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Abstract

This thesis is devoted to the development of numerical methods for correlated electrons

in realistic systems based on perturbation theories using Feynman diagrams. Electron cor-

relations in realistic systems give rise to a wide range of interesting physical properties.

Diagrammatic expansions and its low-order approximations are key building blocks of the-

oretical and numerical methods for studying correlated electrons. Recent developments of

the diagrammatic quantum Monte Carlo (DiagMC) methods enable efficient stochastic eval-

uations of diagrams and does not suffer from numerical sign problem which worsens with

increasing system size. It is therefore a promising direction to apply DiagMC techniques to

realistic electron systems in the pursuit of ab initio calculations of correlated materials.

This thesis starts by reviewing basic concepts and definitions of realistic electron systems,

the perturbation theory based on Feynman diagrams, Monte Carlo evaluations of the series,

as well as self-consistent diagrammatic methods. Low-order diagrammatic methods are ap-

plied to realistic calculations and benchmarked against large collections of state-of-the-art

many-body methods.

The thesis then proposes a diagrammatic Monte Carlo solver for realistic molecules and

impurities based on a recursive evaluation of diagrams, which is tested on realistic molecules

and impurities with varying temperature, system size, and interaction strength. We observe

that this method is ideal for problems with many orbitals with moderate correlations, but

may suffer from series divergence at strong correlations.

Next, we propose the inchworm Monte Carlo algorithm for interaction expansion, which

overcomes limitations of divergent diagrammatic series by replacing the standard perturba-

tion series with a sequence of incremental series expansions. A prototype implementation

is presented for system with on-site Hubbard interactions.

Finally, we discuss technical aspects of numerical representations of the Green’s function,

which has significant impact on the efficiency of diagrammatic methods. We review several

common numerical representations, and introduce our development of the sparse sampling

xvi



method, which provides compact representations of the Green’s function in both imaginary

time and frequency as well as fast transformation formula between the two.
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Chapter 1

Introduction

Electron interactions in realistic solids give rise to many fascinating physical phenomena,

such as metal–insulator transitions, high-temperature superconductors, colossal magnetore-

sistance, and so on. These phenomena are not only intellectually intriguing, but also impact-

ful in advancing broader science, technology, and human society. For example, supercon-

ductors with higher transition temperatures make better magnets, which allows high-energy

particle colliders to achieve higher collision energy; metal–insulator transitions lead to the

development of Mott field effective transistors; colossal magnetoresistance effects can be

applied to magnetic field sensors.

Due to the many-body nature of interacting electrons, explicit solution to the many-body

Schrödinger equation becomes prohibitively difficult as one increase the system size. Ap-

proximations to the full electronic Hamiltonian are therefore necessary. In ab initiomethods,

such as the density functional theory (DFT) [1] and the Hartree–Fock approximation [2],

electrons are treated on a mean-field level based on the quasi-particle picture. This makes

numerical studies possible for realistic materials, but with limited capability of including

electron correlations. On the other end of the spectrum, methods developed for strongly
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correlated systems such as high temperature superconductors often treat the electron inter-

actions explicitly, and therefore require approximating the systemwith model Hamiltonians.

Both types of approximations rely on physical “insights” to decide whether the systematic

error as a result of the approximation is acceptable. However, as one moves toward interme-

diate interaction strength, the level of complexity of the many-body problem may become

difficult to analyze intuitively. It is therefore beneficial to have controllable approximations,

which are theoretically guaranteed to approach the exact solution by tuning some control

parameters, and the systematic errors of the approximation can be estimated quantitatively.

Perturbation theory based on Feynman diagrams [3] is the cornerstone of modern quan-

tum field theory in both high-energy physics and condensed matter physics. Diagrammatic

expansions of the electronic system in terms of the electron interactions have become the

foundation of a wide range of numerical applications. It is straightforward to construct con-

trolled approximations based on finite-order diagrammatic approximations, as the expan-

sion orders of the perturbation series naturally serve as a control parameter. For example,

self-consistent methods based on low-order diagrams, such as self-consistent second-order

Green’s function perturbation theory (GF2) [4–7] and the GW approximation [8], are able to

include electron correlation effects with relatively low computational cost. Continuous time

quantum Monte Carlo (CT-QMC) methods [9–14] solve quantum impurity problems with

unprecedented precision via stochastic sampling of the partition function diagrams, which

significantly boost the power of the dynamical mean-field theory (DMFT) [15, 16]. The

diagrammatic Monte Carlo (DiagMC) technique [17–21], formulated directly in the ther-

modynamic limit and stochastically samples individual Feynman diagrams, does not suffer

from the fermionic sign problem that worsens exponentially with increasing system size and

inverse temperature. Recent developments of DiagMC methods, such as the connected de-

terminant (CDet) approach [22–26] for fast diagram summations, the inchwormMonte Carlo
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method [27–33], and analytic resummation techniques [24, 34], have greatly improved the

numerical efficiency of evaluating diagrams. Diagrammatic methods therefore show great

potential in solving realistic Hamiltonians, either as a standalone solver, or as an “impurity”

solver for quantum embedding methods, such as DMFT [15, 16] and self-energy embedding

theory (SEET) [35–37].

My PhD study mainly focuses on the development of controlled diagrammatic methods

which directly work with realistic Hamiltonians from first principles.

Structure of this thesis

The first few chapters summarizes basic concepts and notations for developing diagram-

matic methods for realistic systems. Chapter 2 reviews basic definitions of the electronic

Hamiltonian in realistic basis sets, and lays out notations that are used in later chapters.

Chapter 3 derives the perturbation expansions of physical quantities in thermal equilibrium,

which are often referred to as the “bare” diagrammatic expansion. Chapter 4 reviews the

Monte Carlo integration method, and provides a general framework for Monte Carlo calcu-

lations of diagrammatic series. Chapter 5 reviews the “bold” diagrammatic series based on

the Luttinger–Ward functional as well as the self-consistent approximations.

Chapter 6 summarizes two benchmark projects of many-body methods applied to realistic

systems. During these projects, I applied self-consistent diagrammatic approximations to

hydrogen chain systems as well as transition metal atoms and molecules, and the results are

comprehensively analyzed in comparison with large collections of state-of-the-art many-

body methods.

The next two chapters covers my contribution in developing two numerical algorithms

based on DiagMC. Chapter 7 introduces the development of a DiagMC solver for realistic

impurities with general interactions and hybridizations using recursive evaluations of Feyn-

3



man diagrams with determinants. The solver is tested on realistic molecules along various

aspects of complexities, such as temperature, system size, basis size, and types of molecules.

Chapter 8 introduces an “inchworm” algorithm for interaction expansion methods, which

performs a series of incremental perturbation expansions in order to achieve better series

convergence at each step. We show that the inchworm expansion converges in systems

where the bare diagrammatic series diverges, which provides a more robust approach in

evaluating diagrammatic expansions.

Finally, Chapter 9 focuses on a technical aspect when developing diagrammatic methods

for realistic systems: efficient numerical representations of the electron Green’s function.

Common representation schemes, such as the high-frequency tails, orthonormal polynomi-

als, and the intermediate representation (IR) basis are briefly reviewed. We then introduce

the sparse sampling method, a framework for compact Green’s function representations in

both imaginary time and frequency with fast transformations, which I participated in the

development and optimization.
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Chapter 2

Realistic Electron Hamiltonian and Basis

Sets

This chapter introduces the definition of the general electronic Hamiltonian in realistic ma-

terials as the main subject of study of this thesis, as well as the electronic basis sets which

projects the continuous space into the discrete orbital space, allowing linear algebraic treat-

ment of the Hamiltonian. Notations introduced in this chapter will serve as a foundation of

most derivations in subsequent chapters of this thesis.

2.1 Many-body Hamiltonian of electrons

We study the quantummany-body problem of 𝑁𝑒 electrons in the potential field of a realistic

lattice or cluster of nuclei. Under the Born–Oppenheimer approximation, we separate the

electronic motion from the nuclear degrees of freedom, and describe the electrons using the
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following Hamiltonian [38]:

𝐻̂ =
𝑁𝑒
∑
𝑖=1

ℎ̂(r𝑖) +
𝑁𝑒
∑
𝑖=1

𝑁𝑒
∑
𝑗=𝑖+1

1
|r𝑖 − r𝑗 |

,

ℎ̂(r𝑖) = − ∇2r𝑖
2𝑚𝑒

−
𝑁𝑛
∑
𝐼=1

𝑍𝐼
|R𝐼 − r𝑖|

,
(2.1)

where r𝑖 (𝑖 = 1, … , 𝑁𝑒) are spatial coordinates of electrons, R𝐼 (𝐼 = 1, … , 𝑁𝑛) coordinates of
𝑁𝑛 nuclei, 𝑍𝐼 the atomic numbers of the nuclei, and 𝑚𝑒 the electronic mass. The one-particle

Hamiltonian ℎ̂ contains the kinetic energy and the potential energy from the Coulomb po-

tential of the nuclei. The existence of electron-electron Coulomb interactions in 𝐻̂ prevents

us from reducing the Hamiltonian to a single-particle problem, and requires many-body

treatment of the system.

An electronic basis set is a set of functions in real space 𝜙𝜇(r) which forms a basis for

the single-particle electronic wave function. Common choices include plane wave, atomic

orbitals (AOs), or combinations of the two. For some types of basis sets such as the AOs

(usually represented either as Gaussian or Slater functions), it is possible that the basis func-

tions are not orthogonal. The non-orthogonality is characterized by the overlap matrix 𝑺,
such that [38]

[𝑺]𝜇𝜈 = 𝑆𝜇𝜈 = ∫ d3r 𝜙∗𝜇(r)𝜙𝜈(r). (2.2)

Projected onto the basis functions [38, 39], the one-particle Hamiltonian becomes a matrix

𝒉:
[𝒉]𝜇𝜈 = ℎ𝜇𝜈 = ∫ d3r 𝜙∗𝜇(r)ℎ̂(r)𝜙𝜈(r), (2.3)
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and the electron-electron interaction becomes a rank-4 tensor 𝓥:

[𝓥]𝜇𝜈𝜆𝜌 = 𝑉𝜇𝜈𝜆𝜌 = ∫ d3rd3r′ 𝜙∗𝜇(r)𝜙𝜈(r) 1
|r − r′|𝜙

∗𝜆(r′)𝜙𝜌(r′), (2.4)

Here we have used bold italic symbols for matrices, bold calligraphic symbols for tensors,

and regular italic symbols for matrix/tensor elements. These conventions will be assumed

throughout this thesis unless otherwise stated. In quantum chemistry, 𝒉 and 𝓥 are termed

one- and two-electron integrals, respectively, and the following notations are commonly

used [38]:

(𝜇|ℎ|𝜈) = ℎ𝜇𝜈 , (𝜇𝜈|𝜆𝜌) = 𝑉𝜇𝜈𝜆𝜌 . (2.5)

Introducing the electron creation operator ̂𝑐†𝜇𝜎 and the annihilation operator ̂𝑐𝜇𝜎 for an

electron in orbital 𝜙𝜇 and spin 𝜎 , the many-body Hamiltonian (2.1) can be rewritten in the

second-quantized form [39]:

𝐻̂ = ∑
𝜇𝜈

∑
𝜎

ℎ𝜇𝜈 ̂𝑐†𝜇𝜎 ̂𝑐𝜈𝜎 + 1
2 ∑
𝜇𝜈𝜆𝜌

∑
𝜎𝜎 ′

𝑉𝜇𝜈𝜆𝜌 ̂𝑐†𝜇𝜎 ̂𝑐†𝜆𝜎 ′ ̂𝑐𝜌𝜎 ′ ̂𝑐𝜈𝜎 . (2.6)

This effectively switched to a Fock space in which the electron number is variable, from the

Hilbert space where Eq. (2.1) is defined. Note that since the basis can be non-orthogonal, the

anti-commutation relations of the electronic operators are given by

{ ̂𝑐†𝜇𝜎 , ̂𝑐𝜈𝜎 ′} = 𝛿𝜎𝜎 ′𝑆𝜇𝜈 . (2.7)

In (2.6), we do not assume any periodicity of the basis function 𝜙, and each orbital index

𝜇, 𝜈, … represent a single AO at a specific nucleus location. In periodic systems such as lattice

systems, different unit cells contain exactly the same atoms, and the orbital indices 𝜇 may
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be split into the lattice indices n = (𝑛𝑥 , 𝑛𝑦 , …) and the orbital indices within the unit cell, i.e.

𝜇 → (𝜇,n). The basis function at lattice site n and orbital 𝜇 is then

𝜙𝜇n(r) = 𝜙𝜇(r − Rn). (2.8)

2.2 Orthogonalization of the basis set

The most commonly used basis sets in quantum chemistry are constructed based on AOs,

such as Slater-type orbitals (STOs) [40] and Gaussian-type orbitals (GTOs) [41, 42]. AOs are

atom-centered functionsmotivated by the eigenstates of Schrödinger equation for hydrogen-

like atoms, which provides an intuitive picture for interpreting calculation results. Different

basis sets are optimized for each element with finite number of AOs. By systematically

choosing larger basis sets, the system can be extrapolated to the continuous basis set (CBS)

limit, where the basis is considered complete [43, 44]. See e.g. Ref. [45] for a review of atomic

basis sets.

In molecular or lattice systems, AO basis sets usually yield non-orthogonal basis functions

as a result of overlapping orbitals from different atoms, i.e. the overlap matrix 𝑺 is not diag-
onal. However, many numerical methods, such as most diagrammatic methods studied in

this thesis, are formulated in orthonormal basis sets. Is is therefore convenient to perform a

linear transformation of the AO basis

𝜙′𝑖 (r) = ∑
𝜇
𝜙𝜇(r)𝑋𝜇𝑖 (2.9)

via some transformation matrix 𝑿 , such that the resulting basis {𝜙′𝑖 } is orthonormal. This
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implies

𝛿𝑖𝑗 ≡ ∫ d3r 𝜙′𝑖 ∗(r)𝜙′𝑗 (r) = ∑
𝜇𝜈

𝑋 ∗𝜇𝑖𝑋𝜈𝑗 ∫ d3r 𝜙∗𝜇(r)𝜙𝜈(r) = [𝑿†𝑺𝑿]𝑖𝑗 , (2.10)

or in matrix form

𝑿†𝑺𝑿 = 𝑰 , (2.11)

where 𝑺 is the overlap matrix and 𝑰 the identity matrix.

In order to find such a transformation 𝑿 , we perform an eigenvalue decomposition of 𝑺:

𝑺 = 𝑼 𝒔𝑼 †, (2.12)

where 𝑼 is unitary and 𝒔 is the diagonal matrix of the eigenvalues. Equation 2.11 is reorga-

nized as

(𝑿†𝑼 𝒔1/2)(𝒔1/2𝑼 †𝑿) = 𝑰 . (2.13)

Defining 𝒀 = 𝒔1/2𝑼 †𝑿 , we have

𝒀†𝒀 = 𝑰 , (2.14)

i.e. 𝒀 is a unitary matrix. Solving for 𝑿 yields

𝑿 = 𝑼𝒔−1/2𝒀 . (2.15)

The choice of the unitary matrix 𝒀 is arbitrary, as the final basis sets 𝜙′ from different choices

are only different by a unitary transformation.

In quantum chemistry, there are two common choices [38] for 𝒀 . The canonical orthog-
onalization chooses 𝒀 = 𝑰 , such that

𝑿 = 𝑼𝒔−1/2, (2.16)
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which is useful when 𝑺 is ill-conditioned and truncations of the eigenvalues are needed1. Al-
ternatively, the symmetric orthogonalization chooses 𝒀 = 𝑼 †, such that the transformation

matrix

𝑿 = 𝑼𝒔−1/2𝑼 † (2.17)

is symmetric. Once𝑿 is fixed, one can transform electronic integrals to the orthogonal basis:

ℎ′𝑖𝑗 = ∑
𝜇𝜈

ℎ𝜇𝜈𝑋 ∗𝜇𝑖𝑋𝜈𝑗 , 𝑉 ′𝑖𝑗𝑘𝑙 = ∑
𝜇𝜈𝜆𝜌

𝑉𝜇𝜈𝜆𝜌𝑋 ∗𝜇𝑖𝑋𝜈𝑗𝑋 ∗𝜆𝑘𝑋𝜌𝑙 . (2.18)

In the remainder of this thesis, we use latin indices 𝑖, 𝑗, … for orthogonal orbitals, greek indices

𝜇, 𝜈, … for non-orthogonal AOs, and omit the “primes” when there is no conflict of notation.

