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Abstract 

 

In this thesis, we investigate the linear and nonlinear optical properties of strongly correlated 

materials and excitonic many-body interactions in quantum well systems. First, we present an 

extensive study on the linear and nonlinear optical properties of the type-II multiferroic candidate 

family, RbFe(AO4)2, A = (Mo, Se, S). We utilize the UV-VIS absorption spectroscopy to report an 

experimental estimate for the band gap energy and transition type of these materials. From the 

linear spectra, all three materials are predicted to have a direct band gap transition and we present 

evidence for a collection of optical transitions near the band edge, both at room and low 

temperatures. We also find evidence for the possibility of localized defects states at room 

temperature. Additionally, we use the nonlinear spectroscopic technique, rotational anisotropy 

second harmonic generation spectroscopy (RA SHG), to determine crystal symmetries and 

temperature dependencies in the materials. This technique can measure the electric dipole or 

electric quadrupole SHG response for different material orientations in a material. This RA SHG 

response can then be compared to that predicted for various crystal point groups to determine 

crystal symmetries. We use this technique to address discrepancies in reported point group 

assignments and identify a broad, temperature dependent phase transition in RbFe(SO4)2 centered 

near 190 K that can be described by broken inversion symmetry.  

Next, following past studies on RbFe(MoO4)2, we look at another material known to have 

ferro-rotational ordering, NiTiO3. Using our nonlinear optical techniques, RA SHG, we confirm 

the presence of relatively large ferro-rotational domain states and demonstrate the preservation of 
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high-temperature mirror symmetries at the domain wall. We present an analysis technique to 

simulate the RA SHG response of both domains for an arbitrarily cut crystal plane, which can be 

generalized for irregularly shaped crystals with a polished surface. We also use this analysis 

technique to show how to extract symmetry information about the domain boundary for future 

studies. 

Last, we turn to a time-resolved, third-order nonlinear spectroscopic technique called 

multidimensional coherent spectroscopy to investigate indirect exciton behavior in asymmetric 

InGaAs double quantum wells with varying barrier widths. This technique can measure the time-

resolved and phase information of macroscopic polarization decay processes as well as population 

dynamics. Using this technique, we find evidence that dephasing mechanisms in these materials 

come from anticorrelated or uncorrelated energy-level fluctuations. We also look at the relative 

many-body signatures inherent to these double quantum wells and compare them to that of a high-

quality single quantum well. 
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Chapter 1 Introduction 

Electronic interactions play a crucial role in determining the physical properties of materials. 

Among these interactions are Coulomb repulsion between electrons in strongly correlated electron 

systems and dipolar interactions between excitons in excitonic systems. This thesis focuses on one 

example system of the former, type-II multiferroics, and another common system for the latter, 

semiconductor quantum well devices.  

Ferroics contain a vast class of materials where the electric and magnetic order parameters 

are rarely coupled. When they do couple, magnetism and ferroelectricity can coexist in a ferroic 

material. These rare materials are called multiferroics and within in this group of materials, some 

can even have strong magnetoelectric coupling. These materials, deemed type-II multiferroics, are 

prime candidates for the creation of electronic devices in which magnetism is controlled through 

electric fields. Furthermore, the magnetoelectric coupling strength be interconnected to other 

interesting properties such as unusual domain structures and domain walls. In searching for these 

materials, determining crystal symmetries and variations in crystal symmetries across phase 

transitions is critical in providing understanding if a material has the potential to be a type-II 

multiferroic. Studying the polarization, temperature, and spatially dependence second-order 

polarization of a material has proven effective in distinguishing between point group symmetries 

and characterizing domains in ferro-rotational materials. Measuring the second harmonic 

generation can provide information on the symmetries of a material and identify the presence of 

some phase transitions that are difficult to distinguish with more commonly used techniques, such 
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as Laue X-ray diffraction. Additionally, measuring the polarization anisotropy in a crystal can be 

useful in identifying ferro-rotational domains and domain walls as well as extracting symmetry 

information and domain ratios.  

Type-II multiferroics make for promising future technologies, such as spintronic devices 

and electromagnetic switches. We can also look at systems that are even used in commercial 

devices today to investigate many-body phenomena. Quantum wells provide a controlled 

environment in which to study excitonic many-body effects, especially for materials that have 

advanced growth techniques that allow for the fine tuning of well width and any barriers between 

quantum wells. We can use a third-order nonlinear spectroscopic technique that provides time-

resolved and phase information about macroscopic polarization decay processes to better 

understand these many-body effects. By choosing InGaAs/GaAs-based quantum wells, we can 

also use this same technique look at coupling effects between direct and indirect excitons for 

varying barrier widths. Finally, we can use these clean quantum well environments to investigate 

many-body effects inherent to a single quantum well or an uncoupled double quantum well.  

 Throughout this thesis, we will expound upon the motivation for studying these various 

solid-state systems and details about experimentally implementing these various linear and 

nonlinear spectroscopic techniques. In Chapter 2, we discuss some of the fundamental properties 

of solid-state materials that is central to this work, such as symmetries and band structure. We also 

introduce the classes of materials we are interested in and provide context for why these materials 

are of interest. Two studies presented in this thesis are centered around searching and better 

understanding multiferroics and/or ferro-rotational materials, while the third focuses on excitonic 

interactions in semiconductor heterostructures. In Chapter 3, we present theory and mathematical 
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formalism for the spectroscopic techniques mentioned previously. We also provide details on how 

to experimentally implement these techniques.  

 Within the family of strongly correlated materials are multiferroics, which are 

characterized by the coexistence of magnetism and ferroelectricity. Multiferroics are an unusual 

type of ferroic, as ferroics rarely share electric and magnetic order parameters [1-4]. This unusual 

class of materials has created much interest as there is the possibility to develop devices in which 

magnetism is controlled through electric fields. Type-II multiferroics are an archetype that 

demonstrate unusually strong magnetoelectric coupling that arises from processes in which the 

magnetic order induces the electric order. One such type of material is RbFe(MoO4)2. Not only 

does this material have interesting magnetic properties at low temperatures but is proven to have 

a ferro-rotational ordered phase transition [5-11]. To aid in the search for type-II multiferroics, we 

look at materials with similar stacking structure characteristics as RbFe(MoO4)2, specifically 

RbFe(SeO4)2 and RbFe(SO4)2. In Chapter 4, we investigate this family of complex oxides, 

RbFe(AO4)2 (A = Mo, Se, S) using linear and nonlinear optical techniques to characterize the band 

gap, search for electronic transitions, and determine the crystal point group at room and low 

temperatures. In doing so, we provide an experimental estimate to the band gap energy and present 

the presence of several sub-gap electronic transitions in all three materials [12]. We investigate the 

potential origins of these electronic transitions by determining the presence of defects and by the 

nature of the band gap transition. Further, we provide a point group assignment for RbFe(SeO4)2 

and RbFe(SO4)2 at room temperature to aid in distinguishing between literature discrepancies [13-

16]. We also look into the low temperature crystal structure of RbFe(SO4)2 and discover a phase 

transition with an interesting spatial dependence.  
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 In Chapter 5, we investigate another strongly correlated material, NiTiO3. In its thin film 

form, NiTiO3 has been shown to be multiferroic [17]; and recently, relatively large ferro-rotational 

domains have  been imaged using the linear electrogyration effect [17,18]. We employ our 

nonlinear optical spectroscopy techniques to measure the RA SHG response of these ferro-

rotational domains. We also utilize the symmetry-sensitive characteristics of this technique to 

further report on the domain wall behavior. In this study, we also develop a method in which to 

determine the RA SHG response and to simulate these ferro-rotational domains in off-cut crystal 

planes.  

 Last, in Chapter 6, we change our focus to excitonic many-body interactions in solid-state 

quantum devices, specifically, in single and coupled asymmetric InGaAs double quantum wells. 

Advanced growth techniques allow us to investigate many-body interactions in a single, high 

quality InGaAs quantum well. Additionally, we can look at the coupling dependency between 

InGaAs double quantum wells by finely tuning the quantum well barrier width. By choosing 

InGaAs/GaAs over GaAs/AlGaAs as our well/barrier materials, we are also able to investigate 

exciton-exciton interactions in a system unperturbed by a second excitonic state and percolation 

effects. We find the presence of indirect exciton states in asymmetric InGaAs double quantum 

wells and determine the relation between the zero- and one-quantum coherence times using 

multidimensional coherent spectroscopy (MDCS). We also look at the many-body effects in a 

high-quality InGaAs single quantum well and compare these results to our double quantum wells. 

The success of many of these experiments was contingent on post-fabrication processes of 

irregular single crystals as well as the implementation of anti-reflectivity coatings for transmission-

based experiments. These details are provided in the Appendix. 
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Chapter 2 Background 

This chapter contains a brief overview of the key concepts for this thesis. First, we highlight the 

relevant crystal structure and band structure properties of solid-state materials such as crystal 

symmetries, exciton states, and spin-orbit coupling. Following this, we provide the history and 

current state of research into the ferro-rotational order in strongly correlated, type-II multiferroic 

systems. This includes a complex oxide of recent interest, RbFe(MoO4)2. Afterwards, we review 

more subtle properties that can arise from exciton states in commonly used direct band gap solid 

state systems, such as many-body effects in InGaAs quantum wells. 

 

2.1 Basics of Solid-state Materials 

In this section, we will briefly review the basic components of solid-state materials that 

are fundamental to this work: crystal structure symmetries and band structure. We will first start 

by discussing symmetry operations. From a mathematical standpoint, a symmetry operation must 

leave a system invariant [19]. In a physical system, this means an observable in said system 

remains unchanged after a transformation. To demonstrate this concept, we will start with a basic 

example of symmetries in a crystal structure. Since many of the crystal structures discussed in 

this work are trigonal, we present for our example a simple hexagonal structure composed of two 

distinct atoms, as shown in Figure 2-1 (a). The primitive vectors that lie in the (100) plane, 

𝒂1  =  𝑎�̂� and 𝒂2  =  
𝑎

2
𝒙 +

√3𝑎

2
�̂�, are shown, while the third, 𝒂3  =  𝑐�̂�, is normal to the page. In 

Figure 2-1(b) and (c), two symmetry operations are performed on the structure, a 120 ° rotation 
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and a mirror reflection across the horizontal. In both cases, since the hexagonal crystal lattice has 

𝐶3 rotational symmetry, the lattice maintains the same pattern as in Figure 2-1(a). Similarly, 

since the lattice has mirror symmetry along  𝒂1 (as well as at 60˚ and 120˚ from the horizonal), 

the symmetry of the lattice is preserved. We will find that many of the structures discussed in 

this work are far more complex than this generic hexagonal lattice, however, these symmetry 

operations are a common theme throughout. A full list of symmetry operations and their effect 

on the crystal structure can be found in Table 2-1. 

. 

 

 

Figure 2-1 (a) Generic hexagonal lattice with two distinct atoms (red and blue). 𝒂1 and 𝒂2 denote 

the primitive vectors of the lattice. The orange, green, and purple hexagons are shown for the 

purpose of tracking each symmetry operation. (b) The lattice after rotating 120˚. (c) The lattice 

after reflecting across the horizonal.  
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Two symmetry operations not depicted in Figure 2-1 (a) are spatial-inversion (SI) and 

time-reversal (TR) symmetry operations. Crystal structures that have spatial-inversion symmetry, 

or are centrosymmetric, can be inverted through their center. Such an operation is equivalent to a 

180° rotation about the vertical axis followed by a mirror reflection about the horizontal mirror 

plane such that coordinate components undergo the transformation (𝑥, 𝑦, 𝑧) → (−𝑥,−𝑦, −𝑧). 

Time-reversal symmetry is often mentioned in thermodynamics when discussing entropy. Entropy 

determines the direction of a process and whether it is irreversible (i.e. breaks time-reversal 

symmetry). Time-reversal symmetry is preserved when the entropy of a system is constant [20]. 

As we will find out in later sections, these two symmetry operations are crucial when classifying 

ferroic materials by their order parameter. For now, we will move on to another key component of 

solid-state systems, the band structure. 

 

Symbol Operation Operation Description 

I Identity/Unity Coordinate vector �⃑� → �⃑� 

𝐶𝑛 Rotation Rotation about an axis by 2𝜋 𝑛⁄  

𝜎𝑖𝑗 Mirror Reflection across the 𝑖𝑗 mirror plane, while the third 

coordinate component 𝑘 → −𝑘 

𝑆𝑛(𝑧′) = 𝜎𝑧′𝐶𝑛 Rotary Reflection Rotation about 𝑧′- axis by 2𝜋 𝑛⁄  followed by a mirror 

reflection perpendicular to 𝑧′- axis 

 Spatial-Inversion Coordinate vector �⃑� → −�⃑� 

 Time-Reversal For a transformation, 𝑡 → −𝑡 

 

Table 2-1 List of various symmetry operators and the corresponding transformation. 
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The electronic band structure describes the possible energy levels that electrons in a solid-

state system can occupy. These bands are determined by the solid-state system’s crystal lattice 

potential. While this is heavily material-dependent, we will briefly mention how one derives the 

band structure from a periodic lattice potential given by 𝑈0(𝑟). The electron wavefunction 

solutions, 𝜓λ(�⃑⃑�, 𝑟), where 𝑟 and �⃑⃑� are the position and crystal momentum, are given by solving 

�̂�𝜓λ(�⃑⃑�, 𝑟) = Eλ(�⃑⃑�)𝜓λ(�⃑⃑�, 𝑟), where �̂� is the Hamiltonian of the system and Eλ(�⃑⃑�) are eigenvalues. 

Since the lattice is periodic, translational symmetry must be obeyed such that 

 

𝑈0(𝑟) = 𝑈0(𝑟 + �⃑⃑�𝑛
0) 

 

where �⃑⃑�𝑛
0 is a lattice vector. Generally, the lattice vectors are given by �⃑⃑�𝑛 = ∑ 𝑛𝑖�⃑�𝑖𝑖  where 𝑛𝑖 is 

the number of unit cells apart and �⃑�𝑖 is a basis vector. As a result of the periodicity, the 

wavefunction solutions must satisfy Bloch’s theorem [21], 

 

𝜓λ(�⃑⃑�, 𝑟 + �⃑⃑�𝑛
0)  =  𝑒𝑖�⃑⃑�∙�⃑⃑�𝑛

0
𝜓λ(�⃑⃑�, 𝑟) 

 

which means that a translation of �⃑⃑�𝑛
0 can only result in a phase shift of 𝑒𝑖�⃑⃑�∙�⃑⃑�𝑛

0
. For a cubic crystal,   

 

𝜓λ(�⃑⃑�, 𝑟)  =  
𝑒𝑖�⃑⃑�∙𝑟

𝐿3/2
𝑢λ(�⃑⃑�, 𝑟) 

 

satisfies this theorem where 𝑢λ(�⃑⃑�, 𝑟) are Bloch functions with lattice periodicity and 𝐿 is the length 

of one side of the crystal. The eigenvalues or energy bands, Eλ(�⃑⃑�), are discretized because of the 

boundary condition restrictions on the wavefunction solutions. An example of the dispersion of 

such energy bands is shown in Figure 2-2. Because there is a plane-wave component to the Bloch 

functions, 𝑢λ(�⃑⃑�, 𝑟), we also note that the electronic states are delocalized. Additionally, these 
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emergent solution states, 𝜓λ(�⃑⃑�, 𝑟), describe electron interactions with the periodic lattice’s nuclei 

and thus are quasi-particle-like. These quasi-particles are referred to as “electrons”  [22].  

Focusing on the energy bands, Eλ(�⃑⃑�), we note that the functional form determines the band 

structure of the material. By filling up the electron states to the Fermi energy, 𝐸𝐹, we can determine 

the ground state of the material. The last fully filled band is the valence band and the first empty 

or partially filled band is the conduction band. The energy difference between the two is the band 

gap energy, 𝐸𝑔. Generally, Pauli blocking prevents electrons from moving in fully filled bands. 

Thus, materials where a band is only partially filled such as in Figure 2-1Figure 2-2 (a) allow for 

electrical conductivity. These materials are called conductors. In Figure 2-2 (b) and (c), we see an 

example of materials with fully filled bands (up to a certain level), which are called insulators. 

Insulators with band gap energies small enough that electrons can be easily excited into the 

conduction band are referred to as semiconductors (Figure 2-2 (b)). A common way to easily 

excite electrons into the conduction band is by introducing light, or photons, to the semiconductor 

material. In later sections, we will revisit these concepts and discuss other emergent quasi-particles 

that can arise from electron excitations.  
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Figure 2-2 Energy level diagram of a (a) conductor, (b) semiconductor, and (c) insulator. The 

black curves are a depiction of a typical band structure where CB is the conduction band and VB 

is the valence band. 𝐸𝐺  is the band gap energy, 𝐸𝐹 is the Fermi energy, and 𝛤 corresponds to the 

center of the Brillouin zone, or where the momentum is zero. The indices, n, represent each energy 

level. This figure was made using DFT data on GaAs from Ref. [16] and inspired by the content 

in [23]. 

 

There are many similarities between the formalism for quasi-particle electrons and the 

atomic orbital model. One similarity is that these quasi-particle electrons are fermions. Therefore, 

the concept of charge and spin holds true and with this, spin-orbit coupling. Spin-orbit coupling 

causes the splitting of degenerate energy states, just like in the atomic-picture. While the splitting 

only causes small corrections to the non-relativistic band structure, it can result in interesting 

material properties. Further, introducing spin can place symmetry requirements on the system, 

specifically time-reversal symmetry (e.g. Kramer’s degeneracy theorem). Some examples of 
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where this splitting is important are in multiferroics and III-V semiconductor systems like 

dimensionally-confined (110)-oriented GaAs quantum wells [24-26].    

 

2.2 Strongly Correlated Multiferroic Systems 

The band theory presented in section 2.1 is generally sufficient to describe the electronic 

structure in weakly correlated materials, such as silicon or aluminum [27,28]. However, in 

materials where there are strong electronic correlations, this band theory fails to predict or explain 

the electronic properties. The strength of these electronic correlations can be determined by the 

ratio of the electronic Coulomb repulsion to the effective kinetic energy. When this ratio is close 

to 1, a material can be classified as a strong correlated system  [29-33]. The field of strongly 

correlated systems is well established and covers a broad range of materials. One of the hallmarks 

for this field was the discovery of high-temperature superconductivity in copper-oxide based 

perovskites [34]. Other areas of this field have included studying phase transitions in transition 

metal oxides [35,36]. Strongly correlated electronic materials are known to have a rich variety of 

electronic phases and self-organization that derives from the interactions between the lattice, the 

electronic spins, as well as their charges and orbitals [37]. For this thesis, we are predominantly 

interested in strongly correlated materials with the potential to have strong magnetoelectric 

coupling or other interesting properties tied to their order parameters. For this, we turn to ferroic 

materials, a class of materials that can be defined by electric and magnetic order parameters 

[1,3,4,38]. From the Landau theory of phase transitions, we know that magnetism breaks time-

reversal symmetry and ferroelectricity, spatial-inversion symmetry [39,40]. Since magnetism and 

ferroelectricity break different symmetries, they are rarely coupled to one other. This means we 

need to find a subset of ferroics where magnetism and ferroelectricity coexist, which are called 
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multiferroics. More so, most multiferroics have weak magnetoelectric coupling since the magnetic 

and ferroelectric transitions do not emerge jointly. This means to find multiferroics with strong 

magnetoelectric coupling, we need to find materials where the magnetic order induces the electric 

order. 

One such subset of materials are type-II multiferroics. To understand type-II multiferroics, 

we first need to look at ferroic materials more generally. Encompassed in the “ferroic” family are 

ferro-magnetic, ferro-electric, ferro-toroidal, or ferro-rotational (a.k.a. ferro-axial) materials. 

Ferro-electric and ferro-magnetic materials are quite common and are defined by their order 

parameter, polarization (�⃑⃑�) and magnetization (�⃑⃑⃑�), respectively. Conversely, ferro-rotational 

materials and ferro-toroidal materials are less common and have more complicated order 

parameters. Possible order parameters for ferro-rotational and ferro-toroidal materials include 

𝑟 × �⃑⃑� and  𝑟 × �⃑⃑⃑�, respectively, where 𝑟 is the position of an individual moment [3,41]. A table of 

each ferroic category and its respective order parameter can be found in Figure 2-3.  

The order parameters of ferro-electric and ferro-magnetic materials are quite accessible as 

they couple to the two most common types of fields, electric (�⃑⃑�) and magnetic (�⃑⃑�) fields, 

respectively. Accessing the ferro-rotational and ferro-toroidal orders is much more difficult and 

therefore generally these materials are less understood. The ferro-toroidal order were recently 

detected using optical second harmonic generation (SHG) and the conjugate coupling field was 

found to be �⃑⃑� × �⃑⃑� [42]. Even more recently, in the complex oxide RbFe(MoO4)2, the ferro-

rotational order was detected also using optical SHG. A possible conjugate coupling field was 

derived to be a combination of the induced electric quadrupole (EQ) SHG and incident electric 

fields [5]. This unique complex oxide acts as a starting point for this work and will be discussed 
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in further detail later in this section. However, this does allow us to segue to our next discussion 

about a rich category of materials able to host these orders, multiferroics. 

 

 

Figure 2-3 Table of the four vector order parameters in ferroic materials, which are classified by 

their sign under time reversal and spatial inversion symmetry operations. This classification can 

be found in the bottom right-hand corner of each panel. Positive (+) and negative (-) correspond 

to even parity and odd parity, respectively. In the top left panel, the ferro-rotational, or ferro-axial, 

order breaks neither time reversal or spatial symmetry. 

 

 Studies into multiferroics started in the late 1950s when researchers tried to combine both 

ferroelectric and ferromagnetic ordering in a single material to create a medium in which to 
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efficiently control magnetism through electric fields [43]. Early on, perovskites were proposed as 

ferroelectric materials that could host a long-range ferromagnetic order. Materials that were first 

heavily investigated experimentally were boracites like Ni3B7O13I [44]. By using hysteretic 

switching of multiferroic domains in Ni3B7O13I, early researchers found a prominent linear 

magnetoelectric effect in this material. Afterwards, studies into these materials stagnated until the 

field was revitalized in the mid-1990s when the formalism for current day multiferroics was 

developed [25]. In the early 2000s, it was found that perovskites were not the ideal medium as the 

ferro-electric and ferro-magnetic orders obstruct one another in materials with displacive 

ferroelectricity where empty 3d shells are energetically favorable [45]. This realization prompted 

a search for materials without a perovskite structure that also had non-displacive ferroelectricity, 

which is compatible with the magnetic order. This resulted in the discovery of a host of multiferroic 

materials, such as hexagonal (h-) YMnO3, orthorhombic (o-) TbMnO3, TbMn2O5, and BiFeO3 [46-

48]. 

 

 

Figure 2-4 This figure is adapted from Ref. [25]. Shown is the domain structure in (a) type-I and 

(b) type-II multiferroics. (a) For type-I multiferroics, the domains can have different magnetic and 

electric order parameters such that the domain walls are either magnetic (blue) or electric (red). A 

multiferroic wall (orange) forms when the magnetic and electric order parameters are coupled 

between adjacent domains. (b) In type-II multiferroics, all domain walls are multiferroic as the 
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electric and magnetic order parameters are inherently coupled. Abbreviations: FE – ferroelectric, 

FM – ferromagnetic, M – magnetic order, P – ferroelectric order, MF – multiferroic. 

 

As more and more single-compound multiferroics were discovered, classification became 

more specific and the ferroic materials were broken down into two types. Type-I includes 

multiferroics where the magnetic and ferroelectric transitions do no emerge jointly; one example 

being BiFeO3 [49]. These multiferroics are more common and tend to have weak magnetoelectric 

coupling. Type-II multiferroics undergo processes in which the magnetic order induces the electric 

order or vise versa; one example being RbFe(MoO4)2. Type-II multiferroics are scarcer and tend 

to demonstrate strong magnetoelectric coupling. Because of their rarity and magnetoelectric 

coupling strength, the search for type-II multiferroics is currently ongoing and the motivation for 

much of this work.  

Inherently tied to the magnetoelectric coupling strength is the presence of domain 

structures and domain walls. Domains and domain walls are a critical area of interest as they are 

linked to the ability to control material properties (e.g. resistivity, coercivity, etc). In Figure 2-4, 

we share an image from Ref. [25] of domain structures in a type-I and type-II multiferroics and a 

description of the differences between types. Following from the previous discussion of the four 

types of order parameters, ferro-electric and ferro-magnetic domains are relatively simple to access 

as they couple directly to electric and magnetic fields, respectively. Initially, ferro-electric domains 

were imaged using linear optics and ferro-magnetic domains were determined using the Kerr 

effect. Since the coupling field for the ferro-rotational, or ferro-axial, order is more complex, 

imaging ferro-rotational domains also proves to be difficult. Only very recently has this been done 

using the linear electrogyration effect in NiTiO3 [18]. 
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Figure 2-5 Crystal structure of RbFe(MoO4)2 as viewed along the c-axis at temperatures above (a) 

and below (b) the critical temperature, 𝑇𝐶  ~ 190 𝐾. (a) Above 𝑇𝐶, RbFe(MoO4)2 belongs to the 

point group, 3̅𝑚. (b) Below 𝑇𝐶, RbFe(MoO4)2 transitions to the point group, 3̅. Two domains form, 

which are depicted by the left and right panels. For one domain, the FeO6 octahedra undergo a 

counterclockwise rotation (left) and for the other, a clockwise rotation (right). This figure is based 

on the DFT calculated structure in Ref. [16] and adapted from Ref. [5]. 

 

The type-II multiferroic, RbFe(MoO4)2, is another material that contains multiple ferro-

rotational domain states in a single crystal as determined by Jin, et al  [5]. For over a decade, the 
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ferro-rotational order has been predicted to be present in complex oxides with structural distortions 

caused by uniform oxygen cage rotations. However, this study was the first time the point group, 

distribution of domain states, and conjugate field of the long-range ordered state were determined 

experimentally. However, these domain states were found to be on the order of less than 1 𝜇𝑚, 

which is below the diffraction limit for optical imaging techniques. 

RbFe(MoO4)2 undergoes a ferro-rotational phase transition from 3̅𝑚 to 3̅ at critical 

temperature, 𝑇𝐶. The crystal structure of RbFe(MoO4)2 above and below the critical temperature 

is shown in Figure 2-5 Here we depict the two domain states that emerge in this material. One 

domain state follows from a counterclockwise rotation of the oxygen cages away from the mirror 

planes at 90°, 210°, and 330°, and the other from a clockwise rotation. Crystal symmetries are 

tracked with temperature by measuring the polarization dependence of the electric quadrupole 

contribution to the SHG response using a technique called rotational anisotropy (RA) SHG, which 

we will discuss in Chapter 3. From these measurements, the distribution of the domain states can 

be determined by finding the contribution of each domain state to the total SHG signal. This 

process is shown in Figure 2-6, where we share the RA SHG results from Ref. [5]. 
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Figure 2-6 This figure is borrowed from Ref. [5]. (a) The RA SHG response of RbFe(MoO4)2 as 

the sample is cooled below the transition temperature, 𝑇𝐶. (b) Breakdown of contributions of the 

counterclockwise and clockwise domains to the RA SHG response. (c) Comparison of the 

expected RA SHG patterns under point groups 3𝑚 and 3.  

