Supporting Information

Self-programming Synaptic Resistor Circuit for Intelligent Systems

Christopher M. Shaffer, Atharva Deo, Andrew Tudor, Rahul Shenoy, Cameron D. Danesh,

Dhruva Nathan, Lawren L. Gamble, Daniel J. Inman, and Yong Chen*

Spike-timing-dependent plasticity learning algorithm in a neurological network

In a neural network, the matrix of synaptic weights (conductances), \boldsymbol{w} , is modified in parallel based on synaptic spike-timing-dependent plasticity^[1] (STDP), which can be expressed as $\dot{\boldsymbol{w}} = \alpha \boldsymbol{z} \otimes \boldsymbol{x}$ (Equation 2), where \boldsymbol{x} denotes voltage pulses in the presynaptic neurons, and \boldsymbol{z} is a function of \boldsymbol{y} that represents voltage pulses in the postsynaptic neurons,

$$\mathbf{z} = \mathbf{y} * \tilde{\boldsymbol{\theta}} \tag{S1}$$

where
$$\mathbf{y} * \tilde{\theta} = \int_{-\infty}^{\infty} \tilde{\theta}(t-t') \mathbf{y}(t') dt'$$
 with $\tilde{\theta}(t) = \begin{cases} -e^{t/\tau_-}/\tau_- & \text{when } t < 0\\ 0 & \text{when } t = 0, \text{ and the time}\\ e^{-t/\tau_+}/\tau_+ & \text{when } t > 0 \end{cases}$

constants $\tau_+ > 0$ and $\tau_- > 0$. $\int_{-\infty}^{\infty} \tilde{\theta}(t) dt = 0$, thus $\int_{-\infty}^{\infty} \mathbf{z}(t) dt = 0$. By substituting $\mathbf{z} = \mathbf{y} * \mathbf{z}(t)$

$$\tilde{\theta} \text{ (Equation S1) in Equation 2, } \dot{w}_{nm} = \sum_{t_n} \begin{cases} -\alpha x_m(t) e^{\frac{t-t_n}{\tau_-}}/\tau_- & \text{when } t < t_n \\ 0 & \text{when } t = t_n, \text{ where } t_n \\ \alpha x_m(t) e^{-\frac{t-t_n}{\tau_+}}/\tau_+ & \text{when } t > t_n \end{cases}$$

denotes the moment t_n when a voltage pulse is triggered from the nth postsynaptic "neuron", $\alpha > 0$ for STDP, and $\alpha < 0$ for anti-STDP.

Modeling and analysis of self-programming processes

The goal of the self-programming process is to modify the system state, \mathbf{F} , toward the desired system state, $\hat{\mathbf{F}}$, and minimize the objective function $E = \frac{1}{2}(\mathbf{F} - \hat{\mathbf{F}})^2$. When $\mathbf{F} = \hat{\mathbf{F}}$, E = 0, $\mathbf{x} = 0$, and $\dot{\mathbf{w}} = \alpha \mathbf{z} \otimes \mathbf{x} = 0$ (Equation 2), \mathbf{w} reaches an equilibrium value $\hat{\mathbf{w}} = \arg \min_{\mathbf{w}} E$. By assuming $\mathbf{w} = \hat{\mathbf{w}}$ when $t = t_e$, thus $\mathbf{w}(0) - \hat{\mathbf{w}} = -\int_0^{t_e} \alpha \mathbf{z} \otimes \mathbf{x} \, dt$ when $t = t_e$, and $\mathbf{w}(t) - \hat{\mathbf{w}} = -\int_t^{t_e} \alpha \mathbf{z} \otimes \mathbf{x} \, dt$. Although \mathbf{w} and $\hat{\mathbf{w}}$ were not directly measured experimentally,

the relative deviation of w from \hat{w} can be derived from x and z signals recorded in the SNIC experiments,

$$\Delta \boldsymbol{w}(t) = \frac{\boldsymbol{w}(t) - \hat{\boldsymbol{w}}}{|\boldsymbol{w}(0) - \hat{\boldsymbol{w}}|} = -\frac{\int_{t}^{t_{e}} \alpha \, z \otimes x \, dt}{\left|\int_{0}^{t_{e}} \alpha \, z \otimes x \, dt\right|} \approx -\frac{\int_{t}^{t_{e}} z \otimes x \, dt}{\left|\int_{0}^{t_{e}} z \otimes x \, dt\right|} \tag{S2}$$

In the human experiments, x and y signals were recorded, z was derived from y based on Equation S1, and the effective Δw was also derived from Equation S2.

