
1. Introduction
Surface water is an essential source of freshwater, whose variability has profound impacts on the life of hu-
manity (Hall et al., 2014). Surface water peak flows can result in flooding—the most impactful natural haz-
ard of all weather-related events in terms of fatalities and material costs (Doocy et al., 2013). However, high 
streamflow also replenishes reservoirs, carries and deposit nutrients in floodplains, can be the source of 
tremendous useable energy, and is an important source of irrigation for agriculture in arid areas. Addition-
ally, the diversity of fish communities is closely related to the streamflow seasonality (Knight et al., 2014). 
Understanding patterns of surface flows in space and time is therefore crucial for flood control, water sup-
ply, crop yield, ecosystem services, water quality control, and hydropower generation (Kemter et al., 2020). 
Streamflow characteristics, such as the magnitude, frequency, and seasonality, can be affected by human-in-
duced land use and climate change that both intensify the global hydrologic cycle (Bosmans et al., 2017; 
Winsemius et al., 2016). Stemming from observation-based studies and climate model projections, analyses 
of the sign and magnitude of peak annual streamflow changes in the historical period and the future remain 
controversial (Greve et al., 2018; Gudmundsson et al., 2019; Hirsch & Ryberg, 2012; Lins & Slack, 2005; Mal-
lakpour & Villarini, 2015; Milly et al., 2005; Yang et al., 2017; Zhai et al., 2020). Nonetheless, there is high 
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Plain Language Summary The occurrence of peak annual runoff characterizes the major 
phase of watershed surface hydrology. Many natural dynamics and human activities are synced with 
the timing of its occurrence, ranging from ecosystem services and channel transport of sediments and 
contaminants to reservoir refilling and management. The sensitivity of peak annual runoff timing to 
changing hydroclimate remains unknown. In this work, we identify how peak annual runoff occurrence 
will change in the future over the continental United States using outputs of several climate models. 
Spatial patterns of the change show both earlier (by up to 3–5 weeks) and delayed (up to 2–4 weeks) 
occurrence of peak runoff. We attribute these timing changes to the shifts in snowmelt and springtime soil 
moisture processes. Specifically, areas in which snowmelt drives watershed hydrology exhibit earlier dates 
of maximum snow accumulation and peak runoff. In regions where peak runoff is projected to occur 
later, we find a tendency for later occurrence of full saturation conditions. Earlier and later peak runoff 
occurrence can potentially lead to competing water use interests and aggravating concerns for aquatic 
environments and their ecosystem services.
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confidence that the frequency of extreme floods associated with annual streamflow maxima has increased 
over most regions, and this trend is likely to continue in the future (Arnell & Gosling, 2016; Hirabayashi 
et  al.,  2013; Hirsch & Archfield,  2015; Milly et  al.,  2002; Slater & Villarini,  2016; Swain et  al.,  2020). A 
number of studies have also addressed the question of streamflow seasonality shifts due to impact of non-
stationary climate on maximum annual streamflow occurrence (Bloschl et al., 2017; Clow, 2010; Cunderlik 
& Ouarda, 2009; Dudley et al., 2017; Villarini, 2016). Focusing on historical trends using gage-level data, 
their principal conclusions are that many watersheds have already experienced a significant shift in annual 
maximum streamflow timing. However, an open question is whether streamflow seasonality will change in 
the coming decades, and if so, which factors would be the main drivers.

It is vital to understand the key governing processes that determine the major phase of watershed stream-
flow in order to understand its future shifts. Several studies have reported substantial variability in the 
seasonality of maximum annual flows over the continental United States and attributed it to distinct differ-
ences in flood-generating mechanisms (Berghuijs et al., 2016; Villarini, 2016). Specifically, precipitation and 
antecedent soil water conditions were identified as key factors explaining the occurrence of highest flows 
over the central United States (Slater & Villarini, 2017) and western coastal areas (Berghuijs et al., 2016; 
Ye et al., 2017). In the western mountainous areas (Li et al., 2017; Yan et al., 2019) and the northeastern 
United States (Hodgkins et al., 2003), snowmelt was determined to be the dominant driver of runoff. Cli-
mate change can directly or indirectly affect precipitation, soil moisture, and snowmelt processes, with 
consequences to flood seasonality across regions with distinct dominant runoff generating mechanisms, 
triggering implications for hydropower, agriculture, and aquatic ecosystem services. For example, numer-
ous studies reported that trends of increasing temperature in regions with snowmelt-driven hydrology have 
already resulted in earlier annual peak streamflow (Barnett et al., 2005; Clow, 2010; Hodgkins et al., 2003; 
Kam et al., 2018; Regonda et al., 2005; Stewart et al., 2005). Trends and interpretations in regions with other 
processes of dominant hydrological influence are cumbersome to disentangle and projections into the fu-
ture are also subjected to this large attribution uncertainty.

