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Abstract 

Biotherapeutic products are lifesaving medicines for cancer, autoimmune and 

infectious diseases. In the last few years, the pharmaceutical industry has seen a 

massive spike in the development of biologics – over 2,700 biologics in development 

reported in 2018 alone. This trend fuels an ever-growing need for the development of 

new analytical methodologies to characterize the structure and function of 

biopharmaceutical products. The application of such new methodologies advances the 

understanding of their degradation mechanisms and provides useful knowledge in 

designing and meeting regulatory criteria. 

An overview of biopharmaceutical peptides, mAbs and biosimilars available on 

the market, along with their currently published analytical characterizations and typical 

instability mechanisms, are summarized in the first chapter. In the second chapter, we 

investigated the long-term stability of exenatide, a 39 amino acid GLP-1 receptor 

agonist peptide used to treat type 2 diabetes, under different experimental conditions. 

When exenatide was incubated at an elevated pH, rapid chemical and physical 

degradation occurred. Chemical degradation was characterized by a pH-dependent 

increase of deamidation impurities while physical degradation was mainly attributed to 

dimerization, aggregation and loss of α-helicity. The addition of excipients such as 

sucrose, mannitol and sorbitol showed a slight reduction of monomer loss at pH 7.5. 

In the third chapter, a comparability study between originator and biosimilar 

infliximab (Remicade® and Remsima™) was performed. Forced degradation was 
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implemented to understand whether initial minor analytical differences could be 

amplified over the course of incubation. Some minor differences were found over 

incubation, including differences of heat capacity, intrinsic fluorescence, subvisible 

particulates, deamidation tendencies and fragmentation levels. Differences were not 

determined to be statistically significant and degradation mechanisms and kinetics were 

found to be highly similar. 

In the fourth chapter, a tandem mass-spectrometry method was employed to 

detect, identify and quantify disulfide bonds and related impurities (shuffled disulfide and 

trisulfide bonds) in originator and biosimilar pars of infliximab, rituximab and 

bevacizumab. Infliximab and bevacizumab biosimilars had higher levels of shuffled and 

trisulfide bonds relative to the originators, while rituximab biosimilar and originator had 

the similar levels of impurities. The bevacizumab and rituximab pairs were than 

incubated for 4 weeks at 37ºC to examine the kinetics of physical degradation by size 

exclusion chromatography and electrophoresis gels and disulfide shuffling by tandem 

mass-spectrometry. The two mAb pairs responded differently to forced degradation. 

The rituximab biosimilar had a slightly higher initial level of aggregation over incubation, 

relative to the originator, though degradation products were low and not exacerbated 

over the 4-week incubation. In contrast, the bevacizumab biosimilar had higher initial 

levels of protein aggregates and shuffled disulfide bonds, relative to the originator 

product, but also had exacerbated extent of aggregation and disulfide shuffling over the 

incubation than rituximab. This study indicates that originator and biosimilar pairs 

respond differently to forced degradation and that tandem mass-spectrometry is a 

useful tool to track the formation of covalent aggregates. 
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Taken altogether, the thesis highlights the importance of the combination of 

classical analytical methodologies with new mass-spectrometry techniques to 

characterize instability mechanisms for peptide and mAb products subjected to forced-

degradation conditions. The application of these techniques allows researchers, 

manufacturers and regulators to explore differences and similarities between reference 

biopharmaceutical products and their biosimilar (or generic) versions.
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Chapter 1: Introduction 

 Background and Significance of the Analytical Characterization of Biologics 

Biologic product development has been a growing field with a breadth of 

therapeutic applications including, but not limited to autoimmune, cancer, hematologic, 

and infectious diseases.1–4 The massive spike in the development of biologics (over 

2700 reported in 2018) has been fueled by improvements in the understanding and 

emphasis of biologic drug efficacy and safety. These improvements have been made 

possible by recent advancements in protein analytics technologies as well as by the 

development of regulatory pathways .5–8 Biologic products are large, complex molecules 

derived from living cells that include (but are not limited to) therapeutic recombinant 

proteins, vaccines and blood components.9 As shown in Fig. 1-1, small molecules like 

acetaminophen (151.2 Da) can be thought of as bicycles relative to small biologics (e.g. 

erythropoietin, 30kDa) and large biologics (e.g. IgG,150 kDa), respectively thought of as 

cars and airplanes.10 Biologics are not only more complex in structure but are also more 

complex in their manufacturing processes. Biologic manufacturing relies on dynamic 

and environmentally sensitive living cell systems, which can pose problems such as 

high molecular heterogeneity within batches; and high potential for elicitation of 

immunogenic response in patients.11–13 For these reasons, development of methods for 

the extensive analytical characterization of biologics has been deemed necessary. This 

is especially the case with respect to the development and regulatory approval of 
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biosimilars, generic biologics that have no clinically meaningful differences from a 

previously approved biologic.14 Extensive analytical characterization is required to 

ensure similarity of characteristics that could potentially lead to alteration of a biologic’s 

safety, purity and potency.15 

The phenomenon of developing extensive analytical characterization techniques 

has grown significantly since the approval and entry of the first biosimilar into the 

European market by the European Medical Association’s (EMA) in 2016.16 The EMA 

and U.S. Food and Drug Administration (FDA) have since together approved over 75  

 biosimilars.17,18 Many companies continue to design and submit new biosimilars for 

approval in hopes that a successful drug will gain entry into a market space worth over 

$80 billion in revenue as of 2020 for the top 10 mAb and mAb-like products alone (Table 

1-1). In order to reach regulatory approval, extensive characterization of biologics and 

biosimilars must first be conducted to ensure safety, efficacy and overall “similarity”.  

Figure 1-1. Molecular weight and complexity differences between small molecules, small biologics and 
biologics, which are respectively represented as bicycles, cars and airplanes. 



3 
 
 

Fig. 1-2 visually represents the differences in development processes between 

innovator biologics, biosimilars and generic small molecules. Small molecule generics 

are passed through the abbreviated new drug application (ANDA) process, where 

approval only requires proof of matching bioequivalence and bioavailability data in 

healthy subjects.10,19,20 On the other hand, biosimilar development focuses on extensive 

analytical characterization to ensure no differences in terms of clinical efficacy or safety 

when compared with its innovator counterpart. 21–27 Not only does this increase the time 

to market but also the number of steps and money required to develop biosimilars.  

Table 1-1. Top 10 selling mAb/mAb-related products, brands, indications and 2020 sales 

Figure 1-2. Differences in the drug development processes for biologics/small molecules. 
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Analytical Characterization of Critical Quality Attributes 

Critical quality attributes (CQAs) are defined as the physical, chemical, biological, 

or microbiological properties that must be studied to ensure a desired product quality.28 

Certain CQAs must be characterized in order to claim biosimilarity. Analysis of CQAs for 

biosimilar products starts by selecting individual attributes, including molecular 

structure, mechanism of action, safety and efficacy and then defining appropriate 

analytical characterization methods for their analysis.29,30 Through various models, 

utilizing both quantitative and/or qualitative methods, each CQA is assessed for its 

relative criticality and the potential risk of impact on clinical outcomes (PK, PD, etc.).31 

 Examples of CQAs based on their criticality that are used for analytical 

biosimilarity assessment of an infliximab molecule are shown in Table 1-2 from high to 

low criticality.32,33 

Table 1-2. Examples of analytical biosimilarity assessment of infliximab CQAs, criticality and impacts. 
**Relatively assigned by each developer based on literature and experiments.10,32,33 
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 CQAs are categorized into three tiers (Table 1-3).32–34 Tier 1 (high criticality) is 

assumed to impact biological activity, PK/PD, immunogenicity, and safety. Tier 2 

(moderate criticality) can potentially impact biological activity, PK/PD, immunogenicity, 

and safety, requiring a “quality range approach”, where values must fall within a 

specified number of standard deviations from a mean (depending on the assessment). 

Tier 3 (low criticality) is assumed to have little to no impact on biological activity, PK/PD, 

immunogenicity and safety and are typically assigned and assessed both comparatively 

and qualitatively.30,35 The FDA has not officially determined a preferred approach for 

analysis of CQAs or the determination of criticality. Their previously draft guidance 

document on “statistical approaches to evaluate analytical similarity” was withdrawn due 

to unforeseen complexities.31,36–38 In contrast, the EMA does not require tier assignment 

for analytical assessments nor a specific subsequent statistical analysis method but is 

currently, in conjunction with the FDA, discussing ways to improve and define the 

analytical assessment of biosimilarity definitions.32 Examples of CQAs of analytical 

relevance that require characterization include amino acid sequences, disulfide bonds, 

carbohydrate attachments, molecular weights, extinction coefficients, and 

electrophoretic, liquid chromatographic, and spectroscopic patterns.33,39  

Table 1-3. The 3-tiered approach for biosimilar statistical quality attribute evaluation. EM: equivalence 
margin; QR: quality range; SD: standard deviation.10,32–34 



6 
 
 

 Forced Degradation Studies as a Tool to Characterize Biopharmaceuticals 

 Forced degradation studies have been used to support the drug development 

process and to evaluate manufacturability through the application of various stress 

conditions that include (but are not limited to) thermal (elevated temperature, 

freeze/thaw thermocycling), light (UV, daylight), chemical (low/high pH, metal-catalyzed 

oxidation) and physical (agitation) stresses.40,41 The objectives of these studies are to: 

(1) determine degradation pathways, (2) develop formulations, (3) develop analytical 

methods, (4) determine shelf-life, (5) mimic shipping and storage conditions (6) evaluate 

manufacturability, (7) assess CQAs and (8) determine intrinsic stability.42 Forced 

degradation through the use of stress conditions has recently been implemented during 

biosimilar comparability studies. Examples of such can be found in the literature and in 

Biologic License Application submissions, where analytical methods are used to assess 

degradation and the formation of impurities, such as those shown in  Table 1-4.10,43–47  

  

Table 1-4. Analytical methods to assess different types of degradation products.10 
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Significance of Forced Degradation Conditions 

The most common method of forced degradation is through the application of a 

thermal stress that exceeds typical and recommended storage conditions. These 

typically include storage at room temperature, 25°C, and temperatures above 35°C, and 

are commonly referred to as accelerated stability studies as specified in ICH 

guidelines.48 MAb products stressed at elevated temperatures for a shortened period of 

time above the typical storage temperature (2-8°C) can facilitate the formation of 

degradant impurities. High humidity may also be introduced in addition to thermal stress 

for drug substances stored in a solid form, including lyophilized mAbs.49,50 Freeze-thaw 

is another form of thermal stress often utilized for forced degradation studies for drug 

substances that may be exposed to multiple temperature transitions. An example 

biologic is insulin analog delivery devices that contain up to a month’s supply of 

injections that are potentially exposed to multiple transition temperatures as products 

are stored in the refrigerator but may be brought to room temperature multiple times 

during consumer handling. Freeze thaw studies also come in handy to determine the 

appropriate use of protective and stabilizing excipients in lyophilized drug products.51 

The major degradation pathway for freeze-thaw is aggregation, though precipitation and 

particle formation have been observed. To prevent this degradation, certain excipients 

can be added into the final product.52,53  

Biopharmaceuticals can also encounter physical (mechanical) stresses such as 

agitation, stirring or shaking during manufacturing, shipping and patient handling. 

Stirring, shaking, vortexing and sonication are all mechanical stresses commonly used 

to confirm a drug’s robustness and stability against agitation.51,54–58 Often, mechanical 
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stress can be found applied in combination with thermal stress, both sharing a major 

degradation pathway of aggregation. It should be noted that the underlying mechanisms 

of impurity formation may not only differ between one stress condition and the next, but 

also between two different molecules.59  

Another stress condition category called chemical stresses may occur when drug 

substances such as mAbs are exposed to low or high pH conditions during purification. 

Low pH can lead to aggregation and fragmentation that can be further exacerbated by 

the high concentration typical of mAb products, resulting in precipitation.60 High pH is 

known to drive asparagine deamidation and disulfide bond shuffling, also resulting in 

aggregation and fragmentation.61 Another chemical stress that can occur during the 

manufacturing of biologics is oxidation caused by dissolved oxygen and/or metal and 

surfactant impurity-derived free radicals.59 Hydrogen peroxide and tert-butyl hydrogen 

peroxide, in combination with or without zinc and copper metal ions, are the most widely 

used forced degradation reagents to test for oxidation.62 Peracetic acid (PAA) has been 

studied as an alternative oxidizing agent that specifically oxidizes methionine but not 

tryptophan63. Probing oxidation susceptible residues by forced oxidation is important 

since oxidation of site-specific residues (mainly methionine) can result in decreased 

drug potency when located at the site of antigen binding, or oxidation-induced 

conformational changes in the Fc domain that can lead to aggregation.60 

 Chemical and Physical Stability of mAb Therapeutics 

Chemical Stability 

Over the course of their lifetime, mAb biologics are subject to both enzymatic and 

non-enzymatic modifications that contribute to the alteration of their chemical and 
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physical stability and the formation of related impurities. These modifications are further 

separated into two categories. The first category is that of product variants, 

modifications that occur during the cell culture, extraction, and purification of the 

manufacturing process while the second category is that of product-related impurities, 

modifications that occur from storage onwards.64,65 Both categories of modifications can 

affect the final products’ stability, safety, and immunogenicity, and thus necessitate 

investigation. By applying the previously mentioned extensive analytical characterization 

techniques, abundant modifications including (but not limited to) amino acid 

modifications, charge variants and glycosylations can be identified and correlated with 

their potential to impede the approval of a final product.66–69  

The most commonly seen chemical impurities are those that form as a result of 

the modification of amino acids, including oxidation, deamidation and disulfide shuffling. 

Many of these impurities can also be classified as charge variants as modification of 

amino acids lead to changes of a molecules’ surface properties such as charge and 

hydrophobicity.70,71 Oxidation is a major chemical impurity induced by a reactive oxygen 

species (ROS) where an oxygen is inserted at an amino acid residue site. This mainly 

occurs at methionine residues though it has been observed at other amino acid 

residues including tryptophan, cysteine, histidine and lysine.72–77 When oxidation occurs 

at methionine, it  results in the formation of methionine sulfoxide (MetO) and, to a 

significantly lesser extent, the formation of an irreversible double oxidation impurity 

methionine sulfone (MetOO)(Fig. 1-3).78 Oxidation results in the disruption of the 

hydrophobic bond found in the aromatic side chains of some of the listed amino acid 

residues.  Disruption of this bond is likely to alter the molecule’s 3-D structure, exposing 
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typically buried residues and increasing the number and type of surface exposed 

hydrophobic amino acid residues.79–82 

Deamidation is another major process leading to chemical impurity, described as 

the loss of an amide group that occurs mainly at asparagine (Asn) amino acid residues 

(as shown in Fig. 1-4) and at glutamine (Gln) amino acid residues. Asn deamidation in 

peptides and proteins has been shown to be highly pH and buffer dependent. In 

general, Asn deamidation is base-catalyzed, occurring between pH 5 and pH 8. Some 

common buffers including  phosphate, tris and carbonate buffers, exhibit increased 

deamidation propensity at pH greater than 7.83,84 Asn deamidation is known to form 3 

major impurities. The first is a succinimide intermediate that forms as a result of the loss 

of the amide group. The succinimide intermediate, which then racemizes into aspartic 

acid (Asp) and isoaspartic acid (Iso-Asp) impurities that are present in either the D or L 

conformation of Iso-Asp.85 Even at pH < 5, Asn deamidation can still occur through via a 

slightly different acid-driven mechanism. This phenomenon, where the succinimide and 

Asp impurities form at lower pH values and occur increasingly when followed by Serine 

(Ser) and Histidine (His) residues.83–92  

Figure 1-3. Methionine oxidation pathway that leads to the formation of methionine sulfoxide 
(MetO), a single oxygen addition, and methionine sulfone, a double oxygen addition. 
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Gln deamidation has been shown to be barely detectable in biological products 

as a result of its approximately 100-fold slower rate of occurrence; nevertheless, it can 

still occur.86,87,93–97 N-terminal terminal pyroglutamic acid (PyroQ) formation (Fig. 1-5), 

also titled pyroE, pGlu and pyrELA, is a common chemical impurity that occurs as a 

result of removal of an amide group at N-terminal glutamine and glutamic acid amino 

acid residues. PyroQ formation has been observed in a variety of proteins, including 

mAbs and peptides both in solution and in the dry state.98–101 PyroQ formation 

generates acidic variants also through the loss of the positively charged primary 

amine.102,103Although we have mainly touched on pH dependence, deamidation relies 

on many other factors, including the primary structure of nearby amino acid residues, 

tertiary molecular structure, storage temperature, and formulation components (i.e. 

buffer strength and ionic strength).85,104,105 

Figure 1-4. Typical Asn deamidation pathway, proceeding through a succinimide intermediate, which 
undergoes isomerization, resulting in the formation of aspartic acid (Asp) and isoaspartic acid (isoAsp). 

Figure 1-5. Typical PyroQ formation pathways that occurs at glutamine and glutamic acid residues. 
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Disulfide bond related impurities also fall into the chemical impurity category 

since they yield an amino acid modification. Disulfide bonding plays a critical role in the 

structure and function of proteins as its presence is necessary for the correct folding of 

proteins during translation and is responsible for stabilization.106,107 In IgGs, at least 12 

disulfide bonds are conserved. Disulfide bonds linking the light chain with heavy chains, 

called “inter-chain” disulfide bonds, are necessary to conserve quaternary structure, 

while bonds found within each sub-domain component, called “intra-chain” disulfide 

bonds, are necessary for stability.108 The heterogeneity of recombinant mAb disulfide 

bonding has been previously reported.102,109,110 Disulfide bond related impurities, 

including incorrect disulfide bonding, also known as disulfide shuffling, occurs when 

biologics are exposed to environmental stresses during downstream processing 

steps.111,112 Disulfide bonding is the exchange of a covalent bond location between the 

sulfur group of two cysteines and commonly occurs when the sulfur group of a free thiol 

attacks an existing disulfide bond, hence shuffling its location. Disulfide shuffling can 

occur either intra-molecularly, within a molecule, or inter-molecularly, between two 

molecules (Fig. 1-6). Free thiols and/or high pH conditions are implicated to be the main 

culprits of disulfide shuffling induction.113–116 Trisulfide bonding, whereby a third sulfur is 

inserted into an existing disulfide bond, is another chemical impurity that arises from the 

use of H2S during cell culture.117 It is a rare modification that is not currently implicated 

to alter mAb function but may be of use as an indicator of variations of manufacturing 

process controls.118,119 
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In summary, oxidation has been shown to induce the formation of aggregate 

impurities and the loss of function of various proteins. 59,120–125 For IgG1 and IgG2, 

several studies have reported that methionine (Met) oxidation in the Fc domain is 

related to weakened neonatal Fc receptor (FcRn) binding, which is a function related to 

IgG recycling and transcytosis.126 Due to the proximity of Met residues to the FcRn 

binding interface, oxidation can disrupt antibody conformation and the oligomerization of 

IgG, leading to decreased C1q binding and CDC activity.127–130 Deamidation is a main 

cause of chemical degradation and may introduce a local charge-related structure 

distortion.94,131 It has been reported that deamidation at the Asn30 location in the light 

chains of Herceptin® (the trastuzumab originator) showed a reduction of potency by 

70%, while deamidation at the Asn55 residue showed a 14-fold decrease in antigen 

binding affinity.94,97 Furthermore, Iso-Asp is a non-natural amino acid residue and 

deamidation induced impurity which means it is potentially immunogenic.132 It has been 

shown that the formation of pGlu impurities do not have significant clinical impact, but 

need to be monitored and identified as indicators of the introduction of heterogeneous 

species that may reflect a lack of manufacturing process control.133–136 One example of 

how modifications of disulfide bonds and the formation of related impurities impact 

Figure 1-6. Intra- and inter-molecular disulfide shuffling that occurs (A) between a free thiol and an 
existing disulfide bond within a molecule or (B) between two molecules. Here, free thiols are shown as 
thiolate anions, which commonly occur at elevated pH. Figure adapted with permission from [113]. 
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molecular function has been evaluated in originator and biosimilar etanercept, an IgG-

like TNF-α inhibitor. Etanercept has a complex disulfide bonding pattern containing 29 

disulfide bridges throughout its structure. Various shuffled disulfide bond variants were 

investigated, whereby an increase of the percentage of samples with incorrect disulfide 

bonding at the 78-88 location were shown to be correlated with a potency loss (Fig. 1-

7).137–139  

Analytical characterization methods of chemical impurities are commonly liquid 

chromatography (LC) based and vary based on the desired impurities of interest. The 

most widely used analytical method for characterization of large proteins is digestion 

and analysis by LC-MS or MS/MS.94,140–143 These techniques have been implemented in 

comparability studies between innovator and biosimilar mAb pairs. Many additional 

methods have been used orthogonally as method-to-method variability has been 

observed for different techniques.144,145  

Other desired attributes of interest that result from chemical impurity formation 

include the formation of charge variants. These are commonly characterized by ion 

exchange chromatography (IEX), which separates proteins according to their overall net 

surface charge and can even differentiate isoforms that have single charge 

differences.43,44,46,47,146–149 To further identify the nature of each peak separated by IEX, 

Figure 1-7. (A) Correlation of % potency (TNF-α neutralization) with % incorrect disulfide bonding at 
C78-C88 for etanercept. (B) Etanercept structures with correct/incorrect disulfide bonding.137 
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subsequent orthogonal MS analysis is necessary. Proteins with high isoelectric points 

(pI), such as mAbs, are generally separated by cation exchange chromatography 

(CEX).147,150–152 Further details on mAb impurities differentiated by IEX can be found in 

the literature. CE-based methods in combination with MS can provide more rapid 

analyses leading to the use of small amounts of samples and reagents.153 

To characterize disulfide bonding for mAbs, analysis by RP-LC-MS/MS is 

currently regarded as the standard method. In this set of techniques, peptide fragments 

are generated using enzymatic digestion (such as trypsin) then separated by RP-LC 

and analyzed by MS/MS.154–156 This technique requires very low sample volume and 

outputs very large amounts of data, which requires the use of an analysis software that 

allows for the identification of disulfide bonds and their related impurities. As free thiols 

are implicated as the main factor for disulfide shuffling, the levels of surface exposed 

free thiols can be measured using Ellman’s reagent, assuming large amounts of free 

thiols present.44,157 Other techniques to analyze free thiols include the use of maleimide, 

which conjugates to free thiols and allows for analysis by RP-LC, as conjugated 

maleimide will form a more hydrophilic mAb species. Studies have been performed to 

optimize the combination of column conditions and maleimide reagents in order to 

improve species peak resolutions.158 
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Physical Stability 

The physical stability of mAbs, and therefore prevalent physical degradation 

pathways, are highly related to the formation of chemical impurities. As previously 

mentioned, chemical modifications can result in altered surface properties, including 

changes of charge and hydrophobicity. It is well understood that changes in surface 

properties are related to the formation of physical impurities, which include structural 

modifications and the formation of aggregate and fragment impurities. MAb aggregates 

fall under the category called higher order structures (HOS), which covers impurities 

ranging from  dimers to high molecular weight species.159 These differences in types of 

fragment and aggregate impurities can reflect the use of various forced degradation 

stress conditions as one condition may induce physical impurities differently than the 

next.59 Fig. 1-8 shows microscopy images of IgGs that were subjected to various stress 

conditions, where different types of aggregation were shown to occur under various 

stress conditions.160 These differences can also potentially reflect underlying changes of 

secondary, tertiary and quaternary structures that can be analytically characterized 

through the application of orthogonal methods.161 

Figure 1-8. Atomic Force Microscopy (AFM) images of IgG when subject to freeze-thaw, pH, heat, shake 
and oxidation stress, resulting in various aggregate types. Figure adapted with permission from [160]. 
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Another major challenge in producing biologics is their natural propensity to form 

complex aggregates.162 These aggregates vary in size (nm-μm), structure (native/non-

native), morphology (spherical/strand-like) aggregate type (fibrillar/amorphous) and 

reversibility.163 Not only does the presence of protein aggregates compromise 

therapeutic efficacy and bioavailability, it may also elicit immune responses to the 

protein drug that are measured by the formation of anti-drug antibodies (ADAs).164–168 

The elicited immune response can result from any combination of changes in solubility, 

viscosity  and exposure of neo-epitopes that cause a protein to be recognized as foreign 

by the immune system.165,169,170 In the case of the infliximab biosimilar, there have been 

reports that aggregates might affect TNF-α binding, which is a critical mechanism of 

action. Aggregates have also been linked to infliximab immunogenicity.43 However, 

there is no single method that can assess a wide size range of aggregates. Therefore, 

biosimilar developers should analyze aggregates by employing several orthogonal 

methods (Fig. 1-9) for cross-validation to ensure the presence of comparable or lower 

levels of aggregates with the reference throughout the product’s life cycle.  

Figure 1-9. Size-dependent analysis methods of various aggregates and particle sizes from monomer to 
visible aggregates.10 
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Among the diverse methods of aggregate determination, size exclusion 

chromatography (SEC) is most commonly used for aggregate quantification and size 

estimation. SEC is based on the interaction of molecules with a column’s bead pores, 

which separates molecules from large to small depending on their size in solution.163 In 

addition, SEC can be combined with UV, fluorescence, multi-angle laser light scattering 

(MALS) and other detectors, though SEC-MALS is highly valuable, providing increased 

accuracy by acquiring absolute molar mass for each eluted fraction.171 However, it has 

been reported that SEC can incorrectly detect aggregates due to either unwanted 

secondary interactions with the stationary phase (adsorption), removal of large insoluble 

aggregates during sample preparation, or dissociation of reversible aggregates as a 

result of dilution.172–174 Further details of SEC and mAb aggregates can be found in the 

literature. Another alternative technique is asymmetric flow field-flow fraction (AF4), 

which determines particle size as a function of diffusion coefficient through the use of 

laminar and a perpendicular cross-flows across two different plates.175 AF4 can be 

combined with various detection methods such as UV, MALS and refractive-index.176 

However, method validation has been shown to be difficult.173  Analytical 

ultracentrifugation (AUC) is another commonly used method for size detection and can 

be utilized by sedimentation velocity (SV), a hydrodynamic approach, and 

sedimentation equilibrium (SE), a thermodynamic approach. In general, AUC separates 

particles of various shapes and sizes by centrifugal force and by detection with attached 

optical systems (absorbance/interference/fluorescence). The biggest advantage of AUC 

is the ability to directly measure aggregates in various native solutions over a wide 
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range of sample concentrations.177 While useful for absolute size measurements, AUC 

is low-throughput requiring high quality instrumentation and complicated analysis.163,178  

In terms of particle analysis, dynamic light scattering (DLS) and nanoparticle 

tracking analysis (NTA) are often used. Both techniques generate data as a function of 

particle diffusion coefficients based on Brownian motion and light scattering. DLS is a 

useful tool for quickly assessing size, providing a wider range of particle size and 

sample concentrations than NTA. DLS requires low sample volume (μL) where samples 

can be recollected for further analyses. DLS’s major limitation is that the reported 

intensity distribution of particle sizes is sensitive to the presence of large particle 

contaminants, which may dominate scattering signals and result in misrepresented 

particle size distributions.163,179,180 NTA tracks and visualizes movement of particles 

using a microscope coupled to a camera system and provides size distribution as a 

function of number distribution. Compared to DLS, NTA generates information on 

particle concentration in solution with a better resolution on samples with polydisperse 

size distribution. However, the reproducibility of NTA is low, often requires sample 

dilution for analysis, and is not useful for molecules that are too small, which constitutes 

several limiting factors when compared to DLS.179,181,182 

For the determination of secondary structure, Fourier transform infrared 

spectroscopy (FTIR), far-UV circular dichroism (CD), x-ray crystallography and nuclear 

magnetic resonance (NMR) are typically used, with FTIR and CD being most commonly 

employed.136,183–189 FTIR spectroscopy can be used regardless of the physical sample 

state with no limitation on protein size. It requires a relatively small amount of sample 

(10-100 µg) and provides  a high signal to noise ratio, allowing for rapid data collection 
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(10 ms).190,191 CD provides data in a relatively short time period with small amounts of 

sample (<20 µg), but requires aqueous samples. UV CD spectra are derived from the 

peptide bond region (<240 nm), therefore allowing conformational information to be 

obtained while secondary structure is estimated using various algorithms.73,74 These 

techniques are prevalent in literature for proteins that undergo changes of secondary 

structure such as the detection of β-fibrillation, a common physical impurity also formed 

in insulin and insulin analogs. Fig. 1-10 shows an example CD spectra for IgGs that 

were subjected to various stress conditions.160 NMR can be used to generate useful 

protein secondary structural data but requires high sample concentration and is time 

consuming. 1-D NMR is typically used more for smaller biopharmaceuticals and can be 

used as a fingerprint comparison to show the structural similarity between innovator and 

biosimilar products.139,193,194  

  

Figure 1-10. Far-UV CD spectra for GLP-1 subject to freeze-thaw, pH, heat, shake and oxidation stress. 
Figure adapted with permission from [160]. 
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Applications of the following analytical techniques are shown in Fig. 1-11. 

