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Abstract 

Unlike artificial intelligent systems based on computers which need to be programmed for specific 

tasks, the human brain can “self-program” in real-time to create new tactics and adapt to arbitrary 

environments. Computers embedded in artificial intelligent systems can execute arbitrary signal-

processing algorithms to outperform humans at specific tasks, but without the real-time self-

programming functionality, they need to be preprogrammed by humans, fail in unpredictable 

environments beyond their preprogrammed domains, and lack general intelligence in arbitrary 

environments. In this work, a synaptic resistor circuit that can self-program in arbitrary and 

unpredictable environments in real-time is demonstrated. By integrating the synaptic signal-

processing, memory, and correlative learning functions in each synaptic resistor, the synaptic resistor 

circuit can process signals and self-program the circuit concurrently in real-time with an energy 

efficiency about six-orders higher than those of computers. In comparison with humans and a 

preprogrammed computer, the self-programming synaptic resistor circuit dynamically modified its 

algorithm to control a morphing wing in an unpredictable aerodynamic environment to improve its 

performance function with superior self-programming speeds and accuracy. The synaptic resistor 

circuits can potentially circumvent the fundamental limitations of computers, leading to a new 

intelligent platform with real-time self-programming functionality for artificial general intelligence. 
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1. Introduction 

 The human brain has long served as the inspiration of artificial intelligent systems. A neural network 

(Figure 1a) processes voltage pulses at 𝑀 presynaptic neurons inducing currents via synapses at 𝑁 

postsynaptic neurons by following the signal processing algorithm,  

 

                                                    𝑰 = 𝒘 𝒙             (1) 

 

where 𝒘 = (𝑤𝑛𝑚) ∈ ℝ𝑁×𝑀  denotes a matrix with 𝑤𝑛𝑚  as the weight (conductance) of a synapse 

connecting the mth presynaptic and the nth postsynaptic neuron, 𝒙 = (𝑥𝑚) ∈ ℝ𝑀 denotes a vector with 

𝑥𝑚 as the voltage pulses at the mth presynaptic neuron, and 𝑰 = (𝐼𝑛) ∈ ℝ𝑁 denotes a vector with 𝐼𝑛 

as the current flowing into the nth postsynaptic neuron, which triggers the voltage pulses 𝒚 = (𝑦𝑛) ∈

ℝ𝑁 with 𝑦𝑛 as the pulses output from the nth postsynaptic neuron. Concurrently, the synaptic weight 

matrix, 𝒘, is modified by following the learning algorithm,[1, 2] 

 

                                 �̇� = 𝛼 𝒛 ⨂ 𝒙              (2) 

 

where 𝛼 denotes the modification coefficient, 𝒛 = (𝑧𝑛) ∈ ℝ𝑁 denotes a function of 𝒚 = (𝑦𝑛) ∈ ℝ𝑁 

with 𝑦𝑛 as the voltage pulses at the nth postsynaptic neuron (Supporting Information, Equation S1), 

and 𝒛 ⨂ 𝒙 represents the outer product between 𝒛 and 𝒙. By integrating signal-processing, memory, 

and correlative learning functions in each synapse, a neural network concurrently executes the signal-

processing (Equation 1) and learning (Equation 2) algorithms in analog parallel mode to dynamically 

self-program 𝒘 and create new functions in real-time in unpredictable and arbitrary environments 

with general intelligence.[1, 3, 4] 

Computers embedded in artificial intelligent systems can execute arbitrary signal-processing 

algorithms[5] to outperform humans at specific tasks such as pattern recognition[6] and the Go game,[7] 

but they need to be preprogrammed by humans, and cannot adapt or develop new functions in 
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unpredictable and arbitrary environments as humans do.[4] The time and 

energy consumption to compute machine learning algorithms from a dataset with 𝑀-dimensional 

variables increase versus 𝑀 exponentially,[8] referred to as the “curse of dimensionality”,[9] therefore 

learning algorithms are executed in off-site high-speed computers with high-power consumptions and 

bulky volumes.[7, 10, 11] Despite improved parallelism and computational energy efficiencies, 

transistor-based computing circuits, such as the Summit supercomputer,[12] graphics processing units 

(GPUs),[7, 11, 13] tensor processing units (TPUs),[14] field-programmable gate arrays (FPGAs),[15] 

TrueNorth[16] and Tianjic[17] neuromorphic circuits, are still based on the Turing computing model by 

executing algorithms with data transmissions between physically separated logic and memory 

transistors. Existing neuromorphic devices such as transistors,[18, 19] memristors,[20, 21] and phase 

change memory resistors,[22] execute signal-processing algorithms (without conductance change) and 

learning algorithms (with conductance change) by applying voltage pulses with different amplitudes. 

To avoid change of conductance during signal-processing, the voltage pulses for signal-processing 

are decreased to smaller magnitudes than the voltage pulses for learning. When the signal-processing 

algorithm is executed in the circuits, the learning algorithm is interrupted, and vice versa[22-25]. 

Therefore, unlike neurobiological networks, the existing neuromorphic circuits cannot execute 

signal-processing and learning algorithms concurrently, and need to be trained or preprogrammed 

before executing signal-processing algorithms. Due to these limitations, the energy efficiencies for 

existing electronic circuits to compute learning algorithms are limited to the range of ~ 107 −

1013 𝑂𝑃𝑆/𝑊 (operations per second per watt),[7, 11-17, 20, 22, 24] which are significantly lower than that 

of the human brain (~1015 𝑂𝑃𝑆/𝑊),[26] and largely prevent artificial intelligent systems from self-

programming on site in real-time. Without real-time self-programming functionality, artificial 

intelligent systems fail in unpredictable environments beyond their preprogrammed domains,[27] and 

lack the brain-like general intelligence in arbitrary environments.[4]  

Recently we have developed a synaptic resistor,[28] abbreviated as synstor hereinafter, to 

emulate a synapse. A synstor processes voltage pulses 𝒙 by following 𝑰 = 𝒘 𝒙, Equation 1, and 
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learns from voltage pulses 𝒙 and 𝒛 by following �̇� = 𝛼 𝒛 ⨂ 𝒙, Equation 2. 