In the self-programming process, the change of w leads to the change of output signals y, which modifies the objective function E. Without loss of generality, the objective function E can be expressed as,^[2]

$$E = \frac{1}{2} \boldsymbol{g}^{E/\boldsymbol{w}} \circ \Delta \boldsymbol{w}^2 + \delta[\Delta \boldsymbol{w}^3]$$
(S3)

where $\boldsymbol{g}^{E/w} \circ \Delta w^2$ denotes the Hadamard product between $\boldsymbol{g}^{E/w}$ and Δw^2 with $\boldsymbol{g}^{E/w} \in \mathbb{R}^{N \times M}$ and $\boldsymbol{g}^{E/w} \ge 0$, and $\delta[\Delta w^3]$ contains higher order terms of Δw^k with $k \ge 3$. When Δw approaches zero, $\delta[\Delta w^3]$ can be omitted, and the average *E* over a self-programming period, $\langle E \rangle \approx \frac{1}{2} \langle \boldsymbol{g}^{E/w} \circ \Delta w^2 \rangle = \frac{1}{2} \boldsymbol{g}^{E/w} \langle \Delta w \rangle^2 + \frac{1}{2} \boldsymbol{g}^{E/w} \langle \Delta \widetilde{w} \rangle^2 = \frac{1}{2} \boldsymbol{g}^{E/w} \langle \Delta w \rangle^2 + E_{eq}$, which was bestfitted by the experimental data of $\langle E \rangle$ and Δw to extrapolate $\boldsymbol{g}^{E/w}$ and E_{eq} , and displayed in Figure 3 and 4.

In the self-programming process, w is modified by following Equation 2, $\dot{w} = \alpha \ z \otimes x$. By substituting z in Equation 2 by $z = y * \tilde{\theta}$ Equation 4, $\dot{w} = \alpha (\tilde{\theta} * y) \otimes x$. In neuron circuits, y is a monotonically increasing nonlinear function of I, and $I = w \ x$ Equation 1, thus $y = y(I) = f^y(wx)$. By substituting y in \dot{w} by y(wx), $\dot{w} = \alpha [\tilde{\theta} * y(wx)] \otimes x$, and the modification rate of Δw over a self-programming period^[2],

$$\Delta \dot{\boldsymbol{w}} = -\boldsymbol{\beta} \circ \Delta \boldsymbol{w} + \delta \boldsymbol{w} \tag{S4}$$

where $\boldsymbol{\beta} \circ \Delta \boldsymbol{w}$ denotes the Hadamard product between $\boldsymbol{\beta}$ and $\Delta \boldsymbol{w}$ with $\boldsymbol{\beta} \in \mathbb{R}^{N \times M}$ and $\boldsymbol{\beta} \geq 0$, and $\delta \boldsymbol{w}$ contains the higher order terms of $\Delta \boldsymbol{w}^k$ with $k \geq 2$ and $\dot{\boldsymbol{w}}$. $\Delta \boldsymbol{w}$ can be extrapolated based on Equation S2, and $\boldsymbol{\beta}$ can be derived by best-fitting $\Delta \boldsymbol{w}$ and $\Delta \dot{\boldsymbol{w}}$ to Equation S4. The derived $\boldsymbol{\beta}$ are shown versus $\langle \Delta \dot{\boldsymbol{w}} \rangle$ at the initial self-programming state in Figure 4a. The solution of Equation S4 gives,

$$\Delta \boldsymbol{w} = \Delta \boldsymbol{w}(0) e^{-\boldsymbol{\beta}t} + \delta \boldsymbol{w} * e^{-\boldsymbol{\beta}t}$$
(S5)

where $\delta w * e^{-\beta t}$ represent the convolution between δw and $e^{-\beta t}$. When $\beta t \gg 1$, $\langle \Delta w \rangle \approx 0$, and $\langle w \rangle \approx \langle \hat{w} \rangle$, thus β represents the speed to modify w toward \hat{w} .