The electronic Hamiltonian (2.6) can be rewritten using the orthogonalized basis as

𝐻̂ = ∑
𝑖𝑗

∑
𝜎

ℎ𝑖𝑗 ̂𝑐†𝑖𝜎 ̂𝑐𝑗𝜎 + 1
2 ∑𝑖𝑗𝑘𝑙

∑
𝜎𝜎 ′

𝑉𝑖𝑗𝑘𝑙 ̂𝑐†𝑖𝜎 ̂𝑐†𝑘𝜎 ′ ̂𝑐𝑙𝜎 ′ ̂𝑐𝑗𝜎 , (2.19)

where the creation and annihilation operators now follow the canonical anti-commutation

relation

{ ̂𝑐†𝑖𝜎 , ̂𝑐𝑗𝜎 ′} = 𝛿𝑖𝑗𝛿𝜎𝜎 ′ . (2.20)

2.3 Spin-orbitals and anti-symmetrized interaction

Some applications benefit from combining the spin and orbital degrees of freedom together,

which forms the so-called “spin-orbitals” [38]. We introduce the compound notation {𝑎, 𝑏, …}

1This yields a smaller basis after the transformation.
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such that

ℎ𝑎𝑏 = ℎ(𝑖𝜎)(𝑗𝜎 ′) ≡ ℎ𝑖𝑗𝛿𝜎𝜎 ′ (2.21)

𝑉𝑎𝑏𝑐𝑑 = 𝑉(𝑖𝜎)(𝑗𝜎 ′)(𝑘𝜆)(𝑙𝜆′) ≡ 𝑉𝑖𝑗𝑘𝑙𝛿𝜎𝜎 ′𝛿𝜆𝜆′ . (2.22)

The fermionic anti-symmetry can be explicitly encoded in the anti-symmetrized interaction

tensor𝓤 as

𝑈𝑎𝑏𝑐𝑑 = 𝑉𝑎𝑏𝑐𝑑 − 𝑉𝑎𝑑𝑐𝑏 , (2.23)

such that Eq. (2.19) becomes

𝐻̂ = ∑
𝑎𝑏

ℎ𝑎𝑏 ̂𝑐†𝑎 ̂𝑐𝑏 + 1
4 ∑
𝑎𝑏𝑐𝑑

𝑈𝑎𝑏𝑐𝑑 ̂𝑐†𝑎 ̂𝑐†𝑐 ̂𝑐𝑑 ̂𝑐𝑏 . (2.24)

2.4 Thermal dynamic quantities

This section defines notations of the finite-temperature properties of electrons, the main

physical quantities studied in this thesis. The grand partition function [39] of the Hamilto-

nian (2.19) writes

𝑍 = Tr 𝑒−𝛽(𝐻̂−𝜇𝑁̂ ), (2.25)

where 𝛽 = (𝑘B𝑇 )−1 is the inverse temperature, 𝜇 is the chemical potential, and 𝑁̂ = ∑𝑖𝜎 ̂𝑐†𝑖𝜎 ̂𝑐𝑖𝜎
is the number operator. Grand canonical ensemble is necessary here as the electron number

is not fixed in the Fock space. It is common to absorb the 𝜇𝑁̂ term into the Hamiltonian by

shifting the one-electron Hamiltonian 𝒉:

𝒉′ = 𝒉 − 𝜇𝑰 , (2.26)
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such that 𝑍 = Tr 𝑒−𝛽𝐻̂ ′
, and the primes can be dropped in the absence of confusion. The

thermal expected value of an electronic operator 𝑂̂ is given by

⟨𝑂̂⟩ = Tr[𝑒−𝛽(𝐻̂−𝜇𝑁̂ )𝑂̂]
𝑍 . (2.27)

The central quantity for studying correlations of electrons is the many-body Green’s func-

tion. An 𝑚-particle Green’s function is defined as a correlation function of 𝑚 creation oper-

ators and 𝑚 annihilation operators in imaginary time [39]

𝐺(𝑚)(𝑥1, 𝑥′1, 𝑥2, 𝑥′2, … , 𝑥𝑚, 𝑥′𝑚) = (−1)𝑚⟨𝒯𝜏 ̂𝑐(𝑥1) ̂𝑐†(𝑥′1) ̂𝑐(𝑥2) ̂𝑐†(𝑥′2)⋯ ̂𝑐(𝑥𝑚) ̂𝑐†(𝑥′𝑚)⟩, (2.28)

where 𝒯𝜏 is the time-ordering operator, and 𝑥 = (𝜏 , 𝑖, 𝜎) is the compound index such that

̂𝑐(†)(𝑥) = ̂𝑐(†)𝑖𝜎 (𝜏 ) = 𝑒𝜏 (𝐻̂−𝜇𝑁̂ ) ̂𝑐(†)𝑖𝜎 𝑒−𝜏(𝐻̂−𝜇𝑁̂ ). (2.29)

At 𝑚 = 1, we obtain the single-particle Green’s function

𝐺(𝑥, 𝑥′) = 𝐺𝑖𝜎 ,𝑗𝜎 ′(𝜏 , 𝜏 ′) = −⟨𝒯𝜏 ̂𝑐𝑖𝜎 (𝜏 ) ̂𝑐†𝑗𝜎 ′(𝜏 ′)⟩. (2.30)

If 𝐻̂ conserves spin, we have

𝐺𝑖𝜎 ,𝑗𝜎 ′(𝜏 , 𝜏 ′) = 𝐺𝑖𝑗,𝜎 (𝜏 , 𝜏 ′). (2.31)

Further simplification can be made due to the cyclic property of the trace:

𝐺𝑖𝑗,𝜎 (𝜏 , 𝜏 ′) = 𝐺𝑖𝑗,𝜎 (𝜏 − 𝜏 ′). (2.32)
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𝐺𝑖𝑗,𝜎 (𝜏 ) is anti-periodic [39] in imaginary time, i.e. 𝐺𝑖𝑗,𝜎 (𝜏 +𝛽) = −𝐺𝑖𝑗,𝜎 (𝜏 ). At 𝜏 → 0−, 𝐺𝑖𝑗,𝜎 (𝜏 )
gives the density matrix in one-particle basis

𝜌𝑖𝑗,𝜎 = ⟨ ̂𝑐†𝑖𝜎 ̂𝑐𝑗𝜎 ⟩ = 𝐺𝑗𝑖,𝜎 (0−). (2.33)

2.5 Coherent state path integral

Many derivations covered in this thesis work in the coherent state path integral formalism.

This section briefly introduces the formalism and summarizes the notations closely following

Ref. [39].

The Feynman path integral [3] provides an alternative formulation for quantum mechan-

ics. For a single particle problem, it transforms the problem of solving the Schrödinger equa-

tion of a Hamiltonian, defined in terms of the quantum mechanical operators 𝑥̂ and ̂𝑝, to
calculating a “path integral”, i.e. summing up an infinite number of probability amplitudes

over all possible paths in the configuration space of the canonical coordinates (𝑥, 𝑝), which
are exactly the eigenvalues of the operators 𝑥̂ and ̂𝑝. In analog, to apply path integral to

our electronic Hamiltonian (2.19), we need to find the “coordinates” corresponding to the

conjugate pair of operators ̂𝑐 and ̂𝑐†.
The coherent states are defined as the eigenstates of the electron annihilation operator:

̂𝑐𝛼 |𝜂⟩ = 𝜂𝛼 |𝜂⟩ , (2.34)

where 𝛼 = (𝑖, 𝜎) is the compound index for the single particle state. The eigenvalues 𝜂𝛼
should maintain the anti-commutation properties of ̂𝑐:

̂𝑐𝛼 ̂𝑐𝛽 |𝜂⟩ = − ̂𝑐𝛽 ̂𝑐𝛼 |𝜂⟩ ⟹ 𝜂𝛼𝜂𝛽 |𝜂⟩ = −𝜂𝛽𝜂𝛼 |𝜂⟩ ,
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therefore

{𝜂𝛼 , 𝜂𝛽 } = 0. (2.35)

This indicates that the eigenvalues are not common complex numbers, but rather the anti-

commuting Grassmann numbers2. A Grassmann number 𝜂 has the following properties:

• Anti-commutation

𝜂𝜂′ = −𝜂′𝜂, 𝜂2 = 0. (2.36)

• Functions of analytic functions (“Taylor expansion”)

𝑓 (𝜂) = 𝑓0 + 𝑓1𝜂, 𝑓 (𝜂1, 𝜂2) = 𝑓0 + 𝑓1𝜂1 + 𝑓2𝜂2 + 𝑓12𝜂1𝜂2, … (2.37)

• Derivatives
𝜕
𝜕𝜂1 = 0, 𝜕

𝜕𝜂𝜂 = 1. (2.38)

• Integrals

∫ d𝜂 1 = 0, ∫ d𝜂 𝜂 = 1. (2.39)

For proper mixing with the creation and annihilation operators, each one-particle state 𝛼 is

associated with two Grassmann numbers 𝜂𝛼 and ̄𝜂𝛼 , which are defined to be conjugates of

each other:

̄𝜂𝛼 = 𝜂𝛼 , ̄𝜂𝛼 ̄𝜂𝛽 = ̄𝜂𝛽 ̄𝜂𝛼 . (2.40)

The electronic operators are anti-commuting with the Grassmann numbers:

{𝜂, ̂𝑐(†)} = 0, (2.41)

2Or more precisely, generators of the Grassmann algebra.
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and the conjugation works on both the operators and the Grassmann numbers, e.g.

(𝜂 ̂𝑐𝛼 )† = ̂𝑐†𝛼 ̄𝜂. (2.42)

It can be shown that the fermionic coherent state takes the form

|𝜂⟩ = 𝑒−∑𝛼 𝜂𝛼 ̂𝑐†𝛼 |0⟩ , (2.43)

where |0⟩ is the vacuum state in the Fock space. Note that |𝜂⟩ no longer lives in the fermion

Fock space, but rather an extended space for linear combinations of states in the Fock space

with Grassmann coefficients. The coherent states form an over-complete basis of the ex-

tended Fock space, with internal products

⟨𝜂|𝜂′⟩ = 𝑒∑𝛼 ̄𝜂𝛼𝜂𝛼 , (2.44)

and completeness relation

∫(∏
𝛼

d ̄𝜂𝛼d𝜂𝛼) 𝑒−∑𝛼 ̄𝜂𝛼𝜂𝛼 |𝜂⟩ ⟨𝜂| = 1. (2.45)

Using the completeness relation (2.45) to compute the trace in the fermionic partition

function (2.25), we have

𝑍 = Tr 𝑒−𝛽(𝐻̂−𝜇𝑁̂ ) = ∫∏
𝛼

d ̄𝜂𝛼d𝜂𝛼 𝑒−∑𝛼 ̄𝜂𝛼𝜂𝛼 ⟨−𝜂| 𝑒−𝛽(𝐻̂−𝜇𝑁̂ ) |𝜂⟩ , (2.46)

where the minus sign in ⟨−𝜂| occurs when it is moved across |𝜂⟩ for the right. We now break
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𝛽 up into 𝑀 small intervals 𝜖 = 𝛽/𝑀 , such that

⟨−𝜂| 𝑒−𝛽(𝐻̂−𝜇𝑁̂ ) |𝜂⟩ = ⟨−𝜂| 𝑒−𝑀𝜖(𝐻̂−𝜇𝑁̂ ) |𝜂⟩

= ∫(
𝑀−1
∏
𝑘=1

∏
𝛼

d ̄𝜂(𝑘)𝛼 d𝜂(𝑘)𝛼 )𝑒−∑𝑀−1
𝑘=1 ∑𝛼 ̄𝜂(𝑘)𝛼 𝜂(𝑘)𝛼

𝑀
∏
𝑘=1

⟨𝜂(𝑘)| 𝑒−𝜖(𝐻̂−𝜇𝑁̂ ) |𝜂(𝑘−1)⟩ .
(2.47)

Here we have taken the boundary condition |𝜂(0)⟩ = |−𝜂(𝑀)⟩ = |𝜂⟩. The “sandwich” factors
can be evaluated to coherent state eigenvalues by writing the exponential in normal order:

𝑒−𝜖(𝐻̂−𝜇𝑁̂ ) =∶𝑒−𝜖(𝐻̂−𝜇𝑁̂ )∶ +𝒪(𝜖2), (2.48)

and taking the 𝑀 → ∞ limit, such that

lim𝑀→∞ ⟨𝜂(𝑘)| 𝑒−𝜖(𝐻̂−𝜇𝑁̂ ) |𝜂(𝑘−1)⟩ = lim𝑀→∞ 𝑒∑𝛼 ̄𝜂(𝑘)𝛼 𝜂(𝑘−1)𝛼 𝑒−𝜖[𝐻( ̄𝜂(𝑘)𝛼 ,𝜂(𝑘−1)𝛼 )−𝜇 ∑𝛼 ̄𝜂(𝑘)𝛼 𝜂(𝑘−1)𝛼 ], (2.49)

where 𝐻( ̄𝜂, 𝜂) is the Grassmann function obtained by replacing the ̂𝑐†, ̂𝑐 operators from 𝐻̂
with the Grassmann numbers ̄𝜂, 𝜂. Now we have

𝑍 = lim𝑀→∞∫(
𝑀
∏
𝑘=1

∏
𝛼

d ̄𝜂(𝑘)𝛼 d𝜂(𝑘)𝛼 )

× exp [
𝑀
∑
𝑘=1

𝜖( −∑
𝛼

̄𝜂(𝑘)𝛼
̄𝜂(𝑘)𝛼 − ̄𝜂(𝑘−1)𝛼

𝜖 − 𝐻( ̄𝜂(𝑘)𝛼 , 𝜂(𝑘−1)𝛼 ) + 𝜇∑
𝛼

̄𝜂(𝑘)𝛼 𝜂(𝑘−1)𝛼 )].
(2.50)

At the 𝑀 → ∞ limit, the imaginary time axis [0, 𝛽] is split into an infinitely dense grid

{𝜏𝑘 = 𝑘𝜖}, which allows us to formally introduce a “path” of the coherent state eigenvalues

𝜂𝛼 (𝜏 ), such that

̄𝜂(𝑘)𝛼
̄𝜂(𝑘)𝛼 − ̄𝜂(𝑘−1)𝛼

𝜖 → ̄𝜂𝛼 (𝜏 ) 𝜕𝜕𝜏 𝜂𝛼 (𝜏 ), 𝐻( ̄𝜂(𝑘)𝛼 , 𝜂(𝑘−1)𝛼 ) → 𝐻( ̄𝜂𝛼 (𝜏 ), 𝜂𝛼 (𝜏 )). (2.51)
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The exponent in (2.50) can now be formally written as

𝑀
∑
𝑘=1

𝜖[ −∑
𝛼

̄𝜂(𝑘)𝛼
̄𝜂(𝑘)𝛼 − ̄𝜂(𝑘−1)𝛼

𝜖 − 𝐻( ̄𝜂(𝑘)𝛼 , 𝜂(𝑘−1)𝛼 ) + 𝜇∑
𝛼

̄𝜂(𝑘)𝛼 𝜂(𝑘−1)𝛼 ]

→∫
𝛽

0
𝑑𝜏[ −∑

𝛼
̄𝜂𝛼 (𝜏 ) 𝜕𝜕𝜏 𝜂𝛼 (𝜏 ) − 𝐻( ̄𝜂𝛼 (𝜏 ), 𝜂𝛼 (𝜏 )) + 𝜇∑

𝛼
̄𝜂𝛼 (𝜏 )𝜂𝛼 (𝜏 )]

= − ∫
𝛽

0
𝑑𝜏[∑

𝛼
̄𝜂𝛼 (𝜏 )(𝜕𝜏 − 𝜇)𝜂𝛼 (𝜏 ) + 𝐻( ̄𝜂𝛼 (𝜏 ), 𝜂𝛼 (𝜏 ))] =∶ −𝑆[ ̄𝜂, 𝜂],

where we have defined the Euclidean action 𝑆.
In later chapters of this thesis, the Grassmann fields are usually written using the same

letters as the corresponding operators but without the “hat”, e.g. ( ̄𝜂, 𝜂) → ( ̄𝑐, 𝑐) for ( ̂𝑐†, ̂𝑐).
With this convention, the partition function is formulated as a coherent state path integral

𝑍 = ∫𝑐(0)=−𝑐(𝛽)𝒟[ ̄𝑐, 𝑐]𝑒−𝑆[ ̄𝑐,𝑐], (2.52)

where the integration measure is shorthand for

𝒟[ ̄𝑐, 𝑐] = lim𝑀→∞

𝑀
∏
𝑘=1

∏
𝛼

d ̄𝑐(𝑘)𝛼 d𝑐(𝑘)𝛼 . (2.53)

By switching to the path integral formulation, one no longer deals with the Hamiltonian

and operators in the Fock space, but rather a “scalar” functional of Grassmann fields ̄𝑐(𝜏 ), 𝑐(𝜏 )
— the Euclidean action. For example, the action corresponding to the electronic Hamiltonian

(2.19) writes

𝑆[ ̄𝑐, 𝑐] = ∫
𝛽

0
d𝜏 {∑

𝑖𝑗
∑
𝜎

̄𝑐𝑖𝜎 (𝜏 )[(𝜕𝜏 − 𝜇)𝛿𝑖𝑗 + ℎ𝑖𝑗]𝑐𝑗𝜎 (𝜏 ) + 1
2 ∑𝑖𝑗𝑘𝑙

∑
𝜎𝜎 ′

𝑈𝑖𝑗𝑘𝑙 ̄𝑐𝑖𝜎 (𝜏 ) ̄𝑐𝑘𝜎 ′(𝜏 )𝑐𝑙𝜎 ′(𝜏 )𝑐𝑗𝜎 (𝜏 )}.

(2.54)
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This simplifies mathematical operations with a simpler commutation relations from the

Grassmann numbers, and enables powerful mathematical techniques such as change of inte-

gration variables, Guassian integrals, the Legendre transformation, the Hubbard-Stratonovic

transformation, and so on. Although a path integral such as (2.52) is formally written as an

“integral”, it is not a continuous integral and should be understood only as a limit of infinite

slicing of the time axis (2.50).

The partition function (2.52) formally defines a “probability distribution”

𝑝[ ̄𝑐, 𝑐] = 𝑒−𝑆[ ̄𝑐,𝑐]
𝑍 , ∫𝒟[ ̄𝑐, 𝑐]𝑝[ ̄𝑐, 𝑐] = 1, (2.55)

for all functionals of the Grassmann fields ̄𝑐𝛼 (𝜏 ), 𝑐𝛼 (𝜏 ). We now overload the notation ⟨⋅⟩ to
also represent the expectation values under this “distribution”:

⟨𝑓 [ ̄𝑐, 𝑐]⟩ = ∫𝒟[ ̄𝑐, 𝑐]𝑓 [ ̄𝑐, 𝑐]𝑝[ ̄𝑐, 𝑐] = 1
𝑍 ∫𝒟[ ̄𝑐, 𝑐]𝑓 [ ̄𝑐, 𝑐]𝑒−𝑆[ ̄𝑐,𝑐], (2.56)

which is implicitly distinguished from Eq. (2.27) unless otherwise stated: here the average is

taken over Grassmann fields ̄𝑐, 𝑐 whereas in (2.27) it is taken over operators.

The construction of the path integral relies on the sequential insertion of the coherent

state completeness relation (2.45) as well as normal ordering of operators (2.48). If one plugs

a function of creation and annihilation operators ̂𝑐†(𝜏 ′) and ̂𝑐(𝜏 ) into a path-integral, time-

ordering will be automatically applied to components at different times, and normal ordering

will be applied to components at equal time, i.e.

⟨𝑓 [ ̄𝑐(𝜏 ′), 𝑐(𝜏 )]⟩ = 1
𝑍 ∫𝒟[ ̄𝑐, 𝑐]𝑓 [ ̄𝑐(𝜏 ′), 𝑐(𝜏 )]𝑒−𝑆[ ̄𝑐,𝑐] ≡ ⟨𝒯𝜏 ∶ ̂𝑓 [ ̂𝑐†(𝜏 ′), ̂𝑐(𝜏 )]∶⟩. (2.57)
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For example, the path integral

− ∫𝒟[ ̄𝑐, 𝑐] 𝑐(𝜏 ) ̄𝑐(𝜏 ′)𝑒−𝑆[ ̄𝑐,𝑐] = −Tr[𝒯𝜏 ̂𝑐(𝜏 ) ̂𝑐†(𝜏 ′)𝑒−𝛽(𝐻̂−𝜇𝑁̂ )] (2.58)

allows to define the one-particle Green’s function as

𝐺𝑖𝑗,𝜎 (𝜏 , 𝜏 ′) = −⟨𝒯𝜏 ̂𝑐𝑖𝜎 (𝜏 ) ̂𝑐†𝑗𝜎 (𝜏 ′)⟩ = − 1
𝑍 Tr[𝒯𝜏 ̂𝑐𝑖𝜎 (𝜏 ) ̂𝑐†𝑗𝜎 (𝜏 ′)𝑒−𝛽(𝐻̂−𝜇𝑁̂ )]

= − 1
𝑍 ∫𝒟[ ̄𝑐, 𝑐] 𝑐𝑖𝜎 (𝜏 ) ̄𝑐𝑗𝜎 (𝜏 ′)𝑒−𝑆[ ̄𝑐,𝑐] =∶ −⟨𝑐𝑖𝜎 (𝜏 ) ̄𝑐𝑗𝜎 (𝜏 ′)⟩.

(2.59)

Time-ordering operators are not needed as time-ordering is automatically enforced by the

path integral.