Unlike existing electronic devices such as transistors, memristors, and phase change memory resistors, 

the synstors process and learn from the 𝒙 and 𝒛 voltage pulses with the same magnitudes, and the 

signal-processing (𝑰 = 𝒘 𝒙, Equation 1) and learning (�̇� = 𝛼 𝒛 ⨂ 𝒙, Equation 2) algorithms can be 

executed concurrently in a synstor circuit without interrupting each other. A synstor circuit 

circumvents the energy consumption on data transmission and memory between logic and memory 

circuits for executing the signal-processing and learning algorithms separately in conventional 

computing circuits, and facilitates computations in analog parallel mode by integrating signal-

processing, memory, and correlative learning functions in each synstor. In this article, we demonstrate 

a synstor-based self-programming neuromorphic integrated circuit (abbreviated as SNIC hereinafter) 

based on synstors (Figure 1a), which executes the signal processing (𝑰 = 𝒘 𝒙, Equation 1) and 

correlative learning[1, 3] (�̇� = 𝛼 𝒛 ⨂ 𝒙, Equation 2) algorithms concurrently in parallel analog mode 

to self-program the synstor conductance matrix, 𝒘, toward its optimal values, �̂�, and improve the 

performance function of a system spontaneously with an energy efficiency (~3.3 × 1017  𝑂𝑃𝑆/𝑊) 

significantly higher than the energy efficiencies of computing circuits (~107 − 1013 𝑂𝑃𝑆/𝑊)[7, 11-16, 

20, 22, 24] and the human brain (~1015 𝑂𝑃𝑆/𝑊).[26]   

 

2. Experiment and Results 

We fabricated a crossbar synstor circuit (Supporting Information, Figure S1), and each synstor[28] 

has a p-type semiconducting carbon nanotube (CNT) channel which forms Schottky contacts with Al 

input and output electrodes as a resistor. A HfO2/TiO2/HfO2 charge trap heterojunction is sandwiched 

between the CNT channel and a grounded Al reference electrode as a capacitor (Supporting 

Information, Figure S2). As shown in Figure 1a, voltage pulses, 𝑥𝑚, on the input electrodes induce 

currents flowing through the CNT channels to the 𝑛𝑡ℎ output neuron circuit by following the signal-

processing algorithm, 𝐼𝑛 = ∑ 𝑤𝑛𝑚𝑥𝑚𝑚  (Equation 1). When paired negative (positive) voltage pulses, 

𝑥𝑚 and 𝑧𝑛, are applied on the 𝑚𝑡ℎ input and 𝑛𝑡ℎ output electrodes of a synstor simultaneously, the 
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pulses generate a potential difference between the CNT channel and the 

TiO2 charge storage layer to drive electrons to hop through the HfO2 dielectric layer, increasing the 

negative (positive) charge stored in the charge storage layer, and in turn attracting (repelling) the 

holes in the p-type CNT channel to increase (decrease) the synstor conductance by following the 

learning algorithm, �̇�𝑛𝑚 = 𝛼 𝑧𝑛 𝑥𝑚  (Equation 2), with 𝛼 > 0  (𝛼 < 0 ). Otherwise, when 𝑧𝑛 = 0 

and/or 𝑥𝑚 = 0, the 𝑥𝑚 or 𝑧𝑛 voltage pulse mainly drops beyond the recessed TiO2 charge storage 

layer, and the potential difference between the CNT channel and the TiO2 charge storage layer are 

below the threshold values to modify the charge stored in the charge storage layer, so �̇�𝑛𝑚 =

𝛼 𝑧𝑛 𝑥𝑚 = 0 (Supporting Information, Figure S3 and S4). The synstor circuit executes the signal 

processing (𝑰 = 𝒘 𝒙, Equation 1) and correlative learning (�̇� = 𝛼 𝒛 ⨂ 𝒙, Equation 2) algorithms 

concurrently without interrupting each other (Experimental Section). 

  To test SNIC in a practical challenging environment, a SNIC composed of a 2 × 2 crossbar 

synstor circuit, and 2  input and 2  output integrate-and-fire neuron circuits was connected to a 

morphing wing[29, 30] in a wind tunnel (Figure 1a and 1b, Experimental Section). The synstor 

conductance matrix, 𝒘, had random values before a self-programming process, and the goal was to 

set 𝒘 in the real-time self-programming process to tune the lift-force on the wing, 𝐹, toward the target 

value, �̂� = 0.3 𝑁, and minimize an objective function 𝐸 =
1

2
(𝐹 − �̂�)

2
. The wind speed, 𝑆, changed 

randomly in the wind tunnel in the range of 17 − 29 𝑚/𝑠 to emulate an unpredictable aerodynamic 

environment which caused the lift-force on the wing, 𝐹, to vary randomly in the range of 0 − 1 𝑁. 𝐹 

was also influenced by the shape of the wing, which was controlled by a voltage, 𝑉𝑎, applied on a 

piezoactuator in the wing (Figure 1b, Experimental Section). 𝐹 was detected by a sensor in the wind 

tunnel, and the sensory signals were processed by input neurons to trigger 10 𝑛𝑠-wide input voltage 

pulses, 𝒙 , with an amplitude of 1.5 𝑉  or −1.75 𝑉  (Figure 2a). When 𝐹 > �̂� , the pulses were 

triggered from the 1𝑠𝑡 input neuron only; when 𝐹 < �̂�, the pulses were triggered from the 2𝑛𝑑 input 

neuron only. The firing rates of the 𝒙 input pulses were a nonlinear monotonically increasing sigmoid 
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function of |𝐹 − �̂�|  (Experimental Section, Supporting Information, 