Tertiary structure can be determined through near-UV CD, differential scanning 

calorimetry (DSC), 2D-NMR and mass spectrometry techniques such as hydrogen 

deuterium exchange (HDX-MS) and ion mobility (IM-MS). Near-UV CD (250-320 nm) 

can detect differences in the tertiary structural environment of disulfide bonds and highly 

environmentally sensitive aromatic residues.195–197 DSC is widely used to evaluate 

thermal and conformational stability during processing and manufacturing.198–200 Highly 

similar thermograms and Tms denote the similarity of tertiary structures as a result of 

thermal stability. Recently, 2D NMR has been utilized to provide sensitive, robust and 

precise structural assessment of biologics, but requires highly concentrated samples 

and long acquisition times.201 HDX-MS can monitor conformational protein dynamics, 

relying on the deuteration of labile hydrogen in amide bonds along the polypeptide 

backbone. These subtle HOS differences are detected by LC-MS analysis and 

quantified based on degrees and rates of deuterium exchange.54,55,64,97 The advantages 

of HDX-MS are its analytical capacities to measure exchange in complex buffer systems 

and large proteins, as well as its minimal sample requirement (5-100 pmol).203 IM-MS is 

a rapid (msec) and sensitive (nmol) emerging technique for generating HOS biologic 

fingerprints.204–207 In addition to IM-MS, collision induced unfolding (CIU) has been 

applied for structural analysis, yielding distinct protein unfolding patterns as a function of 

collisional heat, while resolving small variations in protein structures.204,208–210 Recently, 

CIUs were applied in an infliximab comparability study that showed comparable 

quantitative unfolding patterns.136,202,211,212 
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Impurities and Immunogenicity 

 Immunogenicity is the elicitation of an immune response by a patient to a 

therapeutic protein product. Immunogenic responses can range from no apparent 

clinical manifestations to life-threatening ones.213 Immunogenic response to the biologic 

erythropoietin is an example of a life-threatening immunogenic response whereby 

neutralizing anti-erythropoietin antibodies induce pure red-cell aplasia, resulting in fatal 

anemia.214 Currently, immunogenic responses are characterized by the formation of 

binding to neutralizing anti-drug antibodies (ADAs). (Fig. 1-12).213,215  

B
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Figure 1-11. Methods that compare higher order structure of innovator/biosimilar infliximab. (A) far-UV 
CD. MRE: Molar Residue Ellipticity; RMP: Reference Medicinal Product.136 (B) DSC thermal overlay 
plot.136 (D) HDX-MS butterfly plots.202 (E) deuterium uptake difference plots.202 (F) IM-MS collision 
induced unfolding (CIU) fingerprints, showing averages (left) and Standard Deviations (right) of innovator 
(top) and biosimilar (bottom).211 Figures adapted with permission. 

Figure 1-12. Types of ADAs from “binding” to neutralizing to cross-reactive neutralizing, where frequency 
is inversely related to clinical impact. Figure adapted with permission from [215]. 
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While long-term, adaptive immune response is the current focus for determining 

immunogenicity, the innate immune response has recently generated interest as well. 

People are studying the innate immune response  to determine initial immune response 

mechanisms that may then lead to downstream elicitation of an adaptive immune 

response.170 Fig. 1-13 shows the exposure of protein aggregates to an antigen 

presenting cell (APC), which can trigger immune responses through various kinds of 

pathways, including interactions with Fcγ, Toll-like and T-cell receptors. Following this 

interaction, the protein can then undergo receptor mediated phagocytosis, lysosomal 

digestion and presenting cell maturation.170,216  

APCs being studied for maturation in the literature mainly include dendritic cells 

and monocytes, though THP-1 is being used as a robust in vitro alternative that does 

not require derivatization from a human source.217  Following APC maturation, antigen 

peptide sequences can be investigated by the MHC associated peptide proteomics 

(MAPPs) assay, which allows for further elucidation of underlying immune response 

elicitation.218 Another common technique used to investigate immunogenicity is through 

Figure 1-13. In vitro interactions of protein aggregates with antigen presenting cells (APCs) that can 
potentially trigger an immune response through different kinds of receptors - FcγRs, TLRs and/or CRs. In 
addition, following receptor-mediated phagocytosis of aggregates, lysosome digested peptides are 
presented on the cell surface, resulting in naïve T-cell stimulation. Figure adapted with permission from 
[170]. 
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a whole blood assay, whereby a multiplex cytokine assay is used to determine cytokine 

responses in whole blood that has been taken from human patients.219 

As previously mentioned, various impurities have been suggested to be related 

to the elicitation of immunogenic response; though correlation between individual 

components and responses are highly complex and molecule dependent. 220  Several 

papers have been published investigating this relationship using forced degradation and 

the application of various stress conditions. It has been shown that different stress 

conditions applied to an IgG1 resulted in different cytokine responses, though it should 

be noted that these trends may not translate from one mAb to the next (Fig. 1-14).221 

Figure 1-14. Cytokine response profiles for IgG1subjected to thermal, pH, stir and syringe stress. Figure 
adapted with permission from [221]. 
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 Chemical and Physical Stability of Peptide Therapeutics 

Peptides are located in a unique space between small molecules and small 

biologics and can be thought of as mopeds relative to small molecules and large 

biologics (Fig. 1-15). Peptides can be manufactured synthetically, produced by 

recombinant technology, or purified from a biological source.222 Peptides generally 

serve as replacement therapies in cases of the dysregulation of the production or 

secretion of endogenous peptides and hormones. They have access to unique targets 

inaccessible by mAbs and small molecule products.223 The top 10 non-insulin peptide 

drug products are shown in Table 1-5. As peptides are composed of an underlying 

amino acid sequence, characterization of their chemical and physical stability is highly 

translatable from mAb characterization.  

Figure 1-15 Molecular weight and complexity differences between small molecules, 
peptides, small biologics and biologics, respectively represented as bicycles, mopeds, cars 
and airplanes. 
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Table 1-5. Top-10 marketed peptide products (2019) by brand, manufacturer, sales revenue, molecule class, synthetic/biologic nature, presence 
of a generic/biosimilar, estimated patent expiration date and indication.   
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Like mAb products, oxidation and deamidation are also the most prevalent 

peptide chemical impurities.224,225 While the impact that chemical impurities have on 

mAb function depends on the location of the modification, the shortened sequence of 

peptides would imply that any chemical modification could significantly impact its 

function. In addition to the globular structure of proteins like IgG limits solvent 

accessibility because of imparted structural rigidity. Peptides, on the other hand, 

commonly lack quaternary structure and therefore steric hindrances, typically allowing 

for greater molecular flexibility. This flexibility makes them more susceptible to 

instability, as is the case for deamidation and oxidation chemical impurity formation in 

peptides.92,113,226–229 While this molecular flexibility can contribute to the presence of 

certain chemical degradation hotspots (i.e. NG amino acid combinations), such flexibility 

is also a consideration that must be accounted for when it comes to the conservation of 

receptor binding.222 As such, it is necessary to investigate a peptide’s chemical stability, 

including the formation of chemical impurities such as deamidation and oxidation, and 

its relationship with a peptide’s physical stability and function. Peptides, in comparison 

to large proteins that have highly defined quaternary structures, are generally 

understood to be more complex in nature and are known to have a distribution of 

conformational native states, sometimes in equilibrium between monomer, dimer and 

hexamer as is the case for native insulin.230 These native states are typically influenced 

by the secondary structure of each peptide that arises from the primary amino acid 

sequences. Shifts in secondary structure can arise from either one or a combination of 

α-helical, β-sheet and unordered secondary structural portions.  Chemical impurities 

can then propagate the shifting of secondary structures through the formation of 
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complex physical impurities, including amorphous aggregation and β-sheet 

fibrillation.231,232 β-sheet fibrillation has been well studied in insulin and insulin analogs 

and is a well-known physical impurity formed in peptides.233 

 Deamidation has been determined as critical for insulin and insulin analogs.234 

Deamidation in peptides occurs as a result of many factors including pH, temperature, 

buffer species, ionic strength, structure and neighboring amino acid residues.87,235,236 

Asn followed by a glycine is a well-known deamidation hotspot in peptides and has 

been determined to undergo the most rapid rate of deamidation when compared to 

other peptide sequences.237 Deamidation of insulin has been shown to affect the tertiary 

structure via exposure of its hydrophobic core.238 Deamidation has also been shown to 

induce aggregation in the peptides such as amylin and β-B1-crystallin and has been 

established to correlate with bovine growth hormone aggregation.239–241 Oxidation in 

peptides has been shown to have mixed effects on aggregation, especially in terms of 

the type of aggregation that occurs (fibrillar or amorphous).242–244 PyroQ formation has 

been shown to occur at N-terminal glutamine and glutamic acid amino acid residues in 

peptides in both solution and solid states though its impact is complex and molecule-

dependent.99–101. Several peptides that are prone to PyroQ formation have been 

designed and modified to initially have pyroGlu substituted at these N-terminal 

locations. This design method is meant to prevent degradation and the potential loss of 

binding activity and efficacy.101 The complex nature of peptide aggregation has been 

shown for GLP-1, exhibiting the ability to form amorphous aggregates and β-sheet 

fibrils. These different aggregation types were formed as a result of many factors 

including pH, buffer, buffer strength and peptide concentration.245 
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 While there are many analytical techniques that overlap between proteins and 

peptides for the determination of chemical and physical stability, the small nature of 

peptides does allow for the use of certain techniques that are not specified for larger 

proteins. Whereas large proteins like mAbs require digestion into small pieces for the 

analysis of chemical impurities, small peptides subject to analysis can be analyzed 

through direct application onto MS. LC interfaced with a time of flight (ToF) mass 

spectrometer allows for the identification of small mass changes that can be translated 

into amino acid modifications. Another commonly used technique for the detection and 

identification of physical impurities-aggregation or fragmentation is SEC. Aggregates 

can be further visualized with the use of microscopy techniques like TEM and by 

turbidity studies.233 In terms of the formation of physical impurities, secondary structure 

shifting is analyzed by CD. Since peptides are well known for their tertiary structures, 

the use of peptide absorbance techniques and tagging with fluorescent dyes have been 

implemented to detect various changes of structure. These techniques commonly 

include intrinsic fluorescence, whereby tertiary structure is detected through the solvent 

exposure of a tryptophan amino acid and thioflavin T (ThT), which binds to β-sheets and 

fluoresces to indicate β-fibrillation. Meanwhile, extrinsic fluorescent are of importance, 

such asanilinonaphthalene-8-sulfonic acid (ANS) that can bind to hydrophobic pockets 

that are commonly exposed with the breakdown of tertiary structure.233,246–248 Another 

technique often used for analysis of amyloid fibrillation for insulin and insulin analogs is 

Fourier transform IR spectroscopy.249 Other techniques such as HDX-MS have been 

used to investigate the amino acids responsible for the formation and interaction of β-

sheet fibrils in glucagon.250



30 
 
 

 Background: GLP-1 Receptor Agonists 

Glucagon like peptide-1 receptor agonists (GLP-1 RAs) are a class of peptide 

drug products that are used to treat type II diabetes mellitus patients that have 

developed an insulin resistance. These agonists were developed as safer, and more 

effective, glucose-dependent alternatives to previously used diabetes therapies, 

including metformin, insulins, sulfonylureas and thiazolidinediones, that have previously 

been associated with poor glucose homeostasis, weight gain and hypoglycemic 

events.251–253  

GLP-1 RAs are also known as mimetics of incretin, an endogenous hormone 

produced by intestinal enteroendocrine L-cells following nutrient ingestion, at high 

glucose levels.254 This class of therapies interacts with GLP-1 receptors (GLP-1Rs) that 

are located in various organs, including the pancreas, gastrointestinal tract, brain, heart 

and kidneys. Upon receptor binding, a multi-faceted physiological response is elicited 

that goes beyond the simple secretion of insulin.255,256 Physiological responses include 

activating the nervous system, decreasing body weight through the enhancement of 

satiety and energy uptake, slowing  gastric emptying, regulating glucagon secretion, 

and inducing β-cell proliferation and enhancing their resistance to apoptosis. The 

induction of apoptosis resistant β-cells is especially important as it has been 

hypothesized  to prevent further loss of endocrine pancreatic function.254,257–259 

Additionally, recent literature has delved into the neuroprotective application of GLP-1 

RAs in brain diseases like Parkinson’s.260–262  



31 
 
 

GLP-1 is impractical for therapeutic use itself as it rapidly degraded by the 

peptidase NEP 24.11 and by DPP4 at the Alanine 8 amino acid residue. This 

degradation means that in vivo GLP-1 only has a half-life of approximately 2.4 minutes. 

263 As part of the effort to design and develop therapies with improved longer half-lives, 

Alanine 8 is typically substituted in GLP-1 RAs.263 Not only does improving half-life allow 

for greater glucose control, but it also eases the use and improves the compliance for 

the administration of these therapies. The different GLP-1 RAs are shown in Fig. 1-16 

with the details of modification types and half-lives shown in Table 1-6.263 GLP-1 RAs 

include synthetically manufactured molecules exenatide and lixisenatide and molecules 

derived from a biologic source, including dulaglutide, liraglutide, albiglutide and 

semaglutide. 

Figure 1-16. Peptide sequences and molecular structures of FDA approved GLP-1RA, including GLP-1, 
exenatide, liraglutide, lixisenatide, semaglutide, dulaglutide and albiglutide. Yellow: key amino acids 
related to potency; Red: substituted amino acids; Blue: spacers; Green: IgG. Figure adapted with 
permission from [263]. 
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GLP-1Rs are part of the G-protein coupled receptor (GPCR) super ‘family B’, 

’secretin receptor-like family’ that includes receptors composed of an N-terminal domain 

of 100-150 residues connected to an integral membrane core domain that is typically 

GPCR-associated.264 GLP-1Rs, first cloned from rat pancreatic islets and then humans, 

show similarities to secretin, parathyroid hormone and calcitonin receptors.265–267 

Ligand-receptor binding has been proposed to occur through what is called the ‘two-

domain model’, where a ligand’s C-terminal helical region enables N-terminal interaction 

with the receptor’s core domain.264,268 Various GLP-1 like molecules, including several 

GLP-1 truncations, were studied in view of this “two-domain model”. These studies 

showed that the N-terminal residue was required to be a histidine in order to enable 

such interaction with the core domain. GLP-1 C-terminal variants that were truncated at 

the 6th/8th amino acid showed reduction of activity by approximately 300 fold, whereas 

cleavage of the single C-terminal residue only reduced activity up to 10 fold.269–271 

Micelle-forming lipids sodium dodecyl sulfate (SDS) and dodecyl phosphocholine (DPC) 

Table 1-6. GLP-1RAs, modification types, half-lives and dosing regimens. 
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are commonly used to mimic membrane- or receptor-bound states, as most membrane 

binding peptides are unstructured in the monomeric solution state.272–275 Use of these 

micelle-forming lipids allows for GLP-1 variants to exist in a preferred, analysis friendly, 

conformational state .272–275 Altogether, these results show that modifications and 

conjugations must be designed with receptor binding in mind. Currently marketed GLP-

1 products are listed below in table 1-7 and includes several products that are co-

administered with insulin analogs. 

 

 

  

Table 1-7. GLP-1RA products, manufacturers, revenues (2019*), Y/Y % change, synthetic/biologic nature 
and estimated patent expiration date. *: 2018 revenue. 
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 Exenatide: An Approved GLP-1 Receptor Agonist 

Exenatide is a synthetic GLP-1 agonist that was initially derived from the venom 

of the Gila Monster (Heloderma Suspectum), a lizard that is native to the southwestern 

United States. Exenatide, also referred to as exendin-4 (Ex4), differs from exendin-3 

(Ex3) at two amino acid residues. Switching Ser2-Asp3 (Ex3) to  Gly2-Glu3 (Ex4) 

results in distinct bioactivities and greatly eliminates the vasodilation side effect 

exhibited in Ex3.276 Aside from amino acid switching, truncation of amino acids has also 

been studied in Ex4 and Ex3. It was found that truncation of the first 8 residues of Ex3 

yielded an antagonist, while similar truncation of the first two residues of Ex4 also 

rendered it an antagonist. Clearly, amino acid modifications of Ex3 and Ex4 are 

important and are worth further exploration, showing the importance and drastic effects 

of amino acid modifications.277–280 

Exenatide is the active pharmaceutical ingredient (API) found in AstraZeneca’s 

marketed product Byetta®, a solution formulation for twice-daily injection. Byetta® has 

since been superseded by the more successful Bydureon®, which contains exenatide 

encapsulated in poly(lactide-co-glycolic acid) (PLGA) microspheres for extended 

release, allowing it to be  injected weekly.281,282 Exenatide’s isoelectric point (pI) has 

been reported to be approximately 4.86 and, therefore, both Byetta® and Bydureon® are 

formulated at pH 4.5. Byetta® is formulated with mannitol and m-cresol excipients and is 

administered subcutaneously from a pen that contains a month’s worth of injections 

(60). Bydureon® microspheres are encapsulated with sucrose, where each pen contains 

a single dose containing a lyophilized powder (formulated with sucrose) that is 

resuspended prior to injection.283 While many current GLP-1RAs are dosed weekly, 
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ongoing research has been focusing on potential formulation approaches to develop 

exenatide into a monthly injection.263   

The amino acid sequence of exenatide is shown below with the locations of 

exenatide’s most likely chemical degradation sites highlighted in red, Asn28 followed by 

Gly29, a deamidation hotspot, as well as Met10 and Trp25, oxidation hotspots. Other 

potential chemical degradation sites include Asp (D) and Ser (S) hydrolysis and Gly (G), 

which undergoes formation to pyroglutamic acid (PyroQ). 

 

HGEGTFTSDLSKQMEEEAVRLFIEWLKNGGPSSGAPPPS 

 

 The chemical stability of exenatide and the impact of its chemical impurities on 

GLP-1R has been previously studied in relation to a novel hydrogel technology, 

whereby exenatide was covalently attached to hydrogel microspheres.284 Exenatide was 

analyzed for the formation of chemical impurities after 8 (red), 28 (blue) and 56 days 

(green) of incubation at 37°C (Fig. 1-17).  

Figure 1-17 Chemical impurity formation of exenatide released from hydrogels over 56 days of incubation 
at 37°C. Black: 0 days; Red: 8 days; Blue: 28 days; Green: 56 days. Figure adapted with permission from 
[284]. 
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They found that major impurity for all time points was deamidation at Asn28, 

which appears at a retention volume of 10.8 mL.284 They showed that deamidation 

resulted in the formation of L-Asp, L-isoAsp and D-isoAsp impurities, which all showed 

decreased GLP-1R binding affinity in terms of increased EC50 relative to day 0.284 In 

attempt to avoid these deamidation impurities, the deamidation prone Asn28 was 

substituted with Gln28, where they were able to show reduced formation of the 

deamidation impurity while simultaneously maintaining similar activity and PK profiles to 

those seen without Asn28 modification.284 The lack of oxidation observed in this study 

implies that different formulation strategies can have different chemical instability 

pathways and tendencies when compared to exenatide alone in aqueous solution, 

where we observed similar trends for deamidation at pH 6.5 and above, although we 

observed the formation of oxidation impurities. 

Exenatide’s secondary structure is composed of the following: 1) an N-terminal 

strand from amino acids 1 - 8, with amino acids 1-6 being responsible for receptor 

binding; 2) an α-helical structure making up the majority of the structure from amino 

acids 9-27; 3) a C-terminal Trp cage that forms via the interaction between the side 

chains of Trp25 and the several proline residues (28 - 39).285 The α-helix has been 

suggested to be stabilized through salt bridging of positive and negative side chains and 

polar H-bonding, which can be disrupted by drastic changes of pH. The C-terminal Trp 

cage interaction has also been suggested to stabilize tertiary conformations of small 

proteins, hairpin peptides and peptide protein complexes.286–289 The physical stability of 

the Trp-cage miniprotein and other modified Trp-cage miniproteins have been 

independently investigated and was found to have a melting temperature of 
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approximately 42°C at pH 7, though in isolation. The cage was not found to interact with 

exenatide’s N-terminus, hence the reason it’s stability was investigated in isolation.290,291  

Concentration-dependent differences in secondary structure between exenatide 

samples at pH 4.4 were observed at 2°C for 2 (green), 40 (blue), 240 (red) and 600 μM 

(yellow) concentrations (Fig. 1-18). Similar trends were observed over CD melts at 

peptide concentrations that were between 2 (~0.0084 mg/mL) and 240 μM (1 mg/mL) 

when ramping from 10 to 90°C.285 It was concluded that exenatide is only monomeric 

with a partially formed Trp cage at concentrations < 10 μM., Samples at higher 

concentrations participate in aggregation via helix-helix interactions at residues 11-

26.285 The presence of helix-helix interactions and concentration dependence aligns 

with the general understanding that peptides can exist in multiple conformational states.  

In the presence of fluoro-alcohols,  exenatide has been shown to induce an 

increasingly helical tertiary structure with fully folded Trp-cage domains.285,292 This is 

contrary to the typical behavior of fluoro-alcohols, which entails β-sheet formation of 

Figure 1-18. Far-UV CD spectra of exenatide concentrations from 2 to 600 μM. Green: 2 μM; Purple: 40 
μM; Red: 240 μM; Yellow: 600 μM. Figure adapted with permission from [285]. 
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proteins to enhance stabilization through “solvophobic effects”.275,285,293 SDS and DPC 

micelles were used to investigate receptor binding and its effect on tertiary structure for 

a truncated 26-residue analog. It was observed that DPC micelle binding resulted in a 

loss of tertiary structure, likely attributed to the favorable interactions between Trp and 

the PC head groups. The Trp cage also showed SDS micelle binding, a phenomenon 

that has been previously reported in other Trp-containing peptides.272–274,287 While this 

does not elucidate the exact role of the Trp cage, it remains useful information for the 

design of receptor binding models. Several conformational isomers and their suggested 

role in aggregation are shown in Fig. 1-19. 

 

  

Figure 1-19. Potential conformational isomers and oligomeric species that could contribute to the solvent-
dependent equilibrium in exenatide at different concentrations as a function of Trp-cage unfolding. Figure 
adapted with permission from [285]. 



 
 

39 

 Infliximab: An Anti-TNF-α mAb 

There are a handful of biological products on the market that target TNF-α 

(commonly known as TNF-α inhibitors) to treat various autoimmune diseases, including 

rheumatoid arthritis (RA), psoriasis, ankylosing spondylitis, ulcerative colitis (UC) and 

Crohn’s disease (CD). Table 1-8 shows a list of products in the TNF-α inhibitor class, as 

well as their molecular name and type and whether a biosimilar version is available. 

While these molecules share overlapping mechanisms of action, there are a few 

important differences that must be identified in terms of molecule type, route of 

administration and potential for immunogenicity.  

  
Table 1-8. mAb products, US/EU biosimilar presence, manufacturer and mAb type. 
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 Amongst the listed anti TNF-α molecules, etanercept and infliximab stand out as 

outliers. Enbrel is a mAb-like biologic that is comprised of a TNF-α receptor 2 protein 

coupled to an IgG1-derived Fc domain. Without the Fab domain, etanercept lacks the 

ability to be approved for multiple inflammatory indications, such as Crohn’s and 

ulcerative colitis. Another difference between listed products is the route of 

administration. Infliximab products are administered intravenously by infusion while all 

other products are administered subcutaneously. This infusion is given over the course 

of 2 hours, which has been the preferred option for patients that consider fear of 

needles as the most influential factor of choosing a therapy. 

Additionally, molecules vary in their inherent potential for immunogenicity 

depending on their manufacturing source (cell lines). Chimeric molecules, which have 

mouse derived variable domains, have a higher immunogenicity potential compared to 

humanized and fully human molecules (Fig. 1-20).294 Infliximab is chimeric and 

certolizumab is humanized (mouse derived CDR) while adalimumab and golimumab are 

fully human.  

A review (Fig. 1-21) compared the immunogenic response for several of these 

molecules in patients with CD and UC.295 The authors observed that infliximab exhibited 

the greatest potential for immunogenic response compared to humanized and fully 

Figure 1-20 Sources of mAb manufacturing, including mouse derived, chimeric, humanized and human. 
Shown in the order of highest to lowest potential to elicit immunogenic response. Figure adapted with 
permission from [294]. 
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humanized molecules (though immunogenic responses were highly variable).295 It is 

generally understood that these molecules all have the potential to elicit an 

immunogenic response upon administration, but identification of key modulators 

resulting in immunogenicity remains complicated and full of confounding factors. 

Studies have been performed whereby the forced degradation of mAbs has shown that 

different stress types can lead to variations in immunogenic responses, thus affirming 

the complicated nature of studying and predicting immunogenicity.160  

 Despite the potential for immunogenicity, these TNF-α inhibitors are undeniably 

successful on the market. Due to their success, many companies have begun to create 

biosimilar versions of these drug products in hopes of outcompeting the innovator in the 

market once it has lost exclusivity. Changes in total sales revenues of the innovator and 

respective biosimilars have reflected this competition.  

Between 2016 and 2019 three infliximab biosimilars of Remicade® (Johnson & 

Johnson) were FDA approved, including Inflectra®/RemsimaTM (Celltrion), FDA 

approved in 2016, Fliaxabi®/Renflexis® (Samsung Bioepis), FDA approved in 2017, and 

AvsolaTM (Amgen), FDA approved in 2019. The total sales revenues of the innovator 

Remicade® have continued to fall since the approval of the first US approved infliximab 

biosimilar in 2016, decreasing from $6.97 Bn in 2016 to $4.4 Bn in 2019 (-36.9%).296 US 

Figure 1-21. Range of rates (%) of ADAbs formation to biologics in patients with IDBs. Only studies 
reporting rates of ADAbs were included, immunogenicity analyses are product- and assay-specific, 
infliximab excluded one study that had a small sample size (n = 28) and high rate of immunogenicity 
(79%). -: no publications available; ADAbs: anti-drug antibodies; CD: Crohn’s Disease; UC: Ulcerative 
Colitis. Figure adapted with permission from [160] 
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sales revenues for Inflectra®/RemsimaTM (Celltrion) increased from $259 Mn in 2018 to 

$325 Mn in 2019 (+16%), while global sales of Renflexis®/Flixabi® (Samsung Bioepis) 

increased to $5.0 Bn in 2019 (+16.7% from 2018), with some contribution from US 

sales.297298299  2020 financial reports for some companies were unavailable. 