A generating function for the correlations functions of the Grassmann fields, i.e. Green’s

functions, can be defined in analog to the moment generating function (MGF) in probability

theory:

𝘔[ ̄𝜂, 𝜂] ∶= ⟨ exp ( − ∫d𝑥[ ̄𝜂(𝑥)𝑐(𝑥) + ̄𝑐(𝑥)𝜂(𝑥)])⟩, (2.60)

where ̄𝜂, 𝜂 are Grassmann “source” fields, 𝑥 is the compound index such that

𝑥 = (𝜏 , 𝑖, 𝜎), ∫d𝑥 ∶= ∫
𝛽

0
d𝜏 ∑

𝑖
∑
𝜎

. (2.61)

The many-body Green’s function (2.28) can be generated via functional derivatives, in the

same way moments of a probability distribution are generated from the MGF [39]:

𝐺(𝑚)(𝑥1, 𝑥′1, 𝑥2, 𝑥′2, … , 𝑥𝑚, 𝑥′𝑚) = (−1)𝑚⟨𝑐(𝑥1) ̄𝑐(𝑥′1)𝑐(𝑥2) ̄𝑐(𝑥′2)⋯ 𝑐(𝑥𝑚) ̄𝑐(𝑥′𝑚)⟩

= ⟨ ̄𝑐(𝑥′1) ̄𝑐(𝑥′2)⋯ ̄𝑐(𝑥′𝑚)𝑐(𝑥𝑚)⋯ 𝑐(𝑥2)𝑐(𝑥1)⟩

= 𝛿2𝑚𝘔[ ̄𝜂, 𝜂]
𝛿 ̄𝜂(𝑥1)⋯ 𝛿 ̄𝜂(𝑥𝑚)𝛿𝜂(𝑥′𝑚)⋯ 𝛿𝜂(𝑥′1)

|
̄𝜂=𝜂=0

.

(2.62)
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Similar analogy can be made to the cumulant generating function (CGF) by taking a loga-

rithm of 𝘔, which gives

𝘒[ ̄𝜂, 𝜂] = log𝘔[ ̄𝜂, 𝜂] = log ⟨ exp ( − ∫d𝑥[ ̄𝜂(𝑥)𝑐(𝑥) + ̄𝑐(𝑥)𝜂(𝑥)])⟩. (2.63)

The same functional derivatives nowgenerates the cumulants, called the “connected” Green’s

functions

𝐺(𝑚)𝑐 (𝑥1, 𝑥′1, 𝑥2, 𝑥′2, … , 𝑥𝑚, 𝑥′𝑚) ∶=
𝛿2𝑚𝘒[ ̄𝜂, 𝜂]

𝛿 ̄𝜂(𝑥1)⋯ 𝛿 ̄𝜂(𝑥𝑚)𝛿𝜂(𝑥′𝑚)⋯ 𝛿𝜂(𝑥′1)
|
̄𝜂=𝜂=0

. (2.64)

The physical meaning of 𝐺(𝑚)𝑐 can be found in standard textbooks such as Ref. [39].
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Chapter 3

Diagrammatic Expansions in Thermal

Equilibrium

The interaction term in the electronic Hamiltonian (2.1) couples motions of all electrons

in the system together, resulting in a many-body problem whose complexity scales expo-

nentially versus the number of electrons. It further enters the electronic action (2.54) as a

quartic term, which prevents us from evaluating the path integral (2.52) analytically as a

Gaussian Grassmann integral [39]. A perturbative treatment of the many-body problem by

viewing the interaction as a “perturbation” to the non-interacting problem not only provides

good approximations for weakly interacting systems, but also leads to the development of

diagrammatic methods which have been applied to a wide range of applications.

In this chapter, we review the fundamentals of the perturbation theory for electron in-

teractions and diagrammatic methods, which serves as the foundation for all diagrammatic

methods studied in this thesis.
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3.1 Perturbation expansion of the partition function

We partition the Hamiltonian with anti-symmetrized interactions (2.24) by treating the in-

teraction term as the perturbation, such that

𝐻̂ = 𝐻̂0 + 𝐻̂𝐼 ,

𝐻̂0 = ∑
𝑎𝑏

ℎ𝑎𝑏 ̂𝑐†𝑎 ̂𝑐𝑏 ,

𝐻̂𝐼 = 1
4 ∑
𝑎𝑏𝑐𝑑

𝑈𝑎𝑏𝑐𝑑 ̂𝑐†𝑎 ̂𝑐†𝑐 ̂𝑐𝑑 ̂𝑐𝑏 .

(3.1)

For a better analytical control over the perturbation series, we introduce a scalar “coupling

constant” 𝜉 ∈ ℂ, and define a parametrized Hamiltonian

𝐻̂𝜉 = 𝐻̂0 + 𝜉𝐻̂𝐼 , (3.2)

which recovers the non-interacting Hamiltonian 𝐻̂0 at 𝜉 = 0, and the full Hamiltonian 𝐻̂ at

𝜉 = 1. The Euclidean action (2.54) becomes

𝑆𝜉 [ ̄𝑐, 𝑐] = 𝑆0 + 𝜉𝑆𝐼 ,

𝑆0 = ∫
𝛽

0
d𝜏 ∑

𝑎𝑏
̄𝑐𝑎(𝜏 )[(𝜕𝜏 − 𝜇)𝛿𝑎𝑏 + ℎ𝑎𝑏]𝑐𝑏(𝜏 ),

𝑆𝐼 = ∫
𝛽

0
d𝜏 ∑

𝑎𝑏𝑐𝑑

𝑈𝑎𝑏𝑐𝑑
4 ̄𝑐𝑎(𝜏 ) ̄𝑐𝑐(𝜏 )𝑐𝑑(𝜏 )𝑐𝑏(𝜏 ).

(3.3)

The corresponding partition function is

𝑍𝜉 = Tr[𝑒−𝛽(𝐻̂𝜉−𝜇𝑁̂ )] = ∫𝒟[ ̄𝑐, 𝑐]𝑒−𝑆0−𝜉𝑆𝐼 , (3.4)
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and the thermal expected values is denoted as

⟨𝑓 [ ̄𝑐, 𝑐]⟩𝜉 = 1
𝑍𝜉 ∫

𝒟[ ̄𝑐, 𝑐]𝑓 [ ̄𝑐, 𝑐]𝑒−𝑆𝜉 . (3.5)

Expanding 𝑍𝜉 as a power series of 𝜉 , we have

𝑍𝜉 = ∫𝒟[ ̄𝑐, 𝑐]𝑒−𝑆0
∞
∑
𝑘=0

(−𝑆𝐼 )𝑘
𝑘! 𝜉 𝑘 = 𝑍0

∞
∑
𝑘=0

⟨(−𝑆𝐼 )𝑘⟩0
𝑘! 𝜉 𝑘 , (3.6)

where ⟨⋅⟩0 is the non-interacting thermal average. The task of the perturbation theory is to

evaluate the power series order by order, and specifically, to calculate

⟨(−𝑆𝐼 )𝑘⟩0 = ∫
𝛽

0
d𝜏1 ∑

𝑎1𝑏1𝑐1𝑑1
⋯∫

𝛽

0
d𝜏𝑘 ∑

𝑎𝑘𝑏𝑘𝑐𝑘𝑑𝑘
(−1)𝑘 𝑈𝑎1𝑏1𝑐1𝑑1 ⋯𝑈𝑎𝑘𝑏𝑘𝑐𝑘𝑑𝑘

4𝑘 ×

× ⟨ ̄𝑐𝑎1(𝜏1) ̄𝑐𝑐1(𝜏1)𝑐𝑑1(𝜏1)𝑐𝑏1(𝜏1)⋯ ̄𝑐𝑎𝑘 (𝜏𝑘) ̄𝑐𝑐𝑘 (𝜏𝑘)𝑐𝑑𝑘 (𝜏𝑘)𝑐𝑏𝑘 (𝜏𝑘)⟩0.
(3.7)

The expansion can be done equivalently in the Hamiltonian formalism, which is briefly

summarized here and detailed in standard textbooks such as Ref. [46]. Rewrite the partition

function as

𝑍𝜉 = Tr[𝑒−𝛽(𝐻̂0−𝜇𝑁̂ )𝑈̂𝜉 (𝛽)], 𝑈̂𝜉 (𝛽) = 𝑒𝛽(𝐻̂0−𝜇𝑁̂ )𝑒−𝛽(𝐻̂𝜉−𝜇𝑁̂ ). (3.8)

𝑈̂𝜉 (𝜏 ) is the time evolution operator in interaction picture and can be expanded as a Dyson

series [46]

𝑈̂𝜉 (𝛽) =
∞
∑
𝑘=0

(−𝜉 )𝑘
𝑘! ∫

𝛽

0
d𝜏1⋯∫

𝛽

𝑘
d𝜏𝑘𝒯𝜏 {𝐻̂𝐼 (𝜏1)⋯ 𝐻̂𝐼 (𝜏𝑘)}, (3.9)

where 𝐻̂𝐼 (𝜏 ) is the interaction Hamiltonian in interaction picture. The partition function is
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therefore

𝑍𝜉 =
∞
∑
𝑘=0

(−𝜉 )𝑘
𝑘! ∫

𝛽

0
d𝜏1⋯∫

𝛽

𝑘
d𝜏𝑘 Tr[𝒯𝜏 𝐻̂𝐼 (𝜏1)⋯ 𝐻̂𝐼 (𝜏𝑘)𝑒−𝛽(𝐻̂0−𝜇𝑁̂ )]

= 𝑍0
∞
∑
𝑘=0

(−𝜉 )𝑘
𝑘! ∫

𝛽

0
d𝜏1⋯∫

𝛽

𝑘
d𝜏𝑘⟨𝒯𝜏 𝐻̂𝐼 (𝜏1)⋯ 𝐻̂𝐼 (𝜏𝑘)⟩0.

(3.10)

This is equivalent to the same expansion in action formalism (3.6).

For a finite system, the exponent 𝐻̂𝜉−𝜇𝑁̂ is bounded, and 𝑍𝜉 is analytic in 𝜉 ∈ ℂ. Therefore,
the series expansion (3.6) has infinite convergence radius and thus always converges.

3.2 Wick’s theorem and Feynman diagrams

The non-interacting correlation functions of 4𝑘 Grassmann fields in (3.7) can be evaluated

using Wick’s theorem [39, 46]. Here we take an intuitive approach of introducing the the-

orem by interpreting the correlator as a 2𝑘-particle Green’s function of the non-interacting

electrons:

⟨ ̄𝑐(𝑥′1) ̄𝑐(𝑦 ′1)𝑐(𝑦1)𝑐(𝑥1)⋯ ̄𝑐(𝑥′𝑘) ̄𝑐(𝑦 ′𝑘)𝑐(𝑦𝑘)𝑐(𝑥𝑘)⟩0 = 𝐺(2𝑘)
0 (𝑥1, 𝑥′1, 𝑦1, 𝑦 ′1 , … , 𝑥𝑘 , 𝑥′𝑘 , 𝑦𝑘 , 𝑦 ′𝑘), (3.11)

following the definition (2.28), where 𝑥, 𝑦 are compound indices defined in (2.61). To compute

𝐺(𝑚)
0 as a functional derivative of the generating function following (2.62), we first derive the

generating function for the non-interacting system:

𝘔0[ ̄𝜂, 𝜂] = ⟨ exp ( − ∫d𝑥[ ̄𝜂(𝑥)𝑐(𝑥) + ̄𝑐(𝑥)𝜂(𝑥)])⟩
0

= 1
𝑍0 ∫

𝒟[ ̄𝑐, 𝑐] exp (∫d𝑥d𝑥′ ̄𝑐(𝑥′)𝑔−1(𝑥′, 𝑥)𝑐(𝑥) − ∫d𝑥[ ̄𝜂(𝑥)𝑐(𝑥) + ̄𝑐(𝑥)𝜂(𝑥)]).
(3.12)
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Here the non-interacting Green’s function 𝑔 is defined such that

−∑
𝑏
[(𝜕𝜏 − 𝜇)𝛿𝑎𝑏 + ℎ𝑎𝑏]𝑔𝑏𝑐(𝜏 , 𝜏 ′) = 𝛿𝑎𝑐𝛿(𝜏 − 𝜏 ′). (3.13)

The path integral in (3.12) is a Gaussian integral, and can be evaluated explicitly [39]

∫𝒟[ ̄𝑐, 𝑐]𝑒∫d𝑥d𝑥′ ̄𝑐(𝑥′)𝑔−1(𝑥′,𝑥)𝑐(𝑥)−∫d𝑥[ ̄𝜂(𝑥)𝑐(𝑥)+ ̄𝑐(𝑥)𝜂(𝑥)] = det[−𝑔−1]𝑒−∫ d𝑥d𝑥′ ̄𝜂(𝑥)𝑔(𝑥,𝑥′)𝜂(𝑥′),
(3.14)

where the determinant is taken in the combined linear space of 𝑥 = (𝜏 , 𝑖, 𝜎). The non-

interacting partition function 𝑍0 is obtained by simply taking ̄𝜂 = 𝜂 = 0:

𝑍0 = ∫𝒟[ ̄𝑐, 𝑐]𝑒∫d𝑥d𝑥′ ̄𝑐(𝑥′)𝑔−1(𝑥′,𝑥)𝑐(𝑥) = det[−𝑔−1]. (3.15)

Therefore,

𝘔0[ ̄𝜂, 𝜂] = 𝑒−∫ d𝑥d𝑥′ ̄𝜂(𝑥)𝑔(𝑥,𝑥′)𝜂(𝑥′). (3.16)
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Plugging (3.16) into (2.62) gives Wick’s theorem

𝐺(𝑚)
0 (𝑥1, 𝑥′1, … , 𝑥𝑚, 𝑥′𝑚) = 𝛿2𝑚𝑒−∫ d𝑦d𝑦 ′ ̄𝜂(𝑦)𝑔(𝑦 ,𝑦 ′)𝜂(𝑦 ′)

𝛿 ̄𝜂(𝑥1)⋯ 𝛿 ̄𝜂(𝑥𝑚)𝛿𝜂(𝑥′𝑚)⋯ 𝛿𝜂(𝑥′1)
|
̄𝜂=𝜂=0

= 𝛿𝑚
𝛿 ̄𝜂(𝑥1)⋯ 𝛿 ̄𝜂(𝑥𝑚) ∫

d𝑦𝑚 ̄𝜂(𝑦𝑚)𝑔(𝑦𝑚, 𝑥′𝑚)⋯∫d𝑦1 ̄𝜂(𝑦1)𝑔(𝑦1, 𝑥′1)×

× 𝑒−∫ d𝑦d𝑦 ′ ̄𝜂(𝑦)𝑔(𝑦 ,𝑦 ′)𝜂(𝑦 ′)|
̄𝜂=𝜂=0

= ∫d𝑦𝑚 ⋯∫d𝑦1
𝛿𝑚( ̄𝜂(𝑦𝑚)⋯ ̄𝜂(𝑦1))
𝛿 ̄𝜂(𝑥1)⋯ 𝛿 ̄𝜂(𝑥𝑚)

𝑔(𝑦1, 𝑥′1)⋯ 𝑔(𝑦𝑚, 𝑥′𝑚)| ̄𝜂=𝜂=0
= ∫d𝑦𝑚 ⋯∫d𝑦1 ∑

𝜋∈𝒮𝑚
(−1)𝜋𝛿(𝑦1 − 𝑥𝜋(1))⋯ 𝛿(𝑦𝑚 − 𝑥𝜋(𝑚))𝑔(𝑦1, 𝑥′1)⋯ 𝑔(𝑦𝑚, 𝑥′𝑚)| ̄𝜂=𝜂=0

= ∑
𝜋∈𝒮𝑚

(−1)𝜋𝑔(𝑥𝜋(1), 𝑥′1)⋯ 𝑔(𝑥𝜋(𝑚), 𝑥′𝑚).

(3.17)

Here 𝒮𝑚 is the permutation group of order 𝑚, and (−1)𝜋 is the parity of the permutation,

which is the result of the fermion sign when taking the ̄𝜂 functional derivatives in different

orders. Defining an 𝑚 × 𝑚 matrix 𝑮(𝑥1, 𝑥′1, … , 𝑥𝑚, 𝑥′𝑚) such that

[𝑮(𝑥1, 𝑥′1, … , 𝑥𝑚, 𝑥′𝑚)]𝑖𝑗 = 𝑔(𝑥𝑖, 𝑥′𝑗 ), (3.18)

we have

𝐺(𝑚)
0 (𝑥1, 𝑥′1, … , 𝑥𝑚, 𝑥′𝑚) = det𝑮(𝑥1, 𝑥′1, … , 𝑥𝑚, 𝑥′𝑚), (3.19)

which gives all “contractions” of the Grassmann fields [39] 𝑐(𝑥𝑖) ̄𝑐(𝑥′𝑗 ) = ⟨𝑐(𝑥𝑖) ̄𝑐(𝑥′𝑗 )⟩0 =
−𝑔(𝑥𝑖, 𝑥′𝑗 ). At 𝑚 = 1, we have

𝐺0(𝑥, 𝑥′) = 𝑔(𝑥, 𝑥′). (3.20)
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Applying Wick’s theorem to (3.7), we have

⟨(−𝑆𝐼 )𝑘⟩0 = ∫
𝛽

0
d𝜏1 ∑

𝑎1𝑏1𝑐1𝑑1
⋯∫

𝛽

0
d𝜏𝑘 ∑

𝑎𝑘𝑏𝑘𝑐𝑘𝑑𝑘
(−1)𝑘 𝑈𝑎1𝑏1𝑐1𝑑1 ⋯𝑈𝑎𝑘𝑏𝑘𝑐𝑘𝑑𝑘

4𝑘 det𝑮, (3.21)

where 𝑮 is a 2𝑘 × 2𝑘 matrix, which can be written in a block form as

𝑮 =

⎡⎢⎢⎢⎢⎢⎢
⎣

𝒈11 𝒈12 ⋯ 𝒈1𝑘
𝒈11 𝒈12 ⋯ 𝒈1𝑘
⋮ ⋮ ⋱ ⋮

𝒈𝑘1 𝒈𝑘2 ⋯ 𝒈𝑘𝑘

⎤⎥⎥⎥⎥⎥⎥
⎦

, 𝒈𝑚𝑛 = [𝑔𝑏𝑚𝑎𝑛(𝜏𝑚, 𝜏𝑛) 𝑔𝑏𝑚𝑐𝑛(𝜏𝑚, 𝜏𝑛)
𝑔𝑑𝑚𝑎𝑛(𝜏𝑚, 𝜏𝑛) 𝑔𝑑𝑚𝑐𝑛(𝜏𝑚, 𝜏𝑛)

] . (3.22)

Since the determinant in (3.21) effectively generates all possible contractions of Grass-

mann numbers, each ofwhich carries indices (𝜏𝑛, 𝑎𝑛) that connect to an interaction tensor ele-
ment 𝑈𝑎𝑛𝑏𝑛𝑐𝑛𝑑𝑛 , we can represent the integrand of (3.21) graphically as Feynman diagrams [39]

where interaction “vertices” are connected by “propagator” lines. Defining compound “ver-

tex indices” {𝑣1, … , 𝑣𝑘} such that

𝑣𝑖 = (𝜏𝑖, 𝑎𝑖, 𝑏𝑖, 𝑐𝑖, 𝑑𝑖, ), 𝑈 (𝑣𝑖) = 𝑈𝑎𝑖𝑏𝑖𝑐𝑖𝑑𝑖 , ∫d𝑣𝑖 = ∫
𝛽

0
d𝜏𝑖 ∑

𝑎𝑖𝑏𝑖𝑐𝑖𝑑𝑖
, (3.23)

we can rewrite (3.21) as

⟨(−𝑆𝐼 )𝑘⟩0 = ∫d𝑣1⋯∫d𝑣𝑘 (−1)𝑘
𝑈 (𝑣1)⋯ 𝑈 (𝑣𝑘)

4𝑘 det𝑮(𝑣1, … , 𝑣𝑘), (3.24)

where 𝑮(𝑣1, … , 𝑣𝑘) is the same as 𝑮 defined in (3.22). Diagrams contributing to ⟨(−𝑆𝐼 )𝑘⟩0 are
constructed according to the following Feynman rules [39] in graph theory terms:

1. Each diagram is a directed graph (i.e. a digraph) with 𝑘 four-point vertices.
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Figure 3.1: Example of Feynman diagrams contributing to 𝑍 at 𝑘 = 2.

