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1. Introduction

The human brain has long served as the
inspiration of artificial intelligent systems.
A neural network (Figure 1a) processes
voltage pulses at M presynaptic neurons
inducing currents via synapses at N post-
synaptic neurons by following the signal
processing algorithm

I ¼ wx (1)

where w ¼ ðwnmÞ ∈ ℝN�M denotes a
matrix with wnm as the weight (conduc-
tance) of a synapse connecting the mth pre-
synaptic and the nth postsynaptic neuron,
x ¼ ðxmÞ ∈ ℝM denotes a vector with xm
as the voltage pulses at the mth presynaptic
neuron, and I ¼ ðInÞ ∈ ℝN denotes a
vector with In as the current flowing into
the nth postsynaptic neuron, which triggers
the voltage pulses y ¼ ðynÞ ∈ ℝN with yn
as the pulses output from the nth postsyn-
aptic neuron. Concurrently, the synaptic
weight matrix, w, is modified by following
the learning algorithm[1,2]

w
: ¼ αz ⊗ x (2)

where α denotes the modification coefficient, z ¼ ðznÞ ∈ ℝN

denotes a function of y ¼ ðynÞ ∈ ℝN with yn as the voltage
pulses at the nth postsynaptic neuron (Equation S1, Supporting
Information), and z ⊗ x represents the outer product between z
and x. By integrating signal processing, memory, and
correlative learning functions in each synapse, a neural network
concurrently executes the signal-processing (Equation (1)) and
learning (Equation (2)) algorithms in analog parallel mode to
dynamically self-program w and create new functions in real time
in unpredictable and arbitrary environments with general
intelligence.[1,3,4]

Computers embedded in artificial intelligent systems can
execute arbitrary signal-processing algorithms[5] to outperform
humans at specific tasks such as pattern recognition[6] and the
Go game,[7] but they have to be preprogrammed by humans
and cannot adapt or develop new functions in unpredictable
and arbitrary environments as humans do.[4] The time and
energy consumption to compute machine learning algorithms
from a dataset with M-dimensional variables increase versus
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Unlike artificial intelligent systems based on computers which have to be pro-
grammed for specific tasks, the human brain “self-programs” in real time to
create new tactics and adapt to arbitrary environments. Computers embedded in
artificial intelligent systems execute arbitrary signal-processing algorithms to
outperform humans at specific tasks, but without the real-time self-programming
functionality, they are preprogrammed by humans, fail in unpredictable envi-
ronments beyond their preprogrammed domains, and lack general intelligence in
arbitrary environments. Herein, a synaptic resistor circuit that self-programs in
arbitrary and unpredictable environments in real time is demonstrated. By
integrating the synaptic signal processing, memory, and correlative learning
functions in each synaptic resistor, the synaptic resistor circuit processes signals
and self-programs the circuit concurrently in real time with an energy efficiency
about six orders higher than those of computers. In comparison with humans
and a preprogrammed computer, the self-programming synaptic resistor circuit
dynamically modifies its algorithm to control a morphing wing in an unpre-
dictable aerodynamic environment to improve its performance function with
superior self-programming speeds and accuracy. The synaptic resistor circuits
potentially circumvent the fundamental limitations of computers, leading to a
new intelligent platform with real-time self-programming functionality for arti-
ficial general intelligence.
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M exponentially,[8] referred to as the “curse of dimensionality.”[9]

Therefore learning algorithms are executed in off-site high-
speed computers with high-power consumptions and bulky
volumes.[7,10,11] Despite improved parallelism and computational
energy efficiencies, transistor-based computing circuits, such
as the Summit supercomputer,[12] graphics processing units
(GPUs),[7,11,13] tensor processing units (TPUs),[14] field-
programmable gate arrays (FPGAs),[15] TrueNorth,[16] and
Tianjic[17] neuromorphic circuits, are still based on the Turing
computing model by executing algorithms with data transmis-
sions between physically separated logic andmemory transistors.
Existing neuromorphic devices such as transistors,[18,19] memris-
tors,[20,21] and phase-change memory resistors[22] execute
signal-processing algorithms (without conductance change)
and learning algorithms (with conductance change) by applying
voltage pulses with different amplitudes. To avoid change of con-
ductance during signal processing, the voltage pulses for signal
processing are decreased to smaller magnitudes than the voltage
pulses for learning. When the signal-processing algorithm is exe-
cuted in the circuits, the learning algorithm is interrupted and

