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Abstract 

 Sexual reproduction in flowering plants relies on the successful delivery and 

fusion of the male and female gametes. Ovules contain the female gametes and are 

located in the ovaries, which are embedded in the female reproductive tissue- 

collectively referred to as the pistil. The male gametes are transported through a 

specialized cell called the pollen tube, which must penetrate and traverse through the 

transmitting tract, which can be dense with carbohydrates secreted from the 

surrounding cells, or open- depending on the species. Therefore, successful fertilization 

relies on the pollen tube’s ability to grow, successfully navigate to the ovules, and burst 

to release the sperm cells once inside the ovule. While these physiological events are 

well-understood, the molecular mechanisms underlying key processes are still unclear. 

 Sperm delivery relies on the pollen tube’s ability to maintain the structural 

integrity of its cell wall throughout the growth process; it must be rigid enough to 

penetrate the female tissue and prevent premature rupture, but also extensible at the tip 

to allow for elongation. This is regulated by a multitude of factors that control the 

structural integrity of the cell wall, which include the synthesis and trafficking of cell wall 

materials, secretion, and the proper assembly, organization, and modification of these 

materials once they are deposited into the extracellular space. Many factors have been 

identified, but many key players and their roles have yet to be discovered.  



 xiii 

 This dissertation describes how we identified new factors that regulate pollen 

tube growth by influencing the structural and mechanical properties of the cell wall, by 

using a combination of genetic, molecular, and bioinformatic approaches. We 

characterized the cell wall structural defects caused by loss of protein O-arabinosylation 

in Arabidopsis pollen tubes which primarily included loss of cell polarity, increased 

bursting frequency, and decreased elongation rates which, in combination, caused poor 

fertility. We examined the pollen tube cell wall structure and discovered that loss of 

protein O-arabinosylation was associated with changes in the composition of the cell 

wall and the organization of its components which have important roles in regulating the 

mechanical properties of the cell wall. Through a forward genetics screen, we identified 

mutations in key secretory genes- including members of the exocyst complex- that 

suppressed the effects caused by loss of protein O-arabinosylation and improved pollen 

tube growth and fertility, and we interrogated the link between the secretory pathway 

and cell wall structure. We also identified a mutation in a gene involved in 

phosphoinositide (PI) signaling, which appears to be suppressing the effects caused by 

loss of O-arabinosylation through another pathway. By characterizing the effects of this 

suppressor mutation and learning more about the gene involved, we have identified 

another novel factor that regulates tip growth and cell wall structure in Arabidopsis 

pollen tubes. Our findings described herein demonstrate how we have contributed to the 

overall knowledge of the plant development and reproduction field by addressing how 

protein O-arabinosylation, secretion, and PI signaling pathways combine to influence 

the structural and mechanical properties of the cell wall. 
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Chapter 1 - Literature Review 

 
Introduction of pollen tubes as a model to study cell wall structure and secretion 

The plant cell wall is a complex extracellular matrix composed of multiple 

carbohydrate networks including cellulose, hemicellulose, callose and pectins, as well as 

proteins such as cell wall-remodeling enzymes and glycoproteins. The cell wall is 

essential for the proper development and growth of both the sporophytic/vegetative and 

gametophytic/reproductive phases of the plant life cycle by performing key functions such 

as providing structural support, mediating cell to cell communication, and serving as a 

defensive barrier against biotic and abiotic stresses, among others. During cell growth, 

the wall must be rigid enough to maintain structural integrity and prevent rupture, but 

capable of re-organization to allow for expansion. This is mediated through changes in 

wall structure which promote or inhibit expansion, but how does the structure of the 
cell wall contribute to its mechanical properties?  

Pollen tube (PT) growth occurs through a tip-growth mechanism, which is a highly- 

polarized form of cell growth that also occurs in root hairs, fungal hyphae, and neuronal 

axons (Campàs & Mahadevan, 2009). After landing on the stigma, a pollen grain will 

germinate to form a tube, which elongates and delivers the sperm cells to the ovules 

located in the ovaries, which are embedded in the pistil. PTs must grow with enough force 

to penetrate the transmitting tract of the pistil, navigate into an ovule (mediated by 

guidance cues secreted by the female tissue) and rupture in a timely manner to release 

the sperm nuclei (Higashiyama & Takeuchi, 2015). Proper PT tip growth is mediated by 

maintaining two spatially-distinct regions of cell wall with different mechanical properties: 

(i) an extensible tip that allows for expansion while preventing premature rupture, and (ii) 

rigid subapical walls (known as the shank), which are fortified with callose and pectic 

crosslinking to withstand internal turgor pressure and direct it towards the tip to drive 

expansion (Chebli et al., 2012) (Figure 1A). The cell wall is continually expanded 
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throughout growth, and therefore relies on the proper synthesis and rapid secretion of cell 

wall materials; however, trafficking and exocytosis must be carefully balanced with 

endocytosis to prevent over-accumulation of materials and thickening of the tip cell wall, 

which inhibits growth (Ischebeck et al., 2008). PTs are an excellent system to study cell 

growth because expansion is occurring at a confined apical region with unique cell wall 

properties relative to its subapical, non-growing regions. Also, in multicellular tissues, the 

walls of individual cells form a shared continuous layer, and changes in individual cell 

morphology affect neighboring cells through this attachment (Daher & Braybrook, 2015). 

Because there are no neighboring cells, single- celled PTs are a convenient model to 

study cell growth in vitro. 

 Studying the cell wall poses unique challenges, which are largely due to its dense, 

acidic environment and interconnectedness of different polymers, networks, fibrils, etc. 

While PTs offer the convenience of a single cell, their cell wall contains low amounts of 

cellulose and high amounts callose, making them different than other tissues. Therefore, 

studying PTs allows us to identify new factors that regulate cell wall structure and growth, 

which may not have roles in vegetative tissues. This chapter will review what is known 

about how cell wall materials are structurally organized and secreted to regulate PT tip 

growth, and will focus on several main areas: (1) the extensin proteins and the enzymes 

that modify them, and how extensin structure and function regulates cell wall properties; 

(2) pectins, which interact with extensins and have major roles in regulating cell wall 

structure and mechanics through crosslinking activity; (3) how the exocyst complex 

regulates polarized secretion and cell growth; and (4), how phosphoinositide signaling at 

the plasma membrane regulates exocyst-mediated secretion and polarized growth.  

 

1.1 Extensins  

1.1.1 Overview 

Although they are only a minor portion of the cell wall by weight, cell wall-

associated glycoproteins- and the enzymes that modify them- are essential for the many 

growth and developmental processes in plants. The hydroxyproline (Hyp)-rich 
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glycoproteins (HRGPs) are a large family of cell-wall associated proteins in plants and 

they are classified into three main subfamilies: (i) extensins (EXT) and extensin-like 

proteins, (ii) arabinogalactan proteins (AGPs), and (iii) proline-rich glycoproteins (PRPs) 

(reviewed recently in (Petersen et al., 2021). However, the delineations between 

subfamilies are not always clear due to the existence of HRGP hybrid and chimera 

proteins, which may include multiple HRGP domains of different types, or HRGP domains 

fused with non-HRGP domains which have their own function/activity (Borassi et al., 

2016). The HRGPs undergo varying degrees of posttranslational glycosylation; AGPs are 

highly glycosylated, the classical extensins are typically moderately glycosylated, and 

PRP glycosylation is usually the least extensive (Showalter et al., 2010).  

Early studies showed that expression of extensins and other HRGPs is 

upregulated during development and in response to conditions including wounding, 

fungal and viral infection, and abiotic stresses (e.g. heat shock, water stress, and 

drought). Extensin expression was mainly associated with phloem and cambium tissues, 

although the means of detecting expression were limited by some of the techniques used 

(including tissue print protein and mRNA blots), and their insolubilization in the cell wall 

created difficulty for protein detection (Showalter, 1993). Insolubilization in the cell wall is 

mediated by multiple types of crosslinking reactions (discussed later) and is an important 

aspect of extensin structural function in the cell wall. Extensin increases the cell wall’s 

resistance to enzymatic digestion, osmotic lysis (Lamport & Lamport, 1966), and 

pathogen infection (Esquerré-Tugayé et al., 1979; Hammerschmidt et al., 1984), and 

inhibited cell elongation in pea epicotyl and root sections (Cleland & Karlsnes, 1967; 

Sadava & Chrispeels, 1973; Vaughan & Cusens, 1973), suggesting that the primary 

function of extensins is strengthening the cell wall. But how do extensins regulate the 
structural and mechanical properties of the cell wall, and what is the significance 
of glycosylation in this process? This section will focus on literature that addresses 

how extensin protein structure and function are important in plant processes- with an 

emphasis on tip growth. 

 

1.1.2 Extensin structure and crosslinking in the cell wall  
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The structures of “classical” extensins are highly periodic and amphiphilic with key 

features including an N-term signal peptide followed by repetitive amino acid sequences, 

including Ser(Pro)3-5 motifs which alternate with lysine- and tyrosine (Y) -containing motifs 

(Y/VY) (and occasionally His-) (Figure 1B) (Showalter et al., 2010). The high level of 

proline promotes formation of a polyproline II helical structure, and early structural studies 

showed that extensin monomers extracted from carrot appear as elongated rods when 

imaged with electron microscopy. De-glycosylation of extensins using hydrogen fluoride 

eliminated the appearance of these elongated structures, suggesting that glycosylation is 

important to maintain extensins in an extended rod-like conformation. Extensins from 

carrot were observed to undergo Tyr-Tyr crosslinking intra-molecularly (forming 

isodityrosine- Idt) and inter-molecularly to form short oligomers (Stafstrom & Staehelin, 

1986a).  

This was corroborated in a more recent study, which showed Arabidopsis EXT3 

molecules undergo crosslinking in vitro. Purified AtEXT3 monomers that were incubated 

with extensin peroxidase polymerized through covalent linkages between individual 

tyrosine residues and/or Idt motifs. Intermolecular crosslinking occurring through the 

formation of trimeric (pulcherosine) and di-Idt (four crosslinked tyrosines) linkages, which 

resulted if the monomers were aligned in parallel (or head-to-head) or staggered, 

respectively (Cannon et al., 2008). In the same study, a separate approach was used to 

examine EXT3 crosslinking, where EXT3 monomers in solution were transferred to a 

graphite surface (without extensin peroxidase) and visualized using atomic force 

microscopy (AFM). All EXT3 monomers adopted rod-like conformations and polymerized 

to form dendritic networks through end-on and lateral branching. Interestingly, a synthetic 

analog composed of repetitive extensin motfis (SOOOOSOSOOOOYYYK)20 did not 

assemble to form dendritic networks, indicating importance of the YVY motif to form 

pulcherosine in EXT3 network assembly (Cannon et al., 2008).  

Extensin crosslinking also influences the cell wall through interactions with pectin. 

Pectins are a family of secreted carbohydrates that have diverse structures and are 

described in more detail in section 1.2. However, a key component is homogalacturonic 

(HG) acid and is found in polygalacturonan chains which can be modified to expose free, 

negatively- charged carboxyl groups; calcium bridges between carboxyl groups of 
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neighboring HG chains form crosslinks which increases cell wall rigidity (Carpita & 

Gibeaut, 1993; MacDougall et al., 1996). Extensins are carry an overall net positive 

charge due to the abundance of lysine, and extensins extracted from tomato were shown 

to be ionically bound to negatively- charged pectic carboxyl groups (Smith et al., 1984). 

Carrot extensin was also shown to interact ionically with homogalacturonan (MacDougall 

et al., 2001). A synergistic effect was observed between extensin crosslinking and pectin 

crosslinking, suggesting that extensin oligomers can promote pectin crosslinking through 

ionic interactions (i.e. extensin pectate) (MacDougall et al., 2001). Furthermore, cotton 

extensin forms covalent interactions with another pectic component called 

rhamnogalacturonan-1 (Qi Xiaoyang et al., 1995). Therefore, it is hypothesized that 

extensin networks function as scaffolds to template the assembly of pectins (and possibly 

other cell wall materials) secreted in the cell wall through direct interactions (Cannon et 

al., 2008) (Figure 1D).   

 

1.1.3 Functional studies of EXT and EXT-like mutants   

The EXT protein family consists of the classical EXTs and EXT-like proteins 

including the leucine-rich repeat extensins (LRXs), formins (or formin homology- FHs), 

and the proline-rich extensin-like receptor kinases (PERKs) [reviewed in (Borassi et al., 

2016)]. A few of these members have described functions in regulating cell wall structure 

and growth, which will be reviewed in this section starting with the classical EXTs.  
A mutation in Arabidopsis causing defects in root, shoot, and hypocotyl 

development and seedling germination defects called rsh was mapped to a gene 

encoding an extensin. RSH was found to be an essential gene, as rsh/rsh homozygous 

knock out mutant seedlings do not live past ~3 weeks even under the most pampered 

conditions. Embryonic development was disrupted in rsh mutants; ~25% of rsh embryos 

showed mispositioning of the cell plate as early as the first zygotic division, leading to 

abnormal cell shapes. In rsh plants that survived to the seedling stage, cell shape was 

abnormal throughout the layers of the root. RSH-GFP localized to the cell wall of 

embryonic and root cells and was also observed at the edges of the cell plate and 

corresponding junction position in the mother cell wall. This study suggested that RSH 
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plays an important role regulating cytokinesis to influence cell shape (Hall & Cannon, 

2002). A follow-up study identified RSH as EXT3. The cytokinesis defects were examined 

more closely and revealed the presence of wall stubs, hanging walls (the one side of the 

cell plate connected to the mother cell wall), and floating walls (no cell plate connections) 

in sections of 3-day-old roots, which further supports the role of EXT3 as a contributor of 

wall formation during cytokinesis (Cannon et al., 2008). 

In Arabidopsis, loss of EXT18 caused defects in both vegetative and reproductive 

organs. Abnormal vegetative phenotypes in ext18 plants included delayed seedling 

germination frequency, fewer and smaller leaves, shorter primary roots, and more lateral 

roots, which indicated that EXT18 has an important role in the development in a broad 

range of tissue types. ext18 also caused a pollen- specific transmission defect. This was 

consistent with the observed expression pattern of the EXT18p:GUS reporter, which 

showed activity in the anthers and pollen (and vegetative tissues) but not the female 

reproductive organs. Compared to WT, ext18 PTs germinated at a lower frequency and 

burst at a higher frequency in vitro; additionally, about half the ext18 was dead when 

dissected from anthers, indicating that pollen development was also compromised, in 

addition to PT germination and growth. DAPI staining of ext18 pollen grains showed that 

meiosis was occurring correctly. Therefore, it was concluded that EXT18 functions to 

maintain the structural integrity of the cell wall in developing pollen and the PT to promote 

proper cell growth and plant fertility- in addition to its role in vegetative tissues (Choudhary 

et al., 2015).  

 The leucine-rich repeat extensins (LRXs) are a subclass of the extensin family 

named for their chimeric structure which includes an N-terminal leucine-rich repeat (LRR) 

domain and a C-terminal EXT domain. The LRR domain is associated with the plasma 

membrane and may be involved in cell signaling by interacting with other proteins or 

molecules, while the EXT domain functions to anchor the protein in the cell wall (Fabrice 

et al., 2018). LRXs are also involved in tip growth of root hairs and PTs. In Arabidopsis 

lrx1 mutants, root hairs are short and swollen with occasional branching and bursting 

(Baumberger et al., 2001). These defects were exacerbated in lrx1/2 double homozygous 

mutants, whose root hairs were mostly either burst or very short, suggesting that. lrx1/2 

cell walls showed abnormal architecture with irregular changes in thickness, suggesting 
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that LRX1 and LRX2 have partially- overlapping functions in regulating maintain structural 

integrity to promote proper root hair tip growth (Baumberger et al., 2001). LRXs 8-11 

function redundantly to promote PT germination and elongation, and higher-order 

mutants shown altered cell wall composition, including abnormalities in pectic, xyloglucan, 

callose, and glycoprotein (AGPs and EXTs) accumulation and patterning (Fabrice et al., 

2018; Sede et al., 2018). These LRXs have also been shown to bind Rapid Alkalinization 

Factor (RALF) 4, which along with RALK19, controls cell wall composition to promote 

proper PT growth primarily through regulating cell wall integrity and decreasing bursting 

frequency (Mecchia et al., 2017).  

 A subset of formins (class I) contain extracellular EXT-like domain that contains 

Ser(Pro)3-5 motifs, a transmembrane domain, and an intracellular formin domain which 

nucleates actin filament polymerization (Ingouff et al., 2005). Similar to LRXs, the 

extracellular EXT-like domain functions to anchor formins in the cell wall and immobilize 

them in the plasma membrane (Martinière et al., 2011). Formins promote actin 

polymerization by nucleating actin (Cheung et al., 2010) and increasing filament 

elongation rate (Lan et al., 2018), and formins are required for proper tip growth of both 

PTs (FH1 and FH3) and root hairs (FH1 and FH8) in Arabidopsis [reviewed in (Borassi et 

al., 2016)]. FH5 was also shown to be important for PT growth as well, and loss of FH3 

and/or FH5 decreases overall actin filamentation levels and organization in the PT, which 

is associated with decreased vesicular transport in fh3/fh5 mutants (Lan et al., 2018). 

Furthermore, while the EXT-like domain functions to anchor the FHs, as well as the LRXs, 
it has not yet been shown if proline hydroxylation and/or subsequent O-
glycosylation occurs on these proteins, and whether this is an important factor in 
cell wall anchoring.   
 The proline-rich extesin-like receptor kinases (PERKs) also contain an 

extracellular domain with Ser(Pro)3-5 motifs, in addition to a transmembrane helix and 

intracellular receptor-like kinase domain (Nakhamchik et al., 2004). There are 15 PERKs 

in Arabidopsis and microarray analysis shows that root and pollen are two tissue types 

with the highest PERK expression, and PERK8 and 13 are specifically expressed in root 

hairs while PERK6, 7, 11, and 12 are expressed specifically in pollen. Less is known 

about the function of the PERK family members, but several PERKs are important for cell 
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growth in roots and root hairs in Arabidopsis [reviewed in (Borassi et al., 2016)]. 

Importantly, the role of the PERK kinase domain is unknown because their endogenous 

ligands have not been identified.  
 

1.1.4 Functional studies of O-arabinosyltransferase mutants 

Prolines in Ser(Pro)3-5 motifs are hydroxylated by proline 4-hydroxylases (P4Hs) 

to form hydroxyproline (Hyp), which is a substrate for additional modifications (described 

below) (Tiainen et al., 2005). In Arabidopsis, PRH4, 5, and 13 are required for normal root 

hair growth, as these single knockout p4h mutants had decreased root hair lengths; 

similar results were also observed using pharmacological P4H inhibition and RNA-

interference knockdown lines for these genes (Velasquez et al., 2011). Hyp content was 

decreased in each mutant as well. ext6, 7, 10, 11 and 12 knockout lines also showed a 

similar root hair growth defect, indicating that these specific extensins, and O-

glycosylation in general, are essential for normal root hair growth. The P4Hs localized to 

the ER and golgi stacks, indicating that proline hydroxylation (and subsequent O-

glycosylation) occurs during the secretory pathway (Velasquez et al., 2015).  

Extensins undergo O-arabinosylation at Hyp residues harbored within Ser(Hyp)3-5 

motifs. Hyp-Ara can then further modified to form chains with up to 5 arabinoses (Akiyama 

et al. 2014). The first arabinose is added to Hyp through a β-1,4 linkage by a family of 

enzymes named Hyp O-arabinosyltransferases (HPATs) (Ogawa-Ohnishi et al., 2013); 

the Reduced Residual Arabinose (RRA) enzyme family extends Hyp-Ara to Hyp-Ara2 

through a β-1,2 linkage (Egelund et al., 2007; Velasquez et al., 2011); Hyp-Ara2 is 

extended to Hyp-Ara3 through a β-1,2 linkage by the Xylo-EndoGlucanase 113 (XEG113) 

enzyme family (Gille et al., 2009); and Hyp-Ara3 is extended to Hyp-Ara4 through a β-1,2 

linkage by the Extensin Arabinose Deficient (ExAD) family, which were the most recently 

identified (Møller et al., 2017) (Figure 1C). Sometimes a fifth arabinose is added through 

a α-1,3 linkage, but the enzyme(s) responsible for adding this have not been identified.  

Three HPATs were identified in Arabidopsis (HPAT1, 2, and 3). Each gene was 

broadly expressed across multiple tissue types, and HPAT1-GFP co-localized with the 

cis-golgi marker mRFP-SYP31. hpat single and double mutants showed decreased Hyp-
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Ara of EXT3 and an increase in free Hyp residues. hpat single mutants showed no 

abnormal phenotype, but hpat1 hpat2 (hpat1/2) double mutants had vegetative 

phenotypes including elongated hypocotyls with thinner cortical cell walls, suggesting that 

HPATs 1 and 2 function redundantly during plant growth. Average PT lengths from 

HPAT1 +/- HPAT3 +/- double heterozygotes were shorter than HPAT1/3 WT, suggesting 

that in addition to vegetative development, HPAT-mediated Hyp O-arabinosylation of 

extensins is also important for reproductive growth (Ogawa-Ohnishi et al., 2013). This 

was confirmed, as further examination identified a strong, pollen-specific transmission 

defect of the hpat1/3 double mutant due to poor PT elongation, with no defects observed 

in hpat1/3 pollen grain development or viability (MacAlister et al., 2016).  

Hyp O-arabinosylaton is not only important for PT tip growth. In the moss 

Physcomitrella patens, protonemal filaments growth through a tip-growth mechanism 

similar to PTs and root hairs. Interestingly, hpata single and hpata/b double mutants had 

increased protonemal tip growth, which is an opposite effect than observed in Arabidopsis 

hpat1/3 PTs (MacAlister et al., 2016). One possible explanation is that moss protonema 

is that moss lack the classical extensins (but possess LRXs), and because the machinery 

involved in HPAT-mediated cell growth has evolved since mosses and angiosperms 

diverged, so have the mechanisms of tip growth. In Arabidopsis, each of the rra1, rra2, 

rra3 and xeg113 knockout mutants had shorter root hairs (Velasquez et al., 2011). xeg113 

mutants also had elongated hypotcotyls, similar to what was reported for the hpat1/2 

mutant (Gille et al., 2009; Ogawa-Ohnishi et al., 2013). exad knockout lines also had 

shorter root hairs (Møller et al., 2017).  

It is worth noting that Hyp O-arabinosylation has another role in regulating cell 

differentiation in the shoot apical meristem. In tomato, loss of one HPAT caused a mutant 

phenotype with a fascinated inflorescence (fin) that produced a higher number of floral 

organs per meristem which resulted in larger fruits (Xu et al., 2015). The CLAVATA 

signaling pathway controls meristem size (Clark et al., 1995), and CLV/CLE peptides are 

normally Hyp O-arabinosylated (Schoof et al., 2000; Shinohara & Matsubayashi, 2013). 

A CLV peptide in Arabidopsis called CLE2 was under Hyp O-arabinsoylated specifically 

in the hpat3 knockout mutant, showing that this modification was HPAT-dependent 

(Ogawa-Ohnishi et al., 2013). Interestingly, none of the hpat mutants, including the 
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hpat1/2/3 triple homozygous mutant, had a fascinated inflorescence (MacAlister et al., 

2016). It is suggested that the HPATs are the only enzymes with Hyp O-arabinosylation 

activity, but it cannot be completely ruled out that other enzymes may be modifying CLE2, 

CLV3, or other CLV peptides. Another possible explanation for lack of inflorescence 

fasciation in Arabidopsis is that Hyp-Ara is not required for CLV peptide-mediated 

activation of CLV1 (MacAlister et al., 2016). No PT or phenotypes were reported for fin, 

but there are multiple FINS in tomato which may have specialized roles in tip-growing 

cells.  

 

1.1.5 Functional model of how EXTs influence cell wall structural properties 

Taken together, these findings indicate that extensins and undergo proline 

hydroxylation and subsequent Hyp O-arabinosylation at Ser(Pro)3-5 motifs during their 

transport through the ER and golgi by a cascade of enzymes localized in these 

organelles, prior to secretion into the cell wall. Hyp O-arabinosylation appears to be 

important for extensin crosslinking, and extensins associate ionically with pectins, which 

also have a major role in cell wall structural and mechanical properties. Extensins seem 

to strengthen the cell wall through crosslinking to form EXT-EXT networks, which also 

affects pectic crosslinking in many tissues. Therefore, crosslinked EXT networks are 

thought to function as a scaffold to template the proper assembly and organization of 

secreted pectins. Extensin glycosylation is particularly important for tip-growing cells 

including PTs and root hairs. Loss of glycosylation reportedly increased anisotropic cell 

growth in hypocotyls by decreasing cell wall thickness (Ogawa-Ohnishi et al., 2013), but 

no other abnormal vegetative phenotypes were observed for hpat1/3 mutants 

(MacAlister et al., 2016). Therefore, extensin glycosylation is largely expendable for 

most cell types, except PTs and root hairs, which indicates that tip growth is uniquely 

sensitive to extensin glycosylation. The role of extensin glycosylation (and the enzymes 

involved) in tip growth is likely to maintain the specialized cell wall structure to promote 

proper growth, but how this occurs is still not entirely clear.  
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1.2 Pectins 

1.2.1 Overview 

Pectins make up about 35% of the primary cell wall in dicots and are highly 

structurally diverse (Fry, 1988). Pectic backbones and side chains are composed of 

multiple polymers including homogalacturonan (HG), rhamnogalacturonan I (RG-I), 

rhamnogalacturonan II (RG-II), xylogalacturonan, and apiogalacturonan (Mohnen, 2008; 

Wolf et al., 2009). While the exact cell wall composition varies between species and tissue 

types, HG is the most abundant, constituting ~65% of pectin polymers (Mohnen, 2008). 

HG is primarily composed of alpha-1,4-linked-d-galacturonic acid (GalA) and is 

synthesized in the Golgi by a family of enzymes known as HG galacturonasyl-

transferases (GAUTs) (Ridley et al., 2001; Sterling et al., 2001, 2006). Most GalA (~80%) 

residues in HG become highly methylesterified (me-HGs) by enzymes in the Golgi called 

and are secreted into the apoplast in this form (Krupková et al., 2007; Mohnen, 2008; 

Mouille et al., 2007; O’Neill et al., 1990). The degree of methylesterification (DM) of HG 

is an important factor in many plant processes including the development of vegetative 

tissues, reproduction, and interactions with the environment [as reviewed in (Levesque-

Tremblay et al., 2015). In addition to methylation, HGs can also be O-acetylated, although 

how HG acetylation influences cell wall mechanical properties is not as well-understood 

as DM (de Souza et al., 2014). Additionally, boron-mediated crosslinking of RG-II 

molecules has been shown to be important for development of reproductive and 

vegetative tissues (Chormova et al., 2014; Iwai et al., 2002, 2006; O’Neill et al., 2004).   

 

1.2.2 HG DM is regulated by PMEs and PMEIs 

After secretion into the cell wall, HG DM is selectively modified by pectin 

methylesterases (PMEs). PMEs catalyze the de-methylesterification of me-HGs to form 

dme-HG, exposing negatively- charged carboxyl groups. Neighboring dme-HG molecules 

crosslink with each other via calcium bridges (referred to as the “egg-box” model) which 

promotes gelation and increases the overall rigidity of the cell wall (Figure 1E) (Bosch et 
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al., 2005; Braccini & Pérez, 2001; Catoire et al., 1998; Grant et al., 1973; Limberg et al., 

2000; Wormit & Usadel, 2018).  

PMEs have been found in many plants, bacteria, fungi and some animals (Kent et 

al., 2016). PMEs and PME inhibitors (PMEIs) are large gene families; for example, there 

are 66 PME genes in Arabidopsis and 76 genes encoding PMEIs in the Arabidopsis 

genome (Hocq et al., 2017; S. Wang et al., 2019). The presence of these large gene 

families suggest (i) there is a high likelihood of functional redundancy among co-

expressed paralogs, (ii) that PMEs may have differences in pectic substrate preference 

and/or optimal conditions for enzyme activity such as apoplastic pH, and (iii) that PMEIs 

have differences in PME substrate preference and/or optimal conditions of 

binding/activity.  

Plant PMEs are classified based on the presence or absence of up to 1-3 N-

terminal “PRO” regions. The sequences of PRO regions contain similarities to sequences 

of PME inhibitor (PMEI) domains and are often referred to as such (Camardella et al., 

2000; Jolie et al., 2010; Markovič & Janeček, 2004). Confusingly, PMEs that do not 

contain PRO regions are known as group 1/type II, and PMEs that do contain PRO 

regions are known as group 2/type I (Camardella et al., 2000; Micheli, 2001; Pelloux et 

al., 2007; Tian et al., 2006). Phylogenetic analyses showed that the PRO region is not 

present on PMEs of bacteria, fungi or Physchomitrella patens, although PRO-containing 

group 1/type II PMEs are abundant in higher plants including Arabidopsis and rice, 

suggesting that the PRO domain-containing group 2 PMEs evolved after the divergence 

of mosses and vascular plants (Lang et al., 2005; Markovič & Janeček, 2004; Pelloux et 

al., 2007).  

However, PMEs extracted from the cell wall did not contain PRO regions 

(Bordenave & Goldberg, 1993; Sénéchal et al., 2014). This early observation led to 

numerous hypotheses about the functional role of the PRO region, including that PRO 

regions may inhibit the activity of their respective, covalently- attached PMEs prior to 

secretion, or that they regulate the trafficking and/or folding of the mature protein (Micheli, 

2001; Shinde et al., 1995). Indeed, PRO regions have important roles in PME trafficking. 

Deletion of the PRO region of NtPPME1-GFP (or deletion the PME region itself) inhibited 

transport from the Golgi to secretory vesicles, thereby preventing secretion of the protein 
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into the cell wall (Bosch et al., 2005). Additionally, in Arabidopsis, the N-terminal PRO 

region was shown to mediate retention of unprocessed PME proteins in the Golgi, and 

cleavage of the PRO regions was required for trafficking and secretion into the cell wall 

(Wolf et al., 2009). Therefore, PRO regions provide cells with a mechanism to post-

translationally regulate PME activity in the cell wall by controlling the trafficking and 

secretion of PMEs.  

The first PMEI protein was identified in kiwi, and PMEI genes are present in 

Physcomitrella patens, suggesting that they evolved along with the presence of pectins 

in cell walls; however, the origin of PMEs is still up for debate (Balestrieri et al., 1990; M. 

Wang et al., 2013). Despite sequence similarities, PMEIs regulate PME activity through 

different mechanisms than described above for the PRO regions. Analysis of the 

crystallized kiwi PME-PMEI complex indicated that PME inhibition occurs through direct 

binding at a 1:1 stoichiometric ratio which hides the PME catalytic site (Ciardiello et al., 

2008; Di Matteo et al., 2005). This was corroborated in another study through in silico 

modeling and biochemical experimentation, which showed AtPMEI17 inhibits AtPME3 

activity optimally in a 1:1 complex, and that PME-PMEI complex formation is pH-

dependent (Sénéchal et al., 2015). Furthermore, in Arabidopsis, both PMEI9 and PMEI4 

could inhibit recombinant PME3, but did so with different pH dependencies. PMEI9 was 

found to have a higher affinity (lower KD) for PME3 than PMEI4 (Hocq et al., 2017), 

suggesting that PMEIs also have preferred PME binding partners. 

 

1.2.3 Functional studies of PMEs in PTs 

There is functional information available for many plant PMEs, including some 

that are specifically expressed in pollen. One of the first PMEs characterized in plants is 

VANGUARD1 (VGD1), which is a PME that is expressed specifically in Arabidopsis 

pollen (Jiang et al., 2005). vgd1 knockout mutant PTs germinated at a normal frequency 

but elongated poorly in vitro and in vivo. In vitro, 93.8% of germinated vgd1 PTs burst 

compared to 3.7% for WT over the same time period, indicating that vgd1 PTs were 

structurally unstable. In vivo, vgd1 PTs were not defective in ovular targeting/guidance, 

and vgd1 PTs were able to fertilize the ovules they reached in the pistil. However, when 
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VGD1/vgd1 plants were outcrossed as males, there was a strong transmission defect 

observed for vgd1 pollen compared to wild type. PME activity from vgd1 pollen grain 

extracts was significantly decreased compared to wild type (Jiang et al., 2005). VGD1 

was later designated as PME5.  

In Arabidopsis, PPME1 is another PME with pollen- specific expression, and is 

also an important regulator of PT tip growth. ppme1 knockout mutant pollen grains had 

a comparable level of decreased PME activity, and pollen grains looked phenotypically 

normal; however, ppme1 PTs had several defects observed during in vitro growth 

including decreased growth rate (which resulted in shorter lengths), bulged tips and 

branching (defined as the appearance of a secondary tube forming from the primary 

tube). However, there was no observed transmission defect for ppme1 PTs, indicating 

that the overall function of ppme1 PTs was not compromised in vivo (Tian et al., 2006). 