 

The goals of this work are to search for additional type-II multiferroic candidates with 

interesting ferroic properties and to better understand ferro-rotational domain states. To find 

candidates, one approach is to replace the Mo site with other compounds, which we demonstrate 

in Chapter 4. To study domain states, we look towards measuring the spatial SHG response of 

promising candidates, such as NiTiO3, which we discuss in Chapter 5. Another aspect of this 

work is to determine the largely unreported linear optical properties of RbFe(MoO4)2, which could 

have implications for future applications of this material.  

 

2.3 Excitons, Defects, and Many-body Effects 

In section 2.1, we briefly discussed the formalism for electron quasiparticles and how that 

relates to the band structure of solid-state materials. Here we continue this discussion by 
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introducing another quasiparticle, excitons, as well as additional processes that can happen in 

semiconductors. These processes are largely related to the discussion of the multiferroic 

candidates, RbFe(AO4)2, A = (Mo, Se, S), in Chapter 4. and the study of III-IV semiconductor 

quantum wells in Chapter 6.   

First, we return to the depiction of a generic band structure of a semiconductor in Figure 

2-7 (a), which is carried over from Figure 2-2 (b). Here, we would like to point out that the 

minimum of the conduction band and the maximum of the valence band occur at the same 

momentum point, 𝛤, or where �⃑⃑�  =  0. This is called a direct band gap semiconductor. When the 

minimum and maximum of the conduction and valence band do not occur at the same momentum, 

this is called an indirect band gap semiconductor (see Figure 2-7 (b)). As mentioned earlier, the 

electrons in the system can be excited into the previously unoccupied conduction band by 

introducing light, with a photon energy of ℏ𝜔, into the system. As the electron is moved to the 

conduction band, another quasiparticle is formed in its absence called an electron hole, or hole for 

short. The momentum of light is negligible (relative to that of an electron or hole), so the transition 

from the valence band to the conduction band is direct such that the electron and hole have the 

same momentum. However, Coulomb interactions, 𝑉(�⃑⃑�, �⃑⃑�′), couple all the microscopic 

polarizations (depicted as a cartoon in Figure 2-7 (a)) together such that it shifts the electron-hole 

bands [23]. These bound electron-hole pairs are called excitons. 
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Figure 2-7 (a) Band structure diagram of the formation of exciton states in a direct band gap 

semiconductor material. The black curves represent the band structure, 𝐸𝐺  is the band gap energy, 

𝐸𝐹 is the Fermi energy, and 𝛤 corresponds to where the momentum is zero. In red are the electron 

(solid red) and hole (dashed circles) pairs. ℏ𝜔 corresponds to the excitation energy of the system 

and 𝑉(𝑘, 𝑘′) the Coulomb screening effect. (b) Depiction of an indirect band gap semiconductor. 

Additionally, energy levels of shallow defect traps or states are shown as well as band splitting 

(dashed lines) in the conduction and valence bands. Both these phenomena can also occur in a 

direct band gap semiconductor. (c) Exciton dispersion diagram where the momentum axis is that 

of the center of mass of the bound electron-hole pair. 𝐸𝐵 is the exciton binding energy, 1𝑠 
corresponds to the exciton ground state, and the lines above the 1𝑠 curve are additional energy 

levels. The grey region corresponds to the exciton continuum states.  

    

Because of the Coulomb interactions, the photon energy needed to create an exciton state 

is lower than the band gap energy of the material. To understand what these energies are, one can 

turn to the hydrogen atom. Excitons share a similar structure as the hydrogen atom, and therefore 

have hydrogen-like energy levels. Analogous to the atomic-model, excitons have a Rydberg, or 

“binding”, energy as well as a Bohr radius [50]. An example of an exciton dispersion diagram is 

presented in Figure 2-7 (c), where the energy and the center-of-mass momentum are now that of 

the exciton. The 1𝑠 curve corresponds to the first energy level. Just as in the atomic picture, 

eventually there is a region where the discrete energy levels become indistinguishable, denoted as 
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the continuum. The absorption of light is strongest at these hydrogenic resonances, starting with 

the 1𝑠 level, and weakest at the continuum where the absorption approaches a finite value [51]. 

Lastly, when the electron-hole pair recombines (i.e. the electron drops back down to the valence 

band), energy is released in the form of light (a process called photoluminescence) [52]. Examples 

of the spectral dependence of excitons in various materials will be shown in later chapters.  

 Prominent exciton states are a feature of direct band gap semiconductor due to the 

positioning of the valence and conduction bands (see Figure 2-7 (a)). Exciton states can exist in 

indirect band gap materials; however, for the electron to reach the minima of the conduction band, 

an additional process is necessary. One example is a phonon-assisted optical transition, where the 

electron receives the necessary momentum from a phonon. However, (bound) exciton states do 

not typically form in these systems.  

 Defect states can also affect accessible electron energy levels and therefore affect the 

spectral properties of a material. An example of shallow defect trap states is shown in Figure 2-7 

(b) where we can see that the energy levels of these trap states lie in-between the conduction and 

valence band [53]. A defective site in a periodic crystal lattice can the lower potential and therefore 

“trap” electrons when the material absorbs light. Point defects are common in crystals as removing 

impurities during growth processes can be difficult. There are many other types of defects that can 

affect optical properties as well, some of which are characterized by large structural deformations 

or dislocations.   

The presence of band splitting due to spin-orbit coupling, as discussed in section 2.1, can 

also add some interesting spectral features to materials. An example of how split bands might 

affect a band structure is shown in Figure 2-7 (b), where the dashed and solid lines are both 

electron energy bands. A common example is in dimensionally confined GaAs-based quantum 
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wells, where valence band splitting leads to the possibility of a light hole and a heavy hole. The 

effective mass of the holes is slightly different and can be found from the concavity of the bands, 

thus the designation. As there are two holes, two exciton states with very similar energies are easily 

created in this material.  

 

Figure 2-8 Cartoon depiction of exciton (𝑋), trion (𝑋𝑇), and biexciton (𝑋𝑋) states and potential 

interaction combinations between them. 𝑒− and ℎ+ correspond to electrons and holes, respectively. 

 

The presence of this light and heavy hole can make studying fundamental phenomena in a 

seemingly simple system quite difficult [54-57]. Many-body effects cover a wide designation of 

dynamics in semiconductor systems. One example comes from exciton-exciton interactions, and a 

depiction of the various types of combinations can be found in Figure 2-8. Other higher order 

processes include trions and biexcitons, which in the atomic-picture are analogous to the hydride 

(H-) and hydrogen molecules (H2), respectively. 
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Figure 2-9 Energy diagrams and 3D images of single and double quantum wells. (a) Single 

quantum well energy diagram. (b) Corresponding 3D image of the layered materials that represent 

the walls and well. The bottom image includes an exaggerated depiction of how monolayer 

fluctuations in these systems can trap excitons such that there are localized exciton states with 

varying energies. (c) Energy diagram of asymmetric double quantum wells. The solid lines show 

the direct excitons in the left and right wells. The dashed lines show how the electron in the left 

well will couple with the heavy hole in the right as the barrier width is reduced. (d) Corresponding 

3D image of the layered materials.  

 

The presence of two types of possible exciton states makes it difficult to determine what 

processes are occurring in these systems as there can also be interactions. In Chapter 3, we will 

discuss a technique that will allow us to separately study these processes. We also find that the 
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quality of these quantum wells plays a large effect in the optical properties as monolayer 

fluctuations can lead to localized exciton states. Such effects can lead to inhomogeneous spectral 

broadening, which are also discussed in Chapter 3. A diagram of this effect can be seen in Figure 

2-9 (b). In total, this is to promote the reason for our study into InGaAs-based quantum wells in 

Chapter 6. GaAs/AlGaAs quantum wells, due to the presence of heavy and light holes, have 

numerous excitonic transitions making it difficult to parse out the origins of coupling mechanisms 

[58]. We remove this issue in InGaAs/GaAs quantum wells as the light holes are not confined to 

the quantum well and therefore it is not possible for carrier percolation through any quantum well 

barriers [59-61]. This makes InGaAs-based quantum wells well suited to studying many-body 

phenomena, such as inter-well coupling, which occurs when the barrier between two quantum 

wells depicted in Figure 2-9 (c)-(d) is sufficiently small [62].  

 

2.4 Summary 

In this chapter, we have touched on concepts relevant to this work. This includes the basics 

of crystal symmetries and band structure, as well as the four types of order parameters in ferroic 

materials, multiferroics, domains, and domain walls that are relevant for the materials in Chapter 

4-5. We also discuss excitons, defect trap states, and many-body excitonic effects that can arise 

from various phenomena that is discussed in Chapter 4 and most relevant to the study in Chapter 

6. In each chapter, we will further elaborate on these topics as they relate to our findings. In the 

next chapter, we discuss spectroscopic techniques that allows us to characterize these various 

phenomena. 
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Chapter 3 Linear and Nonlinear Spectroscopy Techniques 

In Chapter 2, we discussed some of the mechanisms that will be of relevance to the solid-state 

materials studied in this thesis. This chapter will focus on the optical techniques that will allow us 

to observe these mechanisms. The first techniques are linear absorption and photoluminescence 

spectroscopy. These techniques will be used to determine the presence of optical transitions 

between electronic states and to extract information about mostly direct, sometimes indirect, band 

gaps in various materials. The second technique is a second-order nonlinear spectroscopic 

technique called RA SHG. This technique will be used to determine crystal symmetries in complex 

oxides. We will also show how to extend this concept to be able to spatially image the SHG 

response of various samples. The third technique is a third-order, time-resolved nonlinear 

spectroscopic technique called multidimensional coherent spectroscopy (MDCS). This technique 

will be used to look at excitonic many-body effects in III-V semiconductor quantum wells. 

 To elaborate on what we mean by second- and third- order, we demonstrate the formalism 

behind all these techniques. Following from our discussion in Chapter 2, light excitations can 

induce a polarization in any polarizable material. This material polarization can be represented by 

the perturbative Taylor-expansion, 

 

�⃑⃑�(ω, t) = ϵ0(χ
(1)�⃑⃑�(ω, t) + χ(2)�⃑⃑�(ω, t)2 + χ(3)�⃑⃑�(ω, t)3 +⋯)   (3-1) 

 

where �⃑⃑�(𝜔) is the material polarization, �⃑⃑�(ω) is the electric field of the light source, ϵ0 is the 

vacuum permittivity, and the material-dependence 𝜒(𝑛) is a (𝑛 + 1)-th rank tensor and called the 
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𝑛-th order susceptibility tensor. This susceptibility tensor contains information about a material’s 

polarization dependence, including crystal symmetries and optical response strengths. Each one of 

our optical techniques aims to measure the first three terms of the polarization expansion 

independently. 

 

3.1 Linear Spectroscopy 

In this section, we start with the linear regime. We will use these concepts later when 

examining absorption and photoluminescence (PL) spectra as well as ellipsometry measurements. 

For low-intensity light, many higher-order effects are too weak to detect. This can be used to our 

advantage as we can then approximate the polarization as �⃑⃑�(ω) ~ ϵ0χ
(1)�⃑⃑�(ω). We can model the 

linear absorption of a material by recognizing that the material polarization results from oscillating 

charges in the system. In other words, we can use the Lorentz, or dampened driven, oscillator 

model [63]. The excitation electric field can be represented by a sinusoid with a frequency, 𝜔, and 

a fixed polarization, �⃑⃑�0, such that the total electric field is �⃑⃑�(𝑡) = �⃑⃑�0𝑒
−𝑖ω𝑡. The polarization can 

then also be expressed as a sinusoid, or �⃑⃑�(ω, 𝑡) = �̃�(ω)𝑒−𝑖ω𝑡, where �̃�(ω) is the fixed polarization 

that has a phase dependent on ω. The damping rate, 𝛾, comes from scattering and emission 

processes and our natural oscillation frequency, ω0, comes from the oscillator binding energy. 

Solving the Lorenz system for �̃�(ω) results in the expression  
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�̃�(ω) =
𝑁𝑞2/𝑚𝑒

ω0
2−ω2−𝑖γω

�⃑⃑�0     (3-2) 

 

where 𝑚𝑒 is the effective mass of the oscillator and 𝑁𝑞 is the amplitude of the frequency-

independent polarization of the material in terms of the density, 𝑁, and oscillator charge, 𝑞. This 

can then be rewritten such that there is a real and an imaginary component: 

 

      �̃�(ω) =
𝑁𝑞2

𝑚𝑒
(

ω0
2−ω2

(ω0
2−ω2)

2
+(γω)2

+ 𝑖 
𝛾𝜔

(ω0
2−ω2)

2
+(γω)2

) �⃑⃑�0   (3-3) 

 

which is often simplified to 𝑃(𝜔) = 𝜖0[𝜒
,(𝜔) + 𝑖𝜒,,(𝜔)]𝐸(𝜔). The real part corresponds to the 

materials refraction and the imaginary part, or the absorption. These are related to the material’s 

complex refractive index by �̃�  =  𝑛 +  𝑖 𝜅 = ±√1 + χ,(ω) + 𝑖χ,,(ω), where 𝑛 is called the 

refractive index and κ is the extinction or attenuation coefficient.  

  To find the absorption, 𝛼, as light passes through a material, we can turn to Beer’s law. 

For a wave propagating through a material along wavevector, �⃑⃑�, we can express the electric field 

in terms of the complex refractive index,  

 

�⃑⃑�(𝑧) = �⃑⃑�0𝑒
𝑖
𝜔

𝑐
(𝑛+𝑖κ)𝑧 = �⃑⃑�0𝑒

−
𝜔

𝑐
κ𝑧𝑒𝑖

𝜔

𝑐
𝑛𝑧

    (3-4) 

 

Beer’s law comes from solving 𝑑𝐼 = −α𝐼(𝑧)𝑑𝑧, which gives us 𝐼(𝑧) = 𝐼(0)𝑒−𝛼𝑧. A comparison 

of the two gives us an expression for the absorption in terms of the extinction coefficient: 𝛼 =
2𝜔𝜅

𝑐
.  
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Figure 3-1 Depiction of an inhomogeneous broadening. For the inhomogeneous case, there are 

numerous single emitters with Lorentzian distributions (red to violet) whose overall distribution 

forms a Gaussian distribution (black curve).  For a purely homogenous distribution, we expect the 

entire distribution to be Lorentzian.  

 

  It should be noted that this model assumes a monochromatic oscillator. In solid-state 

systems, often we must consider the possibility of numerous emitters with slightly varying 

frequencies. This effect is known as inhomogeneous broadening. Typically for cases of 

inhomogeneous broadening, we end up with a normal distribution of single, Lorentzian emitters. 

A depiction of this effect is shown in Figure 3-1. Unfortunately, we cannot detangle the true 

linewidth of the emitters with a Lorentzian from the rest using linear optics. We will find later, 

however, that there is a means of doing so with nonlinear spectroscopic techniques. Before 

discussing the formalism for nonlinear spectroscopy, we first review how one might implement 

these linear spectroscopic techniques. 
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3.1.1 Absorption Spectroscopy 

Later we will use absorption spectroscopy to look for electronic transitions and to estimate 

the band gap energies of various material. The section demonstrates how one might measure the 

phenomena discussed in Chapter 2.3, where electrons are excited into the conduction band or 

other electronic state.  To determine the true absorption of material, we need a means of also 

measuring the reflected light off a material. Typically, ellipsometry is employed to determine the 

refractive index and extinction coefficient, which can then be used to find the absorption 

coefficient. This technique uses elliptically polarized incident white light at various incident angles 

and measures the reflected light and phase characteristics. By measuring the phase characteristics, 

we can bypass the need to measure the transmittance. This information is then used to solve the 

Fresnel equations (typically using commercially available software), which can then be used to 

model the complex refractive index.  

Photoluminescence excitation (PLE) is also a useful technique for materials with low 

absorption levels, though this technique has a much more limited bandwidth. Many of our 

absorption measurements need to be done at low temperatures and with a broadband light source, 

and our cryostat geometry and low reflectivity levels from many of our samples makes measuring 

the reflected light challenging. Therefore, we choose to measure the absorbance of our materials 

using a broad white light source. The absorbance of a material can easily be determined through 

transmission-based measurements. A typical experimental diagram can be seen in Figure 3-2. The 

absorption is proportional to the absorbance divided by the sample thickness, 𝛼 ∝  𝐴/𝑑. 

Meanwhile, the penetration depth is related to the absorption by 𝛿 =  1/𝛼. The true absorption 

can be found from the transmittance, 𝑇, and reflectance, 𝑅, using the relation 𝛼 =

 
1

𝑑
 𝑙𝑛 [

(1−𝑅)2+[(1−𝑅)4+4𝑅2𝑇2]
1/2

2𝑇
] [64] 
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Figure 3-2 Depiction of a UV-VIS absorbance experimental set-up. Experimental parameters are 

given in the text. The spectrum shown is that of RbFe(MoO4)2 at 5 K and is discussed later in 

Chapter 4. 

 

For our transmission-based near ultra-violet (NUV) – visible (VIS) absorption 

spectroscopy, we used an Ocean Optics DH-2000 deuterium/halogen lamp with a wavelength 

range of 190 – 2500 nm (0.5 – 6.5 eV). The lamp had a multimode fiber-coupled power output of 

217 µW and the spectrum was filtered to 350-600 nm (2.07 – 3.54 eV) to suppress any 

deuterium/halogen lines that prevented us from detecting low absorption levels. For our detection, 

we used an Ocean Optics Flame-S UV-VIS spectrometer with a detection range of 200 – 800 nm 

(1.55 – 6.20 eV) and blaze wavelength, or wavelength where the grating is most efficient, near 400 

nm (3.1 eV). As some of our samples were less than 250 µm across, we used a beam expander to 

optimize the incident light. A pinhole was incorporated to improve collimation and achromatic 

doublets were used to reduce spherical aberrations. The spot size of the light source at the sample 

site was measured on a charge-coupled device (CCD) to have a full-width half max (FWHM) of 

150 µm. 

 

 

 

 



 35 

3.1.2 Photoluminescence Spectroscopy 

PL is briefly discussed later in this work as it is a precursor to our MDCS measurements. 

This section demonstrates how one might measure the phenomena discussed in Chapter 2.3, 

where electron-hole recombination generates light. For the NUV-VIS PL measurements in 

Chapter 6, a set-up like the one in Figure 3-2 was used. For NUV-VIS PL measurements, we use 

a tunable, mode-locked Titanium: Sapphire (Ti:Sapph) laser with a 76 MHz repetition rate with a 

max output power of 300 mW. The output was frequency doubled using a 0.5 mm thick β-Barium 

Borate (BBO) nonlinear crystal from Eskma Optics with a cut angle of 29.2° and anti-reflectivity 

(AR) coatings at 400 nm and 800 nm. A telescope was chosen such that the estimated spot size 

and Rayleigh range at the BBO were ~10 µm (FWHM) and ~0.2 mm, respectively. The tunable 

frequency-doubled light wavelength range was between 370 – 450 nm and typical output powers 

ranged between 3 – 15 mW. A 50:50 beam splitter (BS) was used to direct the collected PL signal 

in the reflected direction of the laser to the spectrometer and a 409 nm long pass filter (LPF) from 

Semrock (FF02-409/LP-25) with an OD > 10 between 352 – 402 nm was used to filter out the 

laser light at the spectrometer. The spot size at the sample size is estimated to be ~50 µm (FWHM). 
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Figure 3-3 Cartoon depiction of a NUV-VIS PL experimental set-up. The experimental parameters 

are given in the text. The spectrum shown is that of InGaN multiple quantum wells at 5 K and is 

discussed in Chapter 6. 

 

3.2 Second-order Nonlinear Spectroscopy 

The next component in our Taylor-expansion is the second-order nonlinear polarization, 

which we express as �̃�(2)(ω, t)  ≈  ϵ0 χ
(2)�⃑⃑�(ω, t)2. Similar to before, the electric field of a laser 

beam can be written as �̃�(𝜔, 𝑡) = �⃑⃑�𝑒−𝑖𝜔𝑡 + �⃑⃑�∗𝑒𝑖𝜔𝑡. Substituting this into our expression, we can 

see that the second-order polarization has both a zero frequency (DC) term and a contribution 

dependent of 2𝜔.  

 

�̃�(2)(𝜔, 𝑡)  ≈  2𝜖0 𝜒
(2)�⃑⃑��⃑⃑�∗ + (𝜖0𝜒

(2)�⃑⃑�2𝑒−𝑖2𝜔𝑡 + 𝑐. 𝑐)   (3-5) 

 

The first term leads to the presence of a static electric field across the crystal. The second term, 

however, can lead to the generation of radiation that occurs at twice the frequency as the original 

electric field, a process called SHG [65].  
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Figure 3-4 Diagram of second-harmonic generation. 𝜔 is the fundamental light frequency and 

𝜒(2) is the second-order susceptibility tensor. 

 

This process is heavily material dependent as χ(2) is the governing factor in how efficient 

this process is. The efficiency is also dependent on the phase-matching type and crystal orientation 

(or crystal cut). The length of the crystal also matters as longer crystals have higher conversion 

efficiencies [66]. However, the pulse duration will increase with length, which is undesirable for 

ultrafast measurements. Some materials such as BBO, which has a large nonlinear optical 

coefficient (related to the size of the elements of χ(2)), are very efficient at second-harmonic 

generation. In fact, in the photoluminescence spectroscopy experiment (Figure 3-3), we use a 

BBO crystal to generate a NUV light source. For materials with central inversion symmetry, χ(2) 

vanishes. Because of this, generally we consider there to be no second-harmonic generation in 

centrosymmetric media. In later chapters, we will discuss centrosymmetric crystals with weak 

second-harmonic generation that is dependent on third-order nonlinear optical interactions 

described by  χ(3), which is non-zero for both centrosymmetric and non-centrosymmetric media. 

To learn more about a crystals’ optical properites, it is in our best interest to isolate this 2𝜔 

term. Both χ(2) and χ(3) can produce additional insight into the optical and symmetry properties of 

a material as they are higher-rank tensors than χ(1). Some crystal families share the same form of 
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χ(1), but not χ(2) and χ(3). For example, the tetragonal and hexagonal crystal structures have 

indistinguishable symmetry properties using linear optics, but can easily be classified using 

nonlinear optics using their differing χ(2) and χ(3). Beyond this, each crystal family can then be 

broken down by point/space groups, all with different symmetries that determine the form of χ(2) 

and χ(3). In Chapter 4-5, we will use these symmetries to calculate the form of χ(2) and χ(3) for 

the trigonal crystal family. More discussion can also be found in Appendix A. For further 

discussion on this and about crystal families, information can be found in Ref. [65]. 

 

3.2.1 Rotational Anisotropy Second Harmonic Generation (RA SHG) 

Since the polarization of a material is frequency dependent, one way to measure the second-

order nonlinear polarization is by selecting the contributions dependent on 2𝜔 and rejecting 

contributions at the fundamental wavelength, 𝜔. However, in order to better understand the 

susceptibility tensor properties in a material, we need to apply more tricks. As discussed, when 

non-zero, χ(2) often has a unique polarization dependence for different crystal classes, unlike χ(1). 

This means we can also use the incident polarization as an experimental parameter. We can also 

select which outgoing polarization to detect by using an analyzer (polarizer at the detector). In 

combination, we can map out the second-order polarization dependence of our media. This 

technique is call RA SHG and a diagram of this polarization configuration is presented in Figure 

3-5. 
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Figure 3-5 This figure is borrowed from Ref. [5]. Diagram of RA SHG experiment at the sample 

surface. The xyz-coordinate system relates to the laboratory frame while the crystal axes are given 

by abc. The incident angle of the fundamental light is given by 𝜃 and is defined relative to the the 

𝑧 ∥  𝑐 axis. The azimuthal angle between the sample ab-plane and scattering plane is given by 𝜙. 

𝑆𝑖𝑛/𝑜𝑢𝑡 and 𝑃𝑖𝑛/𝑜𝑢𝑡 describe different polarization channels, which are discussed throughout this 

chapter. 

 

 

RA SHG spectroscopy measures the SHG signal intensity, 𝐼𝑆𝑖𝑛−𝑆𝑜𝑢𝑡
2𝜔 (𝜙). 𝑆 represents 

linearly polarized light normal to the light scattering plane and 𝑃 is parallel. The polarization 𝑆𝑖𝑛 

can be substituted by 𝑃𝑖𝑛 or the reflected polarization 𝑆𝑜𝑢𝑡 with 𝑃𝑜𝑢𝑡. This means there are four 

possible channels based on the pair combinations of 𝑆𝑖𝑛 and 𝑃𝑖𝑛 with 𝑆𝑜𝑢𝑡 and 𝑃𝑜𝑢𝑡. In Figure 3-5, 

The angle 𝜙 is the azimuthal angle between the light scattering plane and the in-plane crystal axis, 

and the angle 𝜃 is the angle of incidence. At normal incidence, only tensor elements without an 

out-of-plane c-axis component are probed, which reduces the number of polarization channels to 

two, which we refer to as parallel and crossed. At normal incidence, the parallel channels 𝑆𝑖𝑛 −



 40 

 𝑆𝑜𝑢𝑡 and 𝑃𝑖𝑛 − 𝑃𝑜𝑢𝑡 are 𝜋 2⁄  out-of-phase (as with the crossed channels, 𝑆𝑖𝑛 − 𝑃𝑜𝑢𝑡  and 𝑃𝑖𝑛 −

𝑆𝑜𝑢𝑡).  

 For our light source, we use a noncollinear optical parametric amplifier (NOPA) VIS-NIR 

system with a pulsed, 7.5 W pump laser at 1037 nm. The operating principle behind the NOPA is 

that the pump source is split and one branch is used for white light generation while the other is 

frequency doubled. Later, through sum-frequency generation between the frequency-doubled 

pump and an isolated wavelength from the white light continuum, our desired signal is produced 

along with an idler signal. The signal is then sent through a pulse compressor. The resulting pulse 

duration is ~40-70 fs with a 200 kHz repetition rate. For our RA SHG measurements, we usually 

select 800 nm for our signal. The system can generate light with wavelengths between 650 – 900 

nm or from 1200 – 2500 nm (idler). 

For our detection system, we use a single-photon sensitive Andor iXon Ultra 897 electron 

multiplying (EM) CCD camera. Before the camera, a set of optical elements are used to suppress 

light at the fundamental wavelength (800 nm) by an effective optical density (OD) of ~ 20. These 

optical elements include two dichroic mirrors (OD 1.6 at 800 nm), two short pass filters (OD 6.5 

at 800 nm), and a bandpass filter centered at 400 nm with a FWHM of 40 nm (OD 5.5 at 800 nm). 

We will demonstrate in Chapter 4 why single-photon sensitivity is necessary. In brief, 

centrosymmetric media can have SHG, however, as it is reliant on the electric quadrupole moment, 

the signal is incredibly weak. 
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Figure 3-6 Diagram of RA SHG experimental set-up. More information on the optical components 

and light source can be found throughout this chapter.  