In this study, we address knowledge gaps related to the understanding of future changes in peak runoff 
seasonality at the US continental (CONUS) scale. Specifically, we assess the likelihood of changes in peak 
runoff timing during the 21st century based on daily runoff projections that are outputs of 10 General Cir-
culation Models (GCMs) from the fifth phase of the Coupled Model Intercomparison Project (CMIP5). The 
sensitivity of GCM-modeled runoff to temperature is not well constrained, which can result in significant 
uncertainty for future projections (Lehner et al., 2019). To enhance confidence of the projection and in or-
der to reduce GCM biases, we apply the Bayesian weighting averaging (BWA) method of Smith et al. (2009) 
to produce multimodel ensemble estimates that rely on model performance over the control period and 
model projection convergence in the future to assign model weights. The product of Livneh et al. (2013) is 
used in this Bayesian framework to reduce biases of GCM runoff estimates. Using the downscaled estimates 
of future runoff, we aim to identify patterns of peak runoff timing change under the different CO2 emission 
scenarios and carry out analysis that identifies main drivers of the projected changes.

2. Methods
2.1. Runoff Historical Data and Projections

Long-term estimates of daily runoff (surface water yield per unit area) provided by Livneh et al. (2013) are 
used in this study as true “observations” within the Bayesian framework of multimodel downscaling to re-
duce projection biases. Daily runoff is obtained as output of the Variable Infiltration Capacity model (Liang 
et al., 1994) forced with precipitation and temperature, at the spatial resolution of 1/16° × 1/16°.

Realizations from 10 GCMs developed in different institutions were downloaded from the CMIP5 database 
(http://pcmdi9.llnl.gov/). Only one GCM version is chosen for each institution (see Table 1) to reduce the 
dependence within the multimodel ensemble. GCMs selected in this study satisfy the criteria of availability 
of daily runoff outputs and completeness of spatial coverage over the contiguous United States. Emission 
scenarios, corresponding to the Representative Concentration Pathway (RCP; van Vuuren et al., 2011), 4.5 
and 8.5 are used to represent medium and most pessimistic predictions of greenhouse gas concentration in 
the future.

XU ET AL.

10.1029/2021EF002083

2 of 14

http://pcmdi9.llnl.gov/


Earth’s Future

Because GCM outputs and the runoff data set of Livneh et  al.  (2013) have different meshes, they were 
converted to the same 1° × 1° resolution for analysis convenience. We first remapped all GCM outputs to 
1/16° × 1/16° resolution with the nearest neighbor method. Then, both GCM and the runoff data layers 
were aggregated by averaging over grid cells falling inside each 1° × 1° cell of the analyzed product set.

2.2. Multivariate BWA

It has been established in the literature that making future projections based on a multimodel ensemble 
is preferred over inferences based on single-model outputs (Knutti et  al.,  2010; Tebaldi & Knutti,  2007) 
due to potentially high biases of any given model. Biases of GCM projections in climate variables (e.g., 
temperature and precipitation) can be significant (Knutti et al., 2010; Xu et al., 2019), and therefore they 
must be addressed before any robust conclusion on climate change can be drawn. The BWA approach of 
Smith et al. (2009), Tebaldi et al. (2004), and Tebaldi et al. (2005) has grown in popularity as a sufficiently 
general tool to assess climate change uncertainties from multiple model projections with minimum sub-
jective assumptions. This approach is derived from the Reliability Ensemble Average method introduced 
by Giorgi and Mearns (2002) to integrate model outputs, such that the model weights are based on model 
performance in the past period with historical observations and model output convergence in the future 
period. The first version of BWA was univariate such that each location was considered separately, creating 
solutions informed by the local model performance (Tebaldi et al., 2005). In cases of large model-obser-
vation differences, this version could produce problematic posterior distributions (Smith et al., 2009; Xu 
et al., 2019). To extend the approach utility, Smith et al. (2009) proposed a multivariate version of BWA that 
simultaneously considers a set of model outputs in multiple regions. Model weights therefore rely on its per-
formance in all regions and locations considered, which ensures a more robust model skill evaluation given 
site-to-site variation of uncertainties. Additionally, this method requires fewer parameters in calculating 
the posterior distributions than those required for the univariate version and is thus more computationally 
efficient. Readers are referred to Smith et al. (2009) for a detailed derivation, and only a brief description of 
the formulation is introduced here.

