network, as seen in the third

inequality in (4). At the end of the horizon, leftover inventory incurs a per-unit overage

cost h, and hence, we have the boundary condition:

CT+1(x
T+1, D̃T+1) = h · xT+1, for any D̃T+1 (5)

Hence, given the initial stocking level y= (yi)i at stage 0, the total expected cost over the

T fulfillment periods is C(y) := EC1(y, D̃
1). The optimal initial stocking level minimizes

this total expected cost. This initial inventory problem is shown to be a convex optimization

problem in the following Proposition.

Proposition 1. C(y) :=EC1(y, D̃
1) is jointly convex in the inventory levels y= (yi).

All proofs are relegated to the Appendix. We now discuss the intractability in the joint

inventory and fulfillment problem. First, due to the assumption that ps > po−s, in the opti-

mal solution, we will have zti =min(xt
i,D

t
is), i.e. in-store demand is fulfilled first. However,

the online fulfillment decisions are not straightforward – myopic policies that try to fulfill

all online demand in the current period may be sub-optimal, as future in-store demands

have a higher penalty cost. In addition, cross-shipping items to fulfill online demands at

other regions may be sub-optimal as well, as it may be more profitable to reserve these

items for cheaper future in-location store or online demands.
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These two rationing elements render the multi-stage stochastic program intractable. In

fact, a similar issue arises for optimal transshipment decisions with non-negligible lead

times. Tagaras and Cohen (1992) show that for the two-store transshipment problem, even

if the optimal policy is threshold-based, the optimization becomes intractable due to the

complexity of the decision space in the dynamic programming formulation. The intractabil-

ity arises solely due to the fact that in any period, it may be ex-post optimal to reserve

inventory for future, less costly demand. Overlaying multiple regions, an additional class

of demands, and inventory optimization, we cannot hope to solve this problem optimally.

4. Determining the Static Replenishment Policy

Our primary goal is to develop inventory solutions that take into account virtual pooling

of online demand across regions. To this end, we relax the intractable joint inventory and

fulfillment problem through a hindsight-optimal bound, and develop the inventory heuristic

based on this bound. This inventory heuristic directly informs a simple, threshold-based

fulfillment policy described later in Section 5, and we show that our joint inventory and

fulfillment policy performs significantly better than traditional decentralized strategies.

4.1. The Two-Stage Approximation

First, we introduce a lower bound to C(y). We do this by introducing the following

hindsight-optimal T -period cost:

C(y, D̃) := min
xt,zt,Zt

T∑

t=1

[
N∑

i=1

ps(D
t
is− zti)+

N∑

j=1

po

(

Dt
jo−

N∑

i=1

Zt
ij

)

+

N∑

i=1

(

sZt
ii +

N∑

j=1,j 6=i

sijZ
t
ij

)]

+

N∑

i=1

h

(

xT
i − zTi −

N∑

j=1

ZT
ij

)

s.t. zti +

N∑

j=1

Zt
ij ≤ xt

i, ∀i∈ [N ],∀t∈ [T ],

zti ≤Dt
is, ∀i∈ [N ],∀t∈ [T ],

N∑

i=1

Zt
ij ≤Dt

jo, ∀j ∈ [N ],∀t∈ [T ],

zt,Zt ≥ 0, ∀t ∈ [T ],

xt+1
i = xt

i− zti −
N∑

j=1

Zt
ij, ∀i∈ [N ],∀t∈ [T ],

x1 = y.

(6)
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Given the initial inventory y and after the realization of the demands D̃ = (Dt
is,D

t
io)i,t

in all regions and in all periods, the two-stage model (6) finds the T -period fulfillment

decision (zt,Zt)t that minimizes the total cost. Since this sequence of fulfillment decisions

are optimized after all demands are realized for the entire T periods, any non-anticipating

fulfillment policy cannot achieve a total cost lower than C(y, D̃) on a given sample path

D̃. Therefore, E(C(y, D̃)) is a lower bound on the expected total cost C(y) of the optimal

non-anticipating fulfillment policy. Hence, we refer to E(C(y, D̃)) as the hindsight-optimal

bound for the multi-stage stochastic program.

The hindsight-optimal bound is useful since it simplifies the fulfillment decisions. The

following Lemma provides a closed-form expression for the optimal fulfillment in (6).

Lemma 1. An optimal solution (zt
∗
,Zt∗) to (6) satisfies the following:

1.
T∑

t=1

zt
∗
i =min

(

yi ,
T∑

t=1

Dt
is

)

, ∀i∈ [N ]

2.
T∑

t=1

Zt∗
ii =min

((

yi−
T∑

t=1

Dt
is

)+

,
T∑

t=1

Dt
io

)

, ∀i∈ [N ]

3.
T∑

t=1

N∑

i=1

N∑

j=1

Zt∗
ij =min

(
N∑

i=1

(

yi−
T∑

t=1

Dt
is

)+

,
N∑

i=1

T∑

t=1

Dt
io

)

Here, x+ =max(x,0) for any x ∈ℜ. The implication of this lemma is that the hindsight-

optimal solution can be determined sequentially. First, all in-store demands are fulfilled to

the maximum extent. Then, with the leftover inventory, in-location online demands in each

region are fulfilled. Finally, cross-fulfillment takes place to fulfill unmet online demands

with leftover inventory in the network. This characterization of optimal fulfillment decisions

is helpful, as we can rewrite the second-stage cost function in an interpretable manner.
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Proposition 2. C(y, D̃) is equivalent to the following linear program:

C(y, D̃) = min
z,Z

N∑

i=1

ps(Dis− zi)+
N∑

j=1

po

(

Djo−
N∑

i=1

Zij

)

+

N∑

i=1

(

sZii+

N∑

j=1,j 6=i

sijZij

)

+

N∑

i=1

h

(

yi− zi−
N∑

j=1

Zij

)

s.t. zi +
N∑

j=1

Zij ≤ yi, ∀i∈ [N ],

zi ≤Dis, ∀i∈ [N ],

N∑

i=1

Zij ≤Djo, ∀j ∈ [N ],

z,Z≥ 0

(7)

where Dis←
T∑

t=1

Dt
is, and Dio←

T∑

t=1

Dt
io.

We observe that the difference between (6) and (7) is that the former model determines

the fulfillment quantities in each period, while the latter model determines the fulfillment

quantities aggregated over the T periods.

The expected hindsight-optimal cost is defined to be

CIIP (y) :=E

[

C(y, D̃)
]

(8)

where, by Proposition 2, C(y, D̃) is equivalent to a single-fulfillment-period problem. Recall

that CIIP (y)≤C(y). We can then interpret CIIP (y) as an approximation of the optimal

cost of the stochastic program C(y) which simplifies the fulfillment problem. Hence, by

using cost function CIIP (y) to optimize the inventory levels, we are able to decouple the

inventory problem from the intractable dynamic fulfillment problem, while still capturing

the effect of virtual pooling of online demands across locations. We refer to the problem

of optimizing CIIP (y) as the Integrated Inventory Planning (IIP) problem, since it jointly

optimizes the inventory in the entire network. We denote CIIP as the optimal IIP expected

cost, i.e., CIIP :=miny≥0C
IIP (y).

Before we analyze the IIP problem, it is worthwhile discussing the simpler case where

cross-fulfillment is not taken into account in inventory planning: this corresponds to the
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solution where Zij = 0 for all i, j ∈ [N ] where i 6= j. When cross-fulfillment is not allowed,

(7) yields the following optimal fulfillment quantities:

zi =min(yi,Dis) ∀i∈ [N ]

Zii =min
(
(yi−Dis)

+ ,Dio

)
∀i∈ [N ]

(9)

When cross-fulfillment is ignored, the problem of determining the optimal initial inven-

tory to minimize the total expected cost is referred to as the Decentralized Inventory

Planning (DIP) problem, where the expected cost can be decomposed by region as follows:

CDIP (y) =

N∑

i=1

E

[

h
(
(yi−Dis)

+−Dio

)+
+ ps(Dis− yi)

+

+ po
(
Dio− (yi−Dis)

+)+ + smin
(
(yi−Dis)

+ ,Dio

)]

.

(10)

Most contemporary omnichannel firms plan for inventory in this decentralized fashion for

each store, a relic from traditional brick-and-mortar inventory models.

We can further simplify the decentralized expected cost. To do so, we use the identities

min(x, y) = y− (y− x)+, and (Dis − yi)
+ +

(
Dio− (yi−Dis)

+)+ = (Di− yi)
+. Hence, (10)

can be expressed in terms of the total demands Di =Dis+Dio as follows:

CDIP (y) =
N∑

i=1

(

sµio +E

[

h (yi−Di)
+ +(po− s) (Di− yi)

+ +(ps− po + s) (Dis− yi)
+
])

(11)

where µio =E[Dio]. It is evident from (11) that CDIP (y) is a jointly convex function in y.

Therefore, the following first-order conditions are necessary and sufficient for the optimal

DIP inventory solution:

(h+ po− s)FDi
(yi)+ (ps− po + s)FDis

(yi) = ps, ∀i∈ [N ] (12)

where FD denotes the cumulative distribution function of demand D. Note that the left-

hand side in (12) is non-decreasing in yi, while the right-hand side is constant. Therefore,

a simple bisection method yields the unique optimum yDIP =
(
yDIP
i

)

i∈[N ]
.

Thus, we see that the inventory solution is simple when cross-fulfillment is ignored

in optimizing the inventory levels. However, solving the IIP problem (8) where cross-

fulfillment is allowed, is not straightforward. This is because the total fulfillment costs can

only be characterized through a linear program. Even if there are only two locations, where
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fulfillment costs can be characterized in closed-form, certain complications arise. We first

analyze the two-store setting to exhibit the complicated nature of the inventory problem

alone. The insights derived in this case inform our analysis of a generalized multi-location

case, which includes a network of omnichannel stores and online fulfillment centers.

4.2. The Two-Store Integrated Inventory Planning (IIP) Strategy

We consider the single period problem described in (7), with N = 2, and the facilities in

each region are omnichannel stores. Using the property in Lemma 1, the quantity cross-

shipped to region Rj by the store in Ri is the minimum of the inventory remaining at Ri

and the unfulfilled online demand at Rj, after both stores have fulfilled their own demands.