 

 Other important experimental features include a half-wave plate (HWP), which is used to 

set the incident polarization and an analyzer before the EMCCD to select the detection 

polarization. During the experiment, these are rotated together in such a way that is equivalent to 

rotating the sample one full rotation. For oblique incidence, a diffraction grating is placed at the 

center of a telescope, and one arm of the first-order mode is selected while the reciprocal-, zeroth-

, and higher-order modes are blocked. An achromatic doublet is used to reduce spherical 

aberrations; for two sets of lenses, the spot size at the sample is ~20 and ~50 µm. Pellicle beam 

splitters can be inserted into the beam path to perform white-light imaging on the sample. The 

CCD for the white light imaging is aligned to the optical table using both first-order modes from 

the diffraction grating, which are aligned to the optical table horizontal. A diagram of the 

experimental set-up is presented in Figure 3-6 and additional information on this set-up can be 

found in Ref. [5,12,67-69]. 
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3.2.2 Scanning SHG 

As we will see in Chapter 4-5, it is advantageous to spatially map out the SHG response 

on a crystal face and to improve our resolution. By swapping our achromatic doublet with an 

objective and increasing the size of our incident beam, we can gain resolution near the diffraction 

limit. Our final spot size is typically ~ 1-2 µm. However, this does remove the option to perform 

oblique measurements. To obtain raster scanning capabilities without the use of bulky or costly 

sample stages, we use a galvanometer mirror pair to give us the ability to translate the beam spot 

along the sample surface. We correct the beam pointing so that the light remains normal to the 

sample surface using a pair of relay lenses as shown in Figure 3-7. To improve our detection 

speed, we replace our EMCCD with a photomultiplier tube (PMT) detector (Hamamatsu H10720-

210). The signal from the PMT is enhanced using a preamplifier and sent to a lock-in amplifier 

(Zurich Instruments MFLI 500 kHz). The PMT sensitivity is optimized to 400 nm and the 200 kHz 

laser rep rate is used as the lock-in frequency. The detection is slightly less sensitive than the set-

up in the previous section, predominantly because we lose the option to increase the acquisition 

time for weak signals. However, between the use of a preamplifier and other techniques that we 

will see in Chapter 4, there are ways to bypass this issue. To improve the quality of our images, 

a pinhole before the PMT is used to block unfocused light such that our set-up acts as a confocal 

microscope. When using this technique for lower signal levels, the pinhole is removed for 

increased sensitivity. Otherwise, the experimental set-up is the same as before. A similar set of 

optical elements is used to suppress the fundamental light and a HWP and polarizer can be added 

to maintain the ability to take RA SHG measurements at normal incidence. additional information 

on this set-up can be found in Ref. [12,69].  
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Figure 3-7 Diagram of SHG scanning experimental set-up. More information on the optical 

components and light source can be found in the text. 

 

3.2.3 Simulating RA SHG response for trigonal point groups 

In this work, all the materials we study using RA SHG methodology, specifically the 

RbFe(AO4)2 (A = Mo, Se, S) family and NiTiO3, are known have trigonal crystal systems [5,9,13-

16,70-72]. Here we will show how to simulate the RA SHG response for each trigonal point group 

that we can later refer to. Many of these simulations follow from the analysis in Ref [5,69], but are 

listed here for completeness. We will find later in Chapter 5 that we will also need these 

calculations for a material with an arbitrary polished surface. In Appendix A, we show how to do 
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these calculations using the matrix form susceptibility tensor. It is relatively straight forward to 

extend this process to other crystal systems using known symmetry operations.  

 

The trigonal crystal system class includes three non-centrosymmetric point groups, 3 (𝐶3), 

32 (𝐷3), and 3𝑚 (𝐶3𝑉) and two centrosymmetric point groups, 3̅𝑚 (𝐷3𝑑) and 3̅ (𝑆6). Within each 

point group, there are various space groups. However, we cannot distinguish between space groups 

using our nonlinear optical techniques and so they are only relevant in this work when determining 

the symmorphic point group. In  

Table 3-1, we list the various symmetries belonging to each point group. These symmetries 

relate back to our earlier discussion in Chapter 2, where we show the various symmetry operations 

in Table 2-1. 

 

Point Group Symmetries 

3 (𝐶3) One 𝐶3 and one 𝐶3
2 rotation 

32 (𝐷3) Two 𝐶3 and three 𝐶2′ rotations 

3𝑚 (𝐶3𝑉) Two 𝐶3 rotations; three σ𝑉 reflections 

3̅ (𝑆6) Inversion symmetry; one 𝐶3, one 𝐶3
2, one 𝑆6, and one 𝑆6

5 rotation 

3̅𝑚 (𝐷3𝑑) Inversion symmetry; two 𝐶3, three 𝐶2′, and two 𝑆6 rotations; three 𝜎𝑑 

reflections 

 

Table 3-1 List of symmetries associated with each trigonal point group.  

 

Starting with the centrosymmetric point groups, we can estimate the second-order 

polarization using the electric dipole (ED) second-order susceptibility tensor, 𝜒𝑖𝑗𝑘
𝐸𝐷. As previously 
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discussed at the beginning of section 3.2, from Eq. (3-5), the second-order polarization can be 

estimated as  

 

𝑃𝑖
𝑒𝑓𝑓(2𝜔) = 𝜒𝑖𝑗𝑘

𝐸𝐷𝐸𝑗(𝜔)𝐸𝑘(𝜔)     (3-6) 

 

Where the electric fields 𝐸𝑗(ω) and 𝐸𝑘(ω) correspond to the incident light. This then relates to the 

SHG intensity, which we are ultimately measuring, by the relationship 

 

𝐼2𝜔(𝜙) = |𝐴𝑒�̂�(2𝜔)𝜒𝑖𝑗𝑘
𝐸𝐷(𝜙)𝑒�̂�(𝜔)𝑒�̂�(𝜔)|

2
𝐼𝜔𝐼𝜔   (3-7) 

 

where 𝐼𝜔 is the intensity of the incident beam, 𝐴 is a constant determined by experimental 

geometry, 𝜒𝑖𝑗𝑘
𝐸𝐷 is the bulk ED susceptibility tensor, and �̂�𝑖 is the polarization of the incoming 

fundamental beam or outgoing SHG. As mentioned earlier, the rotation angle 𝜙 correlates to 

rotating the sample perpendicular to the scattering plane at normal incidence. 

So far, we have imposed no restrictions based on our experiment or the point groups of 

interest. We can narrow down tensor elements by employing experimental symmetries as well. 

Since our two electric fields (laser pulses) reach our sample simultaneously, we cannot distinguish 

between 𝐸𝑗(ω) and 𝐸𝑘(ω). Additionally, from our experimental geometry, we are unable to 

distinguish between 𝜒𝑖𝑗𝑘
𝐸𝐷and  𝜒𝑖𝑘𝑗

𝐸𝐷. This means, we can claim 𝑗 and 𝑘 are interchangeable. 

Furthermore, we can select our various channels, 𝑆𝑖𝑛 − 𝑆𝑜𝑢𝑡, 𝑆𝑖𝑛 − 𝑃𝑜𝑢𝑡, 𝑃𝑖𝑛 − 𝑆𝑜𝑢𝑡, and 𝑃𝑖𝑛 −

𝑃𝑜𝑢𝑡. At 0°, we take 𝑆-polarized light to be an electric field polarized along the vertical direction 

(�̂�) and 𝑃-polarized to be along the horizontal (�̂�).  At normal incidence, this reduced to two 

channels: parallel and crossed. The 𝑆𝑖𝑛 − 𝑆𝑜𝑢𝑡 pattern is 90° rotated from 𝑃𝑖𝑛 − 𝑃𝑜𝑢𝑡. Similarly, 

the 𝑆𝑖𝑛 − 𝑃𝑜𝑢𝑡 and 𝑃𝑖𝑛 − 𝑆𝑜𝑢𝑡 are rotated 90° from one another. For Chapter 4, we take parallel 

to be 𝑆𝑖𝑛 − 𝑆𝑜𝑢𝑡 (or simply 𝑆 − 𝑆) and crossed to be 𝑆𝑖𝑛 − 𝑃𝑜𝑢𝑡 (or simply 𝑆 − 𝑃) . In Chapter 5, 

this is switched due to experimental changes.  
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Next, we can impose restrictions based on our material to find the non-zero tensor elements 

in 𝜒𝑖𝑗𝑘
𝐸𝐷. These are listed in Ref. [65], but can also be easily derived using the symmetry operations 

in Table 2-1 and Table 3-1. It should be noted that in our case, our coordinate system is rotated 

90° from the definitions in Ref. [65]. The coordinate system is sample dependent and is determined 

by the crystal axes, which we will see later in Chapter 4-5.  

For point group 3, we find there are six independent non-zero element indices (𝑖𝑗𝑘), which 

are listed in  

Table 3-2. The functional form for the intensity at normal incidence is 

 

𝐼𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙
2𝜔 (𝜙) = (𝜒𝑦𝑦𝑦

𝐸𝐷 cos(3𝜙) + 𝜒𝑦𝑦𝑥
𝐸𝐷 sin(3𝜙))

2

 (3-8) 

 

𝐼𝐶𝑟𝑜𝑠𝑠
2𝜔 = (𝜒𝑦𝑦𝑥

𝐸𝐷 cos(3𝜙) − 𝜒𝑦𝑦𝑦
𝐸𝐷 sin(3𝜙))

2

    (3-9) 

 

For point group 32, there are two independent non-zero elements, which are listed in  

Table 3-2. The functional form for the intensity at normal incidence is  

 

𝐼𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙
2𝜔 (𝜙) = (𝜒𝑦𝑦𝑥

𝐸𝐷 sin(3𝜙))
2

     (3-10) 

 

𝐼𝐶𝑟𝑜𝑠𝑠
2𝜔 (𝜙) = (𝜒𝑦𝑦𝑥

𝐸𝐷 cos(3𝜙))
2

     (3-11) 

 

For point group 3m, there are four non-zero independent elements, which are also listed in  

Table 3-2. The functional form for the intensity at normal incidence is 

 

𝐼𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙
2𝜔 (𝜙) = (𝜒𝑦𝑦𝑦

𝐸𝐷 𝑐𝑜𝑠(3𝜙))
2

     (3-12) 

 

𝐼𝐶𝑟𝑜𝑠𝑠
2𝜔 (𝜙) = (𝜒𝑦𝑦𝑦

𝐸𝐷 𝑠𝑖𝑛(3𝜙))
2

      (3-13) 

 

While these expressions are similar, even at normal incidence, we can still distinguish between 

possible point groups, assuming we know the crystal axis direction. We notice when examining 
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the three centrosymmetric point groups that 32 (Eq. (3-10) and (3-11)) and 3𝑚 (Eq. (3-12) and (3-

13)) are fixed to the in-plane crystal axes (a and b) but are 90o rotated from one another. The third, 

3, is not locked to the crystal axis and is thus chiral. This completes the list of polar trigonal point 

groups. The remaining two, 3̅𝑚 and 3̅, are centrosymmetric. As such, we expect no contribution 

of 𝜒𝑖𝑗𝑘
𝐸𝐷 to the second-order polarization.  

 

Point Group Non-zero 𝝌𝒊𝒋𝒌
(𝟐)

 indices 

3 (𝐶3) 𝑦𝑦𝑦 = −𝑥𝑦𝑥 = −𝑦𝑥𝑥 = −𝑥𝑥𝑦; 𝑦𝑦𝑧 = 𝑦𝑧𝑦 = 𝑥𝑥𝑧 = 𝑥𝑧𝑥; 𝑥𝑥𝑥 = −𝑥𝑦𝑦
= −𝑦𝑥𝑦 = −𝑦𝑦𝑥; 𝑦𝑧𝑥 = 𝑦𝑥𝑧 = −𝑥𝑧𝑦 = −𝑥𝑦𝑧; 𝑧𝑦𝑦
= 𝑧𝑥𝑥; 𝑧𝑧𝑧 

32 (𝐷3) 𝑦𝑦𝑥 = 𝑦𝑥𝑦 = 𝑥𝑦𝑦 = −𝑥𝑥𝑥; 𝑦𝑥𝑧 = 𝑦𝑧𝑥 = −𝑥𝑦𝑧 = −𝑥𝑧𝑦 

3𝑚 (𝐶3𝑉) 𝑥𝑧𝑥 = 𝑦𝑧𝑦 = 𝑥𝑥𝑧 = 𝑦𝑦𝑧; 𝑦𝑦𝑦 = −𝑦𝑥𝑥 = −𝑥𝑥𝑦 = −𝑥𝑦𝑥;  𝑧𝑥𝑥 = 𝑧𝑦𝑦;  𝑧𝑧𝑧 

3̅ (𝑆6) none 

3̅𝑚 (𝐷3𝑑) none 

 

Table 3-2 Non-zero 𝜒𝑖𝑗𝑘
(2)

 indices for each trigonal point group. Here we assume any mirror 

planes to be along 90°. For the indices for a mirror plane along 0°, see Ref. [65]. 

 

Next, we need to turn to the EQ optical susceptibility tensor, 𝜒𝑖𝑗𝑘𝑙
𝐸𝑄

. For a centrosymmetric material, 

we can simulate the second-order polarization using the next leading order term such that 

 

𝑃𝑖
𝑒𝑓𝑓(2𝜔) = 𝜒𝑖𝑗𝑘𝑙

𝐸𝑄 𝐸𝑗(𝜔)𝜕𝑘𝐸𝑙(𝜔)    (3-14) 

 

which is related to the intensity by  
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𝐼2𝜔(𝜙)  = |𝐴�̂�𝑖(2𝜔)𝜒𝑖𝑗𝑘𝑙
𝐸𝑄 (𝜙)�̂�𝑗(𝜔) ∂̂𝑘(𝜔)�̂�𝑙(𝜔)|

2
𝐼𝜔𝐼𝜔   (3-15) 

 

Where ∂̂𝑘 → q̂𝑘 where q̂𝑘  is the wavevector of the incident fundamental light and 𝜒𝑖𝑗𝑘𝑙
𝐸𝑄

 is the bulk 

EQ susceptibility tensor.  

 Using the same treatment as with the polar point groups, for 3̅𝑚, we find there are eleven 

non-zero independent elements for 𝜒𝑖𝑗𝑘𝑙
𝐸𝑄

. Their indices (𝑖𝑗𝑘𝑙) are listed in  

Table 3-3. The functional form for the intensity at normal incidence is given by  

 

𝐼𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙
2𝜔 (𝜙) = (𝜒𝑦𝑦𝑧𝑦

𝐸𝑄 cos(3𝜙))
2

     (3-16) 

 

𝐼𝐶𝑟𝑜𝑠𝑠
2𝜔 (𝜙) = (𝜒𝑦𝑦𝑧𝑦

𝐸𝑄 sin(3𝜙))
2

     (3-17) 

 

For 3̅, we find there are eighteen non-zero elements with indices listed in  

Table 3-3. The functional form for the intensity at normal incidence is given by 

 

𝐼𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙
2𝜔 (𝜙) = (𝜒𝑦𝑦𝑧𝑦

𝐸𝑄 cos(3𝜙) + 𝜒𝑥𝑥𝑧𝑥
𝐸𝑄 sin(3𝜙))

2

   (3-18) 

 

 𝐼𝐶𝑟𝑜𝑠𝑠
2𝜔 (𝜙) = (𝜒𝑥𝑥𝑧𝑥

𝐸𝑄 cos(3𝜙) − 𝜒𝑦𝑦𝑧𝑦
𝐸𝑄 sin(3𝜙))

2

   (3-19) 

 

We can see here that similarly 3̅𝑚 is fixed to the crystal axes while 3̅ is allowed to rotate based on 

the ratio between the elements. The distinguishing trait between the non-centrosymmetric and 

centrosymmetric point groups is the intensity strength. To distinguish between other effects, like 

electric field induced SHG (EFISH), surface ED SHG, etc, we can use oblique incidence 

measurements. We show how to calculate the oblique incidence functions in Appendix A. These 

phenomena will be discussed later in section 4.4 and additional information can be found in 

Refs.[5,69]. For the other three point groups, we expect negligible contribution to the polarization 

from the third-order susceptibility because they are polar. Thus we do not list the indices or 
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functions here. We will show some examples of the difference in intensity between polar and non-

polar point groups for materials with similar linear optical properties in Chapter 4. 

 

Point Group Non-zero 𝝌𝒊𝒋𝒌𝒍
(𝟑)

 indices 

3̅ (𝑆6) 𝑦𝑦𝑦𝑦 = 𝑥𝑥𝑥𝑥 = 𝑦𝑥𝑦𝑥 + 𝑦𝑥𝑥𝑦 + 𝑦𝑦𝑥𝑥;  𝑦𝑦𝑥𝑥 = 𝑥𝑥𝑦𝑦 = 𝑦𝑥𝑥𝑦 =
𝑥𝑦𝑦𝑥;  𝑥𝑥𝑧𝑧 = 𝑦𝑦𝑧𝑧 = 𝑥𝑧𝑧𝑥 = 𝑦𝑧𝑧𝑦; 𝑧𝑧𝑥𝑥 = 𝑧𝑧𝑦𝑦 = 𝑧𝑥𝑥𝑧 =

𝑧𝑦𝑦𝑧; 𝑦𝑦𝑦𝑧 = −𝑦𝑥𝑥𝑧 = −𝑥𝑦𝑥𝑧 = −𝑥𝑥𝑦𝑧 = 𝑦𝑧𝑦𝑦 = −𝑦𝑧𝑥𝑥 = −𝑥𝑧𝑦𝑥 =
−𝑥𝑧𝑥𝑦; 𝑦𝑦𝑧𝑦 = −𝑦𝑥𝑧𝑥 = −𝑥𝑦𝑧𝑥 = −𝑥𝑥𝑧𝑦; 𝑧𝑦𝑦𝑦 = −𝑧𝑦𝑥𝑥 = −𝑧𝑥𝑦𝑥 =

−𝑧𝑥𝑥𝑦; 𝑦𝑥𝑦𝑥 = 𝑥𝑦𝑥𝑦; 𝑥𝑧𝑥𝑧 = 𝑦𝑧𝑦𝑧; 𝑧𝑥𝑧𝑥 = 𝑧𝑦𝑧𝑦; 𝑧𝑧𝑧𝑧. 

3̅𝑚 (𝐷3𝑑) 𝑦𝑦𝑦𝑦 = 𝑥𝑥𝑥𝑥 = 𝑦𝑦𝑥𝑥 + 𝑦𝑥𝑥𝑦 + 𝑦𝑥𝑦𝑥; 𝑦𝑦𝑥𝑥 = 𝑥𝑥𝑦𝑦 = 𝑥𝑦𝑦𝑥 =
𝑦𝑥𝑥𝑦; 𝑥𝑦𝑥𝑦 = 𝑦𝑥𝑦𝑥; 𝑦𝑦𝑧𝑧 = 𝑥𝑥𝑧𝑧 = 𝑦𝑧𝑧𝑦 = 𝑥𝑧𝑧𝑥; 𝑧𝑧𝑦𝑦 = 𝑧𝑧𝑥𝑥 =
𝑧𝑦𝑦𝑧 = 𝑧𝑥𝑥𝑧; 𝑦𝑧𝑦𝑧 = 𝑥𝑧𝑥𝑧; 𝑧𝑦𝑧𝑦 = 𝑧𝑥𝑧𝑥; 𝑦𝑥𝑧𝑧 = 𝑦𝑧𝑧𝑥 = −𝑥𝑦𝑧𝑧 =

−𝑥𝑧𝑧𝑦; 𝑧𝑧𝑦𝑥 = 𝑧𝑥𝑦𝑧 = −𝑧𝑧𝑥𝑦 = −𝑧𝑦𝑥𝑧; 𝑥𝑧𝑦𝑧 = −𝑦𝑧𝑥𝑧; 𝑦𝑦𝑦𝑥 = 𝑦𝑥𝑦𝑦 =
−𝑥𝑥𝑥𝑦 = −𝑥𝑦𝑥𝑥 = 𝑥𝑥𝑦𝑥 + 𝑥𝑦𝑥𝑥 + 𝑦𝑥𝑥𝑥; 𝑥𝑥𝑦𝑥 = −𝑦𝑦𝑥𝑦; 𝑥𝑦𝑦𝑦 =

−𝑦𝑥𝑥𝑥; 𝑦𝑦𝑦𝑧 = 𝑦𝑧𝑦𝑦 = −𝑦𝑥𝑥𝑧 = −𝑦𝑧𝑥𝑥 = −𝑥𝑦𝑥𝑧 = −𝑥𝑧𝑥𝑦 = −𝑥𝑥𝑦𝑧 =
−𝑥𝑧𝑦𝑥; 𝑥𝑥𝑥𝑧 = 𝑥𝑧𝑥𝑥 = −𝑦𝑧𝑦𝑥 = −𝑦𝑥𝑦𝑧 = −𝑦𝑧𝑥𝑦 = −𝑦𝑦𝑥𝑧 = −𝑥𝑦𝑦𝑧 =
−𝑥𝑧𝑦𝑦; 𝑥𝑥𝑧𝑥 = −𝑥𝑦𝑧𝑦 = −𝑦𝑦𝑧𝑥 = −𝑦𝑥𝑧𝑦; 𝑧𝑥𝑥𝑥 = −𝑧𝑦𝑥𝑦 = −𝑧𝑥𝑦𝑦 =
−𝑧𝑦𝑦𝑥; 𝑦𝑦𝑧𝑦 = −𝑦𝑥𝑧𝑥 = −𝑥𝑦𝑧𝑥 = −𝑥𝑥𝑧𝑦; 𝑧𝑦𝑦𝑦 = −𝑧𝑥𝑦𝑥 = −𝑧𝑦𝑥𝑥 =

−𝑧𝑥𝑥𝑦; 𝑧𝑧𝑧𝑧. 

 

Table 3-3 Non-zero 𝜒𝑖𝑗𝑘𝑙
(3)

 indices for centrosymmetric trigonal point group.  

 

3.3 Third-order Nonlinear Spectroscopy 

3.3.1 Four-wave mixing (FWM) 

The final component in our Taylor-expansion that we will discuss in this work is the third-

order nonlinear polarization,  �̃�(3)(t) = ϵ0χ
(3)�⃑⃑�3(𝑡). The electric field can be described as �̃�(𝑡) =

𝐸1𝑒
−𝑖𝜔1𝑡 + 𝐸2𝑒

−𝑖𝜔2𝑡 + 𝐸3𝑒
−𝑖𝜔3𝑡 + 𝑐. 𝑐. As mentioned earlier, χ(3)is non-zero for both 

noncentrosymmetric and centrosymmetric materials, making any technique that can detect the 

third-order nonlinear polarization more generalizable. One way to do this is like the SHG case, 

where we could measure the third-harmonic generation described by the third-order nonlinear 
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polarization components with a dependency on 3𝜔. However, we find that there are twenty-two 

terms to the third-order polarization, �̃�(3)(t) = ∑ 𝑃(ω𝑛)𝑒
−𝑖𝜔𝑛𝑡

𝑛 , which are based on the different 

ways in which to sum the various frequencies 𝜔𝑖, 𝜔𝑗, and 𝜔𝑘 . In particular, there are several terms 

of the form 𝜔𝑖  +  𝜔𝑗  −  𝜔𝑘, which we call four-wave mixing processes. Contributions to the 

third-order polarization are given by 

 

𝑃(𝜔1 + 𝜔2  −  𝜔3) = 6𝜖0𝜒
(3)𝐸1𝐸2𝐸3

∗ 

𝑃(𝜔1 + 𝜔3 − 𝜔2) = 6𝜖0𝜒
(3)𝐸1𝐸3𝐸2

∗     (3-20) 

𝑃(𝜔2 + 𝜔3 − 𝜔1) = 6𝜖0𝜒
(3)𝐸2𝐸3𝐸1

∗ 

 

 

The corresponding signal to these terms is called the four-wave mixing (FWM) signal, 

which will be discussed shortly. If we use three pulses, all with the same center frequency, we note 

that the polarization contributions for all of these occur at the same frequency as our excitation 

source. This is true for twelve of the twenty-two terms. We would like to single out one of these 

contributions to simulate the third-order polarization. Since we can no longer optically filter out 

the fundamental, we use a different tactic that involves a non-collinear geometry. In this geometry, 

the three pulses (which we call A, B, and C) are sent along three different directions, 𝑘𝐴, 𝑘𝐵, and 

𝑘𝐶 and the FWM signal is detected in a phase-matching direction, 

 

𝑘𝐹𝑊𝑀 = −𝑘𝐴 + 𝑘𝐵 + 𝑘𝐶     (3-21) 

 

 

Sending pulse 𝐴 along the −𝑘𝐴 direction means that that pulse is conjugated, so our overall 

experiment corresponds to the third term in Eq. (3-20). A diagram of the pulse sequence and the 

non-collinear geometry can be seen in Figure 3-8. The pulse sequence presented in Figure 3-8 

corresponds to the pulse sequence used in this work. The delay between each pulse pair is given 
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by τ and 𝑇 and we measure the FWM signal during 𝑡. There are two types of measurements used, 

the first involves changing the time delay between pulse A and B (τ) and is referred to as one-

quantum. The second delays the time between B and C (𝑇), which we call zero-quantum.  

 

Figure 3-8 (a) Diagram of pulse sequence and corresponding time delays for MDCS 

measurements. (b) Diagram of noncollinear box geometry. The dashed line corresponds to beam 

D, which is used for alignment purposes, but is blocked during measurements. The FWM signal 

is along the phase-matching direction, 𝑘𝐹𝑊𝑀 = −𝑘𝐴 + 𝑘𝐵 + 𝑘𝐶 .    

 

In the one-quantum scheme, the phase evolution during τ is opposite to that during 𝑡. As a 

result, the FWM signal is emitted as a photon echo when the two are equal, thereby undoing any 

inhomogeneous processes that contribute to the decay of the macroscopic polarization. We refer 

to this as ‘rephasing’ one-quantum and is advantageous as it allows us to determine the 

homogeneous dephasing rate even if our system is inhomogeneously broadened. Even though this 

is not used in this work, it should be mentioned that we can extract different information based on 

the A, B, and C pulse sequence [73]. This includes the ‘non-rephasing’ one-quantum scheme, 

which allows one to obtain the one-quantum correlation spectrum (summation of the rephasing 
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and non-rephasing one-quantum spectra) often used for molecular systems. The other, is a two-

quantum scheme, which allows one to investigate interactions between multiple excitations by 

coherently adding the first two excitation pulses together. Additionally, there is also a means of 

measuring the FWM signal in a collinear geometry using frequency tagging, though this technique 

is not used for this work [74]. 

 

3.3.2 Multidimensional coherent spectroscopy (MDCS) 

Here we only mention aspects of this technique that are relevant to our work. However, 

there are many great resources that provide an extensive, in depth look into this technique 

[56,57,75,76]. MDCS extends the FWM technique described in section 3.3.1 by using phase-

sensitive detection for both the scanning time delays and the signal. By phase-locking our three 

pulses, we can transform our FWM signal from the time-domain to the frequency-domain. In fact, 

the two-quantum scheme requires that all the excitation pulses be phase-locked. An example of a 

rephasing one-quantum spectra in the time-domain to the frequency-domain is shown in Figure 

3-9.  