Figure S5). 𝒙 induced currents 𝑰 via the synstor circuit by following Equation 1, 𝑰 = 𝒘 𝒙, and 𝑰 

flowed into integrate-and-fire output neuron circuits to generate output pulses, 𝒚, and feedback pulses, 

𝒛, at the output electrodes of the circuit. The firing rates of the 𝒚 and 𝒛 pulses were nonlinear 

monotonically increasing functions of |𝑰| (Experimental Section, Supporting Information, Figure 

S6). The actuation voltage, 𝑉𝑎, was modified by 𝒚 following �̇�𝑎 = 𝜌(𝑟𝑦1 − 𝑟𝑦2) with 𝑟𝑦1 and 𝑟𝑦2 as 

the firing rates of output pulses from the first and second output neurons, respectively, and 𝜌 = 8 𝑚𝑉. 

𝑉𝑎 was applied on a piezoactuator to modify the wing shape, lift-force 𝐹, and objective function 𝐸 

(Figure 1c). A wave of 10 𝑛𝑠-wide 1.5 𝑉 (−1.75 𝑉) 𝒛 pulses were triggered at the first (second) 

output electrodes at ~575 𝑚𝑠 before a wave of 𝒚 pulses were triggered, and a train of 10 𝑛𝑠-wide 

−1.75 𝑉 (1.5 𝑉) 𝒛 pulses was triggered at the first (second) output electrodes at ~575 𝑚𝑠 after the 

train of 𝒚 pulses were triggered.(Figure 2a, Experimental Section, Equation S1). The time-shifts 

between 𝒚 and 𝒛 pulses were mainly set to accommodate the system time delay between the wing 

and SNIC. The synstor conductance matrix 𝒘  was modified by the 𝒛  and 𝒙  voltage pulses by 

following the learning algorithm, �̇� = 𝛼 𝒛 ⨂ 𝒙  (Equation 2) in the real-time self-programming 

process to change 𝑉𝑎 and minimize the objective function 𝐸 under the wind conditions with randomly 

varied speed 𝑆 (Figure 1c).  

To compare the self-programming processes between SNIC and the human brain, 14 human 

participants without any pre-knowledge about the morphing wing and its control system received 

𝐹 − �̂� signals visually, and were instructed to minimize the difference between 𝐹 and �̂�, and the 

objective function 𝐸 =
1

2
(𝐹 − �̂�)

2
 by sending output signals 𝒚 by pressing two keys preset randomly 

in a keyboard to increase or decrease the actuation voltage 𝑉𝑎  on the wing (Figure 1d and 2b, 

Experimental Section). In the real-time self-programming processes, 𝐸 was reduced by dynamically 

modifying 𝑉𝑎 under wind with the same randomly varied speed 𝑆 as that in the SNIC trials (Figure 

1c). To compare the self-programming control processes by SNIC and human brains with control 
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processes by a preprogrammed computer, a proportional-integral-

derivative (PID) controller implemented on a computer received 𝐹 − �̂� signals, and output 𝑉𝑎 signals 

to modify the wing shape and 𝐹 (Figure 1e). The PID controller with various gains was tested to 

control 𝑉𝑎 and the shape of the wing experiencing a wind with a static speed 𝑆 = 28.7 𝑚/𝑠, and the 

optimal PID gains leading to the minimal average 𝐸 were identified (Supporting Information, Figure 

S7). After the PID controller was preprogrammed to the optimal gains, the PID controller modified 

the shape of the wing while experiencing wind with the same randomly varied speed 𝑆 as that in the 

SNIC and human trials, emulating an unpredictable aerodynamic environment beyond the 

preprogrammed condition (Figure 1e and 2c).  

Figure 1. a) A schematic of a SNIC (a neural network) composed of 𝑀 × 𝑁 synstors (synapses) 

connected with 𝑀 input (presynaptic) neurons, 𝐷1
𝑖 , 𝐷2

𝑖 , … , 𝐷𝑀
𝑖 , and 𝑁 output (post-synaptic) neurons, 

𝐷1
𝑜, 𝐷2

𝑜, … , 𝐷𝑁
𝑜 . A 2 × 2 crossbar synstor circuit is marked by dashed line, and shown in a microscope 

image in the inset. b) Left, an image of the morphing wing in wind (as illustrated by streamlines) with 

a randomly varied speed 𝑆 to generate a lift force 𝐹 on the wing. Right, a photo shows that the trailing 
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edge of the morphing wing is deflected upward by decreasing 𝑉𝑎 , and 

downward by increasing 𝑉𝑎 to modify 𝐹 toward its target value �̂�. c) The average objective function 

〈𝐸〉 =
1

2
〈(𝐹 − �̂�)

2
〉 is plotted versus 𝑆 and 𝑉𝑎  in the typical morphing wing control processes by 

SNIC (left), human (middle), and computer (right). The black arrows indicate the evolving directions 

of the system. The illustration of d) a human, and e) a computer receiving 𝐹 − �̂� signals and adjusting 

𝑉𝑎 to modify wing shapes.  