Hence, the expected cost function is:

CIIP (y) :=E

[
∑

i=1,2

(

h
(
(yi−Dis)

+−Dio

)+
+ ps(Dis− yi)

+

+ po
(
Dio− (yi−Dis)

+)+ + smin
(
(yi−Dis)

+ ,Dio

)

)

+(s12−h− po)min
((

(y1−D1s)
+−D1o

)+
,
(
D2o− (y2−D2s)

+)+
)

+(s21−h− po)min
((

(y2−D2s)
+−D2o

)+
,
(
D1o− (y1−D1s)

+)+
)
]

(13)

The last two terms in Equation 13 represent the value of cross-shipping: the total savings

by cross-shipping a unit from Ri to Rj, h+po− sij , times the total quantity cross-shipped

from Ri to Rj (and vice versa). The total cross-shipped quantity can be expressed as:

∑

i=1,2

(
Dio− (yi−Dis)

+)+−
(
∑

i=1,2

Dio−
∑

i=1,2

(yi−Dis)
+

)+

(14)

The first term represents the total unfulfilled online demand if there was no cross-shipping

allowed, and the second term represents the unfulfilled online demand with cross-shipping.

Naturally, the difference yields the cross-shipped quantity. Since s12 = s21, we can simplify

Equation 13 as follows:

CIIP (y) = s
∑

i=1,2

µio +
∑

i=1,2

E

[

h (yi−Di)
+ +(ps− po + s)(Dis− yi)

+ +(po− s) (Di− yi)
+
]

+(s12−h− po)

[
∑

i=1,2

(Di− yi)
+−

∑

i=1,2

(Dis− yi)
+−

(
∑

i=1,2

Dio−
∑

i=1,2

(yi−Dis)
+

)+ ]

(15)
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Note that (15) is a special case of C(y) where N = 2 and T = 1. Hence, from Proposi-

tion 1 we know that CIIP (y) is a convex function whose optimizer can be found efficiently

using gradient descent methods. However, the nested term
(∑

iDio −
∑

i (yi−Dis)
+ )+

complicates the calculation of the gradient. Note that the presence of this nested piece-wise

linear term is due to the fact that in-store demand is prioritized. (This type of term does

not arise for the case of traditional transshipments which can be seen by setting Dis = 0

for all i = 1,2.) By noting structural similarities of the IIP problem with a newsvendor

network (van Mieghem and Rudi 2002), we derive an expression for the gradient based

on the dual prices λ = (λ1, λ2)
⊺, which are simply the shadow prices of the constraints

involving y1 and y2 in the linear program representation (7).

Proposition 3 (van Mieghem and Rudi 2002). Under the conditions on cost

parameters in Ψ, with N = 2, there exists a partition (Ωk(y1, y2))
20
k=1 of the demand space

such that in region k of the partition, the dual-price vector of the inventory constraints is

equal to λk = (λk
1, λ

k
2). Hence, the gradient of the IIP cost function can be written as

∇CIIP (y) = (h,h)⊺−
20∑

k=1

λk ·P
(

D̃∈Ωk(y1, y2)
)

. (16)

The four-dimensional demand vector is separable into 20 independent regions based on

the values of y1 and y2, within which the dual price vector of the inventory constraints

is constant (refer to Appendix B for a detailed discussion). This enables formulating the

gradient as in Equation 16. The optimal solution yIIP = (yIIP1 , yIIP2 ) can thus be obtained

by gradient descent, where in each iterative step, the probability of realization of every

demand region has to be recalculated.

However, this gradient-based approach does not extend to more than two stores, as

the number of regions in the partition increases exponentially, and the regions cannot be

enumerated tractably. This is due to the fact that cross-shipment quantities are now set

by a linear program, as compared to explicit expressions in the two-store case. Hence we

develop a tractable lower bound based on a relaxation motivated by practice, yielding a

heuristic solution for the two-store case, which we then extend to multiple regions.
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4.2.1. Lower Bound and Heuristic for the Two-Location Problem. An important

feature which complicates the IIP cost function is that the in-store demands are not pooled

across regions, which in turn leads to the nested piecewise linear terms in the cost function.

We relax this by treating unfulfilled in-store demand as online demand which can be

fulfilled by cross-shipping. This is commonly seen in practice, where if an in-store customer

is unable to find an item on the shelf, store personnel are equipped with the ability to

place an online order for the item to be delivered directly to the customer’s home.

Mathematically, we make the following replacement:

∑

i=1,2

(Dis− yi)
+ +

(
∑

i=1,2

Dio−
∑

i=1,2

(yi−Dis)
+

)+

︸ ︷︷ ︸

unfulfilled demand with in-store demand not pooled

(≥)−→
(
∑

i=1,2

Di−
∑

i=1,2

yi

)+

︸ ︷︷ ︸

unfulfilled demand when all demands are pooled

.

(17)

Here, recall that Di =Dis +Dio is the aggregate demand in region i. Using the relaxation

(17), Proposition 4 formally establishes a lower bound to the IIP expected cost:

Proposition 4. For any y≥ 0, we have CLB(y)≤CIIP (y), where

CLB(y) := s(µ1o+µ2o)+E

[

h (y1+ y2−D)++(po− s12) (D− y1− y2)
+

+(s12− s) (D1− y1)
++(s12− s) (D2− y2)

+

+(ps− (po− s)) (D1s− y1)
++(ps− (po− s)) (D2s− y2)

+
]

(18)

where D=D1+D2 is the total demand.

Note that since the right-hand side of (18) does not have nested piecewise linear terms,

the gradient of CLB(y) has a simple expression. Hence, the first-order conditions satisfied

by the optimizer of CLB can be written as:

(h+ po− s12)FD

(
∑

j=1,2

yj

)

+(s12− s)FDi
(yi)+ (ps− po + s)FDis

(yi) = ps, ∀i= 1,2. (19)

Since CLB is a convex function, these first-order conditions are necessary and sufficient.

Equation 19 is of a similar structure to the first-order conditions obtained by Dong and

Rudi (2004) for the case of constant transshipment cost, with a key difference: there is an

additional term stemming from the presence of in-store demands with a higher underage

cost than the online demands. This means that the inventory levels in each region must be
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Figure 2 Shows the effect of online market share on expected costs (left) and the optimal store inventory levels

(right).

different, in contrast to Dong and Rudi (2004) where the optimality equation only yields

a system-wide inventory level.

Note that the first-order condition (19) is a system of two equations with two variables.

This system can be solved numerically to yield the inventory solution yIIPH. Since the

first-order conditions are necessary and sufficient for optimality, yIIPH minimizes the lower

bound function CLB(·). We use it as a heuristic solution to the IIP problem (15). We

denote the expected cost of the heuristic under the IIP problem as CIIPH :=CIIP (yIIPH).

The relaxation (17) to formulate the lower bound will be tight when the in-store demand

is small compared to the online demand since the optimal inventory levels will be based

on the total demands. We test this numerically by changing the mix of in-store and online

demands in Figure 2. The mean in-store and online demands are calculated as a proportion

of a fixed total mean demand (= 100) in each region. The demands are normal and identical

across regions, with the coefficient of variation fixed at 0.3 for each demand. The cost

parameters are: h=10, ps = 100, po = 100, s= 5, s12 = 7.5.

In Figure 2a, we compare the expected costs of the heuristic, CIIPH, the optimal IIP

expected cost CIIP , the expected cost of the decentralized inventory levels, CDIP :=

CIIP (yDIP), and the lower bound: CLB :=CLB(yIIPH). We make a few observations. First,

the heuristic provides savings over the decentralized inventory solution for most cases,

except when the online market share is low (< 10%). However, we note that when the

online market share is low, the potential savings from centralized planning is limited, as
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seen from comparing CIIP and CDIP . Thus, in cases of very low online market share, the

firm can simply plan for each region separately using the decentralized inventory strategy.

Second, centralized inventory planning is most valuable when there is a moderate mix of

online and in-store demands (the expected cost CIIP is minimum when the online market

share is ∼ 20%). As online demand grows in comparison to in-store demands, the effect

of pooling across regions increases, due to two reasons: 1) more demand is pooled across

regions which leads to a bigger reduction in variability of the total online demand, and 2)

pooled online demands can better absorb the variability in the in-store demands. Thus,

the maximum savings is achieved when there is a good mix of online and in-store demands

so that the pooling across channels and regions work in synergy.

Third, as the in-store demand becomes smaller, the probability that there will be unful-

filled in-store demand decreases, so the relaxation (17) becomes tighter – we see that the

lower bound is tight when the online market share is more than 30%. Correspondingly for

this range of online market share, in Figure 2b, we see that the solution for the relaxed

problem (IIPH) converges to the optimal IIP solution. We infer that when a significant

portion of the demand occurs online (> 30%), in-store demand can effectively be treated as

online demand that can be fulfilled from any location (which makes the model tractable),

as the probability of unfulfilled in-store demand becomes negligible.

The savings in cost in Figure 2a arises from a change in inventory levels in anticipation

of pooling across customer regions. Proposition 5 addresses this observation from Figure

2b that the IIPH solution consistently stocks less than the DIP solution at each store.

Proposition 5. For identical stores and normal demands, yIIPH ≤ (≥) yDIP whenever

yDIP ≥ (≤) m, where m is the vector of mean total demands at stores. Under perfect

positive correlation across customer regions, yIIPH = yDIP = yIIP.

Similar to the intuition in newsvendor settings, yDIP ≥m occurs when underage costs

are greater than overage costs, but this does not translate into an analytical proof due

to the structure of the optimality equations in (12), which has a mixture distribution as

compared to a simple normal distribution in newsvendor theory. Lastly, positive correlation

across regions reduces the pooling benefits achieved by cross-shipping, and under perfect

correlation, there is no benefit from pooling as all regions either have too much or too little

inventory without any imbalance.
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4.3. The Multi-Store Integrated Inventory Planning (IIP) Strategy

We now consider the integrated inventory planning problem IIP (8) for a general system

with multiple customer regions (i.e., N ≥ 2). The cross-shipping costs are taken to be

sij = s+f(dij), where dij is the distance between region Ri and region Rj, and f is a non-

negative, increasing function such that f(d)→ 0 as d→ 0. For the conditions (1) on the

cost parameters to hold true, we assume supd∈D f(d)< po− s where D := {dij : i, j ∈ [N ]}.

4.3.1. Hierarchical Shipping Cost Structures. The second-stage cost function in the

IIP problem has a closed-form expression when N = 2 since the total shipping cost can

be formulated in closed-form (see Equation 13). The closed-form equation was key in the

development of the lower bound and the heuristic for the two-store case.

