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ABSTRACT

An accurate combustion model for real-world fuels is a key part of internal combus-

tion engine simulation and design to reduce pollutants and greenhouse gas emissions.

However, existing chemical kinetic mechanisms are not adequately accurate, espe-

cially for low-temperature oxidation (LTO). In this study, the autoignition of a jet

fuel surrogate and pure components were investigated in a motored engine via coupled

experiment and simulation to validate and improve the oxidation kinetic mechanism.

A multizone model was developed to simulate homogeneous charge compression

ignition (HCCI) combustion in a modified CFR octane rating engine. In a simulation

study for three pentane isomers, the multizone model was accurate for autoigni-

tion simulation and effective for kinetic mechanism validation. An existing mech-

anism for pentane isomers was found to be accurate in predicting reactivity, heat

release, and oxidation intermediate species for all three pentane isomers. However,

the low-temperature reactivity for iso-pentane was slightly underpredicted, with a

32.2% underprediction for the first-stage fuel consumption. Among the oxidation in-

termediate species, cyclic ethers were overpredicted by a minimum of 58.9%, while

chain-branching products were underpredicted by more than 57.5%. 2-Pentene and

2-methyl-2-butene production was overpredicted by 104% and 126%, showing that

concerted elimination reaction rates and the effect of H-atom availability need to be

improved. In addition, acetone production should be negligible but was significantly

overpredicted during iso-pentane oxidation. Chain-branching pathways following the

first and second O2 addition to the tertiary carbon were overestimated and needed

xiii



to be eliminated in the kinetic mechanism.

The ignition properties of the jet fuel surrogate and its pure components were

investigated through coupled engine experiments and simulation. The UM-3 Jet-A

surrogate showed strong low-temperature reactivity, which the kinetic mechanism,

SKE360, successfully captured. However, the predicted transition from the nega-

tive temperature coefficient regime to high-temperature oxidation was too late. In

the surrogate mixture, oxidation of iso-cetane, decalin, and toluene was significantly

enhanced. The enhancement was more significant for iso-cetane than for decalin,

although iso-cetane is less reactive as a pure component. The radical pool from

n-dodecane low-temperature oxidation enhances H-atom abstraction, fuel radical for-

mation, and production of small intermediate species via consecutive β-scission reac-

tions. SKE360 successfully predicted the enhanced oxidation of iso-cetane and decalin

but underpredicted toluene consumption in the surrogate mixture by 79.1%.

Low-temperature chemistry was important for n-dodecane and in a parallel inves-

tigation for n-heptane autoignition at the test conditions. However, existing mecha-

nisms showed disagreeing predictions for n-dodecane (and n-heptane) reactivity. Al-

though reaction pathways were similar, reaction rates differed in mechanisms and

greatly influenced autoignition simulation in the motored engine. An existing n-

heptane mechanism was updated and achieved improved accuracy, with the predicted

critical compression ratio improved from 0.9 compression ratio higher to within 0.1

deviation from the measurements.

Low-temperature oxidation was insignificant during iso-cetane oxidation at the

test condition. The jet fuel surrogate mechanism SKE360 overestimated the low-

temperature reactivity of iso-cetane. In existing mechanisms, the ceiling temperature

for iso-cetane was not properly addressed, and reaction rates for Ṙ + O2 ⇔ ROȮ

need to be improved to eliminate O2 addition to the iso-cetane fuel radical.

Decalin reactivity was underpredicted by SKE360. The production of benzene,

xiv



cyclohexadiene, and cyclohexene was overpredicted by more than 10 times during

decalin oxidation, showing the opening of one ring in this bicyclic alkane molecule

was overestimated. The main oxidation pathways following the C-C bond breaking

between the two tertiary carbons were missing and need to be added.

In this work, motored engine experimental measurements were for the first time

used for quantitative evaluations of kinetic mechanisms. The method developed in

this study and the ignition data generated improved our fundamental understanding

of combustion chemistry. Our discussions provided directions for future mechanism

development.
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Chapter 1

Introduction

The computation fluid dynamics (CFD) simulation coupled with the combustion

model is a crucial part of combustor simulation and design, which is important for

optimizing engine performance, especially nowadays with emerging low carbon fuels

and the urgent need for engines to adapt to new fuel properties and meet tighter

regulations for greenhouse gas emissions. However, “the development of validated,

predictive, and multi-scale modeling capabilities” [1] was found to be the grand chal-

lenge in this need for advanced engine design, requiring significantly improved scien-

tific understanding via experiments and simulations in multiple disciplines, including

combustion chemistry.

Conventional and alternative diesel and jet fuels exhibit two-stage ignition behav-

iors [2, 3], mainly from the normal alkanes or the normal-chain-structure compounds

in the fuels. The low-temperature oxidation (LTO) of diesel and jet fuels starts at

600−700K with low-temperature heat release (LTHR) and transitions to the negative

temperature coefficient (NTC) heat release at 800− 900K. The heat released in the

LTO and NTC regimes takes up a small amount of the total heat release (less than

30% depending on the fuel reactivity and the derived cetane number [3]). However,

the radical pools and heat generated in this process are important to prepare the fuel

for the high-temperature oxidation (HTO) and heat release once the temperature
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reaches around 1000K. Description of this ignition process is essential in simula-

tions and engine designs, requiring a reliable kinetic mechanism that includes enough

details of the chemical reactions.

The problem could be more complicated because real-world fuels, including gaso-

line, diesel, and jet fuels, are composed of hundreds of hydrocarbons and oxygenates,

making it highly challenging to develop a computationally inexpensive combustion

model for implementation in engine-level simulations. The thermochemical prop-

erties, rate constants, and reaction pathways data for the complex components of

real-world fuels are unavailable [4]. Using such a large model in CFD simulation

is also unrealistic. Therefore, to be useful in practical devices, the chemical model

needs to be simplified to describe mixtures of a limited number of model compounds,

referred to as surrogate fuels. In addition to gas-phase combustion behavior, surro-

gate fuels should also emulate real fuels’ physical properties important in injection,

atomization, vaporizing, and mixing processes. Unfortunately, physical and chemical

properties result from fuel structures, so limiting the number of components in surro-

gate formulations is extremely difficult [5]. Each individual component also needs to

have a reliable kinetic mechanism available to be put together, and important cross-

reactions included [4]. Large kinetics mechanisms have been developed at an adequate

level of accuracy and details to capture low-temperature reactivity of many fuels [6].

However, kinetic mechanisms for surrogate fuels need to be maintained at a reduced

level (200-300 species) for use with the surrogate to enable practical simulation for

future engine designs.

In the Combustion Chemistry Cluster, a collaboration between multi-university

research groups engaging broad expertise in internal combustion (IC) engines, fuels,

fuel chemistry, and computational models, made a great effort to significantly ad-

vance the predictive simulation capabilities for IC engine designs by improving the

fundamental understandings of the effects of fuel properties and developing surrogate
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fuel formulations and the kinetic mechanism.

Kim [7] developed evolving versions of surrogate formulations UM1, UM2, and

UM3 for jet fuels. Target fuels included petroleum-derived Jet-A POSF-4658, coal-

derived Iso-Paraffinic Kerosene (IPK) POSF-5642, and natural-gas-derived S-8 POSF-

4734, which are complex mixtures of linear alkanes, cyclic alkanes, and aromatic

compounds. The surrogate component palette consisted of six pure components: n-

dodecane, n-decane to represent normal alkane compounds; iso-cetane, iso-octane to

represent branched alkane compounds; decalin to represent cyclic alkane compounds;

and toluene to represent aromatic compounds. Among the pure components, four rep-

resentative components (n-dodecane, iso-cetane, decalin, and toluene) were investi-

gated in this work. Kang et al. [3] validated the UM1 and UM2 surrogate formulations

via autoignition experiments in a constant-volume combustion chamber and a single-

cylinder motored engine. The UM2 Jet-A surrogate precisely emulated the physical

properties of the target fuel in physical ignition delay measurements in the constant-

volume combustion chamber. Reactivity of the surrogate reasonably matched the

target fuel in autoignition experiments in the motored engine under a boosted intake

condition. Kim et al. [8] found that the UM3 surrogate captured the ignition pattern

in an optical engine experiment compared to the target fuel, although it showed a

slightly earlier ignition. Kim et al. [9] developed a skeletal mechanism consisting of

360 species and 1851 reactions for the jet fuel surrogates, in response to the need

for a reliable and computationally inexpensive chemical model for jet fuel surrogates.

Ignition delay time simulation showed that the mechanism successfully predicted the

ignition delay trends observed in shock tube experiments, but notable discrepancies

were observed at low-to-intermediate temperatures, which unfortunately laid within

the range of temperatures critical to the diesel ignition process.

Now come the questions of how significant these discrepancies are for combustion

simulation at engine-related conditions, and how we could improve the mechanism.
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Those are the two questions we aim to answer in this work. The objectives are to

generate ignition data for fuel reactivity quantification and mechanism validation, to

support the development of kinetic mechanisms that we will be confident to use in

engine modeling and design.

In Chapter 2, we will review the literature of fundamental combustion facilities

for mechanism development and validation, and recent progress in mechanism devel-

opment for jet fuel surrogates and pure components. In Chapter 3, we will discuss

the details of our experiment and simulation method. In Chapters 4-6, we will discuss

the results on autoignition properties and simulations for fuels of different structures.

Finally, Chapter 7 is the conclusions and recommendations for future work.
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Chapter 2

Literature Review

2.1 Fundamental combustion facilities for low-temperature

oxidation (LTO) mechanism development and validation

A chemical kinetic mechanism is a set of parameters to determine the thermochem-

ical properties of species, rate constants of reactions, and species transport properties

in a wide range of pressure, temperature and concentration conditions, for simulation

of the combustion processes of a specified fuel [10]. As discussed in Chapter 1, the

mechanism is the basis for CFD simulation and design of combustors.

Thermochemical data of species were in many mechanisms estimated using group

additivity rules [10, 11]. A few reaction rates could be directly measured in exper-

iments. Most reaction rates were difficult to measure directly and were calculated

using quantum chemistry [10]. Hence, the overall quality of a mechanism needs to be

evaluated with indirect experimental data. Widely used prediction targets included

the ignition delay time, the flame speed, and the species time history measured in fun-

damental combustion facilities. The flame speed was insensitive to low-temperature

chemistry [10], so we will briefly discuss the experimental facilities for the ignition

delay time and the species time history measurement.
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2.1.1 Ignition delay time in the shock tube (ST) and the rapid compres-

sion machine (RCM)

The ignition delay time measured in the shock tube was the most widely used

prediction target for mechanism development and validation due to the large dataset

available in the literature for various fuels and the accessibility and simplicity of

the simulation model. Species time histories, especially for the OH radical, were also

widely used in mechanism validation and optimization. The investigation temperature

in the traditional shock tube is usually > 1000K. To measure the ignition delay time

at lower temperatures, the driver section needed to be lengthened significantly [12].

The high-pressure shock tube could expand the temperature range to as low as 665K

for fuels exhibiting strong negative temperature coefficient (NTC) behavior [13, 14].

In mechanism validation and optimization, the autoignition process in a shock tube

could be treated as a zero-dimensional process in a closed homogenous reactor. A gas

dynamic model CHEMSHOCK was also developed [15] for a more accurate simulation

of the species time history in the shock tube.

The rapid compression machine (RCM) is another experimental facility for ignition

delay time measurement, especially at low-to-intermediate temperatures where shock

tube data are unavailable. Goldsborough et al. [16] reviewed the recent advances

in RCM studies and compared the operating conditions of different experimental

facilities for autoignition studies, as shown in Figure 2.1. The strength of RCM is that

it offers well-controlled conditions (compared to motored engines), realistic mixtures

(compared to jet reactors), and low-temperature experiment capability (compared to

the shock tube). Premixed autoignition in an RCM could be treated as in a closed

homogeneous reactor in the same way as for a shock tube (at a constant volume) or

by applying effective volume histories of experiments to account for heat loss [11, 17].
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Figure 2.1: Operation temperature and pressure range for autoignition experimental

facilities [16].

2.1.2 Pyrolysis and oxidation intermediate species in the flow and jet

reactors

Species time histories in the flow and jet reactors have been widely used to pro-

vide constraints for constructing mechanisms and quantifying mechanism accuracy.

The flow reactor could be simplified as an ideal plug flow reactor for simulating the

chemical reactions in the axial direction, permitting the usage of large-scale chem-

ical mechanisms [18]. The jet-stirred reactor (JSR) is another facility widely used

for intermediate species measurement. Recently, concentration measurements for hy-

droperoxide [19], ketohydroperoxide, and dione [20] species were performed in the

JSR, which was modeled as a perfectly stirred reactor in the simulation. Those are

species produced in the early stage of fuel consumption at low temperatures and were

previously too unstable to be detected in other experimental facilities.

2.1.3 Motored engine experiment and simulation

Motored engine autoignition experiments were widely performed to evaluate the

reactivity of a wide variety of fuels. Although providing valuable information for

fuel reactivities and reaction pathways, few of the engine study results were used

quantitatively for mechanism development and validation. Wang et al. [21] measured
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n-heptane oxidation intermediates in a motored engine and a JSR and for the first

time, demonstrated the similarity in the distribution of intermediate species in an

engine and an ideal reactor. They found that the species pool was more complex than

considered in existing mechanisms and unconsidered species mattered under engine

conditions. Cheng [22] simulated the autoignition of pentane isomers in a motored

engine and found that adding motored engine experiments as constraints significantly

reduced the uncertainty of modeling and rate coefficients.

As discussed in Section 2.2, existing mechanisms were validated with measured

data from the shock tube, the RCM, and the flow and jet reactors. However, few

mechanisms were evaluated with measured data from the motored engine, due to

the lack of a reliable and computationally inexpensive engine simulation model. The

method developed in this work was aimed to fill this gap.

2.2 Kinetic mechanism development and validation for jet

fuel surrogates and pure components

2.2.1 Jet fuel surrogates

The mechanism evaluated in this work, SKE360, for UM3 jet fuel surrogates was

developed from the Model Fuel Consortium (MFC) of CHEMKIN-PRO. In MFC, the

mechanism was based on the Westbrook et al. [23] mechanism for normal alkanes,

the Oehlschlaeger et al. [24] mechanism for branched alkanes, the Naik [25] mecha-

nism for decalin, and the Naik et al. [26] mechanism for aromatics. The mechanism

prediction agreed well with the ignition delay time measured in the shock tube, ex-

cept for slight deviation from measurements at intermediate temperatures, as shown

in Figure 2.2.

Recently, new jet fuel surrogate mechanisms were developed based on improved

mechanisms of the pure components. Liu et al. [27] investigated the autoignition of
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Figure 2.2: Ignition delay time predicted by SKE360 compared to shock tube igntion

delay time [9].