 

 

Figure 2. a) The lift force on the wing 𝐹, its target value �̂�, input voltage pulses 𝑥𝑚, feedback voltage 

pulses 𝑧𝑛, output voltage pulses 𝑦𝑛, and 𝑉𝑎 in a typical trial by SNIC are plotted versus time 𝑡 (left) 

and at moments 𝑡1, 𝑡2, 𝑡3, 𝑡4, and 𝑡5 equal to 0.498, 0.516, 0.549, 1.080, and 1.099 𝑠, respectively 

(right).  𝐹, �̂�, 𝑦𝑛, and 𝑉𝑎 are plotted versus 𝑡 in typical trials by b) human, and c) a computer. 
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3. Self-programming Process 

In a SNIC or human self-programming process, when 𝐹 = �̂�, 𝐸 = 0, 𝒙 = 0, and �̇� = 𝛼 𝒛 ⨂ 𝒙 = 0 

(Equation 2), 𝒘  reaches an equilibrium state �̂� = 𝑎𝑟𝑔 min
𝒘

𝐸 . Although 𝒘  and �̂�  were not 

experimentally measured, the relative deviation of effective 𝒘  from �̂� , ∆𝒘(𝑡) = [𝒘(𝑡) − �̂�]/

|𝒘(0) − �̂�| was extrapolated (Supporting Information, Equation S2). The average 𝐸 over a fixed 

moving time window, 〈𝐸〉, is shown versus 𝑡 in Figure 3a, versus ∆𝒘 and the wind speed 𝑆 in Figure 

3b, and versus |∆𝒘| in Figure 3c. Although 𝒘 for SNIC and humans was not preprogrammed, and 

had random positive or negative initial deviations from �̂�, 𝒘 was modified to �̂�, decreasing 〈𝐸〉 

toward equilibrium values, 𝐸𝑒𝑞 , within ~ 5.1 𝑠  for SNIC and ~ 10 𝑠  for humans in their self-

programming processes. When the wind speed 𝑆 changed chaotically, leading to increases of |∆𝒘| 

and 𝐸, 𝒘 was spontaneously modified toward �̂� under the varied 𝑆, decreasing 〈𝐸〉 monotonically 

versus 𝑡  in the self-programming processes (Figure 3). The dynamic change of 𝐸  in the self-

programming process can be expressed as (Supporting Information, Theorem 1),  

 

         〈�̇�〉 = −𝛽〈𝐸〉 + 𝛿𝐸          (3) 

 

where 𝛽 ≥ 0, and 𝛿𝐸 is related to the environmental influence and nonlinear term of 𝐸. In the self-

programming processes for SNIC and human, 𝛿𝐸 < 𝛽〈𝐸〉, and 〈�̇�〉 = −𝛽〈𝐸〉 + 𝛿𝐸 < 0, thus 〈𝐸〉 

represented a Lyapunov function, and was asymptotically decreased toward its dynamic equilibrium 

value 𝐸𝑒𝑞, leading 〈𝒘〉 to be modified toward 〈�̂�〉 in the self-programming process; when 𝛿𝐸 = 𝛽〈𝐸〉, 

〈�̇�〉 = 0 and 〈𝐸〉 reached its dynamic equilibrium value 𝐸𝑒𝑞 = 𝛿𝐸/𝛽 under 〈𝒘〉 = 〈�̂�〉. The solution 

of Equation 3 gives, 〈𝐸〉 = 𝐸𝑒𝑞 + (〈𝐸〉 − 𝐸𝑒𝑞)𝑒−𝛽𝑡 + 𝛿𝐸 ∗ 𝑒−𝛽𝑡 , where 𝛿𝐸 ∗ 𝑒−𝛽𝑡  represents the 

convolution between 𝛿𝐸  and 𝑒−𝛽𝑡 . When 𝛽𝑡 ≫ 1 , 〈𝐸〉 ≈ 𝐸𝑒𝑞 , thus 𝛽  represents the self-

programming speed to modify 〈𝐸〉  toward 𝐸𝑒𝑞 , and 𝒘  toward �̂�  (Equation S5 in Supporting 

Information). With its gains preprogrammed to their optimal values under a static wind speed, the 
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PID controller decreased 𝐸 initially, but the gains was not modified toward 

their optimal values dynamically under the varied 𝑆, leading to 𝐸 significantly larger than those of 

the SNIC and humans (Figure 1c). 

 

Figure 3. In the real-time self-programming processes of a SNIC (left) and human (right), a) objective 

functions 𝐸 are shown versus 𝑡 in gray color, and average objective functions, 〈𝐸〉, are displayed 

versus time 𝑡 in blue when 𝑑〈𝐸〉 𝑑𝑡⁄ < 0, and in red when 𝑑〈𝐸〉 𝑑𝑡⁄ > 0. b) 〈𝐸〉 is plotted versus the 

relative deviations of the device conductances from the optimal conductances, Δ𝑤11, Δ𝑤12, Δ𝑤21, 

and Δ𝑤22 and wind speed, 𝑆. c) 〈𝐸〉 is plotted at logarithmic scale in 3D plots versus |Δ𝑤11|, |Δ𝑤12|, 

|Δ𝑤21|, and |Δ𝑤22| at different azimuthal angles in linear scale. The evolving directions of Δ𝑤 are 

indicated by arrows at the base planes of the 3D plots. 〈𝐸〉 versus 〈Δ𝒘〉 is best-fitted by 〈𝐸〉 =

1

2
𝑔𝐸/𝒘〈∆𝒘〉2 + 𝐸𝑒𝑞, and shown as 3D surfaces, with 𝐸𝑒𝑞 marked by red crosshairs.  
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In a self-programming process, 𝛽  in Equation 3 represents the 

speed to reduce 〈𝐸〉 toward 𝐸𝑒𝑞, and modify 𝒘 toward �̂� (Supporting Information, Equation S5). As 

shown in Figure 4a, 𝛽 increases with increasing average change rate of 𝒘 at the initial stage of the 

self-programming process, 〈|�̇�|〉𝑖, which can be increased by increasing the firing rates of 𝒙, 𝒚, and 

𝒛 pulses, and decreasing the capacitances and leakage currents in the input and output neurons in 

SNIC (Supporting Information, Figure S5 and S6). The equilibrium objective function 𝐸𝑒𝑞 defined 

in Equation 3 represents the accuracy to modify 𝒘 toward �̂� (Supporting Information, Equation S3). 