However, when N > 2, the second-stage cost function is the optimal value of a linear

program, as seen in (7), and may not have a closed-form equation. We next show that if the

shipping costs satisfy a hierarchical property (called nested cost structures in Govindarajan

et al. 2020), then we can still express the expected cost in closed-form. Restricting our

focus on these cost structures allow us to develop a heuristic for the multi-store case.

We say that the IIP problem has nested shipping costs if these costs can be represented

by a tree structure with L levels (2≤L≤N). The bottom-most level consists of N leaves,

with each leaf representing a customer region. Each level of the tree corresponds to different

shipping cost values; the cost is increasing when traversing the tree from bottom to top. The

lowest level corresponds to the in-location shipping cost, s. The highest level corresponds

to the most expensive shipping cost value. When determining the shipping cost between

regions Ri and Rj, this is simply the cost value corresponding to the lowest level where

the two regions are connected.

Nested shipping costs are useful since they imply a hierarchy to cross-shipping. Since

the bottom-most level corresponds to the least expensive shipping cost, demand is fulfilled

to the maximum extent using in-location fulfillment. If there are any unfulfilled demand

or remaining inventory after this level of fulfillment, we can use the next level up for

fulfillment, and so on. This is done until we reach the top-most level with the highest

shipping cost. Hence, when the shipping costs are nested, the second-stage cost function

(7) can be formulated as a sum of piecewise linear functions in y and D̃.

To formally state this result, we introduce some notation. (This notation is consistent

with Govindarajan et al. (2020) where nested structures are discussed in detail.) The set of
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regions [N ] is partitioned in to Nℓ sets for each level ℓ= 0,1, . . . , L−1, such that N =N0 >

N1 > . . . >NL−1 = 1. If two regions belong to the same set in level ℓ, then they are connected

at that level of the tree. We denote the Nℓ sets in partition ℓ as {I(ℓ)1 ,I(ℓ)2 , . . . ,I(ℓ)Nℓ
}. Define

Ξ = {E0,E1, . . . ,EL−1} as the set of assignment matrices, where the level ℓ assignment

matrix Eℓ is a binary matrix of size Nℓ×N where the (k, i) entry is equal to 1 if and only

if region Ri is in I(ℓ)k . Note that E0 is the N ×N identity matrix, and that EL−1 is the row

vector of all ones. The tree structure follows from the assumption that any set in level ℓ is

the union of sets in the preceding level ℓ− 1.

If two regions are in set I(ℓ)k , then the shipping cost between the two regions is sℓ,k.

To induce the nested hierarchy for fulfillment, we assume that it is less costly to fulfill

demand in lower levels. Mathematically, if k(ℓ)(i) is the level ℓ set index of region Ri, since

s0,k(0)(i) = s for all i∈ [N ], we assume that s≤ s1,k(1)(i) ≤ · · · ≤ sL−1. We denote by S= {sℓ,k}
the set of all shipping costs. Note that the nested hierarchy, Ξ, and the shipping costs, S,

fully characterize the nested cost structure.

Proposition 6 (Govindarajan et al. (2020)). Under the L-level nested structure,

CIIP (y) =E

[

s · e⊤Do +h · (e⊤y− e⊤D)++ ps · e⊤(Ds−y)+

+
L−1∑

ℓ=0

η⊤ℓ
(
EℓDo−Eℓ(y−Ds)

+
)+
] (20)

where Do = (Dio)
N
i=1, Ds = (Dis)

N
i=1, D= (Dio,Dis)

N
i=1, ηL−1 = po− sL−1 and, for ℓ≤L− 2,

ηℓ = (ηℓ,k)k∈[nℓ] with ηℓ,k = sℓ+1,m(ℓ+1)(k)− sℓ,k where m(ℓ+1)(k) is the index of the level ℓ+1

parent of set I(ℓ)k .

The reason that such a reformulation is possible under a nested structure is due to the

fact that the total shipping cost can be expressed in closed-form by summing the shipping

costs in each level. In level 0, the shipping cost is
∑

i∈[N ]

s ·min
(
Dio, (yi−Dis)

+)= s · e⊤Do−
∑

i∈[N ]

s ·
(
Dio− (yi−Dis)

+) .

Because of the hierarchy in fulfillment induced by the costs, we know that for any level

ℓ≥ 1, the number of fulfilled units of demand from regions in set I(ℓ)k at level ℓ is

∑

m∈K
(ℓ)
k




∑

i∈I
(ℓ−1)
m

Dio−
∑

i∈I
(ℓ−1)
m

(yi−Dis)
+





+

︸ ︷︷ ︸

unmet demand in Iℓ
k after level ℓ− 1

−






∑

i∈I
(ℓ)
k

Dio−
∑

i∈I
(ℓ)
k

(yi−Dis)
+






+

︸ ︷︷ ︸

unmet demand in I
(ℓ)
k after level ℓ

, (21)
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where K(ℓ)
k is the set of level ℓ− 1 children of set I(ℓ)k . Note that the per-unit cost of this

fulfillment is sℓ,k. The same idea was used to quantify the number of units fulfilled through

cross-shipping in the two-store case in Equation 14. This can also be reconciled with the

fact that the two-store case naturally has a 2-level nested structure.

Thus, the total shipping cost is calculated as:

s · e⊤Do +

L−2∑

ℓ=0

∑

k∈[Nℓ]

(sℓ+1,m(ℓ+1)(k)− sℓ,k) ·






∑

i∈I
(ℓ)
k

Dio−
∑

i∈I
(ℓ)
k

(yi−Dis)
+






+

While nested cost structures are a good approximation for geographic distances in coun-

tries like the US, in general, shipping costs need not exhibit a nested structure. When

shipping costs are not nested, they can be approximated with nested shipping costs using

a hierarchical agglomerative clustering algorithm. Govindarajan et al. (2020) showed that

such an algorithm resulted in only a small gap in approximation of the expected ship-

ping costs. Hence, even though our focus in this section is on nested shipping costs, the

heuristics that we develop are applicable to general shipping costs.

4.3.2. Lower Bound and Heuristic for the Multi-Location Problem. The key dif-

ference of our setting from the pure e-commerce setting in Govindarajan et al. (2020) is

that the available inventory at region i for online demand fulfillment is (yi−Dis)
+ instead

of yi. This gives rise to nested piecewise linear terms in (20) that complicate the calcula-

tion of the first-order conditions for optimality. Similar to the two-store case, we make the

following relaxation for each level ℓ to obtain a lower bound:

Eℓ (Ds−y)+ +
(
EℓDo−Eℓ (y−Ds)

+)+

︸ ︷︷ ︸

unfulfilled demand at level ℓ with in-store demand not pooled

(≥)−→ (EℓD−Eℓy)
+

︸ ︷︷ ︸

unfulfilled demand when all demands are pooled

This relaxation implies that in-store demand is also pooled among the regions in set I
(ℓ)
k

in a nested fashion. If a region Ri stocks out, any unmet in-store demand is routed to

other locations with available inventory in the set I
(ℓ)

k(ℓ)(i)
, for increasing values of ℓ starting

with ℓ = 0, and the demand is lost if no inventory exists after level L − 1. Using this

approximation, a lower bound to CIIP (y) is given by:

CLB
L (y) =E

[

s · e⊤Do +h · (e⊤y− e⊤D)+ (ps− po + s) · e⊤(Ds−y)+

+
L−1∑

ℓ=0

η̂⊤ℓ (EℓD−Eℓy)
+

] (22)



Govindarajan, Sinha and Uichanco: Omnichannel Inventory and Fulfillment Decisions

22 Naval Research Logistics 2020

where η̂ℓ = ηℓ for all ℓ≤L− 2, and η̂L−1 = h+ po− sL−1. The subscript L on CLB
L refers to

the L levels to the nested shipping costs.

Having eliminated the nested piecewise linear terms, we can obtain the first order con-

ditions as follows:

h+(ps− po + s) · (FDis
(yi)− 1)+

L−1∑

ℓ=0

(η̂⊤ℓ )k(ℓ)(i) ·
(

F(EℓD)
k(ℓ)(i)

(

(Eℓy)k(ℓ)(i)

)

− 1
)

= 0, ∀i∈Sso

h+

L−1∑

ℓ=0

(η̂⊤ℓ )k(ℓ)(i) ·
(

F(EℓD)
k(ℓ)(i)

(

(Eℓy)k(ℓ)(i)

)

− 1
)

= 0, ∀i∈ So
(23)

where (x)j denotes the j
th element of vector x, and k(ℓ)(i) is the level ℓ set index of region i.

The optimal solution can be found easily for small number of stores by iterative root-

finding algorithms such as the Newton-Raphson method. The computational burden of

this solution, although reduced from the newsvendor network approach by van Mieghem

and Rudi (2002), is still significant for omnichannel networks in practice with thousands

of stores due to the number of variables involved. Solving these system of N equations can

be challenging, especially for large values of N seen in practice.

Suppose that the shipping costs S= (sij) are not nested. By using hierarchical agglomer-

ative clustering (described in Govindarajan et al. 2020), we can approximate these shipping

cost values with the nested shipping costs S′ = (s′ij). This leads to an approximation of

the IIP cost CIIP (y) with function CIIP ′
(y) which we define to be the right-hand side of

(20) with the approximate cost values S′. The corresponding lower bound (22) is a lower

bound on CIIP ′
(y), but not necessarily to IIP cost CIIP (y) of the original problem. This

is because hierarchical clustering is not guaranteed to provide a lower bound to CIIP (y).

Alternatively, we can obtain a lower bound to CIIP (y) using a different nested structure

approximation: we set L = 2, with s0 = s1 = s, i.e. the shipping costs are constant and

equal to the in-location fulfillment cost, which gives us the following expected cost:

CLB
2 (y) =E

[

s · e⊤Do +h · (e⊤y− e⊤D)++(po− s)
(
e⊤D− e⊤y

)+

+(ps− po + s)
∑

i∈Sso

(Dis− yi)
+

] (24)

This function is a lower bound on the IIP cost, as formalized in the following Proposition.

Proposition 7. When So = ∅, the following are true for the cost function CLB
2 :
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1. CLB
2 (y)≤CIIP (y) for any y≥ 0.

2. Let yIIPH := argminy≥0C
LB
2 (y). yIIPH is unique, and is given by the solution to the

system of N equations:

(h+ po− s) ·FD

(
e⊤y

)
+(ps− po + s) ·FDis

(yi) = ps, ∀i ∈S, (25)

where FD is the cumulative distribution of the aggregate demand D=
∑

j∈S(Djo+Djs).