 As shown in Fig. 1-2, the major focus for the development of biosimilar mAbs is 

establishing analytical similarity to an innovator. This information can be found in 

regulatory filing documents and in published comparability studies. In both, various 

orthogonal analytical techniques are applied to establish similarity to the innovator 

product.43,144,211 Detailed analytical comparisons of the innovator, Remicade®, against 

biosimilar, Inflectra®/RemsimaTM, in literature and regulatory documents showed that 

there were minor differences found for levels of soluble aggregates, levels of basic 

charge variants and glycan distribution profiles.136,211,300 However, these differences are 

small enough that they were not considered to be a clinically relevant concern.  

When considering whether these minor differences are just that – minor – companies 

have to determine their potential impact on mAb function. The two main mechanisms of 

action for mAbs are TNF-α neutralization, via binding to soluble and membrane bound 

TNF-α, and ADCC, via FcγR3A binding. Therefore, assays such as TNF-α neutralization 

and FcγR binding are also implemented and required for regulatory approval. The 

FDA’s assessment report for Inflectra®/RemsimaTM compared TNF-α binding of  CT-P13 

against US and EU Remicade®  by ELISA (Fig. 1-22/23) and FcγR3A binding  to low (F) 

and high affinity (V) variants (Fig. 1-24/25). While TNF-α binding was similar, we do 

notice that there is a difference in terms of FcγR3A binding for both variants (differences 

in these variants and their importance are highlighted in a paper published by Kang et 
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al).301 The difference in binding is further understood by differences of glycan 

distribution profiles, which are also reported in this document (Fig. 1-26). Pisupati et al. 

performed a comparability study of these molecules (Fig. 1-27), utilizing LC-MS/MS to 

quantify glycan distribution and biolayer interferometry (BLI) to measure FcγR3A 

binding where similar results were reported; Remsima TM (CT-P13) showed fewer 

afucosylated glycans and a weaker FcγR3A binding affinity when compared with 

Remicade®.211 In the end, while minor analytical and functional differences have been 

found, they are generally assumed as of little importance as long as there are no 

clinically meaningful differences as defined by the FDA.14  

Figure 1-23. Results and Statistical Analysis of ELISA Binding of Transmembrane-Bound TNF-α. Dark 
Blue: CT-P13; Light Blue: ALAG CT-P13; Grey: EU Remicade; Yellow: US Remicade; ALAG: artificially 
elevated afucosylated glycans 

Figure 1-22. Results and Statistical Analysis of Binding of soluble TNF-α. Dark Blue: CT-P13; Light Blue: 
ALAG CT-P13; Grey: EU Remicade; Yellow: US Remicade; ALAG: artificially elevated afucosylated 
glycans. 
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Figure 1-26. Scatter Plots Showing Relationship of % Afucosylated Glycan Species (G0 + Man 5) with 
FcγR3a Binding Affinity and ADCC Activity. Dark Blue: CT-P13; Grey: EU Remicade; Yellow: US 
Remicade. 

Figure 1-25. Quality Range Analysis of FcγRIIIa V variant binding by SPR. Dark Blue: CT-P13; Light Blue: 
ALAG CT-P13; Grey: EU Remicade; Yellow: US Remicade; ALAG: artificially elevated afucosylated 
glycans; Red: QR limits of variability. 

Figure 1-24. Quality Range Analysis of FcγRIIIa F variant binding by SPR. Dark Blue: CT-P13; Light Blue: 
ALAG CT-P13; Grey: EU Remicade; Yellow: US Remicade; ALAG: artificially elevated afucosylated 
glycans; Red: QR limits of variability. 
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 Analytically, biosimilars sufficiently match their innovator. However, there are still 

concerns surrounding the ability to switch patients, who are stable and doing well on the 

innovator infliximab, to more cost-effective biosimilars. Concerns have previously been 

raised regarding efficacy, safety and immunogenicity, resulting in the formation of ADAs 

once patients have switched to biosimilars.302,303 Some of these concerns were raised 

from specific scientific communities (in this case, gastroenterology) that had issues with 

extrapolations of indications for the biosimilars.304–306 Some of the early switching 

studies from infliximab originator to biosimilar included 1) open cohort studies; 2) 

second year extensions of PLANETAS, a phase 1 study in AS patients, and PLANETRA 

studies, a phase 3 study in RA patients; 3)  NOR-SWITCH study, in which all indications 

were accounted for.307–311 The outcome of the PLANETAS and PLANETRA studies 

Figure 1-27. Quantification by LC-MS/MS. (A) N-glycans. (B) Total mannose-terminated forms. (C) Total 
afucosylated forms. (D) Average KD values for binding to FcγR3a as measured by BLI. (n = 4 lots, mean ± 
SEM; *: p < 0.05). Figure adapted with permission from [211]. 
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were that switching is safe and does not reduce effectiveness of treatment in terms of 

serum concentrations of infliximab and ADA occurrence.307,308,310,311 The NOR-SWITCH 

study was a randomized, controlled trial conducted in order to assess CT-P13’s 

comparability regarding efficacy, safety and immunogenicity for patients who had been 

on stable originator for at least 6 months.309 This study showed that switching to 

Celltrion’s biosimilar (CT-P13) was non-inferior to the originator, meeting acceptability 

specifications within a margin of 15%.312 Fig. 1-28 shows the Forest plot of risk 

difference according to disease, where shifting of results indicate either a favoring of the 

originator (left shift) or the biosimilar (right shift).312 A review on switching studies 

publications in specific disease populations was published in 2018 and as a whole, 

barring some minor outliers, studies on switching to biosimilar infliximab did not lead to 

issues of safety, efficacy or immunogenicity.312 

 

 

Figure 1-28. Forest plot of risk difference according to disease. Figure shows data for the per-protocol 
set. Risk difference adjusted for treatment duration of infliximab originator at baseline. Figure adapted 
with permission from [312] 
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 Aspects of Peptide/mAb Formulations and Delivery Devices 

Peptides and proteins are formulated as subcutaneous (SC), intravenous (IV) or 

intramuscular (IM) parenteral injections as they are not orally bioavailable. There are 

many aspects that must be simultaneously considered when developing formulations for 

peptides and proteins including previously mentioned molecular properties, 

manufacturing conditions, storage conditions, potential impurities, routes of 

administration, related administration devices and potential responses to physiological 

conditions.313 

pH is an example of a parameter that is heavily considered during formulation. 

Many of the top 10 mAbs are formulated between pH 5.5 and 7.4.314,315 There is a range 

because the  formulation pH for peptides and proteins has to account for each protein’s 

isoelectric point (pI). If pH is equal to pI (determined by amino acid structure), the 

molecule has a net neutral charge that can lead to unwanted precipitation. While 

precipitation is typically considered a potential impurity, there are select cases, such as 

insulin glargine (Lantus), where isoelectric precipitation is intended upon injection into 

the physiological environment of the body.316 In this case, insulin is modified by the 

attachment of an arginine-arginine tag, increasing the pI from human insulin’s typical 5.6 

to that of approximately 7.0.316,317  

Another factor at play in determining the final protein formulation for parenteral 

solutions is the selection of excipients. Formulation excipients are important given that 

they can prevent degradation. (Fig. 1-29).318 When deciding which excipients are best 

suited for a specific product, manufacturers have to consider the nature of the API. The 

complexity of peptide and protein products translates to a need for the inclusion of 
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certain excipients. Insulin and insulin analog products serve as good examples of 

molecules requiring significant consideration of formulation complexities. Insulin is 

natively found in equilibrium between the monomer, dimer, tetramer and hexamer 

conformational states, where the equilibrium can be controlled through concentration, 

pH and excipients (Fig. 1-30).319 Insulin analogs have been designed with various 

modifications to effectively remove the ability of these molecules to form dimers. 

Likewise,  some formulations have added phenolic compounds to drive the insulin into 

the hexamer conformation.319 

Figure 1-29. Conformation states of insulin, including the monomer, dimer, tetramer and stable hexamer 
and factors affecting conformational equilibrium. Decreased pH favors the monomer while Zn and insulin 
concentration favor the hexamer. Figure adapted with permission from [319] 
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Figure 1-30. Examples of excipients and their main function in peptide and protein formulations and their 
common, expected effects. Figure adapted with permission from [318]. 
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Sugars have frequently been described as protective excipients against the 

formation of degradants and impurities in protein/peptide formulations. The mechanism 

of protection by sugars, depicted in Fig. 1-31, has been largely attributed to preferential 

exclusion, where the sugar preferentially binds to water in the solution, reducing protein 

solvation propensity.320 Other suggested mechanisms of protection by sugars are 

vitrification, which involves embedding the protein into a glassy matrix to restrict 

mobility, and water replacement, which occurs when the sugar/protein interaction is 

greater than the water/protein interaction at hydrophilic residues, thus removing the 

surrounding water layer.320 Differences between polyol and sugar excipients are also 

likely attributed to differences in the number of H-bond donors and H-bond acceptors as 

well as the variation of hydration volumes occupied by these various excipients.320 

  

  

Figure 1-31. Three proposed theories how sugars may protect proteins from degradation. Vitrification: 
increase of viscosity; Water Replacement: preferential sugar binding with protein; Preferential Exclusion: 
preferential sugar binding with water. Figure adapted with permission from [320]. 
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While most excipients are known for their protective effects, there have been  

studies performed where various polyol and sugar excipients have been shown to 

induce protein destabilization as a factor of the protein itself, concentration, and pH.313 

For example, bromelain in the presence of 1M trehalose was observed to exhibit a 2-

state unfolding process. It also exhibited a 3-state unfolding process in the presence of 

1M sucrose.321 The same group then investigated the impact of sucrose and trehalose 

on intrinsic fluorescence. They observed fluorescence quenching by both sucrose and 

trehalose, more so by trehalose, indicating these sugars’ destabilizing effects on 

conformation in a manner previously described.321  

 Lyophilization, which entails freeze drying of a solution into a solid state, has 

been implemented for a number of peptide and protein products to avoid degradations 

commonly prevalent in the liquid state.322–324 While lyophilized cakes are well known to 

achieve adequate shelf-life, the freeze-dry process itself is a source of instability. 

Sugars and polyols are added to reduce degradation and allow rapid freezing below the 

glass transition temperature.325,326 The mechanism of sugar induced stabilization during 

lyophilization has been suggested to occur by two mechanisms: 1) the “glass dynamics 

hypothesis”, where formation of a molecularly dispersed matrix limits mobility, solvent 

induced degradation and bimolecular degradation; and 2) the “water substitute 

hypothesis”, where site specific hydrogen bonds thermodynamically inhibit protein 

unfolding.327–331 Studies comparing the degradation propensity during lyophilization in 

the presence of sucrose or trehalose have been conducted. From these studies it was 

found that sucrose was better at preventing degradation.332 All infliximab products are 

supplied as lyophilized powders, where others are in solution. 



 
 

52 

Another major consideration of formulation optimization lies at the interface of 

delivery devices.  Insulin delivery devices serve as a highly useful and comprehensive 

platform that can be translated to the development of future delivery devices for peptide 

and protein products and will thus be used here as an example case. Insulin was initially 

discovered and purified for therapeutic application in 1921 by Banting and Best and has 

since had a long history marked by many advancements in terms of the development of 

alternate products and improvements of delivery devices (Fig. 1-32). Now, devices can 

precisely deliver insulin with minimal invasiveness in a way that improves patient 

compliance.333–338 

Figure 1-32. Major landmark events in the evolution of insulin and insulin delivery devices. Figure adapted 
with permission from [338]. 
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Initially, insulin was administered via big, heavy reusable syringes that required 

sterilization by boiling prior to use. These reusable syringes were then replaced with 

more specialized needle types, though these were unfavorable due to poor accuracy, 

requirements for multiple daily injections and patient non-adherence. The first pen was 

developed by Novo Nordisk in 1985, offering a more simple, accurate and convenient 

delivery.339,340 First generation pens were available in the market in the 1990’s and have 

been improved by recent advances in smart technology to track and remember insulin 

dosing.341,342 The most recent insulin delivery innovations have been related to 

continuous subcutaneous insulin infusion (CSII) pumps. These pumps are also called 

closed-loops systems, where glucose is constantly monitored, and insulin constantly 

infused. Typical components for these pumps are an insulin reservoir, infusion set and 

tubing, and a catheter for continuous delivery of insulin. The benefit of this technology is 

that the user can specify the program to dispense basal rates while fasting and 

dispense bolus doses prior to meals.343 The two main insulin pumps currently in use are 

Medtronic’s MiniMed System (represented in Fig. 1-33) and Insulet’s Omnipod.344,345  

Figure 1-33. Components of a closed-loop insulin delivery system. Sensor: measures interstitial glucose 
levels; Controller modifies the pump control algorithm in response to the sensor; Pump: infuses insulin 
through the catheter. All communication is wireless. Figure adapted with permission from [344]. 
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The main concern for insulin pumps is under- or over-delivery of insulin resulting 

in health consequences, including hyperglycemia and keotoacidosis.346 Incorrect insulin 

delivery can occur via occlusion within the pump, infusion set or tubing. Incidence of 

occlusion has been studied as a function of time and insulin analog used, where 

occlusions were rare in the first 72 hours of infusion, but substantially increased over 

time.347,348 These occlusions have been suggested to be directly related to the 

physicochemical stability of the molecules and their propensity to form fibrils..233,349  

While insulin delivery is common now through pens and continuous pumps, 

delivery of short-term (twice daily) and long-term (weekly) GLP-1 receptor agonists for 

type 2 diabetes therapy remains common via pre-filled pen devices. These devices are 

shown below in Fig. 1-34 along with information on use number, dosage type, max 

dosage strength, whether resuspension is necessary prior to injection and ease of 

use.350,351 GLP1RAs and insulin analogs have been compared in early stage diabetes 

patients in terms of glycemic effectiveness. It was found that there were only minor 

differences such as GLP1RAs having somewhat greater HbA1C reduction.352,353 This 

comparability is important as the current barrier to entry for early stage patients is the 

initialization of therapeutic treatment. GLP1RAs provide a more simplified route of 

administration, whereas insulin analogs commonly require significant education on dose 

titration and administration, making them less user friendly. 
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Additionally, there are 2 successful co-formulated subcutaneous injections of 

insulin analogs and GLP-1RAs on the market (shown in Table 1-7, Fig. 1-35). Both 

products, Suliqua (Sanofi) and Xultophy (Novo Nordisk), are intended for use in late-

stage type 2 diabetes patients due to the complementary mechanisms of action of the 

components. While relatively new, the growth rate for sales of Xultophy, which 

increased 11% (to $353.6 Mn in 2020), while Suliqua’s sales revenues increased 60.3% 

(to $146 Mn in 2019 [2020 annual report unavailable]), indicate a high ceiling for the 

success of these types of products. In a result of being co-formulated, these products lie 

in a relatively undefined category of biologically derived products in regards to 

regulatory approval pathways.354 Suliqua comes in two dosage forms, containing a 

combination of 300 units of insulin glargine and either 100 or 150 µg of lixisenatide in a 

3mL pre-filled pen.355 Xultophy contains a combination of 300 units of insulin degludec 

and 10.8 mg of liraglutide in a 3mL pre-filled pen.356 Both pens allow for adjustment of 

dosage strength according to desired insulin titration while maintaining the desired 

Figure 1-34. Optical appearance and properties of pen injection devices for approved GLP-1 receptor 
agonists (as mono substances or fixed-dose combinations with basal insulin). 
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insulin:GLP1RA ratio.355,356 Clinical data has shown that these combinations have 

greater efficacy than either product alone while simultaneously mitigating side effects 

commonly associated with insulin titration.355–357 Additionally, since basal insulin is 

limited to fasting plasma glucose, the benefit of co-administration with GLP1RA’s 

mechanism of action (glucose dependent) has been well-documented in terms of its 

glycemic control.351,358–364 Even so, there is no literature investigating the stability 

profiles of these co-formulations, which seems to indicate that this information has 

remained proprietary. This lack of literature presents an opportunity for further research 

in the diabetes co-formulation and device spaces. 

The following chapters highlight a compilation of analytical techniques that were 

developed to characterize generic peptide and mAb biopharmaceutical products to 

address aspects of chemical and physical degradation in relations to their  regulatory 

approval. The scope of these chapters is applicable to mostly all failed, approved and 

future biopharmaceutical products.
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Chapter 2: The Effects of pH and Excipients on the Stability of Exenatide 

 Abstract 

Exenatide, a glucagon-like peptide-1 receptor agonist, is the active 

pharmaceutical ingredient in Byetta® and Bydureon®, two type 2 diabetes drug products 

that have generics and multiple follow-up formulations currently in development. Even 

though exenatide is known to be chemically and physically unstable at pH 7.5, there 

lacks a systematic evaluation of the impact of pH and excipients on the peptide solution 

stability. In this study we established analytical methods to measure the chemical and 

physical degradation of the peptide in solution. Exenatide remained relatively stable at 

pH 4.5 when incubated at  37ºC. At pH 5.5-6.5, degradation was driven by oxidation, 

while driven by deamidation at pH 7.5-8.5. Significant aggregation of exenatide at pH 

7.5 and 8.5 was detected by size exclusion chromatography and dynamic light 

scattering. Each pH value greater than 4.5 exhibited unique profiles corresponding to a 

loss of α-helical content and increase of unordered structures. Addition of sugars, 

including mannitol, sorbitol and sucrose, conferred small protective effects against 

monomer loss when incubating at pH 7.5 and 37ºC, as measured by size-exclusion 

chromatography and dynamic light scattering. The results of this study will be useful for 

investigators developing generic exenatide products, peptide analogs and novel 

exenatide drug delivery systems. 
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 Introduction 

Exenatide, also known as exendin-4, is a 39-amino acid glucagon-like peptide-1 

(GLP-1) receptor agonist that acts as an incretin mimetic for the treatment of type II 

diabetes mellitus.365 Exenatide retains 53% homology with endogenous human GLP-1, 

while having several amino acid additions and substitutions that give rise to its 

increased serum half-life and potency.263,366,367,368 Exenatide has a partially-folded 

tryptophan (Trp) cage that prevents degradation by NEP 24.11, the main peptidase 

responsible for GLP-1 breakdown in vivo.2 Exenatide is the active pharmaceutical 

ingredient (API) found in AstraZeneca’s Byetta®, a solution formulation for twice-daily 

injection, and the more successful Bydureon®, which consists of exenatide 

encapsulated in poly(lactide-co-glycolic acid) (PLGA) microspheres for weekly 

injection.281,282 In 2019, Byetta® and Bydureon® sales reached over $110 and $549 

million, respectively, in a highly competitive GLP-1 product field.369 There are no FDA 

approved generic versions of Byetta® or Bydureon® currently available. Teva 

Pharmaceuticals reached an agreement with AstraZeneca in 2016, which became 

effective in October 2017, allowing them to manufacture and commercialize a generic 

version of Byetta®. Teva Pharmaceutical’s product has yet to reach the market due to its 

pending ANDA FDA approval.370,371,372 Aside from generics, ongoing research is geared 

towards the development of novel controlled-release formulations of exenatide, such as 

hydrogels and nanospheres, as alternatives to Bydureon®.263,365,373–375  

 A recently published FDA guidance on ANDA submissions for synthetic 

peptides highlights the importance of characterizing product-related impurities that may 

affect the safety, immunogenicity and effectiveness of peptide products.376 Five peptide 
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products are specifically mentioned, including glucagon, liraglutide, nesiritide, 

teriparatide and teduglutide. Additionally, the guidance specifically states that analytical 

characterization data should include elucidation of primary sequence, identification of 

chemical impurities, as well as characterization of peptide physicochemical properties 

and oligomer/aggregation states.  

Thus, for both the development of potential generic exenatide drug products and 

novel extended-release formulations, it is critical to understand the chemical and 

physical stability of exenatide. Identifying the peptide’s potential mechanisms of 

degradation allows for the optimization of formulation and selection of appropriate 

manufacturing conditions to avoid the formation of product impurities that may impact its 

safety and efficacy.377,225 At present, there are no systematic studies available in the 

literature investigating exenatide’s solution stability. Based on exenatide’s sequence, 

several deamidation and oxidation hot spots are evident, as highlighted by the following 

underlined peptide residues (HGEGT-FTSDL-SKQME-EEAVR-LFIEW-LKNGG-PSSGA-

PPPS-NH2). Exenatide contains two likely deamidation sites, N28 and Q12, as well as 

two likely oxidation sites, M14 and W24. Only some of these chemical impurities are 

identified and noted in the formulation literature.375,378 Structurally, exenatide contains 

three major domains, including an N-terminal unordered, hydrophilic strand (residues 1-

10), an α-helical coil (residues 11-28) and a C-terminal hydrophobic, proline rich, 

partially-folded Trp-cage (residues 29-39).285 It has been reported that Trp-cage 

disruption is likely responsible for the physical degradation of exenatide.285 While a 

variety of isolated analytical methods for the characterization of exenatide’s purity have 

been mentioned in regulatory and peer-reviewed literature, an analysis of its impurities 
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and their underlying degradation mechanisms is missing.285,379 As such, the goals of this 

study were to identify and characterize exenatide’s chemical and physical degradation 

through the use of accelerated stability testing to elucidate exenatide’s potential 

underlying degradation mechanisms. 

In order to do so, we have developed and implemented several orthogonal 

analytical techniques to investigate the impact of pH and the addition of excipients 

(NaCl, mannitol, sorbitol, and sucrose) on exenatide solution stability during prolonged 

incubation at 37°C. During incubation chemical impurities of exenatide were 

investigated using reverse phase liquid chromatography (RP-LC) and identified by liquid 

chromatography-mass spectrometry (RP-LC-MS). Exenatide physical impurities were 

analyzed by size-exclusion chromatography (SEC), with subsequent examination of 

particle size distributions by dynamic light scattering (DLS). Structural conformation and 

content were analyzed by intrinsic fluorescence (IF) and circular dichroism (CD). 

Overall, our study provides a valuable body of information regarding complex exenatide 

(and peptide) degradation that can be potentially useful for the approval of generic 

exenatide versions and the development of novel sustained release formulation.  

 Materials and Methods 

Exenatide 

Exenatide powder was generously provided by Amneal® Pharmaceuticals 

(Ahmedabad, India). All other materials were purchased from commercial suppliers. 

Exenatide Incubation Conditions 

Exenatide solutions were prepared at a concentration of 0.5 mg/mL in various 30 

mM buffer solutions according to their respective buffer capacities, including sodium 
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acetate [Acetate] (pH 4.5), sodium citrate [Citrate] (pH 5.5), sodium phosphate 

[Phosphate] (pH 6.5), HEPES (pH 7.5) and HEPBS (pH 8.5). To investigate the impact 

of excipients, either salt (154 mM NaCl) or sugar (4.3% w/v mannitol, sorbitol, sucrose 

or trehalose), which were added to exenatide reconstituted at pH 7.5 and compared 

against exenatide reconstituted at pH 4.5 with 4.3% (w/v) mannitol, the negative control. 

Reconstituted exenatide samples at various pH and excipient conditions were subjected 

to 4 weeks of incubation at 37°C. Samples were removed from the incubator at 0-, 1-, 2- 

and 4-week time points and immediately analyzed. Samples were either left undiluted at 

0.5 mg/mL for analysis by dynamic light scattering (DLS) and intrinsic fluorescence (IF) 

or diluted to 0.125 mg/mL prior to analysis by reverse phase liquid chromatography 

(RP-LC), RP-LC-mass spectrometry (RPLC-MS), size exclusion chromatography (SEC 

HPLC), or circular dichroism spectroscopy (CD), as described below. 

Reverse Phase Liquid Chromatography 

Exenatide and its chemical degradation impurities were separated by 

hydrophobicity by RP-LC on a C4-Pack column (YMC) with a Waters 2595 Alliance 

System interfaced to a 2995 Photodiode Array Detector. Samples were filtered and 

injected at a concentration of 0.125 mg/mL at a volume of 50 µL and delivered using a 

mobile phase of acetonitrile (ACN) (0.1%TFA) / H2O (0.1% TFA) at a flow rate of 1 

mL/min with a gradient, ramping from 30 to 55% ACN (0.1% TFA) over 25 minutes. The 

column temperature was held at 40°C. Exenatide samples were detected from UV 

absorbance chromatograms that were extracted at 280 nm. 
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Impurity Identification by Liquid Chromatography with Mass Spectrometry 

Exenatide chemical degradation impurities were separated by RP-LC on the 

same C4-Pack column and analyzed by a dual electrospray ionization equipped Agilent 

6520 Accurate-Mass Q-ToF (Agilent Technologies, Santa Clara, CA). Samples were 

filtered and injected at a concentration of 0.125 mg/mL at an injection volume of 20 µL 

and delivered using a mobile phase of ACN (0.05% TFA) / H2O (0.05% TFA) at a flow 

rate of 0.3 mL/min with a gradient, ramping from 30 to 55% ACN (0.05% TFA) over the 

course of 25 minutes. The column temperature was also held at 40°C. The MS 

parameters include a capillary voltage between 1.2 and 2.0 kV, a ToF-MS range of 300 

– 3200 m/z, a drying-gas temperature of 325 °C, a drying-gas flow rate of 12 L/min, a 

nebulizer pressure of 45 psi, and a fragmentor voltage of 225 V. Total ion 

chromatograms (TIC) were detected at 280 nm, with impurity peak mass extractions 

generated by Qualitative Analysis Mass Hunter Software (Agilent). 

Size Exclusion Chromatography 

Exenatide and its physical degradation impurities were separated by molecular 

weight using SEC on a Superdex Increase 75 10/300 GL column (GE Healthcare) with 

a Waters 2707 autosampler connected to a 1525 binary HPLC pump, interfaced with a 

2489 UV/Vis detector. Samples were filtered and injected at a concentration of 0.125 

mg/mL at a volume of 50 µL and isocratically delivered with a pH 7.4 PBS mobile phase 

at a flow rate of 1 mL/min over 25 minutes. Molecular weights of exenatide peaks were 

determined from a standard calibration, generated from the injection of Uracil (MW 114 

Da), aprotinin (MW 6.5 kD), Cytochrome C (MW 14.5 kD), Carbonic Anhydrase (MW 

19.5 kD) and BSA (MW 65 kD). Maximum peak height retention times for each standard 
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(tRs) were correlated with their MWs when imported onto a semi-log plot with the 

generated equation being used to estimate the MW of exenatide monomer and 

aggregate peaks (not shown). Exenatide samples were detected from UV absorbance 

chromatograms that were extracted at 280 nm. 

Particle Size Distribution by Dynamic Light Scattering 

Size distributions of exenatide solutions were determined by DLS on a Zetasizer 

ZSP Nano (Malvern, Worcestershire, UK). 100 µL aliquots of undiluted exenatide (0.5 

mg/mL) were placed into low-volume TruView cuvettes (Biorad, Hercules, CA) at an 

undiluted concentration of 0.5 mg/mL and analyzed for particle size distribution. 