The frequency-domain generally is much simpler to analyze as many of the contributions 

to the system are separable. For example, as mentioned earlier, we can distinguish between the 

inhomogeneous and homogeneous dephasing rate. We can think of the spectra as the summation 

of homogeneous oscillators along the diagonal. This means we can determine the inhomogeneous 

contributions by taking a line-out along the diagonal and the homogeneous contributions along the 

cross-diagonal. Additionally, coupling between resonances can show up as a cross-peak that 

occurs at the emission energy of one resonance and the excitation energy of the other, or vise-

versa, which we will see examples of in Chapter 6. 
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Figure 3-9 Example of a 2D one-quantum rephasing spectra. (a) 2D spectra in the time-time 

domain. The outline shows a typical cut along the photon echo direction to reduce noise. (b) Fast 

Fourier transformed 2D spectra in the frequency-frequency domain.  

 

 We can also take phase-resolved measurements, where we can see the real and imaginary 

components of the spectra. To do this, we take advantage of the fact that we can alter our 

experiment to extract the spectrally resolved pump-probe signal. The pump-probe signal, 𝑆𝑃𝑃(𝜔𝑡),  

is equal to the FWM signal when the following condition is met: 𝑆𝑃𝑃(𝜔𝑡) = 𝑅𝑒(𝐸𝑆(𝜔𝑡)|𝜏=0𝑒
𝑖𝜙0). 

𝜙0 is a phase offset and 𝐸𝑆(𝜔𝑡) the complex signal field. This pump-probe spectra is taken 

separately from the 2DCS measurement and later compared at 𝜏 =  0 to extract the global phase. 

More details on how to implement this technique as well as some of the limitations can be found 

in Ref. [57]. The advantage of this technique is that it is an excellent way to investigate many-

body effects as the real part will demonstrate different behavior for excitation induced shifts (EIS) 

and excitation induced dephasing (EID) [77], which will be discussed in greater detail in Chapter 

6. 

 Modeling MDCS spectra requires accounting for the number of energy levels in the system 

and involves fully solving the optical Bloch equations (OBEs). Later in Chapter 6, we will touch 
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on past work that accomplished this for the systems we are interested in [57,62]. However, we can 

often extract the inhomogeneous and homogeneous dephasing rate by making some 

approximations. It can be shown that by solving the OBEs for a two-level system using 

perturbation theory and the rotating wave approximation that our phase-matched FWM in the time-

domain can be described as 

 

𝑆(𝑡, τ) = 𝑆0𝑒
−(γ(𝑡+τ)+𝑖ω0(𝑡−τ)+σ

2(𝑡−τ)2/2)Θ(𝑡)Θ(τ)   (3-22) 

 

 

Where the homogeneous linewidth is given by γ and the inhomogeneous linewidth is given by σ. 

𝑆0 is the amplitude at time zero, ω0 is the center frequency, and Θ is the Heaviside function 

assuming delta-function pulses. To obtain fitting functions in the frequency-domain, where ωτ is 

our excitation frequency and ω𝑡 is our emission frequency, Siemens et al [78] provides a 

straightforward method for various limits using a projection-slice theorem. An example of the 

various limits is shown in Figure 3-10. Later, this same group derived an analytical function to fit 

the full MDCS spectrum in Ref. [79]. While we do not encounter this in our work due to our 

limited laser bandwidth, analytical solutions that account for the finite pulse effect have also been 

determined in Ref. [80]. 

 

3.3.3 Experimental implementation 

For our MDCS measurements, we use an experimental set-up originally built by a former 

member of the group, Alan Bristow, called the multidimensional optical nonlinear spectrometer 

(MONSTR). This set-up has been used for numerous projects from the Cundiff group and 

information on this set-up is covered in Ref. [73], so we will only cover the key features here. A 

diagram of the MONSTR set-up is shown in Figure 3-10.  
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Figure 3-10 Figures are taken from Ref. [73]. (a) Technical diagram of MONSTR set-up. (b) 

CAD drawing of the JILA-MONSTR shown as the red box in (a).  

 

 

For our excitation light source, we use a Coherent MIRA 900-F mode-locked Titanium: 

Sapphire laser with a repetition rate of 76 MHz and a tunable wavelength range of 750-920 nm. 

The pulse duration is typically set between 100-200 fs. The pulsed light source is sent through the 

MONSTR, which splits the beam into four separate beams using a nested pair of Michelson 

interferometers. The fourth beam, which we call “Ref”, is used as a reference beam and will be 

discussed later. Each pulse has a designated delay stage, which are used to control the pulse delay 

sequence described in Figure 3-8. A continuous-wave 632 nm HeNe laser co-propagates with the 

pulsed laser and is retro-reflected at the exit of the MONSTR using a dichroic mirror where the 

beams are interfered with one another and sent to photodiode detectors. There are three 

interference channels that correspond to the top, bottom, and inter-deck.  In addition to the 

translation stages, piezoelectric transducers (PZTs) are attached to mirrors such that the delay 

between pulses can be finely tuned by using a drive voltage. This drive voltage is set by a custom-

made electronic feedback loop system using the interfered HeNe signals. The resulting phase 

stability is between λ/ 130 to λ/ 400. Max time delays are between 300 ps – 1 ns.  
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 To detect the FWM signal, we use a heterodyne detection method where a pulsed Ref is 

routed to bypass the sample and interfered with the FWM signal on a spectrometer using spectral 

interferometry. The spectrometer CCD camera typically has a resolution of ~ 50 µeV. Since the 

Ref pulse follows a different path than the FWM signal, it has its own delay stage. Additionally, 

Ref and C are interfered on a fourth photodiode detector for the feedback loop system. This fourth 

detection channel is most susceptible to environmental changes as the components are located 

outside the MONSTR. As part of the project described in Chapter 6, a significant component was 

making experimental improvements such that the channel was stable for over twelve hours. 

Information on these stabilization improvements can be found in Appendix A.2.3. 

 The final result upon exiting the MONSTR is four beams in a 1” x 1” box geometry. Three 

of the beams are sent through the sample to produce a FWM signal along a background free 

direction, 𝑘𝐹𝑊𝑀 = −𝑘𝐴 + 𝑘𝐵 + 𝑘𝐶, which is then later mixed with pulse Ref. The incident 

polarization can be adjusted by placing four polarizers in the beam path. Circular polarization is 

achievable by adding a set of quarter-wave plates. HWPs are place before the polarizers to equalize 

the power of each beam. Even though the FWM signal is along a background-free direction, there 

can be noise due to scatter. To minimize this effect, a technique commonly used in 

multidimensional NMR called phase cycling is employed. A pair of variable liquid crystal 

retarders changes the phase of pulses A and B. In total, four spectra are taken, either with no phase 

delay, a single-phase delay for A or B, or are both delayed. The four are added/subtracted together 

in such a way that the contribution from each pulse cancels and the remainder is the quadrupled 

FWM signal. More information on this technique can be found in Ref. [57,73].  
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3.4 Summary 

In summary, we have covered the fundamentals for the linear and nonlinear optical 

techniques used in this work. This includes two linear techniques: absorption and 

photoluminescence spectroscopy and three nonlinear techniques: RA SHG, SHG scanning, and 

MDCS. We have discussed how to relate the Taylor-expanded polarization and experimentally 

implement each spectroscopic technique. Experimental details for the various experiments in this 

work have also been provided. We have shown how to simulate the RA SHG response for all of 

the trigonal crystal system point groups at normal incidence, which we will frequently refer to in 

Chapter 4-5. Finally, we have shown the fitting procedures to determine inhomogeneous and 

homogeneous broadening in MDCS spectra.  
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Chapter 4 Strongly Correlated Complex Oxides 

In this chapter, we investigate the linear and nonlinear optical properties of a family of type-II 

multiferroic candidates, RbFe(AO4)2 (A = Mo, Se, S). Much of this work builds off of previous 

work done by Wencan Jin, Elizabeth Drueke, and colleagues [5] who investigated the temperature 

dependent RA SHG response in RbFe(MoO4)2. First, we utilize temperature dependent UV-VIS 

absorption to estimate the band gap energy and detect potential sub-band optical transitions in all 

three complex oxide compounds. Second, using temperature dependent RA SHG spectroscopy, 

we address literature-assigned point group discrepancies in RbFe(SeO4)2 and RbFe(SO4)2. To the 

best of our knowledge, we also identify the presence of an unreported phase transition in 

RbFe(SO4)2. Finally, we use SHG imaging techniques to determine the spatial SHG response in 

both RbFe(SeO4)2 and Rb(SO4)2 at room and low temperature, respectively. 

Many results from this study are published in Ref. [12]. As such, many of the figures are 

borrowed from this article. An additional article is being prepared that will further report on the 

phase transition in RbFe(SO4)2 [81]. RbFe(MoO4)2 single were provided by Sang-Wook Cheong’s 

group at the Rutgers Center for Emergent Materials and the Department of Physics and Astronomy 

at Rutgers University. RbFe(SeO4)2 and RbFe(SO4)2 single were provided by Junjie Yang’s group, 

including Dimuthu Obeysekera, at the Department of Physics at the New Jersey Institute of 

Technology. Mechanical etching processing for absorption measurements was performed by 

Rachel Owen. Linear absorption on all three compounds was performed by Rachel Owen with 

assistance from Elizabeth Drueke and Charlotte Albunio. RA SHG and SHG scanning 
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measurements on RbFe(SeO4)2 and RbFe(SO4)2 was performed by Rachel Owen with technical 

support from Elizabeth Drueke and Austin Kaczmarek. The preliminary SHG scanning 

measurements in section 4.7 were performed by Xiaoyu Guo with technical support from Rachel 

Owen. Data analysis and simulations were performed by Rachel Owen with assistance from 

Elizabeth Drueke, the exception being the nonlinear optical constant, which Elizabeth Drueke 

calculated using the code/techniques outlined in in Ref. [69]. Ellipsometry, scanning electron 

microscopy (SEM), and energy dispersive spectroscopy (EDS) measurements were performed by 

Rachel Owen at the University of Michigan Lurie Nanofabrication Facility (U-M LNF) with 

technical support from various engineering staff. Liuyan Zhao acted as the principal investigator 

for this project. Steven Cundiff acted as co-principal investigator for much of the work in the 

beginning of this chapter.  

 

4.1 Background to RbFe(AO4)2, A = (Mo, Se, S) family 

4.1.1 Introduction 

Rubidium iron bis(molybdate), or RbFe(MoO4)2, is a known type-II multiferroic with 

many interesting properties. Not only does it have strong magnetoelectric coupling effects, but it 

is also a rare example of a quasi 2D-antiferromagnet on a triangular planar lattice [6,7]. Most 

studies focus on magnetic phenomena at very low temperatures (3.8 K), but there has also been 

much interest at higher temperatures as well, such as the ferro-rotational ordered phase transition 

from 𝑃3𝑚1 to 𝑃3 at critical temperature 𝑇𝐶 = 195 K [5,8-11,70,82]. Building from this work, we 

would first like to characterize the valence-conduction band transition in RbFe(MoO4)2 as well as 

investigate multiferroic candidate materials. Since the rotation between the FeO6 octahedra and 
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MoO4 tetrahedra is a prerequisite for the multiferroic ordering at low temperature, we search for 

multiferroic candidates by replacing the molybdenum site with selenium and sulfur to preserve the 

presence of the FeO6 octahedra.  

 There are relatively few studies on RbFe(SeO4)2 and RbFe(SO4)2. Additionally, there are 

discrepancies in literature over the assigned point groups at room temperature. RbFe(SO4)2 has 

been predicted by density functional theory (DFT) and shown by XRD measurements to be of the 

point group 32 [15,16], while neutron diffraction measurements have shown it to be either 3 or 

3𝑚 [13,14]. RbFe(SeO4)2 is predicted by DFT and shown by XRD to be in the point group 32 at 

room temperature[16,71]. Thus, one of our tasks is to use our RA SHG technique to pin down the 

symmetry properties of these materials, as it is well suited for distinguishing between point groups.  

 

4.1.2 Sample growth and experimental conditions 

 

Figure 4-1Cartoon depiction of the differences in growth methods between RbFe(MoO4)2 (a) and 

RbFe(SO4)2 (b). RbFe(SeO4)2 was grown in a comparable manner to RbFe(SO4)2. 
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RbFe(MoO4)2 single crystals were synthesized using the flux melt method [5,8] while the 

RbFe(SeO4)2 and RbFe(SO4)2 single crystals were grown using a hydrothermal approach. For 

RbFe(MoO4)2, powders Rb2CO3, Fe2O3, and MoO3 were mixed with a molar ratio of 2:1:6 and 

heated in a platinum crucible for 1100 K for 20 h in atmospheric conditions. The mixture was 

cooled at a rate of 2 K h-1 to 900 K, then to room temperature at a rate of 5 K h-1. For RbFe(SO4)2 

and RbFe(SeO4)2, a sulfuric (or selenic) acid aqueous solution containing Rb2SO4 or (Rb2SeO4) 

and Fe2(SO4)3 (or Fe2(SeO4)3) with a molar ratio of 1:1 was heated in a sealed hydrothermal 

autoclave at 380 - 480 K for 72 h. The resulting transparent hexagonal platelet crystals were then 

separated from the flux or solution.  

 

Figure 4-2 Microscope images of as-grown RbFe(SeO4)2 and RbFe(SO4)2 single crystals for RA-

SHG measurements. 

 

For transmission-based NUV-VIS absorption measurements, the RbFe(MoO4)2 and 

RbFe(SO4)2 platelet crystals were cleaved using a mechanical stress etching procedure (see 

Appendix B.2.2 for fabrication details). The RbFe(SeO4)2 crystals were separated into thin 

individual hexagonal layers using an adhesive such as carbon tape. The samples were then bonded 
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to a transparent sapphire substrate. Exact thicknesses of the prepared samples were not determined. 

Ellipsometry measurements and cutoff wavelengths from absorbance measurements estimated the 

final thickness to be near ~ 1.5 µm. These thin flakes typically were 250 - 500 µm at the widest 

point. 

For room temperature RA SHG and SHG scanning measurements, samples were mounted 

in ambient conditions to a three-axis translation stage and any loose top layers or debris was 

removed prior using an adhesive such as scotch or carbon tape. For measurements below room 

temperature, samples were placed inside a Janis ST-500 microscopy (RA SHG) or ST-100 optical 

(absorption) continuous flow cryostat which was then pumped down to a pressure less than 

1.0 × 10−6 mTorr. Liquid helium or nitrogen and a Lakeshore 335 temperature controller were 

used to cool/heat the samples at varying rates.  

4.1.3 Band Structure 

One motivation for probing the band edge is not only to determine the band gap energy, 

but to gain insight into the nature of the transition. Specifically, whether these materials have a 

direct or indirect transition. By determining both, we potentially open the possibility of studying 

these materials using other resonant spectroscopic techniques. Looking at available DFT 

calculations, we can see in Figure 4-3 that the predicted valence and conduction bands for 

RbFe(MoO4)2 and RbFe(SeO4)2 are relatively flat, making the assignment of direct or indirect gap 

in these materials challenging [16]. To our knowledge, there are no accessible DFT calculations 

for RbFe(SO4)2. DFT calculations are borrowed from Ref. [16], which uses the Vienna Ab Initio 

Simulation Package (VASP) software.  
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Figure 4-3 DFT calculated band structure for RbFe(MoO4)2 (a) and RbFe(SeO4)2 (b) from Ref. 

[16]. Only the top spin-up (blue) and spin-down (red) valence bands and bottom spin-up and spin-

down conduction bands are shown. The 𝛤-point corresponds to a momentum of zero. (a) The 

predicted band gap energies are 2.60625 eV (direct transition – red valence marker) and 2.6225 

eV (indirect transition – blue valence marker) for RbFe(MoO4)2. (b) The predicted band gap 

energies is 2.2159 eV (indirect transition - markers) for RbFe(SeO4)2. 
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While DFT is generally a good predictor of band structure, it tends to underestimate the 

band gap energy (as we will confirm later). As described earlier in section 3.1, absorption 

spectroscopy can both provide insight into the type of transition based on the rise after the band 

edge and a better estimate for the band gap energy. Additionally, absorption measurements can 

inform us which wavelength we need for our incident light in our RA SHG measurements to avoid 

multi-photon processes that could lead to SHG enhancement. These multi-photon contributions 

are undesirable in RA SHG as we often consider the strength of the SHG response when identifying 

symmetries.   

 

4.2 Band gap Energy and Electronic Transitions 

4.2.1 Band Gap Energy at Room Temperature and Presence of In-gap Electronic 

Transitions 

UV-VIS absorbance measurements were performed at various temperatures down to 5 K. 

As seen in Figure 4-4, at room temperature there is a prominent feature below the band edge in 

all three compounds. This optical transition occurred at energies 250 – 300 meV below the 

estimated band gap energy. The atomic weight dependence of the band edge tended to red shift for 

heavier elements, which is relatable to tunable lead halide perovskites [83]. To characterize the 

nature of the band gap transition and to estimate the band gap energy we implement the commonly 

used Tauc method [84]. The Tauc method follows the relation 

 

 (𝛼ℏ𝜔)1 𝑛⁄ = 𝐴(ℏ𝜔 − 𝐸𝑔) (4-1) 

 

where the type of optical transition determines the integer 𝑛. For direct allowed transitions, 𝑛 =

1/2, and for indirect allowed transitions, 𝑛 = 2. The remaining terms are as follows: the photon 
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energy, ℏ𝜔, the absorption coefficient, 𝛼, the band gap, 𝐸𝑔, and a proportionality constant, 𝐴. For 

low reflectivity levels, we estimate the energy dependent absorption coefficient 𝛼(ℏ𝜔) using our 

absorbance measurements. Using the Tauc method, we find that the direct transition model works 

best for all three compounds. In Figure 4-5, we show an example of a fit to 𝑛 = 1/2 and 𝑛 = 2, 

for RbFe(SeO4)2, which had the most ambiguous results.  

 

 
Figure 4-4 (a) Room temperature transmission-based absorbance measurements for RbFe(MoO4)2 

(black), RbFe(SeO4)2 (blue), and RbFe(SO4)2 (red). In the top left, the arrow indicates the heavier 

elements. (b) Direct Tauc plots as a function of energy using the absorbance measurements as the 

absorption coefficient. Markers correspond to data while the solid lines correspond to the linear 

fittings. (c) Isolated sub-band gap resonances fit to an anharmonic oscillator model. This figure is 

adapted from Ref. [12]. 
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To correct for sub-band features, we apply an Urbach tail correction. The Urbach tail arises 

from phonons, impurities, structural disorders, and/or excitons in a material and appears as an 

exponential decay below the band edge. As its presence systematically lowers the estimated band 

gap energy, it is best to use this correction when applying the Tauc method. Since the nonlinear 

components of the Tauc plot (Figure 4-4 (b)) rapidly veer away from the linear regime, we can 

remove these and only fit the linear component between the peak and the apparent band edge. In 

all three compounds, the Urbach tail consistently red shifted the band edge by about 8 meV. It 

should be mentioned that even with these corrections, the Tauc method has its limitations. For 

example, this method assumes relatively parabolic valence and conduction bands. In our case, we 

found in section 4.1.3 the possibility for relatively flat bands in RbFe(MoO4)2 and RbFe(SeO4)2. 

Experiments using emission-based spectroscopy may be able to provide a better estimate. 

 

 
 

Table 4-1 Estimated band gap energies as well as sub-band gap peak values for all three 

compounds. Uncertainty levels for the band gap energy are estimated using protocols from Ref. 

[85], which estimate absorbance to produce a ~±1% error. Peak energy error bars are determined 

from spectrometer calibration uncertainties. This table is adapted from Ref. [12]. 

 

The low energy side of the optical transitions below the band gap are fit to a Gaussian to 

track the peak energy. A Gaussian (inhomogeneous distribution) provided a better fit than the 

Lorentzian (homogeneous distribution), highlighted by the peak asymmetries. We report the 

estimated band gap energies and optical transition peak energies at room temperature in Table 4-1. 
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The resulting estimated band gap energies are larger than DFT in all three materials by 0.4 – 1.0 

eV [16]. Additionally, DFT predicts a tunability trend opposite to ours where RbFe(MoO4)2 has 

the largest band gap energy and RbFe(SO4)2 the lowest. 

 
Figure 4-5 (a) Direct transition Tauc plots for all three compounds at 5 K. (b) Comparison between 

the indirect and direct transition Tauc plots for RbFe(SeO4)2 at room temperature. This figure is 

taken from Ref. [12]. 
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4.2.2 In-gap Electronic States Temperature Dependence 

Following the same procedure, we then track the central peak energy and band gap energy 

down to 5 K. In Figure 4-6, We find that for A = (Se,S), the peak energy of the sub-band optical 

transition blue shifts, while for A = Mo, there is a blue shift before the structural phase transition 

near 190 K and then a red shift down to 5 K. The blue shifts and FWHM narrowing are consistent 

with photon assistance models, which predict that fewer phonon contributions at lower 

temperatures. For RbFe(MoO4)2, one potential explanation for this atypical behavior below the 

phase transition temperature is the emergence of shallow trap states. Shallow trap states can appear 

from the presence of structural distortions, as well as impurities and other defects. In lead halide 

perovskites with strong structural distortions, trap states have been reported to cause spectral red 

shifts with decreasing temperature [86].  

The inhomogeneous distribution of the peak, highlighted by the asymmetry as low 

temperature, and location below the band gap energy (250 – 350 meV in the Urbach tail), are also 

indicative of defect states. We will later discuss the presence of impurities and point defects in 

these compounds. These tended to be highly localized as our single crystals were absent of large 

structurally defective regions as confirmed by RA SHG and SHG scanning measurements. This 

being said, absorption spectroscopy is not enough to attribute the exact origin of these electronic 

states. Since our Tauc plot predicts a direct band gap transition, we cannot rule out the possibility 

of exciton states. We will later find at low temperature that additional electronic states emerge 

between this optical transition and the band edge, which further supports the assignment of these 

states as defect states. If defect states, we attribute differences in peak intensity to variations in 

sample thickness, defect concentration, or crystal symmetries that might allow for more degenerate 

or non-degenerate defect states.  
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Figure 4-6 (a) Temperature dependent absorbance measurements for the sub-band optical 

transition in all three compounds. (b) Temperature dependence of fitted peak energy for all three 

compounds. The grey bar in the trendline for RbFe(MoO4)2 marks the known critical temperature. 

(c) Fitted FWHM of the peak in all three compounds. This figure is taken from Ref. [12]. 

 

4.2.3 Band Edge Temperature Dependence 

We also track the band edge in all three compounds down to 5 K, which is shown in Figure 

4-7. At low temperatures, additional electronic states appear near the band edge in RbFe(MoO4)2 

and RbFe(SO4)2. These states become noticeable below 200 K but are most prominent at low 

temperatures. This is expected per our discussion of phonon broadening. Using the same procedure 

for the other in-gap optical transition, we track the peak energy and FWHM between 0 – 80 K.  
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Figure 4-7 (a) Temperature dependent absorbance measurements in all three compounds near the 

band edge. Arrows indicate the location of emergent peaks at low temperatures. (b) Temperature 

dependence of band gap energy using the direct Tauc model fitting outlined in this section, 

including the Urbach tail correction and same estimated error as in Table 4-1. The solid line is the 

thermodynamic model fitting from Eq. (4-2). (c) Temperature dependent emergent peak energy 

and FWHM fittings in RbFe(MoO4)2 and RbFe(SO4)2. This figure is taken from Ref. [12]. 

 

These peaks also significantly deviate from the band edge, there is a noticeable linear 

regime in the absorption spectrum. This allows us to continue utilizing the Tauc method described 

earlier. The band gap energy as a function of temperature is then fit using a thermodynamic model 

from [87], which provides 

 

𝐸𝑔(𝑇) = 𝐸𝑔(0)  −  𝑆<ℏ𝜔>(coth(ℏ𝜔/2𝑘𝑇) − 1) (4-2) 

 

Where 𝐸𝑔(0), 𝑆, and <ℏ𝜔> are the band gap energy at zero temperature, a coupling constant, and 

the average phonon energy, respectively. This model was chosen over the more typically used, 
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empirical Varshni relationship because it captured the low temperature behavior more reliably. 

Additionally, it is more consistent with Huang-Rhys vibration modeling.  

As mentioned earlier, the Tauc method becomes less reliable with the presence of spectral 

features. However, this method at minimum shows us the relative change in the band edge for all 

three compounds. The band gap energy of RbFe(SO4)2 undergoes a dramatic blue shift of about 

175 meV between room temperature and 5 K. While the spectral features are most noticeable in 

this compound, the band gap energy also fits Eq. (4-2) the best of the three materials. Both 

RbFe(SeO4)2 and RbFe(MoO4)2 show less agreement with the model despite having spectral 

features that are easier to separate from the linear regime. RbFe(MoO4)2 in particular, undergoes 

a noticeable blue shift at the transition temperature, similar to the in-gap optical transition 

discussed in section 4.2.2. This indicates that a more complex model may be necessary that can 

account from trap states that emerge from structural distortions in the material.  

 Tracking the two emergent peaks in RbFe(MoO4)2 and RbFe(SO4)2 below the band gap 

energy, we find that the peaks in RbFe(MoO4)2 show no temperature dependence. Meanwhile in 

RbFe(SO4)2, there is a blue shift consistent with the phonon-assistance picture. If trap states are 

present, this could potentially explain the lack of blue shift in RbFe(MoO4)2 as there could be 

competing effects. RbFe(SeO4)2 does not show a prominent peak below the band gap energy, only 

a single peak at 3.18 eV above the estimated band gap energy. The origin for these peaks in all 

three compounds could be additional defect electronic states, though if direct band gap materials, 

we cannot rule out the possibility of exciton states. Our prediction that RbFe(MoO4)2 is a direct 

band gap material is in agreement with DFT modeling, while our prediction for RbFe(SeO4)2 is 

not. RbFe(SeO4)2 had the least agreement with our Tauc modeling, and if DFT predictions are 

correct, this could explain the lack of a peak below the band edge as observed in its two 
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counterparts. Regardless, absorption techniques alone are not enough to make assignments to these 

peaks. As such, further studies, such as PL spectroscopy or MDCS, could prove useful in making 

these assignments.  

 To confirm our absorbance measurements’ assignment of the band edge, ellipsometry 

measurements were taken. Due to the available crystal size and surface quality, RbFe(SeO4)2 was 

the only material of the three investigated with an above noise response. Measurements were 

performed on a J. A. Woollam M-2000 Ellipsometer at the U-M LNF and the associated 

CompleteEASE software package was used to model the complex refractive index. To model the 

refractive index, the material was assumed to be a negative uniaxial material (ne < no), transparent 

to wavelengths between 500 – 1600 nm (0.77 - 2.48 eV), and absent of internal layers and surface 

roughness. The resulting real (n) and complex (k) refractive indices are shown in Figure 4-8. We 

determined a band gap energy at room temperature of 3.096 eV using the extinction coefficient (k) 

from the specified error bars in Table 4-1. Additionally, there are structures above 3.0 eV that are 

not captured in the UV-VIS transmission-based absorbance measurements. Later, we will also use 

these results to calculate the nonlinear optical coefficient of RbFe(SeO4)2 using the techniques 

described in [69]. 
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Figure 4-8 Modeled refractive index (n) and extinction coefficient (k) for RbFe(SeO4)2 based on 

ellipsometry measurements. This figure is taken from Ref. [12]. 