In the self-programming process, the change of \boldsymbol{w} leads to the change of the objective function E. Based on Equation S3, the change rate of average objective function $\langle \dot{E} \rangle = \boldsymbol{g}^{E/w} \circ \langle \Delta \boldsymbol{w} \circ \Delta \boldsymbol{w} \rangle + \delta [\Delta \boldsymbol{w}^2 \circ \Delta \boldsymbol{w}] + \frac{\partial \langle E \rangle}{\partial t} \Big|_{\Delta \boldsymbol{w}}$. Substituting $\Delta \dot{\boldsymbol{w}}$ in \dot{E} by Equation S4 yields, $\langle \dot{E} \rangle = -g^{E/w} \circ \boldsymbol{\beta} \circ \langle \Delta \boldsymbol{w}^2 \rangle + \delta [\Delta \boldsymbol{w}^2 \circ \Delta \boldsymbol{w}] + \frac{\partial \langle E \rangle}{\partial t} \Big|_{\Delta \boldsymbol{w}} = -\frac{1}{2} \beta g^{E/w} \circ \langle \Delta \boldsymbol{w}^2 \rangle + \delta [\Delta \boldsymbol{w}^3] + \frac{\partial \langle E \rangle}{\partial t} \Big|_{\Delta \boldsymbol{w}} = -\beta \langle E \rangle + \delta E$ (Equation 3), where $\beta = \sum_{m,n} 2 \langle \beta_{nm} \rangle / MN \ge 0$, $\delta E = \delta [\Delta \boldsymbol{w}^3] + \frac{\partial \langle E \rangle}{\partial t} \Big|_{\Delta \boldsymbol{w}}$ contains higher order terms of $\Delta \boldsymbol{w}^k$ with $k \ge 3$, and $\frac{\partial \langle E \rangle}{\partial t} \Big|_{\Delta \boldsymbol{w}}$ due to environmental perturbations. When δE satisfies $\delta E < \beta \langle E \rangle$, then $\langle \dot{E} \rangle < 0$, $\langle E \rangle$ represents a Lyapunov function and is asymptotically decreased, \boldsymbol{w} is modified toward $\hat{\boldsymbol{w}}$, and $\Delta \boldsymbol{w}$ toward zero. When $\langle E \rangle$ is reduced to make $\beta \langle E \rangle = \delta E$, $\langle \dot{E} \rangle = 0$, $\langle E \rangle$ reaches a dynamic equilibrium value $E_{eq} = \delta E / \beta$. When $\langle \Delta \boldsymbol{w} \rangle$ approaches zero, $\delta (\Delta \boldsymbol{w}^3)$ can be omitted, $\langle E \rangle \approx \frac{1}{2} \langle \boldsymbol{g}^{E/w} \circ \Delta \boldsymbol{w}^2 \rangle = \frac{1}{2} g^{E/w} \langle \Delta \boldsymbol{w} \rangle^2 + \frac{1}{2} g^{E/w} \langle \Delta \boldsymbol{w} \rangle$

 $\frac{1}{2}g^{E/w}\langle\Delta\widetilde{w}\rangle^2 = \frac{1}{2}g^{E/w}\langle\Delta\widetilde{w}\rangle^2 = E_{eq}. E_{eq} \text{ increases with increasing } \langle\Delta\widetilde{w}^2\rangle \text{ due to the random perturbation from environment and the fluctuation of <math>w$ during the self-programming process, as shown in Figure 4b. When $\langle\Delta w\rangle$ descends to zero, $\langle E\rangle \approx \frac{1}{2}g^{E/w}\langle\Delta\widetilde{w}\rangle^2 = E_{eq}$, as shown in Figure 3 and 4.

The self-programming process of a SNIC and neurobiological network is summarized in the following theorem,^[2]

Theorem 1. When a SNIC or neurobiological network (i) concurrently executes the signal processing algorithm I = w x (Equation 1), and the correlative learning algorithm $\dot{w} = \alpha z \otimes x$, (Equation 2) with $z = y * \tilde{\theta}$ (Equation S1); (ii) when $w = \hat{w}$, $F = \hat{F}$, x = 0, then $\dot{w} = 0$, and \hat{w} represents the equilibrium value of w; (iii) when $w = \hat{w}$, the objective function $E = \frac{1}{2}(F - \hat{F})^2 = 0$; when $w \neq \hat{w}$, $F \neq \hat{F}$, and E > 0, then in the self-programming process, $\langle \dot{E} \rangle = -\beta \langle E \rangle + \delta E$ (Equation 3) with $\beta > 0$; (iv) When δE satisfies $\delta E < \beta \langle E \rangle$, then $\langle \dot{E} \rangle < 0$, $\langle E \rangle$ represents a Lyapunov function, and is asymptotically decreased, leading w to be modified toward \hat{w} in the self-programming process; (v) when $\delta E = \beta \langle E \rangle$, $\langle \dot{E} \rangle = 0$, $\langle E \rangle$ reaches its dynamic equilibrium value $E_{eq} = \delta E / \beta$.