Although the phenotypes caused by ppme1 contrast significantly to vgd1, both studies 

are consistent with a role of PMEs in promoting proper PT growth through regulating the 

structural integrity of the PT cell wall. 

PME48 is another Arabidopsis PME that is specifically expressed in pollen. 

pme48 knockdown mutants had PT growth including increased bursting and branching 

rates, as well as increased width and growth rates and decreased germination 

frequency (Leroux et al., 2015). Immunolabeling showed that highly methylesterified HG 

epitopes (which are bound and the LM20 antibody) were present along the subapical 

regions of the PT, which is different than the tip-only pattern observed in WT. 

Biochemical analyses showed decreased PME activity in pme48 pollen grains, and 

Fourier transform- infrared spectroscopy estimated that HG DM was higher in pme48 

pollen grains compared to wild type, which is consistent with the PT LM20 

immunolabeling. pme48 PT germination and growth defects were partially rescued 

when grown with higher levels of calcium in the growth media, which mediates 

crosslinking between demethylesterified HGs (Leroux et al., 2015).The findings from 

this study suggest that PME48-mediated HG demethyesterification and subsequent 

pectic crosslinking via calcium bridges formation- which increases cell wall rigidity- is 

required for normal PT tip growth.  
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Lily and tobacco PTs grown in vitro and treated with exogenous PME showed 

decreased germination frequencies and growth rates in a dose-dependent manner. 

Closer examination of PME-treated PTs showed thickening of the apical cell wall and loss 

of the tip-focused cytoplasmic calcium gradient. Tobacco (Nicotiana tabacum- Nt) PTs 

transiently transformed with the PME domain of a native pollen-expressed PME, 

NtPPME1, decreased PT growth and increased JIM5 labeling (an antibody that binds dm-

HGs)  throughout the PT cell wall (including the tip where it is usually absent), and 

decreased JIM7 labeling (an antibody that binds me-HGs) (Bosch et al., 2005). 

Interestingly, knock down of NtPPME1 also decreased PT growth, indicating that PT 

growth is sensitive to changes in PME activity levels in either direction (Bosch & Hepler, 

2006). 

 

1.2.4 PME inhibition and PT growth  

In maize, PMEI1 is strongly expressed in anthers, and PMEI1-GFP localizes to the 

PT tip, which maintains extensibility by preventing me-HG conversion to dme-HG and 

subsequent crosslinking. In vitro grown PTs treated with exogenous PMEI1 showed 

increased bursting frequency in a dose-dependent manner, and bursting was localized to 

the subapical region and specifically did not occur at the tip (Woriedh et al., 2013). This 

suggests that PME inhibition by PMEI1 in maize PTs disrupts the cell wall structural 

integrity at the shank where HG DM is typically low, based on immunolabeling 

experiments mentioned above (Leroux et al., 2015). Furthermore, this is consistent with 

findings in the above section that suggest that PME activity rigidifies the subapical cell 

wall to promote proper growth.  

AtPMEI1 and AtPMEI2 were shown to bind and inhibit AtPME1. Transient 

expression of AtPME1 decreased tobacco PT growth, while transient expression of 

AtPMEI2 had the opposite effect and increased PT growth. Transient expression of 

PME1-YFP showed signal along the cell wall in both the apical tip and subapical shank 

regions, while PMEI2-YFP showed a tip-only signal pattern, consistent with (Woriedh et 

al., 2013). Further examination showed that AtPMEI2-YFP, but not AtPME1-YFP, is 

internalized through endocytosis. This finding suggests that while PMEs and PMEIs may 



 16 

be secreted normally at the tip, endocytosis of PMEIs along the subapical walls increases 

PME activity at these regions, which decreases HG DM and promotes crosslinking; HG 

DM is maintained at a high level at the tip, promoting extensibility (Röckel et al., 2008).  

In a more recent study, rice PTs were grown in vitro and treated with commercial 

PME or a PME-inhibiting catechin extract called Polyphenon 60. Both treatments 

decreased PT germination frequency and growth, and increased bursting frequency. In 

PTs just beginning to germinate, PME treatment caused increased signal accumulation 

from LM19 (an antibody that binds HG with low levels of methylesterification) 

immunolabeling, with no observed effect on LM20 staining intensity or pattern; 

conversely, LM20 staining was increased in response to Polyphenol 60 treatment, which 

did not change LM19 staining- as expected. However, in longer PTs, PME-treatment 

caused an increase in LM19 staining throughout the tip and the shank, as well as LM20 

staining at the tip. Polyphenol 60 caused similar effects as PME treatment, and also 

increased LM20 signal throughout the shank (which was expected) (Kim et al., 2020). 

These findings indicated that PME and Polyphenol 60 treatment disrupted PT growth by 

affecting the deposition and/or the modification of pectins in the cell wall, and the fact that 

each treatment caused similar effects on both PT growth and pectin immunolabeling 

highlight the importance of a carefully balance of PME activity for tip growing cells.  

 

1.3 The exocyst complex  

1.3.1 Overview of exocyst-mediated secretion 

In eukaryotic cells, the transfer of cargos between different organelles occurs 

through vesicular trafficking, in which materials are transported in lipid compartments 

(vesicles), which pinch or bud-off from a membranous structure (donor compartment) and 

are transported to another structure (acceptor compartment). After arriving at their 

destination, vesicles must successfully tether to and fuse with the target membrane in 

order to expel their cargo. The secretory pathway describes the trafficking of cargo to the 

plasma membrane for external release, and this is how many plant cell wall components- 

including pectins and glycoproteins- are transported to the cell wall. Exocytosis is the final 
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step in the secretory pathway in which vesicles tether to and fuse with the plasma 

membrane. Tethering of Golgi- and endosome-derived vesicles to the plasma membrane 

is mediated by the exocyst complex, which is a multisubunit tethering complex (MTC) 

found in all eukaryotes and is composed of eight highly-conserved proteins SEC3, 5, 6, 

8, 10, 15, Exo70, and Exo84. Seven other MTCs exist and facilitate vesicular tethering 

between different donor and acceptor compartments for both the secretory pathway (i.e. 

ER to Golgi or vice-versa) and vacuolar protein sorting pathway. MTC-mediated tethering 

acts upstream of SNARE-mediated vesicular fusion (Cai et al., 2007). Partial crystal 

structures have been solved for some of the exocyst components from different species, 

including Exo70 from yeast and mouse, yeast Sec3, Exo84 and Sec6, and Sec15 from 

Drosophila (Baek et al., 2010; Dong et al., 2005; Hamburger et al., 2006; Moore et al., 

2008; Sivaram et al., 2006; Wu et al., 2005). While their primary structures are not very 

similar, the individual exocyst subunits are all largely alpha-helical, with helices packed in 

bundles interspersed by loops (He & Guo, 2009).    
Most of the exoyst subunits were first identified through a yeast genetic screen as 

temperature-sensitive secretion (sec) mutants that failed to secrete enzymes, leading to 

internal protein accumulation in structures including vesicles, golgi and ER (Novick et al., 

1980); Exo70 and Exo84 were later identified in separate studies (Kee et al., 1997; 

TerBush & Novick, 1995). In budding yeast, a small region of the parent cell undergoes 

polarized growth to form a bud, which eventually grows into a new cell. Sec8 was one of 

the first exocyst subunits examined, and it was observed to localize to small bud tips, 

where exocytosis (and cell growth) is occurring at high rate relative to other regions of the 

cell (TerBush & Novick, 1995). Bipolar budding patterns were disrupted in diploid sec3, 

sec4, and sec9 single homozygous mutant yeast cells, which exhibited new bud initiation 

at random regions (Finger & Novick, 1997). Sec3-GFP localized to sites of polarized 

secretion in vivo after latrunculin treatment, as well as in sec mutant backgrounds in which 

ER- golgi transport was disrupted, indicating that Sec3 localization is independent of actin 

and a functional secretory pathway (Finger et al., 1998). These findings demonstrated 

that the exocyst complex localizes to areas of polarized secretion in yeast to regulate cell 

growth. 
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1.3.2 Sec3 and Exo70 promote polarized localization of the exocyst complex 

through interactions with proteins and phospholipids.  

The polarized localization of Sec3 is mediated by a direct interaction via its N-

terminus with Rho1, which is a GTPase binding protein in the Rho family that localizes to 

regions of active growth (Yamochi et al., 1994). However, polarized localization of Sec3 

(and Exo70) was decreased but not abolished in rho1 mutants. Also, loss of the N-

terminus (Sec3deltaN) results in mis-localization of much of the Sec3deltaN-GFP signal, but 

some polarized signal was still observed, suggesting Sec3 can also be trafficked in a 

Rho1-independent manner. Cells expressing only Sec3deltaN were viable and exhibited 

normal secretion, growth, and polarized localization of Exo70 and Sec5, indicating that 

Sec3/Rho1 interaction is not entirely required for exocyst assembly and function (Guo et 

al., 2001). An additional important factor for polarized localization of the yeast exocyst is 

Ccd42, which is another GTPase binding protein in the Rho family involved in regulating 

cell polarization and membrane trafficking to control cellular growth. Cdc42 co-localizes 

with Sec3-GFP at sites of new bud formation, and in vitro binding assays showed that 

Cdc42 competes with Rho1 for binding (X. Zhang et al., 2001). Analysis of crystal 

structures shows that the N-terminus of yeast Sec3 folds into a pleckstrin-homology (PH) 

domain, which is known to bind phophoinositides including phophsotidylinositol 4,5 

bisphosphate [PI(4,5)P2] (Baek et al., 2010; Lemmon, 2008).  

To learn more about how the exocyst assembles at target sites, fluorescence 

recovery after photobleaching (FRAP) was performed to measure the kinetics of 

individual exocyst subunits fused to GFP. The mobility of Sec3-GFP and a fraction of 

Exo70-GFP were insensitive to Latrunculin treatment and displayed different recovery 

kinetics than the other subunits. Also, electron microscopy showed that every exocyst 

subunit except Sec3 associated were with secretory vesicles. This suggests that every 

exocyst subunit except Sec3 and a portion of Exo70 are transported via the secretory 

pathway to sites of polarized secretion, marked by Sec3 and Exo70, to assemble the full 

complex (Boyd et al., 2004). Therefore, it was hypothesized that Sec3 and Exo70 have 

an important role in recruiting the exocyst to the plasma membrane.   
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Additional studies showed that polarized localization of Sec3deltaN-GFP was 

disrupted after Latrunculin treatment, while full-length Sec3-GFP still showed signal at the 

buds consistent with findings from (Finger et al., 1998). FRAP experiments showed that 

Sec3-GFP signal was able to recover after photobleaching in the presence of Latrunculin, 

while the Sec3deltaN-GFP signal was unable to recover (X. Zhang et al., 2008). In the same 

study, Sec3 was shown to preferentially bind PI(4,5)P2 and phosphatidyl serine (PS) in 

vitro via a cluster of basic residues at positions 134-137 in the N-terminus, which is 

adjacent to the amino acids at positions 140-155 that important for binding Cdc42. In the 

presence of latrunculin B, polarized localization of Sec3 was disrupted when key residues 

in either N-terminal binding region were mutated, and this localization was abolished 

when both mutations were present. This data suggests that both interactions 

synergistically promote targeting to the bud tip in an actin-independent manner. 

Disrupting either of these interactions in the exo70 background lead to synthetic lethality. 

Taken together, this data indicates that the polarized localization of Sec3, which is 

mediated by N-terminal binding with PI(4,5)P2 and Cdc42, is important for its cellular 

function. Furthermore, the localization of exocyst subunits was depolarized in sec3 exo70 

double mutants, and invertase secretion was significantly knocked down in these cells 

which also appeared larger and rounder (X. Zhang et al., 2008), which is consistent with 

Exo70 and Sec3 having important, specialized roles in promoting polarized secretion and 

growth. 

In Arabidopsis, GFP-SEC3a displayed dynamic and polarized localization within 

the PT tip region. An enrichment of polarized signal near and at the tip apex was present 

during active PT growth, and appeared to localize in anticipation of growth trajectory. 

GFP-SEC8 appeared to mimic the localization of GFP-SEC3a. GFP-SEC3a also co-

localized with the plasma membrane region directly underneath the region of the cell wall 

where newly- secreted pectins (labeled by propidium iodide) were deposited in growing 

PTs, sugging that the exocyst complex mediates pectin secretion (and possibly for other 

cell wall materials). The N-terminal PH domain was required for plasma membrane 

localization of AtSEC3a in tobacco PTs, and the YFP-SEC3aN-term fusion protein co-

localized with the PI(4,5)P2 marker RFP-PHPLCd1, suggesting that SEC3a localization at 

plasma membrane is mediated by an interaction between its N-terminal PH domain and 
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PI(4,5)P2. However, loss of the PH domain does not affect GFP-SEC3adeltaN localization 

in Arabidopsis PTs, indicating that direct binding to PI(4,5)P2 is not required for SEC3a 

localization to the plasma membrane (Bloch et al., 2016).  

The positively charged C-terminus of Exo70 binds PI(4,5)P2s in vitro and the 

plasma membrane in vivo (He et al., 2007). Molecular dynamics (MD) simulations showed 

that initial contact between the plasma membrane and yeast Exo70p occurs via a cluster 

of basic amino acids clustered near the C-terminus including K601, R604, and K605- 

which were previously shown to be important for binding PI(4,5)P2s (He et al., 2007)- and 

then further stabilized by PI(4,5)P2-interacting residues K168, K212, K228, and K489. 

MD simulations also showed that the interaction between Exo70p and the plasma 

membrane was PI(4,5)P2-dependent, and Exo70p binding to the plasma membrane 

resulted in increased PI(4,5)P2 clustering in the lipid bilayer. These residues and the 

overall membrane-interacting surface were highly conserved across the 150 eukaryotic 

Exo70s analyzed in this study (Pleskot et al., 2015), suggesting that PI(4,5)P2 binding is 

an important function of Exo70.  

Knockdown of the yeast PI(4,5)P2-synthesizing enzyme Mss4 (a PI4P 5-kinase) 

abolished the normal pattern of polarized localization to the bud tip for Exo70 and other 

exocyst subunits, and Exo70 and other exocyst subunits -which are normally associated 

with the plasma membrane- were almost entirely absent from membrane fractions 

extracted from mss4 cells. Normal association of exocyst subunits with the bud tip plasma 

membrane observed in the sec3deltaN was absent in the sec3deltaN exo70 double mutants, 

which also had defects in secretion and loss of cell polarity. Exo70 is also known to bind 

Rho3, which is another Rho GTPase implicated in polarized exocytosis, but specifically 

disrupting this interaction did not cause an abnormal phenotype in the wild type nor 

sec3deltaN backgrounds (He et al., 2007). Taken together, this data suggests that in 

addition to Sec3, the C-terminus of Exo70 has an important role in targeting the exocyst 

complex to the plasma membrane by binding PI(4,5)P2s to promote polarized exocytosis 

(Figure 1F).  

 

1.3.3 Functional studies of exocyst components and PT growth 
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In Arabidopsis, sec8 knockout mutant PTs fails to germinate in vivo, despite pollen 

grains appearing normal during gametogenesis and responding to signals to germinate. 

Other partially- functioning sec8 mutant alleles showed decreased pollen transmission 

and PT growth (Cole et al., 2005). Loss of EXO70A1 caused multiple developmental 

defects including shorter hypocotyls and smaller floral organs, primarily through a defect 

in cell division leading to lower cell numbers, and reduced root hair tip growth (Synek et 

al., 2006). Decreased hypocotyl elongation was exacerbated in exo70a1 plants when 

combined with partially- functioning sec8 alleles or a sec5a null mutant allele- none of 

which caused vegetative defects on their own. Loss of function mutations in SEC6, and 

SEC15A significantly decreased transmission through the pollen but not the female. 

Pollen carrying sec5a or sec5b mutant alleles transmitted normally, but double mutant 

sec5a sec5b (sec5a/b) did not transmit at all through the male, indicating that SEC5A and 

SEC5B function redundantly to promote pollen fertility (Hála et al., 2008). The sec5a/b, 

sec6, and sec15a mutations each caused a decrease in PT germination frequency and 

increased frequency of PTs with an abnormal appearance that were shorter, thicker, with 

irregularly shaped. EXO70A1 and SEC6 co-localized with SEC8 at the tips of growing 

PTs, which is consistent with the expected localization of the exocyst complex. Pair-wise 

interactions were tested using yeast two-hybrid and provide a helpful basis to begin 

dissecting the important protein-protein interactions required for plant exocyst complex 

assembly (Hála et al., 2008).  Furthermore, loss of SEC3a (one of two SEC3 paralogs in 

Arabidopsis) specifically decreased pollen transmission similar to sec5, 6, 8, and 15a, 

and sec3a PT germination and growth were severely compromised in vitro and in vivo 

(Bloch et al., 2016).   

There are 23 EXO70 genes in Arabidopsis, in contrast to the other exocyst 

subunits which have 1-3 members for each gene family. They are differentially expressed 

throughout various tissue types and often overlap each other, but none are constitutively 

expressed (S. Li et al., 2010). In addition to EXO70A1 (mentioned above), other EXO70s 

have been reported to be important for regulating polarized secretion and growth 

including a subset of EXO70 isoforms which are expressed in pollen (S. Li et al., 2010; 

Synek et al., 2017). Loss of EXO70C2 caused a significant pollen-specific transmission 

defect which was exacerbated when EXO70C1 was also knocked out, suggesting that 
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these two isoforms function redundantly in pollen (Synek et al., 2017). PT germination 

was not decreased, but exo70c2 PTs grew shorter than wild type and had abnormal 

morphologies caused by increased branching and sharp bending. Increased growth rates 

(prior to bursting), increased bursting rates, and higher amounts of accumulated 

cytoplasmic pectin suggested that defective growth in exo70c2 PTs is due to 

compromised secretion of materials to and structural integrity of the cell wall. However, 

EXO70C2-GFP localized to the cytoplasm and not at the apical plasma membrane like 

GFP-SEC8 or SEC10-GFP, suggesting that although EXO70C2 has an important role, it 

may not be the canonical EXO70 isoform functioning in Arabidopsis PTs (Synek et al., 

2017). Further studies indicate that this role likely belong to EXO70A2. PT germination is 

drastically decreased in exo70A2 loss of function mutants, and PT growth is decreased. 

CRISPR-generated exo70a2 knockdown lines produced PTs that were wider than WT, 

while exo70a2-3 knockout mutant PTs appeared morphologically normal (Beuder et al., 

2020; Marković et al., 2020). In both studies, EXO70A2 fluorescent fusion reporters 

localized to the apical plasma membrane of the PTs. Taken together, these studies 

indicate that EXO70A2 is likely the canonical EXO70 isoform in Arabidopsis pollen, and 

other EXO70s (C2 and C1) play important but different roles- given the differences in 

mutant phenotypes. How the roles of different EXO70 isoforms are distinguished remains 

an important question moving forward.  

 

1.4 Phosphoinositide/ Phospholipase C signaling 

1.4.1 Overview of plant PLCs.  

Phospholipase Cs are enzymes that catalyze phospholipid hydrolysis to generate 

secondary messenger molecules, and are divided into two main categories based on their 

preferred substrates: phosphatidylinositol (PI)- specific phospholipase Cs (PLCs), and 

non-specific PLCs (NPCs). This chapter will focus on the PI- specific PLCs as they pertain 

to plants. 

PI- specific PLCs (henceforth referred to as PLCs) are found in eukaryotes and 

prokaryotes (Pokotylo et al., 2014). Much of what we know about PLC activity comes from 
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studies in animal systems, where PLC preferentially binds and cleaves PI(4,5)P2 in a 

calcium-dependent manner to generate inositol 1,4,5 triphosphate (IP3) and 

diacylglycerol (DAG)- each of which have regulatory roles in many cellular processes. IP3 

is freed from the plasma membrane and can bind receptors at the endoplasmic reticulum 

(ER) causing a release of ER-stored calcium and increase in cytoplasmic calcium 

concentration, which is an input to many different regulatory pathways. DAG remains 

localized to the plasma membrane, but can activate protein kinase Cs, which 

phosphorylate downstream effectors to regulate many cellular processes [reviewed 

recently in (Bill & Vines, 2020)].  

Eukaryotic PLCs are classified into six subfamilies based on their structures: β, γ, 

δ, ɛ, η, and ζ (ref). Plant PLCs are of the ζ type, which resemble mammalian PLC δ 

isoforms without the pleckstring homology (PH) domain. Plant PLC/ζ structures include a 

variable EF hand domain at the N-terminus, followed by more conserved X and Y catalytic 

domains and a C-terminal C2 lipid binding domain (Teun Munnik & Testerink, 2009). The 

EF hand and C2 domains have several regions which bind calcium, which is required for 

both lipid binding and PLC activity (Otterhag et al., 2001; Rebecchi & Pentyala, 2000).  

 

1.4.2 PLCs regulate stress response in Arabidopsis 

Functional studies of plant PLCs have identified roles of these enzymes for an 

array of processes including stress response, development and growth. In Arabidopsis, 

plc2 knockout mutants showed decreased seedling shoot and root growth under normal 

conditions, and were more sensitive to ER stress (Kanehara et al., 2015). Another plc2 

null allele caused infertility male and female gametophytic developmental defects, and 

these phenotypes were associated with increased auxin accumulation in the anthers 

and ovules during male and female gametogenesis (L. Li et al., 2015). A third study 

showed that PLC2 is required for embryo development, as well as male and female 

gametophytic development (Di Fino et al., 2017). In light of reports by Li et al., (2015) 

and DiFino et al., (2017), it is interesting that Kanehara et al., (2015) were somehow 

able to obtain homozygous plc2 knockout mutants with ease.  
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plc3 knockdown mutants showed decreased primary root elongation, lateral root 

number and density, as well as delayed seed germination rates. Loss of PLC3 also 

decreased sensitivity to abscisic acid (ABA), which inhibited seed germination and 

increased stomatal closure significantly more in WT versus plc3. PLC3-overexpressing 

plants exhibited increased drought tolerance and stomatal closure under normal 

conditions, as well as in response to ABA treatment (Q. Zhang et al., 2018). 

Decreased seedling growth in a common effect of salt stress (NaCl and NaNO3), 

but this response was diminished in plc4 knockout lines. PLC4 overexpression caused 

hypersensitivity to salt stress, but this was rescued in lines overexpressing PLC4MUT 

isoforms which had reduced PI(4,5)P2- hydrolyzing activity in vitro. Furthermore, 

increased cytoplasmic calcium levels caused by salt stress were enhanced in PLC4-

overexpressing lines, and calcium chelation by EGTA treatment partially rescued the 

hypersensitive/growth response of PLC4-overexpressing seedlings. Taken together, this 

data suggests that PLC4 activity regulates seedling response to salt stress by 

controlling cytoplasmic calcium levels (Xia et al., 2017).  

Loss of PLC5 decreased primary root length, lateral root number and density, 

while PLC5 overexpression decreased root hair length and improved drought tolerance 

through increased stomatal closure, similar to PLC3 overexpression (Q. Zhang et al., 

2018). Loss of PLC7 did not affect root growth, but plc5/7 double homozygous mutant 

plants had altered leaf architecture, as well as an apparent defect in cellulose-ray 

formation in the seed mucilage. PLC7 overexpression also increased drought tolerance 

similar to PLC3- and 5-overexpression, but stomatal closure with and without ABA 

treatment in PLC7-overexpressing plants resembled WT (van Wijk et al., 2018). Loss of 

PLC9 decreased thermotolerance in comparison to WT, while PLC9 overexpression 

improved it (Zheng et al., 2012). In summary, multiple members of the PLC gene family 

in Arabidopsis are involved in stress response, cell growth and development.  

 

1.4.3 PLCs regulate PT growth 

In Petunia, PLC1 was found to be an important regulator of PT tip growth (Dowd 

et al., 2006). GFP:Pet-PLC1 localized to the apical cytoplasm and plasma membrane of 
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the PT. Its plasma membrane localization was dynamic, with signal was focused at the 

tip during periods of growth arrest, while the signal localized along the apical lateral 

walls and was absent from the tip during active elongation (likely mediated by 

endocytosis). PLC1 showed calcium-dependent PI(4,5)P2 hydrolyzing activity in vitro, 

which was abolished in the PLC1H126A mutant. Expression of the inactive H126A mutant 

isoform in PTs disrupted tip growth and caused PT swelling, which was also associated 

with disruptions in the cytoplasmic calcium gradient, actin organization and golgi 

dynamics. These results were phenocopied when just the C2 domain was expressed. 

GFP-PLC1’s plasma membrane localization was disrupted by the presence of either the 

H126A or C2-only mutants, but was rescued by increasing the amount of GFP-PLC1, 

suggesting that the H126A and C2-only mutants were competitively inhibiting binding at 

the PM, and that PLC activity is required for PT tip growth. This was corroborated in a 

report that showed increased PI(4,5)P2 accumulation at subapical plasma membrane 

[using a GFP-Pleckstring Homology (PH) fusion reporter] when the H126A or C2-only 

mutants were expressed (Helling et al., 2006). Furthermore, because normal GFP-PH 

signal was only present at the tip during the growing phase of WT PTs, the increased 

subapical accumulation of PI(4,5)P2 may be driving secretion at these other regions, 

leading to tip bulging in the H126A and C2-only mutants  

While overexpression of GFP:Pet-PLC1 did not noticeably disrupt PT growth, 

tobacco PTs overexpressing NtPLC3 were shorter than WT, but PTs transformed with 

the inactive mutant NtPLC3H124A, D156R did not exhibit decreased growth (Helling et al., 

2006). NtPLC3-YFP localized to the apical lateral plasma membrane but was excluded 

from the tip, and this pattern was consistent with both N- and C-terminal fusion proteins. 

However, expression of the N-terminal version showed fainter plasma-membrane 

accumulation, and PTs expressing the N-terminal fusion were shorter than PTs 

expressing the C-terminal version. Taken together, this data suggests that while the 

localization pattern of PLC3-YFP in tobacco PTs is not activity-dependent, the presence 

of YFP at the N-terminus partially disrupts intracellular targeting. Similar to Petunia PTs, 

the fluorescent PI(4,5)P2 reporter YFP-PH localized to the extreme tip in tobacco- an 

inverse pattern to PLC3-YFP. Combined with the observed PI(4,5)P2-hydrolyzing 

activity in vitro, it was proposed that PLC3 limits membrane PI(4,5)P2 availability, and 
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its localization is confined to the PT tip region. Co-expression of the Petunia C2 domain 

made PLC-GFP mis-localize, suggesting the C2 domain competes for binding at the 

same region, and therefore the C2 domain is sufficient for plasma membrane targeting 

(Dowd et al., 2006). This data differs from reports in tobacco PTs, where it was shown 

that YFP fused to either the C2, EF, or XY domains alone did not result in signal 

accumulation at the plasma membrane, but EF-YFP-C2 did, indicating both of these 

domains were required for PLC3 association with the plasma membrane in tobacco PTs 

(Helling et al., 2006). For the rice PLC (AK064924), the C2 domain alone was sufficient 

to bind lipids in a calcium-dependent manner (Rupwate & Rajasekharan, 2012). 

Furthermore, the N-terminus/EF domain alone of Arabidopsis PLC2 (residues 1-100, or 

“N-term”) was unable to bind lipid vesicles despite being enzymatically active (Otterhag 

et al., 2001), providing more evidence that the C2 domain is indeed an important region 

of PLC structure for lipid membrane binding. However, it is possible that the overall 3D 

structure may be an important factor in mediating C2-lipid binding.  

 

1.4.4 Regulation of PI(4,5)P2 levels controls PT growth 

PI4P is phosphorylated at the hydroxyl group of the fifth-position carbon of the 

inositol head group by PI4P 5-kinases to form PI(4,5)P2. Plant PI45P 5-kinases are 

classified by their protein structure into either Type A (which resemble human PI4P 5-

kinases) or Type B. The Arabidopsis genome encodes for 11 PI4P 5-kinase isoforms- 1-

9 are Type B, and 10 and 11 are Type A. Several of these genes and their gene products 

have been studied and characterized, including PIP5K4 and PIP5K5, which have been 

shown to play important roles in PT germination and growth, pectin secretion, and 

membrane trafficking (Ischebeck et al., 2008). Single pip5k4 and pip5k5 knockout 

mutants were phenotypically normal, but pip5k4 pip5k5 PTs had decreased growth and 

germination frequencies, but were morphologically similar to WT. However, 

overexpression of either PIP5K4 or PIP5K5 resulted in a wavy growth pattern and 

increased branching in Arabidopsis PTs. Fluorescent proteins fused to either AtPIP5K4 

and AtPIP5K5 localized to the cytosol and apical plasma membrane in both Arabidopsis 

and tobacco PTs, and the membrane signal was localized to the lateral walls near the tip 
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during growth but expanded to cover the tip after growth stopped. These patterns largely 

overlapped with the PI(4,5)P2 reporter RedStar-PLCd1-PH, suggesting that PI(4,5)P2 

production was likely an important part of how PIP5K4 and 5 influence PT growth. 

Intermediate overexpression of PIP5K4 or 5 caused increased branching in tobacco PTs, 

and this was not observed when an inactive version of PIP5K5 was expressed. High 

levels of overexpressed PIP5K5 was associated with higher accumulation of PI(4,5)P2 

reporter signal at the apical plasma membrane, and strong overexpression of either 

enzyme resulted in growth inhibition, plasma membrane invaginations and an apparent 

thickening of the cell wall at the tip. Additionally, increased accumulation of ruthenium red 

signal (which stains pectins) was also observed near the tip (Ischebeck et al., 2008). 

Taken together, this data suggests that PI4P 5-kinase regulates PI(4,5)P2 levels in the 

apical plasma membrane of PTs to promote pectin secretion. Loss of PI4P 5-kinase-

mediated PI(4,5)P2 production decreases PT growth, and increased enzyme activity 

leads to overaccumulation of PI(4,5)P2 at the tip, increased secretion of pectins and 

possibly other cell wall materials, which inhibits normal tip growth. 

 Similarly, overexpression of AtPIP5K6 in tobacco PTs caused invaginations of the 

plasma membrane at the tip and decreased PT elongation, as well as increased PT 

widths. Additionally, PIP5K6-overexpressing PTs showed increased PI(4,5)P2-reporter 

signal and decreased PIP4 signal near the PT tip. These abnormalities were not present 

in PTs overexpressing an inactive PIP5K6 mutant (Zhao et al., 2010). PIP5K6 

overexpression-induced plasma membrane invaginations were shown to likely be caused 

by an over-initiation of clathrin- dependent endocytosis that was aborted before the 

endocytotic vesicles could bud off from the plasma membrane. PIP5K6 overexpression 

phenotypes were strongly but not completely suppressed by overexpression of AtPLC2, 

which in combination with other experimental data, is consistent with an overaccumulation 

of PI(4,5)P2 at the tip causing plasma membrane invaginations and poor growth.  

  

1.4.5 PLC-mediated PI signaling is not restricted to PI(4,5)P2 in plants 

Despite the evidence that PLC-PI(4,5)P2 signaling is important in plants, there are 

multiple key differences in the signaling machinery between animals and plants, which, 
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in combination with experimental evidence, challenges the canonical model of PI/PLC 

signaling. For example, plants do not appear to contain genes encoding for IP3 receptors, 

except for the green algae Chlamydomonas (Nagata et al., 2004; Wheeler & Brownlee, 

2008), nor homologs for animal protein kinase Cs (PKCs) (Teun Munnik & Testerink, 

2009). IP6 was shown to be responsible for internal calcium release in guard cells, which 

is quickly converted from IP3 (Lemtiri-Chlieh et al., 2003), suggesting that IP3 is not the 

main secondary messenger in plants. PI(4,5)P2 is also found at very low levels in plants, 

but PI4,P levels resemble animals’ and is hydrolyzed as well as PI(4,5)P2 in vitro, 

suggesting that PI4,P is just as likely to be the canonical substrate for plant PLCs as 

PI(4,5)P2 (T. Munnik et al., 1998; Van Leeuwen et al., 2007; Vermeer et al., 2006, 2009). 