 

4.3 Impurities in RbFe(AO4)2, A = (Mo, S) 

To investigate the possibility of impurity-related defects, we wanted to find which atoms 

were present in our material and their relative ratio. To do this, we used EDS, which can provide 

us with information about the chemical composition as a function of penetration depth by 

accelerating the voltage for the X-ray source. Typically, a voltage of 20 kV will penetrate a few 

µm below the surface while voltages between 2-5 kV are used for surface imaging. Measurements 

were performed on the Hitachi SU8000 In-Line FE-SEM equipped with a Bruker Quantax 200 

Energy Dispersive X-ray Spectrometer and a XFlash6 silicon drift detector at the U-M LNF. 
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Spectra were decomposed and analyzed using the Bruker ESPRIT software package. An example 

of a typical EDS spectrum with a typical element assignment is provided in Figure 4-9.  

 
Figure 4-9 EDS spectra for RbFe(MoO4)2 at various voltages. Square markers correlate each peak 

to an element.  

 

The Bruker ESPRIT software utilizes a library of the various elemental emission energies 

to assign peaks. The relative intensity is used to calculate the atomic ratio for a specific acceleration 

voltage. The source voltage was accelerated and from the integrated signal, the atomic ratio was 

tracked. We found for RbFe(MoO4)2 and RbFe(SO4)2 the presence of carbon below the surface of 

the sample, as seen in Figure 4-10. Iron was found to bottleneck near the surface instead of 

diffusing uniformly into the sample, though it is likely in our absorption and RA SHG 

measurements that the layer with excess iron was removed through etching or peeling off the top-

most layer. The overall lower-than-expected ratio for the various elements also indicates an excess 

of oxygen.  
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Figure 4-10 (a) Surface SEM images of RbFe(MoO4)2 (left) and RbFe(SO4)2 (right). The red box 

correlates to the site of the magnified region shown below. EDS measurements were performed in 

the magnified region. (b) Chemical ratio as compared to oxygen in RbFe(MoO4)2 and RbFe(SO4)2 

as a function of acceleration voltage (proportional to penetration depth). The dashed lines indicate 

the expected atomic ratio based on the chemical formula. Markers with solid lines correlate to EDS 

data. Increasing carbon levels indicate the presence of carbon below the sample surface. 
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While these spectra are taken in highly localized positions and can vary by sample, we 

might expect the presence of some carbon inside the RbFe(MoO4)2 due to the powders used during 

growth (see section 4.1.2). There was also carbon present in the RbFe(SO4)2, which uses no powder 

with carbon, so there is also the possibility of contamination in either the hydrothermal solution or 

flux method approach. Luckily, we will find in later sections that this had little impact on the global 

crystal structure. For our absorption measurements however, the combination of the large spot size 

(150 µm) and the likelihood of absorption from defects means we have the potential to detect 

related electronic states with high sensitivity. For RbFe(SeO4)2, the material less robust and was 

prone to damage from the x-ray emission source at high voltages (> 10 kV). The selenium tended 

to vacate the probed region, making it difficult to determine the proper chemical composition. 

 

4.4 Crystal structure assignment for RbFe(AO4)2, A = (Mo, Se, S) family 

4.4.1 Assignments Based on RA SHG Measurements 

Following our investigation of the absorption properties of the RbFe(AO4)2 (A = Mo, Se, 

S) family, we set out to determine the point groups of RbFe(SeO4)2 and RbFe(SO4)2 at room 

temperature. Both had either few or disagreeing point group assignments in literature. 

Additionally, one of our goals was to identify the presence of any structural phase transitions 

between 80 - 295 K. To do this, we employ RA SHG and SHG scanning techniques. In section 

3.2.3, we derived functions to simulate the RA SHG response for the various trigonal point groups. 

We here use these simulations to determine which symmetries are present in RbFe(SeO4)2 and 

RbFe(SO4)2. The most recent point group assignment of each material at room temperature is 

presented in Figure 4-11 along with a diagram of the crystal unit cell. 
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Figure 4-11 Crystal structure for each compound using the literature-assigned point groups. For 

RbFe(SO4)2, only one of the assigned point groups was chosen. This figure is adapted from Ref. 

[12]. 

 

RA SHG measurements were taken at normal incidence for RbFe(SeO4)2 and RbFe(SO4)2. 

These results are presented in Figure 4-12 alongside the an RA SHG pattern for RbFe(MoO4)2. 

From previous studies, we know the relative strength of the effective susceptibility of 

RbFe(MoO4)2, which was extensively proven to be a result of EQ SHG [5,69]. Since we expect all 

three compounds to have similar extinction coefficients based on the absorption spectrum, this 

provides us with a reference in which to compare the signal level for RbFe(SeO4)2 and RbFe(SO4)2. 

To determine the magnitude of the SHG response, we compare the effective susceptibility strength 

to that of RbFe(MoO4)2, which is 𝜒𝑦𝑦𝑦
𝑒𝑓𝑓

= 8 × 10−4 pm·V-1 (𝜒𝑦𝑦𝑦
𝑒𝑓𝑓

= 𝜒𝑦𝑦𝑧𝑦
𝐸𝑄 𝑞𝑧 for EQ SHG) [5]. 

This corresponds to a power of 1 nW cm-2 for an incidence light source with a fluence of 1 mJ cm-

2 at 800 nm.  To orient our RA SHG pattern, we use white light imaging or SHG scanning imaging 

to determine the angle offset between the crystal axes and the lab frame horizontal. The crystal 

axes correspond to the crystalline edges and were confirmed by Laue XRD. At 𝜙 = 0°, the 

fundamental beam is vertically polarized. 

We find that for RbFe(SeO4)2 that the SHG response is several orders of magnitude larger 

than the EQ SHG response in RbFe(MoO4)2, while RbFe(SO4)2 has an SHG response that is 
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comparable. Additionally, using our ellipsometry data and the code provided in Ref. [69], we 

calculate the estimated SH susceptibility tensor for RbFe(SeO4)2 to be 𝑑22 =
1

2
𝜒222 =  0.23 pm 

V-1 for a fundamental wavelength of 800 nm. This applies a Fresnel correction for the incoming 

and outgoing electric fields using the refractive index for the extraordinary ray of the material [88]. 

This is comparable to doubling crystals with similar refractive indices such as quartz (α-SiO2) and 

KDP (KH2PO4) crystals, which have nonlinear optical coefficients of  𝑑11 = 0.46 pm V-1 and 

𝑑36 = 0.63 pm V-1 at 1.060 µm, respectively [89].  

After determining that RbFe(SeO4)2 is indeed polar and RbFe(SO4)2 is non-polar, we look 

at chirality. By comparing the RA SHG patterns to those derived in section 3.4.3, we find that 

neither RbFe(SeO4)2 nor RbFe(SO4)2 are fixed to the crystal axis, implying that both are chiral. 

Thus, we assign RbFe(SeO4)2 to belong to point group 3, which disagrees with the literature 

assignment of 32 [16,71]. We assign RbFe(SO4)2 to the point group 3̅, which agrees with the point 

group assignment from neutron diffraction measurements [13]. We show our final assignments 

from this work and compare them to literature assignments in Table 4-2.  



 81 

 

Figure 4-12 RA SHG response for each compound (left: RbFe(MoO4)2; middle: RbFe(SeO4)2; 

right: RbFe(SO4)2). The top row shows experimental measurements in the parallel channel. The 

bottom row compares the fitted data (red) to the various trigonal point group simulations (black, 

gray). This figure is taken from Ref. [12]. 

 

 

 

Table 4-2 Comparison of literature assigned point groups to the point group simulation that best 

matched to each compound. This table is adapted from Ref. [12]. 
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4.4.2 Ruling Out Multi-photon and Higher-order Processes 

There are several factors we must consider to validate our point group assignments. The 

first is to confirm that our results are not impacted by the optical transitions near 400 nm. Due to 

our short pulse duration, the bandwidth of our laser is quite broad (~ 40 nm FWHM). This implies 

that the estimated spectral SHG response spans 400 ±  7 nm (3.1 ± 0.05 eV) assuming the pulse 

duration is reduced by √2  [66]. This means the SHG response is at a higher energy than the 

features in the absorption spectra and could potentially result in two-photon fluorescence through 

a relaxation process. We would expect any two-photon processes to occur at the location of a 

spectral feature. For the RbFe(MoO4)2 and RbFe(SeO4)2, the spectral features lie outside of the 

bandwidth of both bandpass filters. For RbFe(SO4)2, one could argue the tail on the resonant 

feature could overlap with the first filter’s spectral range. To confirm that there is no enhancement 

to the SHG response from two-photon processes, we present in Figure 4-13 a comparison of RA 

measurements in RbFe(SeO4)2 and RbFe(SO4)2 using different bandpass filters. A bandpass filter 

is placed before the EMCCD, which determines the detected spectral range. In Figure 4-12, the 

bandpass filter presented in Figure 4-13 (a) and (c) was used for RA SHG measurements.  
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Figure 4-13 Comparison using two different optical band-pass filters (BPF): 400 nm ± 20 nm (3.1 

± 0.15 eV) and 400 nm ± 5 nm (3.1 ± 0.04 eV). The transmission spectrum of each BPF is given 

in blue and the absorbance spectrum at room temperature in red. (a)-(b) RA SHG response of 

RbFe(SeO4)2 using the two BPFs. (c)-(d) RA SHG response of RbFe(SO4)2 using the two BPFs.  

The estimated SHG response spectral range is given by green Gaussian. This figure is taken from 

Ref. [12] (Owen 2021). 

 

 The second factor we need to consider are higher-order nonlinear processes (i.e. 

contributions to the polarization from 𝜒(𝑛) for 𝑛 ≥  3). To confirm that we are in the in the second-

order regime, we can see if our SHG response has a quadratic dependence on the laser fluence. We 
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show our power dependence for both RbFe(SeO4)2 and RbFe(SO4)2 in Figure 4-14. The two power 

dependent measurements were fit to a polynomial with a quadratic and quartic component. In both 

cases, the fitted amplitude of the quartic term was insignificant (less than 10−7), which we believe 

implies that we are not sensitive to higher-order processes in our RA SHG measurements. 

 

 
 

Figure 4-14 Maximum SHG response as a function of laser fluence. In both, the red line indicates 

the laser fluence used to measure the RA SHG response of RbFe(SeO4)2 and RbFe(SO4)2 in Figure 

4-12. Markers represent measured SHG response and the solid line is the corresponding quadratic 

fit. (a) SHG power dependence of RbFe(SeO4)2 with a fit of 𝐴 𝑥2, 𝐴 =  1.34 ± 0.05. (b) SHG 

power dependence of RbFe(SO4)2 with a fit of 𝐴 𝑥2, 𝐴 =  0.03 ± 0.001. 

 

4.4.3 Ruling Out Surface ED SHG and EFISH 

For RbFe(SO4)2, since we are claiming that the material is non-polar, we need to rule out 

that our RA SHG signal is not actually due to the broken symmetry at the sample surface (absence 

of inversion and 𝑆6 symmetry in the case of RbFe(SO4)2), which can result in surface ED SHG. 

This was considered extensively in earlier work on RbFe(MoO4)2 [5]. Surface ED SHG was 

successfully ruled out by comparing adjacent lobe length in the 𝑆𝑖𝑛 − 𝑃𝑜𝑢𝑡 channel in oblique 
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incidence RA SHG measurements. For RbFe(MoO4)2, which is 3̅𝑚 at room temperature, we 

expect six even lobes for surface ED SHG and alternating big-small lobes for bulk EQ SHG. For 

this case, we do the same procedure. First, we find the expected expressions for the 𝑆𝑖𝑛 − 𝑃𝑜𝑢𝑡 

channel for both 3 (Eq. (4-3)) and 3̅ (Eq.(4-4)) at oblique incidence, which are as follow: 

 

𝐼𝑆𝑖𝑛−𝑃𝑜𝑢𝑡
2𝜔 (𝜙) = 𝑐𝑜𝑠2(θ) (𝜒𝑦𝑦𝑥

𝐸𝐷 𝑐𝑜𝑠(3𝜙) − 𝜒𝑦𝑦𝑦
𝐸𝐷 𝑠𝑖𝑛(3𝜙))

2

+ 𝑠𝑖𝑛2(θ) 𝜒𝑦𝑧𝑦
𝐸𝐷 2

  (4-3) 

 

𝐼𝑆𝑖𝑛−𝑃𝑜𝑢𝑡
2𝜔 (𝜙) = 𝑐𝑜𝑠2(θ) (𝑠𝑖𝑛(θ) χ𝑦𝑥𝑦𝑥

𝐸𝑄 − 𝑐𝑜𝑠(θ) (χ𝑦𝑦𝑧𝑥
𝐸𝑄 𝑐𝑜𝑠(3ϕ) + χ𝑦𝑦𝑧𝑦

𝐸𝑄 𝑠𝑖𝑛(3ϕ)))
2

+

𝑠𝑖𝑛2(θ) (𝑐𝑜𝑠(θ) χ𝑧𝑦𝑧𝑦
𝐸𝑄 − 𝑠𝑖𝑛(θ) (χ𝑧𝑦𝑦𝑥

𝐸𝑄 𝑐𝑜𝑠(3ϕ) + χ𝑧𝑦𝑦𝑦
𝐸𝑄 𝑠𝑖𝑛(3ϕ)))

2

   (4-4) 

 

Based on these, we expect six even lobes for 3 and alternating lobes for 3̅ at oblique incidence. 

Comparing these to measurements, we find that there is in fact alternating peak intensities, thereby 

matching the 3̅ point group. We can also rule out electric field induced SHG by the lack of a 

constant background in Figure 4-15, as we expect there to be no polarization dependence at normal 

incidence under the 3̅ point group. 
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Figure 4-15 Oblique RA SHG measurements of RbFe(SO4)2 in the 𝑆 − 𝑃 channel compared to 

simulated point groups, 3 (black) and 3̅ (red). This figure is taken from Ref. [12]. 

 

4.5 Symmetry-breaking Defect Sites 

As mentioned earlier, if defects are present in the system, then searching for structural 

variances is important. Since RbFe(SeO4)2 is polar, it is the best candidate for SHG scanning 

measurements. An example is shown in Figure 4-16. We found there to be spatial inhomogeneity 

in the SHG signal level, though we typically found the same rotational offset and RA SHG patterns 

with equal-sized lobes across the sample surface. If large strain were present, this could break 

various symmetries and we would expect differences in the RA SHG pattern, not just the SHG 

intensity. There were occasionally sites on the order of 1 µm that broke the three-fold symmetry. 

An example is show at site 3 in Figure 4-16 (b). If such sites contributed to electronic states below 

the band gap energy, absorption could be sensitive to such sites as the spot size was 150 µm and 

could thus easily capture them. 
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Figure 4-16 (a) SHG imaging of RbFe(SeO4)2. (b) RA SHG measurements taken at various sites 

on the crystal. The site numbers correspond to the locations marked in panel (a). This figure is 

taken from Ref. [12]. 

 

The same technique was applied to RbFe(MoO4)2, though the overall signal level was 

dramatically reduced as it is non-polar. While some sites exhibited strain in the form of uneven 

lobes, it was difficult to find any detectable sites that noticeably altered the crystal structure. 

Overall, the signal levels were too low to make any definitive claims as only areas with some strain 

were measurable. The image below is mostly to demonstrate the difficulties of SHG scanning a 
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non-polar material. We will find in the next chapter a means of improving the detection so that we 

can do SHG mapping on non-polar samples.  

 

 
Figure 4-17 (a) SHG imaging of RbFe(MoO4)2. (b) RA SHG measurements taken at various sites 

on the crystal. The site numbers correspond to the locations marked in panel (a).  

 

4.6 Phase Transition in RbFe(SO4)2 Near 190 K 

The next task after assigning the crystal point group was to determine if there was any 

detectable phase transition between 80 – 295 K. While there was no noticeable difference between 
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room temperature and 80 K in RbFe(SeO4)2, we did find a change for RbFe(SO4)2, the results of 

which are shown in Figure 4-18. We notice a dramatic increase in the signal level between room 

and low temperatures as well as a slight rotation in the RA SHG pattern. The difference in SHG 

intensity is two orders of magnitude, which is roughly the same as the difference between 

RbFe(SeO4)2 and RbFe(SO4)2 at room temperature. We found that this trend to be true regardless 

of whether we were warming the sample up or cooling the sample down. At room temperature, the 

effective susceptibility always returned to non-polar levels.  

As the RA SHG does not align to a crystal axis at low temperature, we can say that 

RbFe(SO4)2 does not lose chirality after this phase transition. The increase in signal level, however, 

is several orders of magnitude. This is on the order of the difference between RbFe(SeO4)2 and 

RbFe(AO4)2 (A = Mo, S) at room temperature. Because of this, it is possible the material loss 

inversion symmetry, making the low temperature assignment 3. According to Ref. [38], a transition 

from 3̅ to 3 can result in two ferroelectric domains. The slight rotation in the RA SHG pattern also 

indicates the possibility of strain during this transition. If there are ferroelectric domains present, 

our current RA SHG set up is unable to detect them as we are unable to resolve phase differences 

[90-92]. The ferroelectric order parameter (𝑃) is reflected by the second-order susceptibility (𝜒(2)) 

symmetries such that 𝜒(2)(±𝑃) = ±𝑃𝜒(2). This means the second-order polarization of two 

domain states are required to have the same amplitude and be offset by a 𝜋 phase-shift. 
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Figure 4-18 Temperature dependent SHG response in RbFe(SO4)2. (a) Normalized SHG intensity 

as a function of temperature. The associated effective susceptibility at 87 K (blue) and 295 K 

(orange) is listed in the top right-hand corner. The effective susceptibility is fit to a logistic function 

and then squared to fit the SHG intensity (black line). Error bars are determined by adding the 

effective susceptibility error bars (which were determined by laser fluctuations) in quadrature. (b) 

Relative angle offset of RA SHG pattern as a function of temperature. ∆𝛼 =  0° corresponds to 

the measure at room temperature. (c) RA SHG measurements with fit to the 3̅ or 3 simulation at 

normal incidence at different temperatures. Each one has a corresponding colored marker in (a)-

(b).   

 

However, if there is strain in the material, this is something we can detect. Strain might 

arise from the layered nature of the material or due to the phase transition, as indicated by the slight 

rotation in the RA SHG response. When sampling the crystal surface at room temperature, we find 

no significant spatial dependence of the SHG response. At low temperature, however, we do see a 

significant spatial dependence. These results are shown in Figure 4-19. Even in similar regions of 
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the sample, there is a significant difference in the effective susceptibility between sites as shown 

by the green markers in Figure 4-19.  

 

 

Figure 4-19 Spatial mapping of RbFe(SO4)2 sample surface. Measurements with green markers 

were taken at the top of the sample and yellow markers on the left. Clear markers were taken 

elsewhere on the sample surface. The spot size for these measurements was either 25 or 50 𝜇𝑚.  

 

The two-order magnitude increase in the SHG intensity leads us to believe that the material 

below 200 K is polar. The temperature dependence of the effective susceptibility is more indicative 

of a second-order phase transition, which is typically marked by a continuous, broad curve. 

However, when fitting the effective susceptibility, we did not find that a simple Taylor-expanded 

second-order phase transition model (∝ (𝑇𝑐 − 𝑇)
𝑛) was sufficient for fitting the effective 

susceptibility. The fit presented in Figure 4-18 (a) uses a logistic function as a fitting, but we do 

not assign any meaning to this at this time. There is a slight jump at 190 K, but the difference is 
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on the order of the error bars, which means we can also not assign it as a first-order transition. If 

it is a first-order transition, then it is unusually broadened. Overall, since RbFe(SO4)2 is a 

multiferroic candidate, this phase transition could have implications for the low-temperature (< 

4.2 K) magnetic phenomena of interest and is therefore worthy of further study. 

 

4.7 Summary and Outlook 

In summary, we use temperature dependent UV-VIS absorption and RA SHG to study the 

linear and non-linear optical properties of a family of type-II multiferroic candidates, RbFe(AO4)2, 

(A = Mo, Se, S). The UV-VIS absorption measurements provide us an estimate for the band gap 

energy, which is unreported in these materials aside from DFT calculations. Additionally, we gain 

insight into the type of transition based on the absorption profile and estimate RbFe(MoO4)2 and 

RbFe(SO4)2 to be direct band gap materials, while RbFe(SeO4)2 is more ambiguous. This insight 

is useful as the flat band structure makes it difficult to determine the transition type from DFT. We 

provide estimates at room and low (5 K) temperature and track the temperature dependence. In 

doing so, we find the presence of several sub-band gap electronic transitions in all three materials. 

We ascribe the ones present at room temperature as likely defect states. At low temperature, the 

emerging electronic states present in RbFe(MoO4)2 and RbFe(SO4)2 may be due to other effects, 

such as excitons, as they are closer to the band gap energy. In RbFe(MoO4)2, we report an unusual 

temperature dependence below the phase transition temperature and provide evidence for the 

presence of trap states. Afterwards, we compare our results to ellipsometry measurements in 

RbFe(SeO4)2 and find that these agree with our absorbance measurement prediction at room 

temperature. Using EDS, we provide atomic ratios for RbFe(MoO4)2 and RbFe(SO4)2 and find the 
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presence of carbon within the material as well as an excess of oxygen, which could provide 

supporting evidence for the presence of impurities.  

 Afterwards, we turn to nonlinear optical techniques to study the crystal symmetries. At 

room temperature, we provide our own estimates for the room temperature point groups to help 

resolve discrepancies in literature assignments for RbFe(SeO4)2 and RbFe(SO4)2. We ultimately 

assign RbFe(SeO4)2 to the point group 3, and RbFe(SO4)2 as 3̅. Utilizing the polar nature of 

RbFe(SeO4)2, we also study the spatial RA SHG response and find that globally the crystal 

structure remains consistent. However, we do find rare sites that break crystal symmetries. 

Afterwards, we look at the low temperature (80 K) RA SHG response in RbFe(SeO4)2 and 

RbFe(SO4)2. While we see no noticeable difference for RbFe(SeO4)2, we see a two-order 

magnitude increase in the SHG intensity for RbFe(SO4)2. The temperature dependence of the 

effective susceptibility shows a broad transition, roughly centered near 190 K. Additionally, we 

find that, at low temperatures, there is a significant spatial dependence to the SHG response that 

is not present at room temperature. 

 Moving forward, the low temperature SHG signal is strong enough for SHG imaging near 

the diffraction limit. This provides a more robust opportunity for studying the ‘macro’-spatial 

dependence we saw with our 25-50 𝜇𝑚 spot. Currently, we have preliminary results to support our 

‘macro’ spatial survey, which are shown in Figure 4-20. We find the presence of localized SHG 

enhancement that disappears as the sample is warmed past 190 K. This has been found to be true 

in both an unstrained and strained region of the sample (as determined by RA SHG). As to the 

source of these bright centers, we can say that the area in which they occur need not be strained at 

higher temperatures (> 200 K) or predisposed to global strain at low temperatures (< 200 K).  
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Figure 4-20 Preliminary temperature dependent SHG scanning images in RbFe(SO4)2. (a) 

Measurement at 200 K in an unstrained region of the sample. (b) Measurement in the same 

unstrained region of the sample at 100 K. Measurements were taken at the same laser fluence. (c) 

Measurement at 200 K in a strained region of the sample. (d) Measurement in the same strained 

region of the sample at 100 K. Measurements were taken at different laser fluences (80 µW for 

200 K and 60 µW for 100 K). A scaling factor (×1.8) was applied to correct for differences in 

laser fluences. 
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Additionally, we find that the formation of these bright centers is dependent on cooling rate. 

Through white light imaging, we find that the sample itself undergoes a tremendous amount of 

strain for “rapid” cooling ( > 2-3 K/min). From our imaging, we found that rapid cooling can cause 

the sample to shrink quite significantly. When this happens, bright centers are less likely to form 

or do not form at all. They typically formed for slower cooling cycles (~ 0.25 – 1 K/min). These 

slower cooling cycles were systematically controlled by running a program for the temperature 

controller. The results presented in Figure 4-18, Figure 4-19, and Figure 4-20 all underwent a 

slower cooling cycle.  

When measuring sites with no bright centers, we still found that the overall signal level 

increased by roughly the same amount as in Figure 4-18 and Figure 4-19. This means we believe 

RbFe(SO4)2 still undergoes a phase transition and that these bright centers are not the sole source 

of the increased SHG signal, though this could explain why we see such a variance in the low 

temperature signal levels. We plan to investigate these bright centers further and better characterize 

their relation to strain in the sample. 
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Chapter 5 Ferro-rotational Domains in NiTiO3 

Recently, the ferro-rotational (or ferro-axial) order has been observed in NiTiO3 single crystals 

using the linear electrogyration effect [18,93-95]. In this study, Hayashida et al successfully 

imaged two ferro-rotational domain states. These two domain states have a length on the order of 

100 µm, which is relatively large in comparison to RbFe(MoO4)2, which had ferro-rotational 

domain states below the diffraction limit [5]. Additionally, they determined the orientation of the 

two domain states and the domain boundary using scanning transmission electron microscopy 

(STEM) and convergent beam electron diffraction (CBED) [96-99]. 

 In this chapter, we observe two ferro-rotational domain states in similarly grown NiTiO3 

single crystals by employing our RA SHG and SHG imaging techniques discussed in Chapter 3. 

To accommodate the fabrication process our NiTiO3 undergoes after growth, we develop a 

technique to simulate the RA SHG response for a crystal with an arbitrarily cut surface. We 

compare our simulated results to experiment and compare the spatial SHG response to that in Ref. 

[18].  Additionally, we utilize RA SHG to further investigate the nature of the domain boundary. 

We are particularly interested in whether the domain boundary demonstrates polar or non-polar 

behavior. 

For this work, samples, Laue XRD, and differential interference contrast (DIC) microscope 

images [100] were provided by Xiaochen (Joy) Fang and Sang-Wook Cheong at Rutgers Center 

for Emergent Materials and Department of Physics and Astronomy at Rutgers University. Xiaoyu 

Guo performed the RA-SHG and SHG scanning measurements with technical support from Rachel 
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Owen. Rachel Owen performed the RA SHG simulations and data analysis. Liuyan Zhao is the 

principal investigator for this project. 

 

5.1 Background 

5.1.1 Introduction 

Nickel titanate, or NiTiO3, is a well-established material and undergoes at a critical 

temperature  𝑇𝑐 ≈ 1570 K a second order phase transition from space group 𝑅3̅ to 𝑅3̅𝑐, which is 

symmorphic to the point groups 3̅ to 3̅𝑚 [18,72,101,102]. This means at room temperature, NiTiO3 

belongs to a ferro-rotational space group. Several studies have proposed that NiTiO3 undergoes an 

order-disorder type ferro-rotational transition where two ferro-rotational domain states form when 

cation reordering results in two distinct stacking sequences (Ni-Ti-Ni-Ti or Ti-Ni-Ti-Ni)[18,72]. 