Figure 2.3: Ignition delay time predicted by a jet fuel surrogate mechanism and

measured in a shock tube at φ = 1.0 and P = 16 bar [27].

a jet fuel surrogate consisting of n-dodecane, propyl-benzene, and trimethyl-benzene,

in a JSR, a shock tube, and a laminar flame burner. They developed a 401-species

2838-reactions mechanism for the surrogate. The n-dodecane chemistry was based

on the Banerjee et al. [28] mechanism. Figre 2.3 shows that the mechanism pre-

diction was in good agreement with the ignition delay time measured in a shock

tube at high temperatures, but deviated from the measurements at low tempera-

tures. Mao et al. [29] updated the surrogate mechanism in Ranzi et al. [30] with the

n-dodecane submechanism from Chang et al. [31], and acquired a 233-species 5689-

reactions mechanism for a jet fuel surrogate consisting of n-dodecane, iso-cetane, and
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toluene. The mechanism prediction showed improved agreement with ignition delay

time measured in a shock tube and an RCM at low temperatures, and maintained

satisfactory agreement at high and intermediate temperatures.

2.2.2 n-Dodecane

Among the pure components, n-dodecane contributed the most to the NTC be-

havior of the jet fuel surrogate. Due to the long-normal-chain structure, n-dodecane

has strong LTO reactivity. Ranzi et al. [30] found that the reactivity and product dis-

tribution of a normal–CN alkane could be correctly and conveniently estimated using

the linear combination of normal–CN–i and normal–CN+j properties. This similarity

in homologous hydrocarbons allowed fewer pure components to be included in the sur-

rogate formulation. Hence, n-dodecane reactivity is representative of the reactivities

of the normal alkane compounds in real jet fuels.

2.2.2.1 Development of n-dodecane mechanisms

Based on the Westbrook et al. [23] mechanism that SKE360’s n-dodecane sub-

mechanism was developed from, plenty of improvement and optimization work has

been done to to achieve better prediction accuracy. Sarathy et al. [32] developed

a 7200-species 31400-reactions mechanism (often referred to as the LLNL mecha-

nism) and included an updated Westbrook et al. [23] C8 –C16 n-alkane submecha-

nism. Narayanaswamy et al. [33] reduced the LLNL mechanism to a skeletal level,

and updated rate constants for important reactions selected in sensitivity analysis.

As shown in Figure 2.4, the new 255-species 2289-reactions mechanism showed sig-

nificantly improved accuracy.

Based on the LLNL mechanism, Cai et al. [34] updated the species thermochemical

properties using the group additivity method, updated rate rules with those from Bu-

gler et al. [11] and for H-atom abstractions by OH radicals at various carbon sites,
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Figure 2.4: Modifications to rate constants improved prediction (lines and mark-

ers with lines) accuracy for ignition delay time measured in the shock tube (mark-

ers). Modifications: (A) updated H2 / O2 chemistry, (B) rate of formation of ketohy-

droperoxide and OH, (C) rate of H-abstraction by HO2 from n-dodecane, (D, E, F)

alkene/alkenyl decomposition and H-abstraction rates [33].

Figure 2.5: The Cai et al. [34] mechanism showed improved prediction for n-decane

ignition delay time. Markers are shock tube data [34].

Figure 2.6: n-Dodecane ignition delay measurement in the shock tube (markers) and

prediction by the Narayanaswamy et al. [33] mechanism (dashed lines) and the Cai

et al. [34] mechanism (solid lines) [34].
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and added alternative isomerization pathways from O2QOOH radicals to P(OOH)2

radicals. This updated mechanism was then optimized statistically using ignition de-

lay time measured in the shock tube as prediction targets. The optimized mechanism

showed improved accuracy as shown in Figure 2.5 compared to the original LLNL

mechanism, and in Figure 2.6 compared to the Narayanaswamy et al. [33] [33] mech-

anism. At φ = 0.5, the Cai et al. [34] mechanism showed better predictions at high

temperatures while the Narayanaswamy et al. [33] mechanism showed better predic-

tions at low temperatures. At φ = 1.0, the Narayanaswamy et al. [33] mechanism

overpredicted n-dodecane reactivity.

Figure 2.7: The Mao et al. [29] mechanism showed improved accuracy compared to

the Ranzi et al. [30] mechanism and the Cai et al. [34] mechanism over a wide range

of temperatures [29].

Mao et al. [29] evaluated six n-dodecane mechanisms (the Ranzi et al. [30] mecha-

nism, the Banerjee et al. [28] mechanism, the LLNL mechanism, the Narayanaswamy

et al. [33] mechanism, the Cai et al. [34] mechanism and the Zeng et al. [35] mechanism

) in experiments and simulations in a shock tube, an RCM and a flow reactor, and

found that the Cai et al. [34] mechanism provided best prediction over a wide range

of temperatures, but still needed improvement. They utilized the AramcoMech 2.0

mechanism [36], the high-temperature mechanism from [35] and the low-temperature

mechanism from [34], and modified selected low-temperature reaction rates. The new

mechanism showed improve agreement with shock tube and RCM ignition delay time
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measurements, as shown in Figure 2.7.

2.2.2.2 Validation of n-dodecane mechanisms

Existing n-dodecane mechanisms were validated in fundamental combustion fa-

cility experiments in various studies, and similarities in reaction pathways were ob-

served. Dasgupta et al. [37] investigated three n-dodecane mechanisms (the You et al.

[38] mechanism, the Luo et al. [39] mechanism, and the Narayanaswamy et al. [33]

mechanism) in counter-flow flame and perfectly-stirred reactor (PSR) simulations,

to evaluate the difference in reaction pathways in the mechanism. They found that

though quantitatively different, the mechanisms were qualitatively similar in reaction

pathways.

However, quantitative differences were found to matter in other studies. Desantes

et al. [40] evaluated seven n-dodecane mechanisms ([32, 33, 34, 39, 41, 42, 43]) in RCM

experiment and simulation, and observed overpredicted ignition delay time by most of

the mechanism, except for the Cai et al. [34] mechanism predicting shorter cool-flame

ignition delay time than other mechanisms, and the Yao et al. [43] mechanism being

overtuned. Payri et al. [44] used four n-dodecane mechanisms ([33, 34, 42, 43]) in a

CFD simulation for the Spray A flame structure, and found that different mechanisms

led to different laminar flame structure and consequently different turbulent flame

structures, especially different lift-off lengths. Fang et al. [45] also found in a Spray

A simulation that low-temperature chemistry was a driving force for the 2nd-stage

ignition in diesel spray end-of-injection ignition. Their studies showed the extreme

importance of low-temperature chemistry in turbulent reacting spray simulation.

Despite the importance of mechanism selection, improvements are also needed.

Shao et al. [14] measured n-dodecane ignition delay time in a high-pressure shock tube

at 665 − 1250K and found that the LLNL mechanism over-predicted the 1st-stage

fuel consumption at stoichiometric conditions. They also observed highly repeatable
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pressure oscillations after the 1st-stage fuel consumption in the n-dodecane NTC

regime, which was missed in the LLNL model simulation, showing that the low-

temperature chemistry needed improvement.

Although n-dodecane was a widely-studied fuel, differences in mechanisms still

need to be evaluated, and improvements in low-temperature chemistry are needed.

2.2.3 iso-Cetane

Compared to n-dodecane and another highly-branched alkane, iso-octane, iso-

cetane autoignition properties were not adequately investigated to develop a reliable

kinetic mechanism. A most widely-used iso-cetane mechanism (Oehlschlaeger et al.

[24]) was developed based on analogy to an iso-octane mechanism (Curran et al.

[46]). Kukkadapu and Sung [47] found that the Oehlschlaeger et al. [24] mechanism

predicted an NTC behavior that was not captured in their RCM experiments as shown

in Figure 2.8, because the mechanism had not been well validated using experimental

data.

Figure 2.8: The Oehlschlaeger et al. [24] mechanism predicted an NTC behavior that

was not observed in iso-cetane autoignition experiments in an RCM [47].

Yu et al. [17] extended the temperature range for iso-cetane ignition delay time
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measurement to as low as 620K in RCM experiments, and found that the NTC be-

havior of iso-cetane did exist, but shifted to a very low temperature compared to

iso-octane. They updated the species thermochemical properties and rate rules in

the Oehlschlaeger et al. [24] mechanism, using values from a new iso-octane mech-

anism ( Atef et al. [48]), but still found large discrepancies between measurements

and model predictions, as shown in Figure 2.8. They suggested that new reaction

pathways were needed for iso-cetane low-to-intermediate-temperature oxidation.

Figure 2.9: Updated Oehlschlaeger et al. [24] mechanism still needed to be improved

to match the ignition delay time measured in an RCM [17].

Raza et al. [49] modified rate coefficients in the Yu et al. [17] mechanism. Wang

et al. [50] updated the reaction rates of H-atom abstraction by OH radicals for the

isocetane submechanism in a diesel surrogate mechanism. Both updated mechanisms

improved accuracy for iso-cetane ignition delay time prediction, but significant dis-

crepancies were still observed between the simulation and the experiment. iso-Cetane

mechanisms available in the literature are listed in Table 2.1
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Fuel Mechanism Number of
Species

Number of
Reactions

iso-Cetane Yu et al. [17] 2,458 9,685

Raza et al. [49] 2,465 10,348

Wang et al. [50] 3,137 12,506

Decalin Dagaut et al. [51] 357 10,741

Wang et al. [52] 2,198 8,896

Toluene Costa et al. [53] 349 1,631

Metcalfe et al. [54] 329 1,888

Yuan et al. [55] 272 1,698

Kukkadapu et al. [56] 935 4,863

Table 2.1: Mechanisms available in the literature for iso-cetane, decalin and toluene

oxidation.

Figure 2.10: Tuned mechanism showed improved accuracy for decalin ignition delay

time prediction at 15 bar and φ = 0.5. The figure is from Yu et al. [57].

2.2.4 Decalin

The Naik [25] mechanism, from which SKE360’s decalin submechanism was devel-

oped, was constructed based on analogy to other alkanes, including branched alkanes

and cyclohexane groups. The mechanism was not validated with low-temperature

oxidation data. Yu et al. [57] found that another decalin mechanism (Dagaut et al.
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Figure 2.11: Ring-opening pathways in decalin oxidation. (a) and (b) are favored

pathways of breaking the common C-C bond and their adjacent bonds. (c) is the less

favored pathway of breaking one ring first [58].
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[51]) was also developed based on analogy to cyclohexane and was not validated with

experimental data either. They measured the ignition delay time of decalin at low

temperatures in an RCM, and changed the activation energy of ketohydroperoxide

decomposition reactions from 43 kcal/mol to 40.5 kcal/mol, to match the ignition

delay time measurements, as shown in Figure 2.10. Wang et al. [52] developed a de-

calin oxidation mechanism based on analogy to cyclohexane oxidation, and validated

the new mechanism with ignition delay time measured in a shock tube and an RCM.

Yang and Boehman [58] investigated decalin oxidation in motored engine au-

toignition experiments. It was found that although intermediate species from de-

calin low-temperature oxidation was complicated, the dehydrogenation path was clear

via formation of octahydronaphthalene, hexahydronaphthalene, tetralin, decalin and

naphthalene. The ethylene/propene ratio in decalin oxidation was close to that of

cyclohexane and significantly higher than that of methylcyclohexane (MCH). The

formation of propene was favored in MCH oxidation because the ring breaking took

place at the carbon connecting the methyl group. Propene formation during decalin

oxidation was closer to cyclohexane oxidation rather than MCH oxidation, showing

that it’s unlikely for decalin to break one ring first to form a methyl side chain. In-

stead, it’s more likely to break the common C-C bond and its adjacent bonds. These

ring-breaking pathways are shown in Figure 2.11.

2.2.5 Toluene

Toluene autoignition showed no significant pre-ignition energy release below 900K

in a shock tube [59], an RCM [60] and a flow reactor [54], so developing a precise

kinetic mechanism for toluene should be relatively easier. The toluene submechanism

used in SKE360 [53] was developed based on shock tube ignition delay time at 8.0−

9.4 atm and 1300−1900K, and species time histories in an atmospheric-pressure flow

reactor at an initial temperature of 1137K. However, this mechanism was found to
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be too reactive in shock tube experiments at 10− 61 bar and 1021− 1400K [59], and

RCM experiments at 25− 45 bar and 960− 1100K [60].

Efforts were made to develop a more accurate toluene pyrolysis and oxidation

mechanism. Metcalfe et al. [54] improved the Bounaceur et al. [61] mechanism based

on time histories measured in a flow reactor for benzene, cyclopentadiene, and phenol.

Yuan et al. [55] also developed a mechanism based on pyrolysis intermediates mea-

sured in a flow reactor, and oxidation intermediates measured in a JSR at 950−1200K

[62]. Wang et al. [63] measured the OH time history in a shock tube at 1513−1877 K

and 1.2 atm, and found that the Yuan et al. [55] mechanism showed excellent agree-

ment with the measurement, as shown in Figure 2.12. Kukkadapu et al. [56] recently

improved the Mehl et al. [64] mechanism and the Zhang et al. [65] mechanism by

adopting new reaction rates and reaction channels from the literature, and measured

the ignition delay time in an RCM for validation. Recent toluene mechanisms avail-

able in the literature are listed in Tabel 2.1.

Figure 2.12: OH time-history measured in a shock tube and predicted by three mech-

anisms [63].
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Chapter 3

Method

3.1 Motored engine experiment

3.1.1 Engine setup

The experimental autoignition studies were performed in a modified octane rating

engine. The Cooperative Fuel Research (CFR) engine at the University of Michigan

was modified to run in homogeneous charge compression ignition (HCCI), and could

be motored at an engine speed of 600 RPM or 900 RPM, with intake dry air pressure

up to 3 bar, and compression ratio (CR) from 4.0 to 15.7.

The intake pipe was heated from approximately 11 ft upstream of the engine

intake port to maintain a constant intake temperature up to 280℃. The original

carburetor of the CFR engine was removed, and fuel was injected approximately 5 ft

upstream of the engine intake port, using a gasoline direct injection (GDI) injector,

at an injection pressure of 700 psi. Fuel was injected continuously into the heated

intake pipe to create a fully vaporized and homogenous intake gas mixture.

The in-cylinder pressure was measured using a Kistler 6052B piezoelectric pressure

transducer at the port where there originally was a detonation sensor for octane rating

tests. The apparent heat release rate (AHRR) was calculated from cylinder pressure

traces using the equation from Heywood [66]:
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The ignition delay timing was defined as the crank angle degree when the AHRR

started to rise and being a zero point of the 2nd derivative of cylinder pressure. The

amount of heat release was the integral of AHRR from the onset to the end of the

heat release event.

The engine was first modified by Szybist et al. [67] to run in HCCI mode, for

autoignition studies of alternative diesel fuel-relevant compounds. The exhaust com-

position was monitored via FTIR. Condensable exhaust gas was collected for sub-

sequent gas chromatography/mass spectrometry (GC/MS) analysis. Since then, the

modified engine has been used for ignition studies of a wide variety of fuels, including

gasoline [68], jet fuels [3], fatty acid esters [69], and many more. While the change to

engine setup was kept minimal to that in [67], different emission analyzers were used

in later studies and in this work, which will be discussed in Section 3.1.2

3.1.2 Exhaust gas sampling

At each test condition, a sample of the exhaust gas was pulled through a heated

headline filter at 190◦C to remove particulate matters, and through a chiller at −5

to 5◦C to remove hydrocarbons, then to California Analytical Instrument (CAI) 600

series O2/CO2 and CO analyzers. The degree of low-temperature CO production

was used in the flow reactor as a measure of reactivity, and autoignition tendency

[70, 71]. CO was a major product when a fuel underwent low- and intermediate-

temperature oxidation, and was not converted to CO2 at a significant rate until a

critical concentration was formed and the high-temperature heat release (HTHR)

began. Other intermediates were also produced in this process, but their species and
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reactivity could be fuel-specific. CO was a common product at a significantly higher

concentration than other intermediates. Hence CO was the best indicator of the stage

of oxidation and the reactivity of fuels, and has been used in previous autoignition

studies (e.g. Agosta et al. [71]).