Smith et al. (2009) postulated that the jth climate model projections in the past and future in the ith region 
are denoted as Xij and Yij, with i = 1, …, R, j = 1, …, M, where R is the total number of regions considered and 
M is the total number of models in an ensemble. Xi0 is the associated historical observation for the same past 
period. It is assumed that observations and projections are random Gaussian variables that are distributed 
as follows:

      
1

0 0 0, ,i i iX N (1)

XU ET AL.

10.1029/2021EF002083

3 of 14

No. Institution Model name
Resolution 
(lon × lat)

1 Beijing Climate Center bcc-csm1-1 128 × 64

2 Euro-Mediterranean Centre on Climate Change CMCC-CM 480 × 240

3 National Center for Meteorological Research, Météo-Franch and CNRS laboratory CNRM-CM5 256 × 128

4 Commonwealth Scientific and Industrial Research Organization – Queensland Climate Change Centre of Excellence CSIRO-Mk3-6-0 192 × 96

5 Institute of Numerical Mathematics of the Russian Academy of Sciences Inmcm4 180 × 120

6 Institute of Atmospheric Physical and Centre for Earth System Science FGOALS-g2 128 × 60

7 Model for Interdisciplinary Research on Climate MIROC5 256 × 128

8 Max Planck Institute for Meteorology MPI-ESM-MR 192 × 96

9 Meteorological Research Institute MRI-CGCM3 320 × 160

10 Norwegian Climate Center NorESM1-M 144 × 96

Table 1 
List of Fifth Phase of the Coupled Model Intercomparison Project Models Used in This Study
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where λ0i is the inverse of variance of Xi0 based on observational data. The other parameters are assumed to 
have the following prior distributions, all are mutually independent:
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Conventionally, G[a, b] denotes the gamma distribution with the shape parameter a and the rate parameter 
b. The parameters μ0 and ν0 are interpreted as the global means,  i and 

i
 are the differences from the global 

mean defined for a specific region “i,” and αj and  j
  represent the global biases for a specific model “j” for 

the past and future periods, respectively. In terms of the variance assumption in the above equations, λj 
represents the inverse of the variance of the jth model, ϕi represents the inverse of the variance for the ith 
region in the past, and θi represents the inverse of the variance at ith region in the future. The introduc-
tion of ηij here is to guarantee that climate models have different patterns of output variance in different 
regions. The uniform distribution is selected over   , , and a, b, and c are set to 0.01 to ensure that all 
of the priors are uninformative. The other three hyperparameters β0, θ0, ψ0 are used to define the common 
distribution of climate models. The analytical forms of the joint posterior distributions are unknown, but 
closed-forms of each marginal posterior distribution are derived in the appendix of Smith et al. (2009). In 
practice, the Markov Chain Monte Carlo (MCMC) process is used to estimate the posterior distributions 
(Smith et al., 2009). Note that the parameter λ0i capturing historical variability of peak runoff timing is 
accounted for in this methodology to represent “noise” in the peak time occurrence: larger “noise” implies 
less confidence in the distributions of model-observation biases and thus this will cause the posterior distri-
bution of peak runoff timing change to have larger variance. We further note that the random variables αj 
and  j

  representing model biases additionally account for the uncertainty of biases in GCM model outputs 
and their larger variances (assessed via the MCMC process) will yield higher “noise” in the projections of 
timing of peak runoff (see SM. 2 robustness metric).

2.3. Adaption of BWA to Peak Runoff Timing

GCMs estimate runoff (i.e., water excess in a model grid cell), not streamflow (i.e., the flow rate at a giv-
en point in a channel network). Consequently, in this study, we use annual peak runoff as an indicator 
of the occurrence of major hydrological phase, rather than annual peak streamflow used in previous ob-
servation-driven studies. Runoff routing to channel network and in-channel wave transformation can 
introduce additional uncertainty since the coarse spatial resolution of GCM computational mesh cannot 
represent these processes and the resultant runoff-streamflow basin lag. However, a comparison between 
the high-resolution Livneh et al. (2013) runoff data set and streamflow measured at USGS gauges across 
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CONUS illustrates that the correlation between the average annual runoff and streamflow is high both in 
terms of magnitude and timing (Figure S1). This suggests that shifts in the timing of both variables in the 
future period should be also correlated (although this is apparently impossible to verify). We further em-
phasize that peak runoff timing is not equivalent to peak streamflow timing. An apparent advantage is that 
runoff projections from grid-based model outputs allow us to study runoff spatial variability over the entire 
US continent, without the need to explicitly include the effects of water management, which is necessary 
for point-scale streamflow analysis. The quality of daily runoff product of Livneh et al. (2013) used in the 
Bayesian framework to reduce biases has been verified (SM. 1).

