WILEY-VCH

Supporting Information

Self-programming Synaptic Resistor Circuit for Intelligent Systems
Christopher M. Shaffer, Atharva Deo, Andrew Tudor, Rahul Shenoy, Cameron D. Danesh,
Dhruva Nathan, Lawren L. Gamble, Daniel J. Inman, and Yong Chen*

WILEY-VCH

Spike-timing-dependent plasticity learning algorithm in a neurological network

In a neural network, the matrix of synaptic weights (conductances), \boldsymbol{w}, is modified in parallel based on synaptic spike-timing-dependent plasticity ${ }^{[1]}$ (STDP), which can be expressed as $\dot{\boldsymbol{w}}=$ $\alpha \boldsymbol{z} \otimes \boldsymbol{x}$ (Equation 2), where \boldsymbol{x} denotes voltage pulses in the presynaptic neurons, and \boldsymbol{z} is a function of \boldsymbol{y} that represents voltage pulses in the postsynaptic neurons,

$$
\begin{equation*}
z=y * \tilde{\theta} \tag{S1}
\end{equation*}
$$

where $\boldsymbol{y} * \tilde{\theta}=\int_{-\infty}^{\infty} \tilde{\theta}\left(t-t^{\prime}\right) \boldsymbol{y}\left(t^{\prime}\right) d t^{\prime}$ with $\tilde{\theta}(t)=\left\{\begin{array}{cl}-e^{t / \tau_{-}} / \tau_{-} & \text {when } t<0 \\ 0 & \text { when } t=0, \\ e^{-t / \tau_{+}} / \tau_{+} & \text {when } t>0\end{array}\right.$ and the time constants $\tau_{+}>0$ and $\tau_{-}>0 . \int_{-\infty}^{\infty} \tilde{\theta}(t) d t=0$, thus $\int_{-\infty}^{\infty} \mathbf{z}(t) d t=0$. By substituting $\mathbf{z}=\boldsymbol{y} *$ $\tilde{\theta}$ (Equation S1) in Equation 2, $\dot{w}_{n m}=\sum_{t_{n}}\left\{\begin{array}{ll}-\alpha x_{m}(t) e^{\frac{t-t_{n}}{\tau_{-}}} / \tau_{-} & \text {when } t<t_{n} \\ 0 & \text { when } t=t_{n}, \\ \alpha x_{m}(t) e^{-\frac{t-t_{n}}{\tau_{+}}} / \tau_{+} & \text {when } t>t_{n}\end{array}\right.$ where t_{n} denotes the moment t_{n} when a voltage pulse is triggered from the $\mathrm{n}^{\text {th }}$ postsynaptic "neuron", $\alpha>0$ for STDP, and $\alpha<0$ for anti-STDP.

Modeling and analysis of self-programming processes

The goal of the self-programming process is to modify the system state, \boldsymbol{F}, toward the desired system state, $\widehat{\boldsymbol{F}}$, and minimize the objective function $E=\frac{1}{2}(\boldsymbol{F}-\widehat{\boldsymbol{F}})^{2}$. When $\boldsymbol{F}=\widehat{\boldsymbol{F}}, E=0$, $\boldsymbol{x}=0$, and $\dot{\boldsymbol{w}}=\alpha \boldsymbol{z} \otimes \boldsymbol{x}=0$ (Equation 2), \boldsymbol{w} reaches an equilibrium value $\widehat{\boldsymbol{w}}=\arg \min _{\boldsymbol{w}} E$. By assuming $\boldsymbol{w}=\widehat{\boldsymbol{w}}$ when $t=t_{e}$, thus $\boldsymbol{w}(0)-\widehat{\boldsymbol{w}}=-\int_{0}^{t_{e}} \alpha \mathbf{z} \otimes \boldsymbol{x} d t$ when $t=t_{e}$, and $\boldsymbol{w}(t)-\widehat{\boldsymbol{w}}=-\int_{t}^{t_{e}} \alpha \mathbf{z} \otimes \boldsymbol{x} d t$. Although \boldsymbol{w} and $\widehat{\boldsymbol{w}}$ were not directly measured experimentally,