vice versa.[22–25] Therefore, unlike neurobiological networks,
the existing neuromorphic circuits cannot execute signal-
processing and learning algorithms concurrently and have to
be trained or preprogrammed before executing signal-processing
algorithms. Due to these limitations, the energy efficiencies for
existing electronic circuits to compute learning algorithms are
limited to the range of �107 � 1013 OPS=W (operations per sec-
ond per watt),[7,11–17,20,22,24] which are significantly lower than
that of the human brain (� 1015 OPS=W)[26] and largely prevent
artificial intelligent systems from self-programming on site in
real time. Without real-time self-programming functionality, arti-
ficial intelligent systems fail in unpredictable environments
beyond their preprogrammed domains[27] and lack the brain-like
general intelligence in arbitrary environments.[4]

Recently we developed a synaptic resistor,[28] abbreviated as
synstor hereafter, to emulate a synapse. A synstor processes
voltage pulses x by following I ¼ wx, Equation (1), and learns
from voltage pulses x and z by following w

: ¼ αz ⊗ x,
Equation (2). Unlike existing electronic devices such as transis-
tors, memristors, and phase-change memory resistors, the

Figure 1. a) A schematic of an SNIC (a neural network) composed of M�N synstors (synapses) connected with M input (presynaptic) neurons,
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M, and N output (postsynaptic) neurons, Do
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o
N. A 2� 2 crossbar synstor circuit is marked by a dashed line and shown in a

microscope image in the inset. b) Left, an image of the morphing wing in wind (as illustrated by streamlines) with a randomly varied speed S to generate
a lift-force F on the wing. Right, a photo shows that the trailing edge of the morphing wing is deflected upward by decreasing Va and downward by
increasing Va to modify F toward its target value F̂. c) The average objective function hEi ¼ 1

2

�ðF � F̂Þ2� is plotted versus S and Va in the typical morphing
wing control processes by SNIC (left), human (middle), and computer (right). The black arrows indicate the evolving directions of the system.
The illustration of d) a human and e) a computer receiving F � F̂ signals and adjusting Va to modify wing shapes.
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synstors process and learn from the x and z voltage pulses with
the same magnitudes, and the signal-processing (I ¼ wx,
Equation (1)) and learning (w

: ¼ αz ⊗ x, Equation (2)) algorithms
can be executed concurrently in a synstor circuit without
interrupting each other. A synstor circuit circumvents the energy
consumption on data transmission and memory between logic
and memory circuits for executing the signal-processing and
learning algorithms separately in conventional computing cir-
cuits, and facilitates computations in analog parallel mode by
integrating signal processing, memory, and correlative learning
functions in each synstor. In this article, we demonstrate a
synstor-based self-programming neuromorphic integrated circuit
(abbreviated as SNIC hereafter) based on synstors (Figure 1a),
which executes the signal-processing (I ¼ wx, Equation (1))
and correlative learning[1,3] (w

: ¼ αz ⊗ x, Equation (2)) algorithms
concurrently in parallel analog mode to self-program the synstor
conductance matrix, w, toward its optimal values, ŵ, and
improve the performance function of a system spontaneously
with an energy efficiency (� 3.3� 1017 OPS=W) significantly
higher than the energy efficiencies of computing circuits
(� 107 � 1013 OPS=W)[7,11–16,20,22,24] and the human brain
(� 1015 OPS=W).[26]

2. Experiment and Results

We fabricated a crossbar synstor circuit (Figure S1, Supporting
Information), and each synstor[28] has a p-type semiconducting
carbon nanotube (CNT) channel which forms Schottky contacts
with Al input and output electrodes as a resistor. A HfO2/TiO2/
HfO2 charge trap heterojunction is sandwiched between the CNT
channel and a grounded Al reference electrode as a capacitor
(Figure S2, Supporting Information). As shown in Figure 1a,
voltage pulses, xm, on the input electrodes induce currents flow-
ing through the CNT channels to the nth output neuron circuit by
following the signal-processing algorithm, In ¼

P
mwnmxm

(Equation (1)). When paired negative (positive) voltage pulses,
xm and zn, are applied on the mth input and nth output electrodes
of a synstor simultaneously, the pulses generate a potential dif-
ference between the CNT channel and the TiO2 charge storage
layer to drive electrons to hop through the HfO2 dielectric layer,
increasing the negative (positive) charge stored in the charge
storage layer and in turn attracting (repelling) the holes in the
p-type CNT channel to increase (decrease) the synstor conduc-
tance by following the learning algorithm, w