Furthermore, DAG phosphorylation to form phosphatidic acid (PA) occurs in response to 

some abiotic and biotic stresses [reviewed in (Teun Munnik, 2014)], suggesting that PA, 

not DAG, is an important secondary messenger of PI/PLC signaling. In summary, it 

appears unlikely that PLCs function in plant PI signaling is strictly confined to hydrolyzing 

PI(4,5)P2, and downstream effects of PI signaling may be elicited through IP6 and PA 

rather than IP3 and DAG.   
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Figure 1-1. Overview of cellular processes.  A) Overview of PT growth. B) Partial EXT3 sequence. C) O-
arabinosylation cascade of Ser(Hyp)3-5 motifs. D) Model of EXT crosslinking pathway. E) Schematic of 
HG DM regulation in PTs. F) Overview of exocyst/EXO70-mediated secretion
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Chapter 2 - Isolation and Cloning of Suppressor Mutants with Improved Pollen 
Fertility 

Authors: Steven Beuder and Cora A. MacAlister 

 

 

2.1 Abstract 

Mutant screens remain among the most powerful unbiased methods for 

identifying key genes in a pathway or process of interest. However, mutants impacting 

pollen function pose special challenges due to their genetic behavior. Here we describe 

an approach for isolating pollen mutants based on screening for suppressors of a low 

pollen fertility starting genotype. By identifying suppressor mutants with improved pollen 

fertility, we are able to identify new genes which are functionally relevant to pathway(s) 

causing low seed set in the original background. With this method, the low fertility of the 

genetic background may be due to one or more mutations or transgenes disrupting any 

aspect of pollen development or function. Furthermore, screening for improved pollen 

fertility biases toward recovery of the desired mutants due to their enhanced male 

transmission. The causative mutation is cloned using next-generation sequencing. The 

procedure uses both genetic and bioinformatics approaches to ultimately yield a very 

small list of candidate causative mutations speeding the transition from mutant 

phenotype to underlying gene.  

 

2.2 Key Words 

mutagenesis, suppressor screen, high-throughput sequencing, cloning, fertility, pollen, 

seed set 
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2.3 Introduction 

Mutagenesis screens have proven to be a highly powerful method for identifying 

genes involved in a phenotype or biological process of interest. However, most 

approaches for isolating and cloning plant mutants focus on those affecting the diploid 

sporophyte generation. Mutants affecting the haploid gametophytes (the pollen and 

embryo sac) do not have the same genetic behavior as sporophytic mutants, 

complicating their initial isolation and cloning. Pollen mutants are especially problematic. 

The female gametophytes occupy fixed positions within an ovary and there is a direct 

correlation between the number of viable female gametophytes and ultimate seed yield. 

A plant that is heterozygous for a female gametophytic lethal mutant will produce seed 

only from the 50% of ovules containing the wild type allele. This strong reduction in 

seed set leads to an easily detected fertility phenotype. Pollen however, is produced in 

significant excess relative to the number of available ovules, leading to competition 

between pollen grains. Plants that are heterozygous for a pollen lethal mutation 

generally maintain high seed set since the 50% wild type pollen they produce is 

sufficient to fertilize all ovules. Though a homozygous pollen-defective mutant would 

have reduced seed set, such homozygotes are unlikely to appear in segregating 

populations due to strong bias against male transmission of the mutant allele. 

Therefore, a mutagenesis screen for reduced seed set is unlikely to recover pollen 

defective mutants. However, gametophytic mutants have been successfully identified 

based on screening for distorted transmission ratios. In such screens, the primary 

screening criteria is generally deviation from the expected Mendelian inheritance pattern 

of a mutagenic reporter construct (e.g. T-DNA or transposon insertion; (Christensen et 

al., 1998; Johnson et al., 2004; Lalanne et al., 2004; Pagnussat et al., 2005). Such 

screens identify mutants which are defective in male and/or female transmission and at 

any stage of gametophyte development or function. If a particular stage of development 

or molecular pathway is of interest, secondary screening criteria are required to identify 

appropriate mutants following the initial screen.  

Here we describe a strategy for isolating novel Arabidopsis pollen mutants by 

screening for increased seed set in a low-fertility genetic background. If a reduced 

pollen fertility mutant in a pathway of interest has already been identified, for example 



 32 

through reverse genetics, this low fertility background serves as a convenient starting 

point for a suppressor screen. Screening for suppressors with improved fertility has 

several advantages. Firstly, the low fertility starting genotype serves as a sensitized 

background allowing identification of suppressors of the original phenotype. The genetic 

interaction between the suppressors and the background genotype allows the direct 

identification of genes acting in the pathway(s) causing the low starting seed set. 

Secondly, both heterozygous and homozygous suppressor mutants will likely display 

increased seed set since increasing fertility of just half of the pollen will still allow more 

ovules to be fertilized. Thirdly, suppressed pollen will have a transmission advantage 

over non-suppressed pollen biasing toward recovery of suppressors in a segregating 

population (see Note 1).  

The choice of starting genetic background is crucial for the success of a 

suppressor screen. The starting background must be sufficiently fertile to reliably 

propagate; but to efficiently screen for increased fertility, it must also have low enough 

seed set that an increase will be apparent. Here, we use mature silique length as the 

primary screening criteria since it correlates well with seed number and is an easy and 

rapid screening method, requiring no sample preparation and minimal handling (fig. 1). 

Unlike traditional map-based cloning, the cloning strategy described here does not 

require any outcrossing from the initial genetic background. Therefore, the starting 

phenotype can be due to a single mutation, or a more complex genotype including 

multiple mutations and/or transgenes regardless of their genomic locations. But, no 

matter how complex the background, it should be fully homozygous and phenotypically 

stable (i.e. the phenotype is consistent between individuals and from one generation to 

the next). The background mutation(s) causing low fertility also require a reliable 

genotyping assay. Any wild type contamination either from cross pollination or from 

stray seeds will behave like a strong suppressor and must be excluded based on 

genotype. 

Once suppressor mutants are identified, our strategy for cloning the causative 

mutation relies on a combination of genetic and bioinformatics approaches to reduce 

the number of candidate suppressor mutations identified. First, the suppressor is 

backcrossed to the un-mutagenized parental strain to reduce the number of unlinked 
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induced mutations present. Second, we sequence DNA from pools of confirmed 

homozygous suppressors plants (sup/sup genotypes), non-suppressed siblings from the 

same family (+/+ genotypes) and the original low-fertility background. Data from the 

sup/sup sample will contain only the suppressing allele while the +/+ and background 

data will carry only the wild type allele for the gene causing suppression. By identifying 

sequence variants that are unique to the sup/sup sample and filtering with additional 

criteria, we produce a very short list of candidate sequence variants to quickly and 

easily confirm the causative mutation. 

2.4 Materials 

2.4.1 Plant Material and Growth Supplies 

 1. ~2,000 EMS-treated seeds of the low-fertility Arabidopsis genotype for which 

suppressors are sought (see Note 2) 

2. Flats  

3. Potting mix suitable for Arabidopsis  

4. 32 cell flat inserts 

5. 96 cell flat inserts 

6. Stakes and twist ties 

7. Coin envelopes for seed storage 

8. Growth chamber or room suitable for Arabidopsis (see Note 3) 

9. Fine forceps (e.g. Dumont #5) 

2.4.2 Sequencing DNA Preparation 

1. DNeasy Plant Mini Kit (Qiagen) and required reagents 

2. 3M sodium acetate, pH5.2  

3. 100% Ethanol  

4. TE buffer (10mM Tris pH 8.0, 1mM EDTA)  

2.4.3 Bioinformatics Resources 
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1. Access to a computer server or cluster capable of handling the significant 

volumes of data generated by Illumina sequencing. 

 2. Reference Genome: The Arabidopsis thaliana top level genome sequence can 

be downloaded from: ftp://ftp.ensemblgenomes.org/pub/plants/release-

41/fasta/arabidopsis_thaliana/dna/ 

3. Software: In addition to Microsoft Excel, the steps in this protocol are 

performed using the open-source tools listed in Table 1.  

 

2.5 Methods 

2.5.1 Screening for Suppressors 

 

1. Sow the mutagenized seeds on soil, distributing them evenly across nine flats 

containing 32-cell inserts for an average density of approximately seven seeds per cell.  

 

2. As the plants begin to bolt, stake all plants growing in one cell together, securing 

them with a twist tie to limit pollen transfer between adjacent cells. Allow the M1 plants 

to self-fertilize and collect all seeds from one cell into a single seed envelope forming an 

M2 pool (see Note 4).  

 

3. Sow seed from each pool into a 96-cell flat with about two seeds per cell. Following 

germination, thin and transplant seedlings as required so that each cell contains one 

plant. It is generally most convenient to sow M2 pools for screening over multiple 

rounds as space and manpower allow.  

 

4. As the M2 plants begin setting seed, screen each individual for increased silique 

length and seed set compared to the background strain (see Note 5). Screening will 

likely require multiple rounds as the flowering time will vary. Discard non-suppressed 

plants. Stake each individual candidate suppressor. When dry, collect seed from all 

candidate suppressors individually, noting the source pool for each. 
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5. Sow ~50 seeds from each candidate suppressor (now the M3 generation) into 24 

cells of a 96-cell flat. When flowering, phenotype for suppression as above and 

genotype suppressors for the background mutation(s) causing low fertility to confirm 

that they are not wild type contaminants. For the suppressors that prove phenotypically 

stable and genetically clean, chose one individual per original pool to progress further 

(see Note 6).  

 

2.5.2 Generating the Sequencing Samples 

1. Backcross the suppressor to the starting genetic background (fig. 2). Using the 

suppressor as the male parent will increase cross seed yield and favor transmission of 

the sup allele (see Note 7).  

• Remove open flowers, small buds and the inflorescence meristem from an 

inflorescence of the background genotype, leaving two to four of the most 

mature buds. 

• Using fine forceps, emasculate each bud, taking care not to damage the pistil.  

• Pollinate the stigma of each emasculated bud with pollen from a young, open 

flower of the suppressor, applying as much pollen as the stigma will accept. 

• Label the crossed inflorescence with the parent plant information and allow 

the seeds to mature over the next few weeks. 

• When the crossed siliques are nearly ripe, collect them and allow the seeds to 

finish drying on the bench. 

 

2. Sow the backcross F1 seed. When the F1s are flowering, screen for suppression and 

backcross as above using a suppressed F1 as the male parent. Repeat the backcross 

step as many times as desired (see Note 8).  

 

3. When the desired number of backcrosses have been carried out, allow the F1s to 

self-fertilize forming the F2 generation.  
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4. Sow the F2 seeds to produce a minimum of 32 F2 plants (see Note 9).  

 

5. When flowering, identify suppressed F2s. The suppressed plants will be a mixture of 

sup/sup and sup/+ genotypes.  

 

6. Cross each suppressed F2 individual as a female to the background genotype (see 

Note 10). When ready, collect both the cross seeds and self-fertilized seeds from each 

F2 parent, carefully tracking the parent individual.  

 

7. Sow the test cross seeds. When the plants are setting seed, score each individual for 

suppression. Categorize the parent F2 as either sup/sup (if all test cross plants are 

suppressed) or sup/+ (1:1 suppressed to non-suppressed test cross plants, fig. 3). For 

statistical confidence, we require a minimum of seven scored test cross progeny for a 

given F2 parent (see Note 11).  

 

8. The test cross progeny from sup/+ parents will include non-suppressed (+/+) sibling 

plants. Collect a total of 100 mg of young leaf tissue from these non-suppressed plants 

to serve as the non-suppressed sibling (+/+) DNA sample. Preventing suppressor 

contamination in this pool is critical, so avoid collecting tissue from any questionable 

individuals. 

 

9. For each confirmed sup/sup F2 parent, sow self-fertilized seed (now the F3 

generation). Following germination, genotype each F3 population using the background 

mutation genotyping assay and discard any F3 populations showing wild type 

contamination. 

 

10. Collect a total of 100 mg of pooled tissue from the confirmed sup/sup seedlings, 

using roughly equally amounts of tissue for each individual F3 population.  

 

11. Sow seeds of the low fertility genetic background and collect 100 mg of seedling 

tissue for the background DNA sample. 
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12. Extract DNA from the pooled +/+ tissue, the pooled sup/sup tissue and the 

background genotype tissue using the Qiagen DNeasy Plant Mini Kit following the 

manufacturer’s instructions.  

 

13. To concentrate the purified DNA, add 20 μl of 3M sodium acetate, pH 5.2 and 600 μl 

of Ethanol to the 200 μl of eluted DNA. Mix by inversion and freeze at -20°C overnight.  

 

14. Spin DNA samples at 4°C for 30 minutes at maximum speed in a standard 

microcentrifuge.  

 

15. Gently decant the supernatant and allow the tube to dry. Resuspend the DNA 

pellets in 30 μl of TE. 

 

16. Submit the purified DNA samples for whole-genome library preparation and 

sequencing (see Note 12). 

 

2.5.3 SNP-Mapping Pipeline 

The programs used in this pipeline are open-source and can be downloaded from the 

sources listed in table 1. Alternatively, if you have access to a server and computer 

cluster with the software installed, then no downloads and installations are necessary, 

other than loading programs when needed. The command scripts are designed to be 

typed into a command-line interpreter program- otherwise known as a shell (e.g. 

“Terminal” for Mac and Linux, or a Unix shell emulator, like Cygwyn, for Windows).  

 

The SNP-mapping pipeline described here consists of several main steps: (1) mapping 

sequence reads to a reference genome, (2) calling and filtering variants to identify 

suppressor-specific mutations, and (3) filtering variants based on additional criteria 

including variant type, sequencing depth, and variant frequency. It is important to note 

that most steps generate output files which will be used in subsequent steps. Prepare a 
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work space by creating an empty folder that will serve as the working directory in which 

multiple subdirectories will be created to store files.  

 

1. Create a new subdirectory called “tair10ref” to store the fasta file of the reference 

genome sequence. Download the most recent Arabidopsis genome assembly, 

“Arabidopsis_thaliana.TAIR10.dna.toplevel.fa.gz” and transfer it to the “tair10ref” folder. 

 

2. Create a subdirectory named “raw_reads”, download the raw sequencing reads, and 

store them in this folder. As an example, here are two “mates” of raw reads from the 

same sample/pool of DNA; “R1” and “R2” in the file name denotes each mate for a 

single sample. The “.gz” indicates that the file was compressed. 

  

112369_ATCACG_S1_L004_R1_001.fastq.gz 

 112369_ATCACG_S1_L004_R2_001.fastq.gz 

 

3. The first action to perform on sequence read files is a quality check using FastQC. 

Run the following command to perform quality analysis on your raw reads. 

 

fastqc Raw_reads/112369_ATCACG_S1_L004_R1_001.fastq.gz 

 

This will generate an output filed named 

“112369_ATCACG_S1_L004_R1_001_fastqc.zip”. Download and open this file to 

unpack it and open the .html file. This will bring up the FastQC report page. Analyze 

each section listed in the summary (see Note 13). 

 

4. Indices for the reference genome must be generated before performing alignment. To 

do this, load Bowtie2 (Langmead et al. 2012) and run the following command from your 

working directory. 

 

bowtie2-build tair10ref/Arabidopsis_thaliana.TAIR10.dna.toplevel.fa.gz  
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tair10ref/TAIR10 

 

This will generate multiple files with “.bt2” extensions. This command specifies that all 

the .bt2 files will have the base name “TAIR10”, and they will be directed to the 

“tair10ref” folder. The reference genome and the .bt2 index files must be present in the 

same subdirectory to perform alignment.   

 

5. Create a new subdirectory called “aligned”. Run the following command to align the 

sequence reads to the reference genome. This will create an output file named 

“11269.sam”, which will be directed to the “aligned” folder. Be sure to include “-1” or “-2” 

before each file name to denote that these files contain paired-read mates, otherwise 

the reads will be aligned without taking pairing into account.  

 

bowtie2 -x tair10ref/TAIR10 -1 

Raw_reads/112369_ATCACG_S1_L004_R1_001.fastq.gz, -2  

Raw_reads/112369_ATCACG_S1_L004_R2_001.fastq.gz -S aligned/11269.sam 

 

6. Convert SAM files to BAM files. SAM and BAM files contain the same information, but 

SAM files are a human-readable text format and BAM files are a machine-readable 

binary version. The BAM format is used for downstream analysis. Create a subdirectory 

called “bams”. Run the following command to convert the SAM file to a BAM file named 

“11269.bam” and direct the output file to the “bams” folder.  

 

samtools view aligned/112369.sam > bams/112369.bam 

 

7. Create a subdirectory named “sorted_bams”. Run the following command to sort a 

BAM file and create an output file named “112369sorted.bam” directed to the 

“sorted_bams” folder.  
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samtools sort bams/112369.bam -o sorted_bams/112369sorted.bam 

 

8. Create a new subdirectory named “bams_rmdup” Run the following command to 

remove PCR duplicates from a sorted .bam file. This command generates an output file 

named “112369rmdup.bam”, which will be directed to the “bams_rmdup” folder.  

 

samtools rmdup sorted_bams/112369sorted.bam bams_rmdup/112369rmdup.bam 

 

9. Variant-calling tools (including Freebayes) require an index for a .bam file. Run the 

following command to create an index for a .bam file. Although it is not written in the 

command, the output file will be directed to the subdirectory containing the .bam file to 

be indexed, and the output file will have the same name plus “.bai” at the end (e.g. the 

above command will generate a new file called 112369rmdup.bam.bai that will appear 

in the “bams_rmdup” folder). Leave the files together in the same subdirectory.  

 

samtools index bams_rmdup/112369rmdup.bam 

 

2.5.4 Identify Sequence Variants and Filter for Candidate Causative Mutations 

1. Create a new subdirectory called “VCFs” to store output files. To call variants using 

Freebayes, run the following command.  

 

freebayes -f tair10ref/Arabidopsis_thaliana.TAIR10.dna.toplevel.fa 

bams_rmdup/112369rmdup.bam > VCFs/112369.vcf 
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The .vcf files can be opened with Microsoft Excel and will contain a large header at the 

top with the variants listed below. Details of the variants are specified in different 

columns, of which, the following are the most important (see Note 14):  

• the chromosome that a variant was found in is listed in the “CHR” column 

• the position of the variant on the chromosome are listed in the “POS” column  

• the nucleotide(s) present in the reference genome in the “REF” column 

• the variant listed in the “ALT” column  

• other information, including the number of times the reference and variant 

sequences were counted in the sample, read coverage, and sequencing quality 

is listed in the “INFO” column. The header contains key information to interpret 

data listed in the INFO column.  

 

2. Annotate the suppressor variants (see Note 15). Knowing the possible consequences 

for a given variant on gene function will be useful data for later analysis. Here we use 

SnpEff to predict the effect of the sequence variants (Cingolani et al. 2012) Though 

several filtering steps remain, it is convenient to annotate the variant effect now, since 

SnpEff takes a .vcf file as input and the file format will be altered in later steps. This step 

is only required for the sup/sup data can be skipped for the +/+ and background data. 

Using the below command, SnpEff will automatically install the required Arabidopsis 

genome database, annotate the .vcf file with a new data column and save the results as 

a new file “112368ann”. 

 

java –Xmx4g –jar snpEff.jar Arabidopsis_thaliana 112369.vcf >112369ann.vcf 

 

3. For downstream analysis the information in the INFO column must be split into 

individual columns. Open the annotated .vcf file in Microsoft Excel and preform the 

following steps: 

• Delete the header 

• Highlight the INFO column 

• In the “Data” tab, click “Text to Columns” 
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• Select “Delimited” and set delimiters as “Semicolon” 

• Save as a .csv file. 

 

4. Remove common variants. When all files have been processed, there will be two 

pairs of .csv files for each sequenced suppressor (the sup/sup and the +/+ pools) along 

with the .csv file for the genetic background. The causative mutation will be present in 

the sup/sup sample but absent from the background and the +/+ samples. In this step, 

we remove variants from the sup/sup sample that also occur in the +/+ sample and/or 

the background sample (see Note 16). The following steps are performed with R Studio. 

• Move the .csv files to the working directory. 

• Install the “DBI” and “dplyr” packages if not already installed. 

• Import the .csv files for comparison using the “Import Dataset” function with the 

“no header” option selected. 

The following commands takes the annotated suppressor variant list (data frame 

‘112369ann’) and removes any lines which share the same chromosome number 

(column V1), position (column V2) and alternate sequence (column V5) as any variant 

in the +/+ pool (data frame ‘112370’). We further subtract the non-mutagenized 

background variants (‘112371’) from the intermediate result (‘112369ns’) to produce the 

final list of unique sup/sup variants (‘u112369’). The resulting list is saved as a new .csv 

file. The variant number is typically reduced by ~40% following this step. 

 

library(dplyr) 

112369ns <- anti_join(`112369ann`,`112370`, by= c("V1", "V2", "V5")) 

u112369 <- anti_join(`112369ns`,`112371`, by= c("V1", "V2", "V5")) 

write.csv(u112369, file = "u112369.csv") 

 

5. Determine variant frequency in the unique variant list: 

• Open the unique sup/sup variant .csv file in Excel 
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• Find and highlight the column with information that says “RO=n”, where n is the 

number of times a read included the reference nucleotide and use the find and 

replace tool to delete the “RO=” from each cell.  

• Repeat these steps for the alternate nucleotide observation column with the 

“AO=n” information to remove the “AO=”. 

• Insert a new column and label it “AO freq”. Divide the values in the “AO” column 

by the sum of the values in the “RO” and “AO” column for each row. These 

values are the frequencies with which a variant was found in that sample. 

 

6. Using the Filter tool, you can now filter the file to show only the variants meeting the 

filtering criteria: 

• To filter by allele frequency, highlight the “AO freq” column, select Filter, and filter 

for values greater than or equal to your cutoff value. We generally use 0.8. 

• To filter by sequencing depth, filter the “AO” column. We generally require a 

minimum of five reads.  

• There is also a column containing the type of change, “type=n”, where n refers to 

a type of variant, such as a single nucleotide polymorphism (SNP), insertion, etc. 

Since EMS typically induces transition mutations, filter for “type=SNP”.  

Following these filtering steps, the total number of candidate variants will be significantly 

reduced, generally to <2% of the starting unique variant number. Most of these variants 

will occur in one chromosomal region which includes the causal mutation and those 

linked to it. The remaining few dozen candidates can be further filtered based on their 

annotated effect. Missense or non-sense mutations occurring in pollen-expressed 

genes near the center of the cluster are the most likely causative mutations.  

2.6 Notes 

 

1. We do not screen for enhancers (mutants with reduced pollen fitness and lower seed 

set) since they would be under a strong male-transmission disadvantage, making their 

recovery difficult. Though sterile mutants are a frequently recovered class in any 

mutagenesis screen, such sterility is likely caused by an unrelated sporophytic mutation. 
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2. The induction of Arabidopsis mutants by seed treatment with Ethyl methanesulfonate 

(EMS) has been described several times previously (Dinh et al., 2014; Qu & Qin, 2014; 

Weigel & Glazebrook, 2006). We generally treat seeds of the starting genotype with 

0.2% EMS for 16 hours. It is advisable to check for segregation of albino seedlings in 

the M1 generation as an indicator of mutagenesis success.  

 

3. Fertility is influenced by many factors, both genetic and environmental. Therefore, 

growth conditions should be as consistent and as favorable as possible. We have found 

that high air movement is a major contributing factor to contamination by wild-type 

pollen. Pollen contamination can be limited by using lower airflow growth areas or by 

excluding flowering wild type plants from the growth area.  

 

4. The M1 plants may be screened directly for increased seed set. However, the M1s 

will be chimeras with sectors carrying different mutations so only some of their siliques 

may be carrying the suppressive mutation, which can complicate screening. If the M1s 

are screened, it is still advisable to screen the M2s of any pools that did not produce 

any suppressor candidates. 

 

5. Older plants are generally easier to screen since they will have more siliques 

available for comparison. The choice of which siliques to consider is also important. The 

first few flowers produced by a plant should be avoided for phenotyping purposes as 

these often have low fertility, even in wild type plants. We also avoid scoring siliques 

produced late in life or from tertiary branches as these often have low fertility.  

 

6. Multiple unique suppressor mutations may exist in a single M2 pool. Unfortunately, 

due to the haploid nature of gametophytic mutants, complementation tests are not 

possible and allelic mutants can only be recognized after their cloning. Therefore, we 

progress a single candidate suppressor per pool as a reasonable compromise between 

total number of suppressors isolated and the highest likelihood of recovering 

independent mutations, and therefore novel alleles and genes.  
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7. We assume here that suppression is due to an improvement in pollen fertility. This 

has always been the case in our experience, but it is possible that female suppression 

pathways may exist. To determine whether suppression is due to improved fertility of 

the pollen itself or through compensation by the female tissue, perform reciprocal test 

crosses with the suppressor plants and the background genotype. If the suppressor acts 

by improving pollen fertility, the crossed siliques will have high seed set when the 

suppressor is used as the male parent (similar to the suppressor self-fertilized siliques), 

but low seed set when it is used as the female parent (similar to the self-fertilized 

background genotype).  

 

8. We generally backcross for four generations, but this number may be reduced (or 

increased) as desired. If time is a constraint, reducing the number of backcrosses is 

preferable to eliminating the test cross step. Much of the power to filter candidate 

mutations comes from filtering based on the allelic frequency in the sup/sup data. If the 

suppressors sequenced were not confirmed homozygotes, the stringency of this filtering 

must be significantly reduced to account for heterozygous suppressors. 

 

9. A sup/sup F2 plant is homozygous for the causative mutation, but may be 

homozygous for unrelated mutations as well. By pooling F2 individuals we reduce the 

allele frequency of non-causative mutations. We expect about half of the suppressed 

individuals used for test crosses will prove homozygous. We target a minimum of ten 

homozygous F2s to include in the sequencing DNA pool, but have used as few as five 

with good success. We start with an F2 population of 32 plants, allowing for some non-

suppressed F2s, some test crosses which fail to produce enough progeny to screen and 

other potential problems. 

 

10. Due to the male transmission advantage expected for a suppressor, the test crosses 

must be done using the suppressors as the female parent. However, the low male 

fertility of the background genotype will reduce the total seed yield from crosses when it 
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is used as the male parent. Therefore, more flowers may need to be pollinated than is 

typical to ensure sufficient cross seed yield. 

 

11. From a sup/+ female parent, each individual test cross progeny has a 50% chance 

of inheriting the non-suppressive (+) allele and appearing non-suppressed. The 

probability of all progeny of sample size N inheriting the + allele by chance is calculated 

as 0.5N. For seven individuals, the overall likelihood is 0.57=0.0078 or 0.78%. In 

practice, we sow all cross seed and discard any crosses for which fewer than seven 

individuals can be scored. We also generally discard test crosses if the segregation 

ratio is not clearly one of the expected classes (100% suppressed or 50% suppressed). 

 

12. We have used both in-house DNA sequencing core facilities and commercial 

sequencing operations to both prepare the libraries and carryout the sequencing with 

good success. We typically sequence the libraries as paired-end 150 bp reads using an 

Illumina HiSeq 4000 sequencer, pooling 16 libraries per lane with a target sequencing 

depth of 20-30 fold per sample (James et al., 2013). The specific type of sequencing run 

is not critical and single-end sequencing and/or different read lengths can be used with 

only minor adjustments to data analysis. If a different read type, length or sequencer will 

be used, Illumina offers an online sequence coverage calculator to determine how many 

libraries may be pooled per lane 

(https://support.illumina.com/downloads/sequencing_coverage_calculator.html). 

 

13. A tutorial to guide beginners through interpreting FastQC reports is available at the 

FastQC link in Table 1.  

 

14. The total list of sequence variants will be long (in our experience ~40,000 per 

sequenced line) and include many classes of variants (e.g. induced mutations, 

sequencing errors, polymorphisms between the sequenced line vs. the genome release, 

etc.). Therefore, the variant number should not be taken as an indication of mutation 

rate.  
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15. The read mapping and variant calling steps are computationally too intensive for a 

standard personal computer and will require use of a server or cluster. However, all of 

the remaining steps after variant calling can be done on a standard laptop or desktop 

computer. 

 

16. In this step, any variant that is found in the non-suppressed sibling (+/+) sample or 

the background genotype sample will be removed from the suppressor variant list. Even 

a small amount of suppressor contamination in these samples will eliminate the 

causative mutation since no account is made for the frequency or the quality of the 

variant. If the analysis does not yield promising candidate mutations, this is the most 

likely point of failure. For a less stringent approach this step can be skipped leaving a 

longer list of candidate variants. 

 

 

 
Table 2-1: Tools for data analysis 
Tool URL 

Bowtie2 

(5) http://bowtie-bio.sourceforge.net/bowtie2/index.shtml 

FastQC http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ 

Freebayes 

https://sourceforge.net/projects/acoros/files/acoros/stable/pool/main/f/freeba

yes/ 

R Studio https://www.rstudio.com/products/rstudio/download/ 

Samtools http://www.htslib.org/ 

SnpEff (6) http://snpeff.sourceforge.net/index.html 
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Figure 2-1. Silique length approximates seed set. A) Two representative nearly mature siliques from wild 
type (WT), the low- fertility starting background mutant (mut) and five different suppressors of mut. Note 
that the mutant background siliques are shorter 
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Figure 2-2. Backcrossing the suppressor reduces the number of superfluous mutations. Mutagen 
treatment will produce not only the desired sup mutation, but other random mutations as well. 
Backcrossing the suppressor to the parental background will dilute these. 
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Figure 2-3. Source of tissue samples for DNA sequencing.The backcross F2 generation will be composed 
primarily of suppressed individuals which are either sup/sup or sup/+ genotypes. Determining the 
genotype of a given plant requires a test cross with the background.  
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3.1 Summary 

HYDROXYPROLINE O-ARABINOSYLTRANSFERASEs (HPATs) initiate a post-

translational protein modification (Hyp-Ara) found abundantly on cell wall structural 

proteins. In Arabidopsis thaliana HPAT1 and HPAT3 are redundantly required for full 

pollen fertility. In addition to the lack of Hyp-Ara in hpat1/3 pollen tubes, we also found 

broadly disrupted cell wall polymer distributions, particularly the conversion of the tip cell 

wall to a more shaft-like state. Mutant pollen tubes were slow growing and prone to 

rupture and morphological irregularities. In a forward mutagenesis screen for 

suppressors of the hpat1/3 low seed set phenotype, we identified a missense mutation 

in exo70a2, a predicted member of the vesicle-tethering exocyst complex. Suppressed 

pollen had increased fertility, fewer morphological defects and partially rescued cell wall 

organization. A transcriptional null allele of exo70a2 also suppressed the hpat1/3 fertility 

phenotype as did mutants of core exocyst complex member sec15a, indicating that 

reduced exocyst function bypassed the PT requirement for Hyp-Ara. In a wild-type 

background, exo70a2 reduced male transmission efficiency, lowered pollen germination 
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frequency and slowed pollen tube elongation. EXO70A2 also localized to the PT tip 

plasma membrane, consistent with a role in exocyst-mediated secretion. To monitor 

trafficking of Hyp-Ara modified proteins, we generated an HPAT-targeted fluorescent 

secretion reporter. Reporter secretion was partially dependent on EXO70A2 and was 

significantly increased in hpat1/3 PTs compared to wild type, but reduced in the 

suppressed exo70a2 hpat1/3 tubes.  

 

3.2 Introduction 

For plant cells to grow, the cell wall must be sufficiently extensible to 

accommodate cell expansion while maintaining enough strength to prevent cell rupture 

from the high turgor pressure of the cytoplasm. This balance is especially critical to tip 

growing cell types, like pollen tubes (PTs) and root hairs, where expansion happens at a 

single growing point. Due to their inherent growth polarity, tip-growing cells may be 

divided into two general cell wall domains, an extensible tip and a rigid shaft. Cell wall 

properties depend on its polymer composition and the tip and shaft region differ in 

functionally significant ways (Bosch & Hepler, 2005; Chebli et al., 2012; Dardelle et al., 

2010; Rounds et al., 2011). PTs are generally rich in pectic polysaccharides which are 

initially secreted in a methyl-esterified form. The methyl-esterified pectins are de-

esterified in the wall by pectin methylesterases (PMEs), after which they are able to 

form a gel through divalent ion cross linking, contributing to cell wall rigidity (Bosch & 

Hepler, 2005; Wolf et al., 2009). In PTs, the shaft is further reinforced by the deposition 

of callose (1,3-β-D-glucan) (Schlupmann et al., 1994; VanDerWoude et al., 1971). In 

contrast to other plant cell types, PTs contain relatively little cellulose (1,4-β-D-glucan). 

While cellulose and callose are synthesized at the plasma membrane, other wall 

polymers are synthesized by ER and Golgi-resident enzymes and must be delivered, 

along with other secretory cargos, by secretory vesicles, though much is unknown about 

the process (Cosgrove, 2005; Sinclair et al., 2018).   

To support the rapid growth of PTs, secretion must also be very rapid in these 

cells (Campanoni & Blatt, 2007). Cell expansion and cell wall accumulation are 

temporally related with secretion leading to thickening of the wall followed by an 
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increase in growth rate during oscillatory PT growth (McKenna et al., 2009). The vesicle 

dynamics at the tip of the PT are complex and include a mix of exocytic vesicle 

movement, plasma membrane fusion and endocytic recycling of excess membrane 

(Bove et al., 2008). Multiple components of the PT secretory pathway have been 

described including several members of the vesicle tethering exocyst protein complex. 