3. When demands follow a multivariate normal distribution, the optimal solution yIIPH

has the following property: for some ν ∈ [0,1],

yIIPH
i = F−1

Dis
(ν) , ∀i∈S. (26)

4. If demands are bounded and i.i.d. across regions, and if h> 0 is sufficiently small, then

as the number of regions increases, yIIPH is near-optimal in an asymptotic sense with

a constant approximation factor. That is, if yIIP := argminy≥0C
IIP (y), then:

1≤ CIIP (yIIPH)

CIIP (yIIP)
≤ 1+

h+ po− s

ps− po + s
, as N →∞.

Proposition 7 illustrates the utility of the constant fulfillment cost approximation. First,

it provides a valid lower bound to the multi-location two-stage cost function CIIP (y).

Second, the finding the optimal solution to the lower bound is equivalent to solving a

simple system of equations. Third, in the case where demands follow a normal distribution

(a common assumption in practice), finding the optimal solution is further simplified by

the reduction to a single variable optimization problem, namely over the common critical

fractile (ν) of the in-store demands. Finally, the solution obtained by the approximation has

an asymptotically bounded performance when the network size is large, thereby ensuring

that the heuristic is not arbitrarily bad compared to the optimal solution.

When So 6= ∅, Proposition 7(1) still holds; however, the first order conditions (25) fail to

yield a feasible solution. We describe an algorithm for networks with So 6= ∅ in Appendix C –

the algorithm preserves the scalability property (Proposition 7(3)), and requires calculation

of inventories at OFCs separately, while using them as input to calculate the store inventory

levels. The scalability of the constant fulfillment cost heuristic (yIIPH) makes it a favorable

candidate for inventory planning for networks of large sizes – we show in the numerical

analysis (Section 6), the benefit of such centralized planning increases with network size,

and hence a scalable solution is of utmost importance for real life networks with thousands

of inventory nodes.
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5. Determining the Reactive Fulfillment Policy

Recall the dynamics of the joint inventory and fulfillment setting described in Section 3.1.

Specifically, after the initial inventory levels are chosen, the seller then has to decide how to

dynamically fulfill the online demands that arrive over T fulfillment periods. The previous

section focused on developing an inventory heuristic yIIPH that can be found efficiently

by solving a system of equations. Hence, in this section, we next focus on developing a

dynamic fulfillment policy for a given initial inventory level.

The simplest policy one can think of is myopic fulfillment – online demands are fulfilled

as they arrive, from the closest location (in terms of shipping cost) with available inventory.

Indeed, many firms follow this policy due to its simplicity. Note that this policy ignores

future demands while making decisions on the fly. However, it may be ex-post optimal to

withhold inventory at a location to fulfill future demands, than to fulfill an online order in

the current period from a far-away location.

The natural question is to then ask, how much inventory should be withheld at a location

in any period? We consider two fulfillment policies, which guide online order fulfillment:

1. the myopic fulfillment (MF) policy, where online demands in the current fulfillment

period are fulfilled to the maximum possible extent with the available inventory, with-

out consideration for demands in the future, and

2. the threshold fulfillment (TF) policy, which reserves inventory at each location for

future demands, by halting online fulfillment from a location when the inventory level

falls below a (time-dependent) threshold.

Since in-store demands are costlier to lose and do not have the additional flexibility

of cross-shipping, it is intuitive that the TF policy can lead to reduction in costs com-

pared to the MF policy, but only if the thresholds are chosen correctly. Incorrectly setting

aside too much inventory (by setting a high threshold) affects demand fulfillment, leading

to increased lost online sales. Rationing inventory between high-priority and low-priority

demands has been studied in literature (for a review, refer to Kleijn and Dekker 1999),

and along similar lines, Jalilipour Alishah et al. (2017) prove the existence of an optimal

threshold rationing policy between in-store and online demands at a single store.

In the multi-location problem, it is not straightforward to estimate the underage cost for

the low-priority (online) demand, as it is endogenized by the fulfillment policy and depends

on where an order is fulfilled from. The optimal thresholds depend on in-store and online
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Algorithm 1 Implementation of the Threshold Fulfillment (TF) Policy

1: In each fulfillment period t, each store first fulfills its own in-store demand to the

maximum possible extent, and the leftover inventory at store is x̂i
t,∀i∈ Sso.

2: The inventory available for online fulfillment at each store is Kt
i = (x̂i

t−wt
i)

+,∀i∈ Sso,
where the thresholds wt

i are calculated from (27).

3: Given the online demands Djo, j ∈ S, the online fulfillment decisions Zt
ij , i, j ∈ S are

obtained from solving the transportation LP:

min

{
∑

i,j∈S

(sij − po)Z
t
ij :

∑

k∈S

Zt
kj ≤Djo,

∑

k∈S

Zt
ik ≤Kt

i , Zt
ij ≥ 0, ∀i, j ∈S

}

demands in a complicated, network-based fashion, as online demands are pooled across

locations, and their calculation is akin to obtaining optimal transshipment decisions based

on such a threshold structure. Alternatively, we leverage the fact that the IIP inventory

model developed in the previous section captures these network-based trade-offs. We utilize

the inventory heuristic (yIIPH) to inform fulfillment decisions in the following way: at store

i, after in-store demands are fulfilled at the end of period t, use the excess inventory (if

any) above thresholds wt
i to fulfill online demands, where wt

i is calculated as:

wt
i =







max

(

F−1

D
[t+1,T ]
is

(
ps

h+ps

)

,
(
yIIPH,t+1

)

i

)

, if i∈ Sso,

0, if i∈ So,
(27)

where D
[t+1,T ]
is :=

∑T

t′=t+1D
t′
is, and yIIPH,t+1 is the inventory heuristic applied to the time

horizon [t+1, T ]. Thus, this policy sets aside inventory at each store for future demands as

specified by the IIP inventory heuristic. In Figure 2, we noted that when in-store demand

is dominant, the heuristic yields inventory levels that are lower than optimal. To correct for

this phenomenon, we take the maximum of the heuristic inventory level, and a newsvendor

quantity that caters to future in-store demands alone.

We formalize the TF policy in Algorithm 1. The fulfillment thresholds can be calculated

at the start of the selling season, and only need be re-evaluated if the demand forecasts for

the remaining periods in the horizon are updated. The calculation of fulfillment thresholds

is computationally light due to the scalability of the inventory heuristic (Proposition 7(3)).

The MF policy places no threshold restrictions on online fulfillment, and can simply be

recovered from Algorithm 1 by setting the thresholds wt
i to be zero for all i∈ S in step 1.
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We can evaluate the performance of these fulfillment policies for any given inventory

decision by comparing them with the clairvoyant hindsight-optimal policy that can be

calculated from (6). In Section 6, we show that the TF policy achieves a much smaller gap

with respect to the hindsight-optimal lower bound, compared to the MF policy.

6. Numerical Analysis

We employ a realistic setting to test the performance of the inventory and fulfillment

heuristic solutions, based on a fictitious network embedded in mainland US. Even though

we developed our joint inventory and fulfillment heuristic policy based on relaxations of the

problem, we will evaluate all policies based on the total expected cost of the T -fulfillment

period problem, C(y), through a Monte Carlo simulation with sample size of 104. By vary-

ing different problem parameters, we primarily compare our joint heuristic 〈IIPH,TF〉 with
the traditional solution 〈DIP,MF〉 as a benchmark, to demonstrate the value of centralized

planning. We also report the gap achieved by the fulfillment policies (MF,TF) from the

lower bound following the hindsight-optimal policy (HF), for starting inventory yIIPH.

We considered alternative benchmarks and bounds which are not reported here. A deter-

ministic solution that stocks the mean total demand at each location (which then informs

fulfillment thresholds) was found to be an inferior benchmark compared to 〈DIP,MF〉 in
most cases. A lower bound for the expected cost of the joint heuristic can be obtained by

jointly optimizing (6) for inventory and fulfillment decisions; in most cases, this yielded an

optimality gap of less than 20%. Due to looseness of this clairvoyant bound, in few cases

(such as low online market share), the upper bound on the optimality gap was even as

high as 70%, rendering this comparison non-informative without access to optimal costs.

6.1. Network Setup

Stores are taken to be located at the most populous cities in mainland US (Wikipedia 2016)

and the OFCs are located according to the list of most efficient locations for warehouses

in terms of possible transit lead-times (Chicago Consulting 2016). The shipping costs are

calculated using the cost equation estimated by Jasin and Sinha (2015) based on UPS

Ground shipping rates for an item weighing one pound: sij = 9.182 + 0.000541dij, where

dij is the distance in miles from region i to region j. Other cost parameters used are:

h= 10, ps = po = 100, s= 9.182. The demands are taken to be independent and normally

distributed with parameters proportional to the population of the cities, with α being the
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No. of No. of 〈IIPH,TF〉 vs 〈DIP,MF〉 % Gap vs 〈IIPH,HF〉
OFCs Stores % Savings % Imbalance Reduction % Turnover Increase 〈IIPH,MF〉 〈IIPH,TF〉

1 50 12.0 5.9 20.8 13.7 1.2
1 100 16.5 13.1 25.3 19.2 1.7
1 150 19.0 20.2 27.8 22.2 1.9
2 50 14.4 16.5 23.1 13.9 1.2
2 100 17.5 23.2 26.5 18.9 1.7
2 150 19.7 29.4 28.8 21.7 1.8
5 50 16.6 32.2 26.4 12.9 1.1
5 100 18.8 35.2 28.3 16.9 1.5
5 150 21.1 37.7 30.3 20.6 1.8
10 50 17.4 35.3 27.3 12.5 1.0
10 100 19.5 36.7 28.8 17.1 1.5
10 150 21.4 38.0 30.6 20.1 1.7

Table 1 Effect of network size (number of stores and OFCs)

proportion of the total demand that occurs online. The coefficient of variation of the total

selling-season demands at each location are fixed at 0.2. The total demand is split evenly

across the T fulfillment periods into identical and independent normal random variables.

We denote the number of physical stores by ns, and the number of OFCs by no. In the

base case, we take α = 0.5, T = 5, ns = 50, n0 = 2. Further details on the numerical setup

and a brief overview of the simulation process can be found in Appendix D.

6.2. Effect of Network Size

Table 1 shows that increasing the network size has a positive and marginally decreasing

effect on the cost savings of 〈IIPH,TF〉 relative to the traditional solution of decentral-

ized inventory planning and myopic fulfillment 〈DIP,MF〉. As the network size increases,

centralized inventory planning and strategic fulfillment is increasingly valuable, as there is

more pooling and flexibility in terms of options available in fulfillment.