:
nm ¼ αznxm

(Equation (2)), with α > 0 (α < 0). Otherwise, when zn ¼ 0
and/or xm ¼ 0, the xm or zn voltage pulse mainly decreases
beyond the recessed TiO2 charge storage layer, and the potential
differences between the CNT channel and the TiO2 charge stor-
age layer are below the threshold values to modify the charge
stored in the charge storage layer, so, w

:
nm ¼ αznxm ¼ 0

(Figure S3 and S4, Supporting Information). The synstor circuit
executes the signal-processing (I ¼ wx, Equation (1)) and correl-
ative learning (w

: ¼ αz ⊗ x, Equation (2)) algorithms concur-
rently without interrupting each other (Experimental Section).

To test SNIC in a practical challenging environment, an SNIC
composed of a 2� 2 crossbar synstor circuit and two input and
two output integrate-and-fire neuron circuits was connected to a
morphing wing[29,30] in a wind tunnel (Figure 1a,b, Experimental

Section). The synstor conductance matrix, w, had random values
before a self-programming process, and the goal was to set w in
the real-time self-programming process to tune the lift-force on
the wing, F, toward the target value, F̂ ¼ 0.3N, and minimize an
objective function E ¼ 1

2 ðF � F̂Þ2. The wind speed, S, changed
randomly in the wind tunnel in the range of 17� 29m=s to emu-
late an unpredictable aerodynamic environment which caused
the lift-force on the wing, F, to vary randomly in the range of
0� 1N. F was also influenced by the shape of the wing, which
was controlled by a voltage, Va, applied on a piezoactuator in the
wing (Figure 1b, Experimental Section). F was detected by a sen-
sor in the wind tunnel, and the sensory signals were processed by
input neurons to trigger 10ns-wide input voltage pulses, x, with
an amplitude of 1.5V or �1.75V (Figure 2a). When F > F̂, the
pulses were triggered from the first input neuron only; when
F < F̂, the pulses were triggered from the second input neuron
only. The firing rates of the x input pulses were a nonlinear
monotonically increasing sigmoid function of jF � F̂j
(Experimental Section, Figure S5, Supporting Information).
x induced currents I via the synstor circuit by following
Equation (1), I ¼ wx, and I flowed into integrate-and-fire output
neuron circuits to generate output pulses, y, and feedback pulses,
z, at the output electrodes of the circuit. The firing rates of the y
and z pulses were nonlinear monotonically increasing functions
of jIj (Experimental Section, Figure S6, Supporting Information).
The actuation voltage, V a, was modified by y following
V
:

a ¼ ρðry1 � ry2Þ with ry1 and ry2 as the firing rates of output
pulses from the first and second output neurons, respectively,
and ρ ¼ 8mV. Va was applied on a piezoactuator to modify
the wing shape, lift-force F, and objective function E
(Figure 1c). A wave of 10ns-wide 1.5V (�1.75V) z pulses was
triggered at the first (second) output electrodes at � 575ms
before a wave of y pulses were triggered, and a train of 10ns-wide
�1.75V (1.5V) z pulses was triggered at the first (second) output
electrodes at � 575ms after the train of y pulses were triggered.
(Figure 2a, Experimental Section, Equation S1, Supporting
Information). The time shifts between y and z pulses were
mainly set to accommodate the system time delay between the
wing and SNIC. The synstor conductance matrix w was modified
by the z and x voltage pulses by following the learning algorithm,
w
: ¼ αz ⊗ x (Equation (2)) in the real-time self-programming
process to change Va and minimize the objective function E
under the wind conditions with randomly varied speed S
(Figure 1c).

To compare the self-programming processes between SNIC
and the human brain, 14 human participants without any pre-
knowledge about the morphing wing and its control system
received F � F̂ signals visually and were instructed to minimize
the difference between F and F̂ and the objective function
E ¼ 1