Another exhaust sample was pulled from the engine, through a heated line at

190◦C, to an AVL SESAM i60 FT analyzer, for FTIR measurement of small hydrocar-

bons and oxygenates (methane, ethylene, propene, formaldehyde, and acetaldehyde).

Details of the CAI bench setup and the AVL SESAM FTIR analyzer could be found

in [68].

Newly added to the engine exhaust sampling system was a Thermo Scientific Trace

1310 gas chromatography-mass spectrometry (GC-MS) coupled with a customized

auxiliary oven. The aux oven inlet was connected to the engine exhaust pipe with

a heated sample line and a heated headline filter, both kept at 190◦C. The aux

oven was kept at 260◦C to avoid condensation of heavy compounds (especially the

fuel molecules). Exhaust sample was pulled with a vacuum pump at a constant flow

rate to fill the sample loop of the GC-MS. Flow after the GC column was split into

two flows to the MS and a utilized FID simultaneously. The mass spectrums and

the retention times were used to determine the species, and the FID peak areas were

used to quantify the species concentrations. The column used was a Restek Rtx-VMS

column, which was 30m in length with 0.25 mm inner diameter (ID). This column

was good at separating C3-C7 hydrocarbons and oxygenates [58].

FID quantification was achieved via an approach similar to external standards.

Three fuels, n-heptane (a normal-alkane), iso-cetane (a highly-branched alkane), and

toluene (an aromatic compound), were injected into the engine at the lowest com-

pression ratio 4.0. Oxidation was found to be negligible at this compression ratio

for the three fuels. Exhaust gas during this calibration process was sampled and the

FID areas of the fuel molecules were used to determine the FID signal correlation to
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species concentrations in the unit of ppmC1. Figure 3.1 (a) shows the correlation.

Figure 3.1: (a) Correlation used for FID quantification.

(b) Comparison of results from the GC-FID and the FTIR analyzer.

To evaluate the reliability of this correlation, total concentrations of methane,

ethylene and propene from the GC-FID were compared with the values from the

FTIR, as shown in Figure 3.1 (b). Measurements using the two instruments were

in good agreement in autoignition experiments of all fuels investigated. Compared

to the FTIR analyzer, the GC-FID measurements were 6% lower. In the future, it

would be beneficial to inject unreacted fuels at a set of different concentrations in a

similar way to the five-point calibration process, to re-calibrate species concentrations

reported in this work for more accurate quantification.

Because oxygenates have low response factors in the FID, the total carbon in the

exhaust gas could not balance with the total carbon of the fuel injected into the engine

intake pipe, especially at test conditions when oxygenate concentrations were high

in the exhaust gas. However, the total hydrocarbon (THC) concentrations and the

CO/CO2 concentrations measured with different analyzers agreed well, at the same

conditions in repeated experiments, showing eliminated sample loss and satisfying
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Figure 3.2: THC and carbon balance in n-dodecane autoignition experiments in the

motored engine at Tin=260℃, Pin=1bar, and an engine speed of 600 RPM.

Figure 3.3: Acetaldehyde concentrations measured with the GC-FID and the AVL

SESAM FTIR. Results are from (a) n-dodecane and (b) various fuel autoignition

experiments in the motored engine.
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repeatability in the experiment. Figure 3.2 (a) shows the THC concentrations mea-

sured with the two FIDs. Figure 3.2 (b) shows the total carbon balance (THC + CO

+ CO2) in repeated experiments using different FIDs and CO/CO2 analyzers. In this

study, total carbon in the exhaust reached >90% of fuel carbon at the beginning of

LTO and near the Critical Compression Ratio (CCR). During NTC, carbon balance

was the worst and could be as low as 60%-80% because a large amount of oxygenates

was produced.

The response factor, defined as the ratio of the FID measurement and the actual

concentration, is almost 0 for formaldehyde, 0.14-0.51 for acetaldehyde [72, 73, 74, 75],

and gradually increases when O/C decreases with a larger molecular size [76]. The

response factor of acetaldehyde was found to be 0.266 in this study. Figure 3.3 shows

the correlation of acetaldehyde concentrations measured with the GC-FID and the

FTIR. An interesting observation from this correlation is that the FTIR analyzer

might have a very small offset too.

Estimation of response factors is complicated and unreliable. In the following

chapters, formaldehyde and acetaldehyde concentrations were from the FTIR. Orig-

inal concentrations for other oxygenates were used, and no response factors were

applied. Hence, C3-C12 oxygenate concentrations could be as low as 0.266 of the

actual concentrations.

Although carbon balance was poor in this experiment, the repeatability of species

measurements was good in repeated experiments and with different instruments.

Hence, alkane and alkene concentrations were reliable, and the general trends for C3-

C12 oxygenates were reliable. In the future, measurements of the response factors of

oxygenates (i.e. C3-C12 aldehydes and cyclic ethers) could be added to re-calibration

oxygenate concentrations reported in this study for a better quantification.
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3.1.3 Engine experiment repeatability

In addition to exhaust sampling repeatability, engine experiment repeatability was

also evaluated. Peak cylinder pressure from repeated tests could be an indicator of

the test repeatability. Figure 3.4 shows the peak cylinder pressures from repeated

experiments. The relative standard deviation (RSD) of the peak cylinder pressure

was within 2% in repeated motoring tests. In autoignition tests, peak pressures

near CCR might have larger RSDs for some fuels. The onset of high-temperature

oxidation (HTO) could be very sensitive to the engine coolant temperature, depending

on the fuel type and the operating condition. < 0.1◦C increase in engine coolant

set temperature might trigger HTO, leading to a significantly higher peak cylinder

pressure. In general, fuels with more intensive low-temperature oxidation (LTO) are

less sensitive to coolant temperature. For example, n-dodecane autoignition peak

pressures showed RSDs < 0.6%. In contrast, the autoignition of single-stage fuels,

such as iso-cetane and toluene, is extremely sensitive to engine coolant temperature.

Figure 3.4: Peak cylinder pressure in repeated experiments.
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The Critical Compression Ratio (CCR) could be another indicator of test re-

peatability. The critical compression ratio is the compression ratio at which intensive

autoignition was triggered and [CO] starts to drop in the exhaust gas. It was used as

a fuel reactivity indicator and was highly repeatable within a 0.1 compression ratio

in previous autoignition studies [3, 68].

For fuels exhibiting strong low-temperature oxidation (LTO) behavior, CO con-

centration in the negative temperature coefficient (NTC) regime, [CO]NTC, was also

highly repetitive. In n-heptane autoignition experiment at Tin = 120◦C and φ = 0.25,

RSD of [CO] was 0.62% at CR = 6.0. In n-dodecane autoignition experiment at

Tin = 260◦C and φ = 0.25, RSD of [CO] was 3.56% at CR = 4.0.

It was also found that the CCR was not very sensitive to intake temperature.

Figure 3.5 shows that when Tin increased from 110◦C to 130◦C, CCR decreased by

0.2 at φ = 0.25 and by 0.3 at φ = 0.50 in n-heptane autoignition experiments. Hence,

a small variance in intake temperature would not induce a significant error in CCR.

Figure 3.5: n-heptane autoignition in a motored engine, at Pin = 1bar and

Tin = 110− 130◦C.

3.1.4 Test fuels

Table 3.1 shows the brands and purities of the fuels used in this study. The UM3

Jet-A surrogate was blended on a mass base.
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Fuel Brand and Purity

n-Dodecane Alfa Aesar, 99%

2,2,4,4,6,8,8-Heptamethylnonane
(iso-cetane)

ACROS OrganicsTM, 98%

Decahydronaphthalene (decalin, cis and
trans Mixture/Reagent)

Fisher Chemical, >97%

Table 3.1: Test fuel information.

3.2 Simulation

A multizone model was developed to simulate HCCI combustion in the motored

engine. The model was adapted from the stand-alone balloon-type multizone model

AMECS developed by Kodavasal et al. [77]. In the AMECS model, the engine cylinder

was divided into 40 zones, assuming no mass transfer between zones, which was a

simplification suitable for HCCI combustion. Each zone would behave like a balloon

that would shrink and swell to maintain a uniform cylinder pressure. These features

were kept the same for the multizone model developed in this study.

Heat loss distribution among the zones was re-calculated based on the tempera-

ture distribution acquired from a CFD simulation of this engine. This temperature

distribution is shown in Figure 3.6 (a). The CFD mesh of the engine was modified

from the virtual CFR engine developed by Pal et al. [78]

The adapted stand-alone multizone model was then embedded into GT-Power as

a user-defined function for the cycle calculation part of the engine system simulation.

While the multizone model calculated the chemical reactions from intake valve clos-

ing (IVC) to exhaust valve opening (EVO), GT-Power simulated the gas exchange

processes and the cooling system of the motored engine. Instead of being a closed-

cycle simulation as for the stand-alone multizone model, the developed multizone

model was used to perform open cycle simulation. Intake temperature adjustment

was no longer needed to compensate for residuals and charge heating effect. Multiple
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Figure 3.6: Simulation of the engine motoring at Tin = 120◦C and CR = 6.0.

(a) Temperature contour from the CFD simulation. (b) Temperature profile and

zone mass distribution in the CFD and multizone simulations.
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Experiment Simulation

Engine
Specifica-
tion

Bore 3.25 in 3.25 in

Stroke 4.5 in 4.5 in

Connecting Rod
Length

10 in 10 in

Clearance
Height

1.5 to 0.321 in
(compression ratio
4.0 to 15.0)

Same as
experiment

Operating
Condition

Engine Speed 600 or 900 RPM Same as
experiment

Intake Pressure 1 to 3 bar Same as
experiment

Intake
Temperature

40 to 260 ℃ Same as
experiment (set as
the intake pipe
wall temperature)

Coolant
Temperature

90 ℃ 90◦C (same for the
lubricant oil
temperature)

Equivalence
ratio

0.25 to 0.5 Same as
experiment

Table 3.2: Experiment and simulation parameters.
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cycle simulation was performed until convergence was reached. Table 3.2 shows the

engine specifications and operating conditions in the experiment and simulation.

Valve lifts were measured, and a modified CFR engine valve lift curve as in Figure

3.7 was used in the simulation. The original CFR engine valve lifts and flow coeffi-

cients were acquired from Morganti [79]. The zoomed-in cylinder pressure trace in

the intake and exhaust strokes (Figure 3.8) shows that the simulation’s valve lifts and

flow coefficients were accurate.

Figure 3.7: Valve lifts measured (markers) and used in the simulation (solid lines).

Figure 3.8: Cylinder pressure trace of the engine motoring at an engine speed of 600

RPM, Pin = 1bar, Tin = 120◦C and CR=6.0.
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The modified Woschni model [80] was used to calculate the total heat loss. The

heat loss coefficient was calibrated to match the peak cylinder pressures at motoring

conditions. Figure 3.9 shows that the simulated peak cylinder pressure Pcyl,max agreed

well with the measurements at all simulated conditions.

Figure 3.9: Correlation between measured and predicted peak cylinder pressure at

motoring conditions. Experiment data at 900 RPM were from [68]. All simulation

results were from this work.

In Figure 3.6, the CFD model over-predicted the peak cylinder pressure, likely

because blow-by flow was not considered in the CFD simulation. In the multizone

model, peak pressure prediction matched the measurement because the blow-by flow

was “compensated” in heat loss calibration. This “compensation” might have induced

an error in mass flow rate prediction. Yoo [68] reported that the blow-by flow rates

measured in this motored engine showed a good agreement with calculations using

the orifice flow equation from [66]. The calculated blow-by flow rate was 0.0008335

g/cycle at 600RPM , Pin = 1bar, Tin = 120◦C, and CR = 6.0, equal to 1.6% of the

mass airflow rate measured at the test condition.

This multizone model is especially suitable for HCCI combustion, where the charge

is homogeneous. In the model, thermal stratification was considered, but computa-
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tional cost remained low. According to Kodavasal et al. [77], the multizone model

was 100X faster than the CFD model. In this study, we were also able to use large

chemical kinetic mechanisms containing 1000+ species and 5000+ reactions.
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Chapter 4

Simulation of Pentane Isomers Autoignition

in a Motored Engine

4.1 Introduction

Pentane isomers are components of gas turbine, gasoline, and diesel engine fuels,

but they were less investigated than reference fuels n-heptane and iso-octane. They

have long been fuels of interest in ignition studies due to their relative simplicity

compared to longer alkanes. At the same time, a reactivity comparison of their variety

of branched structures provides helpful information for studies of longer alkanes.

In previous pentane studies, ignition delay timings measured in a rapid compres-

sion machine (RCM) and a shock tube (ST) were widely used as prediction targets

for mechanism validation and optimization. Cai and Pitsch [81] developed a rate rule

optimization method, which was then applied to an n-pentane mechanism, incorpo-

rating low- to high-temperature ignition delay timings as prediction targets. Bugler

et al. [11] updated species thermochemical properties, the C0-C4 sub-mechanism,

and rate rules for pentane isomers oxidation and showed significantly improved accu-

racy of the mechanism in predicting the ignition delay timing. Wang and Sarathy [82]

and Hansen et al. [83] found that the third O2 addition was insignificant for n-pentane

and neo-pentane ignition delay timing. Sudholt et al. [84] for the first time, measured
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the ignition delay timing at very low temperatures (550 to 800K) in a laminar flow

reactor for n-pentane.

In addition to matching ignition delay timings, Cheng et al. [85] found that the

mechanism from Bugler et al. [11] accurately predicted laminar flame speeds for n-

pentane. Cheng [22] evaluated the same mechanism in an spark ignited (SI) engine,

found that to reasonably predict the knocking onset for pentane isomers, the mecha-

nism needs to reach higher accuracy, and suggested that adding the engine experiment

as a constraint would reduce model uncertainty by 84%.

Speciation data are available for oxidation of pentane isomers in a jet stirred re-

actor (JSR). Rodriguez et al. [86] measured hydroperoxides in n-pentane oxidation.

They found that the mechanism from Bugler et al. [11] gave a good prediction for

pentyl-hydroperoxide but observed significant discrepancies for unsaturated perox-

ides. Bugler et al. [87] measured intermediate oxidation species during n-pentane

oxidation and added reaction classes for C5 aldehydes (pentanal and 2- and 3- pen-

tanones). Bourgalais et al. [88] measured the low-temperature reaction products of n-

pentane, found a higher formation of acetone and methyl ethyl ketone than the mech-

anism predicted, and found products not considered previously (methoxyacetylene,

methyl vinyl ketone, and 2-furanone). Battin-Leclerc et al. [20] measured n-pentane

low-temperature oxidation products at 585-665 K, confirming that the dominant ke-

tohydroperoxide is 4-hydroperoxyl-pentan-2-one and observed species with a ketone

and an enol function.