2. Each vertex carries a compound index 𝑣𝑛 and a value −𝑈 (𝑣𝑛)/4. The indegree and

outdegree of the vertex are both 2.

3. Vertices are connected by 2𝑘 propagator lines, each carries a value 𝑔(𝑥𝑚, 𝑥′𝑛) where 𝑥𝑚
is the indices on the leg of the “target” vertex, and 𝑥′𝑛 is the indices on the leg of the

“source” vertex.

4. The whole diagram carries an overall sign of (−1)𝑙 , where 𝑙 is the number of fermion

loops in the diagram.

5. Contribution of the diagram to ⟨(−𝑆𝐼 )𝑘⟩0 is obtained by integrating over all internal

indices 𝑣1, … , 𝑣𝑘 .

Figure 3.1 shows examples of these diagrams.

At order 𝑘 of the expansion (3.6), the determinant of the 2𝑘 × 2𝑘 matrix 𝑮 generates a total

of (2𝑘)! different contractions, which in turn result in (2𝑘)! Feynman diagrams. Numerical

enumeration of individual diagrams, either explicitly or stochastically, is expensive at high

expansion orders due to such a factorial growth. In contrast, numerical evaluation of the

determinant det𝑮 can be performed in 𝒪(𝑘3) time via linear algebra decompositions, which

significantly reduces the computational time and enables practical calculation of high-order
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expansions. This approach is adopted in continuous time quantum Monte Carlo (CT-QMC)

algorithms [9–12, 14], and serves as building blocks of the connected determinant (CDet)

algorithm for diagrammatic Monte Carlo (DiagMC) [22–24, 47].

3.3 Expansion of intensive quantities

Since the partition function scales exponentially with system size, most physical observables

that are intensive or extensive quantities directly relates to the logarithm of 𝑍 . For example,

the grand potential

𝛺 = −1
𝛽 log𝑍, (3.25)

and the internal energy

𝐸 = − 𝜕
𝜕𝛽 log𝑍. (3.26)

By the linked cluster theorem [39], the logarithm effectively removes all disconnected Feyn-

man diagrams, i.e.

𝑍𝜉
𝑍0

=
∞
∑
𝑘=0

1
𝑘! ∑{All closed Feynman diagrams with 𝑘 vertices},

log
𝑍𝜉
𝑍0

= −𝛽(𝛺𝜉 − 𝛺0)

=
∞
∑
𝑘=1

1
𝑘! ∑{All connected closed Feynman diagrams with 𝑘 vertices},

(3.27)

where the diagrams are constructed following the rules described in the previous section.

The series expansion of the one-particle Green’s function

𝐺𝜉 (𝑥, 𝑥′) = −⟨𝑐(𝑥) ̄𝑐(𝑥′)⟩𝜉 = − 1
𝑍𝜉 ∫

𝒟[ ̄𝑐, 𝑐]𝑐(𝑥) ̄𝑐(𝑥′)𝑒−𝑆𝜉 [ ̄𝑐,𝑐] (3.28)
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is obtained by the ratio of two power series of 𝜉 . The denominator is just (3.6) the expansion

of 𝑍𝜉 . The numerator

− ∫𝒟[ ̄𝑐, 𝑐]𝑐(𝑥) ̄𝑐(𝑥′)𝑒−𝑆𝜉 [ ̄𝑐,𝑐] = 𝑍0
∞
∑
𝑘=0

𝜉 𝑘
𝑘! ⟨−𝑐(𝑥) ̄𝑐(𝑥′)(−𝑆𝐼 )𝑘⟩0, (3.29)

where the expected value can be evaluated with Wick’s theorem:

⟨−𝑐(𝑥) ̄𝑐(𝑥′)𝑆𝑘𝐼 ⟩0 = ∫
𝛽

0
d𝜏1 ∑

𝑎1𝑏1𝑐1𝑑1
⋯∫

𝛽

0
d𝜏𝑘 ∑

𝑎𝑘𝑏𝑘𝑐𝑘𝑑𝑘

𝑈𝑎1𝑏1𝑐1𝑑1 ⋯𝑈𝑎𝑘𝑏𝑘𝑐𝑘𝑑𝑘
4𝑘 ×

× det[ 𝑮 𝒈(𝑥′)
𝒈′(𝑥)𝑇 𝑔(𝑥, 𝑥′)

] ,
(3.30)

where 𝒈(𝑥′) and 𝒈′(𝑥) are column vectors of dimension 2𝑘:

[𝒈(𝑥′)]𝑛 = 𝑔(𝑥𝑛, 𝑥′), [𝒈′(𝑥)]𝑛 = 𝑔(𝑥, 𝑥′𝑛). (3.31)

Diagrammatically, the existence of the two “external” Grassmann fields 𝑐(𝑥) and ̄𝑐(𝑥′) adds
two external “legs” to the diagrams. The determinant generates all possible connections of

the external legs and vertices, resulting in both connected and disconnected diagram topolo-

gies. In consequence, the ratio between two diagrammatic series

𝐺𝜉 (𝑥, 𝑥′) =
𝑍0

∞
∑
𝑘=0

(−𝜉 )𝑘
𝑘! ∑{

All diagrams with 𝑘 vertices and 2 external legs

including disconnected “bubbles”
}

𝑍0
∞
∑
𝑘=0

(−𝜉 )𝑘
𝑘! ∑{All “bubble” diagrams with 𝑘 vertices}

(3.32)
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Figure 3.2: Low order diagram topologies in expansions for 𝑍𝜉 , 𝛺𝜉 , 𝐺𝜉 , and 𝛴𝜉 .

effectively cancels all disconnected components, and thus

𝐺𝜉 (𝑥, 𝑥′) =
∞
∑
𝑘=0

(−𝜉 )𝑘
𝑘! ∑{All connected diagrams with 𝑘 vertices and 2 external legs}.

(3.33)

Figure 3.2 includes examples of low-order diagram topologies in expansions of 𝑍𝜉 , 𝛺𝜉 , and

𝐺𝜉 .
The logarithm in (3.25) and the inverse 𝑍𝜉 in (3.28) will generally lead to poles in the

complex plane of 𝜉 . The series expansions of 𝛺𝜉 and 𝐺𝜉 therefore have finite convergence
radii. Since the physical solution of the system is obtained at 𝜉 = 1, a convergence radius

smaller than 1 will lead to a divergent perturbation series for the physical quantities, which

typically occurs when the electron-electron interaction is strong and 𝐻̂0 no longer serves as

a good approximation for 𝐻̂ .
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3.4 Self-energy and Dyson equation

The self-energy 𝛴 describes the effect of electron-electron interaction on the single-particle

properties [39, 46]. It is defined by the Dyson equation

𝐺𝑎𝑏(i𝜔𝑛) = 𝑔𝑎𝑏(i𝜔𝑛) +∑
𝑐𝑑

𝑔𝑎𝑐(i𝜔𝑛)𝛴𝑐𝑑(i𝜔𝑛)𝐺𝑑𝑏(i𝜔𝑛), (3.34)

where we have transformed to the Matsubara frequency representation [39] via the Fourier

transform3

𝑓 (i𝜔𝑛) = ∫
𝛽

0
d𝜏𝑓 (𝜏 )𝑒i𝜔𝑛𝜏 . (3.35)

When transformed back to the imaginary time representation, products in frequency become

convolutions in time:

𝐺(𝑥, 𝑥′) = 𝑔(𝑥, 𝑥′) + ∫d𝑦d𝑦 ′𝑔(𝑥, 𝑦 ′)𝛴(𝑦 ′, 𝑦)𝐺(𝑦, 𝑥′). (3.36)

One can formally insert the Dyson equation back to itself recursively and obtain a geometric

series:

𝐺 = 𝑔 + 𝑔𝛴𝑔 + 𝑔𝛴𝑔𝛴𝑔 + ⋯ . (3.37)

Diagrammatically, the self-energy can be expanded in terms of one-particle irreducible

(1PI) diagrams with external legs amputated [39, 46]. Definitions for the interaction vertices

and propagators are the same as in diagrams for 𝑍 or 𝐺. 1PI means that the diagram cannot

be separated into disconnected components by removing any one propagator line, or in the

graph theory language, that the edge connectivity of the graph is greater than one. The

3As a sanity check, 𝐺(𝜏) = −⟨𝑐(𝜏 ) ̄𝑐(0)⟩ is a dimensionless quantity, the dimension of its Fourier transform
𝐺(i𝜔𝑛) is inverse energy, therefore 𝛴(i𝜔𝑛) has the dimension of energy, and 𝛴(𝜏) in turn has the dimension
of squared energy.
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bottom panel of Fig. 3.2 shows examples of 𝛴 diagrams. Note that this is different from the

skeleton diagrams of the self-energy, which is introduced in Chapter 5, where the propagator

lines represent the full Green’s function 𝐺. Diagrams described in this section is therefore

also referred to as “bare” diagrams of 𝛴.

3.5 Shifted action formalism

In systems where electron interaction is strong, the perturbation series for 𝐺𝜉 may converge

very slowly or even diverge. One way of circumventing this problem is to change the parti-

tion of the “non-interacting” problem and the interacting “perturbation”, such that the series

is constructed around a starting point that is closer to the physical solution. This approach is

often referred to as “shifted action” method in the context of DiagMC [48, 49], or the “𝛼-shift”
in the context of CT-QMC [9].

To change the perturbation starting point of the action (3.3), a “shift action” term can be

added to 𝑆0 and subtracted from 𝑆𝐼 , such that

̃𝑆0 = 𝑆0 + 𝛥𝑆, ̃𝑆𝐼 = 𝑆𝐼 − 𝛥𝑆. (3.38)

The perturbation theory is redefined by reintroducing the coupling constant 𝜉 such that

̃𝑆𝜉 = ̃𝑆0 + 𝜉 ̃𝑆𝐼 = (𝑆0 + 𝛥𝑆) + 𝜉 (𝑆𝐼 − 𝛥𝑆), (3.39)

which still recovers the physical action at 𝜉 = 1.
So far the shift action 𝛥𝑆 is a generic functional of the Grassmann fields ̄𝑐, 𝑐. For a per-

turbation theory to be practical, it is necessary that the new “non-interacting” problem is
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solvable analytically, i.e. the path integral

𝑍̃0 = ∫𝒟[ ̄𝑐, 𝑐]𝑒− ̃𝑆0[ ̄𝑐,𝑐] (3.40)

is a Gaussian integral. This requires the 𝛥𝑆 to be defined in a bilinear form:

𝛥𝑆 = ∫d𝑥d𝑥′ ̄𝑐(𝑥′)𝛼(𝑥′, 𝑥)𝑐(𝑥), (3.41)

where 𝛼 is a two point function whose explicit form writes

𝛼(𝑥′, 𝑥) = 𝛼𝑎′,𝑎(𝜏 ′, 𝜏 ). (3.42)

The shifted non-interacting action now also a bilinear form

̃𝑆0 = −∫d𝑥d𝑥′ ̄𝑐(𝑥′)[𝑔−1(𝑥′, 𝑥) − 𝛼(𝑥′, 𝑥)]𝑐(𝑥). (3.43)

Defining the shifted non-interacting propagator 𝑔̃ such that

𝑔̃−1 = 𝑔−1 − 𝛼, (3.44)

we see that

𝑔̃ = (𝑔−1 − 𝛼)−1 ⇒ 𝑔̃ = 𝑔 + 𝑔𝛼𝑔̃, (3.45)

which implies that 𝑔̃ is obtained from the Dyson equation (3.34) with the self-energy defined

as 𝛼 .
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Figure 3.3: Second order Green’s function diagrams from the shifted action expansion.

Perturbation expansion of 𝑍̃𝜉 is obtained in the same way as in (3.6):

𝑍̃𝜉 = 𝑍̃0
∞
∑
𝑘=0

⟨(− ̃𝑆𝐼 )𝑘⟩0
𝑘! 𝜉 𝑘 . (3.46)

Note that the non-interacting expected value ⟨⋅⟩0 is now defined in terms of ̃𝑆0. The shifted
interacting action

̃𝑆𝐼 = ∫
𝛽

0
d𝜏 ∑

𝑎𝑏𝑐𝑑

𝑈𝑎𝑏𝑐𝑑
4 ̄𝑐𝑎(𝜏 ) ̄𝑐𝑐(𝜏 )𝑐𝑑(𝜏 )𝑐𝑏(𝜏 ) − ∫

𝛽

0
d𝜏d𝜏 ′∑

𝑎𝑏
̄𝑐𝑎(𝜏 ′)𝛼𝑎,𝑏(𝜏 ′, 𝜏 )𝑐𝑏(𝜏 ) (3.47)

now contains an additional bilinear term (often referred to as the counter term), which enters

the diagrammatic series as a two-point vertex [50].

The shifted action leads to the following changes to the diagram rules in expansions of

the partition function, grand potential, or Green’s function:

1. All propagator lines now represent 𝑔̃.

2. At order 𝑘, each diagram still contain 𝑘 vertices. Each vertex now can either be a four-

point vertex representing −𝑈𝑎𝑏𝑐𝑑/4, or a two-point vertex representing 𝛼(𝑥′, 𝑥).

All other rules and connectivity requirements are unchanged. Figure 3.3 shows an example

of second order Green’s function diagrams from a shifted action expansion, where red circles

indicate the counter term 𝛼 , each introduces a factor of −1.
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Chapter 4

Monte Carlo Integration of Perturbation

Series

Mathematically, evaluating a diagrammatic series is simply calculating a sum of some inte-

grals over vertex indices: imaginary time, orbital, and spin. Direct numerical integration of

diagrams using deterministic methods is only practical for low-order diagrams, and becomes

prohibitively expensive at higher orders due to the “curse of dimensionality” [51].

Monte Carlo integration, thanks to the universal central limit theorem (CLT), converges in

a 𝒪(𝑁−1/2) scaling in terms of the number of samples 𝑁 , regardless of the dimensionality of

the integral. Hence, Monte Carlo methods have become a predominant choice for computing

high-order Feynman diagrams.

In this chapter, we briefly review theMarkov chainMonte Carlo method and introduce the

basics of Monte Carlo integration of perturbation series introduced in Chapter 3. Concepts

and notations introduced in this chapter is applied tomethods and applications in subsequent

chapters.

36



4.1 Monte Carlo integration and importance sampling

We start with the simplest integral of an arbitrary continuous function 𝑓 (𝑥) in a interval

[𝑥0, 𝑥1]:
𝐴 = ∫

𝑥1

𝑥0
d𝑥𝑓 (𝑥). (4.1)

Suppose a probability density function (PDF) 𝑝(𝑥) is defined for a random variable 𝑋 in the

same interval, such that

∫
𝑥1

𝑥0
d𝑥𝑝(𝑥) = 1, 𝑝(𝑥) > 0. (4.2)

The integral 𝐴 can then be understood as the expected value of the function 𝑓 (𝑋)/𝑝(𝑋), i.e.

𝐴 = E[𝑓 (𝑋)
𝑝(𝑋)] = ∫

𝑥1

𝑥0
d𝑥 𝑓 (𝑥)𝑝(𝑥)𝑝(𝑥) = ∫

𝑥1

𝑥0
d𝑥𝑓 (𝑥). (4.3)

Numerical Monte Carlo integration of 𝐴 is carried out in the following steps:

1. Generate 𝑁 Monte Carlo samples 𝑋1, … , 𝑋𝑁 which follows the same distribution 𝑝(𝑥).

2. For each Monte Carlo sample, calculate the function

𝑎𝑖 = 𝑎(𝑋𝑖) =
𝑓 (𝑋𝑖)
𝑝(𝑋𝑖)

. (4.4)

3. Compute the Monte Carlo average as an estimate of the expected value 𝐼 :

⟨𝑎⟩𝑝 = 1
𝑁

𝑁
∑
𝑖=1

𝑎𝑖, E[⟨𝑎⟩𝑝] = 1
𝑁

𝑁
∑
𝑖=1

E[𝑎𝑖] = 𝐴. (4.5)
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The variance of the Monte Carlo average ⟨𝑎⟩𝑝 is related to Var[𝑎] by a factor of 𝑁 :

Var[⟨𝑎⟩𝑝] = 1
𝑁 Var[𝑎]. (4.6)

Assuming the Monte Carlo samples are independent4, the Var[𝑎] can be estimated as the

sample variance

𝜎2𝑎 = 1
𝑁 − 1

𝑁
∑
𝑖=1

(𝑎𝑖 − ⟨𝑎⟩𝑝), E[𝜎2𝑎 ] = Var[𝐼 ]. (4.7)

The estimator for the root-mean-square error of ⟨𝑎⟩𝑝 is therefore

𝛥⟨𝑎⟩𝑝 = √
𝜎2𝑎
𝑁

𝑁→∞−−−−−→ √
𝑉𝑎𝑟[𝑎]
𝑁 , (4.8)

which has an asymptotic scaling of 𝒪(𝑁−1/2) at large 𝑁 .

To analyze the impact of the distribution 𝑝(𝑥) on the variance, we rewrite the variance of

𝐴 as

Var[𝑎] = E[𝑎2] − E[𝑎]2 = E[|𝑎|2] − E[𝑎]2

= Var[|𝑎|] + E[|𝑎|]2 − E[𝑎]2,
(4.9)

in which Var[|𝑎|] can be minimized by choosing 𝑝(𝑥) to be proportional to |𝑓 (𝑥)|, i.e.