2 ðF � F̂Þ2 by sending output signals y by pressing two keys
preset randomly in a keyboard to increase or decrease the actu-
ation voltage Va on the wing (Figures 1d and 2b, Experimental
Section). In the real-time self-programming processes, E was
reduced by dynamically modifying Va under wind with the same
randomly varied speed S as that in the SNIC trials (Figure 1c).
To compare the self-programming control processes by SNIC
and human brains with control processes by a preprogrammed
computer, a proportional-integral-derivative (PID) controller
implemented on a computer received F � F̂ signals and output
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Va signals to modify the wing shape and F (Figure 1e). The PID
controller with various gains was tested to control Va and the
shape of the wing experiencing wind with a static speed
S ¼ 28.7m=s, and the optimal PID gains leading to the minimal
average E were identified (Figure S7, Supporting Information).
After the PID controller was preprogrammed to the optimal
gains, the PID controller modified the shape of the wing while
experiencing wind with the same randomly varied speed S as that
in the SNIC and human trials, emulating an unpredictable aero-
dynamic environment beyond the preprogrammed condition
(Figure 1e and 2c).

3. Self-Programming Process

In an SNIC or human self-programming process, when F ¼ F̂,
E ¼ 0, x ¼ 0, and w

: ¼ αz ⊗ x ¼ 0 (Equation (2)), w reaches an
equilibrium state ŵ ¼ argminwE. Although w and ŵ were
not experimentally measured, the relative deviation of effective
w from ŵ, ΔwðtÞ ¼ ½wðtÞ � ŵ�=jwð0Þ � ŵj, was extrapolated
(Equation S2, Supporting Information). The average E over a
fixed moving time window, 〈E〉, is shown versus t in Figure 3a,
versus Δw and the wind speed S in Figure 3b, and versus
jΔwj in Figure 3c. Although w for SNIC and humans was not
preprogrammed, and had random positive or negative initial
deviations from ŵ, w was modified to ŵ, decreasing 〈E〉 toward
equilibrium values, Eeq, within �5.1 s for SNIC and �10 s for
humans in their self-programming processes. When the wind
speed S changed chaotically, leading to increases in jΔwj

and E, w was spontaneously modified toward ŵ under the
varied S, decreasing 〈E〉 monotonically versus t in the self-
programming processes (Figure 3). The dynamic change of E
in the self-programming process can be expressed as
(Supporting Information, Theorem 1)

�
E
: � ¼ �βhEi þ δE (3)

where β ≥ 0, and δE is related to the environmental influence
and nonlinear term of E. In the self-programming processes
for SNIC and humans, δE < βhEi and

�
E
: � ¼ �βhEi þ δE < 0.

Thus 〈E〉 represented a Lyapunov function and was asymptoti-
cally decreased toward its dynamic equilibrium value Eeq, leading
hwi to be modified toward hŵi in the self-programming process;
when δE ¼ βhEi, �E: � ¼ 0, and E reached its dynamic equilib-
rium value Eeq ¼ δE=β under hwi ¼ hŵi. The solution of
Equation (3) gives hEi ¼ Eeq þ ðhEi � EeqÞe�βt þ δE � e�βt,
where δE � e�βt represents the convolution between δE and
e�βt. When βt ≫ 1, hEi � Eeq; thus, β represents the self-
programming speed to modify 〈E〉 toward Eeq and w toward ŵ
(Equation (S5), Supporting Information). With its gains preprog-
rammed to their optimal values under a static wind speed, the
PID controller decreased E initially, but the gains were not
modified toward their optimal values dynamically under the
varied S, leading to E significantly larger than those of the
SNIC and humans (Figure 1c).

In a self-programming process, β in Equation (3) represents
the speed to reduce 〈E〉 toward Eeq and modify w toward
ŵ (Equation S5, Supporting Information). As shown in

Figure 2. a) The lift-force on the wing F, its target value F̂, input voltage pulses xm, feedback voltage pulses zn, output voltage pulses yn, and Va in a
typical trial by SNIC are plotted versus time t (left) and at moments t1, t2, t3, t4, and t5 equal to 0.498, 0.516, 0.549, 1.080, and 1.099s, respectively (right).
F, F̂, yn, and Va are plotted versus t in typical trials by b) the human and c) a computer.
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Figure 4a, β increases with increasing average change rate of w at
the initial stage of the self-programming process, jw: ji, which can
be increased by increasing the firing rates of x, y, and z pulses
and decreasing the capacitances and leakage currents in the
input and output neurons in SNIC (Figure S5 and S6,
Supporting Information). The equilibrium objective function
Eeq defined in Equation (3) represents the accuracy to modify
w toward ŵ (Equation S3, Supporting Information). As shown in
Figure 4b, Eeq reached its minimal values (data points 2 and
5) when the average change rate of w was near the equilibrium
stage of the self-programming process, hjw: jie ¼ 0.62=s for SNIC
and hjw: jie ¼ 0.32=s for humans. When hjw: jie is decreased from
its optimal values (data points 1 and 4), the β value is decreased,
and Eeq ¼ δE=β, leading to the increase in Eeq as Eeq ¼ δE=β.