Kang et al. [89] investigated the reactivity of three pentane isomers in a motored

engine, which is a more complicated experiment but closely mimics real engines,

and measured the detailed intermediate species. It was the first intermediate species

measurement for all three pentane isomers. However, those informative data were not

used for mechanism validation or improvement due to the lack of a simulation tool.

To fill this gap, we developed a multizone model from the AMECS model of Ko-
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davasal et al. [77] and integrated it into GT-Power, to simulate the autoignition

process in the modified CFR octane rating engine at the University of Michigan. The

C5 isomers mechanism of Bugler et al. [11] was selected for use in this study, as it

was shown to be accurate for ignition delay timing and laminar flame speed predic-

tion. Experiment data are from Kang et al. [89] , at an engine intake air pressure of

1 bar and an intake mixture temperature of 120℃, serving as a benchmark for the

simulation of autoignition of n-pentane, iso-pentane, and neo-pentane in the motored

engine.

4.2 Objectives

The objectives of this simulation work are

• to evaluate the effectiveness of the multizone model as a tool for mechanism

validation,

• to improve the fundamental understanding of C5 isomers autoignition chemistry

and

• to provide detailed information for C5 mechanism improvement

4.3 Results and discussion

4.3.1 Global reactivity

In the modified CFR octane rating engine experiment, CO concentration in the

exhaust gas indicates reaction intensity and fuel oxidation stages [89]. While the

engine compression ratio was gradually increased, fuel oxidation underwent three

regimes which could be identified by CO production:

• Low-temperature oxidation (LTO) regime, including stages
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(I) <700K when barely any CO was produced, but initial fuel consumption

began, a small amount of formaldehyde was formed and

(II) 700-800K when CO started to accumulate in the exhaust, indicating that

the low-temperature oxidation intensified

• Negative temperature coefficients (NTC) regime, or

(III) 800-900K, when CO concentration leveled out, showing a slow-down of

reaction and fuel consumption although the in-cylinder temperature was

increased

• High-temperature oxidation (HTO) regime, including stage

(IV) 900-1200K, when CO concentration increased intensely, representing in-

tensive reaction and fuel consumption, followed by

(V) >1200K, a sharp drop of CO concentration when CO was oxidized to CO2,

accompanied by intensive heat release and in-cylinder temperature rise

Figure 4.1 shows a prediction of CO emissions by the multizone model, compared

to experimental data from Kang et al. [89], with an example of LTO, NTC, and HTO

regimes for n-pentane autoignition.

In previous motored CFR engine experimental studies, the compression ratio at

which CO emissions started to drop was defined as the critical compression ratio

(CCR) [89]. CCR has been highly repeatable for specified fuels and is an effective

fuel reactivity indicator. At an equivalence ratio of 0.25, CCR prediction was within

0.3 compression ratio (2.3% of measured CCRs) for pentane isomers, showing a high

degree of consistency of both the engine model and the chemical kinetics mechanism.

Peak CO emission ([CO]max) prediction was 14.2% of fuel carbon too high for

n-pentane, 10.7% of fuel carbon too high for iso-pentane, and 11.5% of fuel carbon

too high for neo-pentane. One reason for the higher [CO]max in the prediction than
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Figure 4.1: Autoigitnion of pentane isomers in a compression ratio (CR) sweep in the

motored CFR engine

in the experiment is the experiment measurement limit. The emission bench used

in the experiment had an upper limit of 14000 ppm, which is equivalent to 44% of

fuel carbon, so the true [CO]max was above 44% of fuel carbon in n-pentane and

neo-pentane oxidation. New experiments for n-heptane and n-dodecane in Chapter

5 show that [CO]max is around 50% of fuel carbon for n-alkanes. Another reason is
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that fuel consumption in the simulation was more complete in HTO, probably due

to simplified assumptions in the multizone model. In the experiment, there might be

some inhomogeneity not considered in the simulation, including the crevice volume,

that led to a small amount of unburned fuel in the exhaust gas.

Figure 4.1 (b) shows unreacted fuel concentration. The simulation effectively

predicted fuel consumption at the early stage, with a 3.8% overprediction of fuel con-

sumption for n-pentane and 5.2% for neo-pentane. A more significant discrepancy was

observed for iso-pentane with a 32.2% underprediction of fuel consumption, showing

that iso-pentane reactivity was underestimated at low to intermediate temperatures.

Figure 4.2: Critical equivalence ratios (CEQs) and critical compression ratios (CCRs)

of the three pentane isomers

At extended test conditions, simulation was performed to evaluate the effective-

ness of the multizone model and the mechanism. Figure 4.2 shows the predicted

equivalence ratio and compression ratio, at which intensive heat release started to be

observed and CO concentration dropped (i.e., CEQ and CCR). At φ = 0.25, CCR was

underpredicted for n-pentane and neo-pentane for < 0.3. This discrepancy was mag-

nified to > 0.4 at φ = 0.50. It is likely that at a higher equivalence ratio, inaccuracy
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in the LTO mechanism would introduce a more significant temperature difference due

to the increased amount of fuel and would be reflected in worse CCR prediction. It

was in the opposite direction for iso-pentane as CCR prediction was improved as phi

increased. This trend is because the LTO discrepancy is in the opposite direction for

iso-pentane (i.e., underprediction).

4.3.2 Heat release analysis

Figure 4.3 shows the apparent heat release rate for pentane isomers at a compres-

sion ratio of 8.5 and at their respective CCRs.

Figure 4.3: Apparent heat release rate (AHRR) and in-cylinder temperature of the

pentane isomers autoignition in the motored engine
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For n-pentane, at CR = 8.5, the timing of the low-temperature apparent heat

release (LTHR) prediction was 3.1 CA◦ late, and the amount was 8.9 J/cycle more.

The high-temperature heat release (HTHR) prediction was 5.1 CA◦ early and the

amount was 50 J/cycle too high. The slight overprediction of HTHR and global

reactivity might be a result of overestimated LTHR.

Although significant fuel consumption was observed at the early stage of iso-

pentane oxidation, LTHR was not observed, either in simulation or experiment. At

CR = 8.5, the predicted timing of HTHR was 4.1 CA◦ early, and the amount was 0.23

J/cycle lower; while at CCR, predicted HTHR was 7.2 CA◦ early, and the amount

was twice the amount from the experiment.

For neo-pentane at CCR, the predicted timing of LTHR was 5.8 CA◦ early, and

the amount was 4.1 J/cycle lower, with HTHR only 0.3 CA◦ late and the amount

was 9.06 J/cycle higher than the experiment.

4.3.3 Intermediate species

Predicted intermediate species and concentrations were compared to measure-

ment, together with reaction pathways analysis, to enable a more detailed evaluation

of the mechanism.

4.3.3.1 Intermediate species during n-pentane oxidation

As shown in Figure 4.4, there are three different H atoms in an n-pentane molecule,

hence three isomers of alkyl-peroxyl radicals, produced by O2 addition to the fuel rad-

icals at low and intermediate temperatures. In LTO, intramolecular isomerization via

6-membered TS rings and the second O2 addition were the most important reactions

for ignition delay timing prediction [11]. As temperature increases, flux shifts to-

wards 5- and 7-membered TS rings, and more conjugate olefins and cyclic ethers are

produced.
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Figure 4.4: n-Pentane low- and intermediate-temperature oxidation pathways. Red

arrows represent chain-propagating pathways producing conjugate olefins. Pink ar-

rows represent chain-propagating pathways producing cyclic ethers. Blue arrows rep-

resent chain-propagating pathways involving the breaking of a C-C bond.
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Figure 4.5: Species during n-pentane oxidation: (a-f) cyclic ethers, (g-i) other major

oxygenates and (m-r) alkenes.
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Figure 4.6: Intramolecular isomerization of a pentyl-peroxyl radical and the pathways

producing cyclic ethers. Pink arrows represent chain-propagating pathways produc-

ing cyclic ethers. Blue arrows represent chain-propagating pathways involving the

breaking of a C-C bond.
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Figures 4.5 (a-f) show the cyclic ether concentrations. Among the cyclic ethers,

the dominant product in the experiment was 2-methyl-tetrahydrofuran, which was

overpredicted by the mechanism. 2,4-dimethyl-oxetane was predicted to be another

dominant cyclic ether but the measured concentration was <0.5% of fuel carbon. 2-

Ethyl-oxetane and 2,3-methyl,ethyl-oxirane were predicted to be >1.5% of fuel carbon

but not detected in the experiment. In contrast, dihydropyran was not included in the

mechanism but detected in the experiment. As shown in Figure 4.6, the formation of

tetrahydro- and dihydro-pyran involves an 8-membered TS ring and might be worth

adding to the mechanism.

Figure 4.7: C5 aldehyde concentrations replotted from Kang et al. [89].

C5 aldehydes and ketones were not considered in the mechanism but detected in

the experiment. Figure 4.7 shows C5 aldehyde and ketone concentrations from Kang

et al. [89]. Reactions are missed in the mechanism from alkyl-peroxyl radicals, pos-

sibly via 4-membered TS ring, to C5 aldehydes and ketones, as shown in Figure 4.8.

Those missing species would partially explain the overprediction of C5 cyclic ethers

during n-pentane and iso-pentane oxidation. Though Bugler et al. [87] suggested that

a 4-membered TS ring is less likely to form due to a high energy barrier, their pro-

posed pathways involved C5 alcohol species that were not detected in the experiment.

Furthermore, C5 aldehydes and ketones are in one-to-one correspondence with the

alkyl-peroxyl radicals, so they would be beneficial in evaluating the initial H-atom

abstraction from different carbon atoms.
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Figure 4.8: Formation of pentanal via a 4-membered TS ring.

Figures 4.5 (m-r) show the alkene concentrations. 2-Pentene and ethylene were

significantly overpredicted. Competing reactions to the formation of C5 cyclic ethers

and 2-pentene are the formation of 6-membered TS rings, leading to the production of

CO, formaldehyde, and acetaldehyde. Acetaldehyde was significantly underpredicted

by the mechanism, as shown in Figure 4.5 (k). The underprediction of acetaldehyde

and overprediction of 2-pentene and 2,3-methyl,ethyl-oxirane is consistent with the

observation in a JSR (Bugler et al. [87]) at 10bar, 800− 900K and φ = 0.3.

4.3.3.2 Intermediate species during iso-pentane oxidation

Figure 4.9 shows major species concentrations during iso-pentane oxidation. While

four C5 cyclic ether isomers were predicted to be >1% of fuel carbon, only one iso-

mer, 3-methyl-tetrahydrofuran, which is also the only possible tetrahydrofuran, was

detected in the experiment.

Three conjugate olefins could be produced, and all of the three isomers were

detected in the experiment. As shown in Figure 4.11, in an iso-pentane molecule,

there are four different H atoms, the abstraction of which could lead to the formation

of four different fuel radicals. The flux analysis shows that at 600 − 800K, most

of the conjugate olefin isomers are produced following H-atom abstraction from the

secondary and tertiary carbons. H-atom abstraction from the primary carbons does

not significantly contribute to conjugate olefin production. From the flux analysis,

2-methyl-1-butene production is at a similar rate to 2-methyl-2-butene, both about

twice of 3-methyl-1-butene. Same for the engine simulation results, which were fairly

accurate for the other two conjugate olefins, but too high for 2-methyl-2-butene.
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Figure 4.9: Species during iso-pentane oxidation.
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Figure 4.10: iso-Pentane low- and intermediate-temperature oxidation pathways. Red

arrows represent chain-propagating pathways producing conjugate olefins. Pink ar-

rows represent chain-propagating pathways producing cyclic ethers. Blue arrows rep-

resent chain-propagating pathways involving the breaking of a C-C bond.

48



Figure 4.11: Conjugate olefin formation pathways during iso-pentane oxidation.

Numbers are fluxess in % of fuel carbon, at T = 600K, 700K and 800K, P = 15

bar, φ = 0.25 and 20% fuel consumption. Flux analysis was performed in a closed

homogeneous reactor in Cantera.
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There is an interesting observation with this inaccurate simulation. There are 7

H atoms in a iso-pentane fuel molecule, that are related to production of 2-methyl-1-

butene. 5 H atoms are related to 3-methyl-1-butene. The ratio of the concentrations

of the two correspondent conjugate olefins were close to this ratio of available H

atoms 7/5. Similarly, 3 H atoms are related to 2-methyl-2-butene formation, and

the concentration of 2-methyl-2-butene was lower than 3-methyl-1-butene, but only

slightly, because losing the H atom from the tertiary carbon is easier making 2-methyl-

2-butene slightly easier to form. This comparison among the three conjugate olefin

isomers shows that H availability might be a dominant factor in conjugate olefin

production. How easy an H atom could be abstracted might be a secondary factor,

but its importance was overestimated in the mechanism.

A major chain-branching product, acetaldehyde, was significantly underpredicted.

It is worth mentioning that peak acetone prediction was over 2.0% of fuel carbon but

acetone was not detected in the experiment. Figure 4.10 shows that acetone produc-

tion follows the first or second O2 addition to the tertiary carbon. Hence, these path-

ways are very unlikely and should be eliminated in the mechanism. These pathways

being unlikely might be why branched alkanes are generally less reactive than normal

alkanes. iso-Pentane is less reactive than neo-pentane, maybe also because there is

no tertiary carbon in the neo-pentane molecule. There are no other data available

in the literature for acetone production during iso-pentane oxidation. Hence, more

species concentration measurements are necessary to confirm this observation and to

support further improvement of the iso-pentane oxidation mechanism.

4.3.3.3 Intermediate species during neo-pentane oxidation

As shown in Figure 4.12, because all H atoms are identical in the neo-pentane

molecule, only one type of alkyl-peroxyl radical is formed. The flux analysis shows

that at 600-800K, the β-scission pathway is insignificant, and the first O2 addition
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Figure 4.12: neo-Pentane low- and intermediate-temperature oxidation pathways.

The pink arrow represent the chain-propagating pathway producing the cyclic ether.

Numbers are fluxes in % of fuel carbon, at T = 600K, 700K and 800K, P = 15

bar, φ = 0.25 and 20% fuel consumption. Flux analysis was performed in a closed

homogeneous reactor in Cantera.
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Figure 4.13: Species during iso-pentane oxidation.

is dominant. There is also only one way for the intramolecular isomerization of

the alkyl-peroxy radical to the hydroperoxyl-alkyl radical. At 800K, flux analysis

shows a 40% flux to the cyclic ether, a 14.8% flux to iso-butene, and a 25.5% flux

undergoing the second O2 addition. However, as shown in Figure 4.13, the only pos-

sible cyclic ether was overpredicted by the mechanism, while LTO chain-branching

products 2-methylpropanal, 2-methyl-2-propenal, and acetone were underpredicted.

Hence, pathways following the second O2 addition need to be enhanced in the mech-

anism.

4.3.4 Intermediate species comparison for pentane isomers

Figure 4.14 shows the concentrations of conjugate olefins (iso-butene for neo-

pentane), C5H10O isomers (including cyclic ethers, aldehydes and ketones) and ac-

etaldehyde (or acetone for neo-pentane) during oxidation of pentane isomers, to give

a direct comparison for the reactivity of the pentane isomers.