Attenuation and accumulation numbers were automatically optimized for each sample 

by the instrument prior to analysis. Particle size distributions were reported by volume, 

with distributions being combined into 0.3-10, 10-100, 100-500, 500-1000 and 1000+ 

µm size ranges. 

Intrinsic Fluorescence 

Intrinsic fluorescence was used to determine the conformational structure of 

exenatide. Undiluted exenatide samples placed into a QS 1.5 mm quartz cuvette 

(Hellma, Mullheim, Germany) were analyzed at an undiluted concentration of 0.5 mg/mL 

on a SpectraMax M3 (Molecular Devices, San Jose, CA) plate/cuvette reader. The 

fluorescence was measured using a wavelength emission range of 280 – 450 nm and 

an excitation wavelength of 270 nm while obtaining fluorescence at 6 flashes per read. 

Far-UV Circular Dichroism 

The secondary structure of exenatide samples were determined on a J-815 

(JASCO) that were diluted to a concentration of 0.125 mg/mL. Instrument sample 
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temperature was held at 37°C using a Peltier attachment. CD spectra were averaged 

from 5 collected scans over a wavelength range of 245 to 195 nm, with an accumulation 

rate of 20 nm/min and a data integration time (DIT) of 4 seconds. Percent α α-helix, β-

sheet and unordered secondary structures were quantified using a third-party Spectra 

Manager Suite (JASCO) add-in, CDPro analysis. In this software, the CONTIN method 

was chosen, using soluble-membrane protein 56 (SMP 56) as the reference protein for 

secondary structure analysis. 

 Results 

Forced Chemical Degradation 

Identification of Degradation Impurities by LC-MS QToF 

LC-MS-QToF was implemented to analyze potential exenatide chemical impurity 

formation. Short-term accelerated exenatide degradation was induced by reconstituting 

exenatide at pH 8.5 and incubating at an elevated temperature of 60°C for 24 hours. 

Exenatide’s parent peak was separated from its chemical impurities by reverse phase 

liquid chromatography (RP-HPLC) on a C4 Pack column. Fig. 2-1A depicts a total ion 

chromatogram (TIC) with the respective peak identities. A total of 9 different peaks were 

identified for exenatide (Fig. 2-1B-J) relative to its average mass of 4816 Da, which 

included the formation of a PyroQ impurity and different combinations of oxidations and 

deamidations.380 The peak at a m/z was an internal standard. 
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Peak F was identified as exenatide’s native state parent peak (+0); peaks C and 

E, single (+16) and double oxidations (+32), respectively; peaks B and D, a combination 

of an oxidation and a deamidation (+17); peaks G, H, and I, a single deamidation (+1); 

and peak J, PyroQ formation from a glutamine (Q12). A previously published study has 

confirmed that the primary deamidation site for exenatide is N28 when incubated in pH 

7.4 phosphate buffer at 37°C for 56 days.284 As expected, deamidations occurred at the 

N28 G29 residue combination, a prolific peptide and protein deamidation 

hotspot.225,224,381 The major deamidation impurity (Peak H) in both studies had been 

previously identified as the conversion to L-isoAspartate [L-isoAsp], while the minor 

impurity (peak G) was identified as the conversion to D-isoAspartate [D-isoAsp] 284.  We 

would expect that the observed oxidation is occurring at Met14, another primary 

degradation hotspot that has been implicated to affect peptide and protein 

stability.225,224,381,382 Additional LS-MS/MS studies are needed to identify specific 

oxidation impurities. 

Figure 2-1. Identification (w/ deconvoluted masses) of exenatide’s chemical impurities by RPLC-MS QToF 
following incubation of peptide solution (pH 8.5) at 60°C for 24 hours. RP-HPLC C4 UV absorbance (A) 
total ion chromatograms (TIC) and (B-E, G-J) exenatide chemical impurities and their reported respective 
mass shifts, which include a combination of oxidation, deamidation and PyroQ formation, from (F) native 
exenatide’s MW of 4186 Da. 
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Forced Chemical Degradation at 37°C 

Chemical degradation profiles were determined for exenatide solutions that were 

reconstituted between pH 4.5 - 8.5 and subject to incubation at 37°C for 4 weeks. 

Exenatide’s parent peak was separated from its chemical impurities on an RPLC 

column. Parent peak (Fig. 2-2A) and oxidation (Fig. 2-2B) and deamidation (Fig. 2-2C) 

impurities were quantified over the course of incubation. 

When incubated at pH 4.5 and 5.5, the exenatide parent peak remained relatively 

stable over the course of incubation, decreasing to 88.6 ± 0.7% and 87.0 ± 1.4%, after 

28 days of incubation, respectively. The relative stability of exenatide at low pH was 

expected as Byetta® is commercially formulated in an acetate buffer solution of pH 4.5.  

On the other hand, a rapid, pH-dependent degradation of exenatide was observed when 

reconstituted at pH 6.5, 7.5 and 8.5. We also observed a loss in total AUC during 

incubation indicating some precipitation occurring at pH 7.5 and 8.5 over 4 weeks 

decreasing to an average of 71.9 ± 10.1 % and 70.9 ± 9.8 % relative to day 0, 

respectively (Fig. 2-3B). This precipitation was confirmed by appearance of larger 

particulates during incubation as measured by DLS.  

Figure 2-2. Kinetics of chemical degradation determined by RP-LC separating (A) parent peak from (B) 
oxidation and (C) deamidation chemical impurities during incubation of exenatide solutions pH 4.5 – pH 
8.5 at 37°C for 4 weeks. (n = 3, mean ± SEM). 
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Chemical degradation appears to be mainly oxidation driven from pH 4.5 to 6.5. 

As previously mentioned, we would expect that this would likely occur at the methionine 

residue. Oxidation was identified by the presence of a split peak around a retention time 

of 6.5 minutes, with total oxidation being the summation of peaks that elute prior to the 

parent peak (Supp. Fig. 2-3A). Over the course of long-term incubation, chemical 

degradation of exenatide at pH 7.5 and 8.5 also appears to be driven mainly by 

deamidation, with the parent peak decreasing to 30.9 ± 1.6% and 20.3 ± 1.1% and 

deamidation impurity peaks increasing to 67.0 ± 2.2% and 77.8 ± 1.9%. We would 

expect the formed impurity to occur at the N28 residue, as it is followed by a glycine, a 

Figure 2-3. A) RP-LC chromatograms after 4 weeks of incubation and B) AUCs (relative to day 0) and C) 
SEC-LC chromatograms after 4 weeks of incubation and D) AUCs (relative to day 0) for exenatide 
samples reconstituted at pH 4.5 – 8.5 over the course of incubation at 37°C for 4 weeks. 
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well-known deamidation hotspot combination.225,224 A major deamidation impurity, 

previously identified as the conversion to L-isoAsp, formed at a retention time of 12.4 

minutes while a minor deamidation impurity, previously identified as conversion to D-

isoAsp, formed at a retention time of 11.8 minutes (D-isoAsp). It has been previously 

reported that isolated L-isoAsp and isolated D-isoAsp impurities exhibit weaker GLP1 

receptor binding.284  

Forced Physical Degradation at 37°C 

Aggregation has been identified as an important instability mechanism in both 

peptides and proteins.225 Specifically, aggregation has been suggested to occur through 

the disruption of exenatide’s partially-folded, protective Trp cage though studies have 

remained lacking.285 Physical degradation profiles were also determined for exenatide 

solutions reconstituted between pH 4.5 - 8.5 that were subject to incubation at 37°C for 

4 weeks. An SEC column was used to separate and quantify monomers (Fig. 2-4A), 

aggregates (Fig. 2-4B) and fragments (Fig. 2-4C) over the course of incubation. 

Physical degradation, in terms of monomer loss, appears to occur in a pH 

dependent manner. Exenatide incubated at pH 4.5 and 5.5 remained relatively stable 

Figure 2-4. Kinetics of physical degradation determined by SEC-LC, separating (A) monomer from (B) 
aggregate and (C) fragment physical impurities of exenatide reconstituted at pH 4.5 – pH 8.5 after 
incubation at 37°C for 4 weeks. (n = 3, mean ± SEM).and Orange = 8.5. 
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over the course of incubation, with monomer decreasing to 95.7 ± 0.8% and 94.2 ± 

0.1%, respectively, after 4 weeks of incubation. Again, the relative stability of exenatide 

at low pH was expected as Byetta® is commercially formulated in acetate buffer (pH 

4.5).383   Physical degradation tendencies vary significantly at pH 6.5 and above in terms 

of aggregation and fragmentation. Exenatide reconstituted at pH 6.5 tends to form 

fragments after 2 and 4 weeks of incubation, increasing to 9.0 ± 2.5% and 30.3 ± 

16.4%, rather than aggregates, which increased slightly, 0.6 ± 0.2% and 8.0 ± 1.9%, 

respectively. On the other hand, exenatide reconstituted at pH 7.5 forms mainly 

aggregates, increasing to 50.6 ± 1.8% and 77.4 ± 2.9% after 2 weeks and 4 weeks of 

incubation, respectively. The total AUCs for SEC chromatograms decreased over the 

course of incubation at pH 7.5 and 8.5 reaching 61.6 ± 0.3 % and 61.1 ± 12.1 % of the 

initial values, indicating peptide precipitation.  

Characterizing Particle Size Distribution by DLS 

To further characterize pH-dependence of aggregation of exenatide during 

incubation, particle size distributions were determined by DLS. Particles were measured 

by volume since intensity measurements were skewed by exenatide’s non-spherical 

nature. Particles were combined into 0.3-10, 10-100, 100-500, 500-1000 and 1000+ µm 

size ranges with distributions shown for an incubation over the course of 4 weeks at 

37°C (Table 2-1). While DLS measurement is inherently highly variable, several trends 

were observed, corroborating the formation of oligomers during incubation at higher pH 

values as had been observed through the reduction of SEC and C4 AUCs. For pH 4.5 

and 5.5, peptide was found to be primarily in the 0.3-10 µm size range throughout 

incubation, although some formation of oligomers was detected at pH 5.5 following 4 
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weeks of incubation. At higher pH values (6.5 to 8.5) the reduction of the 0.3-10 µm 

fraction was observed during incubation, as well as an increase in particulates of 10-

1000 µm size range. 

Structural Analysis by IF and CD 

Understanding the underlying structural changes of peptides is especially 

important when investigating degradation profiles, as they provide more insight into the 

impact of chemical and physical degradation profiles on structure. Tertiary and 

Table 2-1. Particle size distribution determined by DLS (by volume) and separated into 0.3 – 10, 10 – 100, 
100 – 500, 500 – 1000 and 1000+ µm size ranges for exenatide that was reconstituted at pH 4.5 – 8.5 
after incubation at 37°C for 4 weeks; (n = 3, mean). 
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secondary structures of exenatide samples reconstituted at pH 4.5 - 8.5 were analyzed 

by IF and CD over 4 weeks of incubation at 37°C (Fig. 2-5). 

IF was used to qualitatively investigate exenatide’s conformational structure 

when subject to incubation, where both increases of intrinsic fluorescence and a right 

shift of maximum emission wavelengths (red shift) indicated unfolding through 

increased solvent exposure of Trp (Fig. 2-5A-C). Trp solvent exposure is an important 

structural indicator in exenatide, as the Trp is typically buried in a proline rich C-terminal 

cage that stabilizes exenatide285. Initially, the intrinsic fluorescence profiles were very 

Figure 2-5. Structural and conformational changes characterized and measured by (A-C) intrinsic 
fluorescence and (D-F) circular dichroism, with secondary structures (G-I) quantified by CDPro analysis (n 
= 3, mean ± SEM) for exenatide that was reconstituted at pH 4. 
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similar for all pH conditions in terms of fluorescence intensity (~1500 units) and 

maximum emission wavelengths (333 nm). After 2 weeks and 4 weeks of incubation at 

37°C, the IF profiles of exenatide reconstituted at pH 4.5 and 5.5 were unchanged, 

retaining maximum emission wavelengths of 333 nm. After 4 weeks of incubation at pH 

6.5, there was an observable right shift of maximum emission wavelength to 341 nm, 

though with a decrease of fluorescence intensity, which may potentially indicate both 

Trp cage unfolding and structural rearrangement. Exenatide showed a significant, time-

dependent, increase of fluorescence intensity and a right shift of maximum emission 

wavelength at elevated pHs. Following 2 weeks and 4 weeks of incubation, exenatide 

reconstituted at pH 7.5 showed an increase of fluorescence intensity to 2150 and 2425 

units, respectively, and a right shift of maximum emission wavelengths to 342 and 348 

nm, respectively. A similar change was seen for exenatide reconstituted at pH 8.5 

where changes were even more drastic than pH 7.5 in terms of fluorescence intensity, 

increasing to 2390 and 2835 units, respectively, and maximum emission wavelengths, 

shifting to 344 nm to 354 nm, respectively. Together, they indicate both unfolding and 

an increase of Trp solvent exposure. 

CD is useful in combination with IF, providing further information on underlying 

secondary structural changes, including shifts of distributions between of α-helical, β-

sheet and unordered content. Exenatide samples were qualitatively measured by CD 

(Fig. 2-5D-F) and then quantified by CDPro analysis (Fig. 2-5G-I). At week 0, base 

emission wavelengths were 208 nm for all samples. Quantified secondary structures 

were similar for all pH conditions, apart from pH 5.5. Over the course of incubation, 

exenatide incubated at pH 4.5 retained a base emission wavelength of 208 nm, though 
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quantified secondary structures over the course of incubation showed a loss of α-helical 

content (72.3 ± 6.1% at 0 weeks vs 57.1 ± 1.6% after 4 weeks) and increase of 

unordered content (22.7 ± 2.8% at 0 weeks vs 37.1 ± 2.1% at 4 weeks). Exenatide 

reconstituted at pH 5.5 also retained a base emission wavelength of 208nm. While 

having a lower initial amount of α-helical content, the distribution of secondary structural 

content remained unchanged over the course of incubation. The α-helical content for 

exenatide reconstituted at pH 6.5, 7.5 and 8.5 decreased in a pH dependent manner 

from 70.9 ± 2.2%, 76.6 ± 2.6% and 73.7 ± 3.4% at week 0, respectively, to 30.1 ± 5.1%, 

25.4 ± 1.3%, and 18.75 ± 4.0% after 4 weeks, respectively. Loss of α-helical content 

was generally matched by an increase of unordered content for the exenatide samples 

reconstituted at pH 6.5-8.5.  

The Impact of Excipients on Degradation at pH 7.5 

It is known that the addition of sugar excipients can generally offer protection 

from peptide and protein aggregation during freeze/thaw cycles and long-term storage, 

while other excipients, like salt, may negatively induce aggregation.225,224 The impact of 

these types of excipients on chemical and physical degradation profiles was 

investigated for exenatide reconstituted at pH 7.5 and incubated for 4 weeks at 37°C. 

Common excipients, including salt (NaCl) and various sugars (mannitol, sorbitol and 

sucrose) were added at iso-osmolar concentrations (154 mM and 4.3% w/v, 

respectively), to determine if they would alter degradation profiles. Parent peak (Fig. 2-

6A), oxidation (Fig. 2-6B) and deamidation (Fig. 2-6C) profiles for exenatide after 4 

weeks of incubation are shown here. 
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Exenatide reconstituted at pH 4.5 with 4.3% mannitol was the negative control 

(Byetta® formulation). Our results indicate that the addition of different excipients had 

limited effects on chemical exenatide’s stability at pH 7.5. Compared to the negative 

control, where 87.8 ± 0.8% of the parent peak remained intact, pH 7.5 formulations had 

significant parent peak loss, decreasing to approximately 30% after 4 weeks of 

incubation. All formulations experienced similar levels of oxidation during the incubation 

period. The negative control contained significantly less deamidated species compared 

to pH 7.5 formulations (approximately 3% vs. 60%) after 4 weeks of incubations. We 

also observed some total AUC loss, decreasing to an average between approximately 

60 and 80% at 4 weeks relative to day 0 for all pH 7.5 formulations, indicating some 

precipitation occurring over the course of incubation (Fig. 2-7B). 

Figure 2-6. Kinetics of degradation determined by RP-LC and SEC-LC, with RP-LC separating (A) parent 
peak from (B) oxidation and (C) deamidation chemical impurities and SEC-LC separating (D) monomer 
from (E) aggregate and (F) fragment physical impurities of exenatide reconstituted at pH 4.5 w/ mannitol 
and pH 7.5 with specified excipients after incubation at 37°C for 4 weeks. (n = 3, mean ± SEM, * p < 0.05 
** p < 0.01 *** p < 0.001). 
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An SEC column was used to separate and quantify monomers (Fig. 2-6D), 

aggregates (Fig. 2-6E) and fragments (Fig. 2-6F) over the course of incubation. SEC 

analysis after 4 weeks of incubation revealed significant monomer loss for all pH 7.5 

formulations compared to the negative control after 4 weeks (approximately 20% vs. 

95% remaining). Monomer loss was significantly greater for the pH 7.5 formulation 

without excipient (18.3 ± 0.1%) than formulations containing mannitol (26.3 ± 2.0%), 

sorbitol (25.4 ± 1.1%) and sucrose (24.4 ± 1.3%) (p < 0.05 for all solutions), indicating 

protective abilities of these excipients against physical instability, though not against 

Figure 2-7. RP-LC chromatograms after 4 weeks of incubation and B) AUCs (relative to day 0) and C) 
SEC-LC chromatograms after 4 weeks of incubation and D) AUCs (relative to day 0) for exenatide 
samples reconstituted at pH 4.5 w/ mannitol vs pH 7.5 w/ specified excipients over the course of 
incubation at 37°C for 4 weeks. 
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chemical instability. Exenatide physical impurities were present mainly in the form of 

aggregates at pH 7.5.  

Further characterization of peptide aggregates was performed using DLS. Our 

data showed that exenatide was very stable at pH 4.5, with particles staying in the 0.3-

10-µm size range for the entire incubation. At pH 7.5, sucrose, mannitol, and sorbitol 

exhibited significant stabilizing effects on exenatide against aggregation, as indicated by 

100% of particles present in the 0.3-10 µm size range after 4 weeks compared to 

excipient-free formulation which had 67% in this size range (Table 2-2). The NaCl 

formulation resulted in significant shifts in particle size distribution, with most particles 

being in the 10-100 µm range (NaCl) after 4 weeks. 

Subsequent structural analysis by IF and CD revealed the pH 4.5 mannitol 

formulation to be the most stable. All pH 7.5 formulations experienced a significant red 

shift of maximum emission wavelength as well as an increase in maximum fluorescent 

intensity after 4 weeks, indicative of unfolding and Trp solvent exposure (Fig. 2-8A,D). 

Table 2-2 Particle size distribution determined by DLS (by volume) and separated into 0.3 – 10, 10 – 100, 
100 – 500, 500 – 1000 and 1000+ µm size ranges for exenatide that was reconstituted at pH 4.5 w/ 
mannitol and pH 7.5 w/ specified excipients when incubated at 37C after weeks; (n = 3, mean). 
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CD Pro analysis showed no observable differences between excipient spectra at 0 (Fig. 

2-8) and 4 weeks (Fig. 2-8E) of incubation. CD pro analysis prior to incubation showed 

that all formulations contained similar percentages of α-helix, β-sheet, and unordered 

content (Fig. 2-8C). After 4 weeks, the secondary structural content was additionally 

similar across all formulations, resulting in the formation of unordered content and β-

sheet structures. (Fig. 2-8F). Taken together, the addition of sucrose, mannitol, and 

sorbitol to exenatide formulation at pH 7.5 shown modest stabilization effect against 

monomer loss, but only by SEC. 

 Figure 2-8 Structural and conformational changes characterized and measured by intrinsic fluorescence 
(A,D) and circular dichroism (B,E), with secondary structure quantified by CDPro analysis (C,F) for 
exenatide that was reconstituted at pH 4.5 w/mannitol and pH 7.5 w/ specified excipients after incubation 
at 37°C for 4 weeks. (n = 3, mean ± SEM). 
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 Discussion 

Exenatide appears to undergo a rapid, pH-dependent degradation at pH 6.5 and 

above while remaining relatively stable at lower pH over the course of incubation. 

Analogously, endogenous GLP-1 has also shown degradation when pH was slightly 

increased, though pH was adjusted on a smaller scale.384 While loss of exenatide’s 

parent peak and monomer detected by LC is pH-dependent, impurity formation varied, 

with mainly oxidation and fragmentation occurring at pH 6.5, deamidation and 

aggregation at pH 7.5 and 8.5. Particle size distributions determined by DLS seemed to 

further confirm these relationships, indicating size distribution shifts toward the 

formation of oligomers at higher pH values. Additionally, trends for structural 

degradation of exenatide reconstituted at an elevated pH seemed to match, where 

exenatide reconstituted at pH 6.5 and 8.5 had greater amounts of β-sheet formation 

than exenatide reconstituted at pH 7.5. While deamidation is rapidly occurring at pH 7.5 

and above, it remains undetermined whether significant unfolding of structure is related 

to, or simply simultaneously occurring with, deamidation. Additionally, though not 

statistically significant, we observed a trend of total AUC loss after 4 weeks of 

incubation by C4 and SEC for exenatide reconstituted at pH 6.5 – 8.5.  This seems to 

indicate some amount of larger aggregate formation occurring at elevated pH over the 

course of incubation further confirming DLS findings.  

Exenatide chemical impurities were identified by LC-MS QToF, revealing several 

deamidations (+1 mass shift), oxidations (+16/+32 mass shifts) oxidation/deamidation 

mixtures (+17 mass shift) and pyro-Q impurity formations. However, we have limited 

knowledge of the actual amino acid residue location of these modifications, as 
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exenatide contains two potential deamidation and two potential oxidation sites. We 

identified three deamidation peaks based on LC-MS QTOF (mass shift +1), with one 

major peak that rapidly increases at high pH in a solution incubated at an elevated 

temperature. We speculate that the major deamidation occurred on asparagine (N28) 

as this amino acid is followed by glycine (G29), the most prominent deamidation hot 

spot. 237,84 Another deamidation is potentially occurring on the glutamine residue (Q13). 

In addition, different C4 deamidation peaks with a mass shift of +1 could be attributed to 

conformational peptide changes resulting from the formation of two different asparagine 

deamidation products (aspartic or iso-aspartic acid).225 In terms of oxidation, an impurity 

that has not been previously studied, we have identified a +32 mass shift that could be 

attributed to single oxidation of two residues or a double oxidation of one residue. It 

appears that this oxidation is likely forming at the M14 residue, as the Trp-cage protects 

the Trp at low pH. Additional analysis of isolated impurity peaks is needed to confirm 

exenatide degradation product identities. 

Our experiments investigating the impact of different excipients on exenatide’s 

stability at pH 7.5 revealed the limited ability of excipients to stabilize exenatide as well 

as their varied effects on exenatide’s degradation profile. We did observe minor 

stabilizing effects protecting against the loss of monomer by mannitol, sorbitol and 

sucrose, though they were unable to prevent chemical degradation. The main impurities 

observed were aggregation and deamidation for all formulations after 4 weeks of 

incubation. Fragmentation was significantly reduced in the formulation containing 

sucrose. 
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While we have determined a pH-dependence in exenatide’s degradation kinetics, 

we have not fully defined the mechanism of peptide aggregation. Currently, we propose 

that degradation occurs through two different mechanisms. At low pH, M14 would seem 

to undergo oxidation as the Trp is protected by the Trp cage. M14 oxidation in 

exenatide’s helical region could lead to alpha helix disruption and potential degradation 

and fragmentation, which was observed at pH 6.5. At high pH, N28 appears 

deamidated, as shown by RPLC, and unfolded at the Trp-cag, resulting in an increase 

of unordered structures by CD, which then can lead to further degradation including 

dimerization, formation of larger aggregates and precipitation, as seen by loss of AUC.  

Considering the recently published FDA guidance for synthetic peptides, and previously 

published literature about exenatide’s ability to elicit immunogenic responses, further 

investigation of the impact of formed exenatide impurities on immunogenicity may be 

warranted.263,376,385 
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Chapter 3: Biosimilarity Under Stress: A Forced Degradation Study 

 Abstract 

Remsima™, marketed as InflectraTM  in the US, (infliximab) is the first biosimilar 

monoclonal antibody (mAb) approved by the European Medical Agency and the Food 

and Drug Administration. Remsima™ is highly similar to its reference product, 

Remicade®, with identical formulation components. The 2 products, however, are not 

identical; Remsima™ has higher levels of soluble aggregates, C-terminal lysine 

truncation, and fucosylated glycans. To understand if these attribute differences could 

be amplified during forced degradation, solutions and lyophilized powders of the 2 

products were subjected to stress at elevated temperature (40–60°C) and humidity (dry-

97% relative humidity). Stress-induced aggregation and degradation profiles were 

similar for the 2 products and resulted in loss of infliximab binding to tumor necrosis 

factor and FcγRIIIa. Appearances of protein aggregates and hydrolysis products were 

time- and humidity-dependent, with similar degradation rates observed for the reference 

and biosimilar products. Protein powder incubations at 40°C/97% relative humidity 

resulted in partial mAb unfolding and increased asparagine deamidation. Minor 

differences in heat capacity, fluorescence, levels of subvisible particulates, deamidation 

and protein fragments were observed in the 2 stressed products, but these differences 

were not statistically significant. The protein solution instability at 60°C, although quite 

significant, was also similar for both products. Despite the small initial analytical 

differences, Remicade® and Remsima™ displayed similar degradation mechanisms and 
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kinetics. Thus, our results show that the 2 products are highly similar and infliximab's 

primary sequence largely defines their protein instabilities compared with the limited 

influence of small initial purity and glycosylation differences in the 2 products. 

 Introduction 

Looming patent expirations for lucrative protein drugs have led to a surge in 

development, regulatory filings, and approvals for biosimilar products.386 Infliximab was 

the first biosimilar monoclonal antibody (mAb) to receive approval by the European 

Medical Agency and, recently, by the US Food and Drug Administration.300,3 The 

approved biosimilar Remsima™, Inflectra™ in the US, is manufactured by Celltrion 

(Incheon, South Korea) and is a copy of Remicade®, manufactured by Janssen. 

Infliximab is approved for various indications, including rheumatoid arthritis, ankylosing 

spondylitis, and inflammatory bowel diseases such as ulcerative colitis and Crohn's 

disease.387 Detailed analytical comparison of Remicade® and Remsima™ shows 

significant product similarity, apart from differences in glycan composition, as well as 

minor differences in levels of soluble aggregates and basic charged 

variants.41,135,300,348 These product variances are not surprising since the biosimilar 

protein is produced using a different clone of Sp2/0 murine hybridoma cell line, a 

different manufacturing processes, and in different facilities.43,300,8 Additionally, while the 

formulations of the 2 products are identical, the final lyophilization process as well as 

the sources for formulation excipients are likely different. These process and excipient 

differences could result in various levels of reactive species, such as reduced sugars 

and peroxide impurities of polysorbates, capable of protein modification during product 

https://www.tandfonline.com/doi/full/10.1080/19420862.2017.1347741
https://www.tandfonline.com/doi/full/10.1080/19420862.2017.1347741
https://www.tandfonline.com/doi/full/10.1080/19420862.2017.1347741
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storage. These factors may all contribute to product quality, safety and efficacy, and 

ultimately make demonstrating biosimilarity challenging. 

