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ABSTRACT

Data-driven Modeling of the COVID-19 Pandemic Using Penalized Linear
Regression

by

Sabrina M. Corsetti

Chair: David Gerdes

Since early 2020, the push to subdue the COVID-19 pandemic has brought un-

precedented levels of attention to disease modeling efforts. The U-M COVID-

19 model presented in this thesis was developed in response to a demand for

COVID-19 spread, hospitalization, and mortality predictions. The model makes

regional, state, and national predictions for these three data categories using ridge

regression, a machine learning algorithm rooted in penalized linear regression. To

make its predictions, the model learns the relationship between consecutive sets of

COVID-19 data points. Once the model has learned the necessary relationships, it

can produce future predictions indefinitely, with uncertainties given by the boot-

strapping method. As of March 2021, the model makes its predictions based on

varying combinations of case, hospitalization, death, social distancing, and test-

ing data. However, the model is highly flexible and capable of making predictions

based on any combination of inputs. This study presents the underlying mathe-

matics of the model, as well as its prediction performance for the United States,

the state of Michigan, and the Grand Rapids region of Michigan.
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CHAPTER 1

Introduction

In December 2019, the first cluster of the novel human coronavirus disease COVID-19 was
detected in Wuhan, China. The disease, caused by the severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2), quickly spread outside Wuhan’s borders and became a global
threat. In March 2020, COVID-19 was officially declared a global pandemic by the World
Health Organization (WHO).

Since the early stages of the pandemic, numerous measures have been implemented
to prevent the spread of COVID-19, such as city-wide lockdowns and social distancing
regulations. As these measures have varied greatly between different regions, public offi-
cials and health systems have been tasked with monitoring their efficacy and adapting their
strategies accordingly.

Forecasts of COVID-19 spread, hospitalizations, and mortality provide one avenue for
health authorities to gauge the efficacy of lockdown measures and respond proactively to
increased disease spread. While numerous mechanistic prediction methods exist, they tend
to depend on assumptions regarding variables affecting the spread of the pandemic, such
as mask compliance rates and population density. Machine learning algorithms offer an
alternative paradigm for forecasting pandemic spread, in that machine learning algorithms
can learn from trends in a dataset without users supplying them with explicit assumptions.

Machine learning algorithms are a popular tool set for researchers in a variety of fields,
due to their ability to find subtle trends in datasets that would be immensely difficult to
detect using traditional statistical methods. One popular application of machine learning
algorithms is in the context of particle physics, in which algorithms such as decision tree
classifiers can be used to probe the Standard Model with high precision and seek new
physics in decay data [1].

Created by a group of U-M Physics researchers, the U-M COVID-19 model was de-
veloped in an effort to leverage particle physics-based machine learning expertise to create
purely data-driven forecasts of COVID-19 cases, hospitalizations, and deaths. The model
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is based on ridge regression, a form of machine learning related to ordinary least squares
regression with provisions to protect from overfitting. It makes its predictions based on a
combination of datasets containing historical COVID-19 case, hospitalization, and death
counts, as well as relative social distancing measures.

Since its development in spring 2020, the model has been used for numerous applica-
tions. As of March 2021, it is primarily applied in three directions: national and state case
and death predictions within the United States, regional case and death predictions within
the state of Michigan, and hospitalization predictions within the Grand Rapids region of
Michigan. State- and region-level predictions for Michigan are provided directly to the
office of the governor, and Grand Rapids hospitalization predictions are provided directly
to the Business Intelligence & Analytics department at Metro Health.

Unlike the other prediction types, our state and national predictions do not have direct
recipients. Rather, we contribute them to the COVID-19 Forecast Hub - the official data
source for the CDC COVID-19 Forecasting page [2],[3]. Building off of historical influenza
forecasting efforts, the goal of the COVID-19 Forecast Hub is to aggregate numerous in-
dividual forecasts into a single, high-performing ensemble prediction. On a weekly basis,
dozens of global research groups submit predictions from the national down to the county
level for the United States. The Hub administrators then combine these predictions into
the weekly ensemble, taking the medians of the submitted predictions as the ensemble’s
“point” predictions, and deriving confidence intervals from the spread of the submitted
predictions. As outlined in [2], the ensemble has consistently outperformed nearly all of
the individual contributing algorithms.

Our participation in the COVID-19 Forecast Hub has shaped certain aspects of our
prediction-making and error analyses. Namely, in compliance with the Hub’s guidelines,
we make our predictions based on the ground truth datasets encouraged for universal con-
tributor use. Likewise, we perform our error analyses based on the prediction interval and
percentile reports required for Hub submission. All relevant Hub guidelines can be found
in the Hub’s technical README.

All of the code used to generate the U-M COVID-19 model’s predictions is available
in the model’s git repository [4], and all data produced by the model is available within the
COVID-19 Forecast Hub under a cc-by-4.0 license. Weekly predictions for the COVID-
19 Forecast Hub are generated using batch jobs within the Great Lakes cluster, a U-M
Advanced Research Computing resource, which allows for the creation of predictions for
51 regions (all 50 states, plus the national aggregate) simultaneously. The model is highly
flexible with regards to data inputs and machine learning algorithms, which makes it a
useful multi-purpose tool for regression-based modeling.
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CHAPTER 2

Foundations and Related Works

2.1 Foundational Models

Within epidemiology, numerous models exist that shed light on the basic dynamics of dis-
ease propagation. While these models do not account for many of the complex factors that
contribute to disease spread, such as population density and travel practices, they provide a
basis for the construction of more sophisticated disease models.

One such simplified disease model is the SIR model - a system of ordinary differential
equations representing three separate portions of a population during an epidemic:

S = S(t): the number of susceptible individuals,

I = I(t): the number of infectious individuals, and

R = R(t): the number of recovered individuals,

(2.1)

where time t is measured in days, and both recoveries and deaths are treated as recoveries
[5].

Under the assumptions of the baseline SIR model, all previously uninfected individuals
are susceptible to infection, and all recovered individuals are fully immune to the illness.
Thus, we can redefine the model in terms of fractions of an N -person population, where:

s = S(t)/N : the susceptible fraction of the population,

i = I(t)/N : the infectious fraction of the population, and

r = R(t)/N : the recovered fraction of the population,

(2.2)

and we now have s+ i+ r = 1 for all times t.
The baseline SIR model makes several further population assumptions for the sake of

3



problem simplification. Namely, births and immigration are disregarded, so the susceptible
population never grows, and a fixed fraction k of the infected population is assumed to
recover every day. Here, k is taken to be 1/τ , where τ is the average time people remain
infectious.

Under these assumptions, we can derive the full set of SIR equations:

ds

dt
= −bs(t)i(t),

di

dt
= bs(t)i(t)− ki(t),

dr

dt
= ki(t),

(2.3)

where b is the average number of contacts between an infectious individual and other in-
dividuals (susceptible or otherwise) per day. So, each infectious individual generates bs(t)
new infectious individuals per day.

While the standard SIR model is too simple to capture all of the complex dynamics
underlying disease spread, especially in a socially distant population, it is frequently used
as a foundation for more robust models. As a simple example, the SEIR model is an
improved model that adds an extra component to the SIR model: E, the number of exposed

individuals in a population [6]. This addition accounts for a non-zero incubation period,
during which an individual has contracted a disease, and is thus no longer susceptible, but
is not yet infectious.

2.2 Data-driven Forecasting

Beyond simple extensions like the SEIR model, extremely robust models can be developed
based on the SIR model. For example, machine learning can be used to create SIR-based
models capable of forecasting disease characteristics up to days or weeks ahead. One such
model, developed in 2020 for the purpose of modeling COVID-19, used machine learning
to forecast COVID-19’s basic reproduction number R0(t) for upwards of two weeks ahead
[7]. Here, the basic reproduction number represents the average number of additional peo-
ple infected by a single infectious person. If a population experiencing an epidemic can
maintain R0(t) < 1, the epidemic will no longer be self-sustaining and will instead die out.
As a result, monitoring and predicting R0 can help health officials decide upon strategies
for mitigating a disease’s spread [8].

While the model eventually incorporated undetectable - or asymptomatic - cases in
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its forecasts, it initially relied only on the basic SIR equations (2.3). To represent the
relationship between current COVID-19 transmission and previous data, these equations
were transformed into discrete time difference equations:

s(t+ 1)− s(t) = −b(t)s(t)i(t),

i(t+ 1)− i(t) = b(t)s(t)i(t)− k(t)i(t),

r(t+ 1)− r(t) = k(t)i(t),

(2.4)

where b(t) and k(t) are now time-dependent to account for changes in contact and recovery
rates based on factors like social distancing and advancements in treatment.

Based on the early-pandemic assumption that most people in a region have not been
infected, and thus S ≈ N , the following relationships were determined for k(t) and b(t):

k(t) =
r(t+ 1)− r(t)

i(t)
,

b(t) =
[i(t+ 1)− i(t)] + [r(t+ 1)− r(t)]

i(t)
.

(2.5)

From these equations, given historical data from a given period {i(t), r(t), 0 ≤ t ≤ T −1},
it is possible to measure {b(t), k(t), 0 ≤ t ≤ T − 2}. Then, using machine learning it is
possible to predict {b(t), k(t), t ≥ T − 1} and in turn the basic reproduction number R0,
where R0 = b(t)/k(t).

Specifically, using ridge regression - a form of machine learning rooted in penalized
linear regression - future values of b(t) and k(t) can be determined by taking linear com-
binations of previous values of b(t) and k(t). The computation of forecast values b̂(t) and
k̂(t) follows as:

k̂(t) =
N∑
n=1

ank(t− n) + a0,

b̂(t) =
M∑
m=1

cmb(t−m) + c0,

(2.6)

where M and N are user-fixed values, and the coefficients an and cm are optimized for the
dataset through ridge regression’s minimization of an internal objective function.

Once these coefficients have been determined, an iterative process can be used to gen-
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erate successive b̂(t) and k̂(t) indefinitely. In other words, expectations can be defined for
future transmission and recovery rates, and thus for R0 = b(t)/k(t).

2.3 The Model

While predicting COVID-19 transmission characteristics is useful for understanding the
effects of containment efforts, direct predictions of COVID-19 cases, hospitalizations, and
deaths can be more intuitively useful to the public and policy-makers. For example, if
a sharp increase in cases is forecasted, policy-makers can implement more stringent so-
cial distancing measures in advance. Likewise, if a large uptick in hospitalizations is pre-
dicted for a hospital system, the system can impose a temporary halt on elective procedure
scheduling to ensure the availability of resources for COVID-19 patients.

Merging the goal of predicting cases, hospitalizations, and deaths with the math un-
derlying the ridge regression model from section 2.2 led to the construction of the U-M
COVID-19 model. Specifically, we adapted the method from the ridge regression model
above to create a direct prediction mechanism for COVID-19 cases, hospitalizations, and
deaths over an extended timeline of four weeks. Building from equation set (2.6), we pre-
dict future cases, hospitalizations, or deaths x̂(t) from previous cases, hospitalizations, or
deaths respectively using:

x̂(t) =
N∑
n=1

anx(t− n) + a0, (2.7)

where coefficients an are again determined through ridge regression.

2.3.1 Ridge Regression

Ridge regression is a form of machine learning algorithm with roots in ordinary least
squares (OLS) regression. Like OLS regression, ridge regression uses linear combina-
tions of previous data points to generate predictions, as in equation set (2.7). However, as
a protection against overfitting - a phenomenon in machine learning in which a model fits
too closely to a particular set of data and may therefore fail to fit additional data [9] - ridge
regression introduces a “penalty” on the magnitude of the linear combination coefficients.
The effect of this penalty is realized through the minimization of the objective function
[10]:
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min
aj

T−1∑
t=N

(x(t)− x̂(t))2 + λ
N∑
n=0

a2n, (2.8)

where x(t) is the true dataset, x̂(t) is the set of generated predictions, an are the coefficients
in (2.7), and λ is an arbitrary parameter.

In the λ → 0 limit, the objective function (2.8) becomes the OLS regression objective
function. In the λ → ∞ limit, (2.8) is dominated by the second sum, and minimization
requires an → 0 for all n = 0, 1, ..., N . Thus, by fixing the finite parameter λ > 0, one
encourages the ridge regression algorithm to minimize both the sum of square differences
between the data and the fit, as well as the magnitude of the coefficient vector ~a.

By encouraging the minimization of ||~a||, the penalty λ works to prevent any single
an from growing too large. Since each an ascribes a weight to the nth input in equation
(2.7), an abnormally large weight can indicate the presence of overfitting in response to a
significant, yet non-generalizable feature in the data used to train the model. In the case of
COVID-19 modeling, such a feature might be a large spike caused by a backfill of probable
COVID-19 cases, as occurred for the state of Michigan on June 5, 2020 [11]. Since such
spikes are typically several orders of magnitude larger than the surrounding data, OLS
regression is likely to assign it a large weight in recognition of its significance. However,
in the case of ridge regression, λ > 0 discourages such a large weight assignment.

As λ is an arbitrary parameter, an optimal λ can be chosen through the testing of sev-
eral models, each with a different λ. Based on the predictive performance of each model
over the training set, traditionally tested using leave-one-out cross validation scored by
mean square error [12], an optimal model can be chosen and used to iteratively generate
predictions {x̂(t), t ≥ T}.

2.3.2 Iterative Predictions

Equation (2.7) provides the formula by which predictions can be made for t ≥ T . How-
ever, in order for equation (2.7) to be executed, an optimal coefficient vector ~a must be
chosen through the minimization of the objective function in (2.8). For a ridge regressor to
choose an optimal vector ~a, it must be provided with training data consisting of sets of N
consecutive days worth of case, hospitalization, or death data, paired with the number of
cases, hospitalizations, or deaths on consecutive day N + 1. Then, the minimization of the
expression in (2.8) can be attained with respect to the equation:

M~a = ~b, (2.9)
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whereM is a real-valued matrix, and the ith rows ofM and~b correspond to the ith (N+1)-
day set of data points.

For example, suppose that we have 100 days worth of national COVID-19 case data
for the United States. Further, suppose we wish to generate future predictions for national
cases using 21 days worth of previous data to create each prediction. The equation used to
train the involved ridge regressor becomes:

cases1 cases2 ... cases21 1

cases2 cases3 ... cases22 1

cases3 cases4 ... cases23 1

| | ... | |
cases79 cases80 ... cases99 1


∗ ~a =



cases22
cases23
cases24
|

cases100


, (2.10)

where each casesi represents national cases on day i.
In this example, if we take x̂i = Mi−21,1:22~a for each i = 22 : 100, an optimal ~a can be

determined using expression (2.8). Then, using ~a, we can iteratively generate predictions
x̂i for i > 100 using:

casesi =
[
casesi−21 casesi−20 ... casesi−1 1

]
∗ ~a (2.11)

2.3.3 Additional Feature Incorporation

Case, hospitalization, and death predictions based on the scheme exemplified by equation
(2.10) allow for ridge regressors to use information about the shape of the curve for 0 ≤
t ≤ T − 1 to generate trajectories for t > T − 1. However, a ridge regressor trained
using only a curve’s shape for 0 ≤ t ≤ T − 1 will falter when external forces change the
underlying dynamics of the pandemic.

Several prominent external forces can directly influence COVID-19 dynamics, such as
social distancing regulations and vaccinated population counts. Likewise, certain COVID-
19 statistics can lead other statistics, in the sense that an increase or decrease in one precip-
itates an increase or decrease in another. For example, as COVID-19 symptoms frequently
take time to escalate from mild to severe, changes in a region’s incident case rate typically
lead corresponding changes in the death rate by 2-8 weeks [13].

In order to generate ridge regression predictions based on one or more of these factors,
in addition to the shape of the curve for 0 ≤ t ≤ T − 1, one must simply modify M and ~b
in equation (2.9) to include additional features. For example, should one develop a relative
metric for social distancing in the United States and wish to incorporate it into the example
outlined in (2.10), they need merely to expand (2.10) to:
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cases1 ... cases21 social1 ... social21 1

cases2 ... cases22 social2 ... social22 1

| | ... | |
cases79 ... cases99 social79 ... social99 1

 ∗ ~a =



cases22
cases23
cases24
|

cases100


, (2.12)

where each sociali represents relative social distancing levels on day i, and ~a now has
dimensions 43× 1.

While successive U-M COVID-19 model predictions are made iteratively based on
prior case, death, or hospitalization predictions, as in equation (2.11), we do not predict
future values of metrics such as relative social distancing. Thus, in the context of the ex-
ample presented in equation (2.12), successive prediction-making requires modification of
(2.11):

casesi =
[
casesi−21 ... casesi−1 socialS−21 ... socialS 1

]
∗ ~a, (2.13)

where S is the size of the training dataset. Using this extension method, it is possible to
incorporate any combination of inputs into a ridge regressor’s predictions.

Figure 2.1: Four-week incident case and death predictions for the United States, beginning
on Feb. 5, 2021. While the prediction data does not perfectly match the truth data, the use
of 95% prediction intervals helps us capture this uncertainty, as demonstrated in Fig. 3.3.
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A sample of incident case and death predictions for the United States is presented above
in Fig. 2.1, with case predictions made using 35 previous days of case and social distancing
transit data, and death predictions made using 35 days of case and death data.
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CHAPTER 3

Data and Methods

3.1 Datasets

The U-M COVID-19 model is equipped to make forecasts for several different categories
of COVID-19 data: case and death predictions for the U.S. at the region, state, and na-
tional levels, and hospitalization predictions for the Grand Rapids region of Michigan at
the system and regional levels. Case predictions are made based on case and relative social
distancing data, death predictions are made based on death and case data, and regional and
system hospitalization predictions are made based on hospitalization and case data.

The datasets used by the model are regularly pulled from several sources. Case, hospi-
talization, and death data is pulled from a repository hosted by a group at Johns Hopkins
University, social distancing data is pulled from a Google respository, and any remaining
local-level data is pulled directly from healthcare providers for the purpose of generating
predictions.

3.1.1 Johns Hopkins University CSSE COVID-19 Repository

As a contributor to the COVID-19 Forecast Hub, the U-M COVID-19 model makes its
U.S. case, hospitalization, and death predictions based on the accepted “ground truth” data
agreed upon by the Hub. While no ground truth datasets have been selected for metrics
like relative social distancing and vaccination rates, all ground truth case, hospitalization,
and death data is pulled from the COVID-19 Data Repository by the Center for Systems
Science and Engineering (CSSE) at Johns Hopkins University [14]. The U-M COVID-
19 model relies on data from the repository’s csse covid 19 daily reports directory, which
contains a host of COVID-19 data for nearly every region of the globe, reaching back as
early as 1/1/2020. Sample case data for the state of Michigan is displayed in Fig. 3.1.
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3.1.2 Google Mobility Reports

Figure 3.1: Top: Social distancing and incident case data for the state of Michigan, with
social distancing represented by transit station visits in terms of percent decrease from
baseline. Bottom: Same social distancing data, with markers for five significant events
affecting social behaviors.

To aid COVID-19 research efforts, Google has developed the COVID-19 Community
Mobility Reports resource [15]. The Mobility Reports site contains a list of csvs with rel-
ative social distancing data based on anonymized mobile device location data. The csvs
provide data for most countries, provinces, states, and counties across the globe. The data
consists of percentages representing people’s change in social activity from a pre-pandemic
baseline average. Each country or sub-region’s data is divided into 6 categories, each rep-
resenting different types of activity. For example, one category gives daily percentage
changes in visits to transit stations, whereas another category gives changes in time spent
in park areas. The other four categories measure relative time spent in residences, time
spent in workplaces, visits to retail and recreation locations, and visits to grocery stores
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and pharmacies. All data used by the U-M COVID-19 model comes from the transit and
residential categories, as time spent at home is inversely correlated with all forms of in-
store shopping and in-person work activity, and transit visits are positively correlated with
non-essential travel activities. Sample transit data for the state of Michigan is displayed in
Fig. 3.1.

3.1.3 Metro Health Proprietary Data

In preparing hospitalization predictions for Metro Health, a Grand Rapids region hospital
system, we rely on two types of data: COVID-19 cases and hospitalizations. As we make
regional predictions for Metro Health based on COVID-19 activity in the Grand Rapids
region, and in Kent County specifically, we pull Kent County case data from the JHU CSSE
COVID-19 Repository. However, hospitalization datasets compiled at the sub-state level
are uncommon. So, we make our hospitalization predictions based on datasets provided
directly by Metro Health, which contain data points regarding COVID-19 hospitalizations
within the Grand Rapids region Metro, Spectrum, and Mercy Health systems.

Figure 3.2: Left: Kent County cases and Metro Health COVID-19 hospitalizations. Right:
Kent County cases and Grand Rapids area COVID-19 hospitalizations across Metro, Spec-
trum, and Mercy Health. Generally, we see peaks in cases lead peaks in both sets of hospi-
talizations by approximately one week.
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While our goal in the context of Metro Health is to provide hospitalizations specific to
the individual hospital system, Metro Health’s COVID-19 patient intake is closely related
to the intake of two other hospital systems in the Grand Rapids region: Spectrum Health
and Mercy Health. Thus, when we provide predictions for Metro Health, we rely on two
sets of data. The first dataset is specific to Metro Health, containing COVID-19 patient
counts, or censuses, by date. The second dataset contains combined census values for
all three systems, again by date. Plots of the two datasets in comparison to Kent County
COVID-19 cases are presented in Fig. 3.2.

Using these datasets, we create two sets of predictions - one for Metro alone, and an-
other for the combination of Metro, Spectrum, and Mercy. By studying both sets of pre-
dictions, the Metro analytics team can determine their expected COVID-19 patient intake
based on both their own previous data, as well as their expected proportion of COVID-19
care with respect to the other systems.

3.2 Ridge Regressors

The U-M COVID-19 model makes use of two types of ridge regression algorithms imple-
mented in the Python Scikit-learn library [16]. The first algorithm is a traditional ridge
regression algorithm, whereas the second is an extension of the first. The second algo-
rithm incorporates native cross-validation, which allows for the testing of multiple points
in the algorithm’s parameter space, leading to the determination of a single strongest model
parameter set.

3.2.1 Scikit-learn Ridge

The first algorithm used by the U-M COVID-19 model is Scikit-learn’s Ridge() model.
Given inputsM and~b as in equation (2.9), as well as a user-specified λ penalty, the model’s
fit() method minimizes the objective function in equation (2.8) to provide the coefficient
vector ~a. Once ~a has been determined, the model’s predict() method can produce new
predictions based on a set of inputs, as exemplified by equation (2.11).

3.2.2 Scikit-learn RidgeCV

The second algorithm used by the U-M model is the Scikit-learn RidgeCV() model. Ridge-
CV() is generally identical to Ridge(). However, it has an expanded parameter space that
allows for automatic cross-validation over more than a single point. In the case of the
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U-M COVID-19 model, this allows us to supply RidgeCV() with an array of potential λ
penalties. The RidgeCV() can then use comparative leave-one-out cross validation scored
by mean square error to determine an optimal λ. This optimal λ can then be fed into a
lighter-weight Ridge() model for prediction-making. Typically, we provide RidgeCV with
λ options of {1E − 8, 2.5E − 8, 5E − 8, 7.5E − 8, 1E − 7, 2.5E − 7, ..., 5E5, 7.5E5}.

3.3 Error Estimation

The question of how to generate proper prediction intervals for a ridge regression model is
controversial. Since the imposition of a penalty λ introduces a deliberate bias into a ridge
regression model in favor of lower variance, traditional standard error measurements fail
to capture the model’s true uncertainty [17]. In light of this, many penalized regression
packages deliberately do not offer tools for uncertainty evaluation, as is the case with the
package discussed in [17]. However, in the case of an application like COVID-19 modeling,
prediction intervals can provide critical information about the trajectory of the pandemic,
especially around local maxima and minima in cases and deaths.

3.3.1 Bootstrapping

Bootstrapping is a common method used to meet the demand for prediction intervals while
accounting for uncertainties due to model bias [18]. As bootstrapping uses random sam-
pling with replacement to assign measures of accuracy to sample estimates, the method
allows for estimation of the sampling distribution of virtually any statistic.

The U-M COVID-19 model’s bootstrapping code is adapted from a preexisting Python
implementation [19]. The implementation accounts for 3 sources of prediction error, where
for a model trained on a data sample of size n, given a new observation x0:

y0 := y(x0) = ŷn(x0) + η(x0) + ηn(x0) + ε(x0). (3.1)

Here, ŷn(x0) is the model’s prediction for input x0, and η(x0), ηn(x0), and ε(x0) are the
model bias, model variance noise, and sample noise respectively.

To generate a prediction interval for any given point x0, the COVID-19 model’s training
data is randomly sampled B >> 0 times. The model is then fit on each of the resulting
subsets, and a prediction ȳb,n(x0) is generated for each b ≤ B. Taking the variance of
the set {ȳb,n(x0), b ≤ B}, we get our estimate for the first source of uncertainty - model
variance noise.
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Proceeding with ȳb,n(x0) as defined above, the bootstrapping code estimates the model
bias and sample noise. To do this, it first computes the validation errors:

validation errorb,i := y(xi)− ȳb,n(xi), (3.2)

for every b ≤ B and xi≤n which is not in the bth random training sample. Taking the
average of the errors gives us an estimate of the sum η(xi) + ε(xi). However, this estimate
will tend to be too large due to the artificial weakening of bootstrapped predictions through
the random sampling of the training set. Accounting for this inflation through the .632+
bootstrap estimate method ([20]), we receive a final estimate for the model bias and sample
noise.

Using this bootstrapping method, we can retrieve prediction intervals for each predicted
case, death, or hospitalization point, with each prediction interval corresponding to a user-
determined percentile range. As the U-M COVID-19 model’s predictions are generated
chronologically, with each successive prediction dependent on previous predictions as in
sample equation (2.11), the uncertainty of each predicted point must take the uncertainties
of previous points into account.

Figure 3.3: Four-week incident case and death predictions for the United States, beginning
on Feb. 5, 2021. A replica of this plot without 95% prediction intervals is displayed in Fig.
2.1. While the point predictions displayed in blue do not perfectly align with the truth data,
the 95% prediction intervals capture the truth data curves.
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In deference to the COVID-19 Forecast Hub standard, we produce 7 percentiles {2.5,
10, 25, 50, 75, 90, 97.5} for each case prediction and 23 percentiles {1, 2.5, 5, 10, ...,
90, 95, 97.5, 99} for each death and hospitalization prediction. For a given point, we
create a distribution of the model’s propagating error by repeatedly sampling the percentile
distributions of each previous point and adding the results. Then, by drawing new percentile
bounds based on this broader distribution, we incorporate compounding uncertainties into
our consecutive prediction intervals. A sample of case and death predictions for the United
States is presented with uncertainties in Fig. 3.3 above. As in Fig. 2.1, the case predictions
were made using 35 previous days of case and social distancing transit data, and the death
predictions were made using 35 days of case and death data.
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CHAPTER 4

Data Analysis

4.1 External Analyses

Analyzing the performance of long-term prediction methods is no small effort. Numerous
factors can be taken into account, both in terms of a model’s individual performance, as
well as its performance in comparison to other models. In general, the most relevant metrics
for individual Forecast Hub COVID-19 models are their accuracy and precision, both on
individual days and over time.

In an effort to analyze the quality of its constituent models, both Forecasting Hub ad-
ministrators and contributors have developed performance metrics for comparing and con-
trasting models. Taking one approach, the Hub administrators developed a Hub-specific
metric used to compare models using a single value representing relative performance over
the full prediction time frame. The ensemble metric ranks individual models in terms of
their general performance against a naive baseline model.

Taking a different approach, Dr. Steve McConnell - a Forecast Hub contributor - devel-
oped a data center with comprehensive evaluations of each model across multiple metrics.
The primary metrics considered are accuracy and precision for each set of predictions made
by each model. While this information is crucial for an in-depth understanding of each
model’s strengths and weaknesses, it is difficult to summarize concisely for a full-scale
Hub analysis, which is where the Hub-specific metric can serve as an effective comple-
ment.

4.1.1 Relative WIS Comparative Metric

In the most recent ensemble analysis, the Forecast Hub administrators used relative weighted
interval scores (WIS) as a metric for each model’s death prediction performance against a
naive baseline model [2]. The weighted interval score is a method for evaluating predic-
tive model performance that accounts for both prediction accuracy and interval coverage.
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WIS values are computed as a linear combination of interval scores, where a single interval
score for forecast distribution F , observation y, and uncertainty level α is taken as:

ISα(F, y) = (u− l) +
2

α
(l − y)× 1(y < l) +

2

α
(y − u)× 1(y > u), (4.1)

for 1(·) the indicator function and l and u the lower and upper quantiles of F .
Using a linear combination of 11 interval scores chosen to be equivalent to the quantile

loss function, the Hub administrators computed a mean WIS for each model, where the re-
sulting number described the average closeness of the model’s distribution to the observed
data, with units on the scale of the observations. Dividing each model’s mean WIS by
the Forecast Hub’s naive baseline’s mean WIS thus gave the relative WIS metric, where a
relative WIS > 1 meant that the baseline model had superior performance.

At the time of the pre-print’s writing in January 2021, the U-M COVID-19 model had a
relative WIS of 1.51, with its largest contribution stemming not from inaccuracy, but from
overly-tight prediction intervals. The results of this analysis inspired the introduction of
the uncertainty propagation methods discussed in section 3.3.1, which have significantly
improved our 95% prediction interval coverage. Based on preliminary results available
at the CMU Delphi Group Forecast Evaluation Dashboard, our model has maintained an
average relative WIS < 1 for deaths in the United States since the implementation of our
new error propagation measures in early February 2021 [21].

4.1.2 Covid Complete Data Center

The Covid Complete Data Center, developed by Forecast Hub contributor and software en-
gineer Steve McConnell, provides in-depth insights into the evolution of COVID-19 models
over time, as well as the factors underlying their relative WIS values [22]. The data center’s
analyses are broken down into categories, starting from the highest level with comparative
analyses versus individual model analyses. From there, the analyses are further broken
down into weekly comparative accuracy and prediction interval coverage reports, as well
as individual model assessments over the full time scale of the pandemic.

The Covid Complete Data Center has been an incredibly useful tool for gauging the
performance of the U-M COVID-19 model. As an example, it was the Center’s individual
prediction interval reports, along with the model’s relative WIS value, that prompted im-
provements to our model’s uncertainty propagation methods going into 2021. While the
Data Center offers comprehensive insights into a model’s performance throughout the pan-
demic, its historical prediction analyses for the U-M COVID-19 model are based on early
versions of the model, prior to the most recent algorithm and uncertainty improvements. In
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addition, all of its analyses focus on death predictions, rather than case predictions. Thus,
additional analyses of the model’s performance are warranted based on retroactive pre-
dictions for both cases and deaths generated using the current, most robust version of the
model.

4.2 Historical Accuracy

While the U-M COVID-19 model consistently makes predictions for more than 50 regions
and subregions of the United States, it has three primary regional targets: the United States,
the state of Michigan, and the combination of Metro, Spectrum, and Mercy Health. As
these targets cover all three levels of the model, from the national down to the state and
regional levels, they provide a strong case study for the model’s performance given different
datasets. For both the United States and Michigan, this section provides analyses of case
and death prediction accuracy over the span of 86 days worth of predictions. Likewise, it
provides analyses of 86 days worth of hospitalization predictions for both Metro Health, as
well as the combination of Metro, Mercy, and Spectrum Health.

All of the predictions in this section were generated using the methods outlined in Chap-
ter 2. Each set of historical predictions was generated using the most up-to-date version of
the U-M COVID-19 model, as of March 2021. However, to ensure a fair assessment of the
model’s capabilities at every point in time, all of the historical predictions were generated
using versions of the model trained only on the pandemic data available prior to that date.
For example, predictions made for October 14, 2020, were generated using a model trained
exclusively on pandemic data through October 13, 2020.

4.2.1 National Performance

As a general overview of case and death prediction performance in the United States, one
can study the agreement between four-week cumulative case and death prediction trajecto-
ries and the corresponding truth data. By plotting these trajectories on top of each other,
we can visually determine where the model most significantly strays from the truth data. In
turn, we can determine the strength of the model’s predictions given various local condi-
tions, such as sharp increases or decreases in the truth data curve slope. Fig. 4.1 provides a
trajectory comparison for both cases and deaths in the United States for a sample of weekly
predictions made over the span of 86 days, from November 22, 2020, to February 16, 2021.

Qualitatively, Fig. 4.1 demonstrates the COVID-19 model’s tendency to under-predict
both cases and deaths at the beginning of sharp truth data slope increases. Likewise, the

20



Figure 4.1: Four-week cumulative case and death prediction trajectories versus truth data
for the United States. Regions where the predicted trajectories are covered by the truth data
curve are the regions with the strongest predictions.

model tends to over-predict at the beginning of sharp slope decreases. This points to a
feature of the model, in that it can take up to approximately two weeks for the model to
fully catch on to significant changes in case and death trends.

To help us evaluate our handling of this uncertainty, we can gauge the model’s per-
formance in terms of accuracy and prediction interval coverage, evaluated using percent
errors. For predictions at any level, an ideal model will consistently have errors as close to
0% as possible. As a loose benchmark for model performance, contributors to the COVID-
19 Forecast Hub tend to aim for consistent error rates of approximately ±25% to ±50%,
up to 4 weeks ahead [22]. In addition, a model with ideal prediction interval coverage
will have truth data fall within the corresponding 95% prediction interval range 95% of the
time.

Fig.s 4.2 and 4.3 below show historical United States case and death prediction accu-
racies, with upper and lower bounds given by 95% prediction intervals. In general, we see
superior performance for death predictions, in that nearly all death prediction errors fall
within the 50% error bound. While we see higher average error rates for case predictions,
especially up to four weeks ahead, we still see most predictions falling within 50% error
and comparable performance compared to death predictions in the one- to two-week range.
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Figure 4.2: Daily one through four week ahead case prediction errors for the United States,
by prediction date, with 95% prediction intervals. Red solid line: 0% error. Blue dashed
lines: ±25% error. Black solid lines: ±50% error.

Figure 4.3: Daily one through four week ahead death prediction errors for the United States,
by prediction date, with 95% prediction intervals. Red solid line: 0% error. Blue dashed
lines: ±25% error. Black solid lines: ±50% error.
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The enhanced performance for death predictions is likely the result of deaths being
a lagging indicator for COVID-19 spread. As it typically takes several days or weeks
for a COVID-19 patient to progress from mild to life-threatening symptoms, proportional
incident death increases and decreases tend to lag behind case trajectory shifts. Thus, as
we use incident cases as an input for death predictions, cases provide advanced notice of
impending death curve shifts.

Beyond accuracy, Fig.s 4.2 and 4.3 depict a trend in 95% prediction interval coverage.
As the size of the training dataset increases, or as predictions are made on later dates,
prediction interval coverage tends to increase. This increase indicates that, in general,
using more training data allows for the model to better gauge its own uncertainty. This
points to the benefit of using large training sets to generate predictions, within the timespan
of the pandemic. However, modellers must be cautious in choosing which early-pandemic
data to include for training, as testing and data reporting inefficiences contributed to low
signal-to-noise ratios in the pandemic’s early stages.

The data from Fig.s 4.2 and 4.3 can be summarized as:

Table 4.1: Average National Prediction Errors
Prediction Type 1-Week [%] 2-Week [%] 3-Week [%] 4-Week [%]

Cases 12.74 22.83 32.20 45.42
Deaths 13.97 17.95 19.53 18.90

Table 4.2: National Prediction Interval Coverage Rates
Prediction Type 1-Week [%] 2-Week [%] 3-Week [%] 4-Week [%]

Cases 36.05 32.56 38.37 36.05
Deaths 33.72 43.02 45.35 52.33

From these tables, we can determine that the U-M COVID-19 model’s predictions are
highly accurate at the U.S. national level. For both cases and deaths, average prediction
errors are < 25% up to two weeks ahead and < 50% up to four weeks ahead. Death error
rates are typically even smaller, with average predictions errors < 20% up to four weeks
ahead.
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While the model boasts high accuracy for national predictions over this time frame,
it exhibits relatively low prediction interval coverage rates. With rates varying from ap-
proximately 33% - 52%, case and death truth values fall outside of their corresponding
prediction intervals in a majority of cases. While Fig.s 4.2 and 4.3 depict increasing in-
terval lengths with larger training set sizes, training on larger datasets may not suffice for
creating high-precision predictions in instances where precision is extremely important,
such as hospitalization predictions. This phenomenon points to the usefulness of custom
prediction interval definitions for specific targets, based on recipient needs. An example of
such custom interval use is detailed below in section 4.2.3.
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4.2.2 State Performance

Following suit from the national-level analysis, we can visually assess the COVID-19
model’s state-level performance by plotting predicted and truth cumulative case and death
trajectories. Analogues of the United States trajectory plots in Fig. 4.1 are provided for the
state of Michigan below, in Fig. 4.4.

Figure 4.4: Four-week cumulative case and death prediction trajectories versus truth data
for the state of Michigan. Regions where the predicted trajectories are covered by the truth
data curve are the regions with the strongest predictions.

In comparing Fig.s 4.1 and 4.4, similarities are apparent in terms of the model’s over-
and under-prediction tendencies. Specifically, as in the case of national predictions, the
state-level model tends to under-predict during times of rapid slope increases, and it tends
to over-predict during times of rapid slope decreases.

Apart from these similarities, an important distinction exists between the truth curve
noise levels. As represented by the jitters in the data between successive weekly truth dat-
apoints, the Michigan data has a significantly higher proportion of noise than the national
data. While both datasets experience weekly oscillatory behavior shaped by data reporting
patterns, the U.S. curves are smoothed by the contributions of multiple states and territo-
ries, each with unique reporting patterns [23]. On the other hand, Michigan’s data is shaped
exclusively by the state’s own reporting patterns, leading to higher reporting-induced noise.

25



As evidenced by Fig.s 4.5 and 4.6 below, modeled after Fig.s 4.2 and 4.3, this increased
noise results in significantly larger 95% prediction intervals and error spectra:

Figure 4.5: Daily one through four week ahead case prediction errors for the state of Michi-
gan, by prediction date, with 95% prediction intervals. Red solid line: 0% error. Blue
dashed lines: ±25% error. Black solid lines: ±50% error.

Figure 4.6: Daily one through four week ahead death prediction errors for the state of
Michigan, by prediction date, with 95% prediction intervals. Red solid line: 0% error. Blue
dashed lines: ±25% error. Black solid lines: ±50% error.
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While we see decreased accuracy for state of Michigan predictions, especially in terms
of cases, the increased width of the 95% prediction intervals frequently accounts for this
uncertainty, in that the intervals often capture the truth data. In addition, while Michigan
case prediction errors often stray far outside the 50% error margin up to four weeks ahead,
most one-week-ahead case predictions remain within these bounds.

As in the case of the United States predictions, the Michigan death predictions benefit
from the information provided by case trajectory changes. Thus, even up to four weeks
ahead, most predictions continue to fall within the 50% prediction error margin.

Numerically, these observations can be summarized as:

Table 4.3: Average Michigan Prediction Errors
Prediction Type 1-Week [%] 2-Week [%] 3-Week [%] 4-Week [%]

Cases 27.00 53.91 85.39 116.26
Deaths 22.96 28.41 40.38 55.215

Table 4.4: Michigan Prediction Interval Coverage Rates
Prediction Type 1-Week [%] 2-Week [%] 3-Week [%] 4-Week [%]

Cases 90.70 84.88 77.91 79.07
Deaths 72.09 70.93 77.91 77.91

As observed in Fig.s 4.5 and 4.6, the data in tables 4.3 and 4.4 exhibits a strong contrast
with the U.S. national prediction data in tables 4.1 and 4.2. While death predictions for the
state of Michigan remain highly accurate, with error rates < 56% up to four weeks ahead,
we see average error rates as high as ≈ 116% up to four weeks ahead for case predictions.

While Michigan case and death predictions are noticeably less accurate than United
States case and death predictions, Michigan prediction interval coverage rates are signif-
icantly higher, ranging from 70.93% to 90.70%, as opposed to 32.56% to 52.33%. Even
further, as exemplified in Fig.s 4.5 and 4.6, prediction interval lengths again tend to increase
with increased training set sizes. Thus, interval coverage rates for both cases and deaths
increase to nearly 100% around January 1, 2021. This suggests that in the case of predic-
tions based on high-noise state data, the use of large training datasets can help prediction
intervals capture uncertainties induced by extra noise.
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4.2.3 Health System Performance

Evaluating prediction performance for the Metro, Mercy, and Spectrum Health systems
requires a slightly different analysis than the national- and state-level analyses. This is
for three reasons. The first is that for health systems, we make COVID-19 census - or
patient count - predictions, rather than incident or cumulative hospitalization predictions.
While census predictions are particularly important for health system administrators to
anticipate COVID-19 resource requirements, they are not conducive to trajectory plots such
as Fig.s 4.1 and 4.4. The second reason is that, as we are not directly predicting incident
or cumulative hospitalizations, we cannot evaluate prediction accuracy based on weekly
incident hospitalization counts the way that we could with cases and deaths.

The third and final reason is slightly more involved, in that in an effort to provide pre-
dictions with a broader uncertainty margin, we prepare uncertainties for our health system
hospitalization predictions differently than our case and death uncertainties. Namely, rather
than using bootstrapping, we provide prediction intervals based on our weakest historical
model performance, with intervals given by ±50% up to two weeks ahead and ±100%
between two and four weeks ahead. While these intervals are clearly much broader than
our case and death intervals, they provide an enhanced opportunity for Metro Health to
determine the full spectrum of possible resource demands.

In response to these differences, we can perform a similar accuracy-based analysis as
we performed for the national and state levels. However, we can modify it slightly to
demonstrate key factors in the predictions. Namely, rather than plotting weekly incident
prediction errors, we can plot weekly mean percent errors, where each week’s mean percent
error (MPE) is computed as:

MPE =
7∑
i=1

|predictioni − truthi|
7× truthi

, (4.2)

where each predictioni and truthi respectively represents the ith daily predicted and truth
values for that week.

Now, we seek two indicators of strong model performance: near-0% MPEs and predic-
tion intervals with minima at 0%. If a given week’s MPE interval reaches 0%, that means
that each individual day’s prediction interval included the corresponding truth data. Thus,
an ideal model will have all interval minima at 0%. Fig.s 4.7 and 4.8 provide MPE plots for
predictions created over the span of 86 days, from November 22, 2020, through February
16, 2021. As in the national and state analyses, all predictions were made using versions
of the model trained only on data available prior to the prediction date.
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Figure 4.7: Daily one through four week ahead COVID-19 census prediction errors for the
Metro Health system, by prediction date, with custom prediction intervals. Black solid line:
50% error. Blue dashed line: 25% error.

Figure 4.8: Daily one through four week ahead COVID-19 census prediction errors for the
Metro, Spectrum, and Mercy Health systems, by prediction date, with custom prediction
intervals. Black solid line: 50% error. Blue dashed line: 25% error.
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In general, we see much stronger performance from predictions made for the combi-
nation of Metro, Spectrum, and Mercy Health. Specifically, we see that the majority of
predictions up to four weeks ahead fall within the 50% MPE margin. In addition, we see
that virtually every MPE interval has a minimum of 0%, meaning that the model’s predic-
tion intervals capture the health systems’ truth data nearly 100% of the time. In contrast,
while most Metro-specific predictions fall within the 50% error margin up to two weeks
ahead, we see significantly higher error rates between three and four weeks ahead, and for
specific days along the prediction curve.

This discrepancy has two main sources, the first of which stems from the nature of MPE
as a metric. In Fig. 3.2, it is clear that Metro Health’s COVID-19 census counts are typi-
cally small, on the order of 10%, compared to the combined health system census. Thus,
when MPE is calculated relative to the Metro Health truth data, a marginal difference be-
tween predicted and truth data may produce an extremely large percent error. For example,
if the model predicts a two-patient COVID-19 census for a day in which Metro Health has
only one COVID-19 patient, this will register as a 200% error. While MPE generally scales
well based on a dataset’s order of magnitude, extreme cases like this can contribute to high
MPEs for relatively strong predictions.