An integrate-and-fire "neuron" circuit

We designed and fabricated an integrate-and-fire circuit with the basic functions according to the Hodgkin–Huxley neuron model^[3]. The "neuron" circuit is shown in Figure S6a. The collective current, *I*, from multiple synstors flows through a diode toward a capacitor C_{IF} , increasing the voltage, V_C , on the capacitor. A negative voltage, V_L , is applied to induce a leakage current, I_L , flowing through the resistor, R_L , to filter the thermodynamic and signal noises in the circuits. V_C is proportional to the integration of $I - I_L$ with respect to time. When V_C reaches a threshold value, a Schmitt trigger composed of transistors M1-M6 is switched back and forth to generate an output pulse from the output channel, V_f . The output pulse resets V_C

back to zero by switching transistors M7, M8, and M9, and the capacitor C_{IF} restarts the integration of the current. A "neuron" circuit with $C_{IF} = 9.4$ nF, $R_L = 50 M\Omega$, $V_L = -0.15 V$, and $R_{INV} = 0.25 M\Omega$ was tested by applying a series of 10 ns-wide input pulses to inject a current *I* to C_{IF} . The firing rates of output voltage pulses triggered from an output neuron circuit, r_y , are plotted versus the firing rates of input voltage pulses applied on a synstor, r_x , in Figure S6b. r_y can be expressed as,

$$r_{y} = \frac{r_{y}^{max}}{1 + e^{-k_{y}(I - I_{L})}} = \frac{r_{y}^{max}}{1 + e^{-k_{y}(wV_{p}t_{d}r_{x} - I_{L})}}$$
(S6)

where the maximal saturation value of r_y , $r_y^{max} = 6.01 \ kHz$, I denotes the current flowing into the integrate-and-fire neuron circuit with $I = wV_p t_d r_x$, w denotes the synstor conductance, the magnitude of input voltage pulses $V_p = 1.75 \ V$, the duration of input voltage pulses $t_d = 10 \ ns$, the leakage current from the integrate-and-fire neuron circuit, $I_L = 0.44 \ nA$, and the fitting parameter $k_y = 7.81 \ /nA$, when the synstor is modified to its high conductance with w = $10 \ nS$, or low conductance with $w = 0.1 \ nS$.

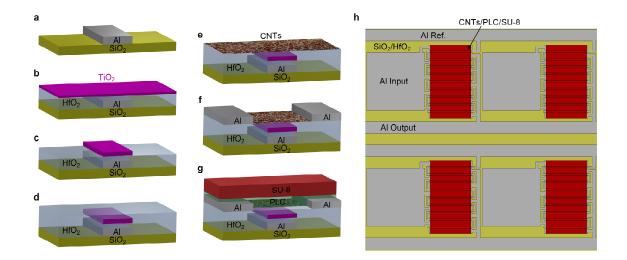


Figure S1. a) A 50 nm thick and 10 µm long Al reference electrode (gray) is deposited onto the 100 nm thick SiO₂ layer (yellow) of an Si/SiO₂ wafer by electron beam (e-beam) evaporation, and patterned by photolithography and wet chemical etching. b) A 22 nm thick HfO₂ dielectric barrier layer (clear blue) and a 2 nm thick TiO₂ charge storage layer (magenta) are deposited by atomic layer deposition (ALD). c) The TiO_2 charge storage layer is patterned by photolithography and reactive ion etching (RIE) with a 10 μ m long pattern aligned to the Al reference electrode. d) A 6.5 nm thick HfO₂ barrier layer is deposited by ALD, encapsulating the TiO₂ charge storage layer. e) A randomly oriented semiconducting single-walled carbon nanotube (CNT) network channel (orange) is deposited by wet immersion coating from an aqueous solution of 99.9% pure semiconducting CNTs. f) 50 nm thick Al input and feedback electrodes (gray) are deposited by e-beam evaporation, and patterned by photolithography. g) A 200 nm thick passivation layer of parylene-C (clear green) is deposited by thermal evaporation. An encapsulation and patterning layer of SU-8 photoresist (red) is deposited by spin-coating, patterned by photolithography, and used as an etch mask to etch the parylene-C and CNT layers with RIE to form a 20 μ m long CNT channel. h) A top-view of a 2 \times 2 crossbar synstor circuit with the labeled locations of the CNT channel covered by the parylene-C (PLC) passivation and SU-8 photoresist layers (red), the input, output, and reference electrodes (gray).