We also compare the strategies based on two important metrics: inventory imbalance

and inventory efficiency. Higher imbalance can lead to costly spillovers and local stockouts

(Acimovic and Graves 2017), which in turn can cause markdowns in stores. We mea-

sure imbalance by recording the variance of ending inventory positions across locations at

the end of each fulfillment period, and taking the average value over the selling horizon.

Although this is different from the metric used by Acimovic and Graves (2017), it cap-

tures the essence of imbalance among locations in an omnichannel network. We see that

our combined heuristic achieves a lower imbalance across locations as compared to the

〈DIP,MF〉 strategy, and this effect is more pronounced for larger networks.

We define another metric, inventory efficiency, as an equivalent measure for inventory

turnover, calculated as the ratio of the total fulfilled demand to the average inventory
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smax/s % Savings % Gap vs 〈IIPH,HF〉
〈IIPH,TF〉 vs 〈DIP,MF〉 〈IIPH,MF〉 〈IIPH,TF〉

1.16 13.6 13.4 1.2
2 13.1 13.0 1.2
3 12.7 12.6 1.2
4 12.4 12.2 1.3
5 11.6 12.5 1.4

Table 2 Effect of the sensitivity of cross-shipping costs to distance (smax/s)

level of the system in the selling horizon (calculated as the mean of the starting inven-

tory level and expected ending inventory at the end of the horizon). Higher efficiency

achieved by the heuristic 〈IIPH,TF〉 stems from a reduction in the starting inventory levels

without a considerable decrease in service levels, due to planning in advance for cross-

shipping. This offers a potential solution to the decreasing trend in turnovers in the retail

industry in recent years (Samuel 2017). The last two columns of Table 1 show that the

threshold-based fulfillment (TF) policy significantly outperforms myopic fulfillment (MF)

when compared relative to the hindsight-optimal fulfillment (HF). While increasing num-

ber of stores increases the gap of both policies to the hindsight-optimal lower bound, the

threshold-based policy achieves a significantly smaller gap compared to the myopic policy.

Note that the achieved gap with respect to the hindsight-policy is an upper bond on the

optimality gap (with respect to the optimal non-anticipating fulfillment policy).

6.3. Effect of Cross-shipping Costs

We next vary the slope of shipping costs with respect to distance, thereby increasing the

ratio smax/s (value of 1.16 corresponds to the base case setting), where smax =maxi,j sij.

As expected, the relative performance of the heuristic decreases as shipping costs become

more sensitive to distance (Table 2). In practice, the range of shipping costs is not too

large: for a 5lb package, the ratio smax/s is less than 2 for the UPS Ground option, and less

than 3 for the UPS Next Day Air option (UPS 2017) for locations within the mainland US.

Hence the heuristic provides significant savings for most existing shipping cost structures,

while still being near-optimal (< 1.5% optimality gap).

6.4. Effect of Online Market Share

We observe similar trends (as previously seen in Figure 2a) when the online market share

is varied (Table 3). As expected, we see that when the online market share is low, the

benefit achieved by the heuristic is limited. However, the savings increases sharply when
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Online Market Share % Savings % Gap vs 〈IIPH,HF〉
(α) 〈IIPH,TF〉 vs 〈DIP,MF〉 〈IIPH,MF〉 〈IIPH,TF〉
10% 1.7 51.6 6.1
20% 17.9 65.5 11.0
30% 18.3 44.1 7.2
40% 16.1 24.2 2.9
50% 13.9 13.0 1.2
60% 12.2 7.8 0.5
70% 11.3 4.9 0.3
80% 11.0 2.9 0.2
90% 10.9 1.5 0.1

Table 3 Effect of online market share (α)

No. of % Savings % Gap vs 〈IIPH,HF〉
Periods 〈IIPH,TF〉 vs 〈DIP,MF〉 〈IIPH,MF〉 〈IIPH,TF〉

1 14.2 0.0 0.0
5 14.1 13.8 1.3
10 14.6 23.3 2.6
15 14.4 28.5 4.3
20 14.3 32.2 5.8
25 14.1 34.3 7.3
30 14.2 36.5 9.1
35 13.9 38.9 10.7
40 13.6 42.0 12.2

Table 4 Effect of number of fulfillment periods (T )

the online market share increases, thus demonstrating that firms can obtain considerable

savings through centralized inventory strategies in the current state of the industry.

Surprisingly, the lower bound gap of the fulfillment policies are also non-monotone. In

fact, the myopic policy is quite close to the lower bound when the online market share

is high, indicating that a simple myopic policy can be effective for pure-play e-commerce

firms. However, the TF policy is far superior, especially for omnichannel firms with a

moderate mix of online and in-store demands.

6.5. Effect of Number of Fulfillment Periods (T )

By increasing the number of times online fulfillment decisions are made, we can closely

model the continuous-time case where fulfillment decisions are made as and when online

orders arrive. We keep the parameters of the total demand over the selling season constant,

and keep demands across fulfillment periods independent and identically distributed.

Table 4 tabulates the results. We see that the savings achieved by the heuristic is fairly

stable and robust to the chosen value of T , whereas the lower bound gap achieved by the

fulfillment policies are increasing in T . The MF policy is punished for failing to reserve
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inventory for future in-store demands, and the lower bound gap increases at a higher rate

compared to the TF policy’s gap, since the TF policy takes future demands into account.

It is worth noting here that the hindsight-optimal solution is only a proxy for the optimal

non-anticipating fulfillment policy – as T increases, the variability of demands increase

(since the variability of the total demand is kept constant), and hence we can expect that

the hindsight-optimal bound may get looser with respect to the non-anticipating optimal

fulfillment policy. Thus, while the upper bound to the optimality gap increases with T , it

is not certain that the actual optimality gap does too.

7. Conclusion

Despite numerous retailers struggling with the operational problems posed by omnichan-

nel retailing, the area has received comparatively less attention in literature. Our research

addresses an important facet of omnichannel retailing — network inventory management,

by demonstrating the value in utilizing the pooling benefits offered by omnichannel retail-

ing, through a combined inventory and fulfillment policy. Our heuristic solutions are highly

scalable and easy to understand, and provide significant savings over strategies that are

traditionally used in practice. Our solutions are generalizable to demands originating from

arbitrary customer regions, by treating them as facilities that carry zero inventory.

An important direction for future research is to include multiple classes of online demand,

especially in-store pickups, which is a popular mode of omnichannel fulfillment. Multi-

period models for regular products may be considered, however, the complexity arising

from fulfillment decisions may render these models intractable. A heuristic control for

managing multiple products is also an interesting and important extension. Our models can

also inform important network design decisions in determining optimal locations for new

facilities. In conclusion, we believe that the scalability, interpretability and generalizability

of our solutions make them capable of serving as helpful decision tools for practitioners.
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Appendices

Appendix A: Proofs of Propositions

A.1. Proof of Proposition 1

Consider the case where items are ordered at the start of the selling horizon, and online demands are

fulfilled over T fulfillment periods. Assume that CT+1(x
T+1, D̃T+1) = 0 without loss of generality. Thus, from

(2),(3),(4), CT (x
T, D̃T ) is the optimal value of a linear program which is jointly convex in (xT, D̃T ). This

leads to the base case result that CT (x
T, D̃T ) is convex in xT given any D̃T . By backward induction, we need

to show that Ct(x
t, D̃t) is convex in xt for any given D̃t, with the assumption that Ct+1(x

t+1, D̃t+1) is convex

in xt+1 given any D̃t+1. The cost-to-go function can be represented by Ct(x
t, D̃t) = min

zt,Zt∈∆
G(xt, D̃t,zt,Zt),

where

G(xt, D̃t,zt,Zt) =
[

P (xt, D̃t,zt,Zt)+ECt+1(x
t
i − zt

i −
N∑

j=1

Zt
ij, D̃

t+1)
]

(28)

Consider any µ≥ 0, and xt
1,x

t
2 ≥ 0. Let (zt

i ,Z
t
i ) = argmin

zt,Zt∈∆

G(xt
i , D̃

t,zt,Zt). Note that P is a linear function

in its variables (Equation 3), and ECt+1(x
t+1, D̃t+1) is convex in xt+1, as expectation preserves convexity.

Let x̄t = µxt
1 +(1−µ)xt

2, z̄
t = µzt

1 +(1−µ)zt
2 and Z̄t = µZt

1 +(1−µ)Zt
2. We have:

Ct(x̄
t, D̃t) = min

zt,Zt∈∆

[

P (x̄t, D̃t,zt,Zt)+ECt+1(x̄
t
i − zt

i −
N∑

j=1

Zt
ij, D̃

t+1)
]

≤ P (x̄t, D̃t, z̄t, Z̄t)+ECt+1(x̄
t
i − z̄t

i −
N∑

j=1

Z̄t
ij, D̃

t+1)

≤ µP (xt
1, D̃

t,zt
1,Z

t
1)+ (1−µ)P (xt

2, D̃
t,zt

2,Z
t
2)+ECt+1(x̄

t
i − z̄t

i −
N∑

j=1

Z̄t
ij , D̃

t+1)

(29)

The first inequality follows from the feasibility of z̄t, Z̄t in ∆, as (zt
1,Z

t
1) and zt

2,Z
t
2) are feasible in ∆. The

second inequality follows from the convexity of P . As ECt+1(x
t+1, D̃t+1) is convex in xt+1, we have:

ECt+1

(
x̄t
i − z̄t

i−
N∑

j=1

Z̄t
ij, D̃

t+1
)
=ECt+1

[

µ

(

xt
1,i− zt

1,i−
N∑

j=1

Zt
1,ij

)

+(1−µ)

(

xt
2,i− zt

2,i−
N∑

j=1

Zt
2,i

)

, D̃t+1

]

≤ µECt+1

[

xt
1,i− zt

1,i−
N∑

j=1

Zt
1,ij, D̃

t+1

]

+(1−µ)ECt+1

[

xt
2,i− zt

2,i−
N∑

j=1

Zt
2,i, D̃

t+1

]

(30)

Thus, from Equation 28, we have:

Ct(x̄
t, D̃t)≤ µG(xt

1, D̃
t,zt

1,Z
t
1)+ (1−µ)G(xt

2, D̃
t,zt

2,Z
t
2)

= µCt(x
t
1, D̃

t)+ (1−µ)Ct(x
t
2, D̃

t)
(31)