When β is decreased to zero in a control experiment without
z pulses or self-programming, hE

:

i ¼ δE > 0 (Equation (3))
and Eeq reaches the maximal value in Figure 4b. When hjw: jie
is increased from its optimal values (data points 3 and 6), w is
modified at a high rate, and w overshoots with respect to ŵ near
ŵ, leading to the fluctuation of jΔwj and E and the increase in Eeq

(Figure 4c,). In the self-programming processes, when w is close
to ŵ, the pulse firing rates are decreased by the leakage current in
the integrate-and-fire neuron circuits to avoid the overshoot of w
with respect to ŵ and reduce Eeq; when w deviates from ŵ, the
pulse firing rates are increased as a nonlinear function of input
signals to the neuron circuits to increase β and decrease E at high
speed (Figure S5 and S6, Supporting Information). By optimiz-
ing the neuron circuits in SNIC, the average self-programming

Figure 3. In the real-time self-programming processes of a SNIC (left) and human (right), a) objective functions E are shown versus t in gray color, and
average objective functions, 〈E〉, are displayed versus time t in blue when dhEi=dt < 0 and in red when dhEi=dt > 0. b) 〈E〉 is plotted versus the relative
deviations of the device conductances from the optimal conductances, Δw11, Δw12, Δw21, and Δw22, and wind speed, S. c) E is plotted at logarithmic
scale in 3D plots versus jΔw11j, jΔw12j, jΔw21j, and jΔw22j at different azimuthal angles in linear scale. The evolving directions of Δw are indicated by
arrows at the base planes of the 3D plots. 〈E〉 versus hΔwi is best fitted by hEi ¼ 1

2 g
E=whΔwi2 þ Eeq and shown as 3D surfaces, with Eeq marked by red

crosshairs.
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speed β (0.46s�1) and Eeq (7.2� 10�5N2) in the self-
programming process of SNIC are superior to β (0.37s�1) and
Eeq (3.4� 10�4N2) of the humans (Figure 3 and 4).

4. Conclusion

In summary, we demonstrated an SNIC based on synstors to
emulate a neurobiological network based on synapses to execute
the signal-processing (I ¼ wx, Equation (1)) and correlative
learning (w

: ¼ αz ⊗ x, Equition 2) algorithms concurrently in
parallel analog mode. Unlike a programmable computer, the syn-
stor conductance matrix w does not have to be preprogrammed
and can be spontaneously modified toward the optimal matrix ŵ,
minimizing the objective function E in a self-programming
process in complex and unpredictable environments. An SNIC
controlled a morphing wing, modified its lift force F toward a
targeted value F̂, and minimized the objective function
E ¼ 1

2 ðF � F̂Þ2 toward its equilibrium value Eeq in a wind with

randomly varied speeds. The correlative learning algorithm exe-
cuted in the synstor circuit can be extended to various learning
algorithms including supervised, unsupervised, and reinforce-
ment learning algorithms, leading to the optimization of
predefined or self-organized objective functions in intelligent
systems.[3,31] Unlike artificial intelligent systems based on com-
puters which have to be preprogrammed for specific tasks, SNIC
does not have to be preprogrammed and can “self-program”
heuristically by executing the correlative learning algorithm in
real time in arbitrary environments for general intelligence.
In comparison with humans and a preprogrammed computer,
an SNIC demonstrated self-programming speeds and Eeq supe-
rior to those of the humans and computer. SNIC circumvents the
energy consumptions on data transmissions in conventional
computing circuits, facilitating a computing energy efficiency
of � 3.3� 1017OPS=W (Experimental Section, Equation (6),
Figure 5) significantly higher than the energy efficiencies of
computing circuits (�107 � 1013 OPS=W)[7,11–16,20,22,24] and the
human brain (� 1015OPS=W).[26] The speed to compute parallel