In contrast, RbFe(MoO4)2 has a displacive type ferro-rotational transition at 𝑇𝑐 ≈ 190 K where the 

origin of the two domain states are attributed to the displacement of oxygen atoms that results in 

two possible rotation directions for the oxygen cages [5].  

Hayashida et. al. refers to the two domain states as A+ (clockwise) and A- 

(counterclockwise), which correspond to the rotation direction of the TiO3 pyramids. In this work, 

we refer to the two domain states as A and B, as RA SHG measurements cannot tell us the physical 

orientation of the atoms. In Figure 5-1, we show a crystal diagram of NiTiO3 in the low-

temperature phase (3̅) as well as a demonstration of the rotated TiO3 pyramids. The crystal 

diagrams were created using DFT calculations from [16] and the software, VESTA. For the low 

temperature phase, the point group 3, has three-fold rotational symmetry, a center of inversion, 

and an 𝑆6 rotation about the c-axis. Similar to RbFe(MoO4)2, we found that in the high temperature 
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phase (3̅𝑚), NiTiO3 has mirror planes along 30°, 90° and 150° relative to the 𝑎-axis in the 𝑎𝑏-

plane. The 𝐶2 axes of rotation were found to be along 0°, 60° and 120°. Information on the 

calculations for each point group can be found in section 3.2.3. 

 

 

Figure 5-1 (a) Diagram of the 𝑅3̅ NiTiO3 unit cell as viewed along [110]. The center dashed box 

identifies the two Ti centers in the domain A- configuration as described in Ref. [18]. In the domain 

A+ configuration, the Ti and Ni cation sites are reversed. (b) Diagram of two possible rotation 

directions of the TiO3 pyramids.  

 

 

5.1.2 Sample Preparation 

NiTiO3 single crystals of size ~ 2 x 2 x 4 mm were grown using a floating zone method 

similar to that in Ref. [18]. Afterwards, single crystals were etched and polished, revealing an off-

cut crystal face with two distinct domain states resolvable using DIC imaging. Macroscopic NiO 

and TiO2 impurities can be found on the polished surface face in low concentrations. From DIC 

measurements, domain boundaries were found to be 1-2 nm tall. Laue XRD measurements [103] 
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were performed to estimate the polar angle of the off-cut crystal face. Two samples were prepared, 

each with a polished face lying in a different orientation relative to the crystal axes. The first 

sample, which we refer to as off-cut, is the primary focus of this work and is estimated to have a 

polar cut angle between 10 − 45°. This sample went through an annealing post-process at 

1300 ℃. The second sample, which we refer to as near-cut, is of lower crystalline quality as it did 

not undergo an annealing process. We briefly discuss this sample at the end of the chapter and is 

estimated to have a polar cut angle less than 10°.  

 

 

Figure 5-2 Off-cut, polished surface of processed NiTiO3 single crystal. This sample was annealed 

at 1300 ℃. The distortions on the sample surface corresponds to impurity-related defects. The 

surface is roughly 2 × 4 mm2. (a) Unpolarized white light microscope image. (b) DIC microscope 

image provided by the Cheong research group. In the DIC image, there are large, distinctive 

regions not resolvable in the white light image. These correspond to the ferro-rotational domains 

and have a height of 1-2 nm. 
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5.2 Simulating Ferro-rotational Domains for Arbitrary Crystal Plane 

Inherently, sample processing errors will lead to polished faces that are off those defined 

by the usual crystal axes. This means the surface of interest in our single crystals can be along an 

arbitrary direction. This presents a new challenge when simulating the RA SHG response that we 

did not need to address with our as-grown single crystals in Chapter 4. Laue XRD measurements 

have helped narrow down a range of polar cut angles, but slight curvature and other factors may 

affect estimates. Additionally, we do not have access to the azimuthal cut angle, which also will 

affect our RA SHG response. Here we show how to simulate the RA SHG response for an arbitrary 

crystal face and compare this to experimental measurements. While this does pose simulation 

challenges, we find that this can be a useful tool in studying these ferro-rotational domains instead 

of a hindrance as it provides a tunable parameter between the two domain states. 

To simulate the second-order polarization, we will need a map our crystal coordinate 

system into one that is relative to the polished crystal face. To do this, we develop a generic change-

of-basis operator that is dependent on two parameters: the polar cut angle, θ𝑐𝑢𝑡, and the azimuthal 

cut angle, ϕ𝑐𝑢𝑡. The motivation to use this approach instead of the typical Euler angles as we 

would like to narrow down our fitting parameters to two values. We first find a vector parallel to 

our incident light, 

 

𝑧′ = (

𝑐𝑜𝑠(𝜙𝑐𝑢𝑡) 𝑠𝑖𝑛(𝜃𝑐𝑢𝑡)

𝑠𝑖𝑛(𝜙𝑐𝑢𝑡) 𝑠𝑖𝑛(𝜃𝑐𝑢𝑡)

𝑐𝑜𝑠(𝜃𝑐𝑢𝑡)
)     (5-1) 

 

Following this, we find two orthogonal basis vectors that are in-plane to the polished crystal face: 
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{�⃑�′, �⃑�′} = {(

𝑐𝑜𝑠(𝜙𝑐𝑢𝑡) 𝑐𝑜𝑠(𝜃𝑐𝑢𝑡)

𝑠𝑖𝑛(𝜙𝑐𝑢𝑡) 𝑐𝑜𝑠(𝜃𝑐𝑢𝑡)

− 𝑠𝑖𝑛(𝜃𝑐𝑢𝑡)
) , (

− 𝑠𝑖𝑛(𝜙𝑐𝑢𝑡)

𝑐𝑜𝑠(𝜙𝑐𝑢𝑡)
0

)}  (5-2) 

 

 

Based on these three vectors, we form our generalized change-of-basis matrix, 𝑉: 

 

𝑉 =  (�⃑�′ �⃑�′ 𝑧′)𝑇     (5-3) 

 

 

Finally, we can use this to transform a general crystal susceptibility tensor, χ𝑉 =  𝑉𝑇χ 𝑉 into our 

basis of choice. The relation between the general cartesian coordinate system and that of the off-

cut sample surface is shown in Figure 5-3. 

Since NiTiO3 belongs to the point group 3̅ at room temperature, to simulate the second-

order polarization we can borrow from our analysis of RbFe(SO4)2 in section 3.2.3. As we recall, 

there are eighteen non-zero independent elements of our third-order susceptibility tensor, 𝜒𝑖𝑗𝑘𝑙
𝐸𝑄

. By 

applying our change-of-basis vector, we can get a susceptibility tensor in the new coordinate 

system, such that 𝜒𝑉
𝐸𝑄 = 𝑉𝑇χ𝐸𝑄𝑉. To find expressions for domain A, we proceed as before to 

obtain the various simulated intensities for the parallel (𝑃 − 𝑃) and crossed (𝑃 − 𝑆) channels. Note 

that the parallel and crossed definitions have changed from last chapter due to experimental 

changes. In this new basis, our incident light is now along the 𝑧′-axis instead of the  𝑧 (∥ 𝑐) – axis. 

To match experiment, the light is normal to the crystal face, however, it is simple to extend this to 

oblique incident light using the same procedure in Chapter 4. 

To simulate the RA SHG response of domain B, we know that the rotation away from the 

high temperature phase mirror plane will be in the opposite direction as domain A. In 

RbFe(MoO4)2, this corresponds to the oxygen cages equally rotating in opposite directions. In 

NiTiO3, Hayashida, et al. found the crystal structure of the two domains to be inverted and 
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separated by a wall parallel to the (110) plane [18].  In both cases, we can apply the mirror 

transformation (𝑥, 𝑦, 𝑧) → (−𝑥, 𝑦, 𝑧) before applying our change-of-basis operation to emulate the 

second domain state. Due to excessive length, the expressions for the parallel and crossed channels 

are not listed. In Appendix A.2, you may find more details about this approach and how to calculate 

the parallel and crossed channel expressions. 

 
Figure 5-3 (a) Relation between the typical cartesian coordinate system and the new coordinate 

system, where 𝜃𝑐𝑢𝑡 and 𝜙𝑐𝑢𝑡 refer to the polar and azimuthal cut-angle, respectively. (b) Diagram 

of incident light along the  𝑧 (∥ 𝑐) - axis (top) and the  𝑧′ - axis (bottom). In both cases, the light 

(red cone) is normal to the polished crystal surface. 

 

We find each expression is dependent on two primary fitting parameters, the polar and 

azimuthal cut angles, and twenty secondary fitting parameters. These secondary fitting parameters 

include the eighteen susceptibility tensor elements, an amplitude adjustment, and a rotation angle 

offset to account for the mismatch between the sample and lab frames. While this results in twenty-

two degrees of freedom, there are several constraining factors to assist us. First, we have four 
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channels to fit to, both parallel and crossed channels for domain A and domain B. Also we assume 

that these RA SHG patterns should roughly share the same susceptibility tensor fitting parameters 

as they are material dependent. This means we can use the relative strength of the other fitting 

parameters across all four RA SHG patterns to tell if our assignment of the polar and azimuthal 

cut angle is valid. There are physical constraints that we can use to our advantage as well. For 

example, the rotation angle offset is directly governed by the azimuthal cut angle and can be 

adjusted accordingly, and there is an allowable range of values for the polar cut angle based on 

Laue XRD.  

Generally, we found the RA SHG patterns to be highly sensitive to the two cut angles (and 

by extension the rotation angle offset), thus we can classify both primary and secondary fitting 

parameters. The polar cut angle, 𝜃𝑐𝑢𝑡, is largely constrained by the number of lobes in our RA 

SHG measurements. Even without assistance from Laue XRD, the polar angle was robust as the 

fitting converged to a value regardless of the range. The azimuthal cut angle, 𝜙𝑐𝑢𝑡, is largely 

governed by the symmetry between the RA SHG measurements across the two domains. For 

example, as 𝜙𝑐𝑢𝑡 approaches a high temperature mirror plane (i.e. along 30°, 90° and 150° in 

NiTiO3), the parallel and crossed channels for both domains became highly-symmetric, mirrored 

versions of one other. If 𝜙𝑐𝑢𝑡 instead approaches values close to a 𝐶2 rotation axis (i.e. along 

0°, 60°, or 120° in NiTiO3), the two domains had noticeably asymmetric RA SHG patterns. The 

secondary fitting parameters dictated the relative lobe sizes and intensity between the parallel and 

crossed channels. As we saw in Chapter 4, for 3̅ at normal incidence, the tensor elements 

determined the rotation away from the mirror plane, which is true here as well. The rotation angle 

offset is listed as a secondary fitting parameter due to a direct dependence on 𝜙𝑐𝑢𝑡. One assumption 

we made to assist the fitting procedure was that the susceptibility tensor elements were similar in 



 106 

value. Based on our results in Chapter 4, this is not unreasonable, but it does constrain our model 

and should be mentioned. 

Examples of the RA SHG of a near-cut and off-cut 3̅ crystal with two ferro-rotational 

domain states can be seen in Figure 5-4 for various polar and azimuthal cut angles. In Figure 5-4, 

the 𝑎′- and 𝑏′-axis correspond to the projections of the original high-temperature 𝐶2 rotation axis 

into the 𝑥′𝑦′- plane. This means the vertical corresponds to a high temperature mirror plane (as 

well as along 30° and 150°). To determine the 𝐶2 rotation axis, we use the value of 𝜙𝑐𝑢𝑡 to reorient 

our axes to the original crystal coordinate system. This comes from the fact that 𝑦 and 𝑦′ are both 

in the (001) plane (see Figure 5-3 and Eq. (5-2)), making it simple to keep track of the migration 

of the mirror plane in the new coordinate system. In our fittings to experimental measurements, 

we will use the fitted azimuthal angle. While we can distinguish between a 𝜙𝑐𝑢𝑡 near a high 

temperature 𝐶2 rotation axis or mirror plane, the difference is less transparent between the patterns 

along different 𝐶2 rotation axes or mirror planes. Without more information, like a crystal axis 

direction or susceptibility tensor elements, we cannot make this distinction. We acknowledge this 

in our fitting value by adding a term: 60°𝑛, 𝑛 ∈ ℕ to our fitted azimuthal cut angle. 
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Figure 5-4 Simulations of RA SHG response in the parallel and crossed channels for a 3̅ ferro-

axial material with two domains for various polar cut angles. The azimuthal cut angle is denoted 

as a dashed line.  Domain A is denoted in purple (parallel) and blue (crossed) and Domain B is 

denoted by orange (parallel) and green (crossed). For demonstration purposes, all tensor 

susceptibility elements were set to be equal. (a) RA SHG response for a polar cut of 3° and an 

example of an azimuthal cut angle along the 𝐶2 rotation axis (i.e. 0°, 60°, or 120°) or a high 

temperature mirror plane (i.e. 30°, 90°, or 150°). (b) Same as before, but now the polar cut angle 

has increased to 10°. (c) Polar cut angle of 30°. (d) Polar cut angle of 45°.  
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5.3 Comparison to Experiment: Domain Fittings 

To experimentally observe these ferro-rotational domains, we employed the same RA SHG 

and SHG scanning techniques described earlier for RbFe(SeO4)2 and low-temperature 

RbFe(SO4)2. However, since 3̅ is centrosymmetric, increased sensitivity is needed. Experimental 

improvements that primarily made this possible included increasing the spot size from 1-2 µm to 

10-15 µm and increasing the preamplifier voltage gain from 1.0𝑒5 to 1.0𝑒8 while maintaining a 

low noise level. Note that the laser power was also increased such that the laser fluence was like 

those in previous measurements. These experimental improvements were implemented and tested 

by Xiaoyu Guo who also kindly devoted a significant amount of time to collecting the preliminary 

data shown below.  

 

 

 

Figure 5-5 RA SHG measurements (markers) and corresponding simulation (solid lines). Parallel 

channels for domains A (purple) and B (orange) are displayed on the left. On the right are the 

crossed channels for domains A (blue) and B (green). To find the 𝑎′ −axis, the fitted azimuthal 

cut angle was used as a correction. Intensities are normalized to the signal level of the domain A 

crossed channel, which was about 800 µV for a laser fluence of 5 mJ·cm-2 at 800 nm. 
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 The RA SHG patterns in the parallel and crossed channel for the off-cut sample are shown 

in Figure 5-5 along with the fittings using our simulated parallel and crossed expressions. To 

confirm that estimating the polarization using a Taylor-expansion is valid, we confirmed through 

a power dependence that the SHG signal is in the 𝜒(2)-regime. This entailed determining that the 

SHG response had a quadratic relationship with the laser fluence. There are two primary lobe pairs 

indicating a cut-angle that is far away from the (001)-plane as expected. The patterns between the 

two domains are relatively symmetric, especially in the crossed channel, indicating an azimuthal 

cut angle near a high-temperature mirror plane. Applying the fitting techniques described in 

section 5.2, we simulate the RA SHG response for each domain in both the parallel and crossed 

channels. The average for the polar and azimuthal cut angle between all four fittings was 31 ±

6.4° and 34 ± 8.7°, not including the correction term 60°𝑛, 𝑛 ∈ ℕ. Our polar cut angle assignment 

agrees with Laue XRD measurements, which estimated a polar cut angle between 10 − 45°.  

After confirming that we could measure the RA SHG response from the two domains, our aim was 

to image the domain states using SHG scanning techniques. By choosing polarization angles 

aligned to the extrema of the two crossed channel patterns and measuring the SHG response, the 

two domains can be imaged with high contrast. An SHG scanning image aligned to the maxima of 

each domain’s crossed channel is shown in Figure 5-6. There was a noticeable different in the 

range of values for each domain as well as other features in the SHG scanning map, such as 

impurities/defects and the domain boundary. Thus, each pixel could be binned into a category, 

either as domain A or B, a defect, or the domain ‘boundary’. The domain ‘boundary’ or ‘wall’ 

SHG response is a weighted sum between domain A, domain B, and the wall. This is because our 

spot size has a FWHM between 10-15 µm, while the domain boundary is estimated to be between 



 110 

5-10 nm wide [18]. Thus, it is likely a significant portion of that signal is an averaging between 

the two domains. 

 
Figure 5-6 (a)-(b) SHG scanning images taken at polarizations aligned to the maxima of domain 

A (a) and domain B (b) in the parallel channel for NiTiO3. The angle listed in the bottom right-

hand-corner corresponds to the RA SHG plot in Figure 5-5. The total field of view is 420 ×  420 

µm. NiO/TiO2 impurities (white) are saturated as the overall intensity is ~2 − 3 times that of the 

domain intensities. (c) Binning map for the domain A (dark gray), domain B (light gray), the 

‘domain wall’(white), and NiO/TiO2 impurities (black).  
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Over various scanning images, we found a relatively equal distribution (50:50) of domains 

A and B. In contrast, the emergent domains in RbFe(MoO4)2 were estimated to have an unequal 

distribution of 40:60 [5]. The length scale of these domains varied by location and sample; the 

domains in the off-cut sample were on the order of 100 µm in length, which is in agreement with 

observations made in Ref. [18]. 

 

5.4 Ferro-rotational Domain Walls 

As discussed in Chapter 2, the nature of the interface between two domains is typically of 

greater interest than the bulk domain properties. After confirming the two domain states were 

similar to those observed in Ref. [18], our goal was to see if we could use RA SHG to better 

understand the domain wall. In particular, we were interested in the possibility of any polar 

discontinuities between the two domains [104,105]. We start our investigation by comparing the 

spatial SHG response for the parallel and crossed channel when the polarization angle lies between 

the two extrema of the domain states. For the case of the 30° off-cut sample, one choice is along 

90° (see Figure 5-5). In Figure 5-7 (a)-(b), we show the SHG scanning image for both parallel 

and crossed channels for a fixed polarization along this high-temperature mirror plane. We then 

take a lineout, as illustrated in Figure 5-7 (c), to show the change in SHG response as we move 

from domain B to A. Unfortunately, we are fairly limited by the contrast in the parallel channel. 

This is likely due to the asymmetry between the parallel RA SHG patterns for the two domains, 

which arises because our sample is not perfectly cut along a mirror plane direction. However, we 

can see that there is an apparent bump in the parallel channel at the domain wall crossing point 

and a dip in the crossed channel.  
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Figure 5-7 Experimental SHG scanning images with a fixed polarization between the two domain 

maxima in the parallel (a) and crossed (b) channels. The angle listed in the bottom left-hand-corner 

corresponds to the RA SHG plot in Figure 5-5 (c) Lineout of the SHG signal taken across the 

domain boundary for the parallel (blue) and crossed (red) channels. Domain B is on the left and 

domain A is towards the right. The crossing point is marked by the central light green rectangle. 

The inset shows the parallel channel signal level for a reduced vertical scale. (d) Cartoon diagram 

of ferro-rotational domain directions based on the mirror plane determined in Figure 5-5. The gray 

line outlines the location of the predicted domain wall mirror plane.  

 

Furthermore, the SHG intensity in the parallel channel is significantly higher than in the 

crossed channel for the same laser fluence. While we expect the parallel RA SHG response for 

both domains to be larger than in the crossed channel, the signal levels near the boundaries are 

comparable to the impurity-related defects like the one on the far left in Figure 5-7 (b). The implies 
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that it is worth investigating whether there is a contribution to the total SHG signal from the domain 

wall. 

One model for the domain wall is to assume though are no broken symmetries and that it 

preserves the high-temperature point group, 3̅𝑚. If inversion symmetry is broken, then other 

possible point groups that preserve three-fold rotational symmetry are 3, 32, and 3𝑚. To simulate 

the RA SHG response for these various point groups in off-cut sample, we can use the fitted polar 

and azimuthal cut angles determined in Figure 5-5. Based on our SHG scanning images, we expect 

the domain wall to preserve the high-temperature mirror plane. From Figure 5-7 (a)-(c), we expect 

a maximum in the parallel channel and a minimum in the crossed channel along a mirror plane. 

Additionally, from our high-contrast images in Figure 5-6, we do not expect there to be a 

significant contribution from the domain wall along either parallel lobe (70° and 110°). If there 

was, we would expect near the domain boundary to see a rise in the overall SHG response as 

opposed to what appears to be an averaging over the two domains.  

If the domain wall preserves the high-temperature mirror plane, we can rule out 3 or 32.  

Point group 3 has no symmetries governed by the mirror plane, so we would not expect alignment 

to it. Meanwhile, point group 32 is 90° rotated from where we need it to be, leaving us with 3𝑚 

and 3̅𝑚. To test this theory, we track the full RA SHG response across the domain boundary. We 

do so by taking an RA SHG measurement near where we took the lineout in Figure 5-7 (c) and 

using our galvanometer scanning mirrors to systematically step the beam across the boundary. 

These results are shown in Figure 5-8. 
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Figure 5-8 (a) SHG scanning image from Figure 5-7 (b) with a reduced scaling to highlight the 

domain boundary. (b) The RA SHG response of each component for our simulation: domain A, 

domain B, and the wall (3𝑚). 3̅𝑚 is included as a comparison. (c) Total RA SHG response when 

crossing the domain boundary indicated by the green line. Green wedges show the rotation angle 

for the estimated maxima of each pattern. Patterns are normalized to the domain A crossed channel. 

Black markers connected with a dashed line correspond to experimental measurements. The solid 

black line with the shaded inner region is the simulated total SHG response. The weighting used 

for each domain and the wall is shown on the far-right bottom of the crossed channel.  
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Using the fitted cut angles and assuming susceptibility tensor elements of equal strength, 

we show the simulated RA SHG responses in Figure 5-8 (a) alongside the fitted two domain RA 

SHG responses. Since we do not know the exact a-axis, it is possible that these are off by our 

correction term, 60°𝑛, 𝑛 ∈ ℕ. Regardless of this, in both cases, we see the potential for each RA 

SHG contribution at the relevant extrema. For the intensity, we borrow from our results in Chapter 

4 and set the RA SHG of the polar point group 3𝑚 to be two orders of magnitude larger than for 

the non-polar counterparts. For 3̅𝑚, we generously assign it to have the same intensity as the 

largest domain channel. Next, we use a variable weighted average to simulate the total SHG 

response as we move across the domain.  

We start by looking at the case where the domain wall is roughly centered between the two 

domains. To produce an intensity comparable to that measured in the parallel channel, we had to 

use an equal distribution of domain A (33%), B (33%), and the wall (33%) for the case of 3̅𝑚. 

This can be seen in Figure 5-9. By comparison, the domain boundary width is expected to be about 

0.1% the width our spot size. The overall shape also does not match in the crossed channel, though 

this could be affected by our assumption of equal susceptibility tensor elements, which can 

suppress the two lobes along 70° and 110°. For, 3𝑚 on the other hand, we were able to produce a 

similar total RA SHG response for a much more reasonable contribution ratio regardless of the 

fact that a fitting procedure is not incorporated. For the weighting, we found a more reasonable 

0.7% contribution from the wall that resulted in a total SHG response that roughly matched our 

experimental result. As such, we choose this model to simulate the RA SHG response in Figure 

5-8 (c), which is denoted by the solid black line with the shadowed inner region.  
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Figure 5-9 Comparison of experimental and simulated total RA SHG response when centered on 

the domain wall for point groups that preserve the mirror plane symmetry. The top shows the 

expected response if there was no contribution from the domain wall to the total RA SHG response. 

The middle case shows the necessary ratio of A:B:Wall in order to produce a response close to 

experiment when using 3̅𝑚. The bottom case shows the necessary ratio of A:B:Wall to produce a 

response close to experiment when using 3𝑚. 

 

 

These simulations are intended to highlight our claim that the domain wall preserves the 

high-temperature mirror plane symmetries. These results alone are not enough to assign a point 

group designation for the domain wall or to claim that the domain wall is polar as further 

information is needed. However, broken inversion symmetry is not an unreasonable possibility. 
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We know from Ref. [18] that there is a stacking mismatch between the two domains at the 

boundary; specifically, one domain is shifted upwards by half a unit cell. This is consistent with 

our DIC microscope image, which shows a 1 − 2 nm tall terrace. Other materials have shown that 

slight atomic-site displacements can lead to polar domain walls. In low-temperature orthorhombic 

CaTiO3 (point group 𝑚𝑚𝑚; space group 𝑃𝑛𝑚𝑎), a purely ferro-elastic non-polar material, 

spontaneous polarization was found in the twin walls [106]. A slight displacement (2 pm) of the 

Ti atom off the octahedron center is attributed as the cause of this polar behavior. In this case, the 

alternating domain walls showed opposite dipole moments, which was attributed to symmetry 

breaking by the wall. However, for our case, any displacement would still need to preserve the 

high-temperature mirror symmetries. To determine if the domain wall does in fact preserve three-

fold rotational symmetry (i.e. remains trigonal), we will need to investigate a sample with a polar 

cut angle that is closer to the (001)-plane. Additionally, such a sample could assist with 

determining if the domain wall is polar in nature, which we discuss in the next section. 

 

5.5 Summary and Outlook 

In summary, we develop a means of generally simulating ferro-rotational domains in 3̅ 

crystals for an arbitrarily cut face. We then test our simulation by fitting RA SHG measurements 

on an off-cut NiTiO3 single crystal at room temperature. By fitting the off-cut sample, we 

demonstrate the versatility of this technique. This is particularly useful for any single crystals that 

go through a mechanical etching or polishing process. Further, we demonstrate how we can use 

our various techniques to extract information about the domains and domain boundaries. For the 

off-cut sample, we find we can clearly image the two domain states using SHG scanning 

techniques. Our findings of the distribution and size of the domain states is comparable to previous 
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studies that imaged the domains using the linear electrogyration effect [18]. We then investigate 

the domain boundary crossing by simulating the expected RA SHG response using various trigonal 

point groups. We find from our simulations that our experimental results best match a model that 

preserves mirror plane symmetries found in the high-temperature phase. Additionally, we find that 

a model that breaks inversion symmetry better predicts our RA SHG response across the domain 

boundary. We are fairly limited by the off-cut sample, including the number of variables and the 

presence of asymmetry in the parallel channel between the two domains. Therefore, while our 

polar model better matches our results, it is not enough to claim that the domain wall is polar.  

 

 

Figure 5-10 RA SHG measurements (markers) and corresponding simulation (solid lines) for the 

near-cut NiTiO3 sample. Parallel channels for domains A (purple) and B (orange) are displayed on 

the left. On the right are the crossed channels for domains A (blue) and B (green). To find the 

𝑎′ −axis, the fitted azimuthal cut angle was used as a correction. Intensities are normalized to the 

signal level of the domain A crossed channel, which was about 800 µV for a laser fluence of 5 

mJ·cm-2 at 800 nm. 

 

We would like to continue investigating the domain boundary crossing and test the 

prediction that the domain wall obeys 3𝑚 point group symmetries. To do so, we can extend this 

technique to a near-cut sample (polished surface near the (001) plane). We have an unannealed 
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crystal with a polar degree less than 10° (as predicted by Laue XRD). Using our fitting technique, 

preliminary results predict that the sample has a polar angle of  4°. The simulation-based fitting is 

shown in Figure 5-10.  