Wiley-vCh

the relative deviation of \boldsymbol{w} from $\widehat{\boldsymbol{w}}$ can be derived from \boldsymbol{x} and \boldsymbol{z} signals recorded in the SNIC experiments,

$$
\begin{equation*}
\Delta \boldsymbol{w}(t)=\frac{\boldsymbol{w}(t)-\widehat{w}}{|\boldsymbol{w}(0)-\widehat{\boldsymbol{w}}|}=-\frac{\int_{t}^{t_{e}} \alpha \boldsymbol{z} \otimes x d t}{\left|\int_{0}^{t_{e}} \alpha \boldsymbol{z} \otimes x d t\right|} \approx-\frac{\int_{t}^{t_{e}} \boldsymbol{z} \otimes x d t}{\left|\int_{0}^{t_{e}} \boldsymbol{z} \otimes x d t\right|} \tag{S2}
\end{equation*}
$$

In the human experiments, \boldsymbol{x} and \boldsymbol{y} signals were recorded, \boldsymbol{z} was derived from \boldsymbol{y} based on Equation S1, and the effective $\Delta \boldsymbol{w}$ was also derived from Equation S2.

In the self-programming process, the change of \boldsymbol{w} leads to the change of output signals \boldsymbol{y}, which modifies the objective function E. Without loss of generality, the objective function E can be expressed as, ${ }^{[2]}$

$$
\begin{equation*}
E=\frac{1}{2} \boldsymbol{g}^{E / \boldsymbol{w}} \circ \Delta \boldsymbol{w}^{2}+\delta\left[\Delta \boldsymbol{w}^{3}\right] \tag{S3}
\end{equation*}
$$

where $\boldsymbol{g}^{E / \boldsymbol{w}} \circ \Delta \boldsymbol{w}^{2}$ denotes the Hadamard product between $\boldsymbol{g}^{E / \boldsymbol{w}}$ and $\Delta \boldsymbol{w}^{2}$ with $\boldsymbol{g}^{E / \boldsymbol{w}} \in \mathbb{R}^{N \times M}$ and $\boldsymbol{g}^{E / \boldsymbol{w}} \geq 0$, and $\delta\left[\Delta \boldsymbol{w}^{3}\right]$ contains higher order terms of $\Delta \boldsymbol{w}^{k}$ with $k \geq 3$. When $\Delta \boldsymbol{w}$ approaches zero, $\delta\left[\Delta \boldsymbol{w}^{3}\right]$ can be omitted, and the average E over a self-programming period, $\langle E\rangle \approx \frac{1}{2}\left\langle\boldsymbol{g}^{E / \boldsymbol{w}} \circ \Delta \boldsymbol{w}^{2}\right\rangle=\frac{1}{2} g^{E / \boldsymbol{w}}\langle\Delta \boldsymbol{w}\rangle^{2}+\frac{1}{2} g^{E / \boldsymbol{w}}\langle\Delta \widetilde{\boldsymbol{w}}\rangle^{2}=\frac{1}{2} g^{E / \boldsymbol{w}}\langle\Delta \boldsymbol{w}\rangle^{2}+E_{\text {eq }}$, which was bestfitted by the experimental data of $\langle E\rangle$ and $\Delta \boldsymbol{w}$ to extrapolate $g^{E / \boldsymbol{w}}$ and $E_{\text {eq }}$, and displayed in Figure 3 and 4.