Conjugate olefin concentrations during NTC seemed to be insensitive to the fuel

structure. Conjugate olefin concentrations were around 5% of fuel carbon for all three
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Figure 4.14: Species during iso-pentane oxidation.

pentane isomers. The mechanism successfully predicted this insensitivity. For another

LTO chain-branching product group, C5H10O isomers, concentrations during NTC

seemed to be more sensitive to the fuel structure, with the least reactive iso-pentane

having the lowest C5H10O concentration during NTC. Bugler et al. [11] mentioned

that the ignition delay timing is most sensitive to the reaction rate of cyclic ether

formation following the second O2 addition. This might also hold true for the first O2

addition. Less cyclic ether formation might in turn weaken O2 addition to the fuel

radical, resulting in a lowered fuel reactivity. The difference in C5H10O concentration

was successfully predicted by the mechanism. This observation might also help in

understanding the oxidation chemistry of larger branched alkanes.

Production of the LTO chain-branching products, acetaldehyde and acetone, was

also sensitive to the fuel structure. In the experiment, the least reactive pentane

isomer, iso-pentane produced the lowest acetaldehyde concentration. The mechanism

captured this trend. However, significant underprediction of acetaldehyde was ob-

served for n-pentane and iso-pentane, and acetone for neo-pentane, though the global

reactivity prediction was accurate. This indicates that the ignition delay timing might

not be very sensitive to reactions producing acetaldehyde.
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4.4 Conclusions

In this study, the autoignition of pentane isomers in a motored engine was simu-

lated using a multizone model. The model was an effective tool to validate an available

chemical kinetics mechanism (Bugler et al. [11]), improve fundamental understanding

of autoignition chemistry, and provide detailed information for mechanism improve-

ment. The predicted global reactivity, fuel consumption, and heat release profiles

were in excellent agreement with experiment data in Kang et al. [89]. At the same

time, slight improvements could be made in the mechanism, as LTO was slightly

overestimated for n-and neo-pentane and slightly underestimated for iso-pentane.

For all pentane isomers considered here, C5 cyclic ethers were overpredicted. Con-

jugate olefins for n- and iso-pentane were slightly over-predicted. Low-temperature

chain-branching products acetaldehyde (for n- and iso-pentane) and acetone (for neo-

pentane) were underpredicted. Hence, cyclic ether production pathways could be

weakened, and 4- and 8-membered TS ring pathways also need to be added to in-

clude missing species. Concerted elimination reaction rates need to be improved.

Second O2 addition pathways could be enhanced. Specifically for iso-pentane, chain-

branching pathways following first and second O2 addition to the tertiary carbon were

also found to be unlikely.

In a comparison of the three pentane isomers, conjugate olefin production was

found to be insensitive to the fuel structure. C5H10O and acetaldehyde/acetone for-

mation is sensitive to the fuel structure, with the least reactive pentane isomer, iso-

pentane producing the least C5H10O and acetaldehyde. The mechanism successfully

predicted these trends.
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Chapter 5

Autoignition of n-Heptane and n-Dodecane in a

Motored Engine: Experiment and Simulation

5.1 Introduction

A major motivation for this thesis was to investigate the autoignition behavior of

the UM3 jet fuel surrogate, of which n-dodecane is a major component, making up

40.84% volume fraction or 52.01% of the fuel carbon of the UM3 Jet-A surrogate.

To better understand n-dodecane oxidation, we investigated the autoignition of n-

dodecane together with another normal alkane with a shorter chain length, n-heptane,

in the motored engine via coupled experiment and simulation.

Like n-dodecane, there has been a continuing effort to develop a reliable n-heptane

oxidation mechanism in the research community. Lu and Law [90] developed a 188-

species skeletal mechanism of n-heptane oxidation from a detailed 561-species mech-

anism (Curran et al. [46]), using the temperature profile in a perfectly stirred reac-

tor (PSR), the ignition delay timing and JSR species concentrations as prediction

targets. Seidel et al. [91] constructed a 360-species n-heptane mechanism based on

their temperature and species measurement in a fuel-rich low-pressure laminar flat

premixed flame. Zhang et al. [92] developed a detailed mechanism based on the Aram-

coMech 2.0 C0-C4 submechanism and rate rules from the pentane isomers mechanism
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in Bugler et al. [11]. This detailed mechanism showed a generally good agreement with

the species concentration measurement in a JSR, except for underpredicted reactivity

at φ = 0.25 and around 750K.

Existing n-heptane mechanisms have also been widely evaluated in experiments

and simulations of fundamental combustion facilities. Rodriguez et al. [19] measured

hydroperoxides during n-heptane oxidation in a JSR and found that unsaturated hy-

droperoxide production pathways needed improvement in the Zhang et al. [92] mech-

anism. Ferris et al. [93] measured n-heptane oxidation intermediates in a shock tube

at 4.9atm and 760K, modified the LLNL mechanism (Mehl et al. [94]) by lowering

the rate of heptyl-peroxy isomerization reactions, and achieved improved prediction

for n-heptane, C2H4, C3H6, CO, and H2 prediction. Sarathy et al. [95] found 3-stage

ignition behavior in the n-heptane ignition prediction using the Zhang et al. [92]

mechanism at lean (φ = 0.3) and high-pressure (40atm) conditions. They found that

in addition to H + O2 (+M) = HO2 (+M) reaction, OH + HO2 <=> H2O + O2

reaction might also be important in n-heptane high-pressure lean combustion. He

et al. [96] measured the temperature and CO concentration in a high-pressure shock

tube and found that the Zhang et al. [92] mechanism predicted too fast a rise in

temperature and CO concentration.

Despite the inaccuracy found with these mechanism reaction rates, Wang et al.

[21] suggested that even for one of the most common reference fuels, n-heptane, new

species were still being discovered that are not considered in existing mechanisms,

based on their species measurements in a JSR and a motored engine. Herbinet et al.

[97] found that dione species formation was significantly enhanced at 10 bar in a

JSR than at lower pressures. Belhadj et al. [98] also measured the highly oxygenated

molecules not included in the existing mechanism during n-heptane oxidation in a

JSR at 10atm, 580 − 790K, and φ = 0.5. They recommended RCM and IC engine

experiments to further investigate the importance of those newly observed species in
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n-heptane LTO.

In this study, we evaluated the performance of three n-heptane mechanisms and

three n-dodecane mechanisms listed in Table 5.1 in coupled experiments and simula-

tion of the motored engine.

Fuel Mechanism
Number of

Species

Number of

Reactions

n-Heptane

Lu and Law [90] 188 842

Seidel et al. [91] 349 3686

Zhang et al. [92] 1268 5336

n-Dodecane

SKE360 [9] 360 1851

Narayanaswamy et al.
[99]

255 2289

Mao et al. [29] 737 3629

Table 5.1: n-heptane and n-dodecane mechanisms evaluated in this study.

5.2 Test conditions

n-Heptane engine experiment was performed at an intake temperature of 120℃,

the same as that of the pentane isomers in Kang et al. [89] n-Dodecane engine experi-

ment was performed at an intake temperature of 260℃, to fully vaporize n-dodecane,

and also to be consistent with the engine experiment for other pure components and

the mixture of UM3 jet fuel surrogates. Consequently, even at the lowest compression

ratio (CR), a significant amount of n-dodecane was oxidized. However, there was still

space from the starting compression ratio to the critical compression ratio (CCR), so

our method effectively evaluated n-dodecane reactivity and mechanism accuracy.

Details of the test conditions are listed in Table 5.2.
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Fuel n-Heptane n-Dodecane

Boiling Point 98.4℃ 216.2℃

Engine Intake Pressure 1 bar 1 bar

Engine Intake Temperature 120℃ 260℃

Engine Compression Ratio (CR) 4-7.2 4-5.1

Equivalence Ratio (φ) 0.25 0.25

Peak Cylinder Pressure 6.5-20.5 bar 7.2-12.3 bar

Peak Cylinder Temperature 623− 1358K 814− 1453K

Table 5.2: Test conditions for n-heptane and n-dodecane autoignition studies in the

motored engine.

5.3 Global reactivity

Figures 5.1 shows the CO concentration ([CO]), unreacted fuel concentration, and

simulated peak cylinder temperature during n-heptane and n-dodecane autoignition

in the motored engine. Both fuels are known for strong LTO and NTC behaviors,

which were captured in this experiment too.

For n-heptane global reactivity, both the Lu and Law [90] and the Seidel et al. [91]

mechanisms predicted late CCRs, indicating an overall underestimation of n-heptane

reactivity. CCR prediction from the Zhang et al. [92] mechanism was not obtained

due to a precision problem in the simulation.

The Seidel et al. [91] mechanisms showed a lower [CO] during NTC, indicating an

underestimated LTO, and a lower peak [CO], which might be a result of lower NTC

[CO]. The Lu and Law [90] and the Zhang et al. [92] mechanisms were very accurate

for [CO] during NTC (at CR = 5.0 − 6.5). The Lu and Law [90] mechanism also

provided a reasonably precise peak [CO] prediction.

Interestingly, for the two mechanisms predicting similar [CO] during NTC, their

predictions for the peak cylinder temperature were also close in that regime. The Sei-

del et al. [91] mechanism underpredicted [CO] during NTC by around 6% of fuel
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Figure 5.1: Autoignitoin of n-heptane and n-dodecane in the motored engine,

(a),(c),(e) at 120℃, (b),(d),(f) at 260℃.

59



carbon (equal to about 2400 ppm). At the same time, the Seidel et al. [91] mecha-

nism underpredicted the peak cylinder temperature by around 50 K. The Lu and Law

[90] and the Zhang et al. [92] mechanisms also gave very accurate predictions of the

amount of LTHR, as shown in Table 5.3. This comparison indicates that [CO] during

NTC, in-cylinder temperature, and the amount of LTHR are strongly correlated, all

being indicators of LTO intensity. Among those three parameters, [CO] might be the

best prediction target for future LTO mechanism development and validation.

CCR [CO]max
[CO] at

CR = 6.0

Tcyl,max at

CR = 6.0

LTHR at

CR = 6.0

unit
fuel

carbon %

fuel

carbon %
K J/cycle

Experiment 7.1± 0.08 52.1 19.0 - 66.54± 4.33

Lu and Law
[90]

7.9 51.9 19.2 838 64.6

Seidel et al.
[91]

8.8 22.3 13.23 791 42.9

Zhang et al.
[92]

- - 20.03 841 61.6

Table 5.3: Critical compression ratio (CCR), CO concentration ([CO]), maximum

cylinder temperature, and the amount low-temperature heat release (LTHR) of n-

heptane autoignition in the motored engine.

For the Lu and Law [90] mechanism, [CO] prediction was accurate during LTO and

NTC, until transitioning from NTC to HTO, at CR = 6.5 − 7.0 and peak cylinder

temperatures of 850 − 900K. This transition is usually controlled by HO2 radical

reactivity. Sensitivity analysis in Zhang et al. [92] for their n-pentane mechanism

showed that the ignition delay timing at both 820K and 1000K is sensitive to two

reactions:
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HO2 + HO2 ⇔ H2O2 + O2 (5.1)

H2O2 ( + M)⇔ OH + OH ( + M) (5.2)

Figure 5.2 shows the reaction rates of the two reactions and their reverse reactions

at 15 bar. At 850− 900K, the Lu and Law [90] mechanism has higher rate constants

for HO2 + HO2 ⇒ H2O2 + O2 and OH + OH ( + M) ⇒ H2O2 ( + M), both weakening

the reactivity of the mixture and increasing the ignition delay timing.

Figure 5.2: Key reactions in the transition from negative temperature coefficient

(NTC) regime to high-temperature oxidation (HTO) regime.

Another way to improve the Lu and Law [90] mechanism is to slightly increase

the amount of LTHR to compensate for somehow underestimated LTO reactivity. In
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the n-pentane simulation in Chapter 4, the amount of LTHR was overpredicted by

8.9 J/cycle but CCR prediction was very accurate.

Because the Bugler et al. [11] n-pentane mechanism has shown excellent CO and

CCR prediction in Chapter 4, we replaced the H2 / O2 and CO submechanisms and

common species’ thermochemical properties in the Lu and Law [90] mechanism, with

those from Bugler et al. [11] The new [CO] and CCR prediction in Figure 5.3 showed

significant improvement, though the timing of LTHR was slightly late.

n-Dodecane results were similar to the n-heptane results. First, for the three

n-dodecane mechanisms, all three predicted CCRs were late, showing an overall un-

derestimation of n-dodecane reactivity. The Mao et al. [29] mechanism gave the most

accurate CCR prediction among the three mechanisms. SKE360 [9] gave the best

[CO]max prediction and the Narayanaswamy et al. [33] mechanism gave the best [CO]

prediction during NTC and early HTO, and the highest prediction of the amount of

LTHR.

CCR [CO]max
[CO] at

CR = 4.0

Tcyl,max at

CR = 4.0

LTHR at

CR = 4.0

fuel

carbon %

fuel

carbon %
K J/cycle

Experiment 4.9 43.9 21.3 - 60.0± 2.7

SKE360 [9] 6.1 42.0 10.4 814 35.1

Narayanaswamy
et al. [99]

5.5 71.4 22.8 844 44.5

Mao et al. [29] 5.2 29.1 16.2 828 39.0

Table 5.4: Critical compression ratio (CCR), CO concentration ([CO]), maximum

cylinder temperature, and the amount low-temperature heat release (LTHR) of n-

dodecane autoignition in the motored engine.

Predicted [CO] from the Narayanaswamy et al. [33] mechanism was fairly accu-

rate during NTC and at the beginning of HTO, indicating that LTO reactivity was
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Figure 5.3: Predicted autoignition of n-heptane and n-dodecane by the updated mech-

anisms.
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accurate in this mechanism at CR = 4.0 − 4.8 and a peak cylinder temperature of

850 − 1050K. However, [CO] accumulated to an unreasonable 71.36% of fuel car-

bon and was slowly oxidized with increasing CR. Peak in-cylinder temperature also

increased slowly during HTO, which contradicts observations in the experiment and

other mechanisms. This indicates that the Narayanaswamy et al. [33] mechanism

needs major improvements for reactions that are important in HTO at temperatures

> 1050K. Sensitivity analysis for n-pentane and n-heptane ignition delay timing

in Bugler et al. [11] and Zhang et al. [92] showed that at high temperatures, the

ignition delay timing is sensitive to the β-scission reactions of the fuel molecule and

these C1 and H2/O2 reactions:

CH3 + HO2 ⇔ CH4 + O2 (5.3)

HO2 + HO2 ⇔ H2O2 + O2 (5.4)

H2O2 ( + M)⇔ H + OH ( + M) (5.5)

CH3 + HO2 ⇔ CH3O + OH (5.6)

H + O2 ⇔ O + OH (5.7)

Figure 5.4 shows the reaction rates for the listed reactions, 5.3 - 5.7. For the two

CH3 + HO2 reactions, it’s difficult to tell the combined influence of the discrepancies

in both reactions. For HO2 + HO2 ⇔ H2O2 + O2, the Narayanaswamy et al. [33]

mechanism shows a higher rate constant at temperatures > 800K, which leads to

longer ignition delay timings in this temperature range. Because the C0-C1 submech-

anism sizes are comparable in the two mechanisms, we replaced the C0-C1 submech-

anism, and the thermochemical properties of common species in the Narayanaswamy

et al. [33] mechanism with the data in Bugler et al. [11] Figure 5.3 shows the re-

sult of the updated mechanism. While no significant differences were observed in
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Figure 5.4: Key reaction in high-temperature oxidation (HTO) regime.