The occurrence date of annual peak runoff is the variable of interest inferred from GCM outputs. Daily 
GCM runoff outputs are used to derive the annual peak runoff timing, and day of year (DOY) is used to 
represent its occurrence date, where January 1 corresponds to 1 and December 31 to 365 (or 366 during a 
leap year). The original BWA cannot be applied directly to DOY due to its circular nature. To resolve this 
issue, we use the differences between the modeled and observed dates as the variable of interest in BWA to 
convert the circular variable to a linear variable:

X X Xij ij i  0,

 
(10)

Y Y Xij ij i  0. (11)

where Xij and Yij represent the deviations from the observed peak runoff timing (Xi0) for the jth model at 
ith location for the control period and future period, respectively. An example of the conversion is given in 
SM. 3.

The Bayesian posteriors of multimodel ensemble mean of runoff peak timing are constructed using outputs 
of selected GCMs (see Table 1) for the control and future periods. The control period is defined as 1961–
1990, and two future periods selected in this study are 2041–2070 (mid-century) and 2071–2100 (end-centu-
ry). Two CO2 emission scenarios, RCP4.5 and RCP8.5 (Rogelj et al., 2012), are used here to represent the dif-
ferent possible trajectories of the global climate evolution. We use the differences of the mean peak annual 
runoff timing estimated from the Bayesian posteriors for future and control periods to make inferences on 
the change of runoff seasonality timing caused by the global change. The robustness metric of Knutti and 
Sedláček (2012) accounting for the uncertainty of GCM projections is used to calculate the strength of the 
change signal of the multimodel mean (see SM. 2). Higher robustness of the inferred change will depend on 
the peak timing variability over the historical period, both in terms of observations and model simulations, 
model versus observation differences (i.e., model biases), and the degree of convergence of modeled outputs 
for both historical and future periods.

2.4. Dates of Maximum Precipitation and Snowpack, and the Distribution of Soil Moisture 
Saturation

Precipitation is an obvious driver of many hydrologic dynamics. We compute shifts in the dates of maxi-
mum 1, 3, 5, and 7-day accumulated precipitation by taking the difference of the multimodel date averages 
(equal GCM weights) for the future and control periods.

We use the occurrence time of maximum annual snow water equivalent (maxSWE) from the selected set of 
GCMs to identify the onset of snow melting phase. Only cells with maxSWE higher than 15 (kg/m2) (i.e., 
15 [mm] liquid water depth) are analyzed to ensure sufficient snow accumulation prior to snowmelt. We 
compute the change of the maxSWE mean date by taking the difference of the multimodel date averages 
(equal GCM weights) for the future and control periods.

Daily soil moisture over the top 10 cm depth from the selected set of GCMs is used to develop a distribution 
of springtime dates of extreme wetness. We first use the maximum soil moisture over the selected 30-year 
periods (control or future) to identify the soil saturation limit θsat. We then construct empirical cumulative 
density function (CDF) of the dates between February 1 and May 31 when soil moisture is higher than 
0.95 × θsat, using both control and future periods based on the outputs of all GCMs (see Table 1). Only late 
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winter-spring period is considered since the robustness metric of Knutti and Sedláček (2012) for changes in 
peak runoff timing exhibits high values (>0.6) during this interval only. The difference of days between the 
two CDFs corresponding to the median values (i.e., CDF at 0.5) is used to represent the shift of the distribu-
tion centroid of extreme springtime soil wetness in the future.