Figure 4. a) Learning speeds β and b) equilibrium objective functions Eeq are plotted versus the modification rates of their relative conductance matrix at
the initial stages, hjw: jii, and equilibrium stages, hjw: jie, of the self-programming processes of (left) SNICs with different neuron circuits and (right)
different humans. In the self-programming processes of (left) SNICs and (right) humans with different hjw: jii and hjw: jie (as marked by 1, 2, 3, 4, 5,
and 6), c) average objective functions 〈E〉 are plotted versus time t in blue when dhEi=dt < 0, and in red when dhEi=dt > 0, and d) hEi is plotted
at logarithmic scale in 3D plots versus jΔw11j, jΔw12j, jΔw21j, and jΔw22j, which are shown versus time at the base planes of the 3D plots, at different
azimuthal angles by blue, red�orange, yellow, and violet lines, respectively. The arrows at the starting points of the lines indicate the evolving directions. 〈E〉
is best fitted as a function Δw by hEi ¼ 1

2 g
E=whΔwi2 þ Eeq and shown in 3D surfaces, with hEeqi marked by red crosshairs in (d) and dashed lines in (c).
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signal-processing and learning algorithms in a SNIC increases
linearly with increasing circuit scale (Experimental Section,
Equation (4), Figure 5), the power consumption of an SNIC
increases with increasing circuit scale (Experimental Section,
Equation (5)), and the computing energy efficiency of an
SNIC approximately does not change with increasing circuit
scale (Experimental Section, Equation (6), Figure 5). A circuit
of 106 synstors will have a speed (6� 1014OPS) comparable
with the speeds (�1012 � 1014 OPS) of TPU, GPU, and FPGA
circuits with ~109 � 1011 transistors and consume much less
power (� 30μW) than those of the transistor-based circuits
(�40W).[13–15] A circuit of 109 synstors will have a speed
(6� 1016OPS) comparable with the speeds of the human brain
(�1016OPS) and the Summit supercomputer (�1017OPS) and
consumes a power (� 40mW) much less than those of the
human brain (�30W with �1014 synapses)[26] and Summit
supercomputer (�107W with �1014 transistors).[12] There is
“plenty of room at the bottom” to scale up synstor circuits with
high speed, low power consumption, high energy efficiency, and
small circuit scale/volume for a new computing platform that can
self-program in real time in arbitrary and unpredictable environ-
ments for artificial general intelligence.

5. Experimental Section

Learning Algorithm in a Synstor Circuit: In the self-programming
process of a synstor, the feedback pulses, z, follow z ¼ y � θ̃
(Equation S1, Supporting Information), where

θ̃ðtÞ ¼
8<
:

θðtÞ when� τ� < t < 0
�θðtÞ when τþ > t > 0

0 when t ¼ 0 or t ≥ τþ or t ≤ �τ�
, the time constants τþ > 0

and τ� > 0, the function θðtÞ > 0. For the average θ̃ over learning period
T, hθ̃i ¼ 0, and the average z over learning period T, hzi ¼ 0, and
z̃ ¼ z� z̄ ¼ z. To generate feedback pulses with zn ¼ yn � θ̃, a train of
positive (negative) feedback pulses with a pulse firing rate proportional

to θðt� tnÞ within the time window tn � τ� < t < tn at the nth (compli-
mentary) output electrode and a train of negative (positive) feedback
pulses with a pulse firing rate proportional to θðt� tnÞ within the time
window tn < t < tn þ τþ were triggered at the nth output electrode.