In the self-programming process, \boldsymbol{w} is modified by following Equation $2, \dot{\boldsymbol{w}}=\alpha \mathbf{z} \otimes \boldsymbol{x}$. By substituting \boldsymbol{z} in Equation 2 by $\mathbf{z}=\boldsymbol{y} * \tilde{\theta}$ Equation $4, \dot{\boldsymbol{w}}=\alpha(\tilde{\theta} * \boldsymbol{y}) \otimes \boldsymbol{x}$. In neuron circuits, \boldsymbol{y} is a monotonically increasing nonlinear function of \boldsymbol{I}, and $\boldsymbol{I}=\boldsymbol{w} \boldsymbol{x}$ Equation 1, thus $\boldsymbol{y}=\boldsymbol{y}(\boldsymbol{I})=f^{\boldsymbol{y}}(\boldsymbol{w} \boldsymbol{x})$. By substituting \boldsymbol{y} in $\dot{\boldsymbol{w}}$ by $\boldsymbol{y}(\boldsymbol{w} \boldsymbol{x}), \dot{\boldsymbol{w}}=\alpha[\tilde{\theta} * \boldsymbol{y}(\boldsymbol{w} \boldsymbol{x})] \otimes \boldsymbol{x}$, and the modification rate of $\Delta \boldsymbol{w}$ over a self-programming period ${ }^{[2]}$,

$$
\begin{equation*}
\Delta \dot{\boldsymbol{w}}=-\boldsymbol{\beta} \circ \Delta \boldsymbol{w}+\delta \boldsymbol{w} \tag{S4}
\end{equation*}
$$

where $\boldsymbol{\beta} \circ \Delta \boldsymbol{w}$ denotes the Hadamard product between $\boldsymbol{\beta}$ and $\Delta \boldsymbol{w}$ with $\boldsymbol{\beta} \in \mathbb{R}^{N \times M}$ and $\boldsymbol{\beta} \geq 0$, and $\delta \boldsymbol{w}$ contains the higher order terms of $\Delta \boldsymbol{w}^{k}$ with $k \geq 2$ and $\dot{\hat{\boldsymbol{w}}} . \Delta \boldsymbol{w}$ can be extrapolated based on Equation S2, and $\boldsymbol{\beta}$ can be derived by best-fitting $\Delta \boldsymbol{w}$ and $\Delta \dot{\boldsymbol{w}}$ to Equation S4. The derived β are shown versus $\langle\Delta \dot{w}\rangle$ at the initial self-programming state in Figure 4a. The solution of Equation S4 gives,

$$
\begin{equation*}
\Delta \boldsymbol{w}=\Delta \boldsymbol{w}(0) e^{-\boldsymbol{\beta} t}+\delta \boldsymbol{w} * e^{-\boldsymbol{\beta} t} \tag{S5}
\end{equation*}
$$

where $\delta \boldsymbol{w} * e^{-\boldsymbol{\beta} t}$ represent the convolution between $\delta \boldsymbol{w}$ and $e^{-\boldsymbol{\beta} t}$. When $\boldsymbol{\beta} t \gg 1,\langle\Delta \boldsymbol{w}\rangle \approx 0$, and $\langle\boldsymbol{w}\rangle \approx\langle\widehat{\boldsymbol{w}}\rangle$, thus $\boldsymbol{\beta}$ represents the speed to modify \boldsymbol{w} toward $\widehat{\boldsymbol{w}}$.