3. Results
3.1. Changes of Peak Annual Runoff Timing

The peak annual runoff over the continental United States exhibits clear regional patterns (Figure S2). Fig-
ure 1 illustrates the change of the mean timing of annual peak runoff between the future and the control 
periods inferred from the multimodel BWA posterior distributions. We present four cases corresponding 
to two future periods and two emission scenarios. The grid cells with high confidence of the change in-
ference based on the robustness metric of Knutti and Sedláček (2012) are highlighted. Higher robustness 
means that the project runoff changes are more significant than the model noise and historical variability 
(Figure S3), that is, the associated projection uncertainty is smaller. The fractions of the CONUS area in 
Figure 1 showing grid cells with high robustness changes for these four time periods are (a). 9.3%, (b). 10.2%, 
(c). 10.7%, and (d). 17.2%, implying that the higher the greenhouse gas concentrations change (and, cor-
respondingly, the higher the projected temperature increases), the more consistent and significant runoff 
peak timing changes projected by GCMs. The spatial patterns of robust changes are similar across all four 
scenarios. Specifically, the regions with winter snowpack, such as the Rocky Mountains and New England, 
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Figure 1. Change of the mean date of annual peak runoff occurrence between the control (CTL) and future (FUT) periods. The difference (FUT−CTL) is 
estimated using the dates of maximum likelihood from Bayesian weighting averaging (BWA) posterior distributions for the two periods. The grid cells with 
inference of high robustness (SM.2, metric of Knutti & Sedláček, 2012 higher than 0.6) are stippled with green points. “MID” (subplots (a) and (b)) represents 
the date difference with respect to 2041–2070 and 1961–1990 periods, and “END” (subplots (c) and (d)) represents the difference with respect to 2071–2100 
and 1961–1990 periods. Daily runoff product (SM.1) of Livneh et al. (2013) and outputs from 10 General Circulation Models are used to construct the BWA 
posterior. All of the results are shown at 1° × 1° resolution.
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are projected to have annual peak runoff shift to earlier dates, by up to 3–5 weeks. Peak runoff is likely to be 
delayed by up to 2–4 weeks in the Midwest region, southern Florida, and parts of the west coast, where soil 
moisture has been argued to be the key factor in peak runoff formation (Ivancic & Shaw, 2015). The change 
in the west of Gulf Coast region has a high uncertainty due to the poorly pronounced period of peak runoff, 
since highest runoff can occur at any time of a year. The changes have different signs for the upper Missouri 
basin region, when comparing the results for the end-of-century RCP8.5 scenario with the other three cases, 
but the spread of model projections likely causes this, since the inference robustness is not high.

3.2. Attribution of the Change in Peak Annual Runoff Timing

To develop an attribution of the patterns of peak runoff timing change in Figure 1, we investigate outputs of 
daily precipitation, surface snow accumulation, and top layer (0–10 cm) soil moisture from the same CMIP5 
multimodel ensemble. Figure 2a shows the changes of annual peak daily precipitation timing for the end 
of the century RCP8.5 scenario (the other cases can be found in Figure S4). While extreme heavy precipi-
tation (e.g., corresponding to return periods larger than 100 years) is generally associated with long-term 
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Figure 2. Change of precipitation, snowpack, and spring soil moisture seasonality (RCP8.5 scenario). (a) The difference of annual timing of peak precipitation 
between the end-of-century and the control period. (b) The difference of annual timing of maximum annual snow water equivalent (maxSWE) between the 
end-of-century period and the control period. The white areas along the southern and western coasts represent negligible snow accumulation in the control 
period (i.e., maxSWE < 15 mm). Hatching marks areas in which snow accumulation becomes negligible in the future. (c) Empirical cumulative density 
functions (CDFs) of the dates between February 1 (DOY = 32, “DOY”—day of year) and May 31 (DOY = 151) on which soil moisture is 95%–100% of its 
saturation limit. General Circulation Model outputs during the control period (solid black line) and the end-of-century period (red dashed line) are used. The 
CDFs are constructed for an exemplary grid cell (with the robustness metric of the peak timing change >0.6) indicated with the black square in the inset. The 
solid green line represents the shift between the two CDFs at their median values, that is, the difference represents the date change of the distribution centroid 
of springtime extreme soil wetness. Subplot (d) illustrates the shift of the centroid of springtime wetness illustrated in (c) between the end-of-century and the 
control period over the US continental area.
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maximum annual runoff (Smith et al., 2013), changes of the mean timing of peak daily annual precipitation 
cannot explain the change in the mean timing of peak annual runoff (Figure S5a). Likewise, shifts in max-
imum 3-day, 5-day, and 7-day accumulated precipitation also were not found to be related to the inferred 
changes in the peak runoff seasonality (not shown). This is consistent with previous studies that relied on 
stream gauge data to demonstrate that snowpack dynamics and antecedent soil wetness can play more crit-
ical roles in generating peak annual streamflow (Ivancic & Shaw, 2015), with the exception for urban areas 
where heavy rainfall was identified to be the primary factor (Sharma et al., 2018).