Synstor Circuit Fabrication: The synstor circuit was fabricated by the pro-
cess reported previously.[28] Si wafers with a 100 nm-thick SiO2 layer were
diced into 3 cm � 3 cm square chips. A 10 μm-long and 50 nm-thick Al
reference electrode (Figure S1a, Supporting Information) was deposited
by electron beam (e-beam) evaporation (CHA Industries, CHA Mark 40)
and patterned by photolithography and wet chemical etching with
tetramethylammonium hydroxide (TMAH)-based photoresist developer
(AZ 300 MIF Developer). A 22 nm-thick HfO2 barrier layer and a
2.5 nm-thick TiO2 charge storage layer (Figure S1b, Supporting
Information) were deposited by atomic layer deposition (Cambridge
NanoTech, Fiji Thermal and Plasma Atomic Layer Deposition (ALD)).
The TiO2 film was patterned (Figure S1c, Supporting Information) by pho-
tolithography and CF4/O2 (5:1 pressure) reactive ion etching (Technics
RIE) to form a 10 μm-long pattern aligned to the Al reference electrode.
A 6.5 nm-thick HfO2 barrier layer (Figure S1d, Supporting Information)
was deposited by ALD, encapsulating the patterned TiO2 charge storage
layer. The chip surface was coated by an adhesion monolayer of poly
(L-lysine) (PLL). A randomly oriented network of semiconducting sin-
gle-walled CNTs was deposited by immersion coating (Figure S1e,
Supporting Information) in an aqueous 99.9% pure semiconducting sin-
gle-walled CNT aqueous solution (Nanointegris, IsoNanotubes-S99.9%).
Residual surfactant was removed from the surface by immersion in iso-
propanol (IPA) for 1 h, rinsed with IPA, and dried by nitrogen blow dry.
CNTs were doped to p-type by adsorbing O2 acceptors from atmosphere.
A 50 nm Al film (Figure S1f, Supporting Information) was deposited by
e-beam evaporation and patterned by the same process used for the Al
reference electrode to form input and output electrodes. The CNTs were
capped by a Parylene-C (PLC) polymer passivation layer deposited
(Figure S1g, Supporting Information) by thermal evaporation (Specialty
Coating Systems, 2010 Parylene Vacuum Deposition System). The CNT
network and PLC layer were patterned by photolithography with SU-8 pho-
toresist and O2 RIE to form a 20 μm-long CNT channel (Figure S1g,
Supporting Information). The SU-8 was an etch mask for the CNTs
and PLC during O2 RIE and encapsulated the CNTs, and PLC prevented
ambient doping of CNTs by atmosphere.

SNIC Testing: Voltage pulses, x and z, were generated by function
generators (Agilent 33250 A) with voltage amplitudes ranging between
�2V and 2V, a duration ranging between 10ns and 5ms, and a frequency
ranging between 50MHz and 100Hz and were applied to the input and
output electrodes of synstor circuits. The x and z voltage pulses were gated
by switches (Maxim, MAX383), which were activated by a digital voltage
module (National Instruments, 9403 E Digital Input/Output). The syn-
chronized input and output pulses from a single generator prevented
phase shifts between the pulses. Output voltage pulses, y, were also read
by the digital voltage module. The input, output, feedback, actuation, and
reference voltage signals were measured by an analog module (National
Instruments, 9205 Analog Input). To extrapolate the synstor conductance
w, input pulses x ¼ �1.75V were applied to a synstor, and the output
current from the synstor was measured by an operational amplifier
(Microchip Technologies, MPC6022).

Morphing Wing: The morphing wing was a wing section with a 12-inch
chord and a morphing trailing edge, which used a macrofiber composite
(MFC) piezoelectric actuator and a flexure box mechanism to modify the
camber of the trailing edge.[30,32] The actuator had a 3D-printed elasto-
meric honeycomb skin for tailored stiffness, and the piezoelectric mecha-
nism allowed for fast response time. The morphing wing had applications
in stall recovery during wind gusts, optimizing the lift distribution to
increase aerodynamic efficiency and reducing turbulence. The design
was scalable to multiple piezoelectric actuators along the spanwise edge
(spanwise morphing trail edge) to achieve continuous wing shape change,
but the hysteresis of the piezoelectric actuator increased the difficulty
of controlling the wing, which was adapted by the real-time self-
programming functionality of the synstor circuit. The output voltage
signals from the synstor circuit, y, triggered an analog actuation voltage,

Figure 5. A 3D plot displays the computing energy efficiencies, speeds,
and device numbers in a 2� 2 synstor circuit in this work (green), pro-
jected 10� 10, 102 � 102, 103 � 103, and 102 � 103 � 103 synstor circuits
(green), the human brain (blue), Summit supercomputer, Volta V100
GPUs from Nvidia, Stratrix 10 FPGA from Intel, TPUs from Google,
TrueNorth neuromorphic circuit from IBM, Tianjic neuromorphic circuits
from Tsinghua University, phase-change memory circuit from IBM (signal
processing only, learning excluded), and memristor circuits from UMass/
HP (signal processing only, learning excluded).
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Va, from an analog voltage module (National Instruments, NI-9264). Va
was amplified by a high-voltage driver (Avid LLC, AVID-EHV-MFC.B2) to a
range from�0.5 to 1.5 kV to control the piezoelectric actuators and modify
the wing shape.