The equality follows from the definitions of (zt
1,Z

t
1) and (zt

2,Z
t
2). �

A.2. Proof of Lemma 1

By recursion on xt
i, we have: x

T
i −zT

i −
∑

j

ZT
ij = yi−

T∑

t=1

zt
i−

T∑

t=1

∑

j

Zt
ij. Thus, we have the following coefficients

for the decision variables in the objective:

zt
i :−ps− h , ∀i,∀t≤ T

Zt
ii : s− po− h , ∀i,∀t≤ T

Zt
ij : sij − po− h ∀i, j 6= i,∀t≤ T



Govindarajan, Sinha and Uichanco: Omnichannel Inventory and Fulfillment Decisions

ii Naval Research Logistics 2020

Note that based on the assumptions in Equation 1, we have: −ps − h > s − po − h ≥ sij − po −
h. Then, by greedy allocation for each i, we will have

T∑

t=1

zt
i = min(y1,

T∑

t=1

Dt
is, followed by

T∑

t=1

Zt
ii =

min

((

yi−
T∑

t=1

Dt
is

)+

,
T∑

t=1

Dt
io

)

. Finally,
T∑

t=1

∑

i,j

Zt
ij =min

(
N∑

i=1

(

yi−
T∑

t=1

Dt
is

)+

,
N∑

i=1

T∑

t=1

Dt
io

)

. �

A.3. Proof of Proposition 2

First we eliminate xt
i variables using xt

i = yi−
t−1∑

t′=1

zt′

i −
t−1∑

t′=1

Zt′

ij . Thus, (6) is equivalent to:

C(y, D̃) = min
zt,Zt

T∑

t=1

[
N∑

i=1

ps(D
t
is− zt

i)+
N∑

j=1

po

(

Dt
jo−

N∑

i=1

Zt
ij

)

+
N∑

i=1

sZt
ii +

N∑

i=1

N∑

j=1,j 6=i

sijZ
t
ij

]

+
N∑

i=1

h

(

yi−
T∑

t=1

zt
i −

T∑

t=1

N∑

j=1

Zt
ij

)

s.t.
t∑

t′=1

zt′

i +
t∑

t′=1

N∑

j=1

Zt′

ij ≤ yi, ∀i∈ [N ],∀t∈ [T ],

zt
i ≤Dt

is, ∀i∈ [N ],∀t∈ [T ],
N∑

i=1

Zt
ij ≤Dt

jo, ∀j ∈ [N ],∀t∈ [T ],

zt,Zt ≥ 0, ∀t∈ [T ]

(32)

First, note that the first constraint can be replaced by
T∑

t′=1

zt′

i +
T∑

t′=1

N∑

j=1

Zt′

ij ≤ yi, ∀i ∈ [N ], since zt,Zt ≥ 0.

Since the objective in (6) contains the decision variables zt
i , Z

t
ij only occurring in the sum over T (i.e.

as
T∑

t=1

zt
i and

T∑

t=1

Zt
ij), we can replace the second and third constraints by

T∑

t=1

zt
i ≤

T∑

t=1

Dt
is, ∀i ∈ [N ] and

T∑

t=1

N∑

i=1

Zt
ij ≤

T∑

t=1

Dt
jo, ∀j ∈ [N ] respectively. Note that this replacement relaxes the problem, but we show

that the objective solution does not change in value. Consider the second constraint involving zt
i variables.

Any feasible solution to the relaxed problem can be modified to be feasible in the original problem without

altering the objective, as the objective only contains terms of the form
T∑

t=1

zt
i . The proof is by contradiction,

as if the solution cannot be modified to be feasible in the original problem, then it cannot be feasible in the

relaxed problem. Similar arguments can be made for the third constraint involving Zt
ij variables. Thus, an

equivalent formulation of (6) is:

C(y, D̃) = min
zt,Zt

T∑

t=1

[
N∑

i=1

ps(D
t
is− zt

i)+

N∑

j=1

po

(

Dt
jo−

N∑

i=1

Zt
ij

)

+

N∑

i=1

sZt
ii +

N∑

i=1

N∑

j=1,j 6=i

sijZ
t
ij

]

+

N∑

i=1

h

(

yi−
T∑

t=1

zt
i −

T∑

t=1

N∑

j=1

Zt
ij

)

s.t.

T∑

t=1

zt
i +

T∑

t=1

N∑

j=1

Zt
ij ≤ yi, ∀i∈ [N ],

T∑

t=1

zt
i ≤

T∑

t=1

Dt
is, ∀i∈ [N ],

T∑

t=1

N∑

i=1

Zt
ij ≤

T∑

t=1

Dt
jo, ∀j ∈ [N ],

zt,Zt ≥ 0, ∀t∈ [T ]

(33)
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Applying the transformations completes the proof:

Dis←
T∑

t=1

Dt
is, Dio←

T∑

t=1

Dt
io

zi←
T∑

t=1

zt
i , Zij←

T∑

t=1

Zt
ij

�

A.4. Proof of Proposition 3

Proof: Consider the linear program representation C̃(y, D̃), where zi represents the amount of inventory

at Ri used to fulfill its in-store demand, and Zij represents the amount of inventory of Ri used to fulfill

online demand from region j.

C̃(y, D̃) = min
zi,Zij

∑

i

h (yi− zi−
∑

j

Zij)+
∑

i

ps(Dis− zi)

+
∑

i

po(Dio−
∑

j

Zji) +
∑

i

sZii +
∑

i

∑

j 6=i

sijZij

subject to zi +
∑

j

Zij ≤ yi, ∀i
zi ≤ Dis, ∀i
∑

j

Zji ≤ Dio, ∀i
zi, Zij ≥ 0, ∀i, j

(34)

Note that CIIP (y) = E(C̃(y, D̃)). The structure of CIIP as an expectation of a linear program draws

direct comparison with the value function in newsvendor networks (van Mieghem and Rudi 2002). Similar

to proposition 2 in Harrison and van Mieghem (1999), the gradient of the function C̃(y, D̃) with respect to

y= (y1, y2) can be written as:

∇yC̃(y, D̃) = (h,h)T −λ(y, D̃) (35)

where λ(y, D̃) is the dual-price vector corresponding to the constraints with y1 and y2 in (34). For a given

y, the 4-dimensional demand space (D1s,D1o,D2s,D2o) can be divided into domains (Ωk(y))
20
k=1 such that

in each domain, the optimal values of the decision variables zi, zii and zij are linear in yi, and hence the

dual-price vector λ(y, D̃) is constant (refer to Appendix B for a discussion). The first-order conditions are:

0 =∇yC
IIP (y) =∇yE

(

C̃
(

y, D̃
))

(36)

We can interchange the gradient and expectation on the right hand side of Equation 36 (see Harrison and

van Mieghem (1999) for a proof), and thus Equation 36 becomes

0 =∇yC
IIP (y) =ED̄∇yC̃

(

y, D̃
)

= (h,h)T −ED̃λ
(

y, D̃
)

= (h,h)T −
∑

k

λk
P (Ωk (y))

(37)

where λk is the constant λ(y, D̃) for D̃∈Ωk (y). �
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A.5. Proof of Proposition 4

Based on the approximation used to formulate CLB, the difference in costs between CIIP and CLB is:

CIIP (y)−CLB(y) = (h+ po− s12)E
[(∑

i

Dio−
∑

i

(yi−Dis)
+
)+

+
∑

i

(Dis− yi)
+−

(

D−
∑

i

yi

)+]

≥ (h+ po− s12)E
[(∑

i

Dio−
∑

i

(yi−Dis)
+ +

∑

i

(Dis− yi)
+
)+

−
(

D−
∑

i

yi

)+]

= 0

The first inequality follows from : a+ + b+ ≥ (a+ b)+, and further simplification uses x+− (−x)+ = x. �

The proof follows for any number of stores, as long as the cross-shipping cost is a constant and s12 <h+ po.

A.6. Proof of Proposition 5

A similar result is proved in Dong and Rudi (2004, Lemma 1), who consider the case of traditional trans-

shipment. Substituting yDIP into the first order condition for CLB in Equation 19, we have:

(h+ po− s12)FD

(
∑

j

yDIP
j

)

+(s12− s)FDi
(yDIP

i )+ (ps− po+ s)FDis
((yDIP

i )− ps

= (h+ po− s12)

(

Φ

(

zDIP
∑

i

σi/σ

)

−Φ
(
zDIP

)

)

where Φ is the CDF of the standard normal distribution. The equality follows from the fact that yDIP satisfies

Equation 12, and the normality of demands, as we can write yDIP
i = µi + zDIPσi, where Di ∼N (µi, σi), and

D∼N (µ,σ). As
∑

i

σi/σ≥ 1, it follow that the gradient of CLB at yDIP is ≥ 0(≤ 0) whenever zDIP ≤ (≥)µi.

Also, writing σ =
√∑

i

σ2
i +

∑

j

2ρlσiσj , where ρl is the correlation coefficient between locations, yDIP is

optimal to CLB and CIIP when ρl = 1. �

A.7. Proof of Proposition 6

The proof follows from Govindarajan et al. (2020), by noting that the nested structure provides a closed-form

expression for the total shipping cost, as opposed to a linear program, by summing the shipping costs in each

level. The key difference from Govindarajan et al. (2020) is that the available inventory levels at location i

is (yi−Dis)
+), rather than just yi, which gives rise to nested piecewise linear terms in the cost function.

In level 0, the shipping cost is
∑

i∈[N] s ·min
(

Dio, (yi−Dis)
+
)

= s ·e⊤Do−
∑

i∈[N] s ·
(

Dio− (yi−Dis)
+
)

.

For any level ℓ≥ 1, the number of fulfilled units of demand from regions in set I(ℓ)k at level ℓ is

∑

m∈K(ℓ)
k




∑

i∈I(ℓ−1)
m

Dio−
∑

i∈I(ℓ−1)
m

(yi−Dis)
+





+

︸ ︷︷ ︸

unmet demand in Iℓ
k after level ℓ− 1

−






∑

i∈I(ℓ)
k

Dio−
∑

i∈I(ℓ)
k

(yi−Dis)
+






+

︸ ︷︷ ︸

unmet demand in I(ℓ)

k
after level ℓ

, (38)

where K(ℓ)
k is the set of level ℓ− 1 children of set I(ℓ)k . Note that the per-unit cost of this fulfillment is sℓ,k.