In the self-programming process, the change of \boldsymbol{w} leads to the change of the objective function E. Based on Equation S3, the change rate of average objective function $\langle\dot{E}\rangle=\boldsymbol{g}^{E / \boldsymbol{w}}$ 。 $\langle\Delta \boldsymbol{w} \circ \Delta \dot{\boldsymbol{w}}\rangle+\delta\left[\Delta \boldsymbol{w}^{2} \circ \Delta \dot{\boldsymbol{w}}\right]+\left.\frac{\partial\langle E\rangle}{\partial t}\right|_{\Delta \boldsymbol{w}}$. Substituting $\Delta \dot{\boldsymbol{w}}$ in \dot{E} by Equation S4 yields, $\langle\dot{E}\rangle=$ $-g^{E / \boldsymbol{w}} \circ \boldsymbol{\beta} \circ\left\langle\Delta \boldsymbol{w}^{2}\right\rangle+\delta\left[\Delta \boldsymbol{w}^{2} \circ \Delta \dot{\boldsymbol{w}}\right]+\left.\frac{\partial\langle E\rangle}{\partial t}\right|_{\Delta \boldsymbol{w}}=-\frac{1}{2} \beta g^{E / \boldsymbol{w}} \circ\left\langle\Delta \boldsymbol{w}^{2}\right\rangle+\delta\left[\Delta \boldsymbol{w}^{3}\right]+\left.\frac{\partial(E)}{\partial t}\right|_{\Delta \boldsymbol{w}}=$ $-\beta\langle E\rangle+\delta E$ (Equation 3), where $\quad \beta=\sum_{m, n} 2\left\langle\beta_{n m}\right\rangle / M N \geq 0, \delta E=\delta\left[\Delta \boldsymbol{w}^{3}\right]+\left.\frac{\partial\langle E\rangle}{\partial t}\right|_{\Delta \boldsymbol{w}}$ contains higher order terms of $\Delta \boldsymbol{w}^{k}$ with $k \geq 3$, and $\left.\frac{\partial\langle E\rangle}{\partial t}\right|_{\Delta \boldsymbol{w}}$ due to environmental perturbations. When δE satisfies $\delta E<\beta\langle E\rangle$, then $\langle\dot{E}\rangle<0,\langle E\rangle$ represents a Lyapunov function and is asymptotically decreased, \boldsymbol{w} is modified toward $\widehat{\boldsymbol{w}}$, and $\Delta \boldsymbol{w}$ toward zero. When $\langle E\rangle$ is reduced to make $\beta\langle E\rangle=\delta E,\langle\dot{E}\rangle=0,\langle E\rangle$ reaches a dynamic equilibrium value $E_{\text {eq }}=\delta E / \beta$. When $\langle\Delta \boldsymbol{w}\rangle$ approaches zero, $\delta\left(\Delta \boldsymbol{w}^{3}\right)$ can be omitted, $\langle E\rangle \approx \frac{1}{2}\left\langle\boldsymbol{g}^{E / \boldsymbol{w}} \circ \Delta \boldsymbol{w}^{2}\right\rangle=\frac{1}{2} g^{E / \boldsymbol{w}}\langle\Delta \boldsymbol{w}\rangle^{2}+$

Wiley-VCH

$\frac{1}{2} g^{E / \boldsymbol{w}}\langle\Delta \widetilde{\boldsymbol{w}}\rangle^{2}=\frac{1}{2} g^{E / \boldsymbol{w}}\langle\Delta \widetilde{\boldsymbol{w}}\rangle^{2}=E_{\text {eq }} . E_{\text {eq }}$ increases with increasing $\left\langle\Delta \widetilde{\boldsymbol{w}}^{2}\right\rangle$ due to the random perturbation from environment and the fluctuation of \boldsymbol{w} during the self-programming process, as shown in Figure 4 b. When $\langle\Delta \boldsymbol{w}\rangle$ descends to zero, $\langle E\rangle \approx \frac{1}{2} g^{E / \boldsymbol{w}}\langle\Delta \widetilde{\boldsymbol{w}}\rangle^{2}=E_{\text {eq }}$, as shown in Figure 3 and 4.

The self-programming process of a SNIC and neurobiological network is summarized in the following theorem, ${ }^{[2]}$