Wind Tunnel: The morphing wing was tested in a laminar flow and an
open-circuit wind tunnel (Aerolab) with a 24� 24 in. test section. A fan in
the wind tunnel was driven by a high-voltage driver (ABB, ACS550-01-
046 A-2 AC) to randomly change wind speed, S, in the range between
17.3 and 28.7ms�1. S was measured by a pitot tube and air velocity trans-
ducer (TSI, 8455). The lift-force on the wing, F, was measured using a
force�torque multiaxis load cell (JR3, 30E12A-4-I40-EF 40N3.1S) with
a measurement range of �80N and resolution of 0.01N, attached to a
morphing wing mounting shaft. The sensory signals of S and F were read
by a voltage I/O device (National Instruments, PCIe 6353 Multifunction
I/O Device).

Human Controllers: The F � F̂ values were dynamically displayed to the
participants, who pressed two keys on a keyboard to increase or decrease the
actuation voltage, Va. The change rate of Va was determined by the key-

strokes, V
:

a ¼ ρhðak1 � ak2Þ, where ak1 ¼
�

1 when key 1 is pressed
0 when key 1 is not pressed

and ak2 ¼
�

1 when key 2 is pressed
0 when key 2 is not pressed

, and ρh was randomly set to

31mV=ms or�31mV=ms before each experiment started. Va was modified
by the humans to minimize the objective function E ¼ 1

2 ðF � F̂Þ2 under the
randomly changed wind speed S.

PID Controller: The lift-force error, eF ¼ F � F̂, was sent to the PID
controller to induce the actuation voltage Va following the PID control
algorithm, V

:

a ¼ KpeF þ K i∫ t
0eFðt0Þdt0 þ Kde

:
F, where Kp denotes the pro-

portional gain, K i denotes the integral gain, and Kd denotes the derivative
gain. After the gains of the PID controller were set to various combinations
of Kp ¼ 10�4, 10�3, or 10�2 V=N ⋅ s; K i ¼ 10�3, 10�2, or 10�1 V=N ⋅ s2; and
Kd ¼ 10�2, 10�1, or 1 V=N, the PID controller modified Va and the shape
of the wing while experiencing wind with static speed S ¼ 28.7m=s.
The average objective function hEi ¼ 1

2 ðF � F̂Þ2 during the control pro-
cesses is shown as a function of Kp, K i , and Kd in Figure S7, Supporting
Information, and 〈E〉 approaches its minimal value under the optimal
gains with Kp ¼ 10�5 V=N ⋅ s, K i ¼ 10�4 V=N ⋅ s2, and Kd ¼ 10�3 V=N.
After the PID controller was preprogrammed to the optimal gains, the
PID controller modified Va and the shape of the wing experienced the ran-
domly changed wind speeds S, emulating an unpredictable aerodynamic
environment beyond the static wind speed.

SNIC Computing Speed and Energy Efficiency: In comparison with com-
puters, the equivalent computing operations in an M�N synstor circuit
were approximately equal to 3MN to implement the signal-processing
algorithm (I ¼ wx, Equation (1)), 2MN for multiplications between w
and x (MN for accumulations), and 3MN to implement the learning algo-
rithm (w

: ¼ αz ⊗ x Equation (2)), 2MN outer products between α, x, and
z,MN for wmodifications. The speed for the synstor circuit to implement
6MN equivalent computing operations for parallel signal processing and
learning is

Vc ¼ 6MNf c (4)

where f c denotes the operation frequency of the circuit. When voltage
pulses are applied on its input or output electrode of an M�N synstor
circuit connected with N output integrate-and-fire neuron circuits, the
average power consumption in an M�N synstor circuit is

Pc � MNhwiV2
aDp þNEphryi (5)

where hwi denotes the average conductance of the synstors, Va denotes
the magnitude of pulses, Dp denotes the average duty-cycle of the pulses,
Ep denotes the average energy consumption to trigger a pulse from inte-
grate-and-fire neuron circuits, and hryi denotes the average firing rates of
pulses from output neuron circuits. The input neurons are part of the cir-
cuit of last layer, so their energy consumption is not included in the SNIC
energy consumption of the current layer. The computing energy efficiency

of a synstor circuit is equal to its computing speed Vc divided by its power
consumption Pc

CE ¼ 6f c=ðhwiV2
aDp þ Ephryi=MÞ (6)

The computing energy efficiency of SNIC operated with operation
frequency f c ¼ 100MHz, average synstor conductances hwi ¼ 10nS,
Va ¼ 1.75V , Dp ¼ 0.06, Ep ¼ 10pJ, r in ¼ 300 kHz, and hryi ¼ 160Hz
and was approximately equal to 3.3� 1017OPS=W.
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