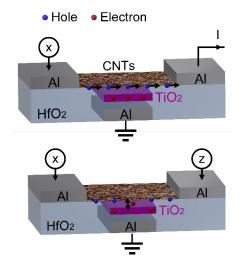


Figure S2. The synstor is composed of Al input and output electrodes (gray), a randomly oriented semiconducting single-walled carbon nanotube (CNT) network channel (orange), HfO₂ dielectric layers (blue-gray), a TiO₂ charge storage layer (magenta), and an Al reference electrode (gray). A voltage pulse is applied to the input electrode *x* to induce a current flowing through the CNT channel on the output electrode, while the output and reference electrodes are grounded. Charge in the TiO₂ storage layer modulates the density of holes in the p-type doped CNT channel, controlling the channel conductance *w* and current *I* flowing across the CNT layer on the output electrode. When voltage pulses *x* and *z* with the same amplitude are simultaneously applied to the input and output electrodes with respect to the grounded reference electrode, current across the channel I = 0, and electrons hop through the HfO₂ dielectric layer between the CNT channel and TiO₂ charge storage layer, modifying the charge in the TiO₂ layer and channel conductance *w*.

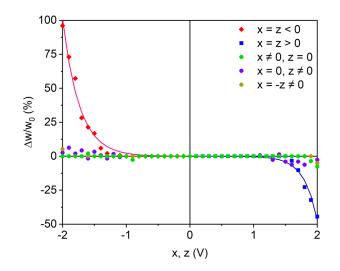


Figure S3. Relative changes of a synstor conductance $\Delta w/w_0$ induced by 50 pairs of various 5 *ms*-wide *x* and *z* voltage pulses applied on the input and output electrodes of the synstor are plotted versus the pulse amplitudes. The $\Delta w/w_0$ data are fitted by $\Delta w/w_0 = e^{\mu^+(x-x_t^+)} - 1$ (magenta line) when $x = z > V_t^+$ with $\mu^+ = 4.06/V$ and $x_t^+ = 1.05 V$, and $\Delta w/w_0 = e^{-\mu^-(x-x_t^-)} - 1$ (blue line) when $x = z < V_t^-$ with $\mu^- = 3.69/V$ and $x_t^- = -0.81 V$. The *w* is modified by following Equation 2, $\dot{w} = \alpha \ z \cdot x$. When $x = z \gtrsim 1.0 V$, *w* was decreased ($\alpha < 0$); when $x = z \lesssim -0.8 V$, *w* was increased ($\alpha > 0$); when $-0.8 V \lesssim x = z \lesssim 1.0 V$, $\dot{w} \approx 0$ ($\alpha \approx 0$). $|\alpha|$ increases with the increasing magnitude of |x| and |z|. The synstor conductance does not change under xz = 0.

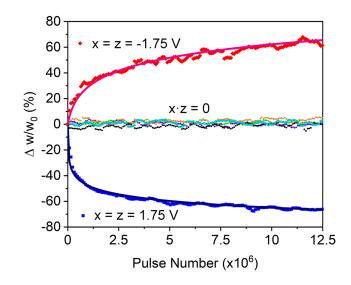


Figure S4. Cumulative relative changes of synstor conductance $\Delta w/w_0$ are displayed versus cumulative numbers, n, of 10 ns-wide x and z voltage pulses applied to the input and output electrodes of the synstor under the voltage amplitudes of x = z = -1.75 V (red diamonds), x = z = 1.75 V (blue squares), x = z = 0 (black), x = 1.75 V and z = 0 (green), x = 0 and z = 1.75 V (purple), x = 0 and z = -1.75 V (orange), x = -1.75 V and z = 0 (turquoise), respectively. The $\Delta w/w_0$ data are best-fitted by $\Delta w(n)/w_0 = v^-Ln\left(\frac{n}{n_0^-} + 1\right)$ with $v^- = 15.3$ and $n_0^- = 1.76 \times 10^5$ under x = z = -1.75 V (magenta lines), and $\Delta w(n)/w_0 = v^+Ln\left(\frac{n}{n_0^+} + 1\right)$ with $v^+ = 7.5$ and $n_0^+ = 1.7 \times 10^3$ under x = z = 1.75 V (dark blue lines). The synstor conductance increases versus increasing n under x = z = -1.75 V, otherwise, the synstor conductance does not change under xz = 0.