The change of maxSWE mean date illustrates the predominantly earlier dates of maximum snow accu-
mulation in the future (Figure 2b for RCP8.5 end-of-century; Figure S6 for all of the future cases). As the 
delayed peak runoff cannot be attributed to the changes of maxSWE timing (Figure S5b), we explore the 
possibility of the impact of maxSWE date change on earlier timing of peak runoff only (i.e., blue cells 
with green circles in Figure 1d). For all the four future scenarios, a positive relationship between the peak 
runoff and the peak maxSWE timing change indicates a coherent shift of both to earlier dates (Figure 3, 
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Figure 3. Attribution of the change in mean timing of annual peak runoff. Regressions between the peak annual runoff timing change and the change of the 
date of maximum snow water equivalent (blue squares), and the shift of centroid date of extreme spring soil wetness (red squares) for (a). The mid-of-century, 
RCP4.5 scenario, (b) the mid-of-century, RCP8.5 scenario, (c) the end-of-century, RCP4.5 scenario, and (d) the end-of-century, RCP8.5 scenario. Only the results 
for locations with the change robustness metric larger than 0.6 for peak annual runoff timing are presented. The peak runoff timing changes are calculated 
using the multimodel ensemble mean with equal weights assigned to each General Circulation Model to ensure a consistent comparison with the changes in 
the peak snow water equivalent (SWE) and soil moisture timing. The gray line represents the 1:1 reference line, and the blue and red dashed lines are the linear 
least-squares regression lines. ρ is the correlation coefficient and p is the corresponding p-value.
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blue squares). The high correlation also implies causation as the shifts are projected to occur in regions 
dominated by snowpack (Figure 2b) and snowmelt process is the dominant runoff generation mechanism, 
that is, the earlier start of snowmelt is related to the earlier phase of runoff production via well-understood, 
physically meaningful processes.

The projections of daily water content in the top 10 cm of soil are used to investigate the impact of soil 
wetness on later peak runoff occurrence (i.e., red cells with green circles in Figure 1d). Unlike precipitation 
and snow, soil moisture is bounded by the saturation limit θsat, reaching this limit many times in a given 
year. Consequently, we identified all dates when soil moisture exceeded 95% of θsat in GCM outputs for both 
the control and future periods to construct their empirical CDF (Section 2.4). As an example, Figure 2c 
illustrates CDFs inferred from multimodel projections for control and future periods for a grid cell with the 
delayed peak runoff in the end-century RCP8.5 scenario. What is apparent in this illustration is that nearly 
the entire CDF of the days of extreme spring wetness in future shifts to a later time of the year, as compared 
with the control period. This delay reflects the combined control of precipitation, evapotranspiration, and 
snowmelt on soil wetness due to the persistence property of soil moisture (Ghannam et al., 2016).

While peak annual runoff may correspond to any day on the CDF of dates of extreme springtime wet-
ness, we calculate the difference between the median CDF values to assess the interval between the two 
distribution centroids. Figure 2d illustrates these differences over the CONUS area for the end-of-century 
RCP8.5, which yields a positive relationship with the shift of annual peak runoff timing to later dates only 
(Figure 3d, red squares). The relationship is relatively insensitive to the choice of the CDF quantile (e.g., 
using 25% and 75% in Figure S7 leads to similar inferences). By taking the difference of the dates at 50% of 
CDF, we infer the shift of springtime soil wetness centroid. However, the occurrence of peak runoff cannot 
be related to the occurrence of extreme wetness dates in any straightforward fashion, that is, peak runoff 
can theoretically occur on any date of springtime soil saturation conditions. Specifically, Figure 4 shows 
that during the control period peak annual runoff occurred on average around DOY 50 (i.e., 32% of the 
CDF); it shifts to DOY 65 (43% of the CDF) for future conditions. Furthermore, the results for the other 
future projection scenario (i.e., RCP4.5) and period (i.e., mid-century) show similar patterns of the change 
(Figures 3a–3c and S8).

XU ET AL.