𝑝⋆(𝑥) = |𝑓 (𝑥)|
∫𝑥1𝑥0 d𝑦|𝑓 (𝑦)|

(4.10)

such that

|𝑎(𝑥)| = ∫
𝑥1

𝑥0
d𝑦|𝑓 (𝑦)| (4.11)

4This is usually not true in practice, such as in Markov chain Monte Carlo, in which case on has to take into
account the correlations between samples.
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becomes a constant, and thus Var[|𝑎|] = 0. Since E[𝑎] = 𝐴 and E[|𝑎|] = ∫𝑥1𝑥0 d𝑥|𝑓 (𝑥)| are
independent of 𝑝(𝑥), we have

min𝑝 Var[𝑎] = 𝐸[|𝑎|]2 − 𝐸[𝑎]2 = 𝐸[|𝑎|]2[1 − ( 𝐸[𝑎]
𝐸[|𝑎|])

2
], (4.12)

where
𝐸[𝑎]
𝐸[|𝑎|] =

∫𝑥1𝑥0 d𝑥𝑓 (𝑥)
∫𝑥1𝑥0 d𝑥|𝑓 (𝑥)|

= ∫
𝑥1

𝑥0
d𝑥 sgn(𝑓 (𝑥))𝑝⋆(𝑥) = E[sgn(𝑓 (𝑋))]. (4.13)

If 𝑓 (𝑥) does not change sign in the whole interval, the variance is reduced to zero; otherwise,
the variance effectively depends on how rapidly the function 𝑓 (𝑥) changes sign.
From this simple 1-D example, we can summarize the following properties of the Monte

Carlo integration method:

1. The integral is transformed to numerical sampling of the ratio 𝑓 (𝑥)/𝑝(𝑥) for some

probability distribution 𝑝(𝑥)

2. The probability distribution 𝑝(𝑥) should be chosen such that

a) 𝑓 (𝑥)/𝑝(𝑥) can be computed numerically, and

b) samples 𝑋𝑖 can be generated following the distribution 𝑝(𝑥).

3. The stochastic error scales as 𝒪(𝑁−1/2) for large 𝑁 .

4. For the same 𝑁 , the error is minimized by taking 𝑝(𝑥) ∝ |𝑓 (𝑥)|.

5. The minimal error depends on the sign of the integrand 𝑓 (𝑥): the error is larger if 𝑓 (𝑥)
changes sign more frequently.

By taking the Monte Carlo PDF to follow |𝑓 (𝑥)|, more samples will be generated in regions

where 𝑓 (𝑥) contributes more significantly to the integral than those where 𝑓 (𝑥) is almost
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zero. This technique is referred to as importance sampling for Monte Carlo integration.

The Monte Carlo integration procedure can be generalized to integrate functions of el-

ements 𝜔 in an arbitrary set Ω with a (discrete or continuous) integration measure d𝜇(𝜔),
e.g.

𝐴 = ∫Ωd𝜇(𝜔)𝑓 (𝜔). (4.14)

A PDF 𝑝(𝜔) is similarly defined such that

∫Ωd𝜇(𝜔)𝑝(𝜔) = 1, 𝑝(𝜔) > 0. (4.15)

Monte Carlo integration for 𝐴 is thus obtained by generating samples 𝜔𝑖 following the PDF

𝑝(𝜔), and measuring the average of the ratio 𝑓 /𝑝.

4.2 Markov chain Monte Carlo and Metropolis-Hastings

algorithm

When computing the integral

∫Ωd𝜇(𝜔)𝑓 (𝜔) (4.16)

using Monte Carlo integration with the optimal PDF

𝑝(𝜔) = |𝑓 (𝜔)|
𝑊 , 𝑊 = ∫Ωd𝜇(𝜔)|𝑓 (𝜔)|, (4.17)

it is often difficult to generate samples following this distribution via a direct inversion of

the cumulative distribution function (CDF) due to the complexity of the integrand 𝑓 (𝜔).
Moreover, the normalization factor 𝑊 is often unknown, making explicit computations of
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𝑝(𝜔) impossible. Markov chain Monte Carlo provides a way to generate samples following

a given distribution knowing only ratios of the PDF for two different samples, which is ideal

for integrating functions such as high-order diagrammatic series.

AMarkov chain is a sequence of random variables𝑋1, 𝑋2, …where the distribution of each

sample only depend on the previous one, i.e.

𝑃(𝑋𝑖+1 = 𝜔) = ∫Ωd𝜇(𝜔
′)𝑤(𝜔|𝜔′)𝑃(𝑋𝑖 = 𝜔′), (4.18)

where the transition probability

𝑤(𝜔|𝜔′) = 𝑃(𝑋𝑖+1 = 𝜔|𝑋𝑖 = 𝜔′) (4.19)

has been chosen to be time-homogeneous, i.e. independent of the sample index 𝑖. TheMarkov

chain is ergodic if any 𝜔 ∈ Ω can be reached with finite probability in a finite number of steps

starting from any other 𝜔0. A distribution 𝑝(𝜔) is the stationary distribution if it remains

unchanged after a Markov step, i.e. the following balance equation is satisfied:

𝑝(𝜔) = ∫Ωd𝜇(𝜔
′)𝑤(𝜔|𝜔′)𝑝(𝜔′). (4.20)

A stronger condition named detailed balance is commonly applied:

𝑤(𝜔|𝜔′)𝑝(𝜔′) = 𝑤(𝜔′|𝜔)𝑝(𝜔). (4.21)

For Monte Carlo integration, we always require that the Markov chain ensures ergodicity

and detailed balance.

The Metropolis-Hastings algorithm allows us to design a Markov chain for a given sta-
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tionary distribution 𝑝(𝜔). From each configuration 𝜔𝑖, a new configuration 𝜔𝑗 is proposed
following some proposal probability distribution 𝑤prop(𝜔𝑗 |𝜔𝑖). To ensure detailed balance,

an acceptance ratio 𝑅 is calculated after each proposal as

𝑅(𝜔𝑗 |𝜔𝑖) =
𝑤prop(𝜔𝑖|𝜔𝑗)𝑝(𝜔𝑗)
𝑤prop(𝜔𝑗 |𝜔𝑖)𝑝(𝜔𝑖)

. (4.22)

The proposal 𝜔𝑖 → 𝜔𝑗 is accepted with probability

𝑤acc(𝜔𝑗 |𝜔𝑖) = min(1, 𝑅(𝜔𝑗 |𝜔𝑖)). (4.23)

This ensures the detailed balance of the Markov process, i.e.

𝑤(𝜔𝑗 |𝜔𝑖)𝑝(𝜔𝑖) = 𝑤(𝜔𝑖|𝜔𝑗)𝑝(𝜔𝑗), (4.24)

where

𝑤(𝜔𝑗 |𝜔𝑖) = 𝑤acc(𝜔𝑗 |𝜔𝑖)𝑤prop(𝜔𝑗 |𝜔𝑖), (4.25)

which guarantees that samples obtain the equilibrium distribution 𝑝(𝜔) after thermalization.

Even after the equilibrium distribution is reached, samples generated from aMarkov chain

are not independent but have a finite autocorrelation time. A naïve variance estimate fol-

lowing (4.7) is thus biased. To obtain a correct error estimate, one should either measure the

autocorrelation time of the Markov chain, or employ statistical resampling methods such as

the jackknife or the bootstrap [51].
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4.3 Monte Carlo integration of diagrammatic series

Diagrammatic expansions introduced in Chapter 3 share the following generic form:

𝑄 =
∞
∑
𝑘=0

1
𝑘! ∫d𝑣1⋯∫d𝑣𝑘 ∑

𝑡∈𝒯
𝑑(𝑣1, 𝑣2, … , 𝑣𝑘 ; 𝑡), (4.26)

where 𝑄 is the target physical quantity (𝑍 , 𝐺(𝑥, 𝑥′), etc.), 𝑣1, … , 𝑣𝑘 are compound indices

associated to each vertex, 𝒯 is the set of diagram topologies at given vertex configuration

following specific diagram rules for 𝑄, and 𝑑 is the value of the diagram. To calculate the

diagram using Monte Carlo integration, we first need to properly define the sampling space

𝛺 and the integration measure 𝜇(𝜔). Traditionally, DiagMC methods perform Monte Carlo

integrations over individual diagrams, such that each sample 𝜔 = (𝑣1, 𝑣2, … , 𝑣𝑘 , 𝑡) includes the
diagram topology 𝑡 explicitly [17–21]. Alternatively, one can sum up all diagram topologies

at a given vertex configuration explicitly:

𝐷(𝑣1, … , 𝑣𝑘) = ∑
𝑡∈𝒯

𝑑(𝑣1, 𝑣2, … , 𝑣𝑘 ; 𝑡) (4.27)

and compute the following series using Monte Carlo integration:

𝑄 =
𝑘max

∑
𝑘=0

1
𝑘! ∫d𝑣1⋯∫d𝑣𝑘𝐷(𝑣1, 𝑣2, … , 𝑣𝑘), (4.28)

where a finite order truncation 𝑘max is introduced. This approach is adopted in CT-QMC

methods [9, 11, 12, 14] and the CDet approach for DiagMC [22–24, 47]. We will not discuss

the first approach in this thesis and will only focus on the second approach.

To perform the Monte Carlo integration, one needs to define the sampling space Ω and

the corresponding integration measure. For (4.28), two different definitions of the sampling
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space are commonly used:

I. Each sample is a sequence of vertices, i.e. 𝜔I = [𝑣1, 𝑣2, … , 𝑣𝑘], such that exchanging two

vertices leads to a different sample. The sampling space is formally given by

ΩI =
𝑘max

⨁
𝑘=0

𝒱 𝑘 , (4.29)

where 𝒱 is the space for the compound index 𝑣𝑖. The integration measure is given by

∫d𝜇(𝜔I) =
𝑘max

∑
𝑘=0

∫d𝑣1⋯∫d𝑣𝑘 . (4.30)

II. Each sample is a set of vertices, i.e. 𝜔II = (𝑣1, 𝑣2, … , 𝑣𝑘), such that any permutations of

the vertices result in the same sample. The sampling space is formally given by

ΩII =
𝑘max

⨁
𝑘=0

1
𝑘!𝒱

𝑘 , (4.31)

where the factor 1/𝑘! accounts for the invariance under permutation. The integration

measure is given by

∫d𝜇(𝜔II) =
𝑘max

∑
𝑘=0

1
𝑘! ∫d𝑣1⋯∫d𝑣𝑘 . (4.32)

The integral (4.28) is thus rewritten under the two definitions as

𝑄 = ∫ΩI
d𝜇(𝜔I) 𝐷(𝜔

I)
𝑘! , (𝑘 = |𝜔I|)

= ∫ΩII
d𝜇(𝜔II) 𝐷(𝜔II). (𝑘 = |𝜔II|)

(4.33)

Here 𝑘 = |𝜔I/II| gives the number of vertices in each sample.
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Following Eq. (4.10), the PDF of the stationary distribution is defined proportional to the

absolute value of the integrand to minimize variance:

𝑝(𝜔I) = 1
𝑊

|𝐷(𝜔I)|
|𝜔I|! , 𝑝(𝜔II) = 1

𝑊 |𝐷(𝜔II)|, (4.34)

where the normalization factor

𝑊 = ∫ΩI
d𝜇(𝜔I) |𝐷(𝜔

I)|
𝑘! = ∫ΩII

d𝜇(𝜔II) |𝐷(𝜔II)| =
𝑘max

∑
𝑘=0

(−1)𝑘
𝑘! ∫d𝑣1⋯∫d𝑣𝑘 |𝐷(𝑣1, 𝑣2, … , 𝑣𝑘)|

(4.35)

is the same in both definitions. For each sample, the following quantities are measured to

compute the final integral 𝑄:

𝑄 = ⟨ 𝐷(𝜔I)/(𝑘!)
|𝐷(𝜔I)|/(𝑘!𝑊 )⟩I

= 𝑊⟨sgn(𝐷(𝜔I))⟩I,

𝑄 = ⟨ 𝐷(𝜔II)
|𝐷(𝜔II)|/𝑊 ⟩

II
= 𝑊⟨sgn(𝐷(𝜔II))⟩II.

(4.36)

We see that the expression for measuring 𝑄 is the same from both definitions even though

the sampling space are defined differently. In fact, the two definitions are equivalent in terms

of Monte Carlo sampling. Each sample of definition II corresponds to 𝑘! samples of definition

I, which are compensated by a 1/𝑘! prefactor in the PDF in definition I. The total probability

of the 𝑘! samples of definition I is therefore the same as the single sample of definition II.

After the stationary distribution 𝑝 is determined, we can generate Monte Carlo samples

in a Markov chain using Metropolis-Hastings algorithm. Monte Carlo updates are designed

differently in different methods and applications to achieve better sampling efficiency. Here

we discuss two conjugating updates that are commonly used: the insertion and the removal

of a vertex.
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We first focus on definition I of the sampling space. When proposing an insertion of a new

vertex to an existing sample of 𝑘 vertices in a sequence, the proposal probability is derived

as follows. First propose a random vertex with uniform probability |𝒱 |−1, and then insert

the vertex into the 𝑘 + 1 possible locations of the sequence with probability 1/(𝑘 + 1). The
proposal probability for insertion is therefore

𝑤 insert
I = 1

|𝒱 |(𝑘 + 1) . (4.37)

The inverse update removes a random vertex from 𝑘 + 1 vertices with probability 1/(𝑘 + 1),
and the proposal probability is

𝑤 remove
I = 1

(𝑘 + 1) . (4.38)

The acceptance ratio (4.22) for the insertion update is thus

𝑅insertI = 𝑤 remove
I 𝑝(𝜔I

to, |𝜔I
to| = 𝑘 + 1)

𝑤 insert
I 𝑝(𝜔I

from, |𝜔I
from| = 𝑘) = 1/(𝑘 + 1)

1/[|𝒱 |(𝑘 + 1)]
|𝐷(𝜔I

to)|/((𝑘 + 1)!𝑊 )
|𝐷(𝜔I

from)|/(𝑘!𝑊 )

= |𝒱 |
𝑘 + 1

|𝐷(𝜔I
to)|

|𝐷(𝜔I
from)|

.
(4.39)

For definition II of the sampling space, the insertion to an existing set of 𝑘 vertices only

requires proposing a random vertex with probability 1/|𝒱 |. The inverse move randomly

removes a vertex from 𝑘 + 1 vertices with probability 1/(1 + 𝑘). The acceptance ratio is

therefore

𝑅insertII = 𝑤 remove
II 𝑝(𝜔II

to, |𝜔II
to| = 𝑘 + 1)

𝑤 insert
II 𝑝(𝜔II

from, |𝜔II
from| = 𝑘) = 1/(𝑘 + 1)

1/|𝒱 |
|𝐷(𝜔II

to)|/𝑊
|𝐷(𝜔II

from)|/(𝑊 )

= |𝒱 |
𝑘 + 1

|𝐷(𝜔II
to)|

|𝐷(𝜔II
from)|

.
(4.40)
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The acceptance ratio is the same for both definitions, which makes them equivalent in prac-

tical applications. One may choose to adopt either definition in designing Monte Carlo algo-

rithms, but it would be dangerous to mix the two, e.g. take the probability distribution from

one definition but design updates following the other. In the remainder of the thesis, we will

always use definition II of the sampling space, unless otherwise stated.

4.4 Normalization

The normalization factor𝑊 , defined in (4.35) as a integral of the absolute value of the sum of

diagrams at each configuration, occurs in measurements of physical quantities (4.36). How-

ever, the value for 𝑊 is often unknown and difficult to compute explicitly. A common solu-

tion to this problem is to normalize 𝑄 using a different quantity 𝑄norm, defined as

𝑄norm =
𝑘max

∑
𝑘=0

1
𝑘! ∫d𝑣1⋯∫d𝑣𝑘𝐷norm(𝑣1, 𝑣2, … , 𝑣𝑘) = ∫Ωd𝜇(𝜔) 𝐷norm(𝜔), (4.41)

such that

𝑄norm = 𝑊 ⟨𝐷norm(𝜔)
|𝐷(𝜔)| ⟩

𝑝
. (4.42)

If the value of 𝑄norm is available analytically, 𝑊 can be solved as

𝑊 = 𝑄norm
⟨𝐷norm(𝜔)/|𝐷(𝜔)|⟩𝑝

, (4.43)

and thus the measurement for 𝑄 (4.36) becomes

𝑄 = 𝑄norm⟨sgn(𝐷(𝜔))⟩𝑝
⟨𝐷norm(𝜔)/|𝐷(𝜔)|⟩𝑝

. (4.44)
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Because the distribution 𝑝(𝜔) is optimized for the importance sampling of 𝐷(𝜔), it does not
necessary have a good “overlap” with any choice of 𝐷norm(𝜔). When choosing the normal-

ization, it is therefore important to ensure the measurement for 𝑄norm does not result in

excess statistical error. Here we list some common options for 𝑄norm.

4.4.1 Normalization against the volume of hyperspace

The easiest normalization to compute in analytics is the volume of the sampling space, i.e.

by choosing

𝐷norm(𝜔) = 1, (4.45)

we have

𝑄norm = ∫Ωd𝜇(𝜔) = |Ω| =
𝑘max

∑
𝑘=0

|𝒱 |𝑘
𝑘! . (4.46)

The normalization for 𝑄 is obtained as

𝑄 = 𝑄norm⟨sgn(𝐷(𝜔))⟩𝑝
⟨1/|𝐷(𝜔)|⟩𝑝

. (4.47)

One major drawback of the hyperspace normalization occurs when the distribution 𝑝(𝜔) has
“holes” in the sampling space, i.e. there are certain regions in the sample spaceΩwhere 𝑝(𝜔)
is very small or even zero. This will lead to a large error in the Monte Carlo estimation of

the hyperspace.

4.4.2 Normalization against a subset of configurations

If certain low order diagrams can be computed analytically, one can choose

𝐷norm(𝜔) = 𝐷(𝜔) 𝟙[𝜔 ∈ Ωnorm], (4.48)
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where Ωnorm ⊂ Ω is the subspace in which these low order diagrams are defined, and

𝟙[statement] is the indicator function which gives 1 if statement is true and 0 otherwise.

Integral (4.41) becomes

𝑄norm = ∫Ωd𝜇(𝜔)𝐷(𝜔) 𝟙[𝜔 ∈ Ωnorm] = ∫Ωnorm

d𝜇(𝜔)𝐷(𝜔), (4.49)

which should be calculated analytically. The normalized estimate for 𝑄 is therefore

𝑄 = 𝑄norm⟨sgn(𝐷(𝜔))⟩𝑝
⟨sgn(𝐷(𝜔)) 𝟙[𝜔 ∈ Ωnorm]⟩𝑝

. (4.50)

4.4.3 Normalization via extension of sampling space

Instead of normalizing in the original sampling spaceΩ, one could extend the sampling space

by adding some other “virtual” space Ω0, such that the new sampling space is

Ω′ = Ω ⊕ Ω0. (4.51)

As an example, we assume thatΩ0 is a singleton set, containing only one additional “virtual”

configuration. The integration measure now becomes

∫Ω′
d𝜇′(𝜔) = ∫Ωd𝜇(𝜔) + ∫Ω0

d𝜇0(𝜔), (4.52)

where 𝜇0(𝜔) is the integration measure for the added sampling space. For a singleton set,

𝜇0(𝜔) is simply the indicator function for Ω0. The original integral (4.28) is rewritten as

𝑄 = ∫Ωd𝜇(𝜔) 𝐷(𝜔) + ∫Ω0
d𝜇0(𝜔) 0 = ∫Ω′

d𝜇′(𝜔) 𝐷(𝜔) 𝟙[𝜔 ∈ Ω]. (4.53)
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The probability distribution needs to be updated to cover the extended space:

𝑝′(𝜔) =
⎧⎪
⎨⎪⎩

|𝐷(𝜔)|
𝑊 ′ 𝜔 ∈ 𝛺,
𝑤0
𝑊 ′ 𝜔 ∈ 𝛺0.