 

 

Figure 5-11 Top: fitted domain patterns from Figure 5-10. Bottom: Simulated RA SHG response 

for 3𝑚 and 3̅𝑚 the near-cut NiTiO3 sample based on fitted azimuthal and polar cut angles. All 

susceptibility tensor elements were assumed to be equal. 

 

A polar angle close to 0° does present the opportunity to better investigate the domain wall. 

For the off-cut sample, we found that the asymmetric lobes were desirable when studying the bulk 

domains as we were able to produce high-contrast SHG images regardless of our large spot size. 

However, issues arose when trying to optimize the polarization to the domain wall maxima. While 

we expect to lose our contrast of the bulk domains in a near-cut sample, we are less restricted by 



 120 

our polarization choice for the domain wall. Unlike the off-cut sample, we show in Figure 5-11 

that for both 3𝑚 and 3̅𝑚 we expect there to be more local maxima as we approach the (001) plane 

with three-fold symmetry.  

We have taken preliminary SHG scanning images to show that we can resolve the two 

domains. However, as predicted, the contrast is significantly decreased. As the sample is not 

annealed, we run the risk of having defects or lattice distortions that were not present in the off-

cut sample. As such, our next step is to investigate an annealed sample in order to be able to make 

meaningful comparisons. 

 

 

Figure 5-12 Left: preliminary SHG scanning image in a near-cut, unannealed NiTiO3 single 

crystal. Right: binning map using the same procedure as in Figure 5-6. The domain boundary is 

unresolvable as the signal levels in the two domains are comparable. 
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Chapter 6 Many-body effects in InGaAs Single and Double Quantum Wells 

In this chapter, we switch gears away from bulk materials and move to systems that have been 

extensively studied and are even used in commercial devices today, InGaAs quantum wells [107-

109]. As mentioned before, InGaAs/GaAs quantum wells provide a clean system in which to study 

many-body excitonic effects. Here we investigate many-body excitonic effects in both single and 

asymmetric double quantum wells with varying barrier widths using MDCS. We report on how 

varying the barrier width affects coupling in the well, while quantum well quality determines the 

level of many-body contributions in uncoupled quantum wells. 

 Much of this work expands on the findings from Ref. [62], and some of this work is shared 

in Ref. [110] . Quantum well samples and associated PL spectra were provided by Fauzia Jabeen, 

Claudéric Ouellet-Plamondon, and Benoit Deveaud at the Laboratory of Quantum Optoelectronics 

at the Ecole Polytechnique Federale de Lausaane in Lausanne, SUI. AR coatings for both the single 

and 5 nm barrier double InGaAs quantum wells were fabricated by Rachel Owen at the U-M LNF. 

AR coatings for the 10 nm and 30 nm double InGaAs quantum wells were fabricated by technical 

staff at JILA at University of Colorado - Boulder. PLE measurements presented in the background 

section were performed by Matthew Day and Christopher Smallwood. 2D and 3D MDCS data on 

the double InGaAs quantum wells was primarily taken by Christopher Smallwood and Rachel 

Owen with assistance from Diogo Almeida, Matthew Day, and Takeshi Suzuki. 2D and 3D MDCS 

data analysis on the double InGaAs quantum wells was primarily done by Christopher Smallwood 

and Rachel Owen with assistance from Matthew Day. 2D MDCS measurements and data analysis 
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on the single InGaAs quantum wells was performed by Rachel Owen with assistance from 

Christopher Smallwood and Takeshi Suzuki. The principal investigator for this project was Steven 

Cundiff.  

 

6.1 Background 

6.1.1 Sample Information 

For this study, four different sample types were used. All samples were grown on a doubled 

sided polished substrate. The growth sequence included a 1000 nm buffer layer, a 200/100 

AlGaAs/GaAs barrier, single/double quantum well(s), 100/200 nm GaAs/AlGaAs barrier, and a 

10 nm GaAs cap. All quantum wells contained In0.05Ga0.95As. The single quantum well had a width 

of 9 nm while the double quantum wells had a width of 9 nm and 10 nm. The barrier width between 

the double quantum wells was one of 5, 10, or 30 nm. All the samples had a hafnium oxide AR 

coating applied. Details on the AR coating can be found in Appendix B.1. Samples were cleaned 

and bonded to transparent sapphire disk with a NIR AR-coating. The quantum wells were then 

cooled to temperatures between 5 – 20 K using a liquid helium bath cryostat.  

 The InGaN/GaN multiple quantum wells mentioned in the outlook section (6.5) had six 

quantum wells of equal width. The indium concentration varied across the wafer such that the peak 

PL wavelength ranged from 440 – 485 nm. These quantum wells were cooled using a Janis ST-

100 optical cryostat.  
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6.1.2 Indirect Excitons 

Past work has shown that spatially indirect excitons can occur in semiconductor quantum 

wells where the electric component resides in one quantum well while the hole component resides 

in the other [110-112]. As we found in Chapter 4, it can be difficult to detangle various optical 

contributions [113-115]. Molecular beam epitaxy is an advanced and well-developed growth 

technique for GaAs quantum wells which provides the opportunity for highly tunable and high-

quality samples [116]. As mentioned before, the light hole in InGaAs/GaAs quantum wells is also 

delocalized [62]. In combination, this makes these systems well suited to investigating many-body 

physics and coherent dynamics. By tuning the barrier width between asymmetric double quantum, 

we can further investigate coupling effects between direct and indirect excitons using MDCS. We 

also investigate the many-body effects that reside in a high-quality single-quantum well.  
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Figure 6-1 Diagram from Ref. [110] for InGaAs/GaAs asymmetric double quantum wells with 

varying inter-well barrier width The ground and first excited excitonic states in asymetric 

InGaAs/GaAs double quantum wells. (a) For a wide interwell barrier, there are two optical 

transitions which correspond to the direct exciton states in each well. (b) For the narrow interwell 

barrier, two additional optical transitions emerge, which correspond to the possible indirect 

excitons between each well. 
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Figure 6-2 PLE measurements from Ref. [110] for InGaAs/GaAs asymmetric double quantum 

wells with varying inter-well barrier width. (a) 2D-PLE spectra. The low-energy emission streaks 

correspond to the exciton transitions in the samples while the high-emission energy peaks 

correspond to GaAs defects. (a)-(d) show the PL vs excitation frequency for the various barrier 

widths. (a) The two lowest energy peaks correspond to the direct exciton states. (b) Same as (a), 

but the indirect exciton peaks begin to emerge at slightly higher energies. (c) The direct exciton 

states are given by the two lowest peaks while the indirect exciton states are to the right before the 

band edge.  
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We briefly showed in Figure 2-9, the structure and simple energy diagrams of quantum 

wells and how indirect excitons might emerge. In Figure 6-1, we provide a more detailed energy 

diagram for asymmetric quantum wells with a wide and narrow barrier. Analysis from Smallwood, 

et al. [110], shows that the emergence of indirect excitons happens in the narrow-barrier limit. In 

the wide-barrier limit, there is insufficient spatial overlap between the electron and hole wave 

functions to generate indirect excitons. This means there are two optical transitions, which 

correlate to the direct exciton state for each quantum well. In the narrow-barrier limit, these two 

wavefunctions will sufficiently overlap such that two additional optical transitions emerge, which 

correlate to the indirect exciton states.  To confirm this theory, Smallwood, et al., performed PLE 

on three types of asymmetric double quantum wells of varying barrier width. This included 30 nm 

(wide-barrier limit), 10 nm, and 5 nm (narrow-barrier limit) wide barriers. The PLE spectra is 

provided in Figure 6-2. As the barrier is reduced, two peaks near 1.47 eV emerge next to the two 

direct exciton peaks near 1.465 eV. We see that they are present for the 10 nm barrier but are 

significantly more prominent for the 5 nm barrier.  

This was then later confirmed by MDCS, where there are faint indicators of indirect exciton 

states in the 10 nm barrier quantum well which are strongly visible in the 5 nm barrier case. These 

results are shown in Figure 6-3. There is a significant degree of coupling for the 5 nm barrier 

double quantum well, which can be seen by the prominent coupling peaks near (1465 meV, -1462 

meV) and (1462 meV, -1465 meV). There is also coupling between the exciton states and the 

quantum-well continuum states. The continuum is given by large diagonal feature from 1470-1490 

meV while the coupling results in the vertical streaks along 1462 meV and 1465 meV.   
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Figure 6-3 MDCS measurements from Ref. [110] for InGaAs/GaAs asymmetric double quantum 

wells with varying inter-well barrier width. (a) 30 nm barrier shows only the two direct exciton 

transitions in the upper left corner with no coupling. The continuum states can be weakly seen at 

high energies. (b) 10 nm barrier demonstrates weak inter-well coupling as indicated by the upper 

cross peak. (c) 5 nm barrier demonstrates strong inter-well coupling as indicated by the two 

prominent coupling peaks. The continuum states are also more prominent along the diagonal as is 

coupling to them from the excitonic states.  
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This dependence on barrier width can be modeled by looking at the overlapping 

wavefunctions. Smallwood, et al. models each quantum well using a square well and uses the PLE 

data in Figure 6-2 to correct for the nonzero band offset in the InGaAs quantum wells that results 

in wells of different depth. The energies and wavefunctions along the 𝑧-direction using the typical 

one-dimensional time-independent Schrodinger equation. 

 

−
ℏ2

2𝑚

𝜕2𝜓𝑛

𝜕𝑧2
 +  𝑉(𝑥)  =  𝐸𝑛𝜓𝑛      (6-1) 

 

The resulting one-particle wavefunctions are plotted in Figure 6-5 (a). We can see that there is a 

more prominent effect on the electronic wavefunctions. This can be explained by the fact that the 

electrons have a lighter effective mass than the holes. This also explains why the hole energies, 

𝐸𝑣1 and 𝐸𝑣2, are essentially constant while the electron energies, 𝐸𝑐1 and 𝐸𝑐2, sharply veer from 

one another for reduced barrier widths. Additionally, the electronic wavefunctions noticeably 

become delocalized as the barrier width is reduced. This will impact the relative transition 

probability for exciting an excitonic state, which is determined by the overlap integral, 

∫ 𝜓𝑣𝑛
∗ (𝑧)𝜓𝑐𝑚(𝑧)𝑑𝑧

∞

−∞
. As the barrier is reduced, the probability of the indirect transitions increases 

and has a nonlinear dependence that is given by the red curve in Figure 6-5 (c). As we will see, 

this delocalization effect and the presence of indirect excitons is critical for the remainder of this 

work.  
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Figure 6-4 Modeling the emergence of indirect excitons from Ref. [110]. (a) Energy and 

wavefunction solutions for top valance band free electrons states (𝐸𝑣1 and 𝐸𝑣2) and bottom 

conduction band free electrons states (𝐸𝑐1 and 𝐸𝑐2) in the wide- and narrow-barrier limit. (b) 

Energies for the four possible transitions, which includes two direct transitions (blue) and two 

indirect transitions (red). (c) Overlap integral for the transitions in (a)-(b). (d) Combined plot of 

(b)-(c). Opacity corresponds to overlap integral magnitude. 
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6.1.3 Many-body Effects 

We mentioned earlier in Chapter 3 how MDCS can be used to resolve the real and 

imaginary components of 2D spectra and that this can be used to better understand the nature of 

many-body effects. There are various contributing factors that can lead to radiative or non-

radiative decay processes in semiconductors. We mentioned trap states due to defects earlier, 

which is an example of a non-radiative decay process. Another type of decay comes from pure 

dephasing processes, such as exciton-exciton scattering. This is an important source of pure 

dephasing in quantum wells and can be described by excitation-induced dephasing (EID). In our 

atomic analogy, EID can be thought of similarly to thermal collisional broadening. Other many-

body effects are excitation induced shifts (EIS), local-field corrections, and higher order processes 

such as interactions with biexcitons. Biexcitons are not relevant to this work as we use polarization 

selection (i.e. choosing circularly polarized light) to purposely prevent the excitation of biexcitons 

[62]. However, EIS will play a role. EIS can arise from either screening effects between electrons 

and holes, which can result in a blue-shift in the exciton resonance. In this case the Coulomb 

interaction screening essentially decreases the exciton binding energy. Otherwise, EIS can arise 

from band gap renormalization, which results in a red-shift. Usually these effects cancel, but for 

quantum wells, the screening effects can dominate with increasing exciton density. Local-field 

corrections, which is where the macroscopic polarization interacts with the system with the 

addition of external electric fields, has shown to have an effect similar to EIS [117]. 

 Here we will focus on EID and EIS effects. If we were to write our quantum well as a two-

level system with a ground and excited state, this can be described by the density matrix 
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𝜌 = (
𝜌11 𝜌12
𝜌21 𝜌22

)     (6-2) 

 

Where 1 corresponds to the ground state and 2 to the excited state. This means the diagonal terms,  

𝜌11 and ρ22, represent the population in the ground state and the excited state, respectively. The 

off-diagonal terms represent a coherence between the two states and are related by a complex 

conjugate, ρ𝑒𝑔 = ρ𝑔𝑒
∗ . This coherence has a phase which evolves with frequency. Our excited state 

population (i.e. excitons) can be described by 

 

𝜌22(𝑡) = 𝜌11(0)𝑒
−𝑡/𝑇1     (6-3) 

 

For the coherence between the ground and exciton states,  

 

𝜌21(𝑡) = 𝜌21(0)𝑒
−𝑖𝜔𝑡𝑒−𝑡/𝑇2    (6-4) 

 

𝑇1 represents the excited state lifetime and 𝑇2 is the dephasing time, ℏω is the energy between the 

states, and the phase evolution of the coherence is represented by the term 𝑒−𝑖𝜔𝑡. When there are 

no additional coherence decay contributions (e.g. many-body effects), 𝑇2 = 2𝑇1. When we add in 

our pure dephasing mechanisms, we find that we have to add a contribution from the effective 

pure-dephasing lifetime, 𝑇2
∗, such that 

 
1

𝑇2
=

1

2𝑇1
+

1

𝑇2
∗     (6-5) 

 

It has been shown through numerical simulations that EID and EIS contributions shows up most 

readily in the phase-resolved 2D spectra [77]. EIS shows a dispersive lineshape while EID shows 

a more absorptive lineshape, which we will see an example of later.  
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6.2 Varying Inter-well Barrier Width in Asymmetric InGaAs Double Quantum Wells 

 

Figure 6-5 (a)-(c) Absolute one-quantum rephasing 2DCS spectra for asymmetric InGaAs double 

quantum wells with an inter-well barrier of 30 nm (a), 10 nm (b), and 5 nm (c). (d)-(f) Phased 

2DCS spectra for inter-well barrier of 30 nm (d), 10 nm (e), and 5 nm (f). The top is the real 

component and the bottom is the imaginary component. 

 

We see increased coupling dynamics when reducing the barrier width. This effect is shown 

in Figure 6-5 for both the absolute and real parts of the 2D spectra. These coupling features are 

denoted by the resonances on the cross-diagonal.  From the real part of the spectra, we also find 

that the 5 nm barrier double quantum wells tend to have a slightly more dispersive lineshape than 
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the 30 nm barrier, which proves to be more absorptive. This implies that EIS effects are more 

prominent in the 5 nm barrier double quantum wells.   

 

6.3 Anti-correlated Fluctuations in InGaAs Double Quantum Wells 

We are most interested in the correlation times between the one-quantum and zero-

quantum coherence [118-120]. Specifically, the interaction times from an excited-state zero-

quantum coherence between direct and indirect excitons and the one-quantum coherence between 

the excitonic excited states and the ground states. To do this, we can take a 3DCS scan to measure 

the decay time of the coupling cross-peak [121]. As briefly mentioned in Chapter 3, these 3DCS 

scans are quite long (> 12 hours). A significant portion of this project included technical 

improvements to ensure that the MONSTR set-up was phase-stable during this period of time. The 

details of these improvements can be found in Appendix B.3. In brief, this included incorporating 

a collinear detection scheme for pulses Ref and C (see section 3.3 for labeling scheme), mechanical 

vibration prevention, and fabricating AR coating for the samples.  
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Figure 6-6 (a) 2D MDCS spectra of 5 nm barrier InGaAs double quantum wells at 𝑇 = 0.07 ps. 

(b) 2D MDCS spectra taken at 𝑇 = 0.7 ps. (c) Upper cross peak intensity (circled in (a)) as a 

function of 𝑇 time delay. The data is fit using a damped oscillator model to extra the zero-

quantum coherence time. (d) Line outs of the cross-diagonal (red) and diagonal (blue) for the 

wide well, which are indicated by the red and blue lines in (a). The data (markers) is compared to 

the 2D fitting to extract the one-quantum coherence, 𝛾. 

 

In Figure 6-6, we show the results from one of our 3D scans. From this, we can extract the 

one-quantum coherence and zero-quantum coherence times. We can determine the one-quantum 
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coherence time, 𝑇2 = 1/𝛾, by fitting the on-diagonal elements. We find for this particular scan 

that γ1Q =  0.076 meV, which correlates to a one-quantum coherence time of 8.66 ps. Meanwhile, 

for the zero-quantum coherence time, we can fit the cross-peak amplitude as function of mixing 

time. For the zero-quantum coherence time, we find that γZQ =  0.60 meV, which correlates to a 

zero-quantum coherence time of 1.1 ps. Since γ1Q < γZQ, this suggests that dephasing mechanisms 

come from anticorrelated energy-level fluctuations causing the zero-quantum coherences to 

dephase more quickly than the one-quantum coherences.  

 

6.4 Strong Many-body Signatures in a Single InGaAs Quantum well 

An added benefit to the improved techniques is that it allowed us to measure the 2D one-

quantum spectra of a similarly grown 9 nm InGaAs single quantum well. Typically, past 

measurements have been on double or multiple quantum wells, where the FWM signal stacks. This 

single quantum well in particular was of interest because of its near-Lorentzian PL profile, as we 

will recall implies homogeneous broadening. This is shown by the linear behavior of the PL peak 

at 1.485 eV in Figure 6-8. 

We compare the 2D spectra from this single quantum well to that of the uncoupled 

double quantum wells (30 nm barrier) and do in fact find that the homogeneous linewidth is 

slightly broadened while the inhomogeneous linewidth is comparable as seen in Figure 6-8.  
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Figure 6-7 PL spectra of InGaAs single quantum well provided by Benoit Deveaud’s research 

group at the EPFL. The quantum well exciton resonance is the prominent peak at 1.485 eV. 

 

 

Figure 6-8 Gamma (solid) and Sigma (dashed) values for single quantum well (red) and the narrow 

well in the double quantum well system (blue). Fittings were done using the 2D analytic functions 

in Ref. [79]. Note that these do not capture the asymmetry of the 2D measurements of the quantum 

wells. Measurements were taken at 12 K with a 200 µm spot size. 
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The homogeneous linewidth at zero excitation density for the single well is extrapolated 

to be 𝛾0,𝑆𝑄𝑊 = 0.0442 meV. In comparison, for the 9 nm double quantum well, 𝛾0,𝐷𝑄𝑊 = 0.0287 

meV. Meanwhile the inhomogeneous linewidths are 𝜎0,𝑆𝑄𝑊 = 0.2292 meV and 𝜎0,𝐷𝑄𝑊 = 0.2212 

meV for the single and double quantum well, respectively. The ratio for the homogeneous 

linewidth is 𝛾0,𝑆𝑄𝑊/𝛾0,𝐷𝑄𝑊  =  1.54 and the inhomogeneous linewidth ratio is 𝜎0,𝑆𝑄𝑊/𝜎0,𝐷𝑄𝑊  =

 1.04.    This implies that the single quantum well is circumstantially of higher quality than the 

double quantum well. At low excitation densities, we find that the single quantum well has more 

asymmetry than the double-quantum wells at comparable excitation densities, as shown in 

Figure 6-9. 

Performing a phase-resolved measurement, we find the spectra to have significant 

broadening from EIS in comparison to its partner double quantum well. Using the same techniques 

as in Ref. [57], we can simulate this spectrum, confirming that EIS and EID is necessary to include 

when modeling this 2D spectra, which goes beyond the typical fitting described in Chapter 3.  

This new dependence can phenomenologically described by 

 

𝑆𝐶𝑜𝐶𝑖𝑟(𝜏, 𝑡) = 𝐴𝐶𝑜𝐶𝑖𝑟𝑒
−𝛾(𝜏+𝑡)𝑒−

1

2
𝜎2(𝜏−𝑡)2(1 − 𝑒(𝑖Δ−ξ)𝑡)  (6-6) 

 

Where 𝛾 corresponds to the dephasing of |0⟩ → |1⟩ transition, 𝜎 corresponds to the 

inhomogeneous broadening of |0⟩ → |1⟩ and |1⟩ → |2⟩ transitions, ∆ corresponds to the EIS 

contribution during delay 𝑡 (|1⟩ → |2⟩), and 𝜉 corresponds to the dephasing from EID during delay 

𝑡 (|1⟩ → |2⟩). This implies that quantum well quality should be considered when investigating 

relative EIS and EID strength in double quantum wells as even single wells can have inherently 

strong many-body effects without the need for coupling-effects. This strong EIS effect also implies 

that well quality could lead to delocalization effects.  
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Figure 6-9 2D one-quantum spectra of 9 nm single InGaAs quantum well compared to that of an 

uncoupled, 9 nm double quantum well at low and high excitation density. High excitation density 

SQW: 5.45𝑥109 𝑐𝑚−2. Low excitation density SQW: 0.707𝑥109 𝑐𝑚−2. High excitation density 

NW DQW: 4.33𝑥109 𝑐𝑚−2. Low excitation density NW DQW: 1.06𝑥109 𝑐𝑚−2. 
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Figure 6-10 (a) Absolute 2D one-quantum rephasing spectra of a single InGaAs quantum well. 

(b) Real part of spectra for single InGaAs quantum well. (c) Absolute and (d) real simulated 2D 

spectra using Eq. (6-6).  

 

6.5 Summary and Outlook 

In this chapter, we report on many-body effects in coupled asymmetric InGaAs double 

quantum wells and in a high-quality InGaAs single quantum well. We first look at the effect of 

reducing the barrier width in double quantum wells using phase-resolved MDCS and tend to see 

an increase in many-body signatures such as coupling strength between the wells and EIS. We also 

find from 3DCS that the zero-quantum coherences dephase more quickly than the one-quantum 



 142 

coherences in these asymmetric double quantum wells, suggesting that dephasing mechanisms 

come from anticorrelated energy-level fluctuations. We are able to compare the high-quality single 

quantum well to its uncoupled partner in the 30 nm barrier double quantum wells. We find that the 

single quantum well at low excitation densities tends to demonstrate strong EIS signatures that are 

less present in the double quantum well case. This indicates that sample quality should be 

considered when comparing the strength of EIS in coupled double quantum wells.  

We can also use this technique to study quantum wells with less growth-control. One 

example might be InGaN quantum wells, which can emit NUV-blue light [122-124]. This does 

pose a challenge when designing an MDCS set-up as NUV-friendly optics are necessary. Here, we 

show some preemptive work into studying InGaN quantum wells using PL and absorption 

spectroscopy. This information is necessary as MDCS needs to know what resonance frequency 

to probe.  In Figure 6-11, on the left, we see the photoluminescence, which looks neither 

Lorenztian nor Gaussian and at low temperatures separates into three distinct peaks. On the right, 

we see the absorption spectra. Instead of a Lorenztian absorption profile for the InGaN quantum 

wells, there is a broadened shoulder. The sudden increase in the absorption is from the GaN 

barriers.  The current reasoning for this effect is that the Indium tends to clump together instead 

the InGaN, which creates localized islands that function more like quantum dots than a quantum 

well [125,126]. Thus, we can compare these In islands to defects, which saturate easily. A power 

dependence of the various peaks does in fact show that these states saturate (deviate from the linear 

dependence) quite quickly after emitting enough photons to be detected on a spectrometer (Figure 

6-12). If there is this clumping effect, MDCS could provide insight into coupling dynamics 

between these quantum dot-like indium islands.     
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Figure 6-11 PL (left) and absorption (right) spectra in InGaN multiple quantum wells at room 

temperature (top) and 8 K (bottom). The fringes in the absorption spectrum are due to interference 

effects in the quantum wells.  
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Figure 6-12 PL power dependence of InGaN multiple quantum wells peaks at 8 K. PL 

measurements correlate to the red markers and curve. The black dashed line is a linear fitting.  
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Chapter 7 Conclusion and Future Directions 

In conclusion, we study a family of type-II multiferroic candidates, RbFe(AO4)2, (A = Mo, Se, S) 

using linear and nonlinear spectroscopic techniques. We characterize the band gap transition in all 

three materials and find the presence of sub-band gap electronic transitions in all three at room 

temperature. At low temperature, we find that additional electronic transitions emerge near the 

band edge. Using a mixture of EDS and SHG scanning, we find the possibility of localized defect 

states that could potentially explain the origin of some of these electronic transitions, especially at 

room temperature. In RbFe(MoO4)2, we also find spectral signatures of trap defect states after the 

phase transition at 190 K. We find the absorption spectra for all three materials to be indicative of 

a direct band gap transition, which leads to the possibility of excitonic states below the band edge. 

Additionally, we address point group assignment discrepancies in literature at room temperature 

by utilizing RA SHG. Looking at the temperature dependent SHG response, we find evidence of 

a broad phase transition centered near 190 K in RbFe(SO4)2 where the SHG intensity increases by 

two orders of magnitude. Based on earlier analysis, we suggest that inversion symmetry is broken 

during this phase transition. By probing various regions of the sample, we also find this SHG 

response to have a macroscopic spatial dependency. Even more interesting, we find using SHG 

scanning that this spatial dependence occurs at length scales less than 100 µm in both unstrained 

and strained regions of the sample, providing a future direction for this study. 

 In another multiferroic material, NiTiO3, we study the relatively large ferro-rotational 

domain states using RA SHG. Due to unique processing requirements for this sample, we also 
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develop a technique in which to simulate the RA SHG response of both domains for an arbitrarily 

cut crystal plane. This technique opens up the possibility of studying irregularly shaped crystals 

that require a polished surface. Using this technique, we demonstrate the preservation of high-

temperature mirror symmetries at the domain wall. While we show that a polar model better fits 

our RA SHG data for an off-cut sample, we claim that further studies are needed to confirm or 

deny this. Specifically, a sample with a polished surface near the (001)-plane would provide an 

opportunity to probe these domain walls more easily.  

 Last, we investigate many-body effects in asymmetric InGaAs double quantum wells and 

an InGaAs single quantum well. We show using MDCS that systematically reducing the inter-well 

barrier width for the double quantum well results in a strong enhancement of many-body effects. 

We also determine that the zero-quantum coherences dephase more rapidly than the one-quantum 

coherences, suggesting that dephasing mechanisms come from anticorrelated or uncorrelated 

energy-level fluctuations. For a high-quality single quantum well, we take MDCS spectra at low 

excitation densities and find strong EIS signatures. While we saw an increase in EIS signatures for 

the reduced inter-well barrier width, we ascribe that sample quality should be considered when 

comparing the relative effects of EIS and EID in coupled quantum wells. We show that MDCS is 

a versatile technique in studying semiconductor heterostructures and could be useful for less 

developed quantum well devices, such as InGaN quantum wells. We perform PL and absorption 

spectroscopic in weakly absorbing InGaN multiple quantum wells and show that the PL resonances 

have defect-like characteristics. UV-based MDCS could provide an opportunity to understand 

coupling phenomena between these PL resonances. 
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Appendices  

Appendix A: RA SHG Simulation Calculations 

Crystal-axis Coordinate System 

This section shows how to derive the nonlinear susceptibility tensors for ED SHG and EQ 

SHG for various symmetries. The second- and third-order susceptibility tensors are given by Eq. 