10.1029/2021EF002083

9 of 14

Figure 4. Cumulative density functions (CDFs) of dates of extreme springtime soil wetness and the shifts of peak 
annual runoff timing (RCP8.5, end-of-century scenario). The blue solid lines (red dashed lines) represent CDFs of 
dates of soil saturation for each cell in Figure 2d with delayed peak annual runoff (red cells with green circles—high 
robustness) for control period (future period). Black squares (black) circles are the corresponding peak annual runoff 
occurrence dates from multimodel mean for the control period (future period). The green solid lines illustrate the shift 
of peak annual runoff timing for all examined cells. CTL, control; FUT, future.
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We additionally note that the negative changes of soil wetness timing also exhibit (weaker) correlation with 
the negative changes of peak runoff timing (Figure S5c). However, these projected shifts of runoff timing to 
earlier dates are located in regions dominated by snowpack runoff generation (Figure 1). Therefore, chang-
es in snowmelt timing are expected to contribute to changes in spring soil moisture dynamics, triggering 
collinear effects between the two predictors: the timing of maxSWE and the centroid date of soil saturation 
during spring period.

4. Discussions and Conclusions
In this study, we focus on linking peak runoff seasonality with changes in the climate system. In sum-
mary, our results show clear spatial patterns of peak annual runoff timing change over the continental 
United States caused by the projected global climate change that drives changes in the physical processes 
of land-surface hydrology. We find that snowmelt will occur earlier in the future and this will cause a shift 
of peak annual runoff to earlier dates, with the median of 2.7 (RCP4.5) to 3.9 (RCP8.5) weeks by the end 
of the century in regions where snowmelt is the dominant runoff generating mechanism. In other regions, 
where climate projections yield a robust signal of delay in peak annual runoff timing with the median of 1.6 
(RCP4.5) to 2.6 (RCP8.5) weeks by the end of the century, we uncover the importance of soil wetness during 
spring period; we find that there is an overall shift of extreme soil wetness conditions to later dates. Such 
shifts in the timing of extreme soil moisture conditions may correspond to various expressions of the soil 
moisture process (e.g., conceptual illustrations in Figure S9), for example, they may correspond to specific 
changes in their first and higher order moments. However, while we note that springtime moisture condi-
tions are projected to be drier (e.g., by ∼3%, end-of-century, RCP8.5) and exhibit higher variance (∼7%), we 
do not find a strong relationship between changes in these two moments and changes in peak runoff timing. 
Since the distribution of soil moisture is always positively skewed, the change in these moments may be 
insufficient to represent the change in peak runoff timing, which is likely to be affected by extremes of soil 
moisture process. Further attribution analysis is warranted.

We find that all the changes are projected to be more pronounced and more robust by the end of the 21st 
century if the current greenhouse gas emission levels are maintained, since RCP8.5 represents the “busi-
ness as usual” scenario (van Vuuren et  al.,  2011). Such changes can pose serious challenges to the hu-
man activities and natural environment, since they are adapted to the historical runoff seasonality (Bloschl 
et al., 2017). For example, nearly three quarters of water supply in the western United States are driven by 
snowmelt (Dettinger, 2005) and the 3–5 week earlier peak runoff can result in competing water use inter-
ests: prioritizing reservoir storage can conflict with ensuring sufficient flows for salmon migration (Dudley 
et al., 2017). Likewise, a 2–4 week delay in springtime extreme wetness conditions in the US Midwest may 
imply late crop planting and a delay in springtime fertilizer applications; when combined with high flows 
and warmer summer conditions, this can pose threat to aquatic environments and their ecosystem services 
(Michalak et al., 2013).

This study analyses runoff rather than streamflow because streamflow is not available in GCMs' outputs. 
Despite the correlation of the two for the historical period (Figure S1b), caution must be exercised in inter-
pretation of the study results. Specifically, while robust changes of the former in the future are detected, this 
study does not present objective evidence that the timing of peak streamflow will be impacted in the same 
fashion. To investigate the change of peak streamflow timing, a hydrodynamic model is needed to route 
runoff. However, modeling this process will introduce additional uncertainties from unavoidable errors in 
representation of drainage network and channel geometry, and specification of “effective” friction proper-
ties of the land-surface at the scale of GCM grid cell of several hundred square kilometers, etc. There is cur-
rently no objective way of accounting for these additional uncertainties and thus projections of streamflow 
metrics into future will likely remain elusive.