(4.54)

Here the 𝑤0 > 0 is an arbitrary weight we assign to the sole configuration in Ω0, and 𝑊 ′ is

the normalization factor:

𝑊 ′ = ∫Ωd𝜇(𝜔) |𝐷(𝜔)| + ∫Ω0
d𝜇0(𝜔) 𝑤0 = 𝑊 + 𝑤0. (4.55)

Measurement for 𝑄 (4.36) thus becomes

𝑄 = 𝑊 ′⟨sgn(𝐷(𝜔))𝟙[𝜔 ∈ Ω]⟩𝑝′ . (4.56)

We can now define the normalization using the virtual configuration

𝐷norm(𝜔) = 𝑤0 𝟙[𝜔 ∈ Ω0], (4.57)

which gives

𝑄norm = ∫Ω′
d𝜇′(𝜔) 𝑤0 𝟙[𝜔 ∈ Ω0] = ∫Ω0

d𝜇0(𝜔) 𝑤0 = 𝑤0. (4.58)

Monte Carlo measurement of the normalization factor is

𝑄norm = ⟨𝐷norm(𝜔)/𝑝′(𝜔)⟩𝑝′ = 𝑊 ′⟨𝟙[𝜔 ∈ Ω0]⟩𝑝′ , (4.59)

therefore

𝑊 ′ = 𝑤0
⟨𝟙[𝜔 ∈ Ω0]⟩𝑝′

. (4.60)
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Figure 4.1: Schematic illustration for Monte Carlo normalization using extended sampling space.

The normalized estimate for 𝑄 is therefore

𝑄 = 𝑤0⟨sgn(𝐷(𝜔)) 𝟙[𝜔 ∈ Ω]⟩𝑝′
⟨𝟙[𝜔 ∈ Ω0]⟩𝑝′

. (4.61)

When applying this normalization scheme to a Monte Carlo simulation using Metropolis–

Hastings, it is crucial to also include the additional configuration from Ω0 to the metropolis

updates, as illustrated in Fig. 4.1.
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Chapter 5

Self-Consistent Approximations

Self-consistent field (SCF) methods play a crucial role in the development of electronic struc-

ture theories. Mean-field methods such as the Hartree–Fock (HF) approximation and den-

sity functional theory (DFT) serve as the building blocks of modern quantum chemistry and

material science. In the study of correlated electrons, self-consistency methods based on the

Luttinger–Ward (LW) functional [52] and the corresponding 𝛷-derivable conserving approx-
imations [53, 54] allow systematic inclusions of certain types of high-order diagrams with

low computational cost, while conserving fundamental quantities such as charge, momen-

tum, and angular momentum of the system. The LW functional framework also serves as

the theoretical foundation of various self-consistent embedding methods, such as dynamical

mean-field theory (DMFT) [15, 16], self-energy embedding theory (SEET) [35–37], etc.

This chapter is organized as follows. We first introduce the definition of the LW functional,

and discuss its relation to self-consistent approximations. We then briefly introduce several

examples of self-consistent methods, such as the HF approximation [2, 42], self-consistent

second-order Green’s function perturbation theory (GF2) [4–7], the 𝐺𝑊 approximation [8],

and the bold diagrammatic Monte Carlo method [20]. As presented in Chapter 6, these
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methods are applied to realistic calculations benchmarked against other many-body compu-

tational methods.

5.1 Definition of the Luttinger–Ward functional

In this section, we introduce the definition of the LW functional using a non-perturbative

approach [39, 55]. The perturbative construction of the function is well described with the

initial proposal [52], and Refs. [56, 57] provide rigorous mathematical definitions.

We start with the general Hamiltonian of interacting fermions based on (2.24)

𝐻̂ = ∑
𝑎𝑏

ℎ𝑎𝑏 ̂𝑐†𝑎 ̂𝑐𝑏 + 1
4 ∑
𝑎𝑏𝑐𝑑

𝑈𝑎𝑏𝑐𝑑 ̂𝑐†𝑎 ̂𝑐†𝑐 ̂𝑐𝑑 ̂𝑐𝑏 , (5.1)

where 𝑎, 𝑏, … are spin–orbital indices. The grand partition function is defined as a path

integral following (2.52):

𝑍 = Tr 𝑒−𝛽(𝐻̂−𝜇𝑁̂ ) = ∫𝒟[ ̄𝑐, 𝑐]𝑒−𝑆[ ̄𝑐,𝑐], (5.2)

where the action is defined following (2.54):

𝑆 = ∫
𝛽

0
d𝜏 (∑

𝑎𝑏
̄𝑐𝑎(𝜏 )((𝜕𝜏 − 𝜇)𝛿𝑎𝑏 + ℎ𝑎𝑏)𝑐𝑏(𝜏 ) + 1

4 ∑
𝑎𝑏𝑐𝑑

𝑈𝑎𝑏𝑐𝑑 ̄𝑐𝑎(𝜏 ) ̄𝑐𝑐(𝜏 )𝑐𝑑(𝜏 )𝑐𝑏(𝜏 )) . (5.3)

We now add a bilinear source term to the action in the path integral for 𝑍 , such that

𝑍[𝐽 ] = ∫𝒟[ ̄𝑐, 𝑐] exp(−𝑆[ ̄𝑐, 𝑐] + ∫
𝛽

0
d𝜏 ′d𝜏 ∑

𝑎𝑏
𝐽𝑎𝑏(𝜏 ′, 𝜏 ) ̄𝑐𝑎(𝜏 ′)𝑐𝑏(𝜏 )) , (5.4)

which serves as a MGF of particle–hole pairs, which generates the many-body Green’s func-
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tion in a similar way to the MGF of single particles (2.60). By the linked-cluster theorem [39],

𝑊[𝐽] = log𝑍[𝐽 ] is the CGF of particle–hole pairs, which generates the connected Green’s

functions. The one-particle Green’s function can be written by a functional derivative

𝐺𝑎𝑏(𝜏 , 𝜏 ′) = 𝛿𝑊 [𝐽 ]
𝛿𝐽𝑏𝑎(𝜏 ′, 𝜏 )

|
𝐽=0

= 1
𝑍[0]

𝛿𝑍[𝐽 ]
𝛿𝐽𝑏𝑎(𝜏 ′, 𝜏 )

|
𝐽=0

= 1
𝑍 ∫𝒟[ ̄𝑐, 𝑐] ̄𝑐𝑏(𝜏 ′)𝑐𝑎(𝜏 )𝑒−𝑆[ ̄𝑐,𝑐] = ⟨𝒯𝜏 ̂𝑐†𝑏 (𝜏 ′) ̂𝑐𝑎(𝜏 )⟩

= −⟨𝒯𝜏 ̂𝑐𝑎(𝜏 ) ̂𝑐†𝑏 (𝜏 ′)⟩.

(5.5)

We perform a Legendre transform on the functional 𝑊[𝐽], which yields a functional of the

one-particle Green’s function 𝐺̃[𝐽 ] = 𝛿𝑊 [𝐽 ]/𝛿𝐽 (at this point 𝐺̃ is arbitrary because we have

not set 𝐽 = 0 yet) and is sometimes called the Baym-Kadanoff functional [53]

𝛤[𝐺̃] = −𝑊[𝐽 ] + ∫
𝛽

0
d𝜏d𝜏 ′∑

𝑎𝑏
𝐺̃𝑎𝑏(𝜏 , 𝜏 ′)𝐽𝑏𝑎(𝜏 ′, 𝜏 ) (5.6)

where 𝐽 = 𝐽 [𝐺̃] is now a functional of 𝐺̃. One can show that (we absorb 𝜏 and 𝜏 ′ into indices
and time integrals into index summations for simplicity)

𝛿𝛤[𝐺̃]
𝛿𝐺̃𝑎𝑏

= −𝛿𝑊 [𝐽 ]
𝛿𝐺̃𝑎𝑏

+ 𝐽𝑏𝑎 +∑
𝑎′𝑏′

𝐺̃𝑎′𝑏′
𝛿𝐽𝑏′𝑎′
𝛿𝐺̃𝑎𝑏

= −∑
𝑎′𝑏′

𝛿𝑊 [𝐽 ]
𝛿𝐽𝑏′𝑎′

𝛿𝐽𝑏′𝑎′
𝛿𝐺̃𝑎𝑏

+∑
𝑎′𝑏′

𝛿𝑊 [𝐽 ]
𝛿𝐽𝑏′𝑎′

𝛿𝐽𝑏′𝑎′
𝛿𝐺̃𝑎𝑏

+ 𝐽𝑏𝑎

= 𝐽𝑏𝑎

(5.7)

Recall that the “physical” Green’s function 𝐺 is obtained when we set 𝐽 = 0, which is equiv-

alent to say that 𝐺 is the stationary point of functional 𝛤[𝐺̃].
For a non-interacting system, i.e. 𝑈𝑎𝑏𝑐𝑑 = 0, since both the action 𝑆 and the source term

are Gaussian, we can calculate 𝑍[𝐽 ] and 𝛤[𝐺̃] directly. Utilizing the following properties of
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(positive-definite) matrices and Grassmann numbers [39]

∫∏
𝑎

d ̄𝜂𝑎d𝜂𝑎 exp(−∑
𝛼𝛽

̄𝜂𝛼𝑀𝛼𝛽𝜂𝛽) = det𝑀, 𝑒Tr log𝑀 = det𝑀, (5.8)

one can show

𝑍|𝑈=0[𝐽 ] = ∫𝒟[ ̄𝑐, 𝑐] exp(−∑
𝑎𝑏

̄𝑐𝑎(−[𝑔−1]𝑎𝑏 − 𝐽𝑎𝑏)𝑐𝑏) = det(−𝑔−1 − 𝐽) = 𝑒Tr log(−𝑔−1−𝐽),

𝑊 |𝑈=0[𝐽 ] = log𝑍 |𝑈=0[𝐽 ] = Tr log(−𝑔−1 − 𝐽),

[𝐺̃|𝑈=0]𝑎𝑏 =
𝛿𝑊 |𝑈=0[𝐽 ]

𝛿𝐽𝑏𝑎
= ∑

𝑎′𝑏′
[(−𝑔−1 − 𝐽)−1]𝑎′𝑏′

𝛿(−𝑔−1 − 𝐽)𝑏′𝑎′
𝛿𝐽𝑏𝑎

= [(𝑔−1 + 𝐽)−1]𝑎𝑏 ,

(5.9)

from which we can solve for 𝐽 in terms of 𝐺̃, and perform the Legendre transform:

𝐽 |𝑈=0 = 𝐺̃−1|𝑈=0 − 𝑔−1,

𝛤 |𝑈=0[𝐺̃] = −𝑊 |𝑈=0[𝐽 ] + Tr 𝐺̃𝐽 |𝑈=0
= −Tr log(−𝑔−1 − 𝐽 |𝑈=0) + Tr(𝐺̃(𝐺̃−1 − 𝑔−1))

= −Tr log(−𝑔−1 − (𝐺̃−1 − 𝑔−1)) − Tr(𝐺̃(𝑔−1 − 𝐺̃−1))

= Tr log(−𝐺̃) − Tr(𝐺̃𝑔−1 − 1).

(5.10)

The LW functional is defined as the difference of 𝛤[𝐺̃] between the interacting system and

the non-interacting system:

𝛷[𝐺̃] = 𝛤[𝐺̃] − 𝛤 |𝑈=0[𝐺̃] = 𝛤[𝐺̃] − Tr log(−𝐺̃) + Tr(𝐺̃𝑔−1 − 1) (5.11)
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We can show that the LW functional has the following property:

𝛿𝛷[𝐺̃]
𝛿𝐺̃ = 𝛿𝛤[𝐺̃]

𝛿𝐺̃ − 𝐺̃−1 + 𝛿
𝛿𝐺̃ Tr(𝐺̃𝑔−1 − 1) = 𝛿𝛤[𝐺̃]

𝛿𝐺̃ + 𝑔−1 − 𝐺̃−1. (5.12)

Recall that the physical Green’s function is the stationary point of 𝛤[𝐺̃], we see that

𝛿𝛷[𝐺̃]
𝛿𝐺̃ |

𝐺̃=𝐺
= 𝑔−1 − 𝐺−1 = 𝛴, (5.13)

i.e. the functional derivative of 𝛷[𝐺̃] gives the self-energy at 𝐺̃ = 𝐺. This allows us to define
a “self-energy functional”

𝛴[𝐺̃] = 𝛿𝛷[𝐺̃]
𝛿𝐺̃ , (5.14)

which satisfies 𝛴[𝐺̃ = 𝐺] = 𝛴.
𝛷[𝐺] is directly related to the grand potential of the system at 𝐺̃ = 𝐺, where we have

𝐽 = 0, 𝑊[0] = log𝑍 = −𝛽𝛺, 𝛤[𝐺] = −𝑊[0] + Tr𝐺 ⋅ 0 = 𝛽𝛺, and therefore

𝛷[𝐺̃ = 𝐺] = 𝛽𝛺 − Tr log(−𝐺) + Tr(𝐺𝑔−1 − 1)

= 𝛽𝛺 − Tr log(−𝐺) + Tr(𝐺𝛴),

𝛽𝛺 = 𝛷[𝐺̃ = 𝐺] + Tr log(−𝐺) − Tr(𝐺𝛴).

(5.15)

If the system is non-interacting, i.e. 𝑈 = 0, the LW functional vanishes by definition (5.11).

5.2 Diagrammatic series of the Luttinger–Ward functional

The LW functional is parametrized by the electron interaction 𝑈 , which we now write ex-

plicitly as 𝛷[𝐺; 𝑈 ]. The bold diagrammatic series is obtained as a series expansion of 𝛷[𝐺; 𝑈 ]
or 𝛴[𝐺; 𝑈 ] in terms of 𝑈 [52, 56, 57]. Introducing an arbitrary scalar 𝜉 as the “coupling
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constant”, the bold series are formally defined as

𝛷[𝐺; 𝜉𝑈 ] =
∞
∑
𝑘=1

𝜉 𝑘𝛷(𝑘)[𝐺; 𝑈 ], 𝛴[𝐺; 𝜉𝑈 ] =
∞
∑
𝑘=1

𝜉 𝑘𝛴(𝑘)[𝐺; 𝑈 ], (5.16)

where 𝛴(𝑘) is obtained as a sum of all “skeleton” diagrams of order 𝑘 [52]. The skeleton

diagrams follow a diagram rule similar to the bare diagrams introduced in Sec. 3.4, with the

following main differences:

• Propagator lines are now “bold”, representing 𝐺 instead of 𝑔.

• Diagrams are two-particle irreducible (2PI), meaning that a diagram will not be bro-

ken into disconnected components by cutting any two propagator lines. In the graph

theory language, the edge connectivity of the diagram is greater than two.

Similarly, 𝛷(𝑘) consists of 2PI closed diagrams of order 𝑘, each which yields the skeleton

diagrams by removing one of the 2𝑘 propagator lines. The removal of propagator lines cor-

responds to the functional derivative (5.14). Figure 5.1 compares the skeleton diagrams and

the “bare” diagram for 𝛴 as well as the corresponding 𝛷 diagrams. The topology correspond-

ing to the second bare diagram is absent in the bold expansion because it can be reduced to

the first bold diagram.

Relations between 𝛷[𝐺; 𝑈 ] and 𝛴[𝐺; 𝑈 ] can be shown analytically following Ref. [57]. It

can be shown that [57] for any arbitrary scalar 𝑡 > 0,

𝛷[𝑡𝐺; 𝑈 ] = 𝛷[𝐺; 𝑡2𝑈 ]. (5.17)

Consider

𝛷[𝑡𝐺; 𝜉𝑈 ] = 𝛷[𝐺; 𝑡2𝜉𝑈 ], (5.18)
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bare:

bold:

Figure 5.1: Comparison of bare and bold (skeleton) diagrams for the self-energy.

taking a functional derivable w.r.t. 𝐺 on both sides, we have

𝑡𝛴[𝑡𝐺; 𝜉𝑈 ] = 𝛴[𝐺; 𝑡2𝜉𝑈 ], 𝛴[𝑡𝐺; 𝜉𝑈 ] = 1
𝑡 𝛴[𝐺; 𝑡

2𝜉𝑈 ]. (5.19)

Since

𝛷[𝐺; 𝜉𝑈 ] = ∫
1

0
d𝑡 d

d𝑡 𝛷[𝑡𝐺; 𝜉𝑈 ], (5.20)

and the integrand evaluates to

d
d𝑡 𝛷[𝑡𝐺; 𝜉𝑈 ] = Tr{𝐺 𝛿𝛷[𝑡𝐺; 𝜉𝑈 ]

𝛿(𝑡𝐺) } = Tr{𝐺𝛴[𝑡𝐺; 𝜉𝑈 ]} = 1
𝑡 Tr{𝐺𝛴[𝐺; 𝑡

2𝜉𝑈 ]}, (5.21)

which can be expanded following (5.16) as

1
𝑡 Tr{𝐺𝛴[𝐺; 𝑡

2𝜉𝑈 ]} =
∞
∑
𝑘=1

1
𝑡 (𝑡

2𝜉 )𝑘 Tr{𝐺𝛴(𝑘)[𝐺; 𝑈 ]} =
∞
∑
𝑘=1

𝑡2𝑘−1𝜉 𝑘 Tr{𝐺𝛴(𝑘)[𝐺; 𝑈 ]}, (5.22)
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we have

𝛷[𝐺; 𝜉𝑈 ] =
∞
∑
𝑘=1

𝜉 𝑘 Tr{𝐺𝛴(𝑘)[𝐺; 𝑈 ]} ∫
1

0
d𝑡 𝑡2𝑘−1 =

∞
∑
𝑘=1

𝜉 𝑘
2𝑘 Tr{𝐺𝛴(𝑘)[𝐺; 𝑈 ]}. (5.23)

Comparing to (5.16) gives

𝛷(𝑘)[𝐺; 𝑈 ] = 1
2𝑘 Tr{𝐺𝛴(𝑘)[𝐺; 𝑈 ]}, (5.24)

which directly corresponds to the diagrammatic interpretation of “cutting” propagators.