One strategy to evaluate biosimilarity is to compare biosimilar and reference 

products in forced degradation studies using thermal, mechanical, or chemical 

stressors.389–391 Forced degradation studies are usually performed in the development 

cycle of biotherapeutics to select formulation excipients, develop dosage forms, and 

determine product shelf life.389,391 These studies are also used during manufacturing 

process validation to define hold times, for process intermediates, and in analytical 

method development to define resolving abilities of various assays. The stress testing 

conditions used for these analyses are far more extreme than the actual physical and 

thermal stresses that the product vials are exposed to during manufacturing, transport, 

storage, and handling by physicians or patients. The results from stress testing likely 

over-exaggerates the extent of product difference and should, thus, be interpreted with 

caution. However, stress conditions accelerate protein degradation, enrich impurity 

levels, and thereby improve analytical resolution to aid with analytical development. 

Ultimately, examination of protein products under stressed conditions give insights into 

the mechanisms of how these proteins may unfold, lose efficacy, aggregate, and 

become immunogenic. Forced degradation studies generate valuable analytical data, in 

relatively short periods of time, to compare biosimilar and reference products and to 

help link protein structural information with product quality, safety and efficacy.389,391 

In this study, we use Remicade® and Remsima™ as a model reference and 

biosimilar product pair to investigate whether small variances in initial product purity and 
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manufacturing process between the 2 products could influence protein instability upon 

stress degradation. Comparisons between batch release data of biosimilar and 

reference product provide the most important information for assessment of product 

safety, efficacy and biosimilarity. However, minor structural differences between 

products may be amplified upon stressing, and such stress testing could provide 

additional information for biosimilarity evaluation. When protein products are stressed, 

their degradation pathways and the extent of modifications are determined by multiple 

factors, including protein sequence, physical state, formulation, excipients, and the 

levels of initial impurities. When formulations of innovator and biosimilar products are 

different, forced degradation studies could be particularly important in determining 

biosimilarity. While the primary sequence, physical state and formulations are identical 

for Remsima™ and Remicade®, the levels of various impurities such as soluble 

aggregates, charged isoforms, misassembled light chain-heavy chain impurities and 

glycation levels are different.136,300 These initial impurities could serve as initiators to 

facilitate further protein unfolding and degradation upon stress. Hence, it could be 

reasonably expected that a stress-testing based strategy that compares reference and 

biosimilar products could help to both accentuate product differences and delineate 

between protein degradative pathways that are defined by protein structure versus 

product impurities. Consequently, we expect the stress degradation studies to provide 

further insight into similarity and differences between the 2 products. 

To test our concept, we used elevated humidity and temperature incubation to 

assess how multiple lots of Remsima™ and Remicade® compared. Rigorous analytical 

characterization was performed to monitor structural (aggregation, hydrolysis, unfolding) 
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and chemical (oxidation, deamidation) changes brought on due to stressing, to 

understand infliximab's degradation pathways, and identify modification “hot spots” in 

the sequence. Lastly, the effect of these modifications on biologic activity was quantified 

using tumor necrosis factor (TNF) binding ELISA and FcγRIIIa binding assays. 

Collectively, our results provide both a biosimilarity comparison and information about 

degradation mechanisms for infliximab in the lyophilized powder form. 

 Materials and Methods 

Infliximab Products 

Remicade® was purchased from the University of Michigan Hospital Pharmacy 

(Ann Arbor, MI) and Remsima™ was acquired from Celltrion (Incheon, South Korea). 

Both Remsima™ and Remicade® are supplied as lyophilized powders in vials 

containing 100 mg of infliximab, 500 mg of sucrose, 0.5 mg Tween 80, and 8 mg 

phosphate buffer salts.387,392 The lot numbers and expiry dates of the products used in 

this study are listed in Table 3-1. All forced degradation studies were conducted within 

the expiry dates of the samples. Samples were reconstituted using pure WFI (Thermo-

HyClone) to a concentration of 1 mg/mL unless specified otherwise. All chemical 

reagents were of analytical grade or purer and were purchased from either Fisher or 

Sigma Aldrich. 
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Protein Stress Study Set-up 

 Powders of Remicade® and Remsima™ contain ∼16% of protein by weight. Vials 

of both products were opened and aliquoted in 1.5 mL Eppendorf tubes (∼6.25 mg of 

powder or 1 mg of infliximab in each tube). Saturated solutions of NaBr and K2SO4 in 

distilled water were prepared to simulate 53% and 97% RH, respectively.393 Desiccant 

was used to simulate dry conditions. The infliximab powders in open tubes were placed 

in desiccators at a specific RH and incubated at 40°C for 1, 2, or 4 weeks. Samples 

were removed from the desiccators and reconstituted with WFI to 1 mg/mL. 

Reconstituted samples were further aliquoted for the various analytical assays and 

stored at either 4°C or −80°C until analysis. Reconstituted proteins were also subject to 

thermal stress and are detailed in the supplemental information. 

Size Exclusion Chromatography 

 SEC was performed using a Waters Binary HPLC pump 1525 equipped with 

Waters auto-sampler 2707 and UV/visible detector 2489. TSK Gel 3000 SWxl column 

(Tosoh 7.8 mm × 30 cm, 5 µm). The mobile phase, phosphate-buffered saline (PBS; pH 

7.4), was delivered at 1 mL/min. Protein samples were filtered through 0.45 μm filter 

Table 3-1. Lot numbers and expiration dates of studied Remicade/Remsima products 
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(Millipore) before injection. A 25 μL injection volume was used and the UV signal was 

monitored at 210 and 280 nm. The area under the curve was used to calculate the 

percentage of monomer, aggregates and fragments. The monomer content for 

unstressed samples served as the 100% reference and the loss of monomer content at 

each stressed time point was calculated by decrease of monomer peak area. 

Circular Dichroism 

CD was performed using a Jasco J-815 CD spectrometer equipped with 

temperature controller (CDF-426S/15) and Peltier cell at 25°C. The samples were 

diluted to 0.1 mg/mL for near UV and to 0.5 mg/mL for far UV measurements. The 

samples were measured in quartz cuvettes (Hellma) with a path length of 1 mm for far 

UV and 1 cm for near UV. The spectra were collected in continuous mode at a speed of 

50 nm/min, bandwidth of 1 nm and a DIT of 1 s. The average of 10 scans were 

reported. Blank buffer without the antibody was subtracted from each spectrum using 

the Jasco spectra manager software (Version 2.1). The raw data were converted to 

mean residual ellipticity (MRE) using the following equation: 

[𝜃𝜃]𝑚𝑚𝑚𝑚𝑚𝑚,𝜆𝜆 = 𝑀𝑀𝑀𝑀𝑀𝑀 𝑥𝑥
𝜃𝜃𝜆𝜆

10 𝑥𝑥 𝑑𝑑 𝑥𝑥 𝑐𝑐
 

where θλ is the observed ellipticity in degrees at wavelength λ, d is the path length in 

cm, c is the concentration in g/mL, and mean residual weight (MRW) is 110 for 

infliximab. Data smoothing was performed using GraphPad Prism Software (Version 

6.07) using a 0th order polynomial with 4 neighbors at each point. 

Intrinsic Fluorescence 

 Intrinsic fluorescence was performed with a Jasco J-815 spectrometer equipped 

FMO-427S/15 detector and Peltier controller set at 25°C. The samples were diluted to 
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0.1 mg/mL and were measured in black window quartz cuvettes (Hellma) with a path 

length of 1 mm. The spectra were collected in continuous mode with a data pitch of 

5 nm, scan speed of 50 nm/min and a DIT of 1sec; data were averages of 5 scans. The 

excitation wavelength was 280 nm and emission spectra were collected from 300 to 

400 nm, with a gain voltage of 850 V. Data smoothing was performed using GraphPad 

Prism Software (Version 6.07) using a 2nd order polynomial with 4 neighbors at each 

point. 

Gel Electrophoresis 

 Selected samples were analyzed by non-reducing and reducing SDS-PAGE to 

examine for presence of mAb aggregates and fragments. Samples (∼10 µg) were 

mixed with NuPAGE LDS sample buffer, at 3:7 sample: loading buffer ratio and 

denatured at 90°C for 3 minutes before gel loading. For reduced samples, 5% v/v β-

mercaptoethanol was added before heat denaturation. Samples were run on Invitrogen 

PowerEase 500 with NuPAGE 4–12% BisTris gel. BioRad Precision Plus Protein™ All 

Blue Standards were used for molecular weight controls. Gels were stained using 

Thermo Pierce Silver Stain Kit and accompanying protocol and analyzed using 

Fluorchem M (ProteinSimple). 

Nanoparticle Tracking Analysis 

 NTA (Nanosight NS300, Malvern) was used to quantify subvisible particulates in 

protein samples. The NS3000 was fitted with a SCMOS camera, a 405 nm blue laser 

and the sample chamber. The samples were diluted 10-fold before analysis and 

transferred to sterile syringes (BD) before injection into the sample chamber. The 

sample chamber was flushed with antibody buffer and then with sterile water in between 
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sample analysis. The sample results were averages of three 60s runs measured at 

0.1 mL/min flow rate and were analyzed using the NTA 3.0 software. 

Modulated Differential Scanning Calorimetry 

Modulated DSC (Discovery, TA Instruments, New Castle, DE) was used to 

determine the Tg and heat of enthalpy of the lyophilized powders. Sample powders 

(∼10 mg) were sealed in hermatic aluminum pans. The measurements were performed 

at a heating rate of 2 °C per min from 0 to 180 °C under a nitrogen gas flow of 

25 mL/min. The modulation amplitude was 0.5 °C and the period was 40 s. The Tg and 

enthalpy were obtained by fitting data with TA Trios software (v4.1.1). 

Nano-differential Scanning Calorimetry 

The thermal melt profiles for stressed and unstressed samples of Remicade® and 

Remsima™ were measured using TA Instruments nDSC equipped with an autosampler. 

The thermograms were obtained using a scan rate of 1°C/min from 10°C to 100°C. The 

thermograms were analyzed using TA NanoAnalyze software (v2.4.1) after blank buffer 

subtraction using multiple scaled 2 state models to determine the 3 transition melt 

temperatures. 

Thermal Degradation 

Remicade and Remsima powders were reconstituted in water for injection (WFI) 

to a concentration of 1 mg/ml. Samples were incubated at various temperatures 4°C, 

25°C, 40°C and 60°C (n=4 per) for up to 1 week. Periodically, formation of soluble 

aggregates and partial unfolding were monitored by SEC and Thioflavin-T (ThT) 

fluorescence assay, respectively. Follow on studies were performed at 60°C, the most 

stressful temperature, for multiple lots of Remicade and Remsima to assess lot to lot 
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variability as well as the differences between the two products. Samples were incubated 

for 3 h and protein aggregation was examined by SEC and ThT fluorescence analyses 

periodically. Following 2 h incubation, subvisible particulates were analyzed by 

Nanoparticle Tracking Analysis (NTA). Samples incubated for 1 h were digested and 

analyzed by LC-MS/MS to assess individual amino acid deamidation, oxidation and 

dioxidation levels. 

Thioflavin-T Fluorescence Assay 

Thioflavin-T (ThT) is a fluorescent dye known to bind to beta sheet/hydrophobic 

rich regions of proteins and increase the fluorescence intensity1. ThT assay was 

performed to assess the exposure of hydrophobic regions and protein unfolding and 

aggregation as follows: 50 x Stock ThT (Sigma) solutions were prepared by dissolving 8 

mg of ThT in 10 mL of 10 mM phosphate/150 mM NaCl and stored away from light. 1x 

ThT working solutions were prepared by dilution into 10mM phosphate/150 mM NaCl 

buffer and filtered through 0.45 µm membrane filters prior to use. Samples were plated in 

triplicate in black walled 96-well plates at 30 µL/well to which 100 µL of 1x ThT working 

solution was added and allowed to react for 5 min at room temperature. The fluorescence 

intensity was measured using BioTek Nova plate reader with excitation at 440 nm and 

emission at 482 nm. 

Liquid Chromatography-Mass Spectrometry 

Antibody tryptic digests were prepared per manufacturer procedure from the low 

pH protein digestion kit (Promega, CAS # CS1895A01), designed to prevent non-

enzymatic protein modifications during digest. Antibody samples were denatured in 8 M 

urea, reduced, and alkylated with iodoacetamide. The reactions were diluted 7-fold and 
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incubated with Trypsin Gold and Lys-C (Promega) at 20:1:1 (w/w/w) ratio overnight at 

37°C. After digestion was complete, the reactions were acidified with trifluoroacetic acid. 

500 ng of each digested sample was analyzed by nano UPLC-MS/MS with a 

Proxeon EASY-nLC 1000 HPLC system interfaced to a ThermoFisher Q Exactive HF 

mass spectrometer. Peptides were loaded on a trapping column and eluted over a 

75 µm × 50 cm analytical column (Thermo Fisher P/N ES-803) at 300 nL/min by using a 

2-hour reverse phase gradient; both columns were packed with PepMap RSLC C18, 

2 µm resin (Thermo Scientific). The mass spectrometer was operated in data-

dependent mode, with MS and MS/MS performed in the Orbitrap at 70,000 and 17,500 

FWHM resolution, respectively. The 15 most abundant ions were selected for MS/MS. 

Data analysis for LC-MS/MS analysis of digested specimens was performed with 

Byonic search software (Protein Metrics Inc., San Carlos, CA, USA).394,395 In this 

instance, the search used the infliximab sequence. Identifications for peptide ions were 

made by matching the precursor (MS1) mass and expected fragment ion masses (MS2) 

to infliximab peptides. The search included variable modifications such as mono- and di-

oxidation on methionine and tryptophan, deamidation and ammonia loss from 

asparagine, and a wide range of N-linked glycans. 

Quantification of modifications relative to unmodified and other modified peptides 

was accomplished using the Byologic software (Protein Metrics), which uses a label-

free quantification approach with extracted ion chromatogram areas (XIC areas). This 

software automated the XIC extraction and data organization automatically from the 

Byonic results or in silico generated lists of potentially observed molecular ions. 
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Ion Mobility Mass Spectrometry 

Reconstituted antibody samples for native MS experiments were buffer 

exchanged into 100 mM ammonium acetate buffer using Micro Bio-Spin 30 columns 

(Bio-Rad, Hercules, CA) without further purification. Sample aliquots (∼7 µL) were 

analyzed by IM-MS on a quadrupole-ion mobility-time-of-flight mass spectrometer (Q-

IM-ToF MS) instrument (Synapt G2 HDMS, Waters, Milford, MA).396,397 Antibody ions 

were generated using a nESI source in the positive mode. Capillary voltages of 1.4 kV-

1.6 kV were applied, and the sampling cone was operated at 60 V. The trap traveling-

wave ion guide was pressurized to 3.4 × 10−2 mbar of argon gas. The traveling-wave ion 

mobility separator was operated at a pressure of ∼3.5 mbar and used a series of DC 

voltage waves (40 V wave height traveling at 600 m/s) to generate ion mobility 

separation. The ToF-MS was operated over the m/z range of 1000–10000 at a pressure 

of 1.7 × 10−6 mbar. 

Mass spectra were calibrated externally using a solution of cesium iodide 

(100 mg/mL) and processed with Masslynx V4.1 software (Waters, Milford, MA). Exact 

molecular masses of intact mAb samples were calculated by assigning the charge 

states based on the set that gives lowest standard deviation for a given average mass 

assignment.398,399 Relative dimer ratios were calculated from total ion counts of major 

charge states (30+ to 36+) compared with that of major monomer charge states (20+ to 

26+). Peaks were fitted to Gaussian models and integrated using OriginPro 9 software. 
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FcγRIIIa Binding 

The binding of infliximab to FcγRIIIa was tested with biolayer interferometry using 

a BLITZ instrument (Fortebio, Menlo Park, CA). The procedure used here was adopted 

from the method reported previously.400,401 Protein G biosensor tips were used and the 

binding measurement was performed at 25°C. Infliximab samples at 4.6 µM (1 mg/mL) 

initial concentration in formulation buffer were diluted to 0.8 µM with PBS containing 

1 mg/mL casein as a blocking agent (kinetic buffer). Binding studies were performed as 

follows: First, the protein G biosensor tip was hydrated in PBS for 10 min and then 

incubated for 30 min in kinetic buffer. Next, an initial baseline (30 s) was established in 

the kinetics buffer and then the protein G biosensor tips were loaded (120 s) with 

infliximab samples at a concentration of 0.8 µM to a response level of ∼4 nm. A new 

baseline (240 s) was then established followed by the association (180 s) and 

dissociation (360 s) of FcγRIIIa measured by dipping the biosensor into solutions of 

FcγRIIIa and PBS kinetic buffer, respectively. The biosensor tips were regenerated as 

described previously400 after each assay cycle. To determine the dissociation constant 

(KD), a range of FcγRIIIa concentrations from 0.4 µM-3.2 µM was evaluated. Data 

generated from the binding of the receptor to infliximab were collected in triplicate for 

each incubation time point and product, lot and globally fitted to a 1:1 binding model 

using BLITZ Pro software. 

ELISA for TNF Binding 

 96-well ELISA plates (Nunc Maxisorp) were coated with 1 µg/mL TNF (R&D 

systems) in PBS (pH 7.4) overnight. The plates were washed for 4 cycles with PBS (pH 

7.4) using plate washer (Thermo Wellwash 4 MK-2) and subsequently blocked for 2 h at 
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room temperature with 1% bovine serum albumin (BSA) in PBS (pH 7.4) solution. The 

plates were washed again and incubated for 1 h at room temperature with infliximab 

standards (1 ng/mL to 100,000 ng/mL) and diluted samples of equal concentrations. All 

standard and sample dilutions were prepared in PBST-BSA (PBS (pH 7.4) containing 

0.02% Tween 80 and 1% BSA). The plates were once again washed and then 

incubated with 1000-fold dilution of AP-conjugated anti-human Fc IgG (Sigma-SKU: 

A9544) in PBST-BSA for 1 h at room temperature. The plate was then washed again to 

remove residual secondary antibody and incubated with p-nitrophenyl phosphate 

(pNPP) (Sigma) for 30 min at room temperature for color development. Absorbance at 

405 nm was then read using plate reader (Spectra Max M3, Molecular Devices). A 

standard curve was built using a sigmoidal fit and concentrations of diluted samples 

were calculated. The sample concentrations were divided by the initial unstressed 

Remicade® concentration to determine the relative TNF binding activity. 

Statistical Analysis 

Statistical analysis was performed using Prism 6 (Graphpad) suite. 2-way 

ANOVA hypothesis testing was performed using multiple comparisons relative to initial 

samples of Remicade® or Remsima™. Corrections for multiple comparisons were 

performed using Dunnett's method and significance levels were set at 0.05 (95% 

confidence interval). 
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 Results 

Protein Stress: Monomeric Changes and Particulate Formation 

For forced degradation studies, the powders of the 2 products were subjected to 

incubation at 40°C, at various humidity levels (dry to 97% relative humidity (RH)). A 

schematic of the study design is depicted in Fig. 3-1. Both Remsima™ (RC) and 

Remicade® (RS) were supplied as lyophilized powders in vials containing 100 mg of 

infliximab, 500 mg of sucrose, 0.5 mg Tween 80, and 8 mg phosphate buffer 

salts.387,392 Overall, the protein content of the powder cake was ∼16% (w/w). The 

powder melt temperatures, determined by modulated-differential scanning calorimetry 

(mDSC), were similar, with values of 135.8°C for Remicade® and 138.1°C for 

Remsima™. Product vials were opened, and powders were aliquoted into Eppendorf 

tubes and the open tubes were incubated for 0, 1, 2 or 4 weeks at 40°C and elevated 

humidity. At all incubation conditions, powders visually appeared moist, and those 

incubated at 97% RH deliquesced. 

Figure 3-1. Schematic of stress study design. Humidity/thermal stress of infliximab samples were 
performed by incubating the drug powders at 40ºC at different %RH for 0–4 weeks, followed by 
reconstitution (in WFI) and analysis. 

https://www.tandfonline.com/doi/full/10.1080/19420862.2017.1347741#f0001


 
 

96 

After incubation, water for injection (WFI) was added to the samples and levels of 

protein aggregation were examined by size-exclusion chromatography (SEC). Analysis 

revealed a time- and humidity-dependent loss of native monomer and formation of 

soluble aggregate. The kinetics of monomer loss were similar for the 2 products (Fig. 3-

2A,C). The rates of monomer loss were calculated using linear regression and are 

summarized in Table 1. The fastest rate of protein aggregation was observed at 97% 

RH with 0.42% monomer loss per day for Remicade® and 0.44% per day for 

Remsima™, and virtually no monomer loss was observed for the dry samples. Samples 

incubated for 4 weeks were further characterized by non-reducing SDS-PAGE (Fig. 3-

2B). The gel showed increased levels of aggregates with increasing relative humidity, 

but also the presence of mAb fragments not previously detected by SEC. Further 

characterization was performed using reducing SDS-PAGE (Fig. 3-2D). The absence of 

some aggregate bands after reduction suggests the aggregate formation was partially 

mediated by disulfide bonds. Jung et al. reported ∼0.12 free –SH mol/mol IgG for 

infliximab, which may play a role in disulfide bond shuffling.136 

https://www.tandfonline.com/doi/full/10.1080/19420862.2017.1347741#f0002
https://www.tandfonline.com/doi/full/10.1080/19420862.2017.1347741#f0002
https://www.tandfonline.com/doi/full/10.1080/19420862.2017.1347741#f0002
https://www.tandfonline.com/doi/full/10.1080/19420862.2017.1347741#f0002
https://www.tandfonline.com/doi/full/10.1080/19420862.2017.1347741#f0002
https://www.tandfonline.com/doi/full/10.1080/19420862.2017.1347741#f0002
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Particulate size for the reconstituted samples was measured using nanoparticle 

tracking analysis (NTA). Particulates from 50–350 nm were observed for both products, 

as shown in Fig. 3-3A,B. Remicade® had fewer observed particulates than Remsima™, 

both initially and after humidity stressing. Although the counts exceed several millions, 

the particle sizes measured were quite small, and, overall, the particulate counts 

showed large variability (Table 3-2). Further characterization of these samples was 

performed using nano-differential scanning calorimetry (nDSC)(Fig. 3-3C,D). The 3 

characteristic melt temperatures were determined (Tm1: 67°C, Tm2: 72°C, and Tm3: 

86°C) and were similar for the 2 products, in agreement with previously published 

values.136 No thermal shifts in the melt temperatures were observed for either product 

following stress; however, a decrease in overall heat capacity was noticed for the 

stressed samples. Since the amount of material was held constant, this suggests less 

energy is required for unfolding after stressing.  

Figure 3-2. (A) SEC-LC infliximab chromatograms over incubation at 97% RH/40ºC and (B) Kinetics of 
monomer loss. (n = 4, n ± SEM) Characterization by (C) SDS PAGE and (D) Reducing SDS PAGE of 
RC/RS after 4 weeks of incubation at various humidities/40ºC. 

A 

B 

C 

D 

https://www.tandfonline.com/doi/full/10.1080/19420862.2017.1347741#f0003
https://www.tandfonline.com/doi/full/10.1080/19420862.2017.1347741#f0003
https://www.tandfonline.com/doi/full/10.1080/19420862.2017.1347741#f0003
https://www.tandfonline.com/doi/full/10.1080/19420862.2017.1347741#f0003
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Table 3-2. Rates of monomer loss for RC/RS after incubation at various humidities/40ºC. 

Figure 3-3. (A) Nanoparticle tracking analysis and (B) DSC thermal melts of unstressed (light) and 
stressed (dark) RC and RS that was incubated at 97% RH/40ºC for 4 weeks. 
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Additional forced degradation studies were performed to evaluate antibody stability 

in solution. Little to no change, as measured by SEC and ThT, was seen for protein 

samples incubated at 4-40°C over the course of 1 week. However, samples incubated at 

60°C showed rapid aggregation and precipitation. Follow on studies were performed at 

60°C with multiple lots of Remicade and Remsima incubated for up to 3 hours to establish 

lot-to-lot variability after thermal stressing for each product as well as to explore 

differences between two products. All samples were analyzed by SEC, ThT, and selected 

samples were analyzed by Nanosight (NTA) and LC-MS/MS after trypsin digest. Results 

from the different assays are summarized in Fig. 3-4. Nearly all the protein appeared to 

be aggregated after 1hr at 60°C as indicated by Fig. 3-4A,B. Following thermal stress, 

aggregate particle sizes were measured by DLS which yielded similar particles sizes for 

both products, but with wide size distributions. NTA was subsequently used to resolve 

smaller particle sizes (Fig. 3-4C). Several million particles less than 600 nm in size were 

observed for both products with Remicade having a broader particle size distribution than 

Remsima. LC-MS characterization (Fig. 3-4D-F) shows the propensity of a few sites for 

chemical modifications (deamidation at N392, N424 as well as increase in dioxidation at 

various W sites). Thermal stress at the high temperature of 60°C (near the protein melt 

temperatures as determined by nDSC) seems to induce protein unfolding that leads to 

rapid aggregation. In some instances we also observed simultaneous changes in 

chemical purity. Overall, due to the strong parallel between SEC and ThT results, thermal 

stress likely induces protein aggregation due rapid unfolding and increased hydrophobic 
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exposure rather than by chemically mediated process. Overall, the response of both 

products to thermal stress is similar, again reinforcing the biosimilarity of the products. 

Characterization of Protein Aggregates and Hydrolysis Products 

To augment SEC and SDS-PAGE analyses, unstressed and 97% RH/4-week 

incubated samples for both products were further characterized by ion mobility mass 

spectrometry (IM-MS). The IM-MS analysis is capable of examining antibodies under 

native conditions with minimal handling of samples compared with other MS-based 

methods. Relatively weak electric fields are used to separate gas-phase protein ions 

accordingly to their orientationally averaged collision cross sections (CCSs) and charge. 

IM-MS spectra displayed similar IM drift times for Remicade® and Remsima™ with 

discrete positions in drift time vs. m/z space for antibody fragments, monomers, dimers, 

and trimers (Fig. 3-5). The IM-MS results suggested that small initial levels of antibody 

impurities increase significantly after humidity and temperature stressing (Table 3-3). 

Figure 3-4. Characterization of RC (blue) and RS (orange) incubated at 60ºC. (A) Kinetics of 
monomer (SEC-LC) and (B) ThT fluorescence. (C) NTA analysis after 2 hrs of incubation. LC-
MS/MS analysis of (D) deamidation, (E) oxidation and (F) dioxidation after 1 hr of incubation. 

https://www.tandfonline.com/doi/full/10.1080/19420862.2017.1347741#f0004
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For example, the presence of dimer and trimer protein aggregates, as well as 50 and 

100 kDa antibody fragments, were observed in stressed samples. Appearance of these 

species was evident from the different drift times relative to protein monomer drift time, 

as observed in IM-MS spectra (Fig. 3-5). While the initial levels of aggregates were 

slightly higher for Remsima™ (0.35% by SEC, 2.0% by IM-MS) than for Remicade® 

(0.08% by SEC, 0.8% by IM-MS), these differences did not result in faster aggregation 

upon stress for Remsima™. The large initial dimer differences between the 2 products 

as measured by IM-MS may be attributed to method variability and should be 

interpreted with caution, as only 2 batches of each product were analyzed. The levels of 

dimer were similar in stressed samples for Remsima™ (12.4% by SEC and 3.5% by IM-

MS) and Remicade® (12.7% by SEC and 3.0% by IM-MS), and the presence of trimers 

was detected at 0.1% in both products by IM-MS.  