Theorem 1. When a SNIC or neurobiological network (i) concurrently executes the signal processing algorithm $\boldsymbol{I}=\boldsymbol{w} \boldsymbol{x}$ (Equation 1), and the correlative learning algorithm $\dot{\boldsymbol{w}}=$ $\alpha \boldsymbol{z} \otimes \boldsymbol{x}$, (Equation 2) with $\boldsymbol{z}=\boldsymbol{y} * \tilde{\theta}$ (Equation S1); (ii) when $\boldsymbol{w}=\widehat{\boldsymbol{w}}, \boldsymbol{F}=\widehat{\boldsymbol{F}}, \boldsymbol{x}=0$, then $\dot{\boldsymbol{w}}=0$, and $\widehat{\boldsymbol{w}}$ represents the equilibrium value of \boldsymbol{w}; (iii) when $\boldsymbol{w}=\widehat{\boldsymbol{w}}$, the objective function $E=\frac{1}{2}(\boldsymbol{F}-\widehat{\boldsymbol{F}})^{2}=0$; when $\boldsymbol{w} \neq \widehat{\boldsymbol{w}}, \boldsymbol{F} \neq \widehat{\boldsymbol{F}}$, and $E>0$, then in the self-programming process, $\langle\dot{E}\rangle=-\beta\langle E\rangle+\delta E$ (Equation 3) with $\beta>0$; (iv) When δE satisfies $\delta E<\beta\langle E\rangle$, then $\langle\dot{E}\rangle<0$, $\langle E\rangle$ represents a Lyapunov function, and is asymptotically decreased, leading \boldsymbol{w} to be modified toward $\widehat{\boldsymbol{w}}$ in the self-programming process; (v) when $\delta E=\beta\langle E\rangle,\langle\dot{E}\rangle=0,\langle E\rangle$ reaches its dynamic equilibrium value $E_{e q}=\delta E / \beta$.

An integrate-and-fire "neuron" circuit

We designed and fabricated an integrate-and-fire circuit with the basic functions according to the Hodgkin-Huxley neuron model ${ }^{[3]}$. The "neuron" circuit is shown in Figure S6a. The collective current, I, from multiple synstors flows through a diode toward a capacitor $C_{I F}$, increasing the voltage, V_{C}, on the capacitor. A negative voltage, V_{L}, is applied to induce a leakage current, I_{L}, flowing through the resistor, R_{L}, to filter the thermodynamic and signal noises in the circuits. V_{C} is proportional to the integration of $I-I_{L}$ with respect to time. When V_{C} reaches a threshold value, a Schmitt trigger composed of transistors M1-M6 is switched back and forth to generate an output pulse from the output channel, V_{f}. The output pulse resets V_{C}
back to zero by switching transistors M 7 , M 8 , and M 9 , and the capacitor $C_{I F}$ restarts the integration of the current. A "neuron" circuit with $C_{I F}=9.4 \mathrm{nF}, R_{L}=50 \mathrm{M} \Omega, V_{L}=-0.15 \mathrm{~V}$, and $R_{I N V}=0.25 M \Omega$ was tested by applying a series of 10 ns -wide input pulses to inject a current I to $C_{I F}$. The firing rates of output voltage pulses triggered from an output neuron circuit, r_{y}, are plotted versus the firing rates of input voltage pulses applied on a synstor, r_{x}, in Figure S6b. r_{y} can be expressed as,

$$
\begin{equation*}
r_{y}=\frac{r_{y}^{\max }}{1+e^{-k_{y}\left(I-I_{L}\right)}}=\frac{r_{y}^{\max }}{1+e^{-k_{y}\left(w V_{p} t_{d} r^{-I} L_{L}\right)}} \tag{S6}
\end{equation*}
$$

where the maximal saturation value of $r_{y}, r_{y}^{\max }=6.01 \mathrm{kHz}, I$ denotes the current flowing into the integrate-and-fire neuron circuit with $I=w V_{p} t_{d} r_{x}, w$ denotes the synstor conductance, the magnitude of input voltage pulses $V_{p}=1.75 \mathrm{~V}$, the duration of input voltage pulses $t_{d}=10 \mathrm{~ns}$, the leakage current from the integrate-and-fire neuron circuit, $I_{L}=0.44 n A$, and the fitting parameter $k_{y}=7.81 / n A$, when the synstor is modified to its high conductance with $w=$ $10 n S$, or low conductance with $w=0.1 n S$.