As shown in Figure 4b, 𝐸𝑒𝑞 reached its minimal values (data points 2 and 5) when the average change 

rate of 𝒘 near the equilibrium stage of the self-programming process, 〈|�̇�|〉𝑒 = 0.62/𝑠 for SNIC, and 

〈|�̇�|〉𝑒 = 0.32/𝑠 for humans. When 〈|�̇�|〉𝑒 is decreased from its optimal values (data points 1 and 4), 

the 𝛽 value is decreased, and 𝐸𝑒𝑞 = 𝛿𝐸/𝛽, leading to the increase of 𝐸𝑒𝑞 since 𝐸𝑒𝑞 = 𝛿𝐸/𝛽. When 

𝛽 is decreased to zero in a control experiment without 𝒛 pulses or self-programming, 〈�̇�〉 = 𝛿𝐸 > 0 

(Equation 3, and 𝐸𝑒𝑞 reaches the maximal value in Figure 4b. When 〈|�̇�|〉𝑒  is increased from its 

optimal values (data points 3 and 6), 𝒘 is modified at a high rate, and 𝒘 overshoots with respect to 

�̂� near �̂�, leading to the fluctuation of |∆𝒘| and 𝐸, and the increase of 𝐸𝑒𝑞 (Figure 4c and 4d). In 

the self-programming processes, when 𝒘 is close to �̂�, the pulse firing rates are decreased by the 

leakage current in the integrate-and-fire neuron circuits to avoid the overshoot of 𝒘 with respect to 

�̂�, and reduce 𝐸𝑒𝑞 ; when 𝒘 deviates from �̂�, the pulse firing rates are increased as a nonlinear 

function of input signals to the neuron circuits to increase 𝛽 and decrease 𝐸 at high speed (Supporting 

Information, Figure S5 and S6). By optimizing the neuron circuits in SNIC, the average self-

programming speed 𝛽 (0.46 𝑠−1) and 𝐸𝑒𝑞 (7.2 × 10−5 𝑁2) in the self-programming process of SNIC 

are superior to 𝛽 (0.37 𝑠−1) and 𝐸𝑒𝑞 (3.4 × 10−4 𝑁2) of the humans (Figure 3 and 4).      
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Figure 4.  a) Learning speeds 𝛽 and b) equilibrium objective functions 𝐸𝑒𝑞 are plotted versus the 

modification rates of their relative conductance matrix at the initial stages, 〈|�̇�|〉𝑖, and equilibrium 

stages, 〈|�̇�|〉𝑒, of the self-programming processes of (left) SNICs with different neuron circuits and 

(right) different humans. In the self-programming processes of (left) SNICs and (right) humans with 

different 〈|�̇�|〉𝑖 and 〈|�̇�|〉𝑒 (as marked by 1, 2, 3, 4, 5, and 6), c) average objective functions 〈𝐸〉 are 

plotted versus time 𝑡 in blue when 𝑑〈𝐸〉 𝑑𝑡⁄ < 0, and in red when 𝑑〈𝐸〉 𝑑𝑡⁄ > 0, and d) 〈𝐸〉 is plotted 

at logarithmic scale in 3D plots versus  |Δ𝑤11|, |Δ𝑤12|, |Δ𝑤21|, and |Δ𝑤22|, which are shown versus 

time at the base planes of the 3D plots, at different azimuthal angles by blue, red-orange, yellow, and 

violet lines, respectively. The arrows at the starting points of the lines indicate the evolving directions. 

〈𝐸〉 is best-fitted as a function Δ𝒘 by 〈𝐸〉 =
1

2
𝑔𝐸/𝒘〈∆𝒘〉2 + 𝐸𝑒𝑞 , and shown in 3D surfaces, with 

〈𝐸𝑒𝑞〉 marked by red crosshairs in d) and dashed lines in c).    
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In summary, we have demonstrated a self-programming 

neuromorphic integrated circuit (SNIC) based on synstors to emulate a neurobiological network 

based on synapses to execute the signal processing (𝑰 = 𝒘 𝒙, Equation 1) and correlative learning 

(�̇� = 𝛼 𝒛 ⨂ 𝒙, Equition 2) algorithms concurrently in parallel analog mode. Unlike a programmable 

computer, the synstor conductance matrix 𝒘  does not need to be preprogrammed, and can be 

spontaneously modified toward the optimal matrix �̂�, minimizing the objective function 𝐸 in a self-

programming process in complex and unpredictable environments. A SNIC controlled a morphing 

wing, modified its lift force 𝐹 toward a targeted value �̂�, and minimized the objective function 𝐸 =

1

2
(𝐹 − �̂�)