5.3 Self-consistent approximations

As shown by Baym and Kadanoff [53, 54], any approximation to 𝛷 by taking a subset of

diagrams in 𝛷 obeys the number, energy, momentum, and angular momentum conservation

laws. Such approximations are called 𝛷-derivable approximations. Self-consistent methods

are often constructed based on 𝛷-derivable approximations following a common pattern:

1. Construct an approximation to the LW functional 𝛷approx[𝐺], or equivalently, the self-
energy functional 𝛴approx[𝐺].

2. Start with an initial guess for 𝐺, and perform the following self-consistent loop:

a) Compute 𝛴approx[𝐺] using 𝐺 from the previous iteration.

b) Compute 𝐺 = (𝑔−1 − 𝛴)−1 for the next iteration.

3. Iterate the self-consistent loop until convergence.

Since 𝛷 is a universal functional of 𝐺 [57], it is possible that the 𝛷 functional converge to

“unphysical” results. A self-consistent solution for the functional equation 𝛿𝛷[𝐺]/𝛿𝐺 = 𝛴
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is equivalent to solving for the stationary point of the 𝛤[𝐺̃] functional, so multiple solutions

might exist when the 𝛤 functional has multiple stationary points. It is sometimes called the

“multivaluedness” of the 𝛷 functional [58–60].

This section lists common self-consistent methods formulated as 𝛷-derivable approxima-

tions.

5.3.1 Hartree-Fock

The HF approximation [2, 38, 42] is equivalent to truncating the 𝛷 expansion at first order:

𝛷HF[𝐺] = 𝛷(1) = 1
2𝑈𝑎𝑏𝑐𝑑𝐺𝑏𝑎(0

−)𝐺𝑑𝑐(0−) = 1
2𝑈𝑎𝑏𝑐𝑑𝜌𝑎𝑏𝜌𝑐𝑑 . (5.25)

The HF self-energy is therefore

𝛴HF𝑎𝑏 (i𝜔𝑛)[𝐺] = 𝑈𝑎𝑏𝑐𝑑𝜌𝑐𝑑 , (5.26)

or equivalently by expanding𝓤 following (2.23):

𝛴HF𝑖𝑗,𝜎 (i𝜔𝑛)[𝐺] = ∑
𝑘𝑙,𝜎 ′

[𝑉𝑖𝑗𝑘𝑙 − 𝑉𝑖𝑙𝑘𝑗𝛿𝜎𝜎 ′]𝜌𝑘𝑙,𝜎 ′ . (5.27)

The HF self-energy is frequency-independent, and only depends on the one-particle density

matrix 𝜌 of the electron, and 𝛴HF can be viewed as a functional of the density.

In quantum chemistry, HF serves as the foundation for more advanced methods, which

are often termed “post Hartree–Fock” methods [38]. The HF self-energy is often combined

with the one-electron matrix elements 𝒉 to a “Fock matrix”:

𝐹𝑖𝑗,𝜎 = ℎ𝑖𝑗 + 𝛴HF𝑖𝑗,𝜎 , (5.28)
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such that

𝐺HF(i𝜔𝑛) = [(i𝜔𝑛 − 𝜇)𝑰 − 𝑭]−1. (5.29)

5.3.2 GF2

GF2 [4–7] adds the second order bold diagrams on top of HF, such that

𝛴GF2
𝑎𝑏 [𝐺] = 𝛴(1)

𝑎𝑏 [𝐺] + 𝛴(2)
𝑎𝑏 [𝐺], (5.30)

where 𝛴(1)[𝐺] is just 𝛴HF[𝐺]. The second-order self-energy is given by

𝛴(2)
𝑎𝑏 (𝜏 )[𝐺] = −12 ∑

𝑏′𝑐𝑑
∑
𝑎′𝑐′𝑑′

𝑈𝑎𝑏′𝑐𝑑𝑈𝑎′𝑏𝑐′𝑑′𝐺𝑏′𝑎′(𝜏 )𝐺𝑑𝑐′(𝜏 )𝐺𝑑′𝑐(−𝜏), (5.31)

or with explicit spin and orbital indices:

𝛴(2)
𝑖𝑗,𝜎 (𝜏 )[𝐺] = −∑

𝑗′𝑘𝑙
∑
𝑖′𝑘′𝑙′

𝑉𝑖𝑗′𝑘𝑙𝐺𝑗′𝑖′,𝜎 (𝜏 )∑
𝜎 ′

𝐺𝑙𝑘′,𝜎 ′(𝜏 )𝐺𝑙′𝑘,𝜎 ′(−𝜏)[𝑉𝑖′𝑗𝑘′𝑙′

− 𝑉𝑘′𝑗𝑖′𝑙′𝛿𝜎𝜎 ′].
(5.32)

5.3.3 GW

The GW formalism, introduced by Hedin [8], is an alternative self-consistent framework

based on the Green’s function 𝐺, the “screened” interaction𝑊 , and a three-point vertex func-

tionwhich gives the exact solution to the interacting electron problemwhen self-consistency

is achieved. The GW approximation was originally formulated in terms of Hedin’s equa-

tions by setting the three-point vertex to one, and thus only requires self-consistency at

one-particle level. This approximation is 𝛷-derivable if full self-consistency in both 𝐺 and

𝑊 is enforced [61–63].
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The GW self-energy is defined as

𝛴GW𝑖𝑗,𝜎 (𝜏 )[𝐺] = ∑
𝑘𝑙
[𝑉𝑖𝑗𝑘𝑙 ∑

𝜎 ′
𝜌𝑘𝑙,𝜎 ′𝛿(𝜏 ) − 𝑊𝑖𝑙𝑘𝑗(𝜏 )𝐺𝑙𝑘,𝜎 (𝜏 )], (5.33)

where the screened interaction𝑊 is a functional of 𝐺, obtained from an RPA-like geometric

series

𝑊𝑖𝑗𝑘𝑙(i𝜔𝑛)[𝐺] = 𝑉𝑖𝑗𝑘𝑙 + ∑
𝑖′𝑗′𝑘′𝑙′

𝑉𝑖𝑗𝑘′𝑙′𝛱𝑙′𝑘′𝑗′𝑖′(i𝜔𝑛)𝑊𝑖′𝑗′𝑘𝑙(i𝜔𝑛), (5.34)

in which 𝛱 is the bare polarization bubble

𝛱𝑙′𝑘′𝑗′𝑖′(𝜏 , 𝜏 ′) = −∑
𝜎

𝐺𝑗′𝑘′,𝜎 (𝜏 , 𝜏 ′)𝐺𝑙′𝑖′,𝜎 (𝜏 ′, 𝜏 ). (5.35)

Diagrammatically, 𝛴𝐺𝑊 [𝐺] consists of the first order skeleton diagram (HF diagram) plus all

RPA-like bold diagrams of second order and above.

One can alternatively define a functional 𝛹[𝐺,𝑊 ] of both 𝐺 and 𝑊 , as introduced in

Ref. [63], such that

(𝛿𝛹[𝐺,𝑊 ]
𝛿𝐺 )

𝑊
= 𝛴

(𝛿𝛹[𝐺,𝑊 ]
𝛿𝑊 )

𝐺
= −12𝛱.

(5.36)

Diagrammatically, the 𝛹 functional corresponds to the sum of skeleton diagrams composed

of bold Green’s function lines and screened interaction lines, and each diagram should re-

main connected if one cut two Green’s function lines or two interaction lines. The GW

approximation corresponds to the first order diagram of the 𝛹 functional.

Although GW is a 𝛷-derivable approximation which conserves particle number, energy,

momentum, and angular momentum, it does not respect the crossing symmetry due to the
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fact that only part of the diagrams are included at order two and above. As discussed in

Appendix A.4.d of Ref. [44], different treatments of the interaction tensor, e.g. whether anti-

symmetrization (2.23) is performed, result in deviations of GW results.

5.3.4 Bold diagrammatic Monte Carlo

Instead of calculating low-order approximations to 𝛷 deterministically, The bold diagram-

matic Monte Carlo (BDMC) algorithm [20, 21] uses Monte Carlo integration described in

Chapter 4 to compute all skeleton diagrams from (5.16) up to a certain order. The same

self-consistency loop is applied to reach a fixed point for 𝐺. In studies of Coulomb systems,

BDMC often measures diagrams composed of both 𝐺 and 𝑊 [64, 65], which corresponds to

the expansion of the 𝛹[𝐺,𝑊 ] functional.
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Chapter 6

Direct Comparison of Many-Body

Methods for Realistic Systems

This chapter is based on the following publications: (1) M. Motta et al.: Towards

the Solution of the Many-Electron Problem in Real Materials: Equation of State of

the Hydrogen Chain with State-of-the-Art Many-Body Methods, Physical Review X

7, 031059 (2017). I contributed to the benchmark data and method descriptions of the

self-consistent GW method. (2) K. T. Williams et al.: Direct Comparison of Many-

Body Methods for Realistic Electronic Hamiltonians, Physical Review X 10, 011041

(2020). I contributed to the visualization and analysis of all benchmark data, as well

as the benchmark data and method descriptions of the self-consistent GW method.

Because the dimension of Hilbert space of the many-body electron Hamiltonian (2.1) in-

creases dramatically as system size increases, there is no general, numerically exact method

that can treat many-electron systems with low computational cost. In recent years, a vast

number of theories, numerical methodologies, computational software and algorithms have

been proposed, and more are being developed. These methods have different strengths and
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weaknesses and different domains of applicability. Therefore, careful comparisons of differ-

ent methods on the same realistic system are valuable for facilitating further development

and accelerating progress.

Recently, there is significant progress in direct comparisons of many-bodymethods, many

of which are diagrammatic methods, for both model systems [66, 67] and realistic Hamilto-

nians [44, 68, 69]. These benchmarks apply complementary methods to the same problem,

which enables cross-check and validation, leading to a powerful new paradigm of attack

on difficult problems. Cases where results from different methods agree provide valuable

benchmarks against which new methods can be tested, thereby facilitating further develop-

ment and accelerating progress.

This chapter briefly summarizes two benchmark projects ofmany-bodymethod in realistic

systems: one for Hydrogen chains [44], and the other for transition metal oxides [69].

6.1 Hydrogen chain

Hydrogen is the first element in the periodic table and the most abundant in nature. Studies

of the H atom, H2
+ cation, and H2 molecule have served as landmarks in quantum physics

and chemistry. Despite their deceptive simplicity, bulk H systems are rich and complex. The

ground-state properties of the hydrogen chain can differ significantly from those of simpler

systems such as the Hubbard model, and are, in fact, not completely understood. The linear

H chain captures key features that are essential for generalizing model-system methods to

real materials, in particular: the presence of strong electron correlations of diverse nature as

the H–H distance is varied, and the need to treat the full physical Coulomb interaction and

to work in the continuous space and thermodynamic limits.

The linear hydrogen chain is an ideal first benchmark system for testing the ability of
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many-body theoretical methods to handle the challenges posed by real materials. It has

multiple (in principle, infinite) orbitals per site, as well as long-range interactions. The use

of basis sets, as introduced in Chapter 2, defines models of the hydrogen chain of increasing

complexity. In a minimal basis, there is only one band, and the problem resembles a one-

dimensional Hubbard model with long-range interactions. Larger, more realistic, basis sets

bring back characteristics of real materials. Thus, one can neatly and systematically connect

from a fundamental model of strong electron correlation to a real material system. On the

other hand, the H chain eliminates complexities of other materials systems such as the need

to separately treat core electrons or incorporate relativistic effects, and is thus accessible to

many theoretical methods at their current state of development.

Ref. [44] studies finite H chains of increasing length and crosscheck the results against cal-

culations performed using periodic boundary conditions, as well as results from calculations

formulated in the thermodynamic limit. A systematic quantum chemistry sequence of basis

sets of increasing size are used to investigate convergence towards CBS limit, and compared

to methods formulated directly in real space. A vast amount of data are produced from more

than a dozen many-body computational methods, providing detailed information in finite

length chains and with finite basis sets, which are available in online repositories [44].

Most calculations were performed using standard Gaussian basis sets introduced in Chap-

ter 2 except density matrix renormalization group (DMRG) which uses a specialized basis.

The correlation-consistent cc-pV𝑥Z basis set [43] is used, with 𝑥 =D, T, Q, and 5, which

correspond to 𝑚 =5, 14, 30, and 55 orbitals per atom, respectively. H-chains with nearest-

neighbor proton separation (bond length) 𝑅 of 1.0, 1.2, 1.4, 1.6, 1.8, 2.0, 2.4, 2.8, 3.2, and

3.6 a0 are studied. The target quantity of this work is the ground-state energy ℰ(𝑁 , 𝑅) for
different chain sizes and lengths, and the energy per atom, 𝐸(𝑁 , 𝑅) = ℰ(𝑁 , 𝑅)/𝑁 , at the
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Figure 6.1: Potential energy curve of H10 (top) and deviations from FCI (bottom), in the minimal STO-
6G basis. See Ref. [44] for a comprehensive description of the methods.
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thermodynamic limit (TDL)

𝐸TDL(𝑅) = lim𝑁→∞ 𝐸(𝑁 , 𝑅) . (6.1)

In the chemistry convention, 𝐸(𝑁 , 𝑅) is referred to as the potential energy curve (PEC), and

𝐸TDL(𝑅) in TDL as the equation of state (EOS).

Figure 6.1 shows a detailed comparison of the PEC, 𝐸(𝑁 = 10, 𝑅) vs. 𝑅, obtained by a

variety of methods, in theminimal STO-6G basis. For all methods, the PEC features a familiar

short-range repulsion, due to the combined effect of Coulomb repulsion and Pauli exclusion,

followed by a decrease to a minimum value 𝐸0, attained at the equilibrium bondlength 𝑅𝑒 .
Beyond 𝑅𝑒 , the PEC monotonically increases to an asymptotic value 𝐸∞, the ground-state

energy of a single H atom. The well depth gives a dissociation energy𝐷𝑒 = (𝐸∞−𝐸0). Owing
to the small size of this chain and the STO-6G basis, the PEC can be calculated using the FCI

method, giving the exact values 𝑅𝑒 = 1.786 a0, 𝐸0 = −0.542 457 Eh, and 𝐸∞ = −0.471 039 Eh.
Asweak couplingmethods, the diagrammatic GF2 and self-consistentGW (SC-GW ) meth-

ods have difficulties in the strong coupling regime at large bond lengths. Allowing methods

to break spin symmetry may lead to an improvement of the energetics. As illustrated with

GF2, using an unrestricted reference state provides a better estimate of the ground state en-

ergy in that regime but generates a spurious magnetization. Deviations at small distances

(corresponding to the weak coupling regime) show that terms beyond the bare second-order

or screened first-order approximation are needed to reach the accuracy of other methods.

Figure 6.2 shows results for the STO-6g basis extrapolated to the TDL. DMRG calculations

can be carried out for large system sizes in this basis, and serve as a near-FCI quality bench-

mark. DMRG results for finite chains, after extrapolation to 𝑁 → ∞, yield an equilibrium

geometry 𝑅𝑒 = 1.831(3) a0 and ground-state energy per atom of 𝐸0 = −0.5407(2) Eh at 𝑅𝑒 .
BDMC with maximum order 3 yields converged results up to 𝑅 = 2.4. For 𝑅 = 2.8 conver-
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Figure 6.3: Illustration of the extrapolations to the CBS and TDL limits. Results are shown for 𝑅 =
1.8 a0. The left panel shows extrapolation of 𝐸CBS(𝑁 ) vs. 1/𝑁 , while the right panel shows
extrapolation of 𝐸cc−pV𝑥Z(𝑁 → ∞) vs. 1/𝑥3. (The correlation energy is shown on the right,
shifted by the CBS RHF energy.) Final results are consistent within statistical errors and
independent of the order with which the limits are taken.

gence is reached only with maximum expansion order of 5; reaching convergence for larger

values of 𝑅 requires even higher orders. The calculated EOS is in good agreement with the

exact results, and its final error bar of 1 mEh for 𝑅 ≤ 2.4 is dominated by the resolution of

the grid of 512 Matsubara frequencies used. For 𝑅 = 2.8 the error bar of 2 mEh is dominated

by statistical noise in high diagrammatic orders.

The finite basis set results are extrapolated to the CBS limit by standard procedures [70,

71], taking care to reach large basis sets. We first fit the HF energies 𝐸HF,𝑥(𝑁 , 𝑅) computed

at the cc-pV𝑥Z basis set level, to an exponential function

𝐸HF,𝑥(𝑁 , 𝑅) = 𝐴(𝑁 , 𝑅) + 𝐵(𝑁 , 𝑅)𝑒−𝑥𝐶(𝑁 ,𝑅) . (6.2)
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The correlation energy

𝐸corr,𝑥(𝑁 , 𝑅) ≡ 𝐸(𝑁 , 𝑅) − 𝐸HF,𝑥(𝑁 , 𝑅) (6.3)

is then fitted to a power law:

𝐸corr,𝑥(𝑁 , 𝑅) = 𝛼(𝑁 , 𝑅) + 𝛽(𝑁 , 𝑅)
𝑥3 . (6.4)

The CBS result is taken as 𝛼(𝑁 , 𝑅) + 𝐴(𝑁 , 𝑅), with a combined uncertainty estimated from

the fitting procedures. To extrapolate the finite-𝑁 results to the TDL, we assume that the

PEC has the following size dependence:

𝐸(𝑁 , 𝑅) =
𝑘
∑
𝑖=0

𝐴𝑖(𝑅)
𝑁 𝑖 , (6.5)

where 𝑘 is a small integer. In this work we typically used 𝑘 = 2, employing 𝑁 = 10, 30, 50
and, when necessary, 𝑁 = 18, 22, 70 and 102.
There are multiple strategies for finite basis-set methods to approach the combined limits

of CBS and TDL. One could extrapolate to the CBS limit for each finite chain of fixed 𝑁 and

then extrapolate the results in 𝑁 to the TDL. Alternatively, one could extrapolate each basis

set to the TDL, and then extrapolate to the CBS limit, or use a joint Ansatz and extrapolate

both simultaneously. As illustrated in Fig. 6.3, exchanging the order of the extrapolation

leads to consistent and robust results.
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of the methods in the benchmark set. All basis sets available are plotted; individual data
points are indicated by small lines.

6.2 Transition metal oxides

In Ref. [69], the same methodology of directly comparing many-body methods is applied to

more complex systems: transition metal atoms and their oxide molecules. Core electrons

in the benchmark systems are removed using effective core potentials [72–74], which accu-

rately represent the core [75] inmany-body simulations and allow all themethods considered

in this work to use the same Hamiltonian. In addition, they provide an easy way to include

scalar relativistic effects, needed for meaningful comparison to experiment. These potentials

are available for O, Sc, Ti, V, Cr, Mn, Fe, and Cu, which defines the test set. We consider these

atoms, their ions, and the corresponding transition metal monoxide molecules. To simplify

the comparison, the molecules were computed at their equilibrium geometry. For method

whichworks in a finite basis set, CBS limit is reached in the sameway as the hydrogen bench-

mark by choosing an ascending basis set from dZ to 5Z, i.e. dZ, tZ, qZ, 5Z, and extrapolating

the correlation energy following a 1/𝑥3 scaling, where 𝑥 = 2, 3, 4, 5 respectively.
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Figure 6.5: Dissociation energy and ionization potential of molecules and atoms compared to SHCI
reference calculations.