65



the heat release profile or in-cylinder temperature prediction, CCR prediction was

too early by the updated mechanism, likely due to overtuned LTO reactions in the

original Narayanaswamy et al. [33] mechanism.

5.4 Heat release analysis

Figure 5.5 shows the apparent heat release rate (AHRR) from experiment and

simulation and the in-cylinder temperature from simulation. For n-heptane at CR =

6.0, the predicted timings of LTHR from all three mechanisms were late. The Zhang

et al. [92] mechanism gave the most accurate predicted timing of LTHR among the

three n-heptane mechanisms, but a too high and narrow LTHR curve. Similarly,

for n-dodecane at CR = 4.0, the original and updated Narayanaswamy et al. [33]

mechanisms gave accurate predictions for the timing of LTHR, but too sharp and

narrow predicted LTHR curves. The Mao et al. [29] mechanism and SKE360 gave

too late predictions for the timing of LTHR.

For the in-cylinder temperature of n-heptane and n-dodecane, predictions of dif-

ferent mechanisms started from the motoring temperature and deviated from the

motoring temperature at around 700K after the onset of LTO.

5.5 Intermediate species

5.5.1 Low-to-intermediate temperature chain-propagating products:

conjugate olefins and cyclic ethers

Figure 5.6 shows the conjugate olefin, cyclic ether isomer, and acetaldehyde con-

centrations. During n-heptane oxidation, predictions for the C7H14 isomer concen-

tration from all three mechanisms were fairly accurate. For C7H14O isomers, the Lu

and Law [90] and the Zhang et al. [92] mechanisms overpredicted the concentra-

tion, while the Seidel et al. [91] mechanism slightly underpredicted the concentration.
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Figure 5.5: Heat release analysis of n-heptane and n-dodecane autoignition in the

motored engine.
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During n-dodecane oxidation, predictions for the C12H24 isomer concentration from

the Narayanaswamy et al. [33] and the Mao et al. [29] mechanisms were fairly accurate,

while SKE360 significantly overpredicted the concentration. All three mechanisms

overpredicted the C12H24 isomer concentration.

Figure 5.6: Conjugate olefins, cyclic ethers and acetaldehyde concentrations during

n-heptane and n-dodecane oxidation.

Figure 5.7 shows the GC-FID signals at the retention time (RT) of 2-10 min from

n-heptane and n-dodecane autoignition experiments. Usually, the peak for the fuel

molecule is the strongest, and small peaks closest to the fuel molecule are conjugate

olefins. For n-heptane, there are three n-heptene isomers.

1-Heptene’s retention time overlaps with n-heptane’s. Hence, 1-heptene was not

able to be separated. Two major peaks were observed near the n-heptane peak. Mass

spectrometry showed that both peaks were heptene isomers, but it was difficult to tell

which was 2-heptene and 3-heptene, as their mass spectra were very similar. Herbinet
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Figure 5.7: GC-FID signal from an n-heptane autoignition experiment at CR=6.0

and an n-dodecane autoignition experiment at CR = 4.0.
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et al. [97] measured n-heptane oxidation intermediates at 10 bar and stoichiometric

conditions in a JSR. They found that the three heptene isomers had similar concen-

trations at 600− 900K, with slightly more 3-heptene than 2-heptene and 1-heptene.

Hence it’s likely the higher peak in this study was 3-heptene, and the lower peak was

2-heptene.

Two major peaks at RT = 5 − 5.5 min had similar mass spectrums, and both

were 2-ethyl-5-methyl-tetrahydrofuran. Herbinet et al. [97] obtained a similar chro-

matography using an HP-5 capillary column and marked those two peaks as cis- and

trans- 2-ethyl-5-methyl tetrahydrofurans.

A third major peak at RT = 5.92 min was an unknown species with a molecular

weight of 112, so it’s likely a C7H14O isomer. Figure 5.8 shows the mass spectrum of

this species, which might be 2-ethyl-3,4-dihydropyran but needs confirmation.

Figure 5.8: Mass spectrum of the species at the retention time of 5.92 min from an

n-heptane autoignition experiment at CR = 6.0.

The retention time and concentrations of 2-propyl-tetrahydro-furan and 2- and

3-heptone were consistent with the chromatograms in Herbinet et al. Other major

peaks at RT = 5.75−6.75 min were identified as C7H14O isomers from their molecular

ion peaks and retention time.

Figure 5.9 shows the GC-FID signal at RT = 14 − 22 min from an n-dodecane
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Figure 5.9: GC-FID signal from an n-dodecane autoignition experiment at CR = 4.0.

Figure 5.10: Mass spectrum of intermediate species during n-dodecane oxidation.
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Figure 5.11: Concentrations of conjugate olefin and cyclic ether isomers during n-

heptane and n-dodecane oxidation.
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autoignition experiment. The dodecene peak was the one just before the n-dodecane

peak. Because of strong coelution, dodecane isomers could not be separated from each

other. Figure 5.10 shows the mass spectrums of C12H24O isomers, identified using

reference spectrums of tetrahydrofurans in Herbinet et al. [100]. Similar to C7H14O,

major C12H24O isomers are tetrahydrofurans.

Figure 5.11 shows the concentrations of each conjugate olefin and cyclic ether

isomer. For both n-heptane and n-dodecane, the vast majority of cyclic ether inter-

mediates are tetrahydrofurans, consistent with the observation of n-pentane oxidation

in Chapter 4.

5.5.2 Other intermediate species

Acetaldehyde concentrations were shown in Figure 5.6. For all mechanisms eval-

uated, acetaldehyde production was significantly underestimated during n-heptane

and n-dodecane oxidation. Zhang et al. [92] also observed significant underprediction

for acetaldehyde during n-heptane oxidation in a JSR at φ = 0.25.

Figure 5.12, 5.13 and 5.14 show other major intermediate species in n-heptane

and n-dodecane oxidation. For both n-heptane and n-dodecane oxidation, the major

intermediate species (other than conjugate olefins and cyclic ethers) were aldehydes

and 1-alkenes. Among the aldehydes and alkenes, C1 and C2 species (formaldehyde,

acetaldehyde and ethylene) were produced more than C3 species (propanal, propenal,

and propene). C3 species were also produced more than C4 species (butanal and

butene), both being more than larger species >C4. However, this trend was not always

followed by the mechanisms. The trend for 1-alkenes of different carbon numbers

was consistent with experiments of n-heptane oxidation in a JSR [19, 97], n-decane

oxidation in a JSR [19], and n-dodecane oxidation in a shock tube [29, 101]. A zero-

dimensional homogenous reactor simulation also showed that their mechanism didn’t

always follow this trend for 1-alkenes. Data on the formation of large aldehydes
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Figure 5.12: Alkenes and oxygenates during n-heptane oxidation.
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Figure 5.13: Alkenes during n-dodecane oxidation.
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Figure 5.14: Oxygenates during n-dodecane oxidation.

76



were limited in the literature. During n-heptane oxidation in a JSR at stoichiometric

conditions [19], acetaldehyde concentration was higher than propanal, which was

higher than butanal.

5.5.3 General trends for intermediate species during normal alkane oxi-

dation

Due to the similarity of species types and concentrations, we plotted concentra-

tions of intermediates during oxidation of n-pentane, n-heptane, and n-dodecane in

Figure 5.15.

In this comparison, concentrations of conjugate olefins and cyclic ethers decreased

with increasing carbon number. Concentrations of other intermediate species were

similar for the three n-alkanes. During NTC, aldehyde concentrations leveled out and

slightly dropped at the end of NTC. Alkenes kept accumulating till the end of NTC.

For all three n-alkanes, CO peaked at around 50% of fuel carbon. Formaldehyde

peaked at about 4% of fuel carbon. Acetaldehyde was around 9% of fuel carbon at

the end of NTC. Propanal + propenal peaked at around 3% of fuel carbon during n-

heptane and n-dodecane oxidation. Butanal + methyl vinyl ketone peaked at around

2% of fuel carbon for the three n-alkanes.

Ethylene peaked at around 6% of fuel carbon during n-heptane and n-dodecane

oxidation. Propene peaked at about 3% and butene at around 1.5% of fuel carbon

for the three n-alkanes. In a JSR measurement of oxidation intermediates at stoi-

chiometric conditions, propene and butene concentrations were also very close during

n-heptane and n-decane oxidation. This similarity was missed in their simulation [19].

This comparison shows that for n-alkanes of different sizes, at similar stages of

oxidation, the formation of conjugate olefins and cyclic ethers was sensitive to the

carbon chain length. In contrast, the formation of CO, aldehydes, and other alkenes

were not sensitive to the carbon chain length. This trend was not always followed in
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Figure 5.15: Intermediate species during n-pentane, n-heptane, and n-dodecane oxi-

dation in the motored engine.
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the mechanisms.

5.6 Conclusions

In this study, n-heptane and n-dodecane autoignition was investigated via coupled

motored engine experiments and simulations.

In all evaluated mechanisms for n-heptane and n-dodecane, fuel reactivities were

underestimated. It was demonstrated in two examples that the CO concentration

from the motored engine experiment could be used as an evaluator of mechanism

performance, could provide insight into the chemical model, and could be used as a

prediction target for mechanism development and validation.

Intermediate species concentrations were measured during n-heptane and n-dodecane

oxidation in the motored engine at lean conditions. Acetaldehyde production was un-

derpredicted by all mechanisms evaluated.

In a comparison of n-pentane, n-heptane, and n-dodecane oxidation, the following

trends for intermediate species were observed:

1. The concentrations of conjugate olefins and cyclic ethers were sensitive to the

chain length of the normal alkane. The larger the normal alkane was, the fewer

conjugation olefins and cyclic ethers were produced during oxidation.

2. Other intermediate species were less sensitive to the chain length of the normal

alkane. For the three normal alkanes, major intermediate species were aldehydes

and 1-alkenes. Aldehyde concentrations leveled out during NTC and dropped

at the end of NTC. 1-Alkenes accumulated during NTC and peaked at the end

of NTC. Concentrations for those species were also similar for the three normal

alkanes.

These trends were not always followed calculations using the selected mechanisms

79



and these observations may be helpful for future mechanism development and vali-

dation.
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Chapter 6

Autoignition of a Jet Fuel Surrogate and

Pure Components in a Motored Engine:

Experiment and Simulation

6.1 Experiment and simulation setup

The autoignition behavior of a jet fuel surrogate and its pure components were

investigated in the motored engine experiment and simulation. The jet fuel surrogates

were developed to emulate the physical and chemical properties of real jet fuels that

are composed of hundreds of hydrocarbons [9]. Component fractions of the jet fuel

surrogate are listed in Table 6.1.

Component Volume Fraction (%)

n-Dodecane 47.84

iso-Cetane 11.29

Decalin 28.21

Toluene 12.66

Table 6.1: UM3 Jet-A surrogate components [9].

Engine experiments were performed at an engine speed of 600 RPM, an intake

pressure of 1 bar, and an intake temperature of 260◦C to fully vaporize all fuel com-
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ponents. The equivalence ratio was kept at 0.25. The critical compression ratios

(CCRs) of pure components and the surrogate were measured by gradually increas-

ing the engine compression ratio until an intensive heat release event was observed.

The exhaust gas was sampled to determine the species and concentrations during

oxidation. An existing skeletal kinetic mechanism consisting of 360 species and 1851

reactions (refered to as SKE360 [9]) was evaluated by comparing the predicted species

concentrations and heat release with measurements. The global reactivity, heat re-

lease profiles, and oxidation intermediates of test fuels are discussed in this chapter.

6.2 Global reactivity

Figure 6.1 shows the CO concentration, unreacted fuel concentration, and peak

in-cylinder temperature in the surrogate and component autoignition experiments

and simulation.

Two fuel components, n-dodecane, and decalin, exhibited strong low-temperature

oxidation (LTO) behavior in the experiment, with significant CO production at lower

compression ratios when the fuels were partially oxidized. CO accumulated during the

transition from negative temperature coefficient (NTC) regime to high-temperature

oxidation (HTO) and was converted to CO2 quickly during HTO. The critical com-

pression ratio prediction was significantly late for these two-stage fuels, and the peak

[CO] prediction was slightly too low. Yu et al. [57] observed that an existing decalin

mechanism slightly overpredicted the ignition delay time at low temperatures. This

mechanism inaccuracy turned to be significant in the motored engine.

The other two fuel components, iso-cetane, and toluene exhibited negligible LTO

behavior. The mechanism was effective for this feature of toluene. Although predicted

CCR was too late for toluene, [CO] prediction was accurate at the beginning of HTO,

showing that the toluene oxidation chemistry is accurate for the onset of ignition.

Only minor modifications are needed. SKE360 predicted too strong LTO for iso-
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Figure 6.1: Autoignition of the pure components and the jet fuel surrogate in the

motored engine.
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cetane, consistent with the deficiency of an existing iso-cetane mechanism observed

in an RCM. Kukkadapu and Sung [47] also found falsely predicted NTC in their

ignition delay simulation, which was not detected in their RCM experiments.

Comparing the measured CO concentration during decalin and iso-cetane oxi-

dation, decalin was significantly more reactive than iso-cetane and exhibited much

stronger LTO. However, in the simulation, those two fuels had very similar LTO

behavior, too similar [CO] curve, and too close CCRs. The bicyclic alkane decalin

and the highly branched alkane iso-cetane are both less reactive than normal alkanes

due to the branched structures, but the mechanism needs to be more effective for

their difference.

The surrogate showed strong NTC behavior during oxidation, which comes from

n-dodecane and decalin in the mixture. Instead of the reactive component being

oxidized first and the unreactive component remaining as fuel molecule species, the

low measured concentrations of unreacted fuel components at CR = 4.0 shows that all

four components were significantly consumed at a similar level. Around 90% of all four

components were consumed. Because iso-cetane, decalin, and toluene consumption

were all enhanced considerably, the low remaining fuel concentrations were less likely

due to mistakes during fuel blending. Additionally, carbon balance (THC+CO+CO2

concentrations) was >95% near CCR, so the amount of fuel injected was correct,

too, and sample loss was eliminated. A significant amount of small intermediate

species were formed in the surrogate oxidation, as discussed in Section 6.4.4, which is

consistent with the observation in fuel consumption. Hence, the observed oxidation

enhancement for the other three components by n-dodecane was trustable. The causes

of the oxidation enhancement will be discussed in 6.4.4.

Although all components were consumed at a fast rate, slight differences occurred

for different components. Table 6.2 shows the component fractions in the surro-

gate formula and in remaining unreacted fuels at CR = 4.0. For the two alkanes
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(n-dodecane and iso-cetane), fractions in unreacted fuel were lower than in the sur-

rogate formula. For the bicyclic alkane decalin and the aromatic compound toluene,

fractions in unreacted fuel were higher than in the surrogate formula. This compari-

son shows that n-dodecane and iso-cetane oxidized faster than decalin and toluene in

the surrogate mixture. n-Dodecane is the most reactive among the four components,

so it’s reasonable for n-dodecane to oxidize at the highest rate. However, iso-cetane is

less reactive than decalin, but the oxidation enhancement by the radical pool and heat

from n-dodecane LTO made iso-cetane oxidize faster than decalin, showing that oxi-

dation enhancement is not determined by the stand-alone reactivity of the enhanced

component.