2
 toward its equilibrium value 𝐸𝑒𝑞 in a wind with randomly varied speeds. The correlative 

learning algorithm executed in the synstor circuit can be extended to various learning algorithms 

include supervised, unsupervised, and reinforcement learning algorithms, leading to the optimization 

of predefined or self-organized objective functions in intelligent systems[3, 31]. Unlike artificial 

intelligent systems based on computers which need to be preprogrammed for specific tasks, SNIC 

does not need to be preprogrammed, and can “self-program” heuristically by executing the correlative 

learning algorithm in real-time in arbitrary environments for general intelligence. The real-time 

learning algorithm  In comparison with humans and a preprogrammed computer, a SNIC 

demonstrated self-programming speeds and 𝐸𝑒𝑞 superior to those of the humans and computer. SNIC 

circumvents the energy consumptions on data transmissions in conventional computing circuits, 

facilitating a computing energy efficiency of ~3.3 × 1017  𝑂𝑃𝑆/𝑊 (Experimental Section, Equation 

6, Figure 5) significantly higher than the energy efficiencies of computing circuits (~ 107 −

1013 𝑂𝑃𝑆/𝑊)[7, 11-16, 20, 22, 24] and the human brain (~1015 𝑂𝑃𝑆/𝑊).[26] The speed to compute parallel 

signal processing and learning algorithms in a SNIC increases linearly with increasing circuit scale 

(Experimental Section, Equation 4, Figure 5), the power consumption of a SNIC increases with 

increasing circuit scale (Experimental Section, Equation 5), and the computing energy efficiency of 

a SNIC approximately does not change with increasing circuit scale (Experimental Section, Equation 

6, Figure 5). A circuit of 106 synstors will have a speed (6 × 1014  𝑂𝑃𝑆) comparable with the speeds 
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(~1012 − 1014 𝑂𝑃𝑆) of TPU, GPU, and FPGA circuits with ~109 − 1011  

transistors, and consume much less power (~30 𝜇𝑊 ) than those of the transistor-based circuits 

(~40 𝑊).[13-15]  A circuit of 109 synstors will have a speed (6 × 1016  𝑂𝑃𝑆) comparable with the 

speeds of the human brain (~1016 𝑂𝑃𝑆) and the Summit supercomputer (~1017 𝑂𝑃𝑆), and consumes 

a power (~40 𝑚𝑊) much less than those of the human brain (~30 𝑊 with ~1014 synapses)[26] and 

Summit supercomputer (~107 𝑊 with ~1014 transistors).[12] There is “plenty of room at the bottom” 

to scale up synstor circuits with high speed, low power consumption, high energy efficiency, and 

small circuit scale/volume for a new computing platform that can self-program in real-time in 

arbitrary and unpredictable environments for artificial general intelligence. 
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Figure 5. A 3D plot displays the computing energy efficiencies, speeds, and device numbers in a 2 ×

2 synstor circuit in this work (green), projected 10 × 10, 102 × 102, 103 × 103, and  102 × 103 ×

103  synstor circuits (green), the human brain (blue), Summit supercomputer, Volta V100 graphics 

processing units (GPUs) from Nvidia, Stratrix 10 field-programmable gate array (FPGA) from Intel, 

tensor processing units (TPUs) from Google, TrueNorth neuromorphic circuit from IBM, Tianjic 

neuromorphic circuits from Tsinghua University, phase change memory circuit from IBM (signal 

processing only, learning excluded), and memristor circuits from UMass/HP (signal processing only, 

learning excluded).   
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Experimental Section 

Learning algorithm in a synstor circuit In the self-programming process of a synstor, the feedback 

pulses, 𝒛 , follow 𝒛 = 𝒚 ∗ �̃�  (Supporting Information, Equation S1), where �̃�(𝑡) =

{

𝜃(𝑡)               𝑤ℎ𝑒𝑛 −𝜏− < 𝑡 < 0

−𝜃(𝑡)                𝑤ℎ𝑒𝑛  𝜏+ > 𝑡 > 0 
  0        𝑤ℎ𝑒𝑛 𝑡 = 0 𝑜𝑟 𝑡 ≥ 𝜏+ 𝑜𝑟 𝑡 ≤ −𝜏−

, the time constants 𝜏+ > 0  and 𝜏− > 0 , the function 

𝜃(𝑡) > 0. The average �̃� over learning period 𝑇, 〈�̃�〉 = 0, and the average 𝒛 over learning period 𝑇,  

〈𝒛〉 = 0, and �̃� = 𝒛 − �̅� = 𝒛 . To generate feedback pulses with  𝑧𝑛 = 𝑦𝑛 ∗ �̃� , a train of positive 

(negative) feedback pulses with a pulse firing rate proportional to 𝜃(𝑡 − 𝑡𝑛) within the time window 

𝑡𝑛 − 𝜏− < 𝑡 < 𝑡𝑛  at the nth (complimentary) output electrode, and a train of negative (positive) 

feedback pulses with a pulse firing rate proportional to 𝜃(𝑡 − 𝑡𝑛) within the time window 𝑡𝑛 < 𝑡 <

𝑡𝑛 + 𝜏+ are triggered at the nth output electrode.  

Synstor circuit fabrication: The synstor circuit was fabricated by the process reported previously.[28] 

Si wafers with a 100 nm thick SiO2 layer were diced into 3 cm x 3 cm square chips. A 10 µm long 

and 50 nm thick Al reference electrode (Supporting Information, Figure S1a) was deposited by 

electron beam (e-beam) evaporation (CHA Industries, CHA Mark 40), and patterned by 

photolithography and wet chemical etching with tetramethylammonium hydroxide (TMAH) based 

photoresist developer (AZ 300 MIF Developer). A 22 nm thick HfO2 barrier layer and a 2.5 nm thick 

TiO2 charge storage layer (Supporting Information, Figure S1b) were deposited by atomic layer 

deposition (Cambridge NanoTech, Fiji Thermal and Plasma ALD). The TiO2 film was patterned 

(Supporting Information, Figure S1c) by photolithography and CF4/O2 (5:1 pressure) reactive ion 

etching (Technics RIE) to form a 10 µm long pattern aligned to the Al reference electrode. A 6.5 nm 

thick HfO2 barrier layer (Supporting Information, Figure S1d) was deposited by ALD, encapsulating 

the patterned TiO2 charge storage layer. The chip surface was coated by an adhesion monolayer of 

poly (L-lysine) (PLL). A randomly oriented network of semiconducting single walled carbon 
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nanotubes (CNTs) was deposited by immersion coating (Supporting 

Information, Figure S1e) in an aqueous 99.9% pure semiconducting single walled CNT aqueous 

solution (Nanointegris, IsoNanotubes-S99.9%). Residual surfactant was removed from the surface 

by immersion in isopropanol (IPA) for 1 hour, rinsing with IPA, and drying by nitrogen blow dry. 