The levels of dimers in stressed samples measured by IM-MS appear to be lower 

than the levels measured by SEC, indicating that possibly some of the newly formed 

dimers dissociate during mass spectrometry analysis or during sample preparation, e.g., 

buffer exchange before mass analysis. Prominent fragment sizes of 50 and 100 kDa 

were observed by IM-MS and may be antibody fragments corresponding to 1 heavy 

Table 3-3 Impurity profiles of RC and RS before and after 4 weeks of incubation at 97% RH/40ºC (n = 2, 
mean ± SD) NA: not applicable; NS: not significant. 

https://www.tandfonline.com/doi/full/10.1080/19420862.2017.1347741#f0004
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chain or 2 linked heavy chains, respectively, whereas fragments of 125 kDa by SDS 

PAGE suggest the loss of one light chain from the mAb. These modifications confirm 

the susceptibility of infliximab to undergo inter-chain disulfide rearrangements upon 

humidity stressing. While the levels of protein fragments appear to be higher for 

Remsima™ than for Remicade® following forced degradation, there is high variability in 

the measurements and a limited number of samples were available for analysis. 

Overall, while a significant degree of infliximab aggregation and hydrolysis was 

observed after the 4-week stress, there were no statistically significant differences in the 

levels of impurities between the 2 stressed products.  

Figure 3-5 . IM-MS spectra and corresponding mass to charge spectrograms of unstressed (A) RC and 
(B) RS before incubation and (C) RC and (D) RS after 4 weeks incubation at 97% RH/ 40ºC. Fragment, 
monomer, dimer and trimer species are annotated in the ion mobility spectra. 
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Structural Characterization 

To better understand the structural changes induced by humidity stressing, 

selected samples were probed using bulk-averaging spectroscopic techniques. Intrinsic 

fluorescence and near UV circular dichroism (CD; 250–320 nm) were used to gather 

information about the tertiary structure, while far UV CD (190–250 nm) measurements 

were used to probe the secondary structure. Intrinsic fluorescence examines changes in 

the local environment surrounding aromatic amino acids and it assesses how this local 

hydrophobicity alters the emission profile upon protein stress.402 The intrinsic 

fluorescence curves for Remicade® and Remsima™ samples incubated for 0, 2 and 

4 weeks at 97% RH are shown in Fig. 3-6A,B. Both products had a maximum intensity 

at 335 nm and they showed no substantial differences upon humidity stressing, apart 

from a slight decrease in maximum relative fluorescence intensity. Linear drop-offs in 

the maximum intensity (λ335) are observed with increasing incubation times, suggestive 

of partial unfolding, aggregation, or monomer loss. Our results, which show high 

homology between the 2 products, also demonstrate comparable intrinsic fluorescence 

profiles to published results for other IgG1s.160,403,404 

Near UV and Far UV CD spectra were collected to confirm the intrinsic 

fluorescence findings, as shown in Fig. 3-6C,D. The Remicade® spectra did not change 

substantially with the increased duration of protein incubation. The Remsima™ samples 

showed little change over 2 weeks but showed a large deviation for the 4-week sample 

at 250–280 nm not observed for Remicade®. The initial near UV spectrums look similar 

to published results for infliximab.136 A small shift in absorbance was observed at the 

near UV region between 280 nm and 300 nm corresponding to the aromatic residues, 

https://www.tandfonline.com/doi/full/10.1080/19420862.2017.1347741#f0005
https://www.tandfonline.com/doi/full/10.1080/19420862.2017.1347741#f0005
https://www.tandfonline.com/doi/full/10.1080/19420862.2017.1347741#f0005
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similar to the earlier drops in the intrinsic fluorescent spectra. Regarding the deviation in 

the near UV spectrum between 250 nm and 280 nm in the 4-week Remsima™ sample, 

the spectral pattern suggests a change in the sulfide linkage profile for this sample, in 

agreement with the earlier findings from IM-MS and SDS-PAGE. It is unclear, however, 

why similar shifts were not observed for other samples, which should have also 

undergone similar disulfide rearrangements as suggested by previous data. 

Figure 3-6. Biophysical characterization of humidity stressed samples of RC (solid) and RS (dashed). 
(A,B) IF (C,D) near-UV CD and (E,F) far-UV CD. Blue: 0 weeks; Red: 2 weeks; Green: 4 weeks. 
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We next assessed the far UV CD to capture any secondary structural changes 

that might have occurred due to humidity stressing. Far UV CD from 190 nm to 250 nm 

has been used extensively to study secondary structure of proteins and antibodies.405–

407 As shown in Fig. 3-6E,F, the far UV CD spectra showed considerable similarity 

between the 2 products. In addition, Remicade® samples displayed small time-

dependent deviations in their secondary structure. By contrast, Remsima™ samples 

showed a slight increase in positive signal at 218 nm, suggesting a greater anti-parallel 

β structure. Yet, the overall shapes of spectra were similar for the 2 products, indicating 

that secondary structural differences between Remicade® and Remsima™ following a 

4-week incubation were negligible. The variability of native protein concentration in 

stressed samples somewhat limits the utility of these intrinsically low resolution 

spectroscopic methods for biosimilarity characterization. 

Individual Amino Acid Modifications 

To further characterize how humidity stress leads to chemical modifications of 

the individual amino acids, the proteins were enzymatically digested and analyzed by 

LC-MS. As shown earlier by LC-MS, both products exhibit similar but significant 

degrees of oxidation and deamidation, as well as rather different distributions of N-

linked glycans.7 Here we applied LC-MS methodology to examine whether initial small 

differences in chemical modifications can be amplified upon stress, as well as to identify 

infliximab's “hot spots,” i.e., the amino acid residues easily susceptible to modifications 

upon elevated humidity and temperature stress. 

https://www.tandfonline.com/doi/full/10.1080/19420862.2017.1347741#f0005
https://www.tandfonline.com/doi/full/10.1080/19420862.2017.1347741#f0005
https://www.tandfonline.com/doi/full/10.1080/19420862.2017.1347741
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Chemical modifications of the stressed samples were analyzed by LC-MS and 

depicted in Fig. 3-7. The asparagine deamidation levels were initially similar for 

Remsima™ and Remicade® at light chain residues N-137 and N-158, and at heavy 

chain residues N-31, N-57, N-318, N-364, N-387, N-392, and N-424. After humidity 

stress, deamidation levels for both Remsima™ and Remicade® increased at all 

measured residues (Fig. 3-7A). The highest levels of deamidation after 4-week 

incubations were observed for LC N-158 (7.5%), HC N-57 (18–19%) and HC-N-392 

(10–11%). The deamidation of conserved Asn 384 (N-387, 384+3 due to different 

numbering schemes) and 389 (N-392), located in the Fc region, that is responsible for 

antibody binding to Fcγ and neonatal Fc (FcRn) receptors, might be expected to be 

significant. While we observed significant increases in deamidation of N-387 and N-392 

residues, the extent of deamidation was similar between Remicade® and Remsima™. It 

also has been shown for other antibodies that deamidation of Fc region residues did not 

significantly alter Fc receptor binding.128,129,390,408 The Fc receptor binding is primarily 

dictated by glycosylation of mAb, specifically the levels of afucosylated species.  

  

Figure 3-7. LC-MS/MS analysis of chemical modifications over the course of incubation at 97% RH/40ºC 
for RC (blues) and RS (oranges). (A) Deamidation. (B) Oxidation. (C) N-glycosylation. (n = 2, average ± 
SEM). 

https://www.tandfonline.com/doi/full/10.1080/19420862.2017.1347741#f0006
https://www.tandfonline.com/doi/full/10.1080/19420862.2017.1347741#f0006
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In contrast, deamidation of HC N-57 could be significant due to the residue's 

location in the complementarity-determining region (CDR); thus, deamidation of HC-N-

57 could potentially reduce infliximab's binding to TNF. Other antibodies have been 

shown to exhibit reduced binding abilities to their respective antigens upon chemical 

modifications of amino acids in the CDR.103,390,408 Interestingly, while deamidation 

appears to increase with the duration of incubation for some asparagine residues (N57, 

N318, and N392), others exhibit the same deamidation levels after 2 and 4 weeks. This 

provides information regarding the conformational flexibility of the mAbs and the 

propensity and accessibility of select residues to deamidation. Overall, levels of 

deamidation appear to be very similar between Remicade® and Remsima™ products 

both initially and following stressed degradation. 

The levels of initial and stress-induced methionine oxidation were analyzed as 

well (Fig. 6B). Our results indicate significant initial oxidation levels for M-55 at 6.3% 

(LC) and M-18 (∼7%), M-34 (∼13%), M-85 (8.2%), M-255 (∼12%) and M-431 (∼4%) on 

the heavy chain. However, oxidation levels appeared to be unchanged following forced 

degradation. Overall, the levels of oxidation are very similar for the 2 products. The 

oxidation of methionine residues in the Fc region of IgG1 (M-252 and M-431) is known 

to reduce binding to FcRn and decrease circulation in vivo.409 In addition, oxidation of 

these methionine residues leads to reduced IgG1 binding to Protein-A column during 

purification.128,129,390,408 While we also observe oxidation of the critical methionine 

residues HC M-255 (252+3) and HC M-431 (428+3), the levels are similar in the 2 

products and do not appear to increase during powder temperature/humidity stressing. 

https://www.tandfonline.com/doi/full/10.1080/19420862.2017.1347741#f0006
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The results of our exploratory infliximab solution thermal stability study indicated 

significantly increased HC M-255 oxidation levels after incubation at 60°C (Fig. S1D-E), 

highlighting the importance of this residue as a “hot-spot” for infliximab degradation 

pathways. In addition, increases in tryptophan di-oxidation were observed in heat-

stressed protein solutions, specifically the di-oxidation of HC W-33, W-47 and W-161, 

which increased from <0.5% to ∼2–4%. We also observed an increase in deamidation, 

especially for HC N-387, N-392 and N-424. 

In addition to oxidation and deamidation, we examined conserved N-

glycosylation of the Fc domain by LC-MS. Glycosylation occurs during recombinant 

production of infliximab and is defined to a large degree by the specific cell line clone as 

well as cell culture conditions.410 Both products were produced using murine hybridoma 

cell line Sp2/0, but using different infliximab expressing clones generated by the 

innovator and biosimilar companies.300 8 Thus, it is not surprising that a biosimilar 

product like Remsima™ exhibits different distributions of glycans relative to the 

reference product Remicade®.43,300,388 We also confirmed initial differences in glycan 

distribution, with G0F, G0F-Man, G0F-Man(3) and G0F-Man(1) being more abundant in 

Remicade® while G1F, G2F and G2 more prevalent in Remsima™ (Fig. 6C). These 

initial differences are important, as it appears that overall levels of mannose and 

afucosylated glycans are higher in Remicade® than in Remsima™, and this is known to 

affect Fc receptor binding, antibody dependent cell-mediated cytotoxicity (ADCC), 

circulation time and immunogenicity.411 We also observed that glycan distribution 

remained virtually unchanged for both Remicade® and Remsima™, as expected. 

Proteins are glycosylated enzymatically during production by the host cell; thus, it is 

https://www.tandfonline.com/doi/full/10.1080/19420862.2017.1347741
https://www.tandfonline.com/doi/full/10.1080/19420862.2017.1347741#f0006
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unlikely that glycosylation could be altered during stressed stability studies apart from 

possible selective aggregation/degradation of a specific glycan type. 

In Vitro Efficacy 

In addition to the analytical characterization of the humidity stressed samples, we 

also performed in vitro bioactivity assays to gauge how stressing affects infliximab's 

abilities to bind TNF and FcγRIIIa (Fig. 3-8). We expected that stressed-induced 

individual amino acid modification in the CDR could reduce infliximab's binding to TNF, 

while modification of the Fc domain could alter FcγRIIIa interactions. In addition, the 

reduction of intact infliximab monomer content over the duration of the forced 

degradation study could lead to further reduction in antigen and receptor binding.  

According to regulatory filings, Remicade® and Remsima™ exhibit similar initial 

ability to bind and neutralize TNF.43,300 The 90% confidence interval for the mean 

difference between Remicade® and Remsima™ TNF binding affinity measured by 

ELISA falls entirely within the equivalence margin. 346 Our measurements, derived from 

only 2 lots for each product, indicated that the TNF binding affinity was slightly higher for 

Figure 3-8 (A) TNF-α binding (measured by ELISA) (B) FcγRIIIa binding (measured by BLITZ) (n = 2, 
mean ± SEM; P < 0.05)  for RC and RS over the course of incubation 97% RH/40ºC. 

https://www.tandfonline.com/doi/full/10.1080/19420862.2017.1347741#f0007
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Remsima™, at 111.7% of the initial Remicade® value, but this result was not statistically 

significant (Fig. 3-9A). Following 4 weeks of forced degradation, TNF neutralization 

decreased to 81.8% (Remicade®) and 77.2% (Remsima™) of the initial value for 

unstressed Remicade® standard. This decrease could be attributed to increased 

deamidation levels of HC-N-57 or reduced infliximab monomer content or both. 

However, there was no statistically significant difference in TNF binding affinity between 

2 stressed products at the corresponding time points. 

The differences in FcγRIIIa binding corresponding to the lower levels of 

afucosylation for Remsima™ relative to Remicade® were reported previously.388 In the 

regulatory filing, decreased afucosylation was reported, and corresponded to a 20% 

lower binding efficiency to FcγRIIIa and 20% lowered ADCC for Remsima™ relative to 

Remicade®.346 The initial unstressed samples of Remicade® showed tighter binding to 

FcγRIIIa relative to Remsima™ with the respective KD of 173 ± 56 nM and 368 ± 

160 nM, as measured by biolayer interferometry (Fig. 3-9B). The receptor binding 

progressively weakened following stress degradation of the 2 products, and the 

KD increased to 545 ± 117 nM for Remicade® and 680 ± 22 nM for Remsima™ after 

4 weeks at elevated humidity and temperature. Since no significant changes in 

glycosylation between the 2 products were detected upon incubation, the reduction in 

Fc receptor binding is likely attributed to the progressive increase in aggregation and 

fragmentation of the 2 antibodies, in conjunction with the chemical modifications, thus 

reducing the total amount of bioactive monomer available to bind receptors. 

Additionally, the initial differences in Fc binding between the 2 products appear to 

largely diminish upon stressing, highlighting the importance of structural integrity over 

https://www.tandfonline.com/doi/full/10.1080/19420862.2017.1347741#f0007
https://www.tandfonline.com/doi/full/10.1080/19420862.2017.1347741#f0007


 
 

111 

glycosylation patterns for bioactivity. Overall, no statistically significant differences in 

FcγRIIIa binding were observed throughout the entire study, which was possibly due to 

the small number of lots tested (n = 2). 

 Discussion 

In this study, humidity- and temperature-induced forced degradation was used to 

analytically compare a biosimilar mAb, Remsima™, with its reference product, 

Remicade®. Despite the minor differences in initial product profiles (glycosylation 

pattern, levels of dimer and basic variants), as well as differences in the manufacturing 

processes of 2 mAbs, the 2 products behaved remarkably similarly in the forced 

degradation studies.43,136,300 Very similar rates of degradation, along with similar types 

and levels of impurities were detected in the 2 stressed products. Hence, for products 

with high analytical similarity and identical formulations, such as Remsima™ and 

Remicade®, the degradation mechanisms appear to be defined primarily by protein 

sequence and structure rather than by minor initial product differences. However, other 

biosimilar products may be formulated differently or produced in different expression 

systems compared with their reference products, both potentially leading to greater 

product differences and varying mechanisms of protein instability in forced degradation 

studies.139,29 

Our results revealed the main infliximab degradation products to be protein 

aggregates and antibody fragments of 50 and 100 kDa. The rate of monomer loss was 

nearly identical for the 2 products under the various humidities tested, and higher initial 

levels of dimers in Remsima™ did not result in faster protein aggregation. The actual 

https://www.tandfonline.com/doi/full/10.1080/19420862.2017.1347741
https://www.tandfonline.com/doi/full/10.1080/19420862.2017.1347741
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levels of formed aggregates and antibody fragments varied slightly when measured by 

SDS-PAGE, IM-MS and SEC. An increase in the level of subvisible particulates was 

observed for both products by NTA after stressing. Each analytical method has inherent 

limitations due to variations in the sample handling, e.g., concentration/dilution, buffer 

exchange, mixing with gel loading buffer and binding to column matrix, which is known 

to affect aggregate before the detection.412 Hence, use of orthogonal methods allows for 

a more complete picture of protein aggregation and hydrolysis. 

Structural changes in the 2 products were compared spectroscopically. The near- 

and far-UV spectral results for the initial samples are in agreement with the published 

results for the native protein and small changes in spectra were observed in stressed 

samples.136 No thermal shifts were observed in stressed samples by nDSC, but lower 

enthalpy indicated minimal structural changes. Further analysis suggests these 

products slightly unfold, but undergo significant deamidation at specific “hot spots” upon 

stressing, as measured by LC-MS. Overall, structural and chemical modifications were 

comparable between the products. The TNF neutralizing ability of both antibodies was 

reduced significantly upon stress, by ∼20–30% relative to the unstressed protein levels. 

This reduction could be attributed to individual amino acids modifications in the CDR 

domain (LC-M-55, HC-M-34, HC-N-31 and HC-N-57), as well as to the decrease in 

functional protein monomer content. Nonetheless, regardless of mechanism, the 2 

products exhibited a similar magnitude of reduction in TNF binding. Additionally, post-

stress FcγRIIIa binding was reduced significantly for both products, by 2–3-fold, with 

slightly larger mean decreases for Remsima™ binding at each time point. However, 

there were no statistically significant differences between the reference and biosimilar 
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products. Interestingly, using a larger number of lots for Remicade® and Remsima™, 

we showed that the level of afucosylation was significantly higher in unstressed 

Remicade, which corresponded to stronger FcγRIIIa binding relative to Remsima™. 

Such differences in glycosylation, along with the reduction in FcγRIIIa binding and 

ADCC were reported in the regulatory filings for Remsima™, resulting in the deferral of 

biosimilar approval for inflammatory bowel disease indications by Health 

Canada.43,300,413,414 While glycosylation differences between products did not change 

following forced degradation, the FcγRIIIa binding decreased similarly for the 2 

products. A several fold reduction in the FcγRIIIa binding after forced degradation could 

be attributed to individual amino acid modifications in the Fc domain, as well as to 

extensive aggregation and hydrolysis of the 2 mAbs. However, this finding shows that 

forced degradation could mute rather than amplify initial differences between biosimilar 

and reference product, which was surprising and contradictory to the initial expectations 

for this study. 

Stress testing is often used to identify instabilities in proteins, select optimal 

formulations to reduce protein degradation during stability testing, and to define shelf-

life and storage conditions. Antibodies, particularly IgG1s, have been stressed in a 

variety of ways, including thermally, physically (e.g., stirring, shaking), and chemically 

(e.g., oxidation, pH).160,415 Overall, different mechanisms of stressing have yielded 

different by-products; however, in general, IgG1s are prone to aggregation and 

chemical modification of several conserved residues identified as “hot-spots.”390 Most 

stress conditions lead to aggregate formation, either insoluble, soluble, or 

both.389,391 Additionally, structural studies have characterized changes in secondary and 
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tertiary features of mAbs that may initiate aggregation.403,406 Chemical stressing has 

also identified several oxidation hot-spots on mAbs and accessibility of various 

residues.160,390,416 Aggregates formed via different stressors are heterogeneous and 

express differing immunogenic patterns test in various immunogenicity 

models.160,417,418 In general, physical stressing (thermal, agitation) leads to greater 

particulate formation and yields a stronger immune response than chemically stressed 

samples. 377,378 Stress-induced particulate formation highlights a need for characterizing 

how process parameters, excipients and formulation differences in biosimilars affect 

protein aggregation, as they may ultimately affect product immunogenicity and safety. 

To demonstrate biosimilarity, the 2 products should have no “clinically 

meaningful” differences. Thus, comparison of lot release data for biosimilar and 

reference products are the most critical for determining biosimilarity. However, the rates 

and mechanisms of degradation of reference and biosimilar products can also be 

compared during forced degradation studies. These comparisons are particularly useful 

if the biosimilar is formulated differently compared with the reference product, as it could 

result in new types of degradation products observed in the biosimilar that are not 

present in the reference product. The presence of new types of degradation products 

raises additional questions if these degradants could potentially affect product efficacy 

and safety. 

While forced degradation studies allow rapid generation of a large volume of 

analytical comparability data, the mechanism of protein instability and type of 

degradation products formed are largely determined by the stress conditions. Often the 



 
 

115 

conditions of forced degradation studies are more extreme than the actual stresses that 

product vials are exposed to during transport, storage, and clinical administration. In this 

study, to accelerate protein degradation, the vials were opened, and products were 

exposed to much higher temperatures and humidity than the environment inside sealed 

and refrigerated vials. For traditional biosimilarity comparisons the analyses are 

performed using several lots of each product. In our constrained study, only 2 lots of 

each product were subjected to the forced degradation, which limits our ability to 

perform rigorous statistical analysis. We observed large deviations in product 

modifications in the stressed samples, which, in addition to limited sample size, may 

also arise from the heterogeneous nature of degradant formation, especially at the 

primary chemical levels. Due to the limited amount of protein, we did not examine the 

effects of oxidative, mechanical, and chemical stress on reconstituted infliximab 

solutions for every time point. Furthermore, we have not characterized the type, shapes, 

and sizes of formed protein aggregates and have not examined the levels of protein 

glycation in this study, which may be of interest for immunogenicity characterizations. 

The immunogenic propensity of biologics is a key safety parameter identified by 

regulatory agencies. To date, several studies have used a variety of stresses to form 

immunogenic products, and characterized their immunogenicity in various in vitro and in 

vivo models.160,417,418 General correlations between characteristics of stressed protein 

(type, shape and size of protein aggregates) and the immunogenicity of these 

degradation products were developed.390,415–418 Thus, forced degradation could provide 

valuable predictive data regarding the immunogenic propensity of the biosimilar product, 

and this data could ultimately be used in product regulatory licensing applications. The 
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challenge in applying this stress testing strategy is the lack of universal 

conditions/guidelines to perform the studies, which leads to different setup conditions 

and, thus, difficulty in extrapolating results. Ideally, the solution would be to adopt 

guidelines to perform these tests, but this is confounded by the diverse nature of 

biotherapeutics, each of which may display different behaviors. Given these concerns, it 

is recommended that stress studies be designed with specific ends in mind, and that 

several orthogonal robust analytical techniques be used to ensure confidence in the 

final outcomes. 

Biosimilar approvals are poised to bring substantial positive change to healthcare 

yet establishing biosimilarity is challenging. Forced degradation studies provide a 

unique approach to examine the appearance of any minor differences that may have 

clinical safety, immunogenicity, and efficacy implications. In this study, we used thermal 

and humidity stress testing on both reference, Remicade®, and biosimilar, Remsima™, 

infliximab products. Our results show similar levels of aggregate formation, structural 

variation, and chemical modifications to support the notion that the products are 

biosimilar. We anticipate stress testing will be used widely for biosimilar assessment as 

patents for more biologic products expire and new biosimilar products permeate the 

markets, and this work will help guide future studies.
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Chapter 4: Disulfide Shuffling Comparability of Originator/Biosimilar mAb Pairs 

 Abstract 

Disulfide bonds play a critical role in maintaining the structure, stability, and 

function of monoclonal antibodies (mAbs). The modification of disulfide bonds can result 

in altered safety, efficacy and immunogenicity. Since the regulatory approval of a 

biosimilar mAb requires extensive characterization, it is important to understand the 

sights of potential disulfide shuffling and the formation of potentially immunogenic 

impurities. 

In the first part of this project, tandem mass spectrometry (LC-MS/MS) was used 

to compare disulfide bonding for an originator/biosimilar infliximab, rituximab and 

bevacizumab pairs, where LC-MS/MS outputs were analyzed using a Protein Metrics’ 

Byonic™ and Byologic® workflow, which allows for the detection, identification, 

quantification and comparison of expected disulfide bonds and related impurities 

(shuffled disulfide and trisulfide bonds). The relative contribution of shuffled and 

trisulfide bonds were found to be higher for biosimilar infliximab and biosimilar 

bevacizumab than their respective originators. On the other hand, for rituximab, the 

relative contribution of shuffling for the biosimilar was identical to that seen for originator 

and no trisulfides were detected. These differences of disulfide shuffling would seem to 

indicate underlying differences between originator and biosimilar infliximab and 

bevacizumab.  
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In the second part of this project, originator and biosimilar rituximab and 

bevacizumab were subject to forced degradation, where these pairs were incubated at 

37ºC for 4 weeks at. LC-MS/MS was used to compare changes of shuffled disulfide and 

trisulfide bonds over the course of incubation. The relative contribution of shuffled 

disulfide bonds for originator/biosimilar rituximab were similar over the course of 

incubation. The relative contribution of disulfide shuffling for originator and biosimilar 

bevacizumab not only started with higher initial levels of disulfide shuffling and trisulfide 

bonding but also had greater extents of shuffling over incubation. In addition, the 

relative contribution of disulfide shuffling for biosimilar bevacizumab was greater than 

the originator. Physical degradant characterization (SDS PAGE and SEC) was then 

used to assess and confirm the relationship of protein degradation to disulfide shuffling. 

It was observed that bevacizumab was more prone to both physical degradation and 

disulfide shuffling than rituximab, where again the biosimilar bevacizumab had more 

initial degradation than the originator. Lastly, free thiol content was analyzed. Free thiol, 

while appearing greater for rituximab than bevacizumab, appeared to be related to less 

disulfide shuffling and less physical degradation, whereby free thiols were detected 

upon exposure over incubation. For bevacizumab, free thiol content also appeared 

related. Though less free thiols were detected, this is likely due to their participation in 

disulfide shuffling and degradation that was greater than that observed for rituximab. 

 Introduction 

Immunoglobulin Gs (IgGs) are comprised of 4 subtypes, IgG1-4, and are 

differentiated by the varied number and locations of their disulfide bonds.419,420 Disulfide 

bonds are found throughout each IgG structure and are highly conserved across IgG 
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subtypes. The studied infliximab, rituximab and bevacizumab originator/biosimilar pairs 

are IgG1s, the largest IgG subtype for currently marketed products.421 The three studied 

mAbs neutralize different antigens, including TNF-α (infliximab), VEGF (bevaciumab) 

and CD-20 (Rituximab). Infliximab and rituximab also rely on IgG’s crystallizable 

fragment (Fc) domain interaction with target effector (immune) cells for their therapeutic 

activity through antibody-dependent cellular cytotoxicity (ADCC).422 Another minor MOA 

that follows antigen-binding is the downstream complement cascade called complement 

dependent cytotoxicity (CDC); however, ADCC is more commonly understood to play 

the main role in therapeutic effect.422 

Formation of shuffled disulfide bonds can lead to structural changes, which, in 

turn, can result in function changes such as reduced antigen binding (a potential 

efficacy concern) and formation of misfolded/aggregated mAbs (a potential 

immunogenicity concern). It is important to recognize that modifications of a protein’s 

underlying structural backbone do occur and can result in functional changes,137,420,423.  