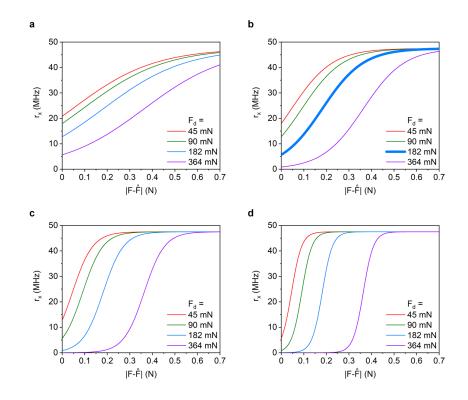


Figure S5. The firing rates of input pulses to a synstor circuit, r_x , are plotted versus $|F - \hat{F}|$ by following $r_x = \frac{r_x^{max}}{1+e^{-k_x(|F-\hat{F}|-F_d)}}$, where *F* denotes the experimentally measured lift-force on a wing, the targeted value of the lift-force, $\hat{F} = 0.3 N$, the maximal saturation value of r_x , $r_x^{max} = 47.5 Mhz$, the parameter $F_d = F_d^0$ (red), $2F_d^0$ (green), $4F_d^0$ (blue), or $8F_d^0$ (purple) with $F_d^0 = 45.5 mN$, and the parameter a) $k = k_x^0$, b) $k = 2k_x^0$, c) $k = 4k_x^0$, and d) $k = 8k_x^0$ with $k_x^0 = 5.5 N^{-1}$. The minimal objective function *E* is achieved under $F_d = 4F_d^0$ and $k = 2k_x^0$ (bold blue line) in b.

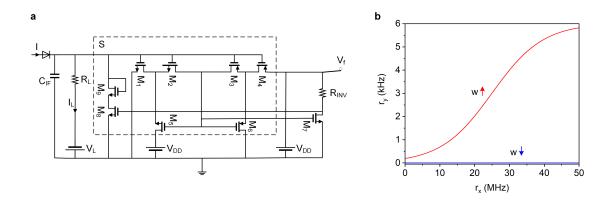


Figure S6. a) The integrate-and-fire "neuron" circuit consists of a capacitor, C_{IF} , a diode, two resistors, R_L and R_{INV} , and nine Si CMOS transistors (M₁-M₉). b) The firing rates of output voltage pulses triggered from an output neuron circuit, r_y , are plotted versus the firing rates of input voltage pulses applied on a synstor, r_x , when the synstor is modified to its high conductance with w = 10 nS (red line), or low conductance with w = 0.1 nS (blue line).

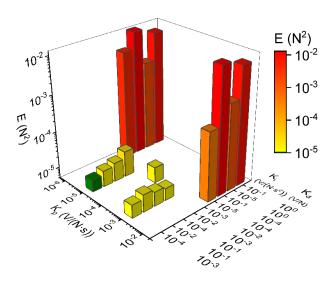


Figure S7. The average objective function $\langle E \rangle = \frac{1}{2} \langle (F - \hat{F})^2 \rangle$ during PID control processes of a morphing wing in a wind tunnel with a wind speed $S \approx 29 m/s$ is shown versus the the proportional gain K_p , the integral gain K_i , and the derivative gain K_d of the PID controller. $\langle E \rangle$ approaches its minimal value (green) under the optimal gains with $K_p = 10^{-5} V/N \cdot s$, $K_i = 10^{-4} V/N \cdot s^2$, and $K_d = 10^{-3} V/N$.

References

- [1] Y. Dan, M.-M. Poo, *Neuron* **2004**, *44*, 23.
- [2] Y. Chen, Advanced Intelligent Systems **2020**, 2000219.
- [3] A. L. Hodgkin, A. F. Huxley, *The Journal of Physiology* 1952, 117, 500.