Figure S1. a) A 50 nm thick and $10 \mu \mathrm{~m}$ long Al reference electrode (gray) is deposited onto the 100 nm thick SiO_{2} layer (yellow) of an $\mathrm{Si} / \mathrm{SiO}_{2}$ wafer by electron beam (e-beam) evaporation, and patterned by photolithography and wet chemical etching. b) A 22 nm thick HfO_{2} dielectric barrier layer (clear blue) and a 2 nm thick TiO_{2} charge storage layer (magenta) are deposited by atomic layer deposition (ALD). c) The TiO_{2} charge storage layer is patterned by photolithography and reactive ion etching (RIE) with a $10 \mu \mathrm{~m}$ long pattern aligned to the Al reference electrode. d) A 6.5 nm thick HfO_{2} barrier layer is deposited by ALD , encapsulating the TiO_{2} charge storage layer. e) A randomly oriented semiconducting single-walled carbon nanotube (CNT) network channel (orange) is deposited by wet immersion coating from an aqueous solution of 99.9% pure semiconducting CNTs. f) 50 nm thick Al input and feedback electrodes (gray) are deposited by e-beam evaporation, and patterned by photolithography. g) A 200 nm thick passivation layer of parylene-C (clear green) is deposited by thermal evaporation. An encapsulation and patterning layer of $\mathrm{SU}-8$ photoresist (red) is deposited by spin-coating, patterned by photolithography, and used as an etch mask to etch the parylene-C and CNT layers with RIE to form a $20 \mu \mathrm{~m}$ long CNT channel. h) A top-view of a 2×2 crossbar synstor circuit with the labeled locations of the CNT channel covered by the parylene-C (PLC) passivation and SU-8 photoresist layers (red), the input, output, and reference electrodes (gray).

Figure S2. The synstor is composed of A1 input and output electrodes (gray), a randomly oriented semiconducting single-walled carbon nanotube (CNT) network channel (orange), HfO_{2} dielectric layers (blue-gray), a TiO_{2} charge storage layer (magenta), and an Al reference electrode (gray). A voltage pulse is applied to the input electrode x to induce a current flowing through the CNT channel on the output electrode, while the output and reference electrodes are grounded. Charge in the TiO_{2} storage layer modulates the density of holes in the p-type doped CNT channel, controlling the channel conductance w and current I flowing across the CNT layer on the output electrode. When voltage pulses x and z with the same amplitude are simultaneously applied to the input and output electrodes with respect to the grounded reference electrode, current across the channel $I=0$, and electrons hop through the HfO_{2} dielectric layer between the CNT channel and TiO_{2} charge storage layer, modifying the charge in the TiO_{2} layer and channel conductance w.

Figure S3. Relative changes of a synstor conductance $\Delta w / w_{0}$ induced by 50 pairs of various $5 m s$-wide x and z voltage pulses applied on the input and output electrodes of the synstor are plotted versus the pulse amplitudes. The $\Delta w / w_{0}$ data are fitted by $\Delta w / w_{0}=e^{\mu^{+}\left(x-x_{t}^{+}\right)}-1$ (magenta line) when $x=z>V_{t}^{+}$with $\mu^{+}=4.06 / V$ and $x_{t}^{+}=1.05 \mathrm{~V}$, and $\Delta w / w_{0}=$ $e^{-\mu^{-}\left(x-x_{t}^{-}\right)}-1$ (blue line) when $x=z<V_{t}^{-}$with $\mu^{-}=3.69 / V$ and $x_{t}^{-}=-0.81 V$. The w is modified by following Equation 2, $\dot{w}=\alpha z \cdot x$. When $x=z \gtrsim 1.0 \mathrm{~V}, w$ was decreased $(\alpha<$ 0); when $x=z \lesssim-0.8 V$, w was increased $(\alpha>0)$; when $-0.8 V \lesssim x=z \lesssim 1.0 V, \dot{w} \approx 0$ $(\alpha \approx 0) .|\alpha|$ increases with the increasing magnitude of $|x|$ and $|z|$. The synstor conductance does not change under $x z=0$.