Component UM3
Jet-A

Surrogate

Unreacted Fuel,
Experiment

Unreacted Fuel,
Simulation

(%) (%) (%)

n-Dodecane 43.4% 35.3% 16.5%

iso-Cetane 10.9% 9.29% 6.44%

Decalin 31.4% 37.8% 16.2%

Toluene 14.3% 17.6% 60.8%

Table 6.2: Component factions in UM3 Jet-A surrogate formula and in remaining

unreacted fuel at CR = 4.0, as percentages of the total carbon.

In the simulation, although [CO] at CR = 4.0 and peak [CO] near CCR was

accurately predicted for the surrogate mixture, the predicted transition from NTC to

HTO was too late. It’s likely that the overestimation of iso-cetane LTO compensated

for the underestimation of n-dodecane LTO, so the predicted [CO] concentration at

CR = 4.0 was better than for pure components.

The mechanism captured the enhanced consumption of decalin and iso-cetane but

significantly underestimated the consumption of toluene in the mixture. Because both

decalin and iso-cetane were predicted to have strong two-stage oxidation behaviors,
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missing toluene consumption in the mixture indicates deficiencies in the single-stage

fuel oxidation mechanism.

To better understand how the ignition process in the motored engine is related to

the ignition delay timing measured in fundamental combustion facilities, the temperature-

pressure trajectories in the compression stroke of a firing and a motoring cycle were

plotted in Figure, on the 3D surface of the ignition delay timing in a homogeneous

reactor (τ). It can be seen that at both firing at motoring conditions, the engine

temperature and pressure increased from around 500K and 1 bar near IVC and went

across a wide range. The temperature and pressure at the end of compression de-

pended on the engine operating condition and the fuel property. In this motored

engine, low-temperature (<750K) ignition delay timing is only important from 1 bar

to 5 bar. Above 5 bar, only intermediate- to high-temperature ignition delay timing

matters to the fuel autoignition. The integral of the reciprocal of tau could be used

to estimate the ignition delay timing τ id in changing conditions [66]:

tsi+τid∫
tsi

1

τ
dt = 1 (6.1)

where tsi is the start of injection, and could be considered as IVC in HCCI cycles.

τid is the ignition delay timing in the HCCI cycle and is reached when this integral

reaches 1. 6.2 shows the value of this integral, in-cylinder OH mass fraction, and

in-cylinder temperature. The integral increased from zero near the first spike of OH,

which was an indicator of the first-stage ignition at around 750K. When the integral

reached 1, the timing was close to the second OH peak, which was an indicator of the

second-stage ignition. τid did not agree perfectly with the second OH peak, because

both the OH mass fraction and the in-cylinder temperature used to calculate the

ignition delay timing were an average across the cylinder to simplify the calculation.
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Figure 6.2: Simulated temperature-pressure trajectories of the engine cycles on the

3D surface plot of the ignition delay timing. The in-cylinder temperature and pressure

was from the multizone simulation of the motored engine. The ignition delay timing of

the UM3 Jet-A surrogate was from the homogeneous reactor simulation using Cantera

and the kinetic mechanism SKE360, at φ = 0.25.

Figure 6.3: Simulated in-cylinder temperature, OH mass fraction and the calculation

of the ignition delay timing at CCRsimulation = 7.9 for the UM3 Jet-A surrogate.
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6.3 Heat release analysis

Figure 6.4: Apparent heat release rate of the pure components and jet fuel surrogate

autoignition in the motored engine.

Figure 6.4 shows the apparent heat release rate (AHRR) for the pure components

and surrogate mixture. A low-temperature heat release (LTHR) was falsely predicted

for iso-cetane, and high-temperature heat release (HTHR) prediction was too in-

tense. For decalin, LTHR was correctly predicted, but HTHR was under predicted.

For toluene, the single-stage ignition behavior was captured in the simulation. The

ignition timing prediction was fairly accurate, though the predicted amount of heat

release was too small. For the surrogate mixture, LTHR was correctly predicted, and

the timing prediction was pretty accurate, but the onset of HTO at this condition

was missed in the simulation.
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6.4 Intermediate species

6.4.1 Intermediate species during iso-cetane oxidation

Figure 6.5 and 6.6 shows oxygenate and hydrocarbon species concentrations during

iso-cetane oxidation. Compared to normal alkanes, there was a significant amount

of acetone production during iso-cetane oxidation, similar to the observation dur-

ing neo-pentane oxidation. However, as a major low-temperature oxidation prod-

uct, predicted acetone formation was too early in the oxidation process. Three oxy-

genate species (4,4,-dimethyl-2-pentanone, 2,2,4,4-tetramethyl-tetrahydrofuran, and

2-methyl-propanal) and six hydrocarbon species were not included in SKE360. Ex-

cept for acetaldehyde and ethylene, all other species considered in the mechanism

were significantly overpredicted.

Yu et al. [57] found that the iso-cetane NTC regime was at lower temperatures

than mechanism prediction. In an RCM experiment at 20 bar and φ = 0.5, isocetane

oxidation entered the NTC regime at around 625K and HTO regime at around 740K.

Based on Yu et al. [57]’s observation, iso-cetane oxidation in the motored engine al-

ready entered the NTC and HTO regimes at CR = 4.0, where the peak cylinder

temperature was 742K (from motoring simulation). Within one engine cycle, be-

cause the temperature window for LTO was narrow for iso-cetane, LTO behavior and

species production were not significant. Yang and Boehman [58] used the concept of

ceiling temperature to explain a similar observation in motored engine experiments.

The ceiling temperature is the temperature at which the concentrations of Ṙ and

RO2 are equal ([102, 102]), meaning that O2 addition to the fuel radical becomes less

likely than β-scission of the fuel radical. Hence, oxidation enters the high-temperature

regime. Yang and Boehman [58] mentioned that the ceiling temperature is high for

reactive fuels, like n-heptane, and low for non-reactive fuels. [49] found that as the

size of the branched alkane molecule increased, NTC moved towards low temper-
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Figure 6.5: Oxygenate intermediates during iso-cetane oxidation.
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Figure 6.6: Hydrocarbon intermediates during iso-cetane oxidation.
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atures. Compared to iso-octane, iso-cetane started to show NTC behavior at lower

temperatures, meaning that the ceiling temperature of iso-cetane is significantly lower

than iso-octane. Existing iso-cetane mechanisms were developed based on analogy

to iso-octane oxidation, and this difference in ceiling temperature was not properly

addressed.

This ceiling temperature concept explains the gap between experiment and simu-

lation of iso-cetane oxidation in the motored engine. For example, in one engine cycle

at CR = 4.0, as the mixture temperature increased from Tin = 260◦C, the mixture at

first entered the LTO regime and O2 addition to fuel radicals was favored. However,

the ceiling temperature was low, so after a very short period, O2 addition stopped,

and oxidation entered NTC and HTO regime. Because the window for LTO was nar-

row, O2 addition and low-temperature chemistry were observed to be insignificant at

the test condition. In contrast, in the simulation, O2 addition continued because the

ceiling temperature was set too high. Hence, in the mechanism, improvements are

needed to lower the ceiling temperature and weaken O2 addition to the fuel radical.

Figure 6.7 shows significantly different reaction rates of Ṙ + O2 ⇔ RO2 reactions in

multiple iso-cetane mechanisms. Among the four mechanisms, the Wang et al. [50]

mechanism showed a reasonable ceiling temperature estimation. Assuming an oxygen

concentration of 0.044 kmol/m3 at 15 bar, ceiling temperature is reached when the

equilibrium constant

K =
kf
kr

=
1

[O2]
(6.2)

In the Wang et al. [50] mechanism, kf is around 1010/(kmol ·m3 · s) at all tem-

peratures, so ceiling temperature is reached when the reverse rate constant

kr = kf [O2] = 4.4× 108/s (6.3)
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Figure 6.7: R + O2 ⇔ RO2 forward and reverse reaction rates in SKE360, the Ranzi

et al. [30] mechanism, the Raza et al. [49] mechanism, and the Wang et al. [50]

mechanism. The unit for concentration is kmol/m3.

In Figure 6.7 (d), kr = 4.4 × 108/s is correspondent to a temperature of 1000 to

1100K, which is a fairly good estimation for ceiling temperature, especially compared

to other mechanisms. However, this ceiling temperature might still be too high for

iso-cetane. n-Heptane and n-dodecane high-temperature oxidation started at around

950K in motored engine experiments and simulation. iso-Cetane, as a less reactive

fuel, very likely has a lower ceiling temperature than 950K. This slight overestimation

of ceiling temperature is consistent with the observation in Wang et al. [50] that the

mechanism prediction missed the transition from NTC to HTO regime, as shown in

Figure 6.8.

Intermediated species measurements also support the hypothesis that iso-cetane
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Figure 6.8: The Wang et al. [50] mechanism missed the transition from NTC to HTO.

The figure is from [50].

oxidation already entered NTC and HTO regimes at CR = 4.0. A very small amount

of C16H32 was detected at CR = 4.0, indicating a small amount of LTO was present.

With an increased compression ratio, [C16H32] did not increase, which was different

from all other species, showing that LTO had already ended. No significant C16H32O

was observed, also indicating that O2 addition was not important at the test condition.

All major species >C8 were alkenes. As shown in Figures 6.9 and 6.10, three

major groups of peaks were observed in the GC-FID signal: C16H32 isomers, C15H30

isomers C11H22 isomers. Due to the lack of library and literature data reference, and

the nature of highly-branched hydrocarbon molecules, it’s difficult to reconstruct the

molecule structure merely from MS.

There are eight carbon atoms in an iso-cetane molecular that have at least one

hydrogen atom to lose, as shown in Figure 6.14, hence eight different fuel radicals.

Three C16H32 isomers could be produced following an H-atom abstraction from the

carbon atoms 4, 5, 6, or 7 and an O2 addition to the carbon, with a double bond
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Figure 6.9: GC-FID signal from iso-cetane autoigntion experiment at CR = 9.4.
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Figure 6.10: Mass spectrum of the species detected in iso-cetane oxidation experiment.
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Figure 6.11: Alkene formation through β-scission pathways.

Figure 6.12: 2,4,4,6,6-Pentylmethyl-heptene production pathway.

97



Figure 6.13: Alkene isomers that could possibly form in iso-cetane oxidation.
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formed between site 5 and sites 4, 6, or 7. From the ceiling temperature discussion

above, the formation of other alkenes was less likely via O2 addition to fuel radicals.

Instead, production was more likely through beta-scission of the fuel radicals. There

could possibly be nine C15H30 isomers, four C11H22 isomers, two C8H16 isomers, and

two C7H14 isomers, through pathways similar to those in Figure 6.11. Molecular

structures of the isomers are shown in Figure 6.13.

Figure 6.14: An iso-cetane molecule.

In addition to C11H22, C15H30 and C16H32 isomers, there was one single peak at

RT = 14.20 min with a molecular weight of 168, being very likely C12H24. Formation

of a C12H24 molecule involves losing a tert butyl group. It is unlikely to lose the tert

butyl group connecting to carbon atom 2 in this process. The other carbon connecting

to 2 is also a quaternary carbon, so 2 cannot form a double bond after losing the tert

butyl group. Hence, the only possible structure of C12H24 is 2,4,4,6,6-pentylmethyl-

heptene, with carbon 7 losing the tert butyl group and forming a double bond with

5. Figure 6.12 shows the pathway of 2,4,4,6,6-pentylmethyl-heptene formation.

6.4.2 Intermediate species during decalin oxidation

Major C10 species during decalin oxidation, as shown in Figure 6.15 were C10H16O

isomers, octahydronaphthalenes, hexahydronaphtalenes, tetralin, dialin and naphtha-

lene, consistent with the results in Yang and Boehman [58]. C8H12 and styrene,

C7H10 and toluene, cyclohexene, cyclohexadiene, and benzene were also detected but

at lower concentrations compared to C10 species, showing that ring-opening of one

ring first was less likely. The mechanism significantly overpredicted concentrations
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Figure 6.15: Species during decalin oxidation.
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of benzene, cyclohexadiene, and cyclohexene. A flux analysis showed that the ma-

jor fuel consumption pathways in the mechanism were ring-opening of one ring first,

which Yang and Boehman [58] found was less favored due to higher activation energy

and a stronger bond. Wang et al. [52] developed a mechanism based on analogy to

MCH oxidation. Flux analysis of the Wang et al. [52] mechanism showed that the

major fuel consumption pathways were via the formation of 1-decal radical or 2-decal

radical, consistent with the reaction pathways proposed in Yang and Boehman [58].

Adding those two pathways is necessary in future development of the kinetics mech-

anism for the jet fuel surrogate.

6.4.3 Intermediate species during toluene oxidation

Low-temperature oxidation was found to be insignificant for toluene autoignition

at the test conditions. Very simple intermediates were observed, primarily benzene

and benzaldehyde.

Figure 6.16: Species during toluene oxidation.

6.4.4 Intermediate species during jet fuel surrogate oxidation

The surrogate intermediate species was a mixture of the four component fuels’

intermediate species, except for one new species: 2,2,4-trimethyl-pentane. 2,2,4-

Trimethyl-pentane might be produced via β-scission of the fuel radical, at the same
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Figure 6.17: Species during the jet fuel surrogate oxidation.
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time of 2,4,4-trimethyl-1-pentene formation. 2,4,4-Trimethyl-1-pentene was a major

species in both the surrogate and iso-cetane oxidation. iso-Butanal production was

also significant, which was another major species during iso-cetane oxidation.

Detection of those species indicates enhanced H-atom abstraction by radicals gen-

erated in other components’ oxidation processes and consequently more fuel radicals.

Those small species were produced from fuel radicals via β-scission reactions. At the

same time, production of conjugate olefins and cyclic ethers was insignificant for iso-

cetane, decalin and benzene in the mixture, meaning that the oxidation enhancement

was not via correspondent chain-propagation pathways. O2 addition might not be im-

portant for iso-cetane, decalin and toluene during oxidation of the surrogate mixture,

while LTO of n-dodecane is still important. Improved quantification of oxygenated

species, better separation of conjugate olefins and cyclic ethers, and an optimized

mechanism would be helpful to further investigate the cross-reactions among pure

components.

6.5 Conclusions

In this study, autoignition properties of a jet fuel surrogate and components were

investigated in motored engine experiment and simulation. Reactivity, heat release,

and oxidation intermediates were measured for pure components and the surrogate

fuel. Performance of an existing jet fuel surrogate mechanism, SKE360, was evaluated.

The jet fuel surrogate mechanism underpredicted the surrogate reactivity, due

to underestimated n-dodecane and decalin reactivity. The overestimated iso-cetane

reactivity compensated for this deviation slightly and made [CO] prediction during

LTO fairly accurate. Oxidation enhancement was predicted for iso-cetane and decalin,

but toluene oxidation was significantly underpredicted in the mixture. The oxidation

enhancement was due to increased H-atom abstraction by radicals generated in n-

dodecane low-temperature oxidation. More fuel radicals were produced, and via β-
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scission reactions more small intermediate species were produced. This enhancement

was not determined by the stand-alone fuel reactivity and was more significant for

iso-cetane than for decalin.