Therefore, characterization of whether disulfide bonding within an IgG is retained (in its 

“expected” form) or has been modified can be a useful way to deduce whether protein 

function is expected to be retained. 
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IgG1 Structure: Disulfide Bonds 

Disulfide bonds are covalently formed between the thiol groups of two cysteine 

amino acid residues in a mAb. Not only do they contribute to protein stability, but also 

dictate protein folding during translation.424 Disulfide bonds can occur either within HCs 

and LCs (intra-chain), between the HC and LC (inter-chain) of a mAb. Hinge region 

disulfide bonds are located between the Fab and Fc domains and occur between the 

two HCs (inter-chain). The IgG1 subtype has 12 intra-chain disulfide bonds and 4 inter-

chain disulfide bonds.419 There are two inter-chain disulfide bonds between the LCs and 

HCs, and two between the HCs (hinge region). There are two intra-chain disulfide 

bonds within each LC and four intra-chain disulfide bonds within each HC. Intra-chain 

disulfide bonds have been suggested to be responsible for the stabilization of tertiary 

structure while inter-chain disulfide bonds, which are more solvent accessible and 

susceptible to reduction, have been attributed to the stabilization of quaternary 

structure.425 All together, these 16 disulfide bonds are what we consider to be 

“expected” bonds and will be referred to as such for the remainder of this presentation. 

Methods of Disulfide Bond Characterization 

The standard techniques for disulfide bond characterization include a number of 

variations of liquid chromatography coupled to mass spectrometry (LC-MS). In “bottom-

up” MS approaches, a large protein is digested into smaller peptide segments by 

digestion enzymes, which are then separated by LC prior to MS/MS analysis, a 

technique that has been implemented in several previous studies to detect, identify, 

quantify and compare expected disulfide bonds and related impurities in 

innovator/biosimilar mAb pairs.144,145,301,388,426. Whereas previous studies have 
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characterized other chemical impurities through the use of reducing trypsin digestion, 

non-reducing trypsin digestions were used to prevent disulfide bond cleavage.  

Disulfide Bond Shuffling 

Disulfide shuffling (thiol-disulfide interchange) has been commonly suggested 

and been understood to occur as a function of free thiol levels. When deprotonated, 

thiols form a highly reactive thiolate anion that can attack the sulfur of a disulfide moiety 

through SN2 type nucleophilic reactions.113–116 Though not expected to occur as a result 

of high process control, previous studies have developed methods to detect small 

amounts of free thiols that can exist across recombinant subtypes and potentially serve 

as sources of disulfide shuffling.427,428 Other studies have shown that disulfide bond 

shuffling can trigger IgG’s aggregation pathway and result in the loss of stability, 

potency and activity (CDC and ADCC).115,429–433, 

Trisulfide Bonding 

The formation of trisulfide bonds, although found in all IgG subtypes, is less 

studied as it is a relatively rare modification.119 Resulting from a hypothesized redox 

reaction with excess dissolved hydrogen sulfide (H2S) in cell culture, trisulfides are 

thought to be formed by the insertion of a sulfur between two cysteines during 

fermentation.119,434,435 However, trisulfides have neither been shown to reduce antigen 

binding nor impact the stability of proteins, both in vitro and in vivo.119,436 Another study 

investigated the potential structural impact of trisulfide bonding in mAbs when 

developing antibody-drug conjugates (ADCs) and suggested precautionary monitoring 

of such modifications during development.437,438 Again, while there are some studies 

investigating the formation of trisulfide bonds, current literature indicates that trisulfides 
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have a limited impact on stability or functionality, though their presence may indicate an 

underlying process variability between innovator/biosimilar mAb pairs.119 

 Methods 

MAb Sample Preparation/Stress Study Setup 

Originator and biosimilar samples of infliximab, rituximab and bevacizumab 

samples were acquired. Originator/biosimilar infliximab were supplied as lyophilized 

powders and were reconstituted using pure water for injection (WFI)(ThermoHyClone) 

to a concentration of 10 mg/mL as per the digest kit specifications. Originator/biosimilar 

rituximab were supplied as an aqueous formulation at a concentration of 10 mg/mL. 

Originator/biosimilar bevacizumab were supplied as an aqueous formulation at a 

concentration of 25 mg/mL that was then diluted to 10 mg/mL using pure WFI. All 

chemical reagents were of analytical grade or purer and were purchased from 

commercial suppliers. Only originator and biosimilar rituximab and bevacizumab pairs 

were subject to forced degradation at 37°C for up to 4 weeks. 

Trypsin Digestion (Infliximab) 

Originator and biosimilar infliximab samples were prepared at a concentration of 

1 were digested at pH 5.6 using Promega’s AccuMAP Low pH Protein Digestion Kits 

utilizing their non-reducing protocol to avoid disulfide bond cleavage (Promega, CAS # 

CS1895A01), which was generously provided.439,440 This digest is referred to as “pH 5”. 

Prior to digestion, antibody samples (5 μL) were denatured by a 9M Urea/AccuMAP 

denaturing solution (42 μL). Free cysteines were then blocked by mixing the denatured 

samples with 200 mM NEM (2 μL) and incubating for 30 minutes at 37°C. Pre-digestion 

protocols were completed by mixing the samples with AccuMAP Low pH Resistant rLys-
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C (25 μL) and incubating for 1 hour at 37°C. Digestion was completed after an addition 

of AccuMAP 10X Reaction Buffer (10 μL) and AccuMAP Low pH Resistant rLys-C that 

had been diluted with NANOpure water (25/51 μL). The reaction was terminated upon 

the addition of TFA (17 μL). The pH was assessed to ensure termination of the reaction. 

Samples were stored at -20°C prior to analysis. These samples were then subjected to 

clean up/purification using SepPak C18 Plus light cartridges (Waters, SKU WAT051910) 

prior to injection onto LC-MS/MS.  

Trypsin Digestion (Rituximab/Bevacizumab) 

 Originator and biosimilar rituximab and bevacizumab were also digested at pH 

5.6 using Promega’s AccuMAPTM Low pH Protein Digestion Kit utilizing their non-

reducing protocol to avoid disulfide bond cleavage (Promega, CAS # CS1895A01), 

which was generously provided. For this section, mAb digestion was modified from 

Promega’s provided protocol to account for use of a PCR plate on an Agilent AssayMAP 

Bravo robot platform. Use of the Agilent AssayMAP Bravo platform and LC-MS/MS 

instrumentation was thanks to MS Bioworks (Ann Arbor). Solutions of 200 mM NEM, 50 

mM acetic acid, trypsin diluent (CaCl2 in acetic acid), “Platinum Trypsin” and termination 

solution (20%TFA) were prepared prior to digestion. 3 µL of 10 mg/mL mAb was added 

to the PCR plate and then combined with 8M AccuMAPTM Denaturing Solution, low pH 

AccuMAPTM reaction buffer and NEM, which was then incubated at 37ºC for 30 minutes 

in a water bath. Samples were then mixed with Lys-C and incubated at 37ºC for 2.5 

hours and then digested with a combination of low pH reaction buffer, lys-C and Trypsin 

Platinum. This mixture was then incubated overnight at 37ºC in a water bath. 20% TFA 

was added to terminate the reaction at low pH, as confirmed by pH strips. 
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LC-MS/MS (Infliximab) 

Digested antibody samples (500 ng) were analyzed by nano UPLC-MS/MS with 

a Proxeon EASY-nLC 1000 HPLC system interfaced to a ThermoFisher Q Exactive HF 

mass spectrometer. Peptides were loaded on a trapping column and eluted over a 75 

μm x 50 cm analytical column (Thermo Fisher P/N ES803) at 300 nL/min with a 2-hour 

reverse phase gradient; both columns were packed with PepMap RSLC C18, 2 mm 

resin (Thermo Scientific). The mass spectrometer was operated in data-dependent 

mode, with MS and MS/MS performed in the Orbitrap at 70,000 and 17,500 FWHM 

resolution, respectively. The most abundant ions were selected for MS/MS. 

LC-MS/MS (Rituximab/Bevacizumab) 

 Data Dependent Acquisition (DDA) experiments were carried out using half of 

each enriched sample by nano LC-MS/MS using a Waters M-Class system interfaced to 

a ThermoFisher Fusion Lumos mass spectrometer. Peptides were loaded on a trapping 

column and eluted over a 75 μm analytical column at 350 nL/min with a 30-minute 

reverse phase gradient; both columns were packed with Luna C18 resin (Phenomenex). 

The mass spectrometer was operated in a combined data dependent HCD mode, with 

MS and MS/MS performed in the Orbitrap at 60,000 FWHM resolution and 15,000 

FWHM resolution, respectively. The instrument was run with a 3s cycle for MS and 

MS/MS. DDA data was processed in ByonicTM with a 10 ppm parent mass tolerance, 

0.02 Da fragment mass error tolerance. Disulfide bonds and related impurities were 

reported as relative contribution, relative to the total sum of expected disulfide shuffled 
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disulfide and trisulfide bonds and normalized contribution, relative to the respective XIC 

AUC total. Trisulfides were reported as XIC AUCs when comparing pH. 

Byonic™/Byologic® Workflow 

Analysis of LC-MS/MS outputs were identified, quantified and compared for 

expected disulfide, shuffled disulfide and trisulfide bonds by a Protein Metric workflow 

that is explained in previous publications.394 

Gel Electrophoresis 

 Originator/biosimilar rituximab and bevacizumab pairs were first qualitatively 

investigated for physical degradation by SDS-PAGE gels. Gels were optimized to find a 

balance between the visualization of minor components and the ability to avoid well 

overloading (data not shown). To do so, mAb samples were diluted to approximately 10 

mg/mL and then further diluted to lower final concentrations ranging from 0.1-5 mg/mL. 

To prepare these final concentrations, we combined 5 µL of Loading Buffer (Thermo) to 

15 µL of mAb sample (a 1:3 ratio). These samples, along with the 10uL of HiMark Pre-

stained Protein Standard ladder (Thermo), were loaded onto 15 well 3-8% NuPAGE 

gels. Final mAb concentrations of 0.25 and 0.4 mg/mL were chosen for analysis of 

mAbs at different incubation time points and run at 150V for 1 hour. Gels were stained 

for 1 hour using SimplyBlue SafeStain (Thermo), cleaned with water, imaged and 

analyzed for relative component content using a Fluorchem M imager (ProteinSimple). 

Size Exclusion Chromatography 

Originator/biosimilar rituximab and bevacizumab pairs were investigated for 

physical degradation by SEC on a Waters UPLC BEH450 SEC column (2.5µm, 4.6 x 

150 mm) with a Waters 2707 autosampler connected to a 1525 binary UPLC pump, 
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interfaced with a 2489 UV/Vis detector. MAb samples were diluted with LC-MS grade 

water, from concentrations of approximately 10 mg/mL down to concentrations of 

approximately 1 mg/mL as confirmed by NanoDrop. The 1 mg/mL samples were 

injected onto the column at an injection volume of 10 µL. Samples were isocratically 

delivered with a pH 7.4 1x PBS mobile phase at a flow rate of 0.4 mL/min over 10 

minutes. MAb samples were detected and compared via UV absorbance 

chromatograms that were extracted at 280 nm. 

Free Thiol Analysis 

Free thiols were analyzed through the use of a thiol-reactive probe, BODIPYTM 

FL N-(2-aminoethyl) maleimide (ThermoFisher Scientific). This probe is referred to as 

bodipy maleimide throughout the rest of the chapter. Bodipy maleimide stock solutions 

were prepared through reconstitution in DMSO at a concentration of 1 mg/mL and then 

then diluted to 0.2 mg/mL with 8M GuCl. Bodipy maleimide stock solutions (and any 

resulting solutions) were wrapped in aluminum foil to prevent light exposure. Stock 

solutions were kept at -20°C prior to usage. Rituximab and bevacizumab samples were 

adjusted to concentrations of approximately 2 mg/mL (concentrations recorded using a 

NanoDrop One Microvolume Spectrophotometer [ThermoFisher Scientific]) and mixed 

at a 1:1 (v/v) ratio with bodipy maleimide stock solution and incubated overnight at 4°C. 

Samples were then injected onto a Waters Acquity UPLC BEH450 SEC column (1.7µm, 

2.1 x 150mm) at an injection volume of 10µL and isocratically delivered with a mobile 

phase composed of 20% ACN (0.1% TFA)/80% water (0.1% TFA) at a flow rate of 0.3 

mL/min. MAb samples were detected and compared via fluorescence (excitation: 504 
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nm, emission: 514 nm). Fluorescence AUCs were normalized to concentration and 

compared. 

 Results 

Infliximab vs Rituximab Bevacizumab 

 First, we quantified and compared expected disulfide, shuffled disulfide and 

trisulfide bonds for originator and biosimilar infliximab. The relative contribution of 

expected bonds (relative to sum of expected disulfide, shuffled disulfide and trisulfide 

bonds) and normalized contributions (relative to total expected XIC AUC) of all isolated 

expected bond locations for originator/biosimilar infliximab are shown in Fig. 4-1. The 

relative contribution of expected bonds for originator infliximab (99.579 ± 0.045%) was 

slightly higher than the biosimilar (99.447 ± 0.004%, p < 0.05). When normalized 

contributions were calculated for isolated expected bond locations, no differences were 

observed between the originator and the biosimilar. While variation appears high 

between expected bond locations, ranging between 0.2 and 27.0% normalized 

contribution, a fairly even distribution between expected bond locations was indicative of 

a successful and thorough digestion. 
A B 

Figure 4-1. Comparison of infliximab originator/biosimilar by (A) relative expected contributions and (b) 
normalized contributions; Relative = divided by XIC AUC Totals of expected disulfide, shuffled disulfide 
and trisulfide bonds; Normalized = divided by specified XIC AUC total. 
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The relative contribution of shuffled disulfide bonds and the normalized 

contribution of the top ten most prevalent shuffled bond locations for originator and 

biosimilar infliximab are shown in Fig. 4-2.  

The relative contribution of shuffled disulfide bonds for biosimilar infliximab 

(0.546 ± 0.004%) was observed to be higher than the originator (0.418 ± 0.044%, p < 

0.05). When comparing normalized contributions of the top ten shuffled bond locations, 

no significant differences were observed between originator and biosimilar infliximab. In 

addition, indicating that both originator and biosimilar infliximab undergo similar 

mechanisms of degradation. Of the ten listed shuffled disulfide bonds, five occur 

between cysteines in the variable region and five occur between a cysteine in the 

variable region and a cysteine in the constant region. Five of the listed shuffled disulfide 

bonds occur between the HC and LC (inter-chain), while two occur within the LC and 

three occur within the HC (intra-chain). The shuffled locations 194-194 and 214-214 

stood out as examples of a limitation of the described method (see Discussion). 

Figure 4-2. Comparison of shuffled disulfide bonds when trypsin digested at pH 5 for originator/biosimilar 
infliximab by (A) relative shuffled contributions and (B) normalized shuffled contributions for the top 10 
shuffled bond locations. 
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The relative contribution of trisulfide bonds and normalized contributions of the 

only two detected trisulfide bonds are shown in Fig. 4-3. The relative trisulfide 

contribution for originator infliximab (0.002%) was slightly lower than the biosimilar 

(0.006%). Originator/biosimilar infliximab had similar normalized contributions, though 

both were extremely low only appearing mainly at the 134-223 location. 

Next, we quantified and compared expected disulfide, shuffled disulfide and 

trisulfide bonds for originator and biosimilar rituximab. The relative contribution of 

expected bonds (relative to sum of expected disulfide, shuffled disulfide and trisulfide 

bonds) and normalized contributions (relative to total expected XIC AUC) of all isolated 

expected bond locations for originator/biosimilar infliximab are shown in Fig. 4-4. The 

relative contribution of expected bonds for originator infliximab (99.76 ± 0.12%) was 

identical to the biosimilar (99.73 ± 0.04%). When normalized contributions were 

calculated for isolated expected bond locations, no differences were observed between 

the originator and the biosimilar. While variation appears high between expected bond 

locations, ranging between 0.1 and 63% contribution. This large range, in addition to a 

poor distribution between expected bond locations, was indicative of a digestion that 

Figure 4-3. Comparison of trisulfide bonds for originator/biosimilar infliximab (A) relative trisulfide 
contributions and (B) prevalent normalized contribution locations. 
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was not as thorough, relative to the digestion seen for infliximab expected bond 

locations. 

The relative contribution of shuffled disulfide bonds and the normalized 

contribution of the top ten most prevalent shuffled bond locations for originator and 

biosimilar infliximab are shown in Fig. 4-5. 

The relative contribution of shuffled disulfide bonds for originator rituximab (0.24 

± 0.12%) was also observed to be identical to the biosimilar (0.27 ± 0.04%). When 

comparing normalized contributions of the top ten shuffled bond locations, no significant 

Figure 4-4. Comparison of originator/biosimilar rituximab by (A) relative expected contributions and (b) 
normalized contributions. 

Figure 4-5. Comparison of originator/biosimilar rituximab by (A) relative shuffled contributions and (b) 
normalized contributions. 
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differences were observed between originator and biosimilar infliximab as variation was 

high. No trisulfides were detected for rituximab. 

Next, we quantified and compared expected disulfide, shuffled disulfide and 

trisulfide bonds for originator and biosimilar bevacizumab. The relative contribution of 

expected bonds (relative to sum of expected disulfide, shuffled disulfide and trisulfide 

bonds) and normalized contributions (relative to total expected XIC AUC) of all isolated 

expected bond locations for originator/biosimilar bevacizumab are shown in Fig. 4-6. 

The relative contribution of expected bonds for originator bevacizumab (99.3 ± 0.12%) 

was higher than the biosimilar (98.0 ± 0.35%). When normalized contributions were 

calculated for isolated expected bond locations, two significant were observed that were 

not seen for both infliximab and rituximab, at the 134-194 and 267-327 locations. While 

variation again appears high between expected bond locations, this distribution appears 

to be similar to that seen for rituximab, indicative of a digestion that was not as 

thorough, relative to the digestion seen for infliximab expected bond locations. 

Figure 4-6. Comparison of originator/biosimilar bevacizumab by (A) relative expected contributions and 
(b) normalized contributions. 
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The relative contribution of shuffled disulfide bonds and the normalized 

contribution of the top ten most prevalent shuffled bond locations for originator and 

biosimilar bevacizumab are shown in Fig. 4-7. 

The relative contribution of shuffled disulfide bonds for the biosimilar (0.546 ± 

0.004%) was observed to be higher than the originator (0.418 ± 0.044%, p < 0.05) was 

observed to be less than the, p < 0.05). When comparing normalized contributions of 

the top ten shuffled bond locations, significant differences were observed between 

originator and biosimilar infliximab at the 194-373 location (inter-chain). In addition, 

indicating that both originator and biosimilar infliximab undergo similar mechanisms of 

degradation. Of the ten listed shuffled disulfide bonds, five occur between cysteines in 

the variable region and five occur between a cysteine in the variable region and a 

cysteine in the constant region. Nine of the listed shuffled disulfide bonds occur 

between the HC and LC (inter-chain), while one occurs within the HC (intra-chain). 

Figure 4-7. Comparison of originator/biosimilar bevacizumab by (A) relative shuffled contributions and (b) 
normalized contributions. 
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The relative contribution of trisulfide bonds and normalized contributions of the 

only two detected trisulfide bonds are shown in Fig. 4-8. The relative trisulfide 

contribution for originator infliximab (0.002%) was slightly lower than the biosimilar 

(0.006%). Originator/biosimilar infliximab had similar normalized contributions, though 

both were extremely low only appearing mainly at 22-96, an expected intra-chain bond, 

and 194-226, an inter-chain bond, locations. 

 Bevacizumab and infliximab biosimilars exhibited greater disulfide shuffling and 

trisulfide bonding than their originator counterparts, while rituximab originator and 

biosimilar were identical, where no trisulfide bonds were detected. In addition, we were 

able to rank order the originator and biosimilar pairs, where bevacizumab had the most 

disulfide shuffling and trisulfide bonding while rituximab had the least disulfide shuffling 

and no trisulfide bonds were detected. 

  

Figure 4-8. Comparison of trisulfide bonds for originator/biosimilar bevacizumab (A) relative trisulfide 
contributions and (B) prevalent normalized contribution locations. 
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 Free thiol content for these originator and biosimilar infliximab, rituximab and 

bevacizumab pairs were determined. Chromatograms for samples labeled with bodipy 

maleimide are shown below in Fig. 4-9 and are quantified in Fig. 4-10. 

  

Figure 4-9. SEC-LC chromatogram overlays of originator/biosimilar (A) infliximab, (B) rituximab and (C) 
bevacizumab when labeled overnight with bodipy maleimide. 

Figure 4-10. Quantified AUCs for SEC-LC chromatogram of originator/biosimilar infliximab, rituximab and 
bevacizumab when labeled overnight with bodipy maleimide. 
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 The first noticeable difference observed was that observed between SEC-LC 

chromatograms of different mAb types, where originator and biosimilar infliximab, 

rituximab and bevacizumab all exhibited different distribution profiles. All three profiles 

have what appears to be a main peak at retention times between 3.6 and 3.9 minutes 

with significant tailing. While bevacizumab only has a minor secondary peak at  

approximately 3.4 minutes, infliximab has a noticeably larger secondary peak at 2.9 

minutes while infliximab has a secondary peak at approximately 3.1 minutes. While 

profile distributions may seem of interest, understanding of contributing peaks is 

rendered less useful due to the use of 20% ACN organic phase in the mobile phase. 

Therefore, AUC was quantified and compared totals between approximately 2 and 6 

minute retention times, where AUCs were representative of free thiol content. 

 We first compared originators against biosimilars, where we observed more thiol 

content for biosimilar infliximab and bevacizumab than their originators. For rituximab, 

though, the originator had a more free thiols than the biosimilar. In addition, rituximab 

had the most free thiols. In relations to disulfide shuffling, the biosimilar for both 

infliximab and bevacizumab exhibited greater disulfide shuffling and trisulfide bonding, 

seemingly indicating a relationship between free thiol content and disulfide shuffling. For 

rituximab, though, the originator had more free thiols while disulfide shuffling was similar 

for both. Unlike the other two mAb, this would seem to indicate that there is no 

relationship between free thiols and disulfide shuffling. This would likely be explained by 

the fact that the free thiol assay is limited by when free thiols are detected. For 

rituximab, newly exposed free thiols seem to be detected while free thiols for 

bevacizumab are lower, already participating in disulfide shuffling.  



 
 

136 

Originator/Biosimilar Rituximab and Bevacizumab Subject to Forced Degradation 

Electrophoresis Gels 

 Gels were run at concentrations of 0.25 and 0.4 mg/mL to visualize the presence 

of minor aggregate and fragment component bands (Fig. 4-11).  

The main monomer bands appear at a MW of approximately 145 and 150 kD, 

which matches the expected MWs reported in package inserts as 145 and 149 kD, 

respectively.441,442 While difficult to precisely quantify due to band overlap, there are 

some observed trends observed where the originator/biosimilar mAb pairs differed over 

the course of incubation. When comparing rituximab originator/biosimilar, we noticed 

that initial amounts of aggregates (~155 kD) and fragments (~115 kD) were present that 

did not seem to change over the course of incubation. In terms of differences observed, 

the rituximab biosimilar had distinct initial aggregates (~255 kD, not present in the 

originator) that did not appear to change over the course of incubation. The innovator’s 

85 kD fragment does appear to increase over the course of incubation, but only after 4 

weeks. Bevacizumab originator and biosimilar appeared similar in terms of levels of 

aggregates and fragments both initially and over the course of incubation. In terms of all 

A B

Figure 4-11. SDS PAGE gels for bevacizumab and rituximab originator and biosimilar mAb pairs at (A) 
0.25 and (B) 0.4 mg/mL comparing HiMark Prestained Protein Ladder against mAb pairs after 0, 2 and 4 
weeks of incubation at 37ºC; n = 1. 
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mAbs, a small fragment component at ~41 kD was present at 0.4 mg/mL and seemed to 

be the most intense after 4 weeks of incubation. On the whole, it appears that our 

rituximab and bevacizumab originator/biosimilar pairs to start with initial degradant 

components that also changed over the course of incubation. It is of note that these 

studies were performed on expired mAb products. The relative contribution from 

aggregate, monomer and fragment species were quantified and shown in Fig. 4-12.  

SEC Physical Degradation Analysis 

 Physical degradation of bevacizumab and rituximab originator/biosimilar pairs 

were also compared by SEC over the course of incubation and were quantified as a 

function of change of levels of monomer and degradants, including aggregates and 

fragments SEC-LC chromatograms are shown below in Fig. 4-13 and are quantified in 

Fig. 4-14, where marked differences were observed both initially and over the course of 

incubation. The samples analyzed were the same as those that run on SDS-PAGE gels. 

A B C

D E F

Figure 4-12. SDS-PAGE relative contributions for rituximab originator/biosimilar (A) aggregates, (B) 
monomer and (C) fragments and relative contributions for bevacizumab originator/biosimilar (D) 
aggregates, (E) monomer and (F) fragments over the course of 4 weeks of incubation at 37ºC; n = 1. 
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The purpose was to investigate if similar trends of degradation were observable by 

orthogonal methods prior to analysis by LC-MS/MS, the main focus of this chapter. 

A C E G

B D F H

A B C

D E F

Figure 4-13. SEC-LC chromatograms of rituximab originator at (A) 0 and (B) 4 and biosimilar at (C) 0 and 
(D) 4 weeks of incubation at 37ºC. Bevacizumab originator at (E) 0 and (F) 4 and biosimilar at (G) 0 and 
(H) 4 weeks of incubation at 37ºC. 

Figure 4-14. SEC relative contributions for rituximab originator/biosimilar (A) aggregates, (B) monomer 
and (C) fragments and relative contributions for bevacizumab originator/biosimilar (D) aggregates, (E) 
monomer and (F) fragments over the course of 4 weeks of incubation at 37ºC. (n = 1) 
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The rituximab originator was observed to have the most amount of initial 

monomer content (94.4%), least amount of initial degradants, which included mainly 

fragments (5.2%) and small amounts of aggregates (0.3%). Rituximab did not exhibit 

monomer loss over incubation. Lower levels of initial monomer content (94.0%) were 

observed for the rituximab biosimilar (94.0%), which reflected an elevated level of 

aggregates (0.9%), while levels of fragments were similar (5.2%). Unlike rituximab 

originator, the biosimilar exhibited a decrease in monomer content over incubation, with 

increases of fragments (to 6.1%) and aggregates (to 1.1%) after 4 weeks. 4-week 

originator/biosimilar rituximab/bevacizumab chromatograms qualitatively show 

observable differences for the relative contribution of aggregates and fragments. 

While the bevacizumab originator had similar initial levels of monomer content 

(94.3%) as the rituximab originator, there were relatively more aggregates (1.3%) for 

bevacizumab. Again, the main degradant species were fragments. The bevacizumab 

biosimilar had the least initial monomer content (92.9%). While having the most relative 

amounts of aggregates, fragments were the main degradant observed. Both 

bevacizumab originator/biosimilar degraded to a greater extent than rituximab 

originator/biosimilar, with monomer content decreasing to 91.6% to 90.6% over 

incubation, respectively. While fragments make up the largest relative degradant 

species, further bevacizumab originator degradation, increasing to 3.85% over 

incubation. Degradation of bevacizumab biosimilar appeared to be driven by both 

aggregation, increasing to 4.09%, and fragmentation, increasing to 5.37%, after 4 

weeks of incubation. 

  



 
 

140 

Disulfide Bond Analysis: Expected vs Shuffled vs Trisulfide 

 Expected disulfide bond locations for rituximab and bevacizumab are shown 

below in Fig. 4-15. Upon inspection of their amino acid sequences, expected disulfide 

bond locations and number of cysteines (32, the minimum number required for 

expected bonds) were confirmed to be similar, as is expected for IgG1 mAbs.  