Figure S4. Cumulative relative changes of synstor conductance $\Delta w / w_{0}$ are displayed versus cumulative numbers, n, of $10 n s$-wide x and z voltage pulses applied to the input and output electrodes of the synstor under the voltage amplitudes of $x=z=-1.75 \mathrm{~V}$ (red diamonds), $x=z=1.75 \mathrm{~V}$ (blue squares), $x=z=0$ (black), $x=1.75 \mathrm{~V}$ and $z=0$ (green), $x=0$ and $z=1.75 \mathrm{~V}$ (purple), $x=0$ and $z=-1.75 \mathrm{~V}$ (orange), $x=-1.75 \mathrm{~V}$ and $z=0$ (turquoise), respectively. The $\Delta w / w_{0}$ data are best-fitted by $\Delta w(n) / w_{0}=v^{-} \operatorname{Ln}\left(\frac{n}{n_{0}^{-}}+1\right)$ with $v^{-}=15.3$ and $n_{0}^{-}=1.76 \times 10^{5}$ under $x=z=-1.75 \mathrm{~V}$ (magenta lines), and $\Delta w(n) / w_{0}=v^{+} \operatorname{Ln}\left(\frac{n}{n_{0}^{+}}+\right.$ 1) with $v^{+}=7.5$ and $n_{0}^{+}=1.7 \times 10^{3}$ under $x=z=1.75 \mathrm{~V}$ (dark blue lines). The synstor conductance increases versus increasing n under $x=z=-1.75 \mathrm{~V}$, decreases versus increasing n under $x=z=1.75 \mathrm{~V}$, otherwise, the synstor conductance does not change under $x z=0$.
a

c

b

d

Figure S5. The firing rates of input pulses to a synstor circuit, r_{x}, are plotted versus $|F-\hat{F}|$ by following $r_{x}=\frac{r_{x}^{\max }}{1+e^{-k_{x}\left(F-F \mid-F_{d}\right)}}$, where F denotes the experimentally measured lift-force on a wing, the targeted value of the lift-force, $\hat{F}=0.3 N$, the maximal saturation value of r_{x}, $r_{x}^{\max }=47.5 \mathrm{Mhz}$, the parameter $F_{d}=F_{d}^{0}$ (red), $2 F_{d}^{0}$ (green), $4 F_{d}^{0}$ (blue), or $8 F_{d}^{0}$ (purple) with $F_{d}^{0}=45.5 \mathrm{mN}$, and the parameter a) $k=k_{x}^{0}$, b) $k=2 k_{x}^{0}$, c) $k=4 k_{x}^{0}$, and d) $k=8 k_{x}^{0}$ with $k_{x}^{0}=5.5 \mathrm{~N}^{-1}$. The minimal objective function E is achieved under $F_{d}=4 F_{d}^{0}$ and $k=$ $2 k_{x}^{0}$ (bold blue line) in b .

Figure S6. a) The integrate-and-fire "neuron" circuit consists of a capacitor, $C_{I F}$, a diode, two resistors, R_{L} and $R_{I N V}$, and nine Si CMOS transistors $\left(\mathrm{M}_{1}-\mathrm{M} 9\right)$. b) The firing rates of output voltage pulses triggered from an output neuron circuit, r_{y}, are plotted versus the firing rates of input voltage pulses applied on a synstor, r_{x}, when the synstor is modified to its high conductance with $w=10 n S$ (red line), or low conductance with $w=0.1 n S$ (blue line).

Figure S7. The average objective function $\langle E\rangle=\frac{1}{2}\left\langle(F-\widehat{F})^{2}\right\rangle$ during PID control processes of a morphing wing in a wind tunnel with a wind speed $S \approx 29 \mathrm{~m} / \mathrm{s}$ is shown versus the the proportional gain K_{p}, the integral gain K_{i}, and the derivative gain K_{d} of the PID controller. $\langle E\rangle$ approaches its minimal value (green) under the optimal gains with $K_{p}=10^{-5} \mathrm{~V} / \mathrm{N} \cdot s, K_{i}=$ $10^{-4} V / N \cdot s^{2}$, and $K_{d}=10^{-3} V / N$.

WILEY-VCH

References

[1] Y. Dan, M.-M. Poo, Neuron 2004, 44, 23.
[2] Y. Chen, Advanced Intelligent Systems 2020, 2000219.
[3] A. L. Hodgkin, A. F. Huxley, The Journal of Physiology 1952, 117, 500.