The total cost is thus given by:

CIIP (y) =E



h · (e⊤y− e⊤D)+ + ps · e⊤(Ds−y)+ + po ·
(
e⊤Do− e⊤(y−Ds)

+
)+

+s · e⊤Do +

L−2∑

ℓ=0

∑

k∈[nℓ]

(sℓ+1,m(ℓ+1)(k)− sℓ,k) ·






∑

i∈I(ℓ)
k

Dio−
∑

i∈I(ℓ)
k

(yi−Dis)
+






+
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where m(ℓ+1)(k) ∈ [nℓ+1] is the level ℓ+1 parent of k ∈ [nℓ]. The proof is completed using the definition of

ηℓ as given in the Proposition statement. �

A.8. Proof of Proposition 7

Proof of (1): The proof is similar to that of Proposition 4 and is hence omitted.

Proof of (2): CLB
2 is convex in the inventory levels, and its first order conditions can be solved to yield a

heuristic solution yIIPH characterized by the first order conditions:

(h+ po− s)FD

(
∑

j∈S

yIIPH
j

)

+(ps− po + s)FDis
(yIIPH

i ) = ps, ∀i∈S (39)

Rewriting the above equation, we have:

yIIPH
i = F−1

Dis








ps− (h+ po− s) ·FDS

(
∑

j∈S
yIIPH
j

)

ps− po+ s








Let m= ps− (h+ po− s) ·FDS

(
∑

j∈S
yIIPH
j

)

. Thus, we have:

yIIPH
i = F−1

Dis

(
m

ps− po+ s

)

(40)

Substituting the above equation into the definition of m, we have:
∑

j∈S

F−1
Dis

(
m

ps− po+ s

)

=F−1
D

(
ps−m

h+ po− s

)

(41)

The left hand side is increasing in m, whereas the right hand side is decreasing in m. Note that ps − (h+

po−s)≤m≤ ps− (po−s). Due to the monotonicity of the left and right hand sides and their extreme values

in this range, there must be a unique value of m that satisfies this equation, thus yielding a unique solution

from (40). �

Proof of (3): Since we can solve for a unique solution for m in (41) which yields a unique solution yIIPH from

(40), it directly follows that stores stocks at the same critical fractile of their in-store demand. �

Proof of (4): Consider a square of unit area in which N stores are uniformly distributed. Let the square be

divided into
√
N identical cells, such that each cell contains

√
N stores. The dimensions of each cell are thus

1

N
1
4
× 1

N
1
4
. The superscript l for a demand variable (e.g. Dl

is) denotes that the demand belongs to a store in

cell l.

Since the solution yIIPH yields identical quantities at each location when the demands and costs are

identical across locations, we simplify notation for the sake of this proof by replacing C(y) by C(y), where y

is the inventory level at each location as specified by the solution y. Let CLB′

be the cost function obtained

from CIIP by lowering all cross-shipping costs to the within-region shipping cost s. Let CIIPc and CLB′
c be

the functions obtained by restricting CIIP and CLB′

respectively, so that cross-shipments can only be made

between two stores belonging to the same cell. Clearly, CIIP (y)≤CIIPc(y) and CLB′

(y)≤CLB′
c(y) for any

y ≥ 0. Let g(y,N) denote the cost incurred by N stores starting with inventory y each, without the option

of cross-shipping:

g(y,N) =
N∑

i=1

[

h (y−Di)
+ + ps (Dis− y)+ + po

(

Dio− (y−Dis)
+
)+

+ smin
(

Dio, (y−Dis)
+
)]
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Note that g(y,N) represents the sum of costs incurred by individual stores, and hence, Eg(y,N) =

E

√
N∑

l=1

g(y,
√
N) =

√
Ng(y,

√
N). Let CSij(y,N) denote the cross-shipped quantity between stores i and j,

when there are N stores with order-up-to quantity y each (CSl
ij when defined within a cell). Note that both

the functions g and CSij also depend on the demand vector, but the dependency is ignored for notational

convenience. As the cells are identical in terms of demands and costs, we have:

CIIPc(yIIPH) = E





√
N∑

l=1



g(yIIPH ,
√
N)+

√
N∑

i=1

√
N∑

j=1,j 6=i

(slij − h− po)CSl
ij(y

IIPH ,
√
N)









= Eg(yIIPH ,N)+E





√
N∑

l=1





√
N∑

i=1

√
N∑

j=1,j 6=i

(slij − h− po)CSl
ij(y

IIPH ,
√
N)









CLB′

(yIIPH) = CLB′
c(yIIPH)

+ (s− h− po)E





√
N∑

l=1





√
N∑

i=1

Dl
io−

(
yIIPH −Dl

is

)+





+

−
(

N∑

i=1

Dio−
(
yIIPH −Dis

)+

)+




= Eg(yIIPH ,N)+E





√
N∑

l=1





√
N∑

i=1

√
N∑

j=1,j 6=i

(s− h− po)CSl
ij(y

IIPH ,
√
N)









+(s− h− po)




√
NE





√
N∑

i=1

Dl
io−

(
yIIPH −Dl

is

)+





+

−E

(
N∑

i=1

Dio−
(
yIIPH −Dis

)+

)+




The expression for CLB′

is written as the sum of CLB′

c which restricts cross-shipping to within each cell, and

the cost of the additional cross-shipped units with this restriction removed. We know that CLB
2 (yIIPH) ≤

CLB′

(yIIPH)≤CIIP (yIIPH)≤CIIPc(yIIPH). We first show that CIIPc (yIIPH )

CLB′ (yIIPH)
→ 1 as N →∞. We have:

CIIPc(yIIPH)

CLB′(yIIPH)
− 1=

E

(√
N∑

l=1

(√
N∑

i=1

√
N∑

j=1,j 6=i

(slij − s)CSl
ij(y

IIPH ,
√
N)

))

CLB′ (yIIPH)

+

(h+ po− s)




√
NE

(√
N∑

i=1

Dl
io− (yIIPH −Dl

is)
+

)+

−E

(
N∑

i=1

Dio− (yIIPH −Dis)
+

)+




CLB′(yIIPH)

We have slij−s= f(dl
ij)≤ f

( √
2

N
1
4

)

, as the maximum distance within a cell is
√
2

N
1
4
. Thus, using CLB′

(yIIPH)≥

E

(√
N∑

l=1

(√
N∑

i=1

√
N∑

j=1,j 6=i

(s)CSl
ij(y

IIPH ,
√
N)

))

for the first term, and CLB′

(yIIPH)≥ sµoN for the second term,

we have

CIIPc(yIIPH)

CLB′(yIIPH)
− 1≤

f
( √

2

N
1
4

)

s
+

(
h+ po− s

sµo

√
N

)

E





√
N∑

i=1

Dio−
(
yIIPH −Dis

)+





+

(42)

The first term on the right hand side vanishes to zero as N →∞, as f(d)→ 0 as d→ 0. To simplify the

second term, we need the following lemmas.

Lemma 2. If h< po− s, then yIIPH >µ where µ= µs +µo, and if additionally h< (ps− po + s)Fs(µ),

yIIPH→ F−1
s

(
ps− po + s− h

ps− po + s

)

∈ (0,∞), as N →∞ (43)
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Proof: Lemma 1 is proved from the optimality equations of CLBN (Equation 25) for identical stores:

(h+ po− s)P

(
N∑

i=1

Di ≤NyIIPH

)

+(ps− po + s)FD1s
(yIIPH) = ps

From the above equation, when h < po − s, we have ps < 2 (po− s)P

(
N∑

i=1

Di ≤NyIIPH

)

+ (ps− po+ s).

This simplifies to yield yIIPH > µ. Now, by applying the central limit theorem as N →∞ and yIIPH > µ,

P

( N∑

i=1

Di/N ≤ yIIPH

)

→ 1, and the result follows. Note that the asymptotic solution should also satisfy

yIIPH >µ, which translates to the condition h< (ps− po+ s)Fs(µ). �

Lemma 3. When h < min(po − s, ps − po + s), and the demands are bounded above as Dis ≤Ms and

Dio ≤Mo for all i,

P





√
N∑

i=1

Dio >

√
N∑

i=1

(
yIIPH −Dis

)+



≤ exp

{

−2
√
N(yIIPH −µ)2

Mo +Ms

}

(44)

Proof:

P





√
N∑

i=1

Dio >

√
N∑

i=1

(
yIIPH −Dis

)+



= P





√
N∑

i=1

(

Di−
(
Dis− yIIPH

)+
)

>
√
NyIIPH



≤ P





√
N∑

i=1

Di >
√
NyIIPH





≤ exp

{

−2
√
N(yIIPH −µ)2

Mo +Ms

}

→ 0, as N →∞

The final inequality follows from the Hoeffding bound for tail probabilities Hoeffding (1963), as yIIPH > µ

and demands are bounded, and the limit exists as yIIPH approaches a finite positive quantity as N →∞ by

Lemma 1. The expectation in the second term of Equation 42 can be bounded as follows:

E





√
N∑

i=1

(

Dio−
(
yIIPH −Dis

)+
)





+

=E









√
N∑

i=1

(

Dio−
(
yIIPH −Dis

)+
)





+ ∣
∣
∣
∣
∣

√
N∑

i=1

Dio >

√
N∑

i=1

(
yIIPH −Dis

)+



P





√
N∑

i=1

Dio >

√
N∑

i=1

(
yIIPH −Dis

)+





≤E





√
N∑

i=1

Dio

∣
∣
∣
∣
∣

√
N∑

i=1

Dio >

√
N∑

i=1

(
yIIPH −Dis

)+



P





√
N∑

i=1

Dio >

√
N∑

i=1

(
yIIPH −Dis

)+





≤Mo

√
N exp

{

−2
√
N(yIIPH −µ)2

Mo +Ms

}

The last inequality follows from Lemma 2 and the boundedness of the demands as Dis ≤Ms, and Dio ≤Mo

for all i with 0<Ms,Mo <∞. �

Thus, we have:

CIIPc(yIIPH)

CLB′(yIIPH)
≤ 1+

f
( √

2

N
1
4

)

s
+

(
h+ po− s

sµo

)(

Mo

√
N exp

{

−2
√
N(yIIPH −µ)2

Mo +Ms

})

→ 1, as N →∞
(45)
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The next step is to show the CLB
2 is off by a constant factor from the CLB′

. From the proof of Proposition

4, the difference simplifies to:

CLB
′

(yIIPH)−CLB
2 (yIIPH)

= (h+ po− s)E





(
N∑

i=1

Dio−
(
yIIPH −Dis

)+

)+

+
N∑

i=1

(
Dis− yIIPH

)+−
(

D−
N∑

i=1

yIIPH

)+




where D=
∑N

i=1Dis +Dio.