(A-1) and Eq. (A-2), respectively. 

 

𝜒(2) =

(

 
 
 
 
 
 
(
𝑥𝑥𝑥
𝑥𝑥𝑦
𝑥𝑥𝑧

) (

𝑥𝑦𝑥
𝑥𝑦𝑦
𝑥𝑦𝑧

) (
𝑥𝑧𝑥
𝑥𝑧𝑦
𝑥𝑧𝑧

)

(

𝑦𝑥𝑥
𝑦𝑥𝑦
𝑦𝑥𝑧

) (

𝑦𝑦𝑥
𝑦𝑦𝑦
𝑦𝑦𝑧

) (

𝑦𝑧𝑥
𝑦𝑧𝑦
𝑦𝑧𝑧

)

(
𝑧𝑥𝑥
𝑧𝑥𝑦
𝑧𝑥𝑧

) (

𝑧𝑦𝑥
𝑧𝑦𝑦
𝑧𝑦𝑧

) (
𝑧𝑧𝑥
𝑧𝑧𝑦
𝑧𝑧𝑧
)
)

 
 
 
 
 
 

   (A-1) 

 

 

𝜒(3) =

(

 
 
 
 
 
 
(

𝑥𝑥𝑥𝑥 𝑥𝑥𝑥𝑦 𝑥𝑥𝑥𝑧
𝑥𝑥𝑦𝑥 𝑥𝑥𝑦𝑦 𝑥𝑥𝑦𝑧
𝑥𝑥𝑧𝑥 𝑥𝑥𝑧𝑦 𝑥𝑥𝑧𝑧

) (

𝑥𝑦𝑥𝑥 𝑥𝑦𝑥𝑦 𝑥𝑦𝑥𝑧
𝑥𝑦𝑦𝑥 𝑥𝑦𝑦𝑦 𝑥𝑦𝑦𝑧
𝑥𝑦𝑧𝑥 𝑥𝑦𝑧𝑦 𝑥𝑦𝑧𝑧

) (

𝑥𝑧𝑥𝑥 𝑥𝑧𝑥𝑦 𝑥𝑧𝑥𝑧
𝑥𝑧𝑦𝑥 𝑥𝑧𝑦𝑦 𝑥𝑧𝑦𝑧
𝑥𝑧𝑧𝑥 𝑥𝑧𝑧𝑦 𝑥𝑧𝑧𝑧

)

(

𝑦𝑥𝑥𝑥 𝑦𝑥𝑥𝑦 𝑥𝑦𝑥𝑧
𝑦𝑥𝑦𝑥 𝑦𝑥𝑦𝑦 𝑦𝑥𝑦𝑧
𝑦𝑥𝑧𝑥 𝑦𝑥𝑧𝑦 𝑦𝑥𝑧𝑧

) (

𝑦𝑦𝑥𝑥 𝑦𝑦𝑥𝑦 𝑦𝑦𝑥𝑧
𝑦𝑦𝑦𝑥 𝑦𝑦𝑦𝑦 𝑦𝑦𝑦𝑧
𝑦𝑦𝑧𝑥 𝑦𝑦𝑧𝑦 𝑦𝑦𝑧𝑧

) (

𝑦𝑧𝑥𝑥 𝑧𝑦𝑥𝑦 𝑦𝑧𝑥𝑧
𝑦𝑧𝑦𝑥 𝑦𝑧𝑦𝑦 𝑦𝑧𝑦𝑧
𝑦𝑧𝑧𝑥 𝑦𝑧𝑧𝑦 𝑦𝑧𝑧𝑧

)

(

𝑧𝑥𝑥𝑥 𝑧𝑥𝑥𝑦 𝑧𝑥𝑥𝑧
𝑧𝑥𝑦𝑥 𝑧𝑥𝑦𝑦 𝑧𝑥𝑦𝑧
𝑧𝑥𝑧𝑥 𝑧𝑥𝑧𝑦 𝑧𝑥𝑧𝑧

) (

𝑧𝑦𝑥𝑥 𝑧𝑦𝑥𝑦 𝑧𝑦𝑥𝑧
𝑧𝑦𝑦𝑥 𝑧𝑦𝑦𝑦 𝑧𝑦𝑦𝑧
𝑧𝑦𝑧𝑥 𝑧𝑦𝑧𝑦 𝑧𝑦𝑧𝑧

) (

𝑧𝑧𝑥𝑥 𝑧𝑧𝑥𝑦 𝑧𝑧𝑥𝑧
𝑧𝑧𝑦𝑥 𝑧𝑧𝑦𝑦 𝑧𝑧𝑦𝑧
𝑧𝑧𝑧𝑥 𝑧𝑧𝑧𝑦 𝑧𝑧𝑧𝑧

)
)

 
 
 
 
 
 

 (A-2) 

 

 

For the indistinguishable electric fields, we can say that second and third indices in 𝜒𝑖𝑗𝑘
(2)

 

are interchangeable such that the following substitutions can be made: 

 

𝑥𝑥𝑦 → 𝑥𝑦𝑥, 𝑥𝑥𝑧 → 𝑥𝑧𝑥, 𝑥𝑦𝑧 → 𝑥𝑧𝑦, 𝑦𝑥𝑦 → 𝑦𝑦𝑥, 𝑦𝑥𝑧 → 𝑦𝑧𝑥, 𝑦𝑦𝑧 → 𝑦𝑧𝑦, 𝑧𝑥𝑦 → 𝑧𝑦𝑥, 𝑧𝑥𝑧 →
𝑧𝑧𝑥, 𝑧𝑦𝑧 → 𝑧𝑧𝑦.  
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Similarly, the second and fourth indices in 𝜒𝑖𝑗𝑘𝑙
(3)

 are interchangeable with the following 

substitutions: 

 

 𝑥𝑥𝑥𝑦 → 𝑥𝑦𝑥𝑥, 𝑥𝑥𝑥𝑧 → 𝑥𝑧𝑥𝑥, 𝑥𝑥𝑦𝑦 → 𝑥𝑦𝑦𝑥, 𝑥𝑧𝑦𝑥 → 𝑥𝑥𝑦𝑧, 𝑥𝑦𝑧𝑥 → 𝑥𝑥𝑧𝑦, 𝑥𝑦𝑧𝑥 →
𝑥𝑥𝑧𝑦, 𝑥𝑥𝑧𝑧 → 𝑥𝑧𝑧𝑥, 𝑥𝑦𝑥𝑧 → 𝑥𝑧𝑥𝑦, 𝑥𝑧𝑦𝑦 → 𝑥𝑦𝑦𝑧, 𝑥𝑦𝑧𝑧 → 𝑥𝑧𝑧𝑦, 𝑦𝑦𝑥𝑥 → 𝑦𝑥𝑥𝑦, 𝑦𝑧𝑥𝑥 →
𝑦𝑥𝑥𝑧, 𝑦𝑥𝑦𝑦 → 𝑦𝑦𝑦𝑥, 𝑦𝑥𝑦𝑧 → 𝑦𝑧𝑦𝑥, 𝑦𝑥𝑧𝑦 → 𝑦𝑦𝑧𝑥, 𝑦𝑥𝑧𝑧 → 𝑦𝑧𝑧𝑥, 𝑦𝑦𝑥𝑧 → 𝑦𝑧𝑥𝑦, 𝑦𝑧𝑦𝑦 →
𝑦𝑦𝑦𝑧, 𝑦𝑦𝑧𝑧 → 𝑦𝑧𝑧𝑦, 𝑧𝑦𝑥𝑥 → 𝑧𝑥𝑥𝑦, 𝑧𝑧𝑥𝑥 → 𝑧𝑥𝑥𝑧, 𝑧𝑥𝑦𝑦 → 𝑧𝑦𝑦𝑥, 𝑧𝑥𝑦𝑧 → 𝑧𝑧𝑦𝑥, 𝑧𝑥𝑧𝑦 →
𝑧𝑦𝑧𝑥, 𝑧𝑥𝑧𝑧 → 𝑧𝑧𝑧𝑥, 𝑧𝑦𝑥𝑧 → 𝑧𝑧𝑥𝑦, 𝑧𝑧𝑦𝑦 → 𝑧𝑦𝑦𝑧, 𝑧𝑦𝑧𝑧 → 𝑧𝑧𝑧𝑦.  

 

Afterwards, we need to determine which elements are non-zero by looking at the symmetries of a 

point group. For rotations, we use the typical rotation matrices: 

 

𝑅𝑋(𝜙) = (

1 0 0
0 𝑐𝑜𝑠(𝜙) −𝑠𝑖𝑛(𝜙)

0 𝑠𝑖𝑛(𝜙) 𝑐𝑜𝑠(𝜙)
)) , 𝑅𝑌(𝜙) = (

𝑐𝑜𝑠(𝜙) 0 𝑠𝑖𝑛(𝜙)
0 1 0

−𝑠𝑖𝑛(𝜙) 0 𝑐𝑜𝑠(𝜙)
),  

𝑅𝑍(𝜙) = (
𝑐𝑜𝑠(𝜙) −𝑠𝑖𝑛(𝜙) 0

𝑠𝑖𝑛(𝜙) 𝑐𝑜𝑠(𝜙) 0
0 0 1

) 

 

Where 𝜙 → 2 𝜋 𝑛⁄  for 𝐶𝑛 symmetry operations. Mirror symmetries are given by  

 

𝜎𝑥 = (
−1 0 0
0 1 0
0 0 1

), 𝜎𝑦 = (
1 0 0
0 −1 0
0 0 1

), 𝜎𝑧 = (
1 0 0
0 1 0
0 0 −1

) 

 

Where 𝜎𝑥, 𝜎𝑦, and  𝜎𝑧 corresponds to a reflection on the 𝑦𝑧-plane, 𝑥𝑧-plane, and 𝑥𝑦-plane, 

respectively. The inversion matrix is given by  

 

𝑖 = (
−1 0 0
0 −1 0
0 0 −1

) 

 

Finally, rotation-reflections are given by the combination of a rotation and a reflection, 𝑆𝑛(𝑧) =

𝜎𝑧 ∙ 𝐶𝑛.  

 To solve for the non-zero tensor elements, for a symmetry operation 𝑂, we solve the linear 

equation 𝑂𝑇𝜒𝑂 − 𝜒 = 0. After making the appropriate substitutions after solving these linear 
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equations for the various crystal symmetry operations, we rotate our susceptibility tensor around 

the  𝑧-axis, (𝑅𝑍(𝜙))
𝑇
χ 𝑅𝑍(𝜙), to simulate rotating the sample in the clockwise direction. 

 Next, we define our incidence electric field polarizations, 𝑆 and 𝑃, and incoming wave 

vector as 𝐸𝑃 = (
𝑐𝑜𝑠(θ𝑖)
0

𝑠𝑖𝑛(θ𝑖)
), 𝐸𝑆 = (

0
1
0
), and 𝑘𝑖 = (

𝑠𝑖𝑛(𝜃𝑖)
0

−𝑐𝑜𝑠(𝜃𝑖)
), respectively. Note that θ𝑖 = 0 

corresponds to normal incidence. Afterwards, to solve for each channel, we find for ED SHG the 

summations 

 

𝛴𝑆𝑖𝑛/𝑃𝑖𝑛,𝑋  =  ∑𝜒𝑥𝑗𝑘
(2) (𝜙) 𝐸𝑗

𝑆/𝑃
𝐸𝑘
𝑆/𝑃

𝑗𝑘

 

𝛴𝑆𝑖𝑛/𝑃𝑖𝑛,𝑌  =  ∑𝜒𝑦𝑖𝑘
(2) (𝜙) 𝐸𝑖

𝑆/𝑃
𝐸𝑘
𝑆/𝑃

𝑖𝑘

 

𝛴𝑆𝑖𝑛/𝑃𝑖𝑛,𝑍  =  ∑𝜒𝑧𝑖𝑗
(2)(𝜙) 𝐸𝑖

𝑆/𝑃
𝐸𝑗
𝑆/𝑃

𝑖𝑗

 

 

Afterwards, we use these to find our four RA SHG channel intensities: 

 

𝐼𝑆−𝑆(ϕ) = (𝛴𝑆𝑖𝑛,𝑌)
2
 

𝐼𝑆−𝑃(𝜙) = (𝛴𝑆𝑖𝑛,𝑋 𝑐𝑜𝑠(𝜃𝑖))
2

+ (𝛴𝑆𝑖𝑛,𝑍 𝑠𝑖𝑛(𝜃𝑖))
2

 

𝐼𝑃−𝑆(𝜙) = (𝛴𝑃𝑖𝑛,𝑌)
2
 

𝐼𝑃−𝑃(𝜙) = (𝛴𝑃𝑖𝑛,𝑋 𝑐𝑜𝑠(𝜃𝑖))
2

+ (𝛴𝑃𝑖𝑛,𝑍 𝑠𝑖𝑛(𝜃𝑖))
2

 

 

For EQ SHG, we use the same procedure but use the summations: 

 

𝛴𝑆𝑖𝑛/𝑃𝑖𝑛,𝑋  =  ∑𝜒𝑥𝑗𝑘𝑙
(3) (𝜙) 𝐸𝑗

𝑆/𝑃
𝑘𝑘𝐸𝑙

𝑆/𝑃

𝑗𝑘𝑙

 

𝛴𝑆𝑖𝑛/𝑃𝑖𝑛,𝑌  =  ∑𝜒𝑦𝑖𝑘𝑙
(3) (𝜙) 𝐸𝑖

𝑆/𝑃
𝑘𝑘𝐸𝑙

𝑆/𝑃

𝑖𝑘𝑙

 

𝛴𝑆𝑖𝑛/𝑃𝑖𝑛,𝑍  =  ∑𝜒𝑧𝑖𝑗𝑙
(3) (𝜙) 𝐸𝑗

𝑆/𝑃
𝑘𝑘𝐸𝑙

𝑆/𝑃

𝑖𝑗𝑙
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Arbitrary Crystal Plane 

Here we will show the calculation and expressions for an arbitrary crystal plane for the 

3𝑚 Point group. Using the techniques in A.1, we can say the second-order susceptibility tensor 

for 3𝑚 is 

 

𝜒(2) =

(

 
 
 
 
 
 
(

0
−𝑦𝑦𝑦
𝑦𝑧𝑦

) (
−𝑦𝑦𝑦
0
0
) (

𝑦𝑧𝑦
0
0
)

(
−𝑦𝑦𝑦
0
0
) (

0
𝑦𝑦𝑦
𝑦𝑧𝑦

) (
0
𝑦𝑧𝑦
0
)

(
𝑧𝑦𝑦
0
0
) (

0
𝑧𝑦𝑦
0
) (

0
0
𝑧𝑧𝑧
)
)

 
 
 
 
 
 

 

 

 

Using our transformation matrix,  

 

 

𝑉 = (

𝑐𝑜𝑠(𝜃𝑐𝑢𝑡)𝑐𝑜𝑠(𝜙𝑐𝑢𝑡) −𝑠𝑖𝑛(𝜙𝑐𝑢𝑡) 𝑠𝑖𝑛(𝜃𝑐𝑢𝑡)𝑐𝑜𝑠(𝜙𝑐𝑢𝑡)
𝑐𝑜𝑠(𝜃𝑐𝑢𝑡)𝑠𝑖𝑛(𝜙𝑐𝑢𝑡) 𝑐𝑜𝑠(𝜙𝑐𝑢𝑡) 𝑠𝑖𝑛(𝜃𝑐𝑢𝑡)𝑠𝑖𝑛(𝜙𝑐𝑢𝑡)

−𝑠𝑖𝑛(𝜙𝑐𝑢𝑡) 0 𝑐𝑜𝑠(𝜃𝑐𝑢𝑡)
)

𝑇

 

 

 

We can then transform this matrix into an arbitrary basis that is in terms of the polar and 

azimuthal cut angles, 𝜃𝑐𝑢𝑡 and 𝜙𝑐𝑢𝑡, respectively. The final matrix is quite large, but here is the 

first component: 

 

𝜒𝑉𝑥𝑥
(2)

=

(

 
 

1

4
(−(2𝑦𝑧𝑦 + 𝑧𝑦𝑦 + 3𝑧𝑧𝑧)𝑠𝑖𝑛(𝜃𝑐𝑢𝑡) + (−2𝑦𝑧𝑦 − 𝑧𝑦𝑦 + 𝑧𝑧𝑧)𝑠𝑖𝑛(3𝜃𝑐𝑢𝑡) − 4𝑦𝑦𝑦 𝑐𝑜𝑠

3(𝜃𝑐𝑢𝑡) 𝑠𝑖𝑛(3𝜙𝑐𝑢𝑡)

−𝑦𝑦𝑦 𝑐𝑜𝑠2(𝜃𝑐𝑢𝑡) 𝑐𝑜𝑠(3𝜙𝑐𝑢𝑡)
1

2
 𝑐𝑜𝑠(𝜃𝑐𝑢𝑡) (−𝑧𝑦𝑦 + 𝑧𝑧𝑧 + (2𝑦𝑧𝑦 + 𝑧𝑦𝑦 − 𝑧𝑧𝑧)𝑐𝑜𝑠(2𝜃𝑐𝑢𝑡)  − 𝑦𝑦𝑦 𝑠𝑖𝑛(2𝜃𝑐𝑢𝑡) 𝑠𝑖𝑛(3𝜙𝑐𝑢𝑡)) )
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We then use 𝜒𝑉
(2)

 as our new tensor and can proceed in rotating the sample and finding the RA 

SHG channels. The parallel (𝑃 − 𝑃) and crossed (𝑃 − 𝑆) channels at normal incidence are: 

 

𝐼𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙(𝜙) = (𝑧𝑧𝑧 𝑐𝑜𝑠
3(𝜙) 𝑠𝑖𝑛3(𝜃𝑐𝑢𝑡) + (2𝑦𝑧𝑦 + 𝑧𝑦𝑦) 𝑐𝑜𝑠(𝜙) 𝑠𝑖𝑛(𝜃𝑐𝑢𝑡) 𝑠𝑖𝑛

2(𝜙) 

+ 𝑦𝑦𝑦 𝑐𝑜𝑠(𝜙𝑐𝑢𝑡)(1 − 2 𝑐𝑜𝑠(2𝜙𝑐𝑢𝑡)) 𝑠𝑖𝑛
3(𝜙) + 𝑐𝑜𝑠2(𝜃𝑐𝑢𝑡) 𝑐𝑜𝑠

2(𝜙)((2𝑦𝑧𝑦

+ 𝑧𝑦𝑦) 𝑐𝑜𝑠(𝜙) 𝑠𝑖𝑛(𝜃𝑐𝑢𝑡) + 3𝑦𝑦𝑦 𝑐𝑜𝑠(3𝜙𝑐𝑢𝑡) 𝑠𝑖𝑛(𝜙))

+ 𝑦𝑦𝑦 𝑐𝑜𝑠3(𝜃𝑐𝑢𝑡) 𝑐𝑜𝑠
3(𝜙) 𝑠𝑖𝑛(3𝜙𝑐𝑢𝑡)

− 3𝑦𝑦𝑦 𝑐𝑜𝑠(𝜃𝑐𝑢𝑡) 𝑐𝑜𝑠(𝜙) 𝑠𝑖𝑛
2(𝜙) 𝑠𝑖𝑛(3𝜙𝑐𝑢𝑡) )

2 

 

𝐼𝐶𝑟𝑜𝑠𝑠(𝜙) = (2(𝑦𝑦𝑦 𝑐𝑜𝑠
2(𝜃𝑐𝑢𝑡) 𝑐𝑜𝑠(𝜙)(1 − 3 𝑐𝑜𝑠(2𝜙)) 𝑐𝑜𝑠(3𝜙𝑐𝑢𝑡) + 𝑠𝑖𝑛(𝜙)((−𝑧𝑦𝑦 + 𝑧𝑧𝑧

+ (2𝑦𝑧𝑦 + 𝑧𝑦𝑦 − 𝑧𝑧𝑧) 𝑐𝑜𝑠(2𝜃𝑐𝑢𝑡)) 𝑐𝑜𝑠
2(𝜙) 𝑠𝑖𝑛(𝜃𝑐𝑢𝑡)

+ 2𝑦𝑧𝑦 𝑠𝑖𝑛(𝜃𝑐𝑢𝑡) 𝑠𝑖𝑛
2(𝜙) + 𝑦𝑦𝑦 𝑐𝑜𝑠(3𝜙𝑐𝑢𝑡) 𝑠𝑖𝑛(2𝜙))) + 𝑦𝑦𝑦 𝑐𝑜𝑠(𝜃𝑐𝑢𝑡)((−1

+ 4 𝑐𝑜𝑠2(𝜃𝑐𝑢𝑡) 𝑐𝑜𝑠
2(𝜙)) 𝑠𝑖𝑛(𝜙) + 3 𝑠𝑖𝑛(3𝜙)) 𝑠𝑖𝑛(3𝜙𝑐𝑢𝑡))

2 

 

Appendix B: Fabrication Techniques and Experimental Improvements 

Anti-reflectivity (AR) Coatings 

AR coatings were a critical aspect to many of these measurements as well as other projects. 

Here we describe a simple way to implement AR coatings that reduces significantly reduced noise 

from back reflections. In fact, the absorption spectrum for InGaN multiple quantum wells was 

unattainable without the AR coating due to significant interference fringes from the quantum wells. 

Noise-free 2D spectra on the single InGaAs quantum well and 5nm barrier double quantum well 
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was also difficult to obtain without these AR coatings.  These AR coatings were fabricated at the 

U-M LNF. 

 The first step is to determine the refractive index of the sample. This was done on the 

Woollam ellipsometer described earlier. Focusing optics were often needed to produce a spot size 

small enough for these samples. Depending on the refractive index of the material, a coating 

material was chosen to help match the refractive indices, which meant choosing a coating with a 

refractive index between that of the sample and airs. There are many available thin-film calculator 

tools to determine the proper thickness of the coating depending on the refractive index. This can 

also be calculated using Snell’s law and the Fresnel equations to determine the difference in path 

lengths between interfering waves. AR coating film materials were also determined based on the 

available deposition options at the LNF. 

 For the InGaAs single quantum wells, using AlGaAs as a baseline model, we found a 

refractive index of 3.51 at 834 nm (the exciton resonance). Prior to ellipsometry measurements, 

the sample was sonicated in acetone, isopropyl alcohol, and DI water at 60 ℃ and dried using 

nitrogen gas. Based on the refractive index, halfnium oxide (HfO2) was chosen, which had a 

predicted refractive index of 2.053 at 834 nm based on characterizations from LNF technical staff. 

The desired AR coating thickness was found to be 1020 Å. The tolerance level was found to be 

± 50 Å for < 1% increase in the reflectivity level. The HfO2 coating was thermally deposited at 

200 ℃ using atomic layer deposition on a Veeco Fiji ALD tool. The sample was cleaned prior to 

deposition.  

 For the InGaN multiple quantum wells, a similar approach was used. The estimated 

refractive index of the GaN-based quantum wells was 2.56 near 400 nm. The estimated refractive 

index of the sapphire substrate (Al2O3) was 1.7866. Based on this, a 68 nm thick SiO2 AR coating 
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was chosen. This was deposited using plasma enhanced chemical vapor deposition at 200 ℃ on a 

Plasmatherm 790. The recipe name is L_OX200. Prior to deposition, a dummy wafer was used to 

calibrate the deposition rate, which was set to 8.33 Å/𝑠. The AR coating on one side of the sample 

was measured to be 72.25 nm and the other side, 69.39 nm.  

 For NUV absorption measurements on RbFe(AO4)2, (A = Mo, Se, S), we used a similar 

process to AR coat the sapphire disk substrates. Specifically, ~ 68 nm of SiO2 was deposited on 

both sides of commercially available uncoated sapphire disk from Edmund optics.  

 

Mechanical Etching and Electrodes on Irregularly Shaped Crystals 

To demonstrate an example of a mechanical etching procedure, we outline that for a Weyl 

semimetal, CoSi. A similar process was used for the RbFe(AO4)2 , (A = Mo, Se, S) crystals, though 

through the mechanical etching process typically layers would be cleaved versus polished. They 

were mechanically etched until only a thin layer remained. 

 The purpose of this was to prepare irregularly shaped CoSi crystals for lead deposition. 

This meant the crystal face we wanted our leads on needed to be parallel to the carrier (in this case 

a Si chip). We first mount front side of sample to a non-wedged sapphire disk (or other strong 

transparent flat surface) such that the two are touching using high temperature wax/crystal bond 

(more robust than low temperature). Next, we check using microscope that it is the correct face 

attached to the sapphire disk. Afterwards, we mount sapphire disk to the sample stage of the 

lapping fixture (used South Bay Technology lapping fixture; can use lower temp crystal bond for 

this). Next, attach stage to fixture and find the height at which the sample is touching a flat surface. 

Then place lapping paper (SiC 1200 grit/5 um or AlOx 0.3 um) on rubber matt on top of glass 

lapping surface, use some water for adhesion if need be. In a figure eight motion, gently move the 
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fixture over the lapping paper. Adjust height (small increments such as 25-50 um for smoother 

finish, 100 um if you need to remove a fair amount of bulk) once there appears to be no more 

material coming off. Use polishing paper or finer grit lapping paper for final finish. Before and 

after pictures can be seen in Figure A-1.  

   

 

Figure A-1 (a) and (c) are the before and after microscope images of a finely polished (100) CoSi 

face to remove and residual flux materials from the as-grown surface. (b) and (d) are the before 

and after microscope images of the roughly polished backside of the (100) CoSi face. The surface 

in (d) is adhered to a Si substrate and is roughly parallel with the as-grown surface in (c). 

 

 Gold pads were deposited using thermal evaporation on a Angstrom Engineering Evovac 

Evaporator. The final thickness of the pads was 2.555 𝑘Å and the deposition rate was 7 Å/𝑠. The 

starting pressure was 2.9E-6 Torr and starting temperature was room temperature. No adhesion 
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layer was put on between the sample and the gold pads for easier removal. Leads were later painted 

on using silver epoxy. A diagram of the desired outcome is given in Figure A-2. 

 

Figure A-2 Example of diagram for lead deposition. 

 

MONSTR Detection Improvements 

To improve the long-term stability of the MONSTR, we implemented a new collinear 

locking scheme for pulses Ref and C (see sections 3.2-3 for labeling scheme), whose interference 

is measured after the sample. The old scheme proved to be a source of major drift in the system, 

making locking difficult or impossible for the length of a full 3D MDCS measurement (> 12-16 

hrs). The new scheme is shown in Figure A-3. Additionally, using a preamplifier, the 

photodetector signal was enhanced to utilize the full range of the PZT voltage. Mechanical and 

environment improvements were also implemented to help stabilize the cryostat platform. 
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Figure A-3 Collinear locking scheme for pulses Ref and C on the MONSTR.  
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