CNTs were doped to p-type by adsorbing O2 acceptors from atmosphere. A 50 nm Al film 

(Supporting Information, Figure S1f) was deposited by e-beam evaporation and patterned by the same 

process used for the Al reference electrode to form input and output electrodes. The CNTs were 

capped by a Parylene-C (PLC) polymer passivation layer deposited (Supporting Information, Figure 

S1g) by thermal evaporation (Specialty Coating Systems, 2010 Parylene Vacuum Deposition System). 

The CNT network and PLC layer were patterned by photolithography with SU-8 photoresist and O2 

RIE to form a 20 µm long CNT channel (Supporting Information, Figure S1g). The SU-8 is an etch 

mask for the CNTs and PLC during O2 RIE and encapsulates the CNTs and PLC prevent ambient 

doping of CNTs by atmosphere. 

SNIC testing: Voltage pulses, 𝒙 and 𝒛, were generated by function generators (Agilent 33250A) with 

voltage amplitudes ranging between −2 𝑉 to 2 𝑉, a duration ranging between 10 𝑛𝑠 to 5 𝑚𝑠, and a 

frequency ranging between 50 𝑀𝐻𝑧 to 100 𝐻𝑧, and were applied to the input and output electrodes 

of synstor circuits. The 𝒙 and 𝒛 voltage pulses were gated by switches (Maxim, MAX383), which 

were activated by a digital voltage module (National Instruments, 9403E Digital Input/Output). The 

synchronized input and output pulses from a single generator prevented phase shifts between the 

pulses. Output voltage pulses, 𝒚, were also read by the digital voltage module. The input, output, 

feedback, actuation, and reference voltage signals were measured by an analog module (National 

Instruments, 9205 Analog Input). To extrapolate the synstor conductance 𝑤 , input pulses 𝑥 =

−1.75 𝑉 were applied to a synstor, and the output current from the synstor was measured by an 

operational amplifier (Microchip Technologies, MPC6022).  
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Morphing wing: The morphing wing is a wing section with a 12-inch chord 

and a morphing trailing edge, which uses a macrofiber composite (MFC) piezoelectric actuator and 

a flexure box mechanism to modify the camber of the trailing edge.[30, 32] The actuator has a 3D 

printed elastomeric honeycomb skin for tailored stiffness, and the piezoelectric mechanism allows 

for fast response time. The morphing wing has applications in stall recovery during wind gusts, 

optimizing the lift distribution to increase aerodynamic efficiency, and reducing turbulence. The 

design is scalable to multiple piezoelectric actuators along the spanwise edge (spanwise morphing 

trail edge) to achieve continuous wing shape change, but the hysteresis of the piezoelectric actuator 

increases the difficulty of controlling the wing, which is adapted by the real-time self-programming 

functionality of the synstor circuit. The output voltage signals from the synstor circuit, 𝒚, triggered 

an analog actuation voltage, 𝑉𝑎, from an analog voltage module (National Instruments, NI-9264). 𝑉𝑎 

was amplified by a high-voltage driver (Avid LLC, AVID-EHV-MFC.B2) to a range of  −0.5 to 

1.5 𝑘𝑉 to control the piezoelectric actuators and modify the wing shape. 

Wind tunnel: The morphing wing was tested in a laminar flow, open circuit wind tunnel (Aerolab) 

with a 24x24 inch test section. A fan in the wind tunnel was driven by a high voltage driver (ABB, 

ACS550-01-046A-2 AC) to randomly change wind speed, 𝑆, in the range of 17.3 𝑚/𝑠 and 28.7 𝑚/𝑠. 

𝑆 was measured by a pitot tube and air velocity transducer (TSI, 8455). The lift force on the wing, 𝐹, 

was measured using a force-torque multi-axis load cell (JR3, 30E12A-4-I40-EF 40N3.1S) with a 

measurement range of ±80 𝑁 and resolution of 0.01 𝑁, attached to a morphing wing mounting shaft. 

The sensory signals of 𝑆 and 𝐹 were read by a voltage I/O device (National Instruments, PCIe 6353 

Multifunction I/O Device). 