Similar to what was done to bound the second term in Equation 42, we can show that whenever the

conditions in Lemma 2 are satisfied, E

(
N∑

i=1

Dio− (yIIPH −Dis)
+

)+

≤MoN exp
{

−2N(yIIPH−µ)2

Mo+Ms

}

. Thus, we

have:

CLB
′

(yIIPH)−CLB
2 (yIIPH)≤ (h+ po− s)

[

MoN exp

{−2N(yIIPH −µ)2

Mo +Ms

}

+

N∑

i=1

(
Dis− yIIPH

)+

]

Using CLB
2 (yIIPH)≥ sµoN and CLB

2 (yIIPH)≥ (ps− po + s)
N∑

i=1

(Dis− yIIPH)
+
, we have:

CLB′

(yIIPH)

CIIPH(yIIPH)
− 1≤

(
h+ po− s

sµo

)(

Mo exp

{−2N(yIIPH −µ)2

Mo +Ms

})

+

(
h+ po− s

ps− po + s

)

(46)

Thus, from Equations 45 and 46, as N →∞, we have

CIIPc(yIIPH)

CLB
2 (yIIPH)

≤ 1+
h+ po− s

ps− po + s

⇒ CIIP (yIIPH)

CIIP (yIIP)
≤ h+ ps

ps− po + s

The final step follows from CIIPc(yIIPH)≥CIIP (yIIPH), and CLB
2 (yIIPH)≤CIIP (yIIP). �

The result may hold subject to some generalizations, such as the unit square can be replaced with any

finite area, and non-identical cells as long as the number of stores in each cell grows to infinity as N →∞.

The resulting cases may call for a more complicated proof, and is outside the scope of this study.

Appendix B: Demand Regions for the IIP Solution

We illustrate the identification of demand regions in which the dual vector λ is constant (as discussed in

Section 3.1.3) and the calculation of the corresponding probabilities. For any given (y1, y2), the demand

space (D1s,D1o,D2s,D2o) can be divided into a number of independent regions. Based on the values taken

by the variables in the optimal solution in (34), Table 5 shows the different cases that are possible given

y1 and y2. From these cases, the independent demand regions are listed in Table 6 along with the constant

dual prices in those regions. The underlined cases are redundant, and can be discarded while calculating the

probability for each region. The dual prices λ1, λ2 are the shadow prices of the constraints which contain y1

and y2 respectively, namely the first set of constraints zi +
2∑

j=1

zij ≤ yi,∀i in the linear program in (34), and

can be obtain in a standard fashion from linear programming theory. For example, for the demand regions

with the case D1, that is, y1 ≥D1 +D2o, irrespective of the value of y2, there will be inventory left over at

retail store 1 at the end of the period. Thus the constraint z1 +
2∑

j=1

z1j ≤ y1 will not bind, and hence λ1 =0.
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Table 5 Table showing the various demand cases based on the values of y1, y2

A B C D

1 y1 <D1s D1s ≤ y1 <D1 D1 ≤ y1 <D1+D2o y1 ≥D1+D2o

2 y2 <D2s D2s ≤ y2 <D2 D2 ≤ y2 <D2+D1o y2 ≥D2+D1o

3 y1+ y2 <D1+D2 y1+ y2≥D1+D2

Table 6 Table showing the various demand regions and the corresponding constant dual-prices. (underlined

notation indicates redundant cases)

Region Case λ1 λ2 Region Case λ1 λ2

Ω1 A1,A2,A3 h+ ps h+ ps Ω11 C1,A2,A3 h+ po− s12 h+ ps

Ω2 A1,B2,A3 h+ ps h+ po− s Ω12 C1,B2,A3 h+ po− s12 h+ po− s

Ω3 A1,C2,A3 h+ ps h+ po− s12 Ω13 C1,B2,B3 0 s12− s

Ω4 A1,D2,A3 h+ ps 0 Ω14 C1,C2,B3 0 0

Ω5 A1,D2,B3 h+ ps 0 Ω15 C1,D2,B3 0 0

Ω6 B1,A2,A3 h+ po− s h+ ps Ω16 D1,A2,A3 0 h+ ps

Ω7 B1,B2,A3 h+ po− s h+ po− s Ω17 D1,A2,B3 0 h+ ps

Ω8 B1,C2,A3 h+ po− s h+ po− s12 Ω18 D1,B2,B3 0 s12− s

Ω9 B1,C2,B3 s12− s 0 Ω19 D1,C2,B3 0 0

Ω10 B1,D2,B3 s12− s 0 Ω20 D1,D2,B3 0 0

The probability for each region is calculated as follows, when demands follow normal distributions. The

region is expressed as an inequality of the form RkD̃ <= SkY , where D̃ = [D1s,D1o,D2s,D2o]
⊺ and Y =

[y1, y2]
⊺. For example, Ω3 = (A1,C2) = {y1 <D1s,D2 ≤ y2 <D2 +D1o}. This can be expressed as:





−1 0 0 0
0 0 1 1
0 −1 −1 −1










D1s

D1o

D2s

D2o




≤





−1 0
0 1
0 −1





[
y1
y2

]

RkD̃ is multivariate normal with mean Rkµ and covariance matrix RkΣΣ
⊺R⊺

k, where µ and Σ are the mean

and covariance matrices of D̃. The probability of region k reduces to evaluating the cumulative distribution

function of AkD̃ at BkY . For general demand distributions, numerical methods have to be employed.

Appendix C: Heuristic based on Constant Shipping Costs for a Network of
Omnichannel Stores and OFCs

We obtain the heuristic solution yIIPH for multiple locations with So 6= ∅ by calculating order quantities for

the OFCs separately, and using them in Equation 39 to compute order quantities for the omnichannel stores.

The order-up-to quantities for OFCs are calculated from the pooled total order quantity for OFCs, which is

determined using the newsvendor quantity for the combined online demand DSo
=
∑

i∈So

Dio.

∑

j∈So

yIIPH
j = F−1

DSo

(
po− s

h+ po− s

)

(47)

The actual underage cost for online demands at the OFCs would be less than po − s and would depend

on inventory information of stores, as stores can fulfill these online orders with available inventory. The
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calculation of inventory levels at stores and OFCs are dependent on each other, but since we are forced

to estimate the inventory at OFCs separately, we inflate the underage cost to po − s which yields a higher

overall inventory level at the OFCs. This is a limitation that arises out of our heuristic approximation, but

it allows us to extend the heuristic to the case where OFCs have a different shipping cost (so) compared to

the stores (s), as the inventory calculation for the OFCs is done separately.

To calculate the individual order quantities at the OFCs, yIIPH
i , i ∈ So, we use the method of obtaining

order-up-to quantities for multiple products with capacity constraints, as described in Chopra and Meindl

(2007, p. 367). Each unit from
∑

j∈So

yIIPH
j is allocated incrementally to the OFCs based on the individ-

ual expected marginal costs. Once the order-up-to quantities for the OFCs are obtained, they are used in

Equation 48 to determine order-up-to levels for other omnichannel stores.

(h+ po− s)FDS

(
∑

j∈S

yIIPH
j

)

+(ps− po+ s)FDis

(
yIIPH
i

)
= ps, ∀i∈Sso (48)

Calculating this heuristic solution yIIPH is also computationally fast, as Proposition 7(3) still applies to

Equation 48. The cost of the heuristic solution is given by CIIPH = CIIP (yIIPH). We capture the effect of

virtual pooling among the facilities in this heuristic, and the systematic approach is shown in Algorithm 2.

Algorithm 2 Procedure to calculate the heuristic solution yIIPH

1: For physical stores in set Ss, set yIIPH
i = F−1

is

(
ps

h+ps

)

,∀i∈ Ss.
2: for i∈So (OFCs) do

3: Calculate total order quantity: yTOT = F−1
DSo

(
po−s

h+po−s

)

, where DSo
=
∑

i∈So

Dio.

4: Set yIIPH
i = 0,∀i∈ So, and rem= ⌊yTOT ⌋.

5: Calculate marginal cost MCi (y
IIPH
i ) =− (po− s) (1−FDio

(yIIPH
i ))+ hFDio

(yIIPH
i )

6: Choose i∗ =min
i∈So

MCi(y
IIPH
i ). Set yIIPH

i∗ ← yIIPH
i∗ +1

7: Set rem← rem− 1. If rem> 0, go to Step 3.

8: for i∈Sso do

9: Calculate order quantities implicitly from the optimality equations: (h+ po− s)FDS

(
∑

j∈S
yIIPH
j

)

+

(ps− po + s)FDis
(yIIPH

i ) = ps, ∀i∈Sso.

Appendix D: Additional Details for Numerical Analyses

All numerical analyses were done on a desktop computer (i7-3770 CPU @3.7GHz, 16GB RAM). The total

market is assumed to be the top 300 most populous cities in mainland US. We take the sum of the mean

in-store and online demands in each region to be a fixed proportion of the cities’ populations. This represents

the average market size of the region, and the mean in-store and online total demands over the horizon are

calculated as 1−α and α proportions respectively of this mean market size in each region. The demands for

the OFCs are calculated based on the population not covered by omnichannel stores. This online demand is

allocated to each OFC based on the optimal throughput rates estimated by Chicago Consulting (2016).
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D.1. Simulation Procedure

A brief overview of the simulation is listed below:

1. The parameters for demands in each fulfillment period are calculated based on demands over the horizon

estimated from population data. The starting inventory level vectors yDIP and yIIPH are calculated

using the demand information based on Equation 12 and Algorithm 1 respectively.

2. We generate a sample of size 104, where each sample is a realization of demands over the entire selling

horizon, although fulfillment decisions in each fulfillment period are made without knowing future

demands. For each sample, we iterate over steps 3-7, and take the sample averages as approximations

for expectations.

3. The fulfillment thresholds for the TF policy are calculated based on Equation 27. For the MF policy,

these thresholds are set to zero.

4. For t = 1, . . . , T , iterate over steps 5-6. The starting inventory levels are set based on the inventory

policy followed (IIPH or DIP).

5. Implement Algorithm 2 based on the fulfillment policy followed (MF or TF) and the corresponding

thresholds calculated in Step 3.

6. At the end of each fulfillment period, penalty and shipping costs are calculated. The ending inventory

at a location becomes the starting inventory for the next fulfillment period.

7. The total cost is the sum of the costs in each fulfillment period over the selling horizon.