The exocyst is an octomeric complex composed of one of each of its subunits (SEC3, 

SEC5 SEC6, SEC8, SEC10, SEC15, EXO70 and EXO84). The exocyst is well 

conserved across Eukaryota (Mei & Guo, 2018) and in plants, exocyst complex 

members have been implicated in several important biological processes including 

casparian strip formation (Kalmbach et al., 2017), compatible pollen reception by the 

stigma (Safavian et al., 2015; Samuel et al., 2009), tracheary element development (S. 

Li et al., 2013), polar organ growth, root hair elongation (Synek et al., 2006), root growth 

(Cole et al., 2014) and pollen germination and tube elongation (Bloch et al., 2016; Cole 

et al., 2005; Hála et al., 2008; Y. Li et al., 2017). However, the rules by which various 

secretory cargo are packaged and trafficked and how these cargoes become 

incorporated into a functional wall upon secretion remains poorly understood. The PT is 

an excellent system for studying these processes given its rapid growth, heavy 

dependence on secretion and the importance of maintaining proper cell wall 

organization in these cells.  

We have previously shown that successful PT elongation and fertilization 

requires protein glycosylation, specifically of the hydroxyproline O-arabinosylation (Hyp-

Ara) type (MacAlister et al., 2016).  O-linked protein glycosylation, like Hyp-Ara, begins 

in the endoplasmic reticulum with the conversion of peptidyl proline to Hyp by prolyl-4 

hydroxylases (Adams & Frank, 1980). In plants, Hyp can be modified by O-linked 

glycosylation in the form of Hyp-Ara or Hyp O-(arabino)galactosylation (Showalter & 

Basu, 2016; Tan et al., 2010). Which type of modification a given Hyp receives depends 

on the protein context; contiguous and non-contiguous Hyps are arabinosylated while 

clustered but discontinuous Hyp, like those occurring in the arabinogalactan proteins 

are galactosylated (Kieliszewski & Shpak, 2001; Ohyama et al., 2009). For Hyp-Ara, 

arabinose sugars are sequentially added until a linear chain of up to 4-5 sugars is 

formed (Lamport & Miller, 1971). The first, (β1,4-linked) arabinofuranose is added by the 
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Golgi-localized HYDROXYPROLINE O-ARABINOSYLTRANSFERASE 1-3 (HPAT1-3) 

enzymes which are classified as glycosyltransferase family GT95 members (Ogawa-

Ohnishi et al., 2013). The single arabinose (Hyp-Ara1) may then be extended by the 

GT77 family members REDUCED RESIDUAL ARABINOSE 1-3 (RRA1-3) and 

XYLOGLUCANASE113 (XEG113) which add a second (β-1,2-linked) and a third (β-1,2-

linked) arabinofuranose, respectively (Egelund et al., 2007; Gille et al., 2009; Velasquez 

et al., 2011). The fourth (α-1,3-linked) arabinofuranose is added by the GT47-classified 

EXTENSIN ARABINOSE DEFICIENT TRANSFERASE (ExAD) (Møller et al., 2017). An 

enzyme activity for addition of the rare fifth arabinose has not been assigned. In the 

absence of HPAT activity Hyp-oligoarabinosides are not produced (MacAlister et al., 

2016). In Arabidopsis, mutants of the three-member HPAT gene family have reported 

pleiotropic effects including reduced hypocotyl length, reduced cell wall thickness, 

accelerated senescence in hpat1 hpat2 double mutants, and disrupted root hair 

elongation (Ogawa-Ohnishi et al., 2013; Velasquez et al., 2015). HPAT1 and HPAT3 

are redundantly required for full male fertility; hpat1 hpat2 hpat3 triple mutants and 

hpat1 hapt3 double mutants display low male fertility and PT growth defects leading to 

reduced male transmission and low seed set (MacAlister et al., 2016). 

The largest known group of HPAT-target proteins are members of the 

EXTENSIN (EXT) family of repetitive cell wall structural glycoproteins (Brownleader & 

Dey, 1993; Lamport, 1967; Lamport & Miller, 1971; Showalter et al., 2010). Following 

heavy Hyp-Ara modification, EXTs are secreted into the apoplast where they assemble 

into an insoluble covalent network by peroxidase-mediated cross-linking of tyrosine 

residues (Everdeen et al., 1988; Held et al., 2004). The glycosylation of the EXTs 

contributes to their rod-like, extended poly-Pro-II left-handed helical conformation and 

increases tyrosine cross-linking in vitro (Chen et al., 2015; Stafstrom & Staehelin, 

1986a, 1986b; van Holst & Varner, 1984). This EXT network is hypothesized to serve as 

scaffold for further cell wall assembly, specifically through acid-base and/or covalent 

interactions with pectins (Cannon et al., 2008; Qi Xiaoyang et al., 1995). Proteins with 

EXT-like regions fused to other domains are also predicted to carry Hyp-Ara 

modifications. These “EXT-chimeras” have many proposed functions, with the EXT-like 

region generally proposed to act in cell wall binding or sensing. EXT-chimeras include 
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the leucine-rich repeat extensin (LRX) proteins, the proline-rich extensin-like receptor 

kinase (PERK) proteins and the class I formin homology (FH) proteins (Borassi et al., 

2016; Showalter et al., 2010). 

With the aim of understanding the requirement for Hyp-Ara in PT growth, we 

carried out a genetic suppressor screen to identify additional factors in the HPAT pollen 

fertility pathway. Here we report the cloning and characterization of two such 

suppressor mutants, both of which encode members of the exocyst complex, pointing to 

an important link between regulation of secretion, protein glycosylation and cell wall 

structure in the PT. 

 

3.3 Results: 

To identify mutations suppressing the pollen fertility defect of hpat1 hpat3 double 

mutants (hpat1/3 for brevity) we mutagenized ~2,000 hpat1/3 seeds by treatment with 

0.2% ethyl methanesulfonate. Self-fertilized progeny were screened for increased 

silique length and seed set (see also Material and Methods section). The identified 

suppressor mutants, named fertility restored in hpat1/3 (frh), were confirmed to be 

homozygous for the original hpat1 and hpat3 insertion mutations and to display 

consistently increased fertility between generations and following backcrosses with the 

parental strain. 

 

3.3.1 frh1 improves the fertility of hpat1 hpat3 pollen 

In contrast to the hpat1/3 genetic background, suppressed frh1 hpat1/3 plants 

showed increased silique length and higher seed set, but appeared otherwise 

morphologically normal (Fig. 1). To confirm that frh1 suppression was the result of 

improved pollen fertility we analyzed seed set following reciprocal crosses between the 

suppressed line and hpat1/3. The hpat1/3 fertility defect is limited to the pollen; seed set 

can be fully rescued by pollination with wild-type (WT) pollen (MacAlister et al., 2016). 

Similarly, seed set was high when frh1 hpat1/3 was used as the pollen parent, but not 

when it was used as the seed parent with hpat1/3 pollen, demonstrating that 

suppression in frh1 was due to increased pollen fertility (Fig. 1B). This enhanced pollen 
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fertility coupled with the Arabidopsis habit of producing excess pollen relative to ovule 

number, impacted the genetic behavior frh1 hpat1/3 and its pattern of inheritance. Seed 

set was significantly increased in both homozygous and heterozygous (i.e. backcross 

F1) frh1 hpat1/3 plants (Fig. 1B). In the frh1/+ hpat1/3, the increased fitness of pollen 

carrying the frh1 mutation also drove high frh1 male transmission and reduced the 

number of non-suppressed progeny recovered. In a backcross F2 population, only 9% 

of plants displayed low, hpat1/3-like fertility, a significant deviation from the 25% 

expected in the absence of a transmission bias (N=123, χ2 P-value = 1.55x10-5). 

Given that frh1 improved hpat1/3 pollen fertility in vivo, we next analyzed the 

phenotype of frh1 hpat1/3 PTs directly. When grown on in vitro pollen germination 

media hpat1/3 PTs displayed a number of defects including reduced PT length, the 

initiation of secondary tips (i.e. “branched” PTs), high frequencies of PT rupture and 

modestly increased PT width. We found frh1 partially suppressed all of these defects 

(Fig. 1D-E and Fig. S1). Interestingly, we also found that frh1 hpat1/3 pollen germinated 

at a lower frequency than either WT or hpat1/3 pollen. The apparent reduction in 

germination in hpat1/3 is at least partially a result of their poor PT growth. hpat1/3 PTs 

often rupture and can do so before a tube becomes sufficiently apparent to consider a 

pollen grain germinated. However, this was not true for frh1 hpat1/3 pollen grains which 

had reduced frequency of PT rupture, but further reduced germination frequency. In a 

comparison of sustained PT growth rates for each genotype, we found an overall 

reduction in hpat1/3 PTs which was suppressed by frh1 (Fig. S1I). Though the frh1 

hpat1/3 growth rate was even higher than the WT rate, this did not translate into an 

increase in the overall length of PTs after 5 hours of growth (Fig. 1D). We also noted 

that hpat1/3 PTs would often arrest growth for extended periods of time before 

ultimately rupturing. The average duration of this pre-rupture pausing was 24.5 minutes 

and ranged from less than five minutes to greater than 100 minutes (N=11). 

 

3.3.2 frh1 does not restore Hyp-Ara, but partially rescues cell wall organization 

The most direct mechanism for suppressing the hpat1/3 phenotype would be 

restoration of the Hyp-Ara protein modification itself. In order to assess the Hyp-Ara 
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status of frh1, we sought an antibody capable of specifically recognizing this 

modification. The Extensin (EXT) family of cell wall structural proteins are known to be 

heavily Hyp-Ara modified and several monoclonal antibodies have been previously 

raised against purified EXTs. We tested three of these for Hyp-Ara specificity [JIM11, 

JIM19 and JIM20; (M. Smallwood et al., 1994; Margaret Smallwood et al., 1995). We 

found JIM20 recognized protein samples from WT seedlings, but not hpat triple mutant 

seedlings, which we have previously shown to lack detectable Hyp-Ara [Fig. S2A-

B;(MacAlister et al., 2016)]. Furthermore, JIM20 did not recognize protein from mutants 

of the arabinosyltransferases adding the second and third 1→2 linked β-

Arabinofuranoses (the rra2 rra3 double mutants and the xeg113-3 mutant; (Egelund et 

al., 2007; Gille et al., 2009). JIM20 did however recognize protein from exad1-1 plants, 

therefore, the fourth, 1→3 linked α–arabinofuranose added by ExAD is not required for 

JIM20 recognition (Møller et al., 2017).We immuno-labeled pollen grains and PTs with 

JIM20 to determine the localization of Hyp-Ara in these cells. We found robust staining 

of the WT pollen grain and tube cell wall (Fig. 2A, Fig. S2C). In hpat1/3 pollen, we 

detected no JIM20 signal, as in WT secondary antibody alone controls (Fig. S2D-E). As 

in hpat1/3, no Hyp-Ara was detected in frh1 hpat1/3 tubes (Fig. S2F). Therefore, frh1 

did not suppress the hpat1/3 phenotype by directly restoring Hyp-Ara, but through 

another mechanism. 

The hpat1/3 pollen phenotypes are consistent with defective cell wall integrity. In 

order to gain insight in the molecular basis for these defects and frh1’s suppression of 

them, we compared the organization of key PT cell wall polymers. Given the importance 

of pectin for PT growth and the proposed function of EXTs in pectin organization we 

hypothesized that compromised EXT Hyp-Ara may alter pectin distribution in the cell 

wall. We used the monoclonal antibodies LM19 and LM20 (Verhertbruggen et al., 2009) 

to assess the distribution and abundance of demethyl-esterified homogalacturonan 

(dme-HG) and methyl-esterified HG (me-HG), respectively, in WT, hpat1/3 and frh1 

hpat1/3 PTs. A key functional difference between these two forms of pectin is their 

ability to form calcium salt bridges. dme-HG is able to form a cross-linked structure 

while the methyl-ester groups present on the me-HG prevent this (Micheli, 2001). In WT 

PTs, the me-HG recognized by LM20 was enriched at the PT tip while the calcium 
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cross-linkable dme-HG recognized by LM19 was excluded from the tip and enriched in 

the shaft, consistent with previous reports [Fig. 2C-D; (Bosch & Hepler, 2005; Chebli et 

al., 2012; Dardelle et al., 2010; Rounds et al., 2011). This pattern was disrupted in 

hpat1/3 PTs. The LM20 epitope (me-HG) signal enrichment at the tip region was 

weaker in hpat1/3. Moreover, the overall level of LM19 epitope (cross-linkable dme-HG) 

was increased in the shaft region and enriched, rather than excluded from the tip (Fig. 

2C-D). However, frh1 hpat1/3 PTs had intermediate levels of dme-HG (LM19) signal, 

and reduced me-HG (LM20) at the tip relative to the shaft, though the pattern was not 

restored to that of WT. Increased cell wall rigidity at the PT tip in hpat1/3 due to 

accumulation of dme-HG in this region is consistent with the poor expansion ability of 

this genotype. The reduced accumulation of this polymer in frh1 is also consistent with 

its improved growth and the suppressed phenotype. Interestingly, in frh1 hpat1/3 PTs, 

the tip enrichment of me-HG (LM20 signal) was almost completely missing and the 

expression was generally flat across the length of the PT (Fig. 2C). 

The PT shaft is also reinforced with callose (Schlupmann et al., 1994; 

VanDerWoude et al., 1971) We stained PTs with aniline blue fluorochrome (ABF) to 

compare callose distribution between genotypes. As expected, in WT PTs we found 

high levels of ABF binding along the shaft and low signal at the tip. Again, consistent 

with the poor expansion ability of hpat1/3 pollen, we found high levels of ABF signal at 

the PT tip. This enrichment was abrogated in frh1 hpat1/3 tubes, though not restored to 

WT levels, again, consistent with the improved growth of suppressed PTs (Fig. 2B). 

 

3.3.3 frh1 suppression is caused by a mutation in exo70a2 

 To identify the mutation conferring increased seed set and improved PT growth 

in frh1 plants, we used a high-throughput sequencing strategy (Beuder & MacAlister, 

2020). frh1 was backcrossed to the parental strain for four generations and allowed to 

self-fertilize forming the BC4 F2 generation. To identify homozygous frh1 individuals for 

sequencing, the BC4 F2 plants were used as females in test crosses with hpat1/3 

pollen. Homozygous frh1 plants produce only suppressed F1 progeny while 

heterozygous females produce a 1:1 ratio of suppressed and non-suppressed progeny. 
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A minimum of 11 test cross progeny per parent were scored for 25 BC4 F2 individuals. 

Twelve were found to be homozygous (100% suppressed progeny, N=149 total), while 

the remaining 13 were heterozygous (49.4% suppressed progeny, N=170 total). We 

extracted DNA from three groups of plants: the self-fertilized progeny of the confirmed 

homozygous frh1 plants (the frh1/frh1 pool), the non-suppressed progeny segregating 

from the heterozygous plant test crosses (the FRH1/FRH1 pool) and the hpat1/3 

genetic background.  

Following paired-end 150 bp DNA sequencing, quality control and read mapping, 

we identified sequence variants from all three DNA samples relative to the Columbia 

reference genome (Table S1). From the variants identified in the frh1/frh1 data, we 

removed all variants shared with the background strain (hpat1/3) or the FRH1/FRH1 

pool, leaving 18,287 unique frh1 variants. We filtered this set for single nucleotide 

polymorphisms, as expected for an EMS-induced mutation, supported by a minimum of 

four reads leaving 16,001 variants. After filtering for a minimum variant sequence read 

frequency of 80%, we were left with 48 variants, eight of which were predicted missense 

mutations. Thirty of these variants were clustered within a 5.7 Mbp region on 

chromosome 5, presumably containing the causative mutation and those linked to it 

(Table S2). Near the middle of this region, we identified a missense mutation converting 

glycine 319 to a glutamic acid in EXO70A2, a predicted subunit of the vesicle-tethering 

exocyst complex. The altered amino acid position (Glycine 319) is conserved in eight of 

the 23 Arabidopsis EXO70s including the A, E, F and G subfamilies and is directly C-

terminal to a phenylalanine that is conserved in all Arabidopsis EXO70s (Fig. S3).  

We tested for co-segregation between the exo70a2G319E variant (hereafter 

exo70a2-2) and the suppressive phenotype in an frh1 BC5 F2 population using a PCR-

based genotyping assay. As expected for the causative mutation, we found a significant 

bias against recovery of homozygous wild-type plants and perfect concordance 

between exo70a2-2 genotype and suppressive phenotype, including intermediate seed 

set values for heterozygous plants (Fig. S4). To confirm that the exo70a2 mutation is 

the cause of the frh1 suppression, we expressed the wild-type genomic EXO70A2 

sequence from a transgene in the frh1 hpat1/3 background. Transgenic frh1 “rescue” 

would be a return to the low fertility of the hpat1/3 parental strain. We cloned a 3,971 bp 
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region of the EXO70A2 locus including the native promoter, full coding region and ~450 

bp of 3’ sequence and recombined this fragment into a plant expression vector 

containing a seed-expressed fluorescent transformation marker (Shimada et al., 2010).  

We compared the transgene transmission efficiency in three independent single-loci 

insertion hemizygous lines and found a significant and robust male-specific 

transmission defect for the EXO70A2 transgene for all lines (Fig. S5). The same 

plasmid backbone carrying a strong pollen-specific promoter (Lat52) driving expression 

of the florescent protein, mNeonGreen, had no effect on male or female transmission 

[Fig. S5B; (Bate & Twell, 1998; Shaner et al., 2013). Furthermore, in exo70a2-2 hpat1/3 

lines homozygous for the transgene, seed set was reduced to the level of the hpat1/3 

background while non-transgenic sibling plants had frh1-like high seed sets (Fig. S5C). 

Thus confirming that the exo70a2-2 mutation confers the increased fertility observed in 

frh1 hpat1/3 plants.  

 

3.3.4 EXO70A2 is required for efficient pollen germination and pollen tube growth 

Given the effect of exo70a2-2 on hpat1/3 pollen fertility, we next determined the 

phenotypic consequence of this mutation in an otherwise WT background. From a Col 

outcross population, we isolated exo70a2-2 homozygous mutants which were wild-type 

for HPAT1 and HPAT3. We observed no statistically significant change in seed set 

between Columbia and exo70a2-2 (Fig. 3C). However, using a more sensitive 

competitive fertilization assay, we found significantly reduced male transmission of the 

exo70a2-2 allele vs. the WT allele (16.7% transmission efficiency, N=84; χ2 P-

value=5.89x10-11). Therefore, in an otherwise WT background, exo70a2-2 reduced 

pollen fitness. 

Since we had observed partial rescue of cell wall organization in suppressed PTs 

(Fig. 2), we compared the PT cell wall organization between WT and exo70a2-2. We 

again used LM19 and LM20 to compare the distribution of dme-HG and me-HG, 

respectively along with ABF staining to compare callose accumulation. In all three 

cases, the overall pattern of signal was similar between WT and exo70a2-2 tubes (Fig. 

S6). The only difference we observed was an overall reduction of signal intensity for 
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LM19 (dme-HG) in exo70a2-2, though the pattern of low signal at the tip and increasing 

signal in the shaft was the same for both genotypes. We next used the JIM20 antibody 

to compare distribution of Hyp-Ara. Similar to our observations for LM19 staining, the 

overall intensity of JIM20 signal was reduced in exo70a2-2 PTs, though the pattern was 

generally flat across the PT length in both genotypes. Therefore, while exo70a2-2 

partially restores PT cell wall organization in the hpat1/3 background, it did not alter cell 

wall polarity in the wild-type background.  

Our transgenic rescue data (Fig. S5) suggests that the G319E allele is likely a 

loss or reduction of function allele and the only previously published allele (exo70a2-D) 

is a promoter-region insertion with increased transcript expression with no reported 

pollen fertility phenotypes (Synek et al., 2017). To gain further insight into the function of 

this gene, we identified an additional allele with an insertion in the fifth intron of 

EXO70A2 among the available insertion mutant collections. Based on RT-PCR analysis 

of flower cDNA, we found that this insertion mutant (exo70a2-3) was a transcriptional 

null allele (Fig. 3B). Seed set was modestly reduced in homozygous exo70a2-3 plants 

compared to the WT background (Fig. 3C-D) and the male transmission efficiency of 

exo70a2-3 was also reduced to about half of the exo70a2-2 value (8.3% transmission 

efficiency, N=130, χ2 P-value=5.03x10-22). We next tested exo70a2-3 for suppression of 

the hpat1/3 low-fertility phenotype. Self-fertilized progeny of exo70a2-3/+ hpat1/3 plants 

displayed a significant bias towards inheritance of the exo70a2-3 mutant allele, 

consistent with a suppressive effect conferring improved transmission of the triple 

mutant pollen (13% WT, 49% heterozygous, 37% homozygous mutant, N=67 total, χ2 P-

value=7.06x10-9). Seed set in hpat1/3 exo70a2-3 triple mutants was also significantly 

increased compared to the hpat1/3 background, though the exo70a2-3 allele did not 

increase seed set to the same degree as the exo70a2-2 allele (Fig. 3C).  

Since exo70a2 mutants exhibit reduced male fitness in the wild-type background, 

we analyzed their pollen phenotypes directly. When grown in vitro we observed a 

moderate and strong reduction in pollen germination frequency for exo70a2-2 and 

exo70a2-3, respectively (Fig. 3E-G). The non-germinated pollen grains appeared 

morphologically normal and all pollen appeared similarly viable based on Alexander 

staining [Fig. 3H-J; (Peterson et al., 2010)]. We hypothesize the observed germination 
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defect was due to failure to target secretory vesicles to the germination site, similar to 

the pollen germination defect described for other exocyst mutants including sec3a, 

sec6, sec8, sec15a and sec5 (Bloch et al., 2016; Cole et al., 2005; Hála et al., 2008; Y. 

Li et al., 2017). We examined germination plaque formation using Ruthenium red which 

stains pectin accumulation (Y. Li et al., 2017). Though WT pollen accumulated pectin at 

the germination site as expected, most exo70a2-3 pollen did not, consistent with the low 

germination frequency in this line (Fig. 3K-L). We further noted that the mutant pollen 

which successfully germinated produced shorter PTs than the wild type after five hours 

of growth (Fig. 3M), though they were otherwise morphologically normal (Fig. 3O-P). To 

determine if this was due to slower rates of PT growth or an indirect effect of delayed 

germination, we measured the sustained PT growth rate. Following successful 

germination, exo70a2-3 PTs elongated at about half the rate observed in WT though the 

rate of exo70a2-2 PT growth was not significantly different from that of the WT (Fig. 

3N). Therefore, exo70a2 mutants have both impaired pollen germination and tube 

elongation, phenotypes consistent with a secretion defect, with the exo70a2-3 null allele 

being more severely impaired than the missense allele exo70a2-2.  

 

3.3.5 EXO70A2 localizes to the tip of growing pollen tubes  

Available microarray, mRNA sequencing and proteomic data indicates that 

EXO70A2 is most strongly, if not exclusively expressed in pollen and PTs (Grobei et al., 

2009; Hruz et al., 2008; Klepikova et al., 2016; Synek et al., 2017). To validate this 

expression data and determine the sub-cellular localization of EXO70A2, we generated 

a C-terminal mNeonGreen fusion protein including the native promoter region and full 

genomic sequence (EXO70A2-mNG). In stably transformed wild-type plants, we 

observed reporter expression in in vitro grown PTs, with no detectable expression in 

other tissues, in agreement with the reported expression data. To determine if the fusion 

protein was functional, we transformed homozygous exo70a2-3 plants with this 

construct. In contrast to the low germination frequency of exo70a2-3 pollen, pollen from 

three independent T1 plants had a significantly higher proportion of germinated pollen 

grains after two hours and the vast majority of T1 PTs were positive for mNeonGreen 
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fluorescence, demonstrating that pollen carrying the reporter construct was able to 

germinate and form elongating PTs while the non-transgenic mutant pollen largely failed 

to do so (Fig. S7). A similar experiment using the EXO70A2G319E point mutant fused to 

mNeonGreen resulted in much weaker rescue of pollen germination frequency, 

suggesting that this mutant is a hypomorph with reduced activity relative to the wild-type 

sequence (Fig. S7B). In addition to the weaker rescue by the mutant protein, the 

resulting PTs had noticeably weaker fluorescence than the corresponding wild-type 

EXO70A2-mNG expression lines, suggesting the mutant protein may be less stable in 

vivo, potentially accounting for its lower activity.  

In budding yeast, EXO70p localizes to the target membrane, along with SEC3p, 

through phospholipid interactions and recruits the remaining, vesicle-associated 

complex members to the site of tethering (He et al., 2007; Liu et al., 2007). Given the 

importance of proper vesicle targeting during tip growth, we examined the localization of 

the EXO70A2:mNG fusion protein in PTs and observed signal at the tip plasma 

membrane (Fig. 4). This localization pattern was similar to the immunolocalization 

pattern reported by Hála et al., (2008) in tobacco PTs using an antibody raised against 

the highly similar EXO70A1. Furthermore, a C-terminal YFP fusion to the tobacco 

EXO70A2 homologue (NtEXO70A2) was reported to localize to the PT tip, but only 

occasionally to show PM localization (Sekeres et al., 2017).  

 

3.3.6 exo70a2 mutants reduce Hyp-Ara modified protein secretion at the pollen 
tube tip 

EXO70A2’s localization to the PT tip (Fig. 4), combined with the reduced pollen 

germination and slower PT growth of exo70a2-3 mutants (Fig. 3) suggested that 

EXO70A2 is a positive regulator of PT tip growth and likely acting as a canonical 

exocyst complex member. Therefore, we hypothesized that the suppression of hpat1/3 

by exo70a2 mutants was due to reduced rates of secretion of one or more key exocyst 

cargo(s). Hyp-Ara modified proteins themselves are a strong candidate for exocyst-

mediated secretion. To develop a secretion reporter to allow us to follow Hyp-Ara 

modified proteins, we used a portion of a directly validated HPAT substrate, EXT3 
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(Ogawa-Ohnishi et al., 2013), specifically an arabinosylation motif (SPPPP) and 

adjacent sequence (KSPPPPVKHLY) inserted into an exposed loop of GFP (Fig. 5A). 

Insertion into the GFP sequence has been shown to stabilize glycoprotein fusions which 

are otherwise often subject to terminal tag cleavage and degradation (Yang et al., 

2012). We used the EXT3 signal peptide sequence to drive the protein into the 

secretory pathway and expressed the resulting fusion, GF(EXT3)P, under the Lat52 

promoter for pollen expression (Bate & Twell, 1998). We stably transformed this 

construct into hpat1/3 plants. To limit potential confounding effects due to expression 

level variation between independent transgenic lines, we crossed a single, robustly 

expressing hpat1/3 GF(EXT3)P line to Col, exo70a2-2, exo70a2-3 and hpat1/3 

exo70a2-2 and isolated the desired genotypes from the resulting F2 populations. As a 

control, we also transformed a GFP construct with no signal peptide (Lat52::GFP) into 

Col. 

We were able to detect GF(EXT3)P from PT protein samples with an anti-GFP 

polyclonal antibody at the expected molecular mass of the fusion, ~34 KDa (Fig. 5B). To 

determine if the fusion protein was arabinosylated, we probed with the JIM20 Hyp-Ara 

antibody. No native arabinosylated proteins of the GF(EXT3)P mass were observed in 

un-transformed Col PTs, but we detected JIM20 signal at the observed reporter mass in 

the GF(EXT3)P transgenic Col line (Fig. 5B). No JIM20 signal was detected from 

hpat1/3 or exo70a2-2 hpat1/3 transgenic samples, consistent with the absence of Hyp-

Ara in these genotypes. 

In in vitro grown GF(EXT3)P-expressing PTs, we observed robust intracellular 

fluorescence, likely due to the presence of the reporter in the secretory pathway (ER, 

Golgi and secretory vesicles). To determine if the protein was secreted, we plasmolyzed 

PTs by transfer to high sucrose media. In PTs, plasmolysis occurs preferentially at the 

tip region, separating the plasma membrane from the cell wall (Hill et al., 2012). We 

observed fluorescence signal remaining at the vacated PT tip, suggesting that the 

protein was secreted into the cell wall space (Fig. 5C). To quantitatively compare 

secretion between genotypes, we calculated a “Secretion Index” (SI) as a ratio of 

fluorescence intensity of the cytoplasm-free tip region to the intracellular signal after 

subtraction of non-tube background. The Col GF(EXT3)P SI was significantly higher 
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(~3-fold greater) than that of the control GFP construct, demonstrating that the 

GF(EXT3)P construct was actively secreted (Fig. 5D). This secretion was also partially 

dependent on EXO70A2; the SI was significantly lower in exo70a2-3 compared to WT 

PTs, though it was still greater than the SI of the control (Fig. 5E). Interestingly, the SI 

was increased by ~40% in hpat1/3 mutants compared to Col, suggesting more rapid 

secretion of HPAT-target proteins in the absence of the HPATs, despite the lower 

growth rate of the hpat1/3 tubes (Fig. S1I). Finally, we found that the Secretion Index 

was significantly reduced in the suppressed hpat1/3 exo70a2-2 PTs compared to 

hpat1/3, but was not significantly different from the exo70a2-2 value. Thus, in addition to 

the cell wall defects of hpat1/3 PTs noted above, increased secretion of un-modified 

HPAT-target proteins may be further confounding the cell wall structure of the mutant 

PTs.  

 

3.3.7 sec15a mutants also suppress the hpat1/3 fertility phenotype 

The above data suggests an important function for EXO70A2 in the secretion of 

glycoproteins in PTs. The exo70a2 mutant phenotypes were also consistent with the 

defects observed for mutants in other exocyst complex members (Bloch et al., 2016; 

Cole et al., 2005; Hála et al., 2008; Y. Li et al., 2017). If the underlying mechanism of 

hpat1/3 suppression by exo70a2 is a reduction of exocyst-mediated secretion, mutants 

in other members of the core exocyst should also suppress the hpat1/3 fertility defects. 

Fortuitously, in the course of sequencing additional frh suppressor lines, we identified a 

line carrying a mutation in exocyst complex member SEC15A, converting serine 213 to 

phenylalanine (Table S3, Fig. 6A). SEC15A is one of two Arabidopsis SEC15 genes 

and is required for male transmission, pollen germination and PT growth (Hála et al., 

2008). In the BC5 F2 generation of this suppressor family, we found strong bias against 

recovery of plants homozygous for the wild-type SEC15A allele, as expected for an 

hpat1/3-suppressing mutation (Fig. 6B-C, χ2 P-value = 1.57x10-5). Following pollination 

of hpat1/3 pistils by pollen from sec15a-3/+ hpat1/3 plants, 90% of the progeny inherited 

the sec15a-3 allele (61 heterozygous vs. 7 WT progeny, χ2 P-value = 5.8x10-11), 

confirming increased male transmission of the sec15aS213F mutation (hereafter sec15a-
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3) in the hpat1/3 background. We also found perfect co-segregation between sec15a-3 

and the suppressive phenotype including intermediate seed set values for heterozygous 

individuals (Fig. 6D). Like exo70a2-2, the sec15a-3 mutant also increased PT lengths in 

vitro in the hpat1/3 background (Fig. 6E). After outcrossing our suppressor allele to the 

wild-type Columbia background to remove the hpat1 and hpat3 mutations, sec15a-3 

mutants did not display significantly different seed set compared to WT, similar to our 

observations for exo70a2-2 (Fig. 6D and Fig. 3C). However, the transmission efficiency 

of the mutant allele was reduced in the WT background (TE=60.6%, N=249, χ2 P-value 

= 1.1x10-4), indicating a modest fertility cost to pollen carrying the mutant allele.  

Given that loss of function exo70a2 mutants were able to suppress the hpat1/3 

phenotype, we reasoned that the suppression by sec15a-3 was also due to a loss of 

function of this core exocyst complex member. Therefore, we next crossed hpat1/3 to a 

previously published transcription null T-DNA insertion allele of sec15a (sec15a-2, 

SALK_067498; Hála et al., 2008). In plants homozygous for the hpat1 and hpat3 

mutations, the presence of a sec15a-2 allele increased seed set with homozygous 

sec15a-2 plants being more strongly impacted (Fig. 6D), thus confirming that loss of 

function of sec15a can suppress the hpat1/3 phenotype. The recovery of homozygous 

sec15a-2 plants in the hpat1/3 background was somewhat surprising since this allele is 

essential for male transmission in the WT background (Hála et al., 2008).  