Human controllers: The 𝐹 − �̂� values were dynamically displayed to the participants, who pressed 

two keys on a keyboard to increase or decrease the actuation voltage, 𝑉𝑎. The change rate of 𝑉𝑎 was 

determined by the keystrokes, �̇�𝑎 =  𝜌ℎ(𝑎𝑘1 − 𝑎𝑘2), where 𝑎𝑘1 = {
1           𝑤ℎ𝑒𝑛 𝑘𝑒𝑦 1 𝑖𝑠 𝑝𝑟𝑒𝑠𝑠𝑒𝑑 
0    𝑤ℎ𝑒𝑛 𝑘𝑒𝑦 1 𝑖𝑠 𝑛𝑜𝑡 𝑝𝑟𝑒𝑠𝑠𝑒𝑑
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and 𝑎𝑘2 = {
1           𝑤ℎ𝑒𝑛 𝑘𝑒𝑦 2 𝑖𝑠 𝑝𝑟𝑒𝑠𝑠𝑒𝑑 
0    𝑤ℎ𝑒𝑛 𝑘𝑒𝑦 2 𝑖𝑠 𝑛𝑜𝑡 𝑝𝑟𝑒𝑠𝑠𝑒𝑑

, and  𝜌ℎ was randomly set to 

31 𝑚𝑉/𝑚𝑠  or −31 𝑚𝑉/𝑚𝑠  before each experiment started. 𝑉𝑎  was modified by the humans to 

minimize the objective function 𝐸 =
1

2
(𝐹 − �̂�)

2
 under the randomly changed wind speed 𝑆. 

PID controller: The lift force error, 𝑒𝐹 = 𝐹 − �̂�, was sent to the PID controller to induce the actuation 

voltage 𝑉𝑎  following the PID control algorithm, �̇�𝑎 = 𝐾𝑝𝑒𝐹 + 𝐾𝑖 ∫ 𝑒𝐹(𝑡′) 𝑑𝑡′𝑡

0
+ 𝐾𝑑�̇�𝐹 , where 𝐾𝑝 

denotes the proportional gain, 𝐾𝑖 denotes the integral gain, and 𝐾𝑑 denotes the derivative gain. After 

the gains of the PID controller were set to various combinations of 𝐾𝑝 = 10−4, 10−3 , or 10−2 𝑉/𝑁 ⋅

𝑠; 𝐾𝑖 = 10−3, 10−2, or 10−1 𝑉/𝑁 ⋅ 𝑠2; and 𝐾𝑑 = 10−2, 10−1, or 1 𝑉/𝑁, the PID controller modified 

𝑉𝑎 and the shape of the wing while experiencing wind with static speed 𝑆 = 28.7 𝑚/𝑠. The average 

objective function 〈𝐸〉 =
1

2
〈(𝐹 − �̂�)

2
〉 during the control processes is shown as a function of 𝐾𝑝, 𝐾𝑖, 

and 𝐾𝑑 in Supporting Information Figure S7, and 〈𝐸〉 approaches its minimal value under the optimal 

gains with 𝐾𝑝 = 10−5 𝑉/𝑁 ⋅ 𝑠, 𝐾𝑖 = 10−4 𝑉/𝑁 ⋅ 𝑠2, and 𝐾𝑑 = 10−3 𝑉/𝑁. After the PID controller 

was preprogrammed to the optimal gains, the PID controller modified 𝑉𝑎 and the shape of the wing 

experienced the randomly changed wind speeds 𝑆 , emulating an unpredictable aerodynamic 

environment beyond the static wind speed. 

SNIC computing speed and energy efficiency: In comparison with computers, the equivalent 

computing operations in an 𝑀 × 𝑁 synstor circuit are approximately equal to 3𝑀𝑁 to implement the 

signal processing algorithm (𝑰 = 𝒘 𝒙 (Equation 1), 2𝑀𝑁 for multiplications between 𝒘 and 𝒙; 𝑀𝑁 

for accumulations), and  3𝑀𝑁 to implement the learning algorithm (�̇� = 𝛼 𝒛 ⨂ 𝒙  Equation 2), 2𝑀𝑁 

outer products between 𝛼, 𝒙, and 𝒛; 𝑀𝑁 for 𝒘 modifications. The speed for the synstor circuit to 

implement 6𝑀𝑁 equivalent computing operations for parallel signal processing and learning, 

 

 𝑉𝑐 = 6𝑀𝑁𝑓𝑐        (4) 
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where 𝑓𝑐  denotes the operation frequency of the circuit. When voltage 

pulses are applied on its input or output electrode of an 𝑀 × 𝑁 synstor circuit connected with 𝑁 

output integrate-and-fire neuron circuits, the average power consumption in an 𝑀 × 𝑁 synstor circuit,  

 

𝑃𝑐 ≈ 𝑀𝑁〈𝑤〉 𝑉𝑎
2𝐷𝑝 + 𝑁𝐸𝑝〈𝑟𝑦〉    (5) 

 

where 〈𝑤〉 denotes the average conductance of the synstors, 𝑉𝑎 denotes the magnitude of pulses, 𝐷𝑝 

denotes the average duty-cycle of the pulses, 𝐸𝑝 denotes the average energy consumption to trigger 

a pulse from integrate-and-fire neuron circuits, and 〈𝑟𝑦〉 denote the average firing rates of pulses from 

output neuron circuits. The input neurons are part of the circuit of last layer, so their energy 

consumption is not included in the SNIC energy consumption of the current layer. The computing 

energy efficiency of a synstor circuit is equal to its computing speed 𝑉𝑐  divided by its power 

consumption 𝑃𝑐,       

 

𝐶𝐸 = 6𝑓𝑐/(〈𝑤〉𝑉𝑎
2𝐷𝑝 + 𝐸𝑝〈𝑟𝑦〉/𝑀)      (6) 

 

The computing energy efficiency of SNIC operated with operation frequency 𝑓𝑐 = 100 𝑀𝐻𝑧 , 

average synstor conductances 〈𝑤〉 = 10 𝑛𝑆, 𝑉𝑎 = 1.75 𝑉, 𝐷𝑝 = 0.06, 𝐸𝑝 = 10 𝑝𝐽, 𝑟𝑖𝑛 = 300 𝑘𝐻𝑧, 

and 〈𝑟𝑦〉 = 160 𝐻𝑧, is approximately equal to 3.3 × 1017 𝑂𝑃𝑆/𝑊.   
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