Figure 6.4 shows the correlation energy computed by each method, plotted as a percent-

age of the semistochastic heat-bath configuration interaction (SHCI) [76, 77] reference data

for the same system and basis set. Figure 6.5 compares the performance of methods in com-

puting the ionization potential of the atoms and dissociation energy of the molecules. See

Ref. [69] for detailed definitions and analysis for all methods listed in these plots.

The low-order self-consistent diagrammatic methods, GF2 and SC-GW , either overesti-

mate or underestimate the total energy, as shown in Fig. 6.4. These errors tend to cancel

significantly when calculating the energy differences, such as the ionization potential and

the dissociation energy, resulting in more accurate results.

We survey 20 advanced many-electron techniques on precisely defined realistic Hamil-

tonians for transition metal systems. For a given basis set, we achieve approximately 1

mhartree agreement on the total energy between highaccuracy methods, which provides

a total energy benchmark for many-body methods. To our knowledge, such an agreement is

unprecedented for first-principles calculations of transition metal systems. Our accurate ref-
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erence energies should enable the development of approximate, but more computationally

efficient, many-body techniques as well as better density functionals, without the necessity

of experimental reference values. These systems are also a useful test for future quantum

computing algorithms.

This benchmark project assesses the state of the art in achieving high accuracy in realistic

systems by surveying 20 advanced many-electron techniques on precisely defined realistic

Hamiltonians for transition metal systems. The benchmark set includes systems with large

Hilbert spaces with dimensions around 1044. The systematically converged techniques used

in this work are able to achieve excellent agreement but can be applied only to relatively

small systems due to their computational cost. It is thus important to understand the errors

in lower-scaling techniques that can be applied to larger systems and whether performance

on small systems is transferable to larger systems. This work takes a step in that direction,

since we are able to achieve converged results for both correlated atoms and molecules, and

indeed we observe that the accuracy of some techniques degrades with system size.

74



Chapter 7

Diagrammatic Monte Carlo for Realistic

Impurities

This chapter is based on JL, Markus Wallerberger, and Emanuel Gull: “Diagram-

matic Monte Carlo method for impurity models with general interactions and hy-

bridizations.” Phys. Rev. Research 2, 033211 (2020).

In this chapter, we present a diagrammatic Monte Carlo method for quantum impurity

problems with general interactions and general hybridization functions. Our method uses

a recursive determinant scheme to sample diagrams for the scattering amplitude. Unlike in

othermethods for general impurity problems, an approximation of the continuous hybridiza-

tion function by a finite number of bath states is not needed, and accessing low temperature

does not incur an exponential cost. We test the method for the example of molecular sys-

tems, where we systematically vary temperature, interatomic distance, and basis set size. We

further apply the method to an impurity problem generated by a self-energy embedding cal-

culation of correlated antiferromagnetic NiO. We find that the method is ideal for quantum

impurity problems with a large number of orbitals but only moderate correlations.
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7.1 Introduction

Quantum impurity models, originally introduced to describe magnetic impurities such as

iron or copper atoms with partially filled d-shells in a non-magnetic host material [78], have

since found applications in nanoscience as representations of quantum dots and molecular

conductors [79], and in surface science to understand the adsorption of atoms on surfaces [80,

81]. In addition, they form the central part of embedding theories such as the DMFT [15, 16]

and its variants [82–94], as well as the SEET [35–37], where they describe the behavior of

a few “strongly correlated” orbitals embedded into a weakly correlated or non-interacting

background of other orbitals. These methods promise a systematic route for the simulation

of strongly correlated quantum many-body problems [95].

While the original formulation of a quantum impurity model [78] only describes a single

correlated orbital coupled to a non-interacting environment, in general the impurities oc-

curring in the context of surface science and embedding theories contain many orbitals with

general four-fermion interactions and few symmetries [96]. The time-dependent hybridiza-

tion function describing the hopping between the impurity and its environment is typically

such that it cannot be diagonalized for all frequencies at once.

Solving quantum impurity problems, i.e. obtaining the impurity Green’s function given an

impurity Hamiltonian and a hybridization function, requires the use of numerical methods.

A wide range of such methods exist. Hamiltonian-based methods, such as exact diagonal-

ization [97–101] and its variants [102], configuration-interactions [103], or coupled cluster

theory [104, 105], solve the impurity problem by mapping the impurity problem onto a sys-

tem with a local Hamiltonian and a finite number of auxiliary “bath” states chosen to fit the

time-dependent hybridization function. The methods are limited to a relatively small set of

strongly interacting sites or break down at moderate correlation strength. The bath fitting,
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which typically approximates a continuous bath dispersion by a non-linear fit to a small

number of delta-function peaks, introduces additional approximations [99, 101]. Numerical

renormalization techniques [106, 107] overcome this issue by providing an almost continu-

ous bath density of states but are in turn limited to a few orbitals in highly symmetrical

situations.

A complementary approach is given by Monte Carlo techniques such as the CT-QMC

methods [14]. These methods are based on a stochastic sampling of the terms in a diagram-

matic expansion of the partition function. For particle-hole symmetric systems with on-site

density-density interactions, interaction expansion methods [9, 12, 14] can solve systems

with hundreds of strongly correlated orbitals [66]. Away from particle hole symmetry and

at low temperature, they are typically limited to around eight orbitals, and their naive adap-

tation to general four-fermion operator terms suffers from a severe sign problem [108]. In

contrast, a partition function expansion in the hybridization [10, 11, 109] is able to work

with general local Hamiltonians of up to five orbitals, but is similarly restricted to diagonal

hybridization functions. A reformulation [33] in terms of “inchworm” diagrams [27] over-

comes the restriction of diagonal hybridizations, but so far remains limited to impurities

with up to three orbitals.

There is therefore a need for impurity solver methods that can treat the problems of em-

bedding theory and surface science, where several orbitals with general interactions and

hybridizations occur. DiagMC methods [18–21, 110], which expand physical observables

rather than partition functions, along with efficient ways of evaluating the resulting dia-

grammatic series via the CDet approach [22–24, 26, 31, 111], are promising. While these

methods suffer from other limitations, including divergences of the series in the strong cor-

relation regime, they do not require to approximate the hybridization function by a fit, and

are not based on a diagonalization of the local Hamiltonian.
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In this chapter, we show a formulation of the DiagMCmethod for impurity problems with

general interactions and hybridizations based on the CDet framework. We test the method

on the example of molecular systems, for which a broad range of very mature Hamiltonian

methods exist. From the point of view of the algorithmic formulation, the molecular sys-

tems exhibit the full complexity of general impurity problems. The only difference between

molecules and quantum impurities is that the latter are formulated with a time-dependent

hybridization, rather than an instantaneous hopping. This hybridization function modifies

the bare propagator but otherwise leaves the system and our algorithmic approach invariant.

Applications to molecular systems therefore form an ideal testbed for impurity solver meth-

ods of this type. We complete our benchmark by applying the impurity solver to an impurity

generated by a self-energy embedding calculation of antiferromagnetic solid NiO [112].

We carefully analyze the convergence behavior of the diagrammatic expansion and the

computational cost of the method as a function of varying temperature, basis sets, inter-

molecular distance, and system size. We emphasize that we do not intend to present our

method as a viable method for quantum chemistry systems without retardation effects.

Rather, we exploit the rigorous and controlled framework of molecular simulations to gen-

erate a series of test cases that illustrate various parameter regimes in quantum impurities.

This chapter is organized as follows. In Sec. 7.2 we introduce the computational prob-

lem, the diagrammatic formulation, and the algorithmic description. In Sec. 7.3 we present

applications to molecular systems and benchmark results for quantum impurities. Finally,

Sec. 7.4 presents conclusions.
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7.2 Method

7.2.1 Partition function expansion

We describe molecular electrons using the Hamiltonian from Eq. (2.24):

𝐻̂ = ∑
𝑎𝑏

ℎ𝑎𝑏 ̂𝑐†𝑎 ̂𝑐𝑏
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐻̂0

+ 1
4 ∑
𝑎𝑏𝑐𝑑

𝑈𝑎𝑏𝑐𝑑 ̂𝑐†𝑎 ̂𝑐†𝑐 ̂𝑐𝑑 ̂𝑐𝑏
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐻̂𝑉

, (7.1)

where 𝑎, 𝑏, 𝑐, 𝑑 denote spin-orbitals, 1, … , 𝑁 . We employ second quantization: ̂𝑐𝑎 and ̂𝑐†𝑎 an-

nihilates and creates, respectively, an electron in the spin-orbital 𝑎. The interacting term 𝐻̂𝑉

is parametrized by the antisymmetrized two-electron integrals 𝑈𝑎𝑏𝑐𝑑 defined in (2.23), which

avoids ambiguities in the diagrammatic expansions [44]. We orthonormalize the basis fol-

lowing Section 2.2 such that { ̂𝑐†𝑎 , ̂𝑐𝑏} = 𝛿𝑎𝑏 , as we empirically found this to improve the error

bars in the subsequent Monte Carlo procedure.

We perform perturbation expansions introduced in Chapter 3 by introducing the expan-

sion parameter 𝜉 :
𝐻̂𝜉 = 𝐻̂0 + 𝜉𝐻̂𝑉 . (7.2)

The non-interacting case is given by 𝐻̂𝜉=0, whereas 𝐻̂𝜉=1 recovers the full Hamiltonian (7.1).

There perturbation series of the partition function follows (3.10):

𝑍𝜉
𝑍0

=
∞
∑
𝑘=0

(−𝜉 )𝑘
𝑘! ∑

𝑎1𝑏1𝑐1𝑑1
⋯ ∑
𝑎𝑘𝑏𝑘𝑐𝑘𝑑𝑘

∫
𝛽

0
d𝜏1⋯∫

𝛽

0
d𝜏𝑘

× (𝑈𝑎1𝑏1𝑐1𝑑14 )⋯(𝑈𝑎𝑘𝑏𝑘𝑐𝑘𝑑𝑘4 )⟨ ̂𝑐†𝑎1(𝜏1) ̂𝑐†𝑐1(𝜏1)

× ̂𝑐𝑑1(𝜏1) ̂𝑐𝑏1(𝜏1) ⋯ ̂𝑐†𝑎𝑘(𝜏𝑘) ̂𝑐†𝑐𝑘(𝜏𝑘) ̂𝑐𝑑𝑘(𝜏𝑘) ̂𝑐𝑏𝑘(𝜏𝑘)⟩0.

(7.3)
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In order to simplify our notation we combine four spin-orbitals 𝑎, 𝑏, 𝑐, 𝑑 and an imaginary

time 𝜏 into a single “vertex” 𝑣 = (𝑎𝑣 , 𝑏𝑣 , 𝑐𝑣 , 𝑑𝑣 , 𝜏𝑣 ). We also introduce the following short-

hands:

∫ d𝑘𝓥 ∶= 1
𝑘! ∏𝑣∈𝓥

∑
𝑎𝑣 𝑏𝑣 𝑐𝑣𝑑𝑣

∫
𝛽

0
d𝜏𝑣 , (7.4a)

𝐷(𝓥) ∶= ∏
𝑣∈𝓥

(− 𝑈𝑎𝑣 𝑏𝑣 𝑐𝑣𝑑𝑣
4 )

× ⟨∏
𝑣∈𝓥

̂𝑐†𝑎𝑣(𝜏𝑣 ) ̂𝑐†𝑐𝑣(𝜏𝑣 ) ̂𝑐𝑑𝑣(𝜏𝑣 ) ̂𝑐𝑏𝑣(𝜏𝑣 )⟩
0
. (7.4b)

Eq. (7.4b) emphasizes the fact that expectation value in Eq. (7.3) corresponds to the sum

over all disconnected and connected Feynman diagrams with vertices𝓥 = (𝑣1, … , 𝑣𝑘), while
Eq. (7.4a) just corresponds to the sum over all internal degrees of freedom of the diagrams.

With these substitutions, Eq. (7.3) simplifies to:

𝑍𝜉
𝑍0

=
∞
∑
𝑘=0

𝜉 𝑘 ∫ d𝑘𝓥𝐷(𝓥). (7.5)

To evaluate Eq. (7.5), we first introduce the non-interacting Green’s function:

𝑔𝑏𝑎(𝜏 ) = −⟨ ̂𝑐𝑏(𝜏 ) ̂𝑐†𝑎 (0)⟩0 = [(−𝜕𝜏 + 𝜇)𝑰 − 𝒉]−1𝑏𝑎 . (7.6)

Given a diagram𝓥 = (𝑣1, … , 𝑣𝑘)with 𝑣𝑖 = (𝑎𝑖, 𝑏𝑖, 𝑐𝑖, 𝑑𝑖, 𝜏𝑖), we can useWick’s theorem to write

Eq. (7.4b) as:

𝐷(𝓥) =
𝑘

∏
𝑖=1

(− 𝑈𝑎𝑖𝑏𝑖𝑐𝑖𝑑𝑖
4 ) det𝑮(𝓥), (7.7)

where 𝑮 is the 2𝑘 ×2𝑘 matrix defined in (3.22) in which the rows (columns) correspond to the

2𝑘 annihilation (creation) operators. Introducing the column and row indices 𝛼, 𝛽, … such
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that

{𝑎𝛼 } ∶= {𝑎1, 𝑐1, 𝑎2, 𝑐2, … , 𝑎𝑘 , 𝑐𝑘},

{𝑏𝛽 } ∶= {𝑏1, 𝑑1, 𝑏2, 𝑑2, … , 𝑏𝑘 , 𝑑𝑘},

{𝜏𝛼 } = {𝜏𝛽 } ∶= {𝜏1, 𝜏1, 𝜏2, 𝜏2, … , 𝜏𝑘 , 𝜏𝑘},

(7.8)

we define the matrix elements

[𝑮(𝓥)]𝛽𝛼 ∶= −⟨ ̂𝑐𝑏𝛽 (𝜏𝛽) ̂𝑐
†𝑎𝛼 (𝜏𝛼 )⟩0

= 𝑔𝑏𝛽𝑎𝛼 (𝜏𝛽 − 𝜏𝛼 + 0−). (7.9)

The full matrix can be written in a block form as

𝑮(𝓥) ∶=

⎡⎢⎢⎢⎢⎢⎢
⎣

𝒈11 𝒈12 ⋯ 𝒈1𝑘
𝒈21 𝒈22 ⋯ 𝒈2𝑘
⋮ ⋮ ⋱ ⋮

𝒈𝑘1 𝒈𝑘2 ⋯ 𝒈𝑘𝑘

⎤⎥⎥⎥⎥⎥⎥
⎦

, (7.10)

where each 2 × 2 block is given by

𝒈𝑖𝑗 ∶= [𝑔𝑏𝑖𝑎𝑗 (𝜏𝑖 − 𝜏𝑗 + 0−) 𝑔𝑑𝑖𝑎𝑗 (𝜏𝑖 − 𝜏𝑗 + 0−)
𝑔𝑏𝑖𝑐𝑗 (𝜏𝑖 − 𝜏𝑗 + 0−) 𝑔𝑑𝑖𝑐𝑗 (𝜏𝑖 − 𝜏𝑗 + 0−)

] . (7.11)

Eqs. (7.5) and (7.7) serve as the basis of interaction-expansion continuous time quantum

Monte Carlo (CT-INT): one generates random configurations (𝑣1…𝑣𝑘) and evaluates the cor-
responding weight by computing the determinant [9, 14, 108].
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7.2.2 Free energy expansion

While the partition function expansion can be efficiently computed as determinants (with

scaling𝒪(𝑘3)) and the series is guaranteed to converge, it is also plagued by the negative sign
problem, which is expected to worsen exponentially as the system size is increased or the

temperature reduced. The sign problem is typically manageable in Hubbard model calcula-

tions up to moderate correlations and system size, where it only stems from negative deter-

minant contributions. In contrast, the sign problem is particularly severe in molecules and

surface science quantum impurity problems [108], where both Coulomb interaction terms

and determinants generate negative coefficients.

In order to overcome these difficulties, we move to the grand potential 𝛺, defined as

𝑍𝜉 = exp(−𝛽𝛺𝜉 ). (7.12)

𝛺𝜉 serves as a CGF for correlations functions [39] and its power series in 𝜉 is given by:

𝛺𝜉 = 𝛺0 − 1
𝛽

∞
∑
𝑘=1

𝜉 𝑘 ∫ d𝑘𝓥𝐷𝑐(𝓥), (7.13)

where 𝛺0 is defined as 𝑍0 = exp(−𝛽𝛺0).
The symbol𝐷𝑐 indicates that unlike in Eq. (7.5), the sum is to be performed over connected

Feynman diagrams only, as shown in Fig. 7.1. As a result of Wick’s theorem (7.7), all vacuum

diagrams 𝐷(𝓥) for a fixed vertex configuration𝓥 can be partitioned into a connected sub-

diagram and the remainder of the vacuum components. Since no external legs exist to serve

as reference points for defining connectivity, we start by picking a specific vertex 𝑣 ∈ 𝓥 as
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the “reference” and consider connectivity with respect to 𝑣 , i.e.

𝐷(𝓥) = ∑
𝓢⊆𝓥
𝓢∋𝑣

𝐷𝑐(𝓢)𝐷(𝓥\𝓢). (7.14)

As the choice of 𝑣 is arbitrary, it can be any of the 𝑘 = |𝓥| vertices in 𝓥, therefore

𝐷(𝓥) = 1
|𝓥| ∑𝑣∈𝓥

∑
𝓢⊆𝓥
𝓢∋𝑣

𝐷𝑐(𝓢)𝐷(𝓥\𝓢). (7.15)

This is equivalent to iterating all possible subsets 𝓢 of 𝓥 where the reference 𝑣 can be any

vertex in 𝓢:

𝐷(𝓥) = 1
|𝓥| ∑

𝓢⊆𝓥
∑
𝑣∈𝓢

𝐷𝑐(𝓢)𝐷(𝓥\𝓢)

= ∑
𝓢⊆𝓥

|𝓢|
|𝓥|𝐷𝑐(𝓢)𝐷(𝓥\𝓢). (7.16)

We now extract the term where 𝓢 = 𝓥 from the right-hand side and obtain the recursive

formula for 𝐷𝑐(𝓥):

𝐷𝑐(𝓥) = 𝐷(𝓥) − ∑
𝓢⊊𝓥

|𝓢|
|𝓥|𝐷𝑐(𝓢)𝐷(𝓥\𝓢). (7.17)

The initial condition is the zeroth order contribution 𝐷𝑐(∅) = 0. Eqs. (7.17) and (7.7) allow

the computation of connected diagrams as a hierarchy of determinants at a cost of 𝒪(3𝑘).
A more general framework of deriving the recursion relations using idempotent polyno-

mials is described in Ref. [111]. This framework does not resort to topological arguments.

We note that even in simple cases, the convergence radius 𝑅 of the series (7.13) is not
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infinite, with the value of 𝑅 depending on ℎ, 𝑈 , and 𝛽 . Whenever 𝑅 < 1, an order-by-order

summation of the series will fail. We will discuss strategies to extend the convergence radius

in Sec. 7.2.5.

For convergent series (𝑅 > 1), one can employ the DiagMC algorithm to sample the series

(7.13) