Ice Ice Baby: Determining Optimum Cooling Parameters for Neonatal Asphyxia Hypothermia Therapy

Daniel Wieczorek

Capstone Advisor: Dr. Melissa Wrobel

Physiology behind Neonatal Asphyxia

- The issue: Neonatal Asphyxia is a leading cause of neonatal death in India
- The reason: Inadequate oxygenation during or shortly after birth
- The symptoms: Seizures, pale skin, \uparrow
 heart and respiratory rates, shock
- The treatment: Hypothermia therapy

WHAT IS BIRTH ASPHYXIA?

BIRTH ASPHYXIA:

- Oxygen deprivation in newborn infants
- Occurs during pregnancy, labor or delivery

Most common in preterm infants, birth asphyxia affects between

2 AND 10 OUT OF EVERY 1,000

term newborns.

1 IN 4 INFANT DEATHS

caused by birth asphyxia and resulting brain injuries

NAP's Problem & Need Statements

- Problem statement: Approximately 3.6 million neonates around the world are affected by asphyxia annually. In India, neonatal asphyxia is responsible for 25% of newborn deaths.
- Need statement: There is a need for a device to effectively mitigate the brain injury caused by neonatal asphyxia in low-resource communities.

Cooling requirements

- Must cool neonate to 33-34°C (306-307 K)
- Takes 60-120 minutes to cool the patient
- Must keep the neonate's body temperature steady at 33-34 °C for 72 hours unless manually adjusted

One of NAP's Current Solutions

Goals of this capstone project

- 1. Develop detailed model of neonate and tube bed prototype assembly
 - Model heat flow and temperature throughout infant's head
 - Model fluid flow throughout the tube bed apparatus
 - Couple heat flow and fluid flow
- 2. Optimize cooling parameters
 - Temperature applied to neonate for cooling
 - Radius of tubes in prototype assembly
 - Velocity of water flowing through tubes in prototype assembly

Individual heat flow simulation reveals 306-307K cannot be reached

Early attempts of fluid flow simulations led to simplification of model

Fluid flow simulations reveal stagnation points around curves of tube bed

Coupled heat and fluid flow simulation also reveals 306-307 K cannot be reached

Summary of takeaways, limitations, and next steps

- Takeaways: Tube bed cannot reach required cooling temperature based on this model
- Limitations of this model:
 Simplified assessment of body temperature, metabolic settings, and isothermal fluid flow
- Next steps: Use model to assess NAP's other prototype

NAP's other prototype: Waterbed

Acknowledgements

Special thank you to Dr. Wrobel, the Neonatal Asphyxia design team, and the Engineering Honors Program for supporting me in the completion of this capstone project

The End

Daniel Wieczorek Capstone Advisor: Dr. Melissa Wrobel

Pocket Slides

Fluid Flow Boundary and Initial Conditions

Equations and assumptions used in fluid flow simulation

$$Re = \frac{\rho vR}{\mu} = 606$$

$$\rho = Density of water = 1000 (kg \cdot m^{-3})$$

$$v = Maximum water velocity = 0.278 (m \cdot s^{-1})$$

$$R = Radius of tubing = 2.1825 cm$$

$$\mu = Dynamic viscosity of water = 0.001 (Pa \cdot s)$$

Used laminar flow module in COMSOL

Navier-Stokes Equations for Incompressible Newtonian Fluid:

Conservation of Momentum:

Conservation of Mass:

$$\nabla \cdot \vec{v} = 0$$
Mass
Accumulation
Term

Heat boundary and initial conditions play critical role in heat transfer simulations

Bioheat partial differential equation

Heat Transfer in Tissue


```
\rho = Density \ of \ tissue = 1100 \ (kg \cdot m^{-3})
C_p = Tissue \ heat \ capacitance = 4450 \ (J \cdot kg^{-1} \cdot K^{-1})
k = Tissue \ thermal \ conductivity = 0.53 \ (W \cdot m^{-1} \cdot K^{-1})
T = Temperature \ (K)
Q_s = Heat \ source \ within \ the \ medium = 0 \ (W \cdot m^{-3})
Q_p = Heat \ change \ due \ to \ blood \ perfusion = 0 \ (W \cdot m^{-3})
Q_m = Heat \ source \ due \ to \ metabolic \ activity = 10010 \ (W \cdot m^{-3})
```

Preliminary simulation of heat flow using sphere

Parametric sweeps at room temperature reveal that optimum metabolic setting is 10010 W/m³