Furthermore, the timing of peak daily average runoff can be different from the timing of peak instanta-
neous runoff. Conceptually, the difference between the two would be characteristic of systems in which 
peak runoff is controlled by extreme rainfall. The latter is not well captured by GCMs (Dai, 2006; Stephens 
et al., 2010), and thus in these systems, one expects low convergence of GCM outputs. We do however iden-
tify regions with high robustness of the change (Figure 1), implying that runoff dynamics bear a signature 
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of day-to-day persistence reflecting their driving processes (Berghuijs et al., 2016; Ye et al., 2017). Arguably, 
this suggests that in these regions, the timing of annual peak of instantaneous runoff coincides with that of 
annual peak of daily average runoff.

While the Bayesian method was applied to reduce the multimodel ensemble uncertainty, the approach 
does not automatically guarantee the uncertainty of future runoff projection to be well constrained, which 
represents a limitation of this study. In fact, the uncertainty of BWA projections can be large for many grid 
cells, as the Bayesian posterior of the peak runoff timing change can span a wide range: from negative to 
positive values (Figure 5). We acknowledge that it is not reliable to draw any conclusion for locations with 
such a high uncertainty. However, grid cells with high values of the robustness metric exhibit consistent 
bounds (i.e., either positive or negative) informed by a narrower model spread, indicating superior agree-
ment among the models. This supports the high confidence placed by the analysis on cells with high robust-
ness in the multimodel ensemble. While not entirely impossible, the signal of high robustness is unlikely to 
be merely fortuitous as the presented results on change of peak runoff timing make perfect physical sense.

We acknowledge that the real-world impacts of climate change on runoff generation are complicated and 
controlled by many factors at the scales of their governing physical processes. Specifically, with their sim-
plified runoff generation mechanisms, current GCM versions can realistically mimic only major phases 
of runoff due to the input of rain or meltwater in excess of soil saturation. GCM land-surface modules are 
one-dimensional representations of hydrology over large areas of a grid cell that grossly simplifies spatial 
variations of land-surface conditions. They cannot capture vital details of the other types of runoff gener-
ation such as those controlled by hillslope hydrology and surface-groundwater interactions (Beven, 2012; 
Bisht et al., 2018), soil structure (Or, 2020), snow redistribution across landscape in areas of complex to-
pography (Chegwidden et  al.,  2020), or mosaic of landuse variations such as those due to urbanization 
(McGrane, 2016). While relevant processes and their controlling factors can be captured by detailed models 
of watershed hydrology stemming from the first principles (Fatichi et al., 2012; Ivanov et al., 2008; Kim 
et al., 2012; Maxwell et al., 2014), these models cannot be operated at global scales. This is because of the in-
feasibly enormous computational demand implied by the high spatial resolution and time stepping required 
for appropriate solution of the governing partial differential equations (Fatichi et al., 2016). Therefore, suit-
able simplifications (known as “parameterizations”) of processes (e.g., surface and groundwater flow, snow) 
and/or controlling factors (e.g., topography, soil structure, landuse) continue to be necessary for GCMs. 
Correspondingly, recent developments targeting to improve the representation and realism of hydrolog-
ical physical processes in land-surface models have included surface water dynamics (Ekici et al., 2019), 
land-river interactions (Chaney et al., 2020; Decharme et al., 2019), parameterizations of sub-grid topogra-
phy (Tesfa et al., 2020), variable soil thickness (Brunke et al., 2016), and variably saturated flow dynamics 
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Figure 5. Uncertainty bounds for the change of the mean date of annual peak runoff occurrence. (a) 25%, and (b) 75% of the Bayesian weighting averaging 
posterior distribution of the change of mean date of annual peak runoff occurrence between the end-of-century period and the control period, the RCP8.5 
projection. The green dots denote cells with high robustness metric (as identified in Figure 1d).
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with groundwater (Bisht et al., 2018). While comprehensive offline assessments have been carried out, these 
developments have not yet been directly implemented in GCMs; further studies are necessary to better 
understand the sensitivity (Dwelle et al., 2019) of the modeled runoff dynamics to the inclusion of new 
parameterizations and their parameters. On a related note, confirmation (Oreskes et al., 1994) of model pa-
rameters is another vital step to improve the skill of runoff generation simulations (Huang et al., 2013; Troy 
et al., 2008) that has been long overlooked. In summary, many efforts have been dedicated to improving the 
realism of large-scale hydrological process and robustness of runoff projections. Continued efforts will need 
focus on sensitivity of GCM runoff generation to the inclusion of new processes and key controlling factors. 
It will be necessary to understand whether they lead to the improved space-time representation of runoff 
process and GCM agreement with large-scale hydrological models that have more sophisticated physical 
representation of the governing processes.
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