Figures were generated from Protein Metrics Byonic/Byologic workflow, where mAbs 

were compared as a function of quantifiable XIC AUCs. Relative contributions of 

expected disulfide, shuffled disulfide and trisulfide bonds, when detected, for originator 

and biosimilar rituximab and bevacizumab pairs over the course of incubation are 

shown below in Fig. 4-16. 

 

 

  

A B

Figure 4-15. Labeled cysteines and expected disulfide bond locations for (A) rituximab and (B) 
bevacizumab. 
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As shown previously, the initial relative contribution from expected and shuffled 

disulfide bonds for rituximab originator and biosimilar were similar, where no trisulfide 

bonds were detected. Minor decreases of expected disulfide bonds were matched by 

similar increases of shuffled disulfide bonds for the originator (to 0.28 ± 0.02 and 0.51 ± 

0.06%) and biosimilar (to 0.38 ± 0.09 and 0.35 ± 0.05%) after 2 and 4 weeks of 

incubation, respectively. The relative contributions and trends of changes of expected 

bonds seem to support the trends observed for physical degradation analyzed by SEC 

and SDS-PAGE, where rituximab originator and biosimilar appeared to undergo less 

A B

C D E

Figure 4-16. Relative contributions of expected disulfide bonds, shuffled disulfide bonds and trisulfide 
bonds for (A) rituximab originator/biosimilar and (B) bevacizumab originator/biosimilar over the course of 
4 weeks of incubation at 37ºC. n = 3, mean ± SEM. 
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degradation over incubation than bevacizumab. Both the originator and biosimilar have 

increases of disulfide shuffling over the incubation. 

For bevacizumab, the initial relative contribution from expected disulfide bonds 

was observed to be greater for the originator than the biosimilar. This difference which 

was matched by greater amounts of shuffled and trisulfide disulfide bonds for the 

biosimilar than the originator (1.62 ± 0.45 and 0.37 ± 0.11%). In addition, the trends of 

degradation by disulfide bond analysis appeared different over the incubation. Whereas 

the trend of degradation for the originator appears normal, where a decrease of relative 

expected contribution (to 98.8 ± 0.45 and 97.91 ± 0.35%) is matched by an increase of 

relative shuffled contribution (to 1.09 ± 0.35 and 1.46 ± 0.64%) and increase of relative 

trisulfide contribution (to 0.14 ± 0.10 and 0.62 ± 0.37%) after 2 and 4 weeks, 

respectively. The trend of degradation for the biosimilar appears to be inverse, where 

the initial time point is the most degraded with a a decrease of relative shuffled 

contribution (to 1.09 ± 0.35 and 1.46 ± 0.64%) and a decrease of relative trisulfide 

contribution (to 0.31 ± 0.04 and 0.12 ± 0.03%) after 2 and 4 weeks, respectively. While 

unusual, these results appear to match physical degradation results when analyzed by 

SEC and SDS-PAGE, where bevacizumab initially has more degradants, though the 

relationship between the two becomes muddled over incubation, where loss of shuffled 

and trisulfide bond contributions may be likely due to precipitation of the biosimilar. 
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Shuffled/Trisulfide Bonds 

 Distributions and locations of shuffled bonds were identified and compared for 

rituximab and bevacizumab originator/biosimilar over the course of incubation and are 

reported as normalized contributions to shuffled XIC AUC totals (Fig. 4-17). Shuffled 

bond locations were organized as a function of inter-chain and intra-chain bonds. Intra-

chain bonds were observed to make up the clear minority of shuffled bonds for both 

rituximab (133-224 and 230-429) and bevacizumab (22-88 and 96-226). It should also 

be noted that the digestion again appears incomplete as sample-to-sample variations 

were high, with only few locations having shuffling across all 3 samples. 
A

B

C

D

E

F

Figure 4-17. Normalized contributions of shuffled bonds comparing originator/biosimilar rituximab at (A) 0, 
(B) 2 and (C) 4 weeks and bevacizumab at (D) 0, (E) 2 and (F) 4 weeks of incubation at 37°C; n = 3, 
mean ± SEM. 
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For rituximab, there were no significant differences detected between the 

originator/biosimilar at all time points. In addition, shuffled bond distributions for 

rituximab remained somewhat similar over the course of incubation. Though not 

statistically significant, a general trend of similarity was indicated by the normalized 

contribution of the largest 2 shuffled bond species at 96-224 and 133-148 locations for 

the originator and biosimilar at, 63.4 ± 55.1% and 82.9 ± 28.0, 92.6 ± 10.9% and 88.2 ± 

17.1% and 4 86.8 ± 22.0% and 87.4 ± 9.4% at 0, 2 and 4 weeks, respectively. These 

two shuffled bond locations were the only ones detected across all 3 samples. 

 For bevacizumab, there was only 1 observed statistically significant difference at 

the 194-373 location, which made up 88.6 ± 6.8% (originator) and 49.3 ± 20.4% 

(biosimilar) at 0 weeks (p < 0.01). Though no statistically significant differences were 

observed at 2 weeks, the most significant differences were observed at 4 weeks at the 

following shuffled bond location; 194-327, 0.9 ± 1.6% vs 42.2 ± 7.3% (p < 0.001), 194-

373, 18.1 ± 15.8% vs 45.4 ± 8.1% (p < 0.005), and 214-206, 81.0 ± 16.5 % vs 0% (p < 

0.001). Trends in shifts of distributions of shuffled disulfide bonds are specifically 

indicated through the 194-373 location, which makes up 88.6 ± 11.8% and 49.3 ± 

35.3%, 51.5 ± 43.0% and 67.1 ± 23.9% and 18.1 ± 15.8% and 45.4 ± 8.1.% for the 

originator and biosimilar at 0, 2 and 4 weeks, respectively. This single location is the 

only location detected across all three samples. The shift in distribution of shuffled 

bonds for bevacizumab indicates not only that there is a difference between 

bevacizumab originator/biosimilar, but also that bevacizumab degraded more 

extensively than rituximab. 
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 Trisulfide bonds were only identified in bevacizumab. Trisulfide bond distributions 

were compared between bevacizumab originator/biosimilar over the course of 

incubation and are shown as normalized contributions to trisulfide XIC AUC totals (Fig. 

4-18). Trisulfide bond locations were observed at expected, inter-chain and intra-chain 

locations. The majority of trisulfide bonds were observed as a subset of the 22-96 

(expected) and 194-226 (shuffled) bond locations. Distributions were observed to shift 

over the course of incubation, which, unlike rituximab matches the increased 

degradation and shifts of shuffled disulfide bond distributions for bevacizumab. 

  

A

 

B

 

C

 

Figure 4-18. Normalized trisulfide contributions for bevacizumab at (A) 0, (B) 2 and (C) 4 weeks of 
incubation at 37°C; n = 3, mean ± SEM. 
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Free Thiol Analysis: Maleimide 

 Bodipy maleimide was used to investigate the potential relationship of free thiols 

to physical degradation and disulfide shuffling. Bodipy maleimide is a free thiol probe, 

where conjugation allows for detection by fluorescence. Free thiols were compared as a 

function of total AUC as organic is used in the mobile phase. The main assumption for 

this method was that a higher AUC is an indicator of larger amounts of free thiols. 

Samples were the same as those previously characterized by SDS PAGE and SEC. 

Fluorescence SEC-LC chromatograms for bodipy maleimide labeled originator rituximab 

and bevacizumab samples over the course of incubation are shown in Fig. 4-19 and are 

quantified in Fig. 4-20.  

  A

B

C

D

Figure 4-19. Fluorescence SEC-LC chromatograms overlays of OR/BS at 0,2 and 4 weeks of incubation 
for rituximab (A) OR and (B) BS and bevacizumab (C) OR and (D) BS incubated with bodipy maleimide. 
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For both rituximab and bevacizumab, the unlabeled blanks appeared at a 

retention time of approximately 4 minutes (data not shown). While a similar retention 

time appears for mAb samples labeled with bodipy maleimide, rituximab exhibits the 

formation of a secondary species at a retention time of approximately 3.1 minutes, while 

bevacizumab shows a small secondary peak at approximately 3.4 minutes. In addition, 

the main component for both appears to have significant tailing starting at approximately 

4.05 minutes. A current limitation of this technique arises due to the use of organic 

phase ACN, which muddles our ability to differentiate the identity of each individual 

component in such chromatograms, hence why total AUCs are compared, as shown in 

Fig. 4-20. 

 Changes of AUCs for originator/biosimilar rituximab/bevacizumab were 

compared over the course of incubation. Relative to 0 weeks, the rituximab originator 

AUC was 29.9 and 10.1% higher at 2 and 4 weeks, respectively. The AUC for the 

biosimilar, while initially less than the originator, increased approximately 24.4 and 

Figure 4-20. Free thiol total fluorescence AUCs for rituximab and bevacizumab OR/BS at 0, 2 and 4 
weeks of incubation at 37°C; n = 1. 
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120.8% after 2 and 4 weeks of incubation, respectively. Relative to the rituximab 

originator made up for 67.7% and 64.9% of total AUC at 0 and 2 weeks, respectively. At 

4 weeks, though the biosimilar AUC was 35.9% higher than the originator. While 

disulfide shuffling was similar, increasing over the incubation, physical degradation was 

also the greatest for the biosimilar after 4 weeks of incubation. 

Relative to 0 weeks, AUC for the bevacizumab originator increased by 4.9 and 

14.1%, while the biosimilar increased similarly by 2.6 and 14.4% after 2 and 4 weeks of 

incubation, respectively. When comparing the AUC of the biosimilar against the 

originator, a consistent trend emerged, whereby the biosimilar was relatively higher than 

the originator at by 6.1%, 3.7% and 6.3% at 0, 2 and 4 weeks, respectively. This trend 

would make sense in conjunction with results seen for physical degradation and 

disulfide shuffling, where the biosimilar was more prone to aggregation and disulfide 

shuffling than the originator, though both were more prone to degradation than 

rituximab. In addition, free thiols for rituximab ranged between 2- and 3-fold higher than 

the bevacizumab samples at all time points. Again, the trend of less amounts of free 

thiols for bevacizumab would seem to be related to the fact that they are already 

participating in disulfide shuffling and aggregation, whereas newly exposed free thiols 

for rituximab are being detected.  
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 Discussion 

Disulfide Analysis of Infliximab, Rituximab and Bevacizumab Pairs 

 The relative contribution of expected disulfide bonds was found to be significantly 

lower for biosimilar infliximab and bevacizumab than their originator, with both having 

greater disulfide shuffling and trisulfide bonding. While there were no significant 

differences observed when comparing the normalized contributions of isolated expected 

bond locations between originator and biosimilar infliximab, there were significant 

differences detected between originator and biosimilar bevacizumab. It is important to 

note the variation of normalized contributions across expected bond locations, with 

values ranging over two orders of magnitude. This variation is inherent to the LC-

MS/MS method and is attributed to differences between ionization efficiencies of 

peptide sequences as one sequence may not “fly” similarly to another.443 Therefore, 

further probing into the values of the distribution of expected bond locations should be 

taken into consideration, especially when evaluating if the digestion was complete and 

thorough. Relative to infliximab, the normalized expected contributions from rituximab 

and bevacizumab would imply their digestions were not complete and thorough. Even 

so, this variability is resolved by focusing on the comparability between the originator 

and biosimilar. While the top ten most prevalent shuffled locations were identical for 

originator and biosimilar infliximab and rituximab, indicating similarity of degradation 

pathways, they were not similar for originator and biosimilar bevacizumab. In terms of 

trisulfide bonding, there were only two trisulfide bonds detected at very low amounts for 

infliximab (less than 0.01%), while trisulfide bonding was markedly higher for the 

bevacizumab originator (~0.1%) and biosimilar (~0.5%). As a whole, rituximab originator 
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and biosimilar had the least amount of disulfide shuffling and no trisulfide bonding. 

Originator and biosimilar infliximab had slightly more disulfide shuffling and trisulfide 

bonding, while originator and biosimilar bevacizumab had the most disulfide shuffling 

and trisulfide bonding. 

Intramolecular vs Intermolecular Disulfide Shuffling 

Another concept that must be accounted for is the difference of disulfide shuffling 

that occurs within a molecule (intra-molecular) and disulfide shuffling that occurs 

between two different molecules (inter-molecular). This is exemplified by the 194-194 

and 214-214 shuffled bond locations (Fig. 4-2), which require intermolecular bonding. 

The addition of an orthogonal technique with high resolution of minimally present and 

intact degraded/shuffled species would be useful. 

Effect of Forced Degradation on Rituximab and Bevacizumab Pairs 

Disulfide Bond Analysis 

Though trends of decrease of relative expected contribution were observed for 

both originator and biosimilar rituximab, decreases were only slight and matched by 

increases of disulfide shuffling. No trisulfide bonds were detected for rituximab. Relative 

to rituximab, though originator and biosimilar bevacizumab had markedly reduced 

relative expected contributions and increased amounts of disulfide shuffling and 

trisulfide bonding. Within rituximab, the originator and biosimilar were similar, increasing 

over the incubation. Within bevacizumab, though the biosimilar had the largest amount 

of shuffling and trisulfide bonding at 0 weeks, which decreased after 2 and 4 weeks of 

incubation, potentially indicating its precipitation that resulted in decreased levels of 
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disulfide shuffling and trisulfide bonding. Even with the observed trends, changes of 

disulfide shuffling and trisulfide bonding were not statistically significant. 

Normalized contributions of shuffled disulfide and trisulfide bond locations were 

then compared. Disulfide bonds for originator and biosimilar rituximab, indicated by 

similar distribution profiles of disulfide bond locations. were similar both initially and over 

the course of incubation, indicating that forced degradation did not cause the formation 

of differences. This was not the case for bevacizumab. In addition to significant initial 

differences in terms of disulfide bond locations, these initial differences appear to be 

exacerbated by incubation, with distributions becoming even more different after 4 

weeks of incubation. This shift in distribution is a key indicator that bevacizumab seems 

to be not only more prone to degradation both the originator and biosimilar rituximab, 

but also a difference in degradation between the originator and biosimilar bevacizumab. 

A similar trend for normalized trisulfide contributions was observed as that seen for 

disulfide bonds, having both initial differences that  were exacerbated over incubation. 

Relationship Between Physical Degradation, Disulfide Shuffling and Free Thiols 

 Common orthogonal physical characterization techniques were implemented to 

understand the potential relationship of physical degradants with disulfide shuffling. 

Similar trends in terms of the relative contributions from aggregate, monomer and 

fragment species were observed by both SDS-PAGE and SEC-LC. Originator and 

biosimilar rituximab remained similar over the course of incubation, though the 

biosimilar was slightly more degraded. On the other hand, originator and biosimilar 

bevacizumab were more initially degraded. Where differences were exacerbated  with 

the application of forced degradation. This was even more so the case for the biosimilar 



 
 

152 

bevacizumab. The routes of physical degradation of rituximab and bevacizumab 

appeared to differ, where rituximab degradation was characterized mainly by the 

presence (and increase) of fragments while bevacizumab  degradation was 

characterized by the increase of aggregates and fragments. The trends of increases of 

shuffled and trisulfide bonding for both seemed to match the degree and rate of physical 

degradation observed by these techniques. 

 The method developed for free thiol analysis was a result of several unsuccessful 

attempts using several previous approaches that are often used to determine free thiols. 

The first method tested was with Ellman’s reagent, which was only applied to 

bevacizumab. We were unable to observe any free thiols, which may imply that 

bevacizumab does not have enough free thiols to appropriately reach the limit of 

detection. We then tried a technique found in a previously published paper, whereby the 

authors tested conjugation of various maleimide reagents with analysis by RPLC and 

UV detection.158 Results using that method differed vastly from those reported (data not 

shown). We then found bodipy maleimide that imparts fluorescence and adjusted a 

common SEC method (that used 1x PBS as a mobile phase) by introducing 20% ACN 

to the mobile phase, the upper limit for our specified column. As far as we are aware, 

this bodipy maleimide method is not currently found in the literature for this application. 

 There are 2 potential underlying hypotheses that influence how free thiol data 

may be understood. The first hypothesis is that a greater amount of free thiols may 

induce degradation; the second hypothesis is that free thiol content increases as mAbs 

degrade. As there are no current publications on the changes of free thiol levels for 
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mAbs subjected to force degradation, one must consider types of physical degradants 

that may form.  

 To address the first hypothesis, where increased initial free thiol content could 

result in increased degradation, we notice that rituximab originator/biosimilar have 

approximately twice the AUC relative to bevacizumab. These results do not support 

such a hypothesis as rituximab undergoes less physical degradation and disulfide 

shuffling. On the other hand, the bevacizumab biosimilar was observed to have higher 

free thiol AUC at all time points relative to the originator and exhibited increased 

physical degradation and disulfide shuffling. In combination, these would seem to 

indicate that we can only compare initial free thiol content between an originator and a 

biosimilar. To address the second hypothesis, higher free thiol content was observed 

over the course of incubation for all mAb samples. Free thiol increases that were 

observed for rituximab originator/biosimilar were markedly higher than for bevacizumab. 

Additionally, increases for the rituximab biosimilar were higher than the originator, while 

increases for bevacizumab originator/biosimilar were approximately the same. This 

would seem to support such a hypothesis, though direct comparison between 

originator/biosimilar becomes more complex. Further studies would be necessary to 

elucidate whether the proposed hypothesis is valid. 

Our results seem to indicate a limitation of our assay, where we are unable to 

determine when free thiols are detected. It appears that for rituximab, newly exposed 

free thiols are detected, hence a large increase. For bevacizumab, free thiols are 

detected after participating in disulfide shuffling and physical degradation, hence the low 

levels of free thiols for originator and biosimilar bevacizumab at all time points.  
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Chapter 5: Conclusions and Future Directions 

The work presented in this thesis focuses on aspects related to the development 

of peptide and mAb biopharmaceutical products. Via forced degradation, a combination 

of state-of-the-art and orthogonal characterization techniques provide valuable and 

comprehensive information on various instability mechanisms of biopharmaceutical 

products.  

The first chapter provides a general introduction on the state of approval of 

biopharmaceutical products and their generic/biosimilar versions, analytical 

methodologies used to prove biosimilarity and typical instability mechanisms observed 

during forced-degradation studies of peptide and protein products. In the second 

chapter, we investigated the long-term stability of exenatide, a 39 amino acid GLP-1 

receptor agonist peptide that is used to treat type 2 diabetes. While patent expirations 

for exenatide products are looming, novel extended-release formulation of GLP-1 

agonists and recent co-formulations with insulin analogs warranted investigation of 

exenatide’s stability profile as a representation of potential GLP-1 agonist degradation 

mechanisms. In addition, a recent focus on the effect of peptide degradants on 

immunogenic responses is a critical regulatory consideration for the approval of generic 

versions of exenatide as well as novel sustained-released formulations of peptide. 

When exenatide was studied at elevated pH, rapid chemical and physical degradation 

occurred. Chemical degradation was characterized by a pH-dependent increase of 
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deamidation impurities while physical degradation was mainly attributed to dimerization, 

aggregation and loss of α-helicity, which was matched by an increase of unordered 

structural content. Aggregation was proposed to be a function of Trp-cage disruption. 

The addition of common excipients to the peptide solution, despite some of their 

presumed protective functions, were unable to prevent degradation at elevated pH 7.5. 

In fact, trehalose seemed to further destabilize exenatide. While a previous publication 

has investigated the impact of deamidation chemical impurities on GLP-1R binding, we 

observed the formation of multiple additional oxidation chemical impurities, that had yet 

to be characterized for their biological activities. In addition, while we do see the 

formation of multiple oxidation and deamidation impurities, we are unsure of the 

locations of the modified amino acid residues. There are three sets of future studies that 

may be applicable as a follow-up. The first, detailed identification of the locations of 

chemical modifications on exenatide’s sequence and understanding of how individual 

modifications impact a GLP-1R receptor binding. The second study could be focused on 

development of an understanding of how chemical and physical impurities of exenatide 

impact peptide immunogenicity. This study will be critical for the approval of generic 

version of Byetta and Bydureon. The third set of future studies, though not of exenatide 

itself, would be the generation of stability profiles of currently marketed GLP-1R/insulin 

analog co-formulations (Xultophy and Soliqua). 

In the third and fourth chapters, comparability studies of originator/biosimilar 

infliximab, rituximab and bevacizumab pairs were performed. In both chapters, we 

investigated the applicability of tandem mass spectrometry (LC-MS/MS) to elucidate 

initial differences and enhance the purity information provided by traditional analytical 
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methods like gel electrophoresis (SDS-page) and size exclusion chromatography 

(SEC).  We also investigated whether initial purity differences between originator and 

biosimilar pairs would be amplified over the course of forced degradation studies to 

provide additional information on the biosimilarity of different products.  

In the third chapter, minor differences between infliximab originator and biosimilar 

were found over the course of incubation, including differences of heat capacity, intrinsic 

fluorescence, subvisible particulates, deamidation tendencies and fragmentation levels, 

though these differences were not determined to be statistically significant between 

originator and biosimilar products. Degradation mechanisms and kinetics were found to 

be highly similar.  

In the first part of the fourth chapter, tandem mass spectrometry (LC-MS/MS) 

was used to compare disulfide bonding for an originator/biosimilar infliximab, rituximab 

and bevacizumab pairs, where LC-MS/MS outputs were analyzed using a Protein 

Metrics’ Byonic™ and Byologic® workflow, which allowed for the detection, identification, 

quantification and comparison of expected disulfide bonds and related impurities 

(shuffled disulfide and trisulfide bonds). The relative contribution of shuffled and 

trisulfide bonds were found to be higher for biosimilar infliximab and biosimilar 

bevacizumab than their respective originators. On the other hand, for rituximab, the 

relative contribution of shuffling for the biosimilar was identical to that seen for originator 

and no trisulfides were detected. These differences of disulfide shuffling would seem to 

indicate underlying differences between originator and biosimilar infliximab and 

bevacizumab.  
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In the second part of the fourth chapter, originator and biosimilar rituximab and 

bevacizumab were subject to forced degradation, where these pairs were incubated at 

37ºC for 4 weeks at. LC-MS/MS was used to compare changes of shuffled disulfide and 

trisulfide bonds over the course of incubation. The relative contribution of shuffled 

disulfide bonds for originator/biosimilar rituximab were similar over the course of 

incubation. The relative contribution of disulfide shuffling for originator and biosimilar 

bevacizumab not only started with higher initial levels of disulfide shuffling and trisulfide 

bonding but also had greater extents of shuffling over incubation. In addition, the 

relative contribution of disulfide shuffling for biosimilar bevacizumab was greater than 

the originator. Physical degradant characterization (SDS PAGE and SEC) was then 

used to assess and confirm the relationship of protein degradation to disulfide shuffling. 

It was observed that bevacizumab was more prone to both physical degradation and 

disulfide shuffling than rituximab, where again the biosimilar bevacizumab had more 

initial degradation than the originator. Lastly, free thiol content was analyzed. Free thiol, 

while appearing greater for rituximab than bevacizumab, appeared to be related to less 

disulfide shuffling and less physical degradation, whereby free thiols were detected 

upon exposure over incubation. For bevacizumab, free thiol content also appeared 

related. Though less free thiols were detected, this is likely due to their participation in 

disulfide shuffling and degradation that was greater than that observed for rituximab. 

Current limitations of the fourth chapter include a lack of understanding of intra- 

versus inter-molecular disulfide shuffling, as exhibited by 194-194 and 214-214 shuffled 

bond location for originator/biosimilar infliximab. This could be accounted for by a 

method where the shuffled antibodies are left intact. Also, we currently do not 
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understand the percentage of these aggregates that are covalent by nature. Further 

studies could also include investigation between discrepancies resulting from the high 

variability of trypsin digestion that were seen between the two sections of this chapter. 

Normalized expected, shuffled and trisulfide bonds contributions appeared more evenly 

distributed than those detected for rituximab and bevacizumab samples, where large 

variabilities occur likely as a result of an incomplete digestion, exemplified the two 

shuffled locations that were expressed for all three samples of rituximab originator and 

biosimilar.  

Other future studies potentially lie in the understanding of the free thiol analysis 

method that we have developed using bodipy maleimide as a free thiol probe. Current 

literature on this method is lacking. In addition, further identification of contributing 

peaks (determined by SEC fluorescence) would prove useful. Lastly, the generation and 

generation of large numbers of aggregate and fragment species, followed by 

fractionation, would additionally allow for us to determine the relative contributions from 

mAb fragments and aggregates. Further investigation of the underlying mechanisms of 

disulfide shuffling as a function of free thiol content is also warranted.  

Additionally, analysis of disulfide shuffling, in combination with orthogonal 

physical degradation characterization techniques can be applied to any protein 

containing two or more disulfide bonds. As an example, this could be applied to insulin 

analogs. Although fibrillation of insulin analogs has been studied, the role of disulfide 

shuffling remains unknown. 
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Overall, each of these projects is useful to companies seeking regulatory 

approval for a wide variety of biotherapeutic products. The second chapter applies 

specifically to development of generic and novel delivery technologies of GLP-1RAs, 

which have recently included the advent of co-formulation with long-acting insulin 

analogs (Fig. 5-1). The third chapter applies to any and all future biotherapeutic 

products while the fourth chapter applies to all future biotherapeutic products that 

contain two or more disulfide bonds. 

While information derived from analytical characterization is useful within the 

regulatory space, it provides a backdrop for the continued desirability to correlate 

specific impurities with immunogenic responses, a focus of big pharma. The more 

information that is known about chemical and physical impurities, the more likely we are 

to find these correlations. To do so, investigation of mAbs that have died in clinical 

testing may prove useful to optimizing biopharmaceutical product development and 

approval. While immunogenicity has relied upon the formation of ADAs through 

Figure 5-1. Currently marketed GLP-1 receptor agonist/long-acting insulin analog co-formulations. 
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adaptive immune response, there has been a shift in focus towards innate immune 

responses, which occur upstream of ADA formation (Fig. 5-2).  

Figure 5-2 Hypothesis of TD mechanism of ADA formation by aggregates. (1) Early stage: activated 
APCs stimulate naïve T-cells through interactions of MHC-II and costimulatory molecules (presented on 
the surface of activated APCs) with TCRs and CD28 (presented on T-cells), respectively, turning them 
into activated T-cells. (2) Late-stage: activated T cells differentiate into cytokine secreting T helper cells 
type 2 (Th2). Both antigen binding to BCRs (IgM or IgD) and costimulation of B-cells with antigen-specific 
Th2 cells are required to activate naïve B-cells in the T-cell-rich zones of the secondary lymphoid tissues 
into B2-cells. Mature B2-cells develop oligoclonal monoreactive GCs in the B-cell follicles, in which B-
cells undergo site-directed hypermutation in the Ig variable domain and clonal expansion. Finally, B-cells 
proliferate and differentiate into memory and antibody-secreting plasma cells. The response also involves 
antibody isotype class switching, in which the Ig class is switched (i.e., from IgM or IgD to IgG, IgE, or 
IgA) by alternatively splicing the Ig heavy chain in the constant region. Green rectangles denote stages at 
which studies have evaluated the potential immunogenicity of protein aggregates. BCR = B-cell 
receptors; GC = germinal centers; TCR = T-cell receptor; TD = thymus dependent. Adapted with 
permission. 

https://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/immunoglobulin-class
https://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/immunoglobulin-d
https://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/immunoglobulin-heavy-chain
https://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/b-lymphocyte-receptor
https://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/b-lymphocyte-receptor
https://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/t-lymphocyte-receptor
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