During iso-cetane autoignition, low-temperature chemistry was insignificant at the

testing conditions, but its importance was overestimated in the mechanism. The R +

O2 reaction rates need to be updated in SKE360 and in other mechanisms in the

literature to eliminate O2 addition to the fuel radicals.

Decalin exhibited strong NTC behavior, which was captured in the prediction,

but the global reactivity was underestimated. The ring-opening pathways need ma-

jor modification in the mechanism. The production of benzene, cyclohexadiene, and

cyclohexene was overpredicted by more than 10 times during decalin oxidation, show-

ing the opening of one ring in this bicyclic alkane molecule was overestimated. The

two pathways breaking the C-C bond between the two tertiary carbons were the

major low-temperature chain-branching pathways and need to be added.

Low-temperature oxidation was also found to be insignificant in toluene oxida-

tion at the test conditions. This feature was successfully predicted. Although CCR

prediction was slightly late, the onset of HTO was accurately predicted.
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Chapter 7

Conclusions and Recommendations

for Future Work

7.1 Conclusions

Autoignition properties of a jet fuel surrogate and its pure components were in-

vestigated in coupled engine experiments and simulation. The cylinder pressure trace

and oxidation intermediate species were measured to provide information for mecha-

nism development and validation.

7.1.1 Multizone model reliability

For the purpose of mechanism evaluation, a multizone model was developed to

simulate the homogeneous charge compression ignition (HCCI) process in a motored

engine. In a simulation study for three pentane isomers, the model was found to be

accurate for engine simulation and effective for mechanism validation.

7.1.2 Pentane isomers autoignition

In the simulation study for pentane isomers autoignition, an existing pentane

isomers mechanism was found to be accurate for the prediction of reactivity, fuel

consumption, and heat release for all three pentane isomers. At the same time, slight
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improvements could be made in the mechanism, as low-temperature oxidation (LTO)

was slightly overestimated for n- and neo-pentane and slightly underestimated for

iso-pentane. The first-stage fuel consumption was overpredicted by 3.8% and 5.2%

for n- and neo-pentane, and was underpredicted by 32.2% for iso-pentane.

For all pentane isomers considered, C5 cyclic ethers were overpredicted by 148%

and 58.9% for n- and neo-pentane, and by more than 20 times for iso-pentane. 2-

Pentene and 2-methyl-2-butene production was overpredicted by 104% and 126%.

Low-temperature chain-branching products acetaldehyde or acetone were underpre-

dicted by 57.5% for n-pentane, 72.2% for iso-pentane and 58.6% for neo-pentane.

Hence, specific 7- and 5-membered transition state (TS) ring pathways could be weak-

ened, and 6-membered TS ring pathways could be enhanced. 4- and 8-Membered TS

ring pathways also need to be added to include missing species. H-atom availability

might be the dominant factor in conjugate elimination reactions, and its importance

was underestimated. Specifically for iso-pentane, chain-branching pathways following

first and second O2 addition to the tertiary carbon were found to be unlikely.

In comparing the three pentane isomers, conjugate olefin production was found

to be insensitive to the fuel structure. C5H10O and acetaldehyde/acetone formation

is sensitive to the fuel structure, with the least reactive pentane isomer, iso-pentane

producing the least C5H10O and acetaldehyde. The mechanism successfully predicted

the trend for conjugate olefins and C5H10O isomers. However, it was ineffective in

predicting the difference in acetaldehyde/acetone production. The mechanism was

accurate for fuel reactivity, indicating that reactivity prediction might be sensitive

to chain-propagating reactions producing conjugate olefins and cyclic ethers, but not

sensitive to the chain-branching reactions producing acetaldehyde/acetone.

106



7.1.3 n-Heptane and n-dodecane autoignition

In motored engine experiment and simulation, existing mechanisms for n-heptane

and n-dodecane oxidation were evaluated, and all mechanisms underestimated fuel

reactivities and acetaldehyde production. Although reaction pathways were similar,

mechanisms showed disagreeing predictions for fuel reactivity, showing the importance

of mechanism selection. An n-heptane mechanism was improved by updating the

H2/O2/CO submechanism, with the predicted critical compression ratio improved

from 0.9 compression ratio higher to within 0.1 deviation from the measurements.

CO concentration from the motored engine experiment could be used as an evaluator

of mechanism performance, providing insight into the chemical model and direction

for mechanism development.

In a comparison of n-pentane, n-heptane, and n-dodecane oxidation, the following

trends for intermediate species were observed:

1. The concentrations of conjugate olefins and cyclic ethers were sensitive to the

chain length of the normal alkane. The larger the normal alkane was, the fewer

conjugation olefins and cyclic ethers were produced during oxidation.

2. Other intermediate species were less sensitive to the chain length of the normal

alkane. For the three normal alkanes, major intermediate species were aldehydes

and 1-alkenes. Aldehyde concentrations leveled out during negative temperature

coefficient (NTC) and dropped at the end of NTC. 1-Alkenes accumulated

during NTC and peaked at the end of NTC. Concentrations for those species

were also similar for the three normal alkanes.

These trends were consistent with observations in the shock tube, the jet-stirred

reactor, and in other motored engine studies. Still, they were not always followed in

mechanisms and should be considered in future mechanism development.
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7.1.4 Jet fuel surrogate and components autoignition

The jet fuel surrogate mechanism, SKE360, successfully predicted the low-temperature

reactivity of the surrogate. However, the global reactivity was underpredicted due to

underestimated n-dodecane and decalin reactivity.

In the jet fuel surrogate, oxidation of iso-cetane, decalin, and toluene was sig-

nificantly enhanced, due to increased H-atom abstraction by radicals generated in

n-dodecane LTO. More fuel radicals were produced, and via beta-scission reactions

more small intermediate species were produced. This enhancement was not directly

related to the stand-alone fuel reactivity and was more significant for iso-cetane than

for decalin. Oxidation enhancement was predicted for iso-cetane and decalin with

1.87% and 5.45% deviation in fuel consumption from measurements, but toluene ox-

idation in the mixture was underpredicted by 79.1%.

During iso-cetane autoignition, low-temperature chemistry was insignificant at the

testing conditions, but its importance was overestimated in the mechanism. The Ṙ +

O2 reaction rates need to be improved to eliminate O2 addition to the fuel radicals.

Decalin exhibited strong NTC behavior, which was captured in the prediction, but

the global reactivity was underestimated. The production of benzene, cyclohexadiene,

and cyclohexene was overpredicted by more than 10 times during decalin oxidation,

showing the opening of one ring in this bicyclic alkane molecule was overestimated.

The two pathways breaking the C-C bond between the two tertiary carbons were the

major low-temperature chain-branching pathways but were missed in the mechanism.
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7.2 Recommendations for future work

7.2.1 Kinetic mechanism development based on combustion intermediate

species measurement and reaction pathways analysis

As discussed in Chapter 2, current chemical kinetic mechanisms still need to be

improved to accurately predict observations and measurements in fundamental com-

bustion facilities, while a lack of ignition data, especially at low temperatures and

for intermediate combustion species, makes further mechanism development difficult.

Previously, the ignition delay data at low temperatures were mainly measured in the

rapid compression machine and, more recently, in the flow reactor. Combustion in-

termediate species were mainly measured in the flow and jet reactors. As a closer

mimic and a simplification of real engines, the motored engine provides a realistic

and practical way for generating ignition data at conditions that are related to and

important in mechanism development and engine design.

This study demonstrated that the fuel reactivity and combustion intermediate

species measured in a motored engine provided important information on fuel oxida-

tion pathways. The coupled engine experiment and simulation showed that significant

discrepancies exist and current reaction pathways and reaction rates need improve-

ments. Methods and directions for improvements were proposed, but mechanism

development is beyond the scope of this study. It is promising that the accuracy of

existing mechanisms could be greatly improved by including new reaction pathways

for missing intermediate species, re-evaluating the relative importance of competing

pathways, and eliminating the uncertainties of important reactions. We are closer to

having the kinetic mechanism that we will be confident to use in engine simulation

and design.
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7.2.2 Kinetic mechanism optimization with motored engine measurements

as complementing constraints

A chemical kinetic mechanism for fuel oxidation may consist of thousands of re-

actions, while few of the reaction rates were directly measured. Most reaction rates

were developed based on analogy to similar reactions and need to be optimized using

indirect experimental measurements as prediction targets. The ignition delay timing

measured in the shock tube and the rapid compression machine was usually used

as these prediction targets. Important species time histories from flow and jet reac-

tor experiments were also common prediction targets. While the question remains

whether a high level of accuracy is necessary, studies found that mere fundamental

combustion facility measurements may not be enough to develop a mechanism that

could be used for reliable engine simulation. Motored engine measurements may need

to be included as complementations to eliminate prediction uncertainties [22].

Methods developed in this study provides a potential to use motored engine data

in large-scale mechanism optimization, while challenges remain before significant

progress could be made. A problem with the current simulation model was paralleliza-

tion. Even though the model currently runs with a single core, the computational

cost is low, and the model has a strong capability to utilize very large detailed kinetic

mechanisms. However, significantly higher computation speed must be achieved at

a comparable level to the homogeneous reactor simulation that is currently used for

mechanism optimization. The widely used optimization method involves sensitivity

analysis to select important reactions and uncertainty minimization, both inducing

high computational costs. New optimization methods, for example, the Evolution-

ary Algorithm [103], and fully connected neural networks, have been successful for

optimization problems and are worth utilizing in kinetic mechanisms optimization.
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[20] Frédérique Battin-Leclerc, Jérémy Bourgalais, Zied Gouid, Olivier Herbinet,
Gustavo Garcia, Philippe Arnoux, Zhandong Wang, Luc-Sy Tran, Guillaume
Vanhove, Laurent Nahon, et al. Chemistry deriving from ooqooh radicals in
alkane low-temperature oxidation: A first combined theoretical and electron-ion
coincidence mass spectrometry study. Proceedings of the Combustion Institute,
38(1):309–319, 2021.

[21] Zhandong Wang, Bingjie Chen, Kai Moshammer, Denisia M Popolan-Vaida,
Salim Sioud, Vijai Shankar Bhavani Shankar, David Vuilleumier, Tao Tao, Lena
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John E Dec, John Orme, Henry J Curran, and John M Simmie. Detailed
chemical kinetic modeling of surrogate fuels for gasoline and application to an
HCCI engine. SAE transactions, pages 1381–1387, 2005.

[27] Yue-Xi Liu, Sandra Richter, Clemens Naumann, Marina Braun-Unkhoff, and
Zhen-Yu Tian. Combustion study of a surrogate jet fuel. Combustion and
Flame, 202:252–261, 2019.

[28] Sayak Banerjee, Rei Tangko, David A Sheen, Hai Wang, and C Tom Bow-
man. An experimental and kinetic modeling study of n-dodecane pyrolysis and
oxidation. Combustion and Flame, 163:12–30, 2016.

[29] Yebing Mao, Mohsin Raza, Zhiyong Wu, Jizhen Zhu, Liang Yu, Sixu Wang,
Lei Zhu, and Xingcai Lu. An experimental study of n-dodecane and the de-
velopment of an improved kinetic model. Combustion and Flame, 212:388–402,
2020.

113



[30] Eliseo Ranzi, Alessio Frassoldati, Alessandro Stagni, Matteo Pelucchi, Alberto
Cuoci, and Tiziano Faravelli. Reduced kinetic schemes of complex reaction
systems: fossil and biomass-derived transportation fuels. International Journal
of Chemical Kinetics, 46(9):512–542, 2014.

[31] Yachao Chang, Ming Jia, Yaodong Liu, Yaopeng Li, Maozhao Xie, and
Hongchao Yin. Application of a decoupling methodology for development
of skeletal oxidation mechanisms for heavy n-alkanes from n-octane to n-
hexadecane. Energy & Fuels, 27(6):3467–3479, 2013.

[32] S Mani Sarathy, Charles K Westbrook, Marco Mehl, William J Pitz, Casimir
Togbe, Philippe Dagaut, Hai Wang, Matthew A Oehlschlaeger, Ulrich Niemann,
Kalyanasundaram Seshadri, et al. Comprehensive chemical kinetic modeling of
the oxidation of 2-methylalkanes from c7 to c20. Combustion and flame, 158
(12):2338–2357, 2011.

[33] Krithika Narayanaswamy, Perrine Pepiot, and Heinz Pitsch. A chemical mech-
anism for low to high temperature oxidation of n-dodecane as a component of
transportation fuel surrogates. Combustion and Flame, 161(4):866–884, 2014.

[34] Liming Cai, Heinz Pitsch, Samah Y Mohamed, Venkat Raman, John Bugler,
Henry Curran, and S Mani Sarathy. Optimized reaction mechanism rate rules
for ignition of normal alkanes. Combustion and Flame, 173:468–482, 2016.

[35] Meirong Zeng, Wenhao Yuan, Wei Li, Yan Zhang, and Yizun Wang. Investi-
gation of n-dodecane pyrolysis at various pressures and the development of a
comprehensive combustion model. Energy, 155:152–161, 2018.

[36] Yang Li, Chong-Wen Zhou, Kieran P Somers, Kuiwen Zhang, and Henry J Cur-
ran. The oxidation of 2-butene: A high pressure ignition delay, kinetic modeling
study and reactivity comparison with isobutene and 1-butene. Proceedings of
the Combustion Institute, 36(1):403–411, 2017.

[37] Debolina Dasgupta, Wenting Sun, Marc Day, and Tim Lieuwen. Sensitivity of
chemical pathways to reaction mechanisms for n-dodecane. In 10th US National
Combustion Meeting, College Park, Maryland, 2017.

[38] Xiaoqing You, Fokion N Egolfopoulos, and Hai Wang. Detailed and simplified
kinetic models of n-dodecane oxidation: The role of fuel cracking in aliphatic
hydrocarbon combustion. Proceedings of the Combustion Institute, 32(1):403–
410, 2009.

[39] Zhaoyu Luo, Sibendu Som, S Mani Sarathy, Max Plomer, William J Pitz,
Douglas E Longman, and Tianfeng Lu. Development and validation of an
n-dodecane skeletal mechanism for spray combustion applications. Combustion
theory and modelling, 18(2):187–203, 2014.

114
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Pintor. Experimental validation and analysis of seven different chemical ki-
netic mechanisms for n-dodecane using a rapid compression-expansion machine.
Combustion and Flame, 182:76–89, 2017.

[41] Tianfeng Lu, Max Plomer, Zhaoyu Luo, SM Sarathy, WJ Pitz, S Som, and
DE Longman. Directed relation graph with expert knowledge for skeletal mech-
anism reduction. Technical report, Lawrence Livermore National Lab.(LLNL),
Livermore, CA (United States), 2011.

[42] Hu Wang, Rolf Deneys Reitz, Mingfa Yao, Binbin Yang, Qi Jiao, and Lu Qiu.
Development of an n-heptane-n-butanol-pah mechanism and its application for
combustion and soot prediction. Combustion and Flame, 160(3):504–519, 2013.

[43] Tong Yao, Yuanjiang Pei, Bei-Jing Zhong, Sibendu Som, and Tianfeng Lu. A
hybrid mechanism for n-dodecane combustion with optimized low-temperature
chemistry. In 9th US national combustion meeting, volume 5, 2015.
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