If exo70a2 and sec15a both suppress the hpat1/3 fertility defect through 

disruption of the same protein complex, plants carrying both mutations should exhibit no 

further suppression relative to the single suppressor mutants. We crossed the two 

suppressor families to establish the genetic relationship between them. In the double 

suppressor genotype (i.e. hpat1/3 exo70a2-2 sec15a-3 quadruple mutants) we 

observed the same level of seed set as sibling hpat1/3 exo70a2-2 plants and a minor, 

but statistically significant (T-test P-value 0.03) increase compared to the hpat1/3 

sec15a-3 siblings (Fig. 6G), consistent with the hypothesis that both suppress through 

disruption of the core exocyst complex.  
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3.4 Discussion  

PTs grow by the targeted secretion of new cell wall material to their tip. We have 

previously shown that the plant-specific protein modification hydroxyproline O-

arabinosylation (Hyp-Ara) is required for proper PT growth and full male fertility 

(MacAlister et al., 2016). Here, we report major changes in the organization of the PT 

cell wall in hpat1/3 mutants, specifically a loss of PT cell wall polarity and the conversion 

of the normally extensible cell wall structure at the PT tip into a more shaft-like state 

(Fig. 2). While immunolocalization studies of cell wall epitopes must be interpreted with 

caution due to potential epitope masking by interaction between polymers, our results 

demonstrate a change in cell wall organization in the hpat1/3 PTs. Once the tip wall is 

disrupted as in the hpat1/3 tubes, one would expect cell expansion to be compromised, 

leading to growth arrest and/or PT rupture. The “branching” observed for hpat1/3 PTs 

may be the result of growth being re-directed to a more viable sub-apical cell wall region 

(Fig. S1). The EXT family of cell wall structural glycoproteins are heavily Hyp-Ara 

modified, therefore, the most direct explanation for the disrupted cell wall organization of 

the hpat1/3 PTs is that the lack of Hyp-Ara prevents proper EXT function in the cell wall, 

broadly disrupting cell wall organization. The un-modified EXTs may also be toxic to cell 

wall structure; their presence as un-arabinosylated proteins causing greater disruption 

to the wall than their absence would. Loss-of-function mutants of the exocyst 

components exo70a2 and sec15a suppress the hpat1/3 pollen fertility phenotype, 

suggesting that reducing the rate of secretion of one or more key exocyst cargoes 

allows hpat1/3 PTs to compensate for their defects. This is apparent as a partial 

restoration of PT cell wall organization, particularly a reduction of the anomalous 

accumulation of dme-HG and callose at the PT tip (Fig. 2) and an increased PT growth 

rate (Fig. S1I).  

To determine if HPAT-modified proteins themselves are trafficked through the 

exocyst, we generated a Hyp-Ara modified secreted reporter (GF(EXT3)P). The 

secretion index (SI) of GF(EXT3)P was significantly reduced in PTs of the null exo70a2-

3 allele compared to WT PTs (Fig. 5), indicating that reporter secretion was, at least 

partially, EXO70A2 dependent. However, the exo70a2-3 GF(EXT3)P SI was still above 

the SI of the GFP control. Thus, there may be exocyst-independent secretion of 
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GF(EXT3)P, or functional redundancy within the 23 member EXO70 gene family. 

Several other EXO70 genes are expressed in PTs and two (EXO70C1 and EXO70C2) 

have demonstrated PT functions, though their mutant phenotypes are qualitatively 

distinct from those of other exocyst complex mutants, suggesting they may be 

regulators of exocyst function rather than canonical exocyst components (et al., 2009; Li 

et al., 2010; Synek et al., 2017; Hruz et al., 2008; Klepikova(Chong et al., 2010; Grobei 

et al., 2009; Klepikova et al., 2016; S. Li et al., 2010; Synek et al., 2017). A recent 

preprint characterizing a CRISPR/Cas9 induced exo70a2 mutant allele agrees with our 

findings with respect to the importance of EXO70A2 for pollen germination and pollen 

tube elongation, further supporting its central role in PT exocytosis (Marković et al., 

2019). Furthermore, reduced secretion of Hyp-Ara modified proteins in exo70a2 

mutants would also be consistent with the reduced levels of JIM20 staining we observed 

in exo70a2-2 PTs (Fig. S6). The reduced SI of the GF(EXT3)P reporter in the exo70a2 

mutant indicates that the protein is being retained cytoplasmically. This retention may 

be occurring in secretory vesicles, at earlier points in the secretory pathway (e.g. the 

Golgi apparatus), or in another compartment. Determining the site of retention will 

require co-localization with sub-cellular markers.  We also found that hpat1/3 PTs had 

the highest GF(EXT3)P SI of any genotype (Fig. 5). Enhanced secretion of a 

glycoprotein in the absence of the relevant glycosyltransferases has been previously 

noted in other systems, though the underlying mechanism is unknown. For example, in 

budding yeast, mutation of mannosyltransferases required for N-linked 

hypermannosylation of cell wall glycoproteins resulted in increased secretion of 

modified heterologous proteins (Tang et al., 2016). Knockdown of Golgi stacking 

proteins also led to reduced glycosylation and accelerated secretion (Xiang et al., 

2013). The underlying cause of increased glycoprotein secretion in hpat1/3 is unclear. 

Partial arabinosylation could serve as a Golgi retention signal, preventing premature 

target protein secretion, and since the hpat1/3 PTs cannot initiate arabinosylation, such 

a retention signal would be absent. Alternatively the presence of the HPAT enzymes 

themselves may be required for target protein retention. The hpat1 and hpat3 alleles are 

transcriptional nulls (MacAlister et al., 2016), thus any protein/protein interactions they 

participate in would be disrupted in hpat1/3 mutants. Alternatively, other compensation 
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pathways may be activated in the hapt1/3 tubes, leading to an indirect increase in 

secretion. Regardless of the cause of the elevation in hpat1/3 PTs, the secretion index 

was significantly reduced in exo70a2-2 hpat1/3 PTs.  

While the GF(EXT3)P secretion reporter showed that the secretion rate was 

altered for a synthetic HPAT-modified protein, which native protein(s) are important for 

PT growth is more difficult to determine. The list of candidate proteins for HPAT-

modification is long, and includes the 20 classical Arabidopsis EXTs and multiple EXT-

chimera families including the LRX, PERK and class I FH proteins (Showalter et al., 

2010). Several members of each of these gene families are expressed in pollen. For 

example, six members of the PERK family of 15 genes are highly or exclusively 

expressed in pollen samples in Arabidopsis (Borassi et al., 2016). The class I Formin 

Homology genes, FH3 and FH5, are also expressed in pollen and known to be 

important regulators of PT growth through their regulation of the actin cytoskeleton 

(Cheung et al., 2010; Cheung & Wu, 2004; Ye et al., 2009). The LRX genes include four 

members (LRX8-11) which are expressed specifically in pollen and have been shown to 

redundantly contribute to pollen fertility. Higher order lrx mutants displayed reduced 

pollen germination, abnormal PT morphology and frequent tube (Fabrice et al., 2018; 

Feng et al., 2017; Sede et al., 2018). LRX proteins have also been shown to bind to the 

RALF4/19 peptides and participate in an autocrine signaling loop maintaining PT 

integrity until reaching the ovule (Mecchia et al., 2017). Furthermore, Fabrice et al. 

(2018) also demonstrated reduced levels of JIM20 signal in lrx8/9 and lrx8/9/11 mutant 

PTs. This could be interpreted as a direct reduction in Hyp-Ara in these mutants due to 

reduced LRX protein levels, though an indirect effect involving feed-back with other 

modified proteins can’t be ruled out. 

In addition to the EXTs and EXT-chimeras, a second, unrelated group of HPAT-

modified proteins is currently known, the small secreted signaling peptides of the 

CLAVATA3/EMBRYO-SURROUNDING REGION-RELATED (CLE) family. Mutants of 

HPAT family members from tomato, Medicago truncatula and Lotus japonicus function 

in the regulation of shoot meristem size and the determination of nodule number 

through their effect on CLE peptide arabinosylation (Imin et al., 2018; Kassaw et al., 

2017; Schnabel et al., 2011; Xu et al., 2015; Yoro et al., 2019). While the participation of 
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an HPAT-modified CLE peptide in PT growth is an intriguing possibility, no candidates 

for such a pollen-expressed CLE are forthcoming (Kanaoka & Higashiyama, 2015).  

Moreover, while we demonstrated reduced secretion of a Hyp-Ara modified 

reporter protein in the suppressed PTs (Fig. 5D), this does not preclude the trafficking of 

other cargoes through the exocyst. Slowing the delivery of cell wall polysaccharides or 

non-arabinosylated cell wall modifying enzymes may also contribute to hpat1/3 

suppression by exocyst mutants. In the PT, pectins are initially secreted in the 

methyesterified form and then de-methylesterified in the wall by pectin methyl esterases 

(PMEs), which are in turn regulated by PME inhibitors [PMEIs; (Bosch & Hepler, 2005)]. 

Altering the rate of delivery of pectin, PME and/or PMEI proteins could alter the timing of 

de-methylesterification in the PT wall. There is evidence of exocyst involvement in 

pectin secretion in the specialized seed coat mucilage cells (Kulich et al., 2015). The 

exocyst is also involved in the secretion of cellulose synthase complexes (Zhu et al., 

2018) and may be trafficking other, similar complexes in the PT, for example, callose 

synthases.  

Evidence is mounting that secretion is likely to be more complex than a simple 

bulk flow of Golgi material to the plasma membrane. Data from budding yeast has 

shown distinct post-Golgi secretory vesicles carrying different sets of cargoes marked 

by the presence of Bgl2p or invertase, with mutations in exo70 predominantly blocking 

secretion of Bgl2p-containing vesicles (Harsay & Bretscher, 1995; He et al., 2007). In 

plant cells there is also evidence of distinct trafficking pathways for reporter proteins vs. 

cell wall polysaccharides (Leucci et al., 2007). The trafficking landscape of PTs is likely 

to be complex and subject to tight regulation.  

 

3.5 Materials and Methods 

 

3.5.1 Plant growth conditions and materials  

Arabidopsis thaliana plants of the Columbia-0 ecotype were grown under 16-hour 

light: 8-hour dark cycles in a temperature-controlled growth room maintained at 23°C. 

Recovery of hpat1-2 (Salk_120066) hpat3-1 (Salk_085603) double mutants has been 
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previously described (MacAlister et al., 2016). frh mutants were induced by treatment of 

hpat1/3 seeds with 0.2% EMS for 12 hours. Seeds from the mutagenized plants were 

collected in pools of 5-10 M1 plants and ~96 M2 individuals per pool were screened for 

increased silique length and higher seed content. frh candidates were genotyped for the 

hpat1 and hpa3 mutant alleles to confirm homozygosity and backcrossed to the hpat1/3 

background for four generations. The exo70a2-3 [WiscDsLoxHs216_02A; (Woody et al., 

2007) and sec15a-2 (SALK_067498; Alonso et al., 2003) insertion alleles were obtained 

from the ABRC. Mutants were genotyped using the primers listed in Table S4. RT-PCR 

for exo70a2-3 knockout validation used the EXO70A2 primers given by Synek et al. 

(2017) and primers from Table S4. The rra2 (SAIL_244_A03), rra3 (Gabi 223B05), 

xeg113-3 (SALK_058092), and exad1-1 (SAIL_843_G12) insertion alleles were 

genotyped using the primers listed in Table S4. To clear siliques for seed counts, fully 

expanded, but unripe siliques were transferred to 70% ethanol for at least two days, 

after which, the ethanol was replaced with 50% glycerol for several more days.  

 

3.5.2 Whole-genome sequencing  

After four generation of backcrossing of the frh plants to hpat1/3, suppressed F2 

plants were crossed as females to hpat1/3 plants to identify homozygous and 

heterozygous individuals based on suppression segregation in the cross progeny. Self-

fertilized seeds from confirmed homozygous BC4 F2 plants were germinated on MS 

media plates for DNA extraction as were seeds of the hpat1 hpat3 background strain. 

Tissue for the FRH/FRH pool was collected from non-suppressed plants produced by 

the heterozygous test cross progeny. DNA was extracted from the tissue pools using 

the Qiagen Plant DNA Mini kit according to the manufacturer’s instructions, followed by 

concentration by ethanol precipitation. Libraries were generated using Illumina TruSeq 

DNA kits and barcoded for multiplexing by the University of Michigan DNA Sequencing 

Core. Samples were sequenced on the Illumina HiSeq-4000 platform with paired-end 

150 bp cycles. Sequence reads were checked for quality using FastQC then aligned to 

the TAIR10 genome using Bowtie2, and sequence variants were called using 

Freebayes. Additional analysis steps were performed with Samtools. We identified all 
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the mutations in each suppressor family and removed mutations that were also present 

in the hpat1/3 and/or the FRH/FRH samples. We then filtered the mutations based on 

allelic frequency ≥ 0.8, mutation type = SNP and read number ≥ 4. We annotated the 

sequence variants for context and predicted effect using a custom PERL script. 

 

3.5.3 JIM20 dot blot and western blot analysis 

Total non-covalently-bound protein was extracted from Col, hpat1/2/3, rra2/3, 

xeg113 and exad seedlings grown on MS plates using a procedure modified from Fry 

(1988). Tissue was ground in liquid nitrogen and resuspended in freshly prepared 

solution A (100ml acetic acid, 250ml 80% w/w phenol), stirred rapidly in a fume hood at 

70°C for 30 minutes, and cooled prior to filtering through GF/C glass fiber paper in a 

4.25cm porcelain Buchner funnel (VWR, 470153-508). The residue was rinsed twice 

with 5ml of solution B (35ml solution A, 5ml H2O), then 2.5ml of 10% ammonium 

formate. 255ml acetone was added to the filtrate, and incubated on ice for an hour. The 

protein precipitate was spun in PYREX™ round-bottom glass centrifuge tubes (Fisher, 

05-558-5B) for 5 minutes at 2,500 x g, the supernatant discarded, and the pellet 

resuspended in 10ml 10% acetone. After a second spin for 5 minutes at 2,500 x g, the 

protein was resuspended as much as possible in a minimal volume of H2O (1-5ml) and 

its concentration determined using a BCA protein assay kit (Pierce, 23225). For dot 

blots, 5µg of total protein extract was spotted onto 0.2µm nitrocellulose and allowed to 

dry prior to immuno-processing. For western blots, 15µg of total protein extract was 

separated by 10% mini-PROTEAN® TGX™ (Bio-Rad, 456-1033) gel electrophoresis 

and transferred onto a 0.2µm PVDF membrane (Bio-Rad, 170-4156) using the Trans-

Blot® Turbo™ transfer system. Dot blots and western blots were then blocked for 1 

hour (5% milk, in 1x TBST), probed with 1:10 JIM20 monoclonal rat IgM primary 

antibody (Carbosource) in blocking buffer in a sealed polypropylene envelope overnight 

at 4°C, washed 3 times with 1x TBST for 10 minutes, probed with goat anti-rat IgG H+L 

secondary antibody (Fisher, PI31629), washed twice with 1x TBST for 10 minutes, once 

with 1x TBS for 10 minutes, treated with chemiluminescent substrate (Immobilon, 

WBKLS0500) and analyzed on CL-XPosure film (Fisher, 34090).  
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3.5.4 Pollen assays 

All pollen germination and growth assays were carried out using in vitro pollen 

growth media (PGM) modified from (Rodriguez-Enriquez et al., 2013) composed of 10% 

sucrose, 0.01% boric acid, 1mM CaCl2, 1mM Ca(NO3)2, 1mM KCl, 0.03% casein 

enzymatic hydrolysate, 0.01% myo-inositol, 0.1 mM spermidine, 10mM γ-Aminobutyric 

acid, 500μM methyl jasmonate, pH adjusted to 8.0 and solidified with 1% low melting 

temperature agarose. The agarose was dissolved by slow heating on a 100°C stir plate 

and the media was poured into 35 mm petri plates. When solidified, the media was 

covered with a piece of cellophane. To germinate and grow PTs in vitro, pollen from 

recently opened flowers was dusted directly onto the cellophane and the PGM plates 

were placed in a humid chamber consisting of a plastic box with damp paper towels. For 

PT length measurements pollen was allowed to grow for five hours before tubes were 

imaged with a dissecting microscope equipped with a camera. PTs were measured 

using ImageJ. For PT width measurements PTs were imaged on a compound 

microscope using a 20X objective after 3 hours of growth in vitro. Three measurements 

were made across the width of each tube ≥ 10 μm from the pollen grain and tip using 

ImageJ. The measurements were averaged to generate a single width measurement 

per tube. To determine PT rupture frequency PTs were imaged after 3 hours of growth 

and the number of ruptured tubes was divided by the total number of PTs analyzed.  

To measure PT growth rates, pollinated PGM plates were immobilized in 100 mm 

x 15 mm petri dishes with double-sided tape, and pieces of damp paper towel were 

placed in the larger petri dish to maintain high humidity. These plates were then placed 

directly on the stage of a dissecting microscope (equipped with a camera) and not 

moved for 3 hours of imaging. To determine sustained growth rates, images of the 

same field of PTs were taken at 20-minute intervals. PT lengths were measured at each 

time point, the change in length calculated and growth rate determined by dividing the 

number of minutes between images. The growth rates from every interval of every PT 

for each genotype was averaged to generate an overall “global” growth rate value. At 

least 30 PTs were analyzed for each genotype. To determine the length of pre-rupture 
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growth stalling in hpat1/3 PTs, the above procedure was followed with the imaging 

interval reduced to 5 minutes and the time of rupture noted.  

 

Protein extraction from pollen tubes and western blot analysis  
Protein extraction from PTs was performed as described in (Chang & Huang, 

2017) with slight modifications. Flowers were collected in 1.5 ml microcentrifuge tubes 

and suspended in 1 ml agarose-free PGM. The tubes were vortexed for 1 minute and 

incubated at room temperature in the dark for 3-5 hours with agitation. Flower debris 

was removed with forceps and PTs were collected by centrifugation at 12,000 RPM for 

2 minutes. The supernatant was removed and the pollen pellet tube was placed on ice. 

Using a polypropylene pestle, the pellet was ground for 1 minute and then incubated in 

K-HEPES protein extraction buffer buffer (20 mM HEPES, pH 7.0, 110 mM K-acetate, 2 

mM MgCl2, 0.1% Tween 20, 0.2% Triton X-100, 1 mM PMSF) for 1 hour on ice. The 

tubes were then centrifuged at 14,000 RPM for 20 minutes. The soluble fraction in the 

supernatant was removed and the insoluble fraction/pellet was resuspended 2x 

Laemmli sample buffer with β-mercaptoethanol, diluted 1:1 with K-HEPES buffer, and 

then heated to 95°C for 10 minutes. For western blots, the insoluble protein extract was 

separated by SDS-PAGE (15% polyacrylamide) and transferred onto a nitrocellulose 

membrane using the Trans-Blot® Turbo™ transfer system. Membranes were then 

blocked for 1.5 hours with 5% milk in 1x TBST, and probed with either 1:10 JIM20 

monoclonal rat IgM primary antibody (Carbosource) or 1:1000 anti-GFP polyclonal 

rabbit IgG (Life Technologies) in blocking buffer in a sealed polypropylene envelope 

overnight at 4°C with agitation. The next day, membranes were washed 3 times with 1x 

TBST for 10 minutes, probed with either goat anti-rat HRP-conjugated secondary 

antibody (for JIM20) or anti-rabbit HRP-conjugated secondary antibody (for anti-GFP), 

sealed in a polypropylene envelope and incubated at room temperature for 1.5 hours 

with agitation. Membranes were then washed twice with 1x TBST for 10 minutes, once 

with 1x TBS for 10 minutes, treated with chemiluminescent substrate (SuperSignal West 

Femto Maximum Sensitivity Substrate) for 5 minutes and imaged with a LI-COR 

Odyssey Fc Dual-Mode Imaging System.  
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3.5.5 Cloning 

For the transgenic rescue construct, the EXO70A2 gene was amplified from 

Columbia-0 in a single fragment including the native promotor (376 bp), coding region 

and the 3’ sequence up to the first predicted Polyadenylation site using the primers in 

Table S4 with Phusion® High-Fidelity DNA Polymerase (NEB, M0530S). For C-terminal 

fusion to mNeonGreen, the EXO70A2 sequence was amplified from the promoter to the 

last coding codon from either Columbia-0 or the exo70a2-2 mutant. The resulting 

fragments were cloned into Gateway® entry clones via BP Clonase II™ (Invitrogen, 

11789-020). The transgenic rescue construct was recombined via LR Clonase II™ 

(Invitrogen, 11791-020) into the pFAST-G01 binary vector (Shimada et al., 2010) and 

the localization reporters were recombined into a modified pFAST-R07 vector in which 

the GFP sequence was replaced with mNeonGreen. Due to restriction site limitations, a 

portion of the pFAST-R07 vector was amplified, using the Phusion® High-Fidelity DNA 

Polymerase (NEB, M0530S) alongside the mNeonGreen fusion protein, and the two 

fragments joined by overlap extension PCR. The GFP sequence was removed from 

pFAST-R07 by NruI and MluI restriction digestion and the mNeonGreen-containing 

fragment inserted using T4 DNA Ligase (Promega, M1801) to make pFAST-mNG.  

The GF(EXT3)P construct was generated through the following steps. pPS48-

35SPro-GF-Muc1-P-35S-term is an intermediate vector previously assembled for 

embed GFP cloning (Yang et al., 2012) where the signal sequence (AtSS) was derived 

from the N-terminal signal peptide sequence of A. thaliana Basic endochitinase B 

(Uniprot: P19171). Firstly, the GF-Muc1 fragment was obtained by PstI/BamHI double 

digestion and used as template for PCR with primers FReplace and RReplace. The 

resulting GF-Muc1 fragment was cloned into the multiple cloning site of pPS48. The two 

EXT3 encoding oligos, pYi1 and pYi2 were inserted into the NcoI/BamHI site of pPS48 

vector. The entire fragment CaMV35S-AtSS-GF(EXT3)P-NosTerm was excised using 

Xbal and ligated into pGreen0179, yielding the plant expression plasmid pGreen0179-

35SPro-AtSS-GF(EXT3)P-NosTerm. The AtSS sequence in this construct was 

substituted with the signal sequence of EXT3 (At1g21310) by an In-Fusion cloning 

(Takara #638933), using the primer sets p162 and p164 on 35SPro-AtSS-GF(EXT3)P-

NosTerm to obtain the fragment containing the 35S promoter from pGreen and EXT3 
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signal peptide overlap and the primer set  p163 and p165 on 35SPro-AtSS-GF(EXT3)P-

NosTerm to obtain signal peptide overlap, imbed GFP and 35S terminator. The vector 

fragment was obtained from V26 (pUC57, including Synthetic gene fragments and AttL 

sites, obtained from Genescript) digested with SpeI and XbaI for directed insertion of 

35SPro-EXT3ss and EXT3ss-GF(EXT3)P-NosTerm into the vector fragment using the 

In-Fusion Cloning kit. The LAT52 promoter for pollen expression was amplified from 

tomato genomic DNA using the primers in Table S4. The EXT3ssGF(Ext3)P fragment 

was amplified from the EXT3ss-GF(EXT3)P-NosTerm plasmid, incorporating attB2 and 

attB5 sites in the forward and reverse primers, respectively (GF(EXT3)P F and 

GF(EXT3)P R). The LAT52pro and EXT3ssGF(EXT3)P fragments were cloned into their 

respective Gateway® entry vectors via BP Clonase II™ (Invitrogen, 11789-020). The 

LAT52pro and EXT3ssGF(EXT3)P entry clones were combined with the pFAST-G01 

vector (Shimada et al., 2010) by two-fragment recombination using LR Clonase II™ 

(Invitrogen, 11791-020). The control LAT52:GFP construct was generated by one-

fragment LR Clonase II™ (Invitrogen, 11791-020) recombination between a LAT52pro 

entry vector and pFAST-G07, which contains the GFP coding sequence (Shimada et 

al., 2010). 

 

3.5.6 Microscopy 

For immunolocalization, PTs were fixed, imaged and analyzed as described in 

Chebli et al. 2012, with several modifications. PTs were grown in agarose-free PGM for 

at least 2 hours, then the media with PTs was transferred to a 12 x 75mm polystyrene 

culture test tube. PTs were collected by centrifugation at 1000 rpm for 2 minutes with 

low acceleration and deacceleration and the growth media was removed. For fixation, 

PTs were resuspended in 3.5% formaldehyde in PIPES buffer (50 mM PIPES, 1 

mM EGTA, 5 mM MgSO4, 0.5 mM CaCl2, pH 7) and vacuum infiltrated for 20 minutes. 

After fixation, PTs were washed three times with PIPES buffer and then three times with 

PBS + 3% BSA. After the final wash, PTs were resuspended in primary antibody and 

incubated at 4°C overnight with gentle agitation. Primary antibodies were diluted in PBS 

+ BSA to the following concentrations: JIM20- 1:5, LM19- 1:10, LM20- 1:5 (antibodies 
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obtained from PlantProbes). The next day, the tubes were spun and down and primary 

antibody was removed, and PTs were washed three times in PBS + BSA. Anti-rat-FITC-

conjugated secondary antibody (diluted 1:100 in PBS + BSA), was added, and the tubes 

were incubated at room temperature in the dark for 2 hours. After incubation, PTs were 

washed three times with PBS followed by three washes with DI water. PTs were then 

resuspended in mounting media (0.1% gelatin and 10% ethanol), transferred to slides 

with a pipette, and slides were stored overnight in the dark at room temperature to allow 

PTs to settle onto the mounting media. The next day, VectaShield was added to the 

slides, covered with a #1.5 coverslip, sealed with nail polish, and stored at 4o C.  

Imaging was performed with a Leica SP5 laser-scanning confocal microscope. 

To image FITC signal, we used a 488 nm excitation laser, an RSP 500 dichroic beam 

splitter, and detectors were set to capture light with a wavelength range of 495-600 nm. 

For each different experiment, the imaging settings including laser intensity, gain, line 

averaging and frame accumulation were adjusted so that the signal from the overall 

brightest tube was just below saturation; all images for a single experiment were taken 

with identical settings. Z stacks were taken throughout the entire volume of each PT. Z 

slice step sizes were automatically optimized and maximum intensity projections were 

generated using LAS-AF software. N ≥ 30 PTs for each genotype. Images were 

analyzed using ImageJ. To measure fluorescence signal intensities, a line was drawn 

using the segmented line tool along the periphery of the PT starting from the center of 

the PT tip towards the pollen grain, or as far as the possible. Two measurements were 

performed for each PT along each periphery/side. ImageJ’s “Plot profile” tool was used 

to measure pixel grey value along distance, with distance = 0 representing the tip apex. 

For a single PT, the values of each side were averaged to generate a single 

measurement, and the measurements of all PTs were averaged within each genotype.   

For aniline blue staining, PTs were grown in vitro on PGM plates with cellophane 

for 2 hours. A drop of 0.1 mg/ml aniline blue fluorochrome (ABFC, Biosupplies Australia 

Pty. Ltd.) diluted 1:70 in 0.1 M KH2PO4, pH 10 was added to a microscope slide, and 

PTs were transferred to the slide by dabbing the cellophane on the ABFC solution. Nail 

polish was applied to the slide surrounding the PTs and a coverslip was mounted onto 

the nail polish. PTs were imaged with a Leica SP5 laser-scanning confocal microscope, 
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using a UV excitation laser with 405 nm wavelength, a Substrat dichroic beam splitter, 

and detectors were set to capture light with 411-502 nm wavelengths. Image acquisition 

and analysis was carried out as above for immunolocalization.  

For imaging of EXO70A2-mNG fusions PTs were grown in vitro on PGM plates 

with cellophane for 2 hours. After growth time, the cellophane was transferred to a slide 

and a drop of agarose-free PGM with 4 μM FM4-64 was added on top of the cellophane 

and PTs. Nail polish was applied to the slide and a coverslip was added on top of the 

nail polish, covering the liquid media. PTs were imaged using a Leica SP5 laser-

scanning confocal microscope 10 minutes after FM4-64 application. To image 

EXO70A2-mNG, we used an excitation laser with 488 nm wavelength, a RSP500 

dichroic beam splitter, and detectors were set to capture light with a wavelength range 

of 494-575 nm. To image FM4-64, we used an excitation laser with 514 nm wavelength, 

a DD 458/514 dichroic beam splitter, and detectors were set to capture light with a 

wavelength range of 620-783 nm. 

To analyze secretion of the GF(EXT3)P reporter, PTs were grown for 1-2 hours 

under normal in vitro conditions on PGM plates with a layer of cellophane. To induce 

plasmolysis, PTs were transferred to PGM plates containing 25% sucrose (vs. 10% for 

standard plates), without cellophane. Plasmolysis could be observed within a few 

minutes of transfer. Plasmolyzed PTs that were expressing GF(EXT3)P were imaged at 

40x magnification using a Leica DM5500 compound microscope. To measure 

fluorescent signal intensity at the plasmolyzed cell wall region, a region of interest (ROI) 

was drawn in the entire plasmolyzed region using the differential interference contrast 

(DIC) channel, excluding the plasma membrane boundary. This ROI was then added to 

the fluorescent channel and mean fluorescence intensity was measured. For the 

cytoplasm measurements, two ROIs approximately 5 µm2 were selected about 10-20 

µm from the plasma membrane, and the mean fluorescence intensities of each 

cytoplasmic ROI were averaged. The average of three background measurements was 

subtracted from both the cell wall and cytoplasm measurements. The secretion index 

(SI) was calculated as the ratio of cell wall/cytoplasm signal. A minimum of 30 tubes per 

genotype were measured and statistical significance was determined using the 

Benjamini–Hochberg False Discovery Rate with FDR = 0.05.  



 79 

 

 

3.6 Data Availability Statement 

 

High-throughput sequence data is available from the NCBI Sequence Read Archive 

(https://www.ncbi.nlm.nih.gov/Traces/study/?) under project accession number 

PRJNA574113. All other material and data are available upon request from the 

corresponding author.  
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Figure 3-1. Suppressor mutant frh1 increases the pollen fertility of hpat1 hpat3 plants. A) Both double 
mutant hpat1/3 plants and the suppressed triple mutant frh1 hpat1/3 plants appeared morphologically 
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normal aside from differences in seed set. B) Average number of seeds per silique (±SD, N≥10 per 
genotype) for the indicated genotypes. The low seed set phenotype of hpat1/3 double mutants is 
suppressed by frh1. High seed set is also observed for heterozygous frh1 plants. Reciprocal crosses 
between hpat1/3 and frh1 hpat1/3 plants demonstrated that frh1 suppression occurs in the pollen. ‘***’ 
indicates a statistically significant difference (T-test P-value <0.0005) compared to the hpat1/3 value for 
either the self-fertilized siliques or manually pollinated samples. NS is not significantly different. C) cleared 
siliques of WT Columbia, hpat1 hpat3 and frh1 hpat1/3 plants. WT and frh1 hpat1/3 images are 
composite images to allow full silique imaging. D) Histogram of distribution of PT lengths after five hours 
of in vitro growth for the indicated genotypes. Data for all genotypes are statistically significantly different 
from both other genotypes (T-test P-value <0.005). E) In vitro grown PTs of the indicated genotypes. 
Scale bar = 100 μm. 

 

Figure 3-2. frh1 partially suppresses the disrupted polarity of cell wall polymers in hpat1/3 pollen tubes. 
A) Wild-type Columbia-0 PT stained with JIM20 primary antibody and anti-rat FITC-conjugated secondary 
antibody. B) Left: Maximum projections of PTs stained with aniline blue fluorochrome (ABF). Right: 
quantification of signal intensity from the tip (distance on x-axis = 0) to 50 μm down the shaft of the PT 
(see Materials and Methods for more details concerning image analysis). Colored lines represent the 
mean fluorescent intensities for each genotype, and shading represents standard error. N ≥ 30 for each 
genotype. Vertical dashed line represents the approximate region of the PT where the apical dome 
transitions to the shaft. C) Left: Medial Z-slices of PTs stained with LM20 primary antibody and anti-rat 
FITC-conjugated secondary antibody. Right: quantification of fluorescence intensity as in B except 
measurements were taken to 25 μm from the tip. D) Left: Medial Z-slice of PTs stained with LM19 primary 
antibody and anti-rat FITC-conjugated secondary antibody. Right: quantification of signal intensity as in C. 
All images were acquired by confocal microscopy at 100x magnification and all scale bars = 10 μm. 
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Figure 3-3. EXO70A2 is required for efficient pollen germination and pollen tube growth. A) Diagram of 
the EXO70A2 coding sequence with the position of the exo70a2-2 (G319E) missense mutation and 
insertion mutants exo70a2-D (Hála et al., 2008) and exo70a2-3 marked. B) Semi-quantitative RT-PCR of 
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flower cDNA samples from the indicated genotypes showing absence of transcript in the exo70a2-3 
plants using the primer pairs indicated in A. C) Average number of seeds per silique (±SD) for plants of 
the indicated genotype. Note the modest reduction in seed set for exo70a2-3 in the wild-type background 
along with partial suppression of the hpat1 hpat3 phenotype by this mutation. ‘***’ mark statistically 
significant differences with the corresponding background (Columbia or hpat1 hpat3, T-test P-value 
<0.0005, N≥12). D) Cleared siliques of the exo70a2 mutant alleles in the Columbia background, see Fig. 
1D for Col comparison image. E and F) in vitro pollen germination samples of Columbia (E) and exo70a2-
3 (F) three hours after transfer to growth media. Inset in F shows non-germinated exo70a2-3 pollen 
grains. G) Quantification of pollen germination frequencies for WT, exo70a2-2 and exo70a2-3. Mean of 
three replicates of ≥740 pollen grains, +/- SD. ‘**’ marks significant difference between WT (T-test P-value 
<0.005). H-J) Alexander viability staining of anthers of WT (H), exo70a2-2 (I) and exo70a2-3 (J). Insets 
show free pollen grains. Note no difference in viability staining between genotypes. K and L) Pollen grains 
stained with Ruthenium red to mark pectin accumulation at the germination plaque. M) Histogram of PT 
lengths after five hours of in vitro growth for the indicated genotypes. Data for all genotypes are 
statistically significantly different from both other genotypes (T-test P-value <0.005, N≥200 per genotype). 
N) sustained growth rate of PTs of the indicated genotype. Mean, N≥21 tubes, ±SD. O and P) Differential 
interference contrast (DIC) micrograph of PTs. 
 

 

Figure 3-4. EXO70A2 localizes to the tip of growing pollen tubes.Representative PT expressing 
EXO70A2:mNG under its native promoter and co-stained with FM4-64 to visualize the plasma membrane. 
Single channels and merged image shown; overlapping signal is false-colored white. Imaged with 
confocal microscopy at 100x magnification. Scale bar represents 10 μm.  
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Figure 3-5. Secretion of GF(EXT3)P is decreased in hpat1/3 exo70a2-2 pollen tubes. A) Schematic of the 
GF(EXT3)P construct, which includes the EXT3 signal peptide (SP), amino acids 1-175 of GFP, an 8x 
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HIS tag, a portion of EXT3, a Myc tag, and amino acids 176-241 of GFP. B) Western blots (left) and 
corresponding Ponceau-stained membrane (right) of PT protein samples. * marks samples from plants 
carrying the LAT52:GF(EXT3)P transgene, NT is non-transgenic. An anti-GFP polyclonal antibody detects 
the fusion protein in the transgenic lines at the expected mass (~34 KDa). The reporter is also detected 
by the Hyp-Ara monocolonal antibody JIM20 only in the transgenic Col sample. C) Images of 
plasmolyzed PTs expressing LAT52:GF(EXT3)P (left) and non-transgenic control (right). Scale bar 
represents 10 μm. Arrows indicate the location of the PT cell wall tip, and arrowheads mark the plasma 
membrane. D) Quantification of secreted GFP signal reported as a secretion index (SI- see Materials and 
Methods for details, SI mean ± SE, N ≥ 30 PTs per genotype). Samples labeled with the same letter are 
not significantly different (Benjamini–Hochberg FDR ≤ 0.05).  

 

Figure 3-6. Mutations in exocyst complex member sec15a also suppress the hpat1/3 fertility phenotype. 
A) Gene model diagram showing the relative position of insertion in the sec15a-2 allele and the 
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suppressor allele identified in frh2 (sec15a-3). B) Segregation of the sec15a-3 mutation in the frh2 
hpat1/3 BC5 F2 population. As expected for an hpat1 hpat3 suppressing mutation, the number of 
homozygous wild-type SEC15A plants identified (+/+) was significantly below the expected value based 
on Mendelian segregation (chi-squared p-value =1.57 x 10-5. C) Sample sec15a-3 genotyping data for 15 
frh2 hpat1/3 BC5 F2 individuals visualized on an agarose gel. The wild-type allele is cleaved by digestion 
with MnlI. The single homozygous wild-type individual marked by ‘*’ did not have the suppressive 
phenotype. D) Average number of seeds per silique (±SD) for plants of the indicated genotypes. sec15a-2 
is not transmitted through the male and not recoverable as a homozygous mutant (Hála et al., 2008). 
Both sec15a alleles suppress the hpat1/3 phenotype with homozygous mutants showing stronger 
suppression than heterozygotes. ‘ns’ marks samples which were not statistically different from their 
corresponding background genotype. ‘***’ marks statistically different samples (T-test P-value <0.0005, 
N≥11). E) Histogram of PT lengths after five hours of in vitro growth for the indicated genotypes. Data for 
all genotypes are statistically significantly different from both other genotypes (T-test P-value <0.005, 
N≥100 per genotype). F) Cleared siliques of the indicated genotypes. G) Average number of seeds per 
silique (±SD) for the indicated genotypes. All hpat1/3-based genotypes were siblings segregating from the 
same F2 population. ‘***’ marks statistically different samples (T-test P-value <0.0005), ‘*’ marks 
statistically significant samples T-test P-value <0.05, N≥15). 
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Figure 3-7 (Supplemental Figure 1) - frh1 suppresses most, but not all hpat1/3 pollen tube phenotypes. A-
C) Differential interference contrast (DIC) images of PT phenotypic classes. A) a morphologically normal 
PT typical of the wild type, B) a ruptured PT and C) a “branched” PT typical of hpat1/3 mutants. D) Time 
course of an hpat1/3 branching event imaged at 5-minute intervals. White arrow marks the original tip 
region; black arrow marks the newly formed tip derived from a sub-apical portion of the PT. E) Frequency 
of in vitro pollen germination after 3 hours of growth. Pollen were considered germinated if a visible tube 
of at least one half the length of the pollen grain was identifiable. Note that the reduced germination in 
hpat1 hpat3 is in part due to their poor tube elongation. N>600 per genotype. F) Frequency of PT rupture 
for the indicated genotypes. No ruptured tubes were observed in WT. N>500 per genotype. G) 
Percentage of tubes with two morphologically distinct tip regions after 5 hours of in vitro PT growth. 
N>200 per genotype. H) Average PT widths (±SD, N ≥ 103 for each genotype). I) PT growth rates. 
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Asterisks in H and I mark statistically significant T-test p-values; ‘*’ indicates p-value ≤0.05 and ‘***’ 
indicates p-value ≤0.0005. 
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Figure 3-8 (Supplemental Figure 2). The JIM20 monoclonal antibody recognizes Hyp-Ara. A) Illustration 
of the Hyp-Ara modification and the enzymes responsible for the addition of each arabinose. B) The EXT 
antibody JIM20 requires Hyp substituted with at least three arabinoses, i.e. the presence of the HPAT, 
RRA and XEG113 enzymes, for recognition. Dot blot and SDS-PAGE Western blot analysis of protein 
isolated from seedlings (top, Dot blot) or extracted from rosette leaves (bottom, Western blot) of the 
indicated genotypes and probed JIM20. C-E) JIM20 immunostaining visualized with a FITC-conjugated 
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secondary antibody (left) of PTs (top) and pollen grains (bottom) compared to the corresponding DIC 
images (right). Images taken at 20x magnification. C) Wild-type Columbia-0 pollen samples produced 
robust JIM20 signal in both pollen grains and PTs, particularly near the PT tip. D) Secondary antibody 
alone control staining did not produce detectable signal. E) In hpat1/3 pollen samples no JIM20 signal 
was detected. F) frh1 hpat1/3 and hpat1/3 pollen displayed similar appearance with no detectable JIM20 
signal. All immunolocalizations were imaged using the same light intensity and exposure settings. 
 

 

 

 

Figure 3-9 (Supplemental Figure 3). Alignment of Arabidopsis EXO70 protein sequences in the region of 
the exo70a2-2 G319E mutation. Clustal Omega multiple sequence alignment of the whole proteins 
sequences were trimmed to the region of interest. The EXO70A2 G319 position is marked with red 
highlight. Conserved residues are marked with “*”, “:” marks positions with conservation of amino acids 
with strongly similar properties, “.” marks conservation between weakly similar amino acid properties. 
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Figure 3-10 (Supplemental Figure 4). The exo70a2-2 mutations co-segregates with the frh1 suppressive 
phenotype. A) PCR and restriction enzyme mediated genotyping of 20 frh1 BC5 F2 individuals visualized 
on an agarose gel. The exo70a2-2 mutation creates a TaqαI restriction enzyme recognition site. The 
upper band is the un-cut wild-type product and the lower band is the cleaved exo70a2-2 product. The two 
individuals with a non-suppressed phenotype are marked by ‘*’ and both are homozygous WT. B) Table 
of the exo70a2-2 genotype distribution for 123 frh1 BC5 F2 plants. The 11 wild-type individuals (+/+) were 
all non-suppressed, all remaining plants (heterozygous, +/-; homozygous mutant, -/-) were phenotypically 
suppressed. Note also the significant distortion of genotype ratio compared to the Mendelian 
25%:50%:25% ratio (chi-squared p-value = 2.42x10-7). This bias against the recovery of homozygous 
wild-type plants is consistent with the genetic behavior of frh1. C) Average number of seeds per silique 
(+/- SD, N≥16) in the BC5 F2 population grouped by exo70a2-2 genotype. Asterisks mark statistically 
significant T-test p-values, ‘**’ indicates p-value ≤0.005 and ‘***’ indicates p-value ≤0.0005. 
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Figure 3-11 (Supplemental Figure 5). frh1 suppression is due to a mutation in exo70a2. A) frh1 hpat1/3 
plants were transformed with a rescue construct containing the wild-type genomic EXO70A2 region and 
seed-expressed fluorescence reporter selection cassette (OLE1-GFP; Shimada and Hara-Nishimura, 
2010). Transgene transmission efficiency (TE) for three independent hemizygous single loci insertion 
transgenic lines. ‘**’ marks significant difference from the expected TE for no effect of the transgene on 
transmission (100%, T-test P-value <0.005, N≥185). B) Transmission of a control construct containing the 
strong pollen promoter (Lat52) driving expression of the fluorescent protein mNeonGreen in four 
independent frh1 hpat1/3 lines (N≥72). C) Seed counts of T3 plants segregating for the rescue construct. 
Plants not carrying the rescue construct (0/0) maintained suppressor-levels of seed set. Seed set of 
plants homozygous for the presence of the rescue construct (+/+) was not statistically different from the 
hpat1/3 background (‘***’ indicates p-value < 0.0005; Student’s T-test vs. hpat1/3; N ≥ 15 siliques). 
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Figure 3-12 (Supplemental Figure 6). exo70a2-2 PTs maintain cell wall polymer polarity in the WT 
background. A) Medial Z-slices of PTs stained with LM19 primary antibody and anti-rat FITC-conjugated 
secondary antibody, and corresponding quantification of fluorescent signal intensity along the PT 
periphery, starting at the tip (distance on x-axis = 0 µm) to 25 µm down the shaft. B) Medial Z-slices of 
PTs stained with LM20 primary antibody and anti-rat FITC-conjugated secondary antibody, and 
corresponding quantification of fluorescent signal intensity as in (A). C) Maximum projections of PTs 
stained with aniline blue fluorochrome (ABF) and corresponding quantification of fluorescent signal 
intensity starting at the tip (distance on x axis= 0) to 50 µm down the shaft of the PT. D) Medial Z-slices of 
PTs stained with JIM20 primary antibody and anti-rat FITC-conjugated secondary antibody, and 
corresponding fluorescent signal quantification as in (A) and (B). Colored lines represent means and 
shading represents standard error. Vertical dashed line represents the approximate region of the PT 
where the apical dome transitions to the shaft. N ≥ 30 PTs for each genotype per experiment. All images 
were acquired by confocal microscopy at 100x magnification and all scale bars = 10 µm. 
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Figure 3-13 (Supplemental Figure 7). EXO70A2-mNG rescues pollen tube germination in the exo70a2-3 
mutant. A) PTs were grown in vitro for 2 hours and imaged with GFP filter (left) and DIC optics (right).  
Wild-type un-transformed Columbia are shown as a negative control for fluorescence. B) pollen 
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germination frequency in exo70a2-3. The presence of EXO70A2-mNG significantly increased pollen 
germination compared to the background. The point mutant allele EXO70A2-2 (G319E) also increased 
pollen germination to a smaller degree. Each point is data from a single independent T1 plant, N ≥ 321 
pollen grains per T1. ‘***’ indicates p-value < 0.0005, ‘**’ indicates p-value < 0.005, ‘*’ indicates p-values < 
0.05. C) Percentage of fluorescent PTs for exo70a2-3 EXO70A2-mNG hemizygous lines. 

 

Table 3-1 (Supplementary Table 1). Illumina sequencing read information. DNA samples of the indicated 
genotype, all in the hpat1/3 background, were sequenced by paired-end Illumina sequencing. At least 
97% of reads aligned to the Columbia reference genome yielding estimated genome coverage between 
18 and 63 fold. 
 

Genotype Total # of reads 
Read length 

(bp) 

% of reads 

aligned 

Estimated average 

genome coverage 

frh1/frh1 16,495,587 150x2 97.93 18.64x 

FRH1/FRH1 19,803,838 150x2 97.75 22.34x 

frh2/frh2 55,907,035 150x2 99.15 63.96x 

FRH2/FRH2 41,150,402 150x2 99.15 47.08x 

hpat1 hpat3 31,918,383 150x2 97.02 35.73x 

  

 

Table 3-2 (Supplementary Table 2). Full list of sequence variants passing filtering for frh1. AO- alternate 
observations (number of reads with the alternative nucleotide), RO- reference observations (number of 
reads carrying the reference nucleotide), TO- total observations (AO + RO). Allele frequency is estimated 
from reads as (AO/TO). Gene function, annotations for missense mutations are show in black; silent, UTR 
or intronic mutations are in grey. Double lines separate chromosomes. The exo70a2 mutation is in bold. 

Chr Position REF ALT QUAL AO= RO= TO= 

Allele 

freq 

Location of 

mutation 

Nature 

of 

change 

1 

               

3,567,966  C T 0.000693 4 1 5 0.80 AT1G10740 intron 1 

1 

               

5,720,122  G T 16.1796 5 1 6 0.83 AT1G16710 

intron 

12 
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1 

            

14,220,334  T G 75.0463 4 0 4 1.00 

Outside 

gene. -- 

1 

            

14,607,997  G A 13.4014 5 0 5 1.00 

Outside 

gene. -- 

1 

            

14,824,768  A T 0.00556 5 1 6 0.83 

Outside 

gene. -- 

1 

            

16,515,445  CG T 304.618 95 13 108 0.88 

Outside 

gene. -- 

1 

            

24,892,361  C A 22.7986 10 1 11 0.91 AT1G66740 5' UTR 

2 

               

3,609,013  G T 0.004568 12 3 15 0.80 

Outside 

gene. -- 

2 

            

19,697,782  C A 247.713 115 20 135 0.85 

Outside 

gene. -- 

3 

                   

985,535  G T 34.8725 6 0 6 1.00 

Outside 

gene. -- 

3 

            

13,693,041  T C 2.7709 4 0 4 1.00 

Outside 

gene. -- 

3 

            

13,693,069  C A 2.37516 4 0 4 1.00 

Outside 

gene. -- 

3 

            

13,790,444  A G 2.59478 4 1 5 0.80 

Outside 

gene. -- 

3 

            

13,790,522  A G 2.83585 8 1 9 0.89 

Outside 

gene. -- 

4 

               

3,979,241  T C 0.017781 523 121 644 0.81 

Outside 

gene. -- 
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4 

               

4,009,421  T G 0 658 81 739 0.89 

Outside 

gene. -- 

5 

               

2,572,378  G T 0.000765 4 0 4 1.00 AT5G08020 intron 2 

5 

            

11,731,813  A C 52.3084 411 53 464 0.89 

Outside 

gene. -- 

5 

            

18,317,951  G A 463.66 18 4 22 0.82 AT5G45240  

CDS 

L579L 

(silent) 

5 

            

18,513,821  G A 826.928 31 4 35 0.89 AT5G45650  

CDS 

A692V 

5 

            

19,091,266  G A 824.113 33 7 40 0.83 AT5G47030 intron 2 

5 

            

19,128,169  G A 592.682 22 3 25 0.88 AT5G47090 

CDS 

K203K 

(silent) 

5 

            

19,717,448  G A 370.763 25 4 29 0.86 AT5G48620  

CDS 

D15N 

5 

            

19,743,633  G A 434.364 18 3 21 0.86 

Outside 

gene. -- 

5 

            

20,049,429  G A 501.066 18 2 20 0.90 AT5G49440  

CDS 

G171E 

5 

            

20,073,319  G A 387.251 14 2 16 0.88 

Outside 

gene. -- 

5 

            

20,315,382  G A 296.135 11 1 12 0.92 

Outside 

gene. -- 
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5 

            

20,461,314  G A 789.133 25 0 25 1.00 AT5G50280  

CDS 

R661K 

5 

            

20,763,754  G A 913.518 32 3 35 0.91 

Outside 

gene. -- 

5 

            

20,789,260  G A 724.419 24 0 24 1.00 AT5G51150  

CDS 

G76E 

5 

            

20,841,395  G A 871.516 29 0 29 1.00 AT5G51280 5' UTR 

5 

            

20,853,117  G A 699.976 25 1 26 0.96 AT5G51310  

CDS 

L239L 

(silent) 

5 

            

21,130,649  G A 447.567 18 2 20 0.90 AT5G52040 intron 1 

5 

            

21,252,591  G A 768.668 27 3 30 0.90 AT5G52340  

CDS 

G319E 

5 

            

21,307,338  G A 731.535 22 0 22 1.00 AT5G52510  

CDS 

G48E 

5 

            

21,457,979  G A 664.373 25 5 30 0.83 AT5G52910  

CDS 

S1074F 

5 

            

21,686,079  G A 606.121 23 5 28 0.82 AT5G53440 intron 1 

5 

            

21,751,206  G A 612.563 22 2 24 0.92 AT5G53540 5' UTR 

5 

            

21,843,162  G A 335.542 20 4 24 0.83 

Outside 

gene. -- 

5 

            

22,211,139  G A 681.526 22 2 24 0.92 AT5G54670 intron 5 
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5 

            

22,459,739  G A 949.649 30 1 31 0.97 

Outside 

gene. -- 

5 

            

22,882,056  G A 976.49 30 0 30 1.00 AT5G56510  

CDS 

L112L 

(silent) 

5 

            

22,947,474  G A 874.072 28 0 28 1.00 AT5G56730 intron 1 

5 

            

22,993,211  G A 859.642 27 1 28 0.96 

Outside 

gene. -- 

5 

            

23,146,548  G A 839.257 27 3 30 0.90 AT5G57130 

CDS 

E387E 

(silent) 

5 

            

23,185,068  T A 312.105 12 3 15 0.80 

Outside 

gene. -- 

5 

            

23,509,421  G A 528.342 18 2 20 0.90 AT5G58100 intron 8 

5 

            

24,040,295  G A 280.778 12 2 14 0.86 AT5G59662 intron 1 

 

 

Table 3-3 (Supplementary Table 3). Full list of sequence variants passing filtering for frh2. AO- alternate 
observations (number of reads with the alternative nucleotide), RO- reference observations (number of 
reads carrying the reference nucleotide), TO- total observations (AO + RO). Allele frequency is estimated 
from reads as (AO/TO). Gene function, annotations for missense mutations are show in black; silent, UTR 
or intronic mutations are in grey. Double lines separate chromosomes. The sec15a mutation is in bold. 

Chr Position REF ALT QUAL AO= RO= TO= 

Allele 

freq Gene 

Nature 

of 

change 

1 14658163 GT GA 38.7457 19 1 20 
0.95 

Outside 

gene. -- 
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1 14659168 A G 0.168275 5 1 6 
0.83 

Outside 

gene. -- 

1 14824773 A T 2.1747 4 1 5 
0.80 

Outside 

gene. -- 

1 28369259 C A 152.176 10 0 10 
1.00 

Outside 

gene. -- 

2 3618201 TTG TTT 1534.16 3306 287 3593 0.92 AT2G08986 intron 2 

2 3622048 GTCG GTCA 258.401 1129 173 1302 
0.87 

AT2G08986 

intron 

22 

3 13685761 TA TC 9.55E-09 12 0 12 1.00 

Outside 

gene. -- 

3 13701267 T C 20.3445 4 1 5 0.80 

Outside 

gene. -- 

3 13704892 C A 0.0947526 8 1 9 0.89 

Outside 

gene. -- 

3 13798787 AC AT 0.23112 19 3 22 0.86 

Outside 

gene. -- 

3 17838331 C T 1170.32 42 4 46 0.91 

Outside 

gene. -- 

3 17925311 C T 1895.62 73 13 86 0.85 AT3G48400  

CDS 

P545L 

3 18089552 C T 1275.46 45 4 49 0.92 AT3G48780 intron 2 

3 18190535 C T 1145.41 44 9 53 0.83 AT3G49060  

CDS 

A150T 

3 18523069 C T 1147.05 44 9 53 0.83 AT3G49950 

CDS 

P167L 

3 18703613 G A 1203.6 48 9 57 0.84 AT3G50390 3' UTR 
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3 19091528 C T 1441.65 53 7 60 0.88 AT3G51450  

CDS 

D150D 

(silent) 

3 19297541 C T 1892.53 69 8 77 0.90 AT3G52010 

CDS 

T359T 

(silent) 

3 19417671 C T 1377.8 50 5 55 0.91 AT3G52370 

CDS 

D41D 

(silent) 

3 19691797 C T 1936.06 66 5 71 0.93 AT3G53120 

CDS 

V92I 

3 19739873 G A 679.917 31 4 35 0.89 

Outside 

gene. -- 

3 20331049 C T 1666.84 67 16 83 0.81 AT3G54870 

CDS 

R82C 

3 20935829 C T 1742.57 61 5 66 0.92 AT3G56470 

CDS 

Q306* 

3 20982601 C T 2102.68 71 4 75 0.95 AT3G56640 

CDS 

S213F 

3 21652112 C T 1305.18 51 9 60 0.85 AT3G58560 intron 1 

3 21746773 C T 1849.82 60 1 61 0.98 

Outside 

gene. -- 

3 21793787 C T 1700.27 62 5 67 0.93 

Outside 

gene. -- 

3 21823345 C T 1137.85 38 2 40 0.95 AT3G59040 intron 1 

3 21948650 C T 2228.74 75 3 78 0.96 

Outside 

gene. -- 
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3 22051051 C T 1139.8 43 7 50 0.86 AT3G59695 intron 1 

3 22070801 C T 853.45 41 3 44 0.93 AT3G59750  

CDS 

G312E 

3 22119802 C T 662.741 37 1 38 0.97 

Outside 

gene. -- 

3 22271130 C T 1822.18 67 8 75 0.89 AT3G60250 

CDS 

G188E 

3 22285405 C T 1635.22 53 0 53 1.00 AT3G60300 

CDS 

A12V 

3 22499825 C T 1521.02 61 13 74 0.82 AT3G60900 

CDS 

P339P 

(silent) 

3 23184009 C T 1330.38 52 8 60 0.87 

Outside 

gene. -- 

4 2961652 CTAG CTAT 8.65493 4 1 5 0.80 AT4G05612 

intron 

11 

4 3985743 TG TC 0.619921 560 95 655 0.85 

Outside 

gene. -- 

 

 

 

Table 3-4 (Supplementary Table 4). Primers used in this study 
Genotypin

g Name Sequence 5' -> 3' Notes 

hpat1  
SALK_12

0066 LP2 GTGATTATGATATGAAGgtaagc  
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SALK_12

0066 RP2 aaatctagtggagaccagac  

hpat3 
SALK_04

668 LP2 aagatactgcagtaaggtcc  

 
SALK_04

668 RP2 gacaagaagggaagtaaagg  

sec15a-2 
SALK_06

7498 LP ACCAAGTTGGACGAGTTCATG  

 
SALK_06

7498 RP CTGAGCCTGTGAGCCATAAAG  

xeg113-2 
SALK_05

8092 LP ACACCCAAATTTTACCCAAGG  

 
SALK_05

8092 RP TCTACGCGACTGTGATCATTG  

  

Salk 

LB1.3 ATTTTGCCGATTTCGGAAC  

rra3 
GABI_22

3B05 LP GAGGCTAAAACAAAGACTTGGG  

 
GABI_22

3B05 RP TCTCTGGATTGAAATTCCGTG  

 
GABI LB 

o8409 
ATATTGACCATCATACTCATTGC 

 

rra2 
SAIL_244

_A03 LP TAAGCCAGTGTACCCTGGATG  

 
SAIL_244

_A03 RP GGATCAGAGATAAAGGCAGGG  

 Sail LB1  GCCTTTTCAGAAATGGATAAATAGCCTTGCTTCC  
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exo70a2-3 
Wisc216_

02A  LP TGGTGGAAAGACTCATGATCC  

 
Wisc216_

02A  RP ACCTCAGGCTGAAGCTCTCTC  

 
WiscHS 

LB4 TGATCCATGTAGATTTCCCGGACATGAAG  

exo70a2-2 

(G319E) 

A2-RT-LP AGCTGCGGTGTTGGAACAGA 

mutant 

product 

is 

cleave

d by 

TaqaI 

 
Exo70A2 

CAPs RS ACCTCAGGCTGAAGCTCTCTC 
 

sec15a-3 

(S213F) 

SEC15A-

S213F f AGGACAGTTTTACCATGCCC 

Wild 

type 

product 

is 

cleave

d by 

MnlI 

 
SEC15A-

S213F r AAGCGGTGAGGCCAATAGCA 
 

    

RT-PCR    

Actin 

control Actin1RTf ggcgatgaagctcaatccaaacg  
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 Actin1RTr ggtcacgaccagcaagatcaagacg  

EXO70A2 

RT-PCR 

A2-RT-LP AGCTGCGGTGTTGGAACAGA 

from 

Synek 

et al., 

2017 

 
A2-RT-

RP CTCGACTGAACCGTGAGACACT 
 

    

Construct 

cloning  attB recombination sequences in red  

Genomic 

rescue 

construct 

Exo70A2 

pro B1 F 

GGGGACAAGTTTGTACAAAAAAGCAGGCTactatgagaaaggggta

acg  

 

Exo70A2 

CDS B2 

R 

GGGGACCACTTTGTACAAGAAAGCTGGGTgacacaaatcatatgcg

acg  

mNG 

reporter 

fusion 

Exo70A2 

pro B1 F as above  

 

Exo70A2 

mNG B2 

R 

GGGGACCACTTTGTACAAGAAAGCTGGGTATCTCTTTGGCT

CACTCCATG  

pFASTmN

G 

cloning 

R07 MluI 

F acgcgtGGATCCGGCTTACT  

 
R07 mNG 

R cataccgcggGATATCACCACTTTGTACAAGAAAGCTG  
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mNG R07 

F tggtgatatcCCGCGGTATGGTGAGCAAG  

 
mNG NruI 

R tcgcgaTTACTTGTACAGCTCGTCCATGC  

generation 

of 

EXT3ssGF(

EXT3)P FReplace  CTGCAGATGGGTAAGACTAATCTTTTTCTCT  

 Rreplace GGATCCATGGGATCCCGG  

 pYi1 CATGGCAAGTCCCCTCCACCACCGGTTAAGCATTACAAGG  

 pYi2 GATCCCTTGTAATGCTTAACCGGTGGTGGAGGGGACTTGC  

 p162 AAAGCAGGCTACTAGGATCCGTCAACATGGTGGAG  

 
p164 

AGATTGTTAAGACAAGCAAAGTTGCCACTAAAGAGGCCATTGG

AGACCCCATCTGCAGGTCGTCCTCTCCA  

 p163 GAAAGCTGGGTCTAGAGATCGTACCCCTGGATTTTGG  

 
p165 

TTGTCTTAACAATCTCTCTCACCTTTGTATCTCAATCAACCGCTA

ACTATTTCGAGCAAGTGAGCAAGGGC  

 
GF(EXT3)

P B2 F ggggacaactttgtatacaaaagttgATGGGGTCTCCAATGGCCTC  

 
GF(EXT3)

P B5 R ggggaccactttgtacaagaaagctgggtCGTACCCCTGGATTTTGGTT  

Lat52 

promoter 

cloning 

LAT52 B1 

F ggggacaagtttgtacaaaaaagcaggctCGACATACTCGACTCAGAAGGT  

 
LAT52 

B5r R ggggacaacttttgtatacaaagttgTTTTAAATTGGAATTTTTTTTTTTGG  
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LAT52 B2 

R 

ggggaccactttgtacaagaaagctgggtaTTTTAAATTGGAATTTTTTTTTTT

GG  
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4.1 Introduction 

Pollen tubes (PTs) elongate through a highly polarized growth mechanism called 

tip growth, which relies on the careful regulation of structural and mechanical properties 

of the cell wall. For proper tip growth, PTs must maintain an extensible apical tip to allow 

for expansion, and rigid subapical walls to prevent multidirectional expansion (leading to 

PT branching) and premature bursting. In order to maintain two spatially- distinct regions 

of the cell wall with different mechanical properties, PTs differentially regulate the 

structures of these two wall regions. The plant cell wall is a complex extracellular matrix 

composed of multiple carbohydrate networks including cellulose, hemicellulose, callose 

and pectins, as well as proteins such as cell wall-remodeling enzymes and glycoproteins. 

Pectins have a major influence on the mechanical properties of the cell wall, and 

mutations in genes that control pectic structure severely impair tip growth and pollen 

fertility, leading to decreased seed production and fitness (Jiang et al., 2005; Leroux et 

al., 2015; Röckel et al., 2008).  

Pectins are a family of structurally diverse) carbohydrates, with homogalacturonan 

(HG) being the most abundant polymer type (Mohnen, 2008). HG is composed of alpha-

1,4-linked-d-galacturonic acid (GalA) and is highly methylesterified (me-HGs) by 

enzymes in the Golgi prior to secretion (Krupková et al., 2007; Mohnen, 2008; Mouille et 
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al., 2007; O’Neill et al., 1990; Ridley et al., 2001). After secretion into the cell wall, pectin 

methylesterases catalyze the de-methylesterification of me-HGs to form dme-HG, 

exposing negatively- charged carboxyl groups. Neighboring dme-HG molecules then 

undergo crosslinking interactions via calcium bridges, referred to as the “egg-box” model, 

which promotes gelation and increases the overall rigidity of the cell wall (Grant et al., 

1973; Pelloux et al., 2007). In PTs, me-HG is localized to the cell wall and enriched at the 

tip, while dme-HG localizes to the subapical walls and is absent from the tip (Chebli et al., 

2012).  

Negatively- charged pectic groups interact ionically with extensins (Smith et al. 

1984), which are a family of hydroxyproline (Hyp)- rich glycoproteins that regulate cell 

wall formation and structural integrity (Choudhary et al., 2015; Hall & Cannon, 2002). The 

structures of “classical” extensins are amphiphilic and highly repetitive, consisting 

primarily of alternating Ser(Pro)3-5 motifs and Tyr/Tyr-Val motifs, and are also typically rich 

in Lys, giving them an overall positive charge (Showalter et al., 2010). Tyr- containing 

motifs facilitate intermolecular crosslinking of extensin monomers to form networks, which 

are thought to serve as a scaffold for pectin assembly and possibly regulate crosslinking 

of dme- HG (Cannon et al., 2008; MacDougall et al., 2001).  

Extensins also undergo significant posttranslational modifications prior to secretion 

into the cell wall. Prolines found in Ser(Pro)3-5 motifs are hydroxylated by prolyl 4-

hydroxylases (P4Hs) to form Hyp (Tiainen et al., 2005), which are then O-arabinosylated 

by a cascade of Golgi-localized glycosyltransferases to form linear oligoarabinosides that 

are typically 3-5 residues long (Akiyama et al., 1980). The first arabinose is added by 

enzymes called Hyp O-arabinosyltrasferases (HPATs), which are encoded by a three 

member gene family in Arabidopsis (Ogawa-Ohnishi et al., 2013). Loss of HPAT1 and 

HPAT3 (hpat1/3) drastically decreases seed production due to poor growth and 

decreased fertility of hpat1/3 PTs (MacAlister et al., 2016). In addition to poor elongation, 

hpat1/3 PTs burst more frequently and exhibited morphological defects including 

increased widths branching frequency compared to WT, consistent with a loss of 

structural integrity. Through immunolabeling and other staining techniques, we identified 

and characterized multiple differences in the cell wall structure of hpat1/3 PTs compared 

to wild type (WT). One notable difference was that more dme-HG signal was detected 
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throughout the cell wall of hpat1/3 PTs, including at the tip where it is usually absent 

(Chebli et al., 2012), suggesting that overall rigidity is increased hpat1/3 PT cell walls and 

tip extensibility is decreased (Beuder et al., 2020).  

We performed a suppressor screen and identified secondary mutations that 

suppress the hpat1/3 pollen fertility defect, which were mapped using whole-genome 

sequencing. We previously characterized one hpat1/3 suppressor mutant called 

fertilization restored in hpat1/3 1 (frh1), in which the suppression-causing mutation was 

identified as a G319E missense mutation in EXO70A2 (exo70a2-2), which encodes an 

EXO70 isoform (Beuder et al., 2020). EXO70 is a member of the exoycst complex, which 

facilitates tethering of secretory vesicles to the plasma membrane prior to SNARE-

mediated membrane fusion and exocytosis. hpat1/3 PT growth defects were strongly 

rescued in the hpat1/3; exo70a2-2/frh1 suppressor, and dme-HG immunolabeling and 

other structural defects were also partially suppressed. Furthermore, apical secretion of 

a GFP-based reporter with an extensin Ser(Pro)3-5 motif [GF(EXT3)P] was increased in 

hpat1/3 PTs. This was rescued/decreased in the exo70a2 mutants, suggesting that 

extensins and extensin-like proteins are secreted by the exocyst complex. We also 

showed that the GF(EXT3)P reporter is Hyp O-arabinosylated in an HPAT-dependent 

manner; therefore, our data suggested that Hyp O-arabinosylation may regulate the rate 

of EXO70A2-mediated extensin secretion.   

EXO70 binds PI(4,5)P2 at the plasma membrane to promote exocyst-mediated 

secretion (He et al., 2007; Pleskot et al., 2015). PI(4,5)P2 levels are regulated by PI-

specific phospholipase Cs (PLCs) which bind and cleave PI(4,5)P2 to form the secondary 

messengers DAG and IP3. PI(4,5)P2 was observed to localize to the plasma membrane 

at the tip of tobacco PTs and PLC3 localized to the subapical walls, suggesting that PLC3-

mediated PI(4,5)P2 hydrolysis at these regions confines P(4,5)P2 to the tip (Helling et al., 

2006). PI(4,5)P2s are formed by the phosphorylation of PIP4 by PIP4 5-kinases. 

Knockdown of PI4P 5- kinase activity decreased PT growth rates and germination 

frequency, and PI4P 5-kinase overexpression increased pectin accumulation and 

thickened the cell wall of PT tips tip (Ischebeck et al., 2008). In addition to mediating 

secretion, PI(4,5)P2 signaling is important for other cellular processes. In plants, IP3 is 

quickly converted to IP6 which triggers the release of intracellular calcium stores to 
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increase cytoplasmic calcium concentration (Lemtiri-Chlieh et al., 2003). PTs maintain a 

tip-focused calcium gradient which controls growth directionality (Herbell et al., 2018; 

Taiz, 1984), but it is unclear if this is mediated though PLC-PI(4,5)P2 signaling.  

Much of what we know about PLC-PI signaling comes from animal systems, and 

plants lack some of animals’ signaling machinery. For example, plant PLCs lack an N-

terminal pleckstrin homology (PH) domain, which directly binds PI(4,5)P2s. PI(4,5)P2 

levels are also particularly low in plant cell plasma membranes, suggesting that there may 

be other endogenous PLC ligands in planta. Plant PLC structures include a variable EF 

hand domain at the N-terminus, followed by conserved X and Y catalytic domains and a 

C-terminal C2 lipid binding domain (Teun Munnik & Testerink, 2009). Calcium is required 

for PLC activity, and both the EF hand and C2 domains have calcium-binding regions 

(Otterhag et al., 2001; Rebecchi & Pentyala, 2000). For the rice PLC (AK064924), the C2 

domain alone was sufficient to bind lipids in a calcium-dependent manner (Rupwate & 

Rajasekharan, 2012). However, PLC3 in tobacco required both the EF and C2 domains 

to bind the plasma membrane in tobacco PTs (Helling et al., 2006).  

Here, we describe another hpat1/3 suppressor mutation found in PLC6. PLC6 

(At2g40116) is one of nine PLCs (PLC1 through 9) encoded in the genome of Arabidopsis 

thaliana, and its function has not been characterized yet.  We show that PLC6 is an 

important regulator of PT growth by influencing cell polarity and mediating growth 

response to calcium, and we interrogate the potential links between PLC6, EXO70A2, 

and secretion in HPAT-mediated PT growth. Furthermore, while AtPLC2 has already 

been implicated in male and female gametophytic development (Di Fino et al., 2017; L. 

Li et al., 2015), our data indicates that PLC6 is a major PLC isoform functioning in PT 

growth, but it is likely that other PLCs have roles in this process as well.      

 

4.2 Results 

4.2.1 frh3 suppresses hpat1/3 PT growth and fertility defects to improve seed 

production 
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WT Arabidopsis plants typically produce large siliques filled with seeds due to 

efficient self-fertilization of all or most ovules for each flower. Self-fertilized hpat1/3 plants 

produce fewer seeds due to poor growth of hpat1/3 PTs, which drastically decreases 

fertilization efficiency (MacAlister et al., 2016). Seed production is strongly rescued in frh3 

plants due to suppression of hpat1/3 PT growth defects and improved fertility (Figure 1); 

however, the mechanism through which poor pollen fertility in hpat1/3 was improved in 

frh3 was unknown.   

We reasoned that increased seed production in frh3 plants could be caused by 

directly improving growth and fertility of hpat1/3 PTs, or possibly due to improved 

reception of the female tissue to complement poor PT growth. To distinguish between 

these two modes, we performed reciprocal crosses between un-mutagenized hpat1/3 

plants and frh3 suppressors. frh3 pistils crossed with hpat1/3 pollen produced few seeds, 

with silique sizes and seed sets resembling those of normal hpat1/3 plants, while hpat1/3 

pistils crossed with frh3 pollen resulted in large, full siliques (Figure 1B). Furthermore, 

hpat1/3 pistils manually pollinated with excess hpat1/3 pollen still produced low seed sets 

resembling self-fertilized hpat1/3 siliques (Figure 1B), demonstrating that manual 

pollination alone does not improve seed yield. These results indicate that seed production 

in frh3 is specifically caused by improved fertility of hpat1/3 PTs. 

To learn more about how pollen fertility is improved in frh3, we asked if hpat1/3 PT 

growth and morphological defects were suppressed in frh3 PTs. To address this, we 

performed multiple in vitro PT growth assays and measured the frequencies of these 

observed phenotypes. frh3 PTs grown for 4 hours in vitro were much longer than hpat1/3 

PTs and approached near-WT lengths (Figure 1D, E). The high frequency of bursting and 

increased width of hpat1/3 PTs were also significantly reduced in frh3 (Figure S1), 

suggesting that improved growth and fertility of frh3 PTs is due to suppression of cell wall 

defects caused by the loss of HPAT activity. hpat1/3 PTs also germinated at a slightly 

lower frequency compared to WT, and this was not rescued in frh3 PTs (Figure S1).  

We wanted to measure how secretion of HPAT-modified proteins was affected in 

the frh3 background. We previously cloned a GF(EXT3)P reporter, whose structure 

includes a single EXT3 motif loop embedded in a GFP molecule, and showed that the 

GF(EXT3)P reporter protein was Hyp O-arabinosylated in an HPAT-dependent manner 
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(Beuder et al., 2020). We transformed hpat1/3 plants with this construct, crossed a 

strongly-expressing line into the WT Col and frh3 backgrounds, and measured apical 

secretion of the GF(EXT3)P protein in the same manner as described in Beuder et al. 

2020. Consistent with our previous results, hpat1/3 plants showed higher levels of 

GF(EXT3)P secreted into the cell wall than Col (Figure S1). This phenotype was partially 

suppressed in frh3 PTs, which showed lower levels of GF(EXT3)P secretion compared 

to hpat1/3, but still significantly higher than Col. These results suggest that FRH3 is 

involved in promoting the secretion of HPAT-modified proteins in PTs.  

 

4.2.2 frh3 mapped to a mutation in PLC6 

To identify the hpat1/3 suppression-causing mutation in frh3, we performed whole-

genome sequencing of BC4F2-generation frh3 suppressor plants, as well as non-

suppressed siblings and hpat1/3 plants. Sample preparation, sequencing strategy, 

bioinformatic analysis and other steps were performed as previously described (Beuder 

& MacAlister, 2020). Briefly, we first identified sequencing variants unique to frh3, then 

filtered this list of variants (Varfrh3) based on the following criteria: (i) mutation type= single 

nucleotide polymorphisms (SNPs), as EMS primarily causes G to A substitutions (Greene 

et al. 2003), (ii) total read coverage > 3 at each position, and (iii) alternate allele frequency 

> 0.7. This revealed a cluster of 41 mutations spanning 6.7 million base-pairs on 

chromosome 2 (Table S1). We then selected for (iv) mutations in protein-coding gene 

regions, (iv) missense or nonsense mutations, and (v) mutations found in genes 

expressed in pollen. This led to the identification of a guanine to adenine substitution at 

genomic position 16754174, which mapped to AtPLC6 (At2g40116) and is predicted to 

cause a glutamic acid to lysine change at protein position 569 (Figure 7A, B).  

To validate our sequencing results, we designed dCAPS primers to detect this 

candidate SNP in frh3. Primers were designed to create a full-length PCR product of 207 

base pairs, and the forward dCAPS primer contained a mismatch that created a 

recognition site for the restriction enzyme Hyp188III only when the SNP was also present 

in the PCR product. Therefore, the WT sequence (containing guanine) would not be cut, 

while the mutant sequence (containing adenine) would be cut to generate two fragments 
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of sizes 186 bp and 21 bp, which distinguishable using gel electrophoresis with a 2-3% 

agarose gel. A reliable genotyping protocol was developed and enabled us to successfully 

identify the mutation in frh3 suppressor plants, thereby validating our whole-genome 

sequencing results. The results of our genotyping scheme are shown in Figure 2A, with 

samples from a population segregating for the plc6-E569K (plc6-1) mutation.  

Next, we sought to demonstrate that plc6-1 was actually the mutation responsible 

for improving poor hpat1/3 PT fertility. We hypothesized that the causal mutation should 

co-segregate with the suppressed phenotype as we propagate the frh3 line. To test this, 

we backcrossed frh3 plants (which were confirmed to be homozygous for plc6-1) with 

hpat1/3 plants and allowed the F1s to self-fertilize. Out of 65 BC5F2 progeny genotyped, 

we identified only 2 plants that were homozygous WT for PLC6, indicating that there was 

a strong transmission bias in favor of the mutation (Figure 2B). Additionally, the 

suppressed phenotype perfectly co-segregated with plc6-1 in 63 BC5F2 plants, as the 

two F2 PLC6 +/+ plants recovered in this generation were phenotypically identical to 

normal, non-suppressed hpat1/3 plants (Figure 2C, D). Plants that were heterozygous for 

PLC6 (hpat1/3; PLC6/plc6-1) had significantly higher seed counts than those that were 

PLC6WT (hpat1/3; PLC6/PLC6), indicating that seed set is markedly improved when only 

half of the pollen carry the suppressive mutation; however, seed counts were highest in 

triple homozygous mutants (hpat1/3; plc6-1/plc6-1).  

In order to confirm the identify of plc6-1 as our frh3 suppressor mutation, we tested 

the ability of the WT PLC6 gene to rescue the suppressor phenotype, i.e. reverting the 

high-fertility phenotype of suppressed pollen to the low-fertility phenotype of hpat1/3 

pollen. We cloned the genomic sequence of the PLC6 gene and its native promoter into 

the binary vector pFASTG01, which contains a convenient seed coat GFP selection 

marker (Figure S2 top) (Shimada et al., 2010), and transformed this into frh3 plants. 

Positive transformants were crossed reciprocally with WT, and we examined the resulting 

ratios of GFP+:GFP- seeds to measure transmission efficiency. Because of this 

approach, we had to accurately determine which T1 plants had transgene insertions at a 

single loci, so that we could expect to observe a 1:1 ratio of GFP+:GFP- seeds if the 

transgene did not affect transmission (50% GFP+ seeds = 100% transmission efficiency 

of the inserted transgene). To do this, we first analyzed the crosses in which T1 plants 
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were used as females, as we did not expect this insertion to affect female transmission. 

7 T1 plants were identified as having single-loci transgene insertions when crossed as 

females with WT pollen. The GFP+:GFP- seed ratios were then examined from crosses 

in which these 7 single loci-insertion T1 plants were used as males. For all 7 T1s, there 

was a statistically significant decrease in the number of observed GFP+ seeds compared 

to the expected value, indicating that the presence of the transgene specifically reduced 

transmission efficiency through the pollen (Figure S2, graph). Our interpretation of this 

data is that the presence of the PLC6p:PLC6 transgene restored normal PLC6 activity in 

frh3 pollen, which countered the suppressive effect conferred by the plc6-1 mutation, 

thereby rescuing suppression and causing reversion towards hpat1/3. The results 

indicated to us that plc6-1 was indeed the causal mutation in the hpat1/3 suppressor 

family frh3, and that plc6-1 is a recessive mutation which is consistent with a loss of 

function allele.  

 

4.2.3 hpat1/3; frh3/plc6-1 suppressors are not improved by the addition of the 

frh1/exo70a2-2 

 Because EXO70A2 may be binding PI(4,5)P2 , and PLC6 may be regulating 

PI(4,5)P2 levels at the PT plasma membrane, we wanted to interrogate the link between 

the frh3/plc6-1 and frh1/exo70a2-2 suppressor mutations. Specifically, we wanted to 

know if the frh3/plc6-1 suppressor is acting through the same mechanism as 

frh1/exo70a2-2, or if there was an additive effect caused by the presence of two 

suppressor mutations. To address this, we crossed the frh1 and frh3 suppressor lines 

and obtained hpat1/3; exo70a2-2; plc6-1 (+/-) and hpat1/3; exo70a2-2 (+/-); plc6-1 plants. 

We test crossed each line as a male with WT females and observed that in both cases, 

there was a strong transmission bias against the quadruple mutant pollen compared to 

the triple mutant pollen (Tables 6 and 7). Furthermore, quadruple homozygous mutant 

plants (“double suppressors”) had lower seed counts than triple homozygous (normal 

“single suppressors”) plants, and were therefore less suppressed (Figure 3).  

We reasoned that if the mutations were acting through the same pathway, we 

would have observed a 1:1 ratio of progeny fertilized by double and single suppressor 
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pollen. This data suggests that the frh1/exo70a2-2 and frh3/plc6-1 mutants are not 

improving hpat1/3 PT growth through identical mechanisms, because we would have 

observed a 1:1 transmission ratio of quadruple mutant pollen compared to triple mutant 

pollen. However, this data does not rule out the possibility that frh3/plc6-1-mediated 

suppression occurs by disrupting normal EXO70A2-mediated secretion in a similar 

manner as frh1/exo70a2-2; rather, it is possible that additive knockdown of EXO70A2-

mediated secretion by frh3/plc6-1 in the frh1/exo70a2-2 genetic background (or vice-

versa) is too strong of an effect, leading to sub-optimal hpat1/3 suppression. This is 

supported by the observation that the partial knockdowns of exocyst-mediated secretion 

in frh1/exo70a2-2 and frh3/sec15a-3 improved hpat1/3 fertility more than the stronger 

knockout mutations exo70a2-3 and sec15a-2. Furthermore, it is possible that PLC6 

functions outside of exocyst-mediated secretion in Arabidopsis PTs, and the frh3/plc6-1 

suppressive mechanism may not be confined this pathway.  

 

4.2.4 plc6-1 decreases pollen transmission in vivo and polarized growth in vitro  

 To learn more about PLC6’s role in PT growth, we wanted to examine how the 

plc6-1 mutation affects pollen fertility in a WT genetic background. We crossed frh3 

suppressors with WT plants, allowed the F1s to self-fertilize, and genotyped the F2s to 

identify plc6-1 plants that were homozygous WT for both HPAT1 and HPAT3. To compare 

the transmission efficiency between mutant plc6-1 and wildtype PLC6 pollen, plc6-1 

heterozygotes (HPAT1/3; PLC6/plc6-1) were outcrossed as males with WT females. We 

genotyped the resulting progeny for the presence or absence of the plc6-1 allele and 

discovered an approximate 2:1 ratio between PLC6 +/+: PLC6/plc6-1 progeny, which 

differed significantly from a 1:1 ratio expected for normal transmission (Table 1) and 

indicates that plc6-1 PTs were outcompeted by WT. 

 To identify the underlying causes of decreased plc6-1 pollen transmission, we 

performed in vitro PT growth assays. Surprisingly, plc6-1 PTs appeared drastically 

different compared to WT, with curvy and hooked shapes signifying erratic directional 

changes during growth (Figure 4A, and quantified in Figure 8C). This phenotype was also 

not observed in hpat1/3; plc6-1/frh3 PTs, whose appearance strongly resembled WT 
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(Figure 1E), indicating that hpat1/3 suppresses the abnormal “crooked growth” phenotype 

of plc6-1 PTs. We also observed decreased length and increased width in plc6-1 PTs, 

suggesting that cell polarity during tip growth is compromised (Figures 4B, D). We also 

observed lower germination frequencies of plc6-1 PTs- a phenotype consistent with 

previously- characterized exocyst secretion mutants [Figure 4D, (Beuder et al., 2020)]. 

plc6-1 self-fertilized siliques contained fewer seeds than WT (Figure 4C, 4D). Notably, 

positions with no seeds were typically found near the basal end of the silique, suggesting 

that decreased PT elongation is a primary cause of lower seed counts rather than 

meandering PT growth, ovular targeting, or rupture. To examine if plc6-1 PT growth in 

vivo, we manually pollinated WT pistils with either WT or plc6-1 pollen and collected them 

24 hours after pollination. We fixed the pistils and stained them with aniline blue 

fluorochrome, which binds (1®3)-b-glucans enriched in PT cell walls, to visualize PTs 

within the pistil. Both WT and plc6-1 PTs appeared to grow straight through the 

transmitting tract and reached the distal end of the pistil (Figure S3, top and bottom right); 

however, it is possible that fewer plc6-1 PTs reached the distal end than WT, as we did 

not analyze this quantitatively. Individual PTs emerged from the transmitting tract and 

appeared to target ovules, and there were no erratic growth paths or other obvious 

abnormalities phenotypes observed in plc6-1 PTs compared to WT (Figure S3). This 

could be due to the physical support provided by the pistil tissue in vivo, which may force 

PTs to grow straighter and mask the crooked growth phenotype observed in vitro. Also, 

guidance cues provided by the pistil may be reinforcing PT growth directionality, and the 

absence of these cues in vitro leads may cause frequent reorientation of PT growth. 

Taken together, this data suggests that PLC6 promotes pollen fertility by helping PTs 

maintain cell polarity during growth in vitro, but this may not be essential for in vivo PT 

growth and seed production. However, the pattern of seed production (or rather, the lack 

thereof) indicates that PLC6 promotes PT growth required for full fertility.   

 

4.2.5 plc6 insertion mutants do not suppress hpat1/3 fertility defects 

 Because the suppressive effects of plc6-1 were rescued by the WT PLC6 gene, 

we hypothesized that plc6-1 was a loss of function allele. Therefore, we wanted to 
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determine if knocking out PLC6 expression would also suppress hpat1/3 pollen fertility 

defects.  We obtained three plc6 mutant lines with TDNA insertions located in different 

regions of the PLC6 gene (Figure 7A). We extracted RNA from flowers and made cDNA 

libraries to check for PLC6 expression in WT and our three mutant lines. We tested for 

disruption of gene expression using two primer combinations spanning exons 1-4 (region 

1) and exons 6-9 (region 2). In WT flower cDNA, we were able to amplify both regions 

from the cDNA template, indicating that the predicted transcript is produced. In both the 

CSHL_GT4996 (plc6-2) and the SALK_090508 (plc6-3) mutants, we were unable to 

robustly amplify region 1, likely caused by disruption by the presence of the TDNA 

insertion; however, faint bands were visible (Figure 7D). We were also able to amplify 

region 2 from both plc6-3 and plc6-2 cDNA templates, indicating that some plc6 C-

terminal mutant isoform may be still expressed in these lines. Conversely, we were able 

to amplify region 1 from SALK_0401365 (plc6-4) cDNA, but we were unable to amplify 

region 2, which leaves open the possibility that a truncated PLC6 mutant isoform could 

be produced in plc6-4. We decided to focus on characterizing the plc6-2 and plc6-3 

mutants because we reasoned that they were most likely to produce non-functional 

protein products.  

To test for hpat1/3 suppression, we crossed the plc6-2 and plc6-3 TDNA lines into 

hpat1/3 and obtained plants that were heterozygous for either TDNA mutation (hpat1/3 

plc6-2 +/- and hpat1/3 plc6-3+/-). We test crossed hpat1/3; plc6 +/- plants as males with 

WT females with the expectation if either plc6 TDNA allele was suppressing hpat1/3 

pollen fertility defects, then we would observe a transmission bias in favor of the mutation. 

Interestingly, we observed a strong bias against transmission for plc6-2 and plc6-3 

(Tables 3 and 5), indicating that these mutations decreased hpat1/3 pollen fertility. We 

obtained hpat1/3 plc6-2 and hpat1/3 plc6-3 triple mutant plants and performed seed 

counts. Compared to their hpat1/3 PLC6WT siblings, hpat1/3; PLC6/plc6-2 and hpat1/3; 

plc6-2 triple homozygous mutants had significantly lower seed counts (Figure 5D), as did 

hpat1/3; plc6-3 triple homozygous mutants (Figure 5J). Since this is the opposite of what 

we expected, we examined pollen phenotypes of these mutants more closely through in 

vitro PT growth assays. PT lengths were comparable between both hpat1/3; plc6 

transgene insertion triple mutants and hpat1/3 double mutants (Figure 5A,C,G and I). PT 
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bursting occurred at a high frequency in hpat1/3, and this appeared unchanged in both 

triple mutants (Figure 5E and K); however, PT germination frequencies were significantly 

decreased in both triple mutants (Figure 5F and L). This data indicates that neither plc6-

2 nor plc6-3 suppress hpat1/3 pollen fertility defects; on the contrary, they acted as 

enhancers of the low pollen fertility phenotype, primarily through decreasing PT 

germination frequency. This data also suggests that the plc6-1 allele is not acting as a full 

loss-of-function allele.  

To further examine the role of PLC6 in pollen fertility, we also wanted to determine 

if plc6-2 and plc6-3 mutations affected pollen transmission and growth in an otherwise 

WT genetic background. We performed test crosses with plants that were heterozygous 

for either plc6-2 or plc6-3 as males (PLC6/plc6-), and, surprisingly, we observed no 

transmission bias either for or against either transgene (Tables 2 and 4). We compared 

seed sets of plc6-2 and plc6-3 homozygous mutants to WT and found that the seed 

counts appeared similar to WT (Figure 6B, D, F and H). Furthermore, the lengths and 

overall appearance of in vitro-grown plc6-2 and plc6-3 PTs both strongly resembled WT 

(Figure 6A, C, E and G). A possible explanation for why we did not observe an abnormal 

PT growth phenotype in either plc6 TDNA insertion mutants could be functional 

redundancy among pollen-expressed PLCs.  

 

PLC gene expression across reproductive and vegetative tissues 
 To explore the possibility that PLCs could be functioning redundantly in PTs, we 

wanted to compare individual PLC gene expression levels in pollen. We downloaded a 

RNA-sequencing dataset (Loraine et al., 2013) and extracted the RPKM values for each 

PLC gene in both pollen and (average) seedling and plotted these values on a log10 scale 

(Figure 7E).  Every gene had detectable levels of expression in both sample types except 

for PLC1, which was not found to be expressed in pollen. Notably, PLC6 was found to be 

the most highly- expressed PLC in pollen, with an RPKM value almost one full order of 

magnitude higher than the second most-highly expressed PLC in pollen, PLC4; PLC6 

also had the lowest level of expression in seedlings. In addition to PLC4 and 6, PLC5 and 

9 also had higher levels of expression in pollen than in seedlings. This data spotlights 
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PLC6 as potentially being the major, canonical PLC isoform in pollen, but does not rule 

out the possibility that other PLCs are also playing important roles.  

We also wanted to examine PLC expression patterns across different tissue types. 

To do this, we used the RNA-sequencing data published on the Klepikova Atlas on TAIR 

(Klepikova et al., 2016) to generate expression profiles for a small range of flower and 

vegetative tissue types. We compared data from this category for each PLC gene in 

anthers (pollen was not available), carpel, root, and leaf samples (see Figure 7F legend 

for more details). In this small set of tissue types, PLC6 expression was highly enriched 

in the anthers, and highest in this tissue type compared to the other PLCs. PLC1 and 7 

gene expression was higher in anthers compared to carpel, but their highest expression 

levels were found in vegetative tissues (Figure 7F). PLC4 expression was highest in 

anthers compared to other tissue types, corroborating the previous report that 

PLC4p::GUS promoter-reporter expression was observed in mature pollen (Hunt et al., 

2004).  

We also generated expression profiles using microarray data (Schmid et al., 2005) 

for each PLC gene except for PLC6, for which data was unavailable (Figure 7G). We 

observed that PLC3, 4, 5, and 7 expression was high in mature pollen and very low in 

carpel; each of these were expressed in at least one vegetative tissue (root), while PLC4 

expression was highly enriched in pollen. PLC1, 2, 8 and 9 had relatively high expression 

in vegetative tissues and low levels of expression in mature pollen. PLC2 expression was 

also observed in the carpel (Figure 7, G), consistent with its known role in female 

gametogenesis (Di Fino et al., 2017). In summary, our gene-expression analyses indicate 

that PLC6’s expression profile is unique among the PLCs, with high expression levels in 

developing and mature pollen (and possibly anther tissue itself), suggesting that it is a 

major PLC isoform present in growing PTs. However, most PLCs are expressed at some 

level in anthers and pollen, so it is possible that multiple PLCs are functioning redundantly 

to promote proper PT growth in Arabidopsis. Among these, PLC4’s male-enriched 

expression profiles are aligned with having a specialized role in pollen.  

 

4.2.6 plc6-1 mutation is located in the C2 domain at a calcium-coordinating motif  
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 Because our data suggests that plc6-1 is not a full loss of function allele, we wanted 

to learn more about how the plc6-1 mutation affects PLC6 function by further examining 

the nature of the mutation. We aligned the primary structures of Arabidopsis PLCs and 

found that the E569 position is located in the C2 domain, and this residue was conserved 

in five out of nine PLC sequences (Figure 7B). We also aligned the primary structure of 

PLC’s C2 domain to the C2 domains of three protein kinase Cs from rat and human, for 

which protein structures have already been determined (Corbalan-Garcia & Gómez-

Fernández, 2014; Pike et al., 2007; Sutton & Sprang, 1998; Verdaguer et al., 1999). This 

revealed that the E569 position in PLC6 falls between key aspartic acid residues involved 

in calcium-coordinating, as well as other residues involved in PI interactions [Fig S4A;]. 

To determine the spatial positioning of this residue we used a homology modeling 

approach using the Phyre 2 protein fold recognition server (Kelley et al., 2015). The full- 

length, predicted PLC6 protein sequence was modeled against a protein fold library and 

the best model returned was fold library ID c1djyB, which was modeled using a crystal 

structure for the phosphoinositide-specific PLC C δ1 from rat complexed with inositol-

2,4,5-trisphosphate (Essen et al., 1997) as a template; this model returned a with a 100% 

confidence score for 87% of the PLC6 sequence. The mutated residue (E569K) occurred 

on an external loop in the C2 domain and was in particularly close proximity to calcium-

coordinating aspartic acid residues in this 3D structure. The charge inversion of the plc6-

1 allele is therefore likely to interfere with the electrostatic interactions taking place in this 

region. 

  

4.2.7 plc6-1 PTs are sensitive to high calcium levels 

 Based on our in silico analysis of the PLC6 C2 domain, the E569 residue resides 

within a cluster of negatively-charged aspartic residues that appear to be a crucial location 

for coordinating calcium ions. Therefore, we hypothesized that the plc6-1/E569K mutation 

may be inhibiting PLC6’s ability to bind and coordinate calcium, which is required for C2 

lipid biding and PLC activity in general (Otterhag et al., 2001; Rebecchi & Pentyala, 2000). 

Therefore, we wanted to examine how plc6-1 affected the PT growth response to calcium. 

To do this, we performed in vitro growth assays to analyze both PT elongation and 
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curliness in response to varying calcium concentrations in the growth media. After 2.5 

hours of growth on normal 2 mM calcium, plc6-1 PTs were shorter than WT, as we had 

observed previously (Figure 8A, B, Figure 4B). WT PTs were largely insensitive to 

changes in calcium level with a statistically significant reduction in average length 

observed only at 8 mM calcium levels compared to 2 mM (Length0.5mM = 236.6967 ± 

109.1968 µm, Length2mM= 252.8587 ± 93.9361 µm; Student’s t-test p-value0.5 mM vs 2 mM = 

0.076671; Length4mM = 257.3808 ± 98.4054; Student’s t-test p-value2mM versus 4 mM = 

0.598274; Length8mM = 165.0201 ± 79.9379 µm; Student’s t-test p-value2mM vs 8mM = 

2.28463E-26) . plc6-1 PTs, however, were sensitive to changes in calcium level. plc6-1 

PT growth was optimal at 1 mM calcium, and PT lengths decreased as calcium 

concentrations increased (Length0.5mM = 162.5113 ± 62.4751 µm, Length2mM= 136.7914 

± 51.4164 µm; Student’s t-test p-value0.5 mM vs 2 mM = 6.93687E-07; Length4mM = 119.9213 

µm ± 41.2006 µm; Student’s t-test p-value2mM versus 4 mM = 5.66779E-05; Length8mM = 

70.2689 ± 31.7174 µm; Student’s t-test p-value2mM vs 8mM = 1.6223E-51).  

The PT “curly index (CI)” was determined by first measuring two values- the total 

PT length, and the shortest length between the pollen grain and the tip of the tube 

(“minimal length”). CI values are calculated by dividing the total length by the minimal 

length; a value of 1 means the PT was perfectly straight.  At each concentration, the curly 

index values for plc6-1 were lower than WT, indicating that plc6-1 PTs were curlier than 

WT across all concentrations (statistical analyses described in figure legends) (Figure 

8C). Furthermore, WT PT curliness was unaffected at 0.5X compared to 1X (CI0.5X = 

0.924536 ± 0.082286, CI1X = 0.897569 ± 0. 0.09692; Student’s t-test p-value= 0.082793), 

and WT PTs actually became slightly straighter at 2X calcium levels compared to 1X 

(CI2X= 0.977564707 ± 0.190625387; Student’s t-test p-value= 0.002225355). Similarly, 

plc6-1 PT curliness was not significantly affected at 0.5X calcium levels compared to 1X 

(CI0.5X= 0.8318 ± 0.193786, CI1X= 0.800275 ± 0.167353; Student’s t-test p-value= 

0.322287), but plc6-1 PTs were significantly curlier at 2X calcium compared to 1X 

(CI2X=0.591686 ± 0.252526; Student’s t-test p-value = 1.42817E-06), which is an opposite 

response than observed for WT PTs. This data indicates that plc6-1 PT growth is sensitive 

to higher environmental calcium levels; however, the link between PLC6, calcium, and 

PT growth is still unclear.  
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4.2.8 Subcellular localization of PLC6-mNG 

 To confirm that PLC6 is expressed in PTs, and to determine its subcellular 

localization, we cloned and transformed plants with a construct encoding the PLC6 

genomic sequence fused with a C-terminal mNeonGreen (mNG) under the native PLC6 

promoter (PLC6p:PLC6-mNG). PI(4,5)P2 and other PLCs have been shown to localize to 

the apical and subapical plasma membrane in PTs, respectively, (Dowd et al., 2006; 

Helling et al., 2006) so we hypothesized that PLC6-mNG would localize to the subapical 

plasma membrane as well. Using confocal microscopy, we examined the pattern of mNG 

signal in PTs from three positive, independent T1 plants. We observed diffuse signal 

throughout the cytoplasm, with no enrichment at the plasma membrane (Figure 9). 

However, to our surprise, we observed enrichment of mNG signal in the shape of two 

connected circles far from the apical tip. Using DAPI to visualize the sperm and vegetative 

nuclei, we confirmed that mNG signal was enriched in the endomembrane surrounding 

the sperm nuclei (Figure 9). These patterns were consistent among all three T1 plants.  

 To determine if the PLC-mNG C-terminal fusion protein was functional, we wanted 

to test its ability to rescue suppression of frh3 pollen in the same manner as described 

earlier (Figure S2). We transformed the construct into frh3 suppressor plants and crossed 

positive T1s reciprocally with WT. We selected T1s that showed a 1:1 ratio of fluorescent 

seeds when crossed as females, which indicates that they were single loci-insertion 

transformants. Then, we analyzed the seeds produced when these plants were crossed 

as males. For 8 single loci-insertion T1 plants, 4 of these plants produced significantly 

less then 50% fluorescent seeds when used as pollinators, indicating that suppression 

was being rescued in frh3 pollen carrying the construct, which suggests the PLC-mNG 

fusion protein is functional (Figure S5). The other 4 T1 plants produced seed sets with 

approximately a 1:1 ratio of fluorescent to non-fluorescent seeds, indicating no 

transmission bias for pollen carrying the construct. We believe this data suggests that the 

PLC-mNG C-terminal fusion protein is likely functional.  
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4.3 Discussion 

 Similar to our findings for the hpat1/3 suppressor mutations exo70a2-2/frh1, 

exo70a2-3, sec1a-2 and sec1a-3/frh2 (Beuder et al., 2020), plc6-1/frh3 also strongly 

rescued poor pollen fertility of hpat1/3 by improving PT elongation, decreasing 

morphological defects, and decreasing bursting frequency. Also, the elevated apical 

secretion of the GF(EXT3)P reporter protein in hpat1/3 is decreased in plc6-1/frh3 (Figure 

S1), suggesting that PLC6 also plays a role in promoting secretion of Hyp O-arabinoside-

containing cargos. Because of these similar phenotypes and the known link between 

PLCs and EXO70s, it is possible that PLC6 may play a role in regulating exocyst-

mediated secretion. PT germination is drastically decreased in exo70a2 and sec15a 

secretion mutants, and plc6-2 and plc6-3 decreased PT germination frequency in the 

hpat1/3 background, consistent with PLC6 having a role in promoting secretion in PTs.  

It is interesting that plc6-2 and plc6-3 did not affect PTs in the WT background. 

One possibility is that multiple PLCs function redundantly in PTs. No individual PLCs are 

significantly up- or down-regulated in hpat1/3 pollen grains (RNA sequencing data not 

shown), but this may be different in PTs and/or because of loss of PLC6.  If PLC gene 

expression is mis-regulated in hpat1/3 PTs, then that could explain why there are different 

phenotypes for plc6-2 and plc6-3 in WT versus hpat1/3 genetic backgrounds. Another 

possibility is that PLCs are not perfectly redundant, and hpat1/3 PTs are simply more 

sensitive to changes that have little or no effect on WT PTs.  

There are also important differences between the plc6-1/frh3 and exocyst mutant 

suppressors. exo70a2 and sec15a PTs did not elongate as much as those of WT, but 

were phenotypically normal otherwise (Beuder et al., 2020). This contrasts to the looped 

and crooked appearance of plc6-1 PTs, which suggests that PLC6 plays a role in 

regulating cell polarity during tip growth. Because of these phenotypic differences 

between plc6-1 and exocyst mutant PTs, plc6-1 is not likely causing robust knockdown 

of global exocyst-mediated secretion to slow down growth in the same manner as 

exo70a2 or sec15a. Rather, this suggests that PLC6 helps maintains PT polarity during 

growth.  

Previous research shows that PI(4,5)P2 availability is a limiting factor for EXO70 

binding at the plasma membrane (Pleskot et al., 2015), and PI(4,5)P2 accumulation 
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caused by PI5P kinase overexpression resembles the plc6-1 phenotype (Ischebeck et 

al., 2008; Zhao et al., 2010). Our genetic data suggests that plc6-1 is a recessive 

mutation, which is consistent with plc6-1 as a loss of function allele. Therefore, one 

possibility is that PLC6-1 may be defective in PI(4,5)P2 binding and/or cleavage to form 

IP3 and DAG, which would expand PI(4,5)P2 availability at sub-apical regions along the 

PT plasma membrane and cause dispersion of exocyst-mediated secretion and decrease 

cell polarity and tip growth. In this model, apical secretion of Hyp O-arabinoside-

containing cargos in hpat1/3 (as seen with the GF(EXT3)P reporter) is decreased at the 

apical tip through this dispersion mechanism caused by plc6-1, which decreases apical 

extensin accumulation and restores tip extensibility and polarized growth in hpat1/3 PTs. 

In the WT background, loss of polarized exocytosis misdirects apical secretion, leading 

to curly growth paths and wider PTs.  

However, PLC6-mNG signal not observed at the plasma membrane, but rather it 

was localized to the cytoplasm and was enriched in the sperm endomembrane system. 

While the ER is considered to be the main internal calcium store in animals (Segal et al. 

2014), other organelles likely contribute to cytoplasmic calcium levels. In human sperm, 

the nuclear envelope and surrounding endomembrane compartments contain calcium 

channels, which may be involved in regulating cytoplasmic or nuclear calcium levels 

(Costello et al., 2009). Less is known about calcium storage in plant cells, but cyclic 

nucleotide-gated ion channels (CNGC) which transport calcium are localized to the 

nucleus (Costa et al., 2018). Glutamate receptor-like channels (GLRs) transport calcium 

through the plasma membrane to modulate cytoplasmic calcium concentrations and 

control PT growth, and glr1 knockout mutants show defects in tip growth somewhat 

similar to plc6-1 (Michard et al., 2011). Similar to PLC6-mNG, GLR3-GFP localizes to the 

sperm endomembrane in PTs (Wudick et al., 2018), suggesting that this organelle may 

have a role in storing calcium to regulate cytoplasmic or nuclear calcium concentration. 

Therefore, rather than regulating PI(4,5)P2 at the plasma membrane, it is probably more 

likely that PLC6 controls PT growth by locally regulating PI signaling at the sperm 

endomembrane, which may affect calcium transport.  

Based on our structural analysis, it is likely that the charge inversion caused by the 

plc6-1 E569K mutation impairs calcium coordinating at this region. This is consistent with 
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a loss-of-function effect, and our genetic data indicates that plc6-1 is a loss-of-function 

allele. Furthermore, extra calcium induced curly growth in plc6-1 but not WT PTs. But how 

are these phenotypes related? What is the connection between PLC6/PLC6-1 activity, 

calcium-coordinating, cytoplasmic calcium levels, and PT growth? To better understand 

PLC6’s role in regulating PT growth, and to further elucidate the mechanism underlying 

frh3/plc6-1-mediated suppression of hpat1/3 PT fertility defects, we must address several 

key questions. (1) Is PLC6 activity is affected in plc6-1, and if so, then how? (2) Is 

PI(4,5)P2 present at the sperm endomembrane? If so, then (3) does PLC6 regulate 

PI(4,5)P2 availability at the sperm endomembranes, and to what end? Lastly, (4) how are 

cytoplasmic calcium levels affected in hpat1/3, and does PLC6 regulate this as well? 

Answering these questions will greatly improve our understanding of PLC6’s role in 

regulating HPAT-mediated PT growth.    

 

 

4.4 Materials and Methods 

4.4.1 Plant growth conditions 

Columbia-0 WT Arabidopsis mutants were grown under 16- hour light/ 8- hour dark 

conditions in controlled growth room maintained at 23O C.  

4.4.2 Suppressor screen 

Mutagenesis of hpat1/3 seeds, suppressor phenotyping and selection, whole-genome 

sequencing and analysis steps were performed as previously described in (Beuder et al., 

2020; Beuder & MacAlister, 2020).  

4.4.3 PT assays and seed counts  

All pollen germination and growth assays were carried out using in vitro pollen growth 

media (PGM) modified from (Rodriguez-Enriquez et al., 2013) consisting of 10% sucrose, 

0.01% boric acid, 1mM CaCl2, 1mM Ca(NO3)2, 1mM KCl, 0.03% casein enzymatic 

hydrolysate, 0.01% myo-inositol, 0.1 mM spermidine, 10mM γ-Aminobutyric acid, 500μM 
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methyl jasmonate, pH adjusted to 8.0 and solidified with 1% low melting temperature 

agarose. PTs were grown on cellophane placed on top of the media and placed in a 

homemade humid chamber (glass box with wet paper towls) and grown in the dark. 

Length, width, germination, and bursting frequency assays were performed as previously 

described in Beuder et al., 2020).  

4.4.4 Cloning 

The genomic suppressor rescue construct (PLC6p:PLC6) was cloned by amplifying the 

genomic PLC6 coding sequence and the entire upstream region before the end of the 

previous gene using the Phusion® High-Fidelity DNA Polymerase (NEB, M0530S) from 

WT Col-0 DNA extracted from leaf tissue. PLC6:PLC-mNeonGreen (mNG) was cloned 

by fist amplifying the same region, with a different reverse primer to omit the stop codon, 

and then amplifying the mNG sequence from plasmid DNA,. We fused mNG to the PLC6 

C-terminus using the Gateway cloning system. Constructs were cloned into the binary 

vector pFASTG01 (PLC6p:PLC6) or pFASTR01 (PLC6p:PLC6-mNG) (Shimada et al., 

2010) and transformed into plants with Agrobacterium.  

4.4.5 Microscopy 

PTs were imaged for growth, bursting, germination, and morphological assays were 

imaged with a Leica DM5500 compound microscope with DIC optics at 10X magnification. 

GF(EXT3)P+ PTs were imaged using the same microscope but with the GFP filter. For 

imaging of PLC6-mNG fusions, PTs were grown in vitro on slides with rubber spacers 

containing PGM for 2 hours in a humid chamber in the dark. After growth time, liquid PGM 

with 4 μM FM4-64 was added on top of the PTs and covered with a coverslip. PTs were 

imaged using a Leica SP5 laser-scanning confocal microscope 10 minutes after FM4-64 

application. To image PLC6-mNG, we used an excitation laser with 488 nm wavelength, 

a RSP500 dichroic beam splitter, and detectors were set to capture light with a 

wavelength range of 494-575 nm. To image FM4-64, we used an excitation laser with 

514 nm wavelength, a DD 458/514 dichroic beam splitter, and detectors were set to 

capture light with a wavelength range of 620-783 nm. Images were overlayed with Fiji.  
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Figure 4-1. hpat1/3 pollen fertility defects and seed production are rescued in frh3. A) hpat1/3 and 
hpat1/3; frh3 (frh3) plants show no vegetative abnormalities. B) Seed counts (number of seeds per 
silique) for WT, hpat1/3 and frh3. Bars represent average seed counts and error bars represent standard 
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deviation. (N ≥ 10 siliques per genotype). Statistical analysis performed using Student’s t-test. *** denotes 
p-value ≤ 0.0005. C) Representative siliques from each genotype cleared in 70% ethanol. D) Lengths of 
PTs grown in vitro for 5 hours; N ≥ 203 PTs per genotype. E) Representative PTs from each genotype 
from (D), imaged at 10X magnification with DIC optics; scale bar represents 100 microns. 
 

 

 

 

Figure 4-2. hpat1/3 suppression phenotype co-segregates with plc6-1 mutation in BC5F2 generation frh3 
plants. A) Genotyping of plc6-1 mutation. PCR products were amplified using dCAPS primers, treated 
with HYP188III restriction enzyme, and run on a 2% agarose gel. Full-length (WT) PCR product = 207 bp. 
PCR product containing the plc6-1 mutation is cleaved at the 3’ end of primer resulting in 183 and 24 bp 
bands. B) Genotype segregation ratios of BC5F2 individuals. C) Seed counts for BC5F2s based on PLC6 
genotype. (+) denotes the WT allele, and (-) denotes plc6-1 mutant allele. Statistics performed using 
Student’s t-test; * indicates p-value < 0.05. D) Representative siliques of each genotype cleared with 70% 
ethanol. 
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Figure 4-3. frh3/plc6-1 and frh1/exo70a2-2 seed production is not increased in frh3; frh1 “double 
suppressor”. A) Seed counts of hpat1/3 plants carrying WT or mutant alleles of PLC6 [PLC6 (+) or plc6-1 
(-)] or EXO70A2 [EXO70A2 (+) or exo70a2-2 (-)]. NWT =10 siliques, N ≥17 siliques for other genotypes. 
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Statistical analysis performed using Student’s t-test. B) Representative siliques for each genotype cleared 
in 70% ethanol. 
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Figure 4-4. plc6-1 PTs are curlier, wider, and germinate less frequently than WT. A) PTs grown in vitro for 
four hours and imaged with DIC optics at 10X magnification; scale bar represents 100 microns. B) 
Quantification of PT lengths after 5 hours growth in vitro N ≤ 202 PTs per genotype. C) Pictures of plc6-1 
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siliques. D) Reproductive phenotypes. Far left- seed counts for WT (N = 14) and plc6-1 (N= 13). Left 
middle- PT width measurements after 1 hours of growth; N ≥ 200 PTs per genotype. Right middle and far 
right- Germination and bursting frequencies after 2 hours of in vitro growth. Both bursting and germination 
experiments were repeated in triplicate for each genotype. Nbursting ≥ 159 PTs analyzed per experiment, 
per genotype. Ngermination ≥ 404 pollen grains analyzed per experiment per genotype. Statistical 
analyses performed using Student’s t-test; ** represents p-value < 0.005. 
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Figure 4-5. plc6 TDNA insertion mutations do not improve hpat1/3 pollen fertility. A) PTs grown in vitro for 
2 hours and imaged with DIC optics at 10X magnification; scale bar represents 100 microns. B) 
Representative siliques for each genotype cleared with 70% ethanol. C) Quantification of PT lengths after 
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2 hours growth in vitro N ≥ 218 PTs per genotype.  D) Seed counts based on plant genotype; (-) denotes 
plc6-2 mutant allele. N ≥ 19 siliques per genotype. Bars represent average seed counts and error bars 
represent standard deviation. E) PT bursting frequencies after 2 hours in vitro growth. Experiment 
repeated three times with N ≥ 112 PTs per genotype per experiment. F) PT germination frequencies after 
2 hours in vitro growth. Experiment repeated three times with N ≥ 332 pollen grains measured per 
genotype per experiment. G) PTs grown in vitro for 2 hours and imaged with DIC optics at 10X 
magnification; scale bar represents 100 microns. H) Representative siliques for each genotype cleared 
with 70% ethanol. I) Quantification of PT lengths after 2 hours growth in vitro N ≥ 216 PTs per genotype. 
J) Seed counts based on plant genotype; (-) denotes plc6-3 mutant allele. N ≥ 22 siliques per genotype. 
K) PT bursting frequencies after 2 hours in vitro growth. Experiments repeated twice for each genotype 
with N ≥ 150 pollen grains examined, except in one experiment, the Nhpat1/3=66.  L) PT germination 
frequencies after 2 hours in vitro growth. Experiment repeated three times for hpat1/3 (N ≥ 239 per 
experiment) and twice for hpat1/3; plc6-3 (N ≥ 501 per experiment). Statistical analyses performed using 
Student’s t-test. 
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Figure 4-6. Seed production and in vitro PT growth are not disrupted in Col plc6 TDNA insertion 
mutants.A-D) Reproductive phenotypes in WT vs plc6-2 mutant. A) PTs grown in vitro for 4 hours and 
imaged with DIC optics at 10X magnification; scale bar represents 100 microns. B) Representative 
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siliques for each genotype cleared with 70% ethanol. C) Quantification of PT lengths after 4 hours growth 
in vitro. N ≥ 216 PTs per genotype. D) Seed counts for each genotype; (-) denotes plc6-2 mutant allele. N 
≥ 19 siliques per genotype. E-H) Reproductive phenotypes in WT vs plc6-3 mutant. E) PTs grown in vitro 
for 4 hours and imaged with DIC optics at 10X magnification; scale bar represents 100 microns. F) 
Representative siliques for each genotype cleared with 70% ethanol. G) Quantification of PT lengths after 
4 hours growth in vitro. N ≥ 259 PTs per genotype. H) Seed counts for each genotype; (-) denotes plc6-3 
mutant allele. N ≥ 19 siliques per genotype. Statistical analyses performed using Student’s t-test. 
 



 140 

 

Figure 4-7. PLC6 gene map and RT-PCR for TDNA insertion mutants. A) Map of the PLC6 gene 
indicating exons (boxes), introns, and locations of transgene insertions for plc6-2, plc6-3 and plc6-4, as 
well as the location of the plc6-1 SNP mutation. Also shown are primer combinations to detect the PLC6 
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transcript in part D. B) Partial protein sequences for Arabidopsis PLCs with the E569 position indicated in 
red. Alignment performed with CLUSTAL omega. “*” indicates perfect alignment, “:” indicates site among 
group with strong similarity, and “.” Indicates site among group with weak similarity. C) Phylogenetic 
analysis of PLCs from Arabidopsis, Petunia, and tobacco. Unrooted maximum likelihood tree shown with 
bootstrap values for each node. D) Gel showing RT-PCR products amplified using primer combinations 1 
(1F + 1R) and 2 (2F + 2R), and actin. cDNA libraries were prepared from flower mRNA, except for the 
genomic DNA and no template (-) controls. E) RNA sequencing analysis showing RPKM values 
transformed to log10 scale for each PLC gene in Arabidopsis pollen or seedling samples. Dataset 
obtained from Klepikova et al. 2016. 
 

 



 142 

 

Figure 4-8. plc6-1 PT growth in vitro is inhibited by increased calcium levels. A) PTs grown for 2.5 hours 
and imaged with DIC optics at 10X magnification; B) PT lengths quantified after 2.5 hours, with N ≥ 250 
PTs per experiment per genotype.  C) Length/distance ratios to measure PT curliness. Measurements 
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taken after 2.5 hours of growth. N ≥ 64 PTs per genotype per experiment. Statistical analyses performed 
using Student’s t-test. 
 

 

 

Figure 4-9. PLCp:PLC6-mNG is expressed in PTs and is enriched around sperm nuclei.  
Medial z-slice of a representative PT expressing PLC6p:PLC6-mNG, imaged with confocal microscopy at 
100X magnification. In merged image, mNG is false-colored cyan and DAPI is false-colored magenta. 
Scale bar represents 10 microns. 
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Figure 4-10 (Supplemental Figure 1). hpat1/3 cell wall-related defects are also suppressed in frh3 PTs. 
Left and middle: PT bursting and germination frequencies measured after 2 hours growth in vitro. 
Experiments were repeated in triplicate for each genotype. Nbursting ≥ 155 PTs analyzed per experiment 
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per genotype. Ngermation ≥ 239 per experiment per genotype. PT widths measured after 1 hours, with N 
≥ 101 PTs per genotype. Statistical analyses performed using Student’s t-test. A) Secretion indices for 
PTs expressing LAT52:GF(EXT3)P reporter, as well as the non-secreted control LAT52:GFP. Bars 
represent average ratios and error bars represent standard error. 
 

 

 

Figure 4-11 (Supplemental Figure 2). Transmission efficiency is decreased in frh3 PTs carrying PLC6 
genomic transgene. Top- schematic of the construct cloned into pFASTG01 (Shimada et al. 2010) and 
transformed into frh3 plants, which includes the OLE1:GFP selection marker and the genomic PLC6 
sequence. Bottom- transmission efficiency calculated as percent of GFP+ seeds produced from a cross 
using transformed plants (T1-T7), and scaled to 100% by multiplying by 2 (50% GFP+ seeds means 
100% transmission efficiency). Nfemale ≥ 69 seeds analyzed from each cross with a female T1 parent; 
Nmale crosses ≥ 86 seeds from each cross with a male T1 parent. Statistical analyses performed using 
chi-squared test, comparing the observed numbers of GFP+ and GFP- seeds to 50% GFP+ seeds (1:1 
GFP+:GFP-), which is expected if transmission is not affected by the transgene insertion. * represents 
chi-squared p-value < 0.05. 
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Figure 4-12 (Supplemental Figure 3). Aniline blue staining of WT and plc6-1 PTs in vivo. WT pistils 
imaged 24 hours after manual pollination with WT (top) or plc6-1 (bottom) pollen. Imaged at 10X 
magnification and scale bar represents 100 microns. 
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Figure 4-13 (Supplemental Figure 4). Protein structure of PLC6 C2 domain. A) Alignment of PLC6 C2 
domain with the C2 domains of protein kinase Cs from human and rat. Yellow aspartic acid residues are 
involved in calcium coordination, and blue residues are important for interacting with phosphoinositides. 
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B) 3D protein structure model of PLC6 with calcium-coordinating aspartic acid residues indicated, along 
with E569. 
 

 

 

Figure 4-14 (Supplemental Figure 5).Transmission efficiency of PLC6p:PLC-mNG in hpat1/3; plc6-1/frh3 
background. Top) Schematic of PLC6p:PLC6-mNG construct used for expression in WT PTs shown in 
Figure 9. Bottom) Reciprocal crosses showing %RFP seeds recovered when crossed with WT either as 
male or femle. Statistical analysis performed using chi-squared test. 
 

 
Table 4-1. Col WT x Col; PLC6-1. 

PLC6 geno 

# progeny 
genotyped 
(obs) 

# progeny 
expected % obs 

+/+ 32 49 32.6530612 
+/- 66 49 67.3469388 
chi sq p-value 0.00059361   
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Table 4-2. Col WT x Col; PLC6-2 (CSHL). 

PLC6 geno 

# progeny 
genotyped 
(obs) 

# progeny 
expected % obs 

+/+ 37 39.5 46.835443 
+/- 42 39.5 53.164557 
chi sq p-value 0.57374547   

 
Table 4-3. Col WT x hpat1/3; PLC6-2 (CSHL). 

PLC6 geno 

# progeny 
genotyped 
(obs) 

# progeny 
expected % obs 

+/+ 42 25.5 82.3529412 
+/- 9 25.5 17.6470588 
chi sq p-value 3.8203E-06   

 
Table 4-4. Col WT x Col PLC6-3 (SALK). 

PLC6 geno 

# progeny 
genotyped 
(obs) 

# progeny 
expected % obs 

+/+ 20 21 47.6190476 
+/- 22 21 52.3809524 
chi sq p-value 0.75762072   

 
Table 4-5. Col WT x hpat1/3; PLC6-3 (SALK). 

PLC6 geno 

# progeny 
genotyped 
(obs) 

# progeny 
expected % obs 

+/+ 40 27 74.11 
+/- 14 27 25.9 
chi sq p-value 0.0004029   

 
Table 4-6. Col WT x hpat1/3; exo70a2-2; PLC6/plc6-1. 

PLC6 geno 

# progeny 
genotyped 
(obs) 

# progeny 
expected % obs 

+/+ 55 34 80.8823529 
+/- 13 34 19.1176471 
chi sq p-value 3.51981E-07   

 
Table 4-7. Col WT x hpat1/3; plc6-1; EXO70A2/exo70a2-2. 

EXO70A2 
geno 

# progeny 
genotyped 
(obs) 

# progeny 
expected % obs 
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+/+ 56 35 80 
+/- 14 35 20 
chi sq p-value 5.16822E-07   

 
 
Table 4-8 (Supplementary Table 1). Primers used in this study. 

Purpose 
Target 
amplicon 

recomniatio
n sites 
attached? Primer Sequence 

plc6-1 genotyping 

region of 
PLC6 
gene 
surroundin
g plc6-1 
SNP  GTAAGAGAGTATGATATCTCG 

     Ggtgcaaattctttctcagagac 
PLC6p:PLC6-mNG 
cloning mNG attb5 ggggacaactttgtatacaaaagttgATGGTGAGCAAGGGCGAG 
    attb2 

ggggaccactttgtacaagaaagctgggtTTACTTGTACAGCTCGTCCA
TGCC 

  PLC6 
promoter  attb1 

ggggacaagtttgtacaaaaaagcaggctACACAAGTTTAAAGAAAAA
C 

  
PLC6 
gene 
without 
stop attb2 

ggggaccactttgtacaagaaagctgggtaTTCGAAGATGAAACGCATA
A 

PLC6p:PLC6 
cloning 

PLC6 
gene with 
stop attb2 ggggaccactttgtacaagaaagctgggtCAGTTTTTCTTCTTTCATAA 

genotyping for 
SALK_090508 
TDNA insertion 

PLC6 
genomic 
sequence  TCAGAAAAGACAAACGATCCC 

     CACAGGGACTTCGCTACAATC 

  
SALK 
TDNA 
insertion  ATTTTGCCGATTTCGGAAC 

genotyping for 
CSHL_GT4996/62
21 TDNA insertion 

PLC6 
genomic 
sequence   CTTTGGCTTGAAGATCAGGTG 

     AGATTCAAGTGATGGTGACGG   

  
CSHL 
TDNA 
insertion   ACCCGACCGGATCGTATCGGT 
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Appendix 

A Loss of Function Mutation in Protein phosphatase 1 Regulatory Subunit 

(Inhibitor of Protein-Phosphatase 1) INH3 Improves Poor hpat1/3 Fertility and PT 

Growth. 

Prior to whole-genome sequencing of BC4F2 generation suppressors from one 

mutagenized hpat1/3 family (B10-6B), tests crosses revealed that all the suppressor 

plants from this family were heterozygous for the suppression-causing mutation, and no 

homozygous BC4F2 suppressors were recovered. Additionally, the suppressed 

individuals had a proportion of shriveled seeds, suggesting that the suppression-

causing mutation was also inhibiting normal embryonic and/or seed development. 

Whole-genome sequencing identified a candidate mutation that was mapped to a G to A 

substitution in the coding sequence of INH3, which is predicted to cause an early 

truncation at the W43 position of the INH3 protein (inh3-3). After identifying this 

mutation, we discovered that another group could not recover plants that were 

homozygous for a loss of function transgene insertion mutation in INH3 (inh3-1) from 

self-fertilized INH3/inh3-1 heterozygotes, and approximately 25% of the seeds 

recovered were aborted (Takemiya et al., 2009). Approximately 25% embryos dissected 

from immature siliques of self-fertilized inh3-1 heterozygotes grew slower and arrested 

prior to reaching the heart stage- consistent with the pattern of inheritance of a 

recessive mutation. Reduced fertility was also reported for INH3 knockdown lines (by 
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RNA-interference), but the mechanism was not described. This generated two 

interesting questions: (1) how does INH3 promote proper embryonic development, and 

(2), how does loss of INH3 improve hpat1/3 pollen fertility? Here, we report of our 

findings from addressing the latter question. 

To demonstrate that inh3-3 was indeed the hpat1/3- suppressor mutation, we 

backcrossed BC4F2 suppressors to hpat1/3, allowed them to self-fertilize, and then 

genotyped the resulting BC5F2 generation. We designed dCAPS primers to detect the 

inh3-3 mutation through PCR and restriction enzyme digest, which selectively cuts the 

mutant sequence in the PCR product (Figure 1A). Because inh3-3 homozygous mutants 

are inviable on soil, we expected to observe a 1:2 ratio of WT: heterozygotes in the 

BC5F2 generation if inh3-3 did not affect transmission of hpat1/3 gametes. We 

observed a significant bias towards the presence of the mutation, indicating that inh3-3 

improves fertility of hpat1/3 gametes (Figure 1B). Plants that inherited the mutation had 

significantly higher seed counts and PT lengths (grown in vitro), indicating that improved 

PT growth is increasing seed counts in inh3-3 heterozygote plants. To corroborate 

these results, we wanted to determine if the inh3-1 knock out mutation could also 

suppress hpat1/3 pollen fertility defects. We crossed the inh3-1 mutation from Columbia 

WT into hpat1/3 and observed a significant increase in seed counts and PT lengths in 

hpat1/3; inh3-1/+ plants compared to hpat1/3 (Figure 2A, B, D, E). We performed 

reciprocal crosses with WT and hpat1/3; inh3-1/+ plants and observed a significant 

transmission bias in favor of the inh3-1 mutation through the pollen only, and no effect 

of transmission through the female, indicating that inh3-1 specifically improves poor 
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hpat1/3 PT fertility (Figure 2C). This also supports the notion that the INH3-3 mutation is 

acting as a loss of function allele.  

To learn more about inh3-3 affects PT fertility, we performed reciprocal crosses 

of inh3-3/+ plants (in the Columbia WT background) with WT. Conversely to the hpat1/3 

background, the presence of inh3-3 mutation specifically decreased transmission 

through the pollen (Figure 3C bottom). No effect on transmission was observed through 

the female tissue (Figure 3C top). Seed counts were unaffected in inh3-3/+ self-fertilized 

plants, likely due to the abundance of WT pollen still being produced (Figure 3A).  
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Appendix Figure 1. Suppression of hpat1/3 fertility defects co-segregates with inh3-3 mutation.enotyping 
of INH3. PCR products were treated with BspHI restriction enzyme and run on 2% agarose gel. Full 
length PCR product = 430 bp. PCR product with inh3-3 mutation is cleaved resulting in 297 and 133 bp 
bands. B) Segregation ratios of BC5F2 individuals. Statistics performed using chi-squared test. C) 
Average seed counts grouped by INH3 genotype. Error bars represent standard deviation. N ≥ 30 siliques 
per genotype. Statistics performed using Student’s t-test; *** indicates p-value < 0.001. D) Representative 
siliques of each INH3 genotype in the hpat1/3 genetic background cleared with 70% ethanol.      
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Appendix Figure 2. inh3-1 mutation improves transmission, pollen tube growth and seed set phenotypes 
in hpat1/3. A) Seed counts for each genotype. N ≥ 29 siliques per genotype B) Pollen tube lengths after 
2.5 hours growth in vitro; N ≥ 201 pollen tubes per genotype. C) Top- Segregation of inh3-1 in self-
fertilized progeny of hpat1/3; inh3-1 +/- parents. Bottom- Segregation of inh3-1 (TG+) in progeny of 
hpat1/3 inh3-1 +/- outcrossed as a male with WT female parent.  D) Pollen tubes imaged in (A) with DIC 
at 10x magnification; scale bar represents 100 µm. E) Siliques cleared with ethanol. 
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Appendix Figure 3. inh3-3 causes pollen-specific transmission defect in WT background. A) Seed counts 
based on each genotype. N≥ 37 per genotype. Statistics performed using Student’s t-test. D) 
Representative siliques of each genotype. C) Reciprocal crosses of inh3-3 heterozygotes with WT. 
Statistics performed using chi-squared test. 
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Conclusion 

HPATs modify extensins, and likely other cell wall-associated proteins, and loss 

of protein O-arabinosylation changes how the other components of the cell wall are 

organized, which affects the mechanical properties of the cell wall. This has a major 

impact on pollen tube growth and plant fertility, although the molecular mechanism 

through which HPATs promote proper pollen tube growth is not clear. The data 

generated in Chapter 2 created avenues to further explore this pathway, which we 

describe in Chapters 3 and 4. Furthermore, the contents/workflow of Chapter 2 

functions as a template for other researchers to use to aid in the design of their own 

genetic screens, particularly if these screens involve mutations that affect fertility and 

transmission.  

In Chapter 3, we show that hpat1/3 pollen fertility was improved by mutations that 

decreased the overall flux of components secreted into the cell wall. These hpat1/3- 

suppressor mutations strongly rescued poor pollen tube tip-growth and the disrupted 

organization of cell wall materials. These findings demonstrate that the relationship 

between protein glycosylation and cell wall structure is also regulated by the rate at 

which materials are secreted into the cell wall by the exocyst complex- which likely 

includes HPAT-modified proteins and other cargo types such as pectins and/or pectin- 

remodeling enzymes. Another important result described in Chapter 3 is the validation 

of our suppressor screen and bioinformatic analysis pipeline (Chapter 2), where we 
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confirmed that the mapped mutations were actually present in the plants’ genomes and 

performed genetic rescue experiments to confirm the identities of causal mutations for 

each hpat1/3- suppressor family.  

In Chapter 4, we characterized another suppressor mutation that similarly 

rescued poor hpat1/3 pollen tube growth and fertility. The mutation was mapped to a 

gene involved in regulating phosphoinositide (PI)- signaling and belongs to a family with 

no previously- reported function in Arabidopsis pollen tubes. We characterized the effect 

of this mutation in both hpat1/3 and wild type backgrounds and described phenotypic 

similarities and differences compared to the hpat1/3 suppressors described in Chapter 

3. How this gene regulates PI signaling, and how this activity functions to influence 

pollen tube growth, are important questions that will be addressed in the future.  

In conclusion, we have learned much more about HPATs regulate pollen tube 

growth and fertility in Arabidopsis; however, there is still much more to learn about how 

HPATs regulate the structure of the cell wall to promote proper pollen tube tip growth. 

For example, how the loss of O-arabinosylation affects extensin structure and function 

in the cell wall, and how this affects other cell wall components, are important questions 

moving forward. Additionally, what are the identities the exocyst- trafficked cargos, and 

is the exocyst- mediated secretion pathway described in Chapter 3 the only pathway 

active in pollen tubes? By addressing these questions, we will ultimately learn more 

about how the structural and mechanical properties of the cell wall are regulated and 

control plant cell growth.  
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