The second discrepancy source is slightly more complicated, as it arises from the rela-
tionship between Metro Health and the other two hospital systems. Based on an individual
system’s resources and capacity for COVID-19 patient care, its proportion of COVID-19
patients relative to the other two systems may increase or decrease dramatically. This phe-
nomenon is apparent in Fig. 3.2, in which the Metro Health COVID-19 census increases
intermittently following February 8, 2021, whereas the combined census for the three sys-
tems consistently decreases. In instances like these, the U-M COVID-19 model may rec-
ognize decreases in both Kent County COVID-19 cases and the Metro Health COVID-19
census and subsequently predict a decrease in the Metro census. However, since the model
has no way to predict human-determined changes in patient proportions, it may fail to
predict an increase.

Together, these explanations of the performance discrepancy between Metro-specific
and combined health system predictions underscores the benefits of producing both sets of
predictions. If the health professionals at Metro Health anticipate an increase or decrease
in their proportional COVID-19 patient share, they can use the combined health system
forecast to determine their anticipated patient counts. Together, the observations in Figs.
4.7 and 4.8 can be summarized as:
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Table 4.5: Average Health System Prediction Errors
Prediction Type 1-Week [%] 2-Week [%] 3-Week [%] 4-Week [%]

Metro Health 27.85 44.75 58.22 83.14
Combined Systems 8.75 19.68 30.20 43.53

Table 4.6: Health System Prediction Interval Coverage Rates
Prediction Type 1-Week [%] 2-Week [%] 3-Week [%] 4-Week [%]

Metro Health 70.93 62.79 89.53 90.70
Combined Systems 100 95.35 100 98.84

The data in the tables clearly reflects the visual trends in Fig.s 4.7 and 4.8. Specif-
ically, predictions made for the combination of Metro, Spectrum, and Mercy Health are
significantly more accurate than Metro-specific predictions. While average Metro Health
COVID-19 census prediction errors range from 27.85% - 83.14%, average combined health
system prediction errors range from only 8.75% to 43.53%.

In addition, while Metro Health prediction interval coverage rates are relatively high,
reaching as high as 90.70%, predictions for the combined health systems are noticeably
more precise, with coverage rates falling no lower than 95.35%. In total, these observa-
tions point to not only the benefits of making both sets of predictions, but also of using
customized prediction interval definitions in cases where high precision is pertinent for
resource allocation.
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CHAPTER 5

Conclusions and Ongoing Investigations

5.1 Performance Conclusions

Based on the results presented in Chapter 4, we can determine that the U-M COVID-19
model is a reliable epidemiological tool in multiple contexts, from the national down to
the regional levels. Specifically, we find that at the national level, the model produces
high-accuracy case and death predictions with error rates < 46% up to four weeks ahead.
Similarly, in a high-noise state-level context, it produces case and death predictions with
heightened precision and error rates < 117% up to four weeks ahead. Finally, at the re-
gional health system level, the model produces individual hospital system census predic-
tions with average error rates < 84% and multi-hospital system census predictions with
average error rates < 44%.

While we observe relatively low prediction interval coverage rates for national-level
case and death predictions, with average rates as low as 33.72%, we find that the model
tends to produce higher-coverage prediction intervals when trained using high-noise datasets,
as in the case of United States versus Michigan case and death predictions. Based on this
accuracy-precision tradeoff between national and state predictions, the model has proven
adaptable to varying noise conditions, with interval coverage increasing in tandem with
decreasing prediction accuracy.

In addition, we find that the use of relatively large training datasets and the introduction
of custom prediction interval definitions can help the model achieve up to 60%-100% cov-
erage rates, as in the case of our system-level hospitalization predictions. While the custom
bounds for the combined system-level census predictions are broader than necessary, in
that they produce > 95% coverage, they are appropriate for high-risk situations in which
underallocation of resources like hospital beds can lead to life-threatening consequences.

From our observations of the model’s accuracy and precision, we conclude that the
model is a reliable tool for predicting pandemic trajectories in terms of cases, hospitaliza-
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tions, and deaths for virtually any region within the United States. The model’s adaptability
is a great asset, in that its accuracy-precision relationship varies based on the data used to
train it, and simple modifications can be implemented to create enhanced, target-specific
uncertainty computations.

5.2 Building Upon the Model

While the U-M COVID-19 model has proven to be a reliable stand-alone resource for
disease forecasting, it has also provided a foundation for the further involvement of machine
learning in epidemiological forecasting. With its flexibility with regard to inputs, the model
can be adjusted to make predictions for virtually any illness in any global region with
minimal tweaking of equation (2.9). For example, a potential future use for the model is
the creation of annual influenza epidemic predictions within a variety of countries.

In addition, the script used to generate the U-M COVID-19 model’s predictions can
support the use of any machine learning algorithm to make its predictions - not just ridge
regression. Thus, as of March 2021 we are actively investigating the effects of using neural
networks, rather than ridge regression, to generate predictions. A comparable investiga-
tion of any other algorithm simply requires that a user import their desired model package
in Python and replace any Ridge() or RidgeCV() instances with their preferred method.
Through comparisons of algorithms such as decision tree and lasso regressors, an optimal
trade-off between time efficiency and prediction accuracy can be determined for diverse
prediction contexts.

As it stands, the script can also be used to address fundamentally different questions
than we have previously explored. For example, continuing with COVID-19 forecasts,
can we train a single model to make predictions for any global region, rather than training
independent regressors for each location of interest? Or, can we create category-specific
regressors geared towards adjacent regions or locations with similar population characteris-
tics? By exploring categorical prediction schemes based on different shared characteristics,
underlying regional relationships can be exploited and used towards the creation of even
stronger predictions.

Entirely beyond COVID-19 forecasting, the model and its statistical methods can be
repurposed for studies in numerous other fields in which ridge regression has shown pre-
dictive promise. For example, as explored in [24], large-scale quantitative genetics analyses
can involve large enough sample sizes that ridge regression provides substantially higher
prediction accuracies than the classical approach. In an entirely different direction, the
American Psychological Association Dictionary of Psychology describes ridge regression
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as a method to determine whether certain independent variables can be removed from an
analysis [25]. Thus, by changing the inputs of the COVID-19 model to be independent vari-
ables in a psychological study, one can study the linear combination coefficients assigned
to each variable and eliminate those with near-0 coefficients.

By expanding upon the model’s foundations, future researchers in epidemiology, ge-
netics, psychology, and countless other fields will have the opportunity to create robust
prediction and analysis mechanisms tailored to the demands of their fields. Through this
repurposing and adaptation process, the U-M COVID-19 model and others like it have the
potential to contribute to the amplification of machine learning as a tool for mapping and
understanding even the most subtle trends in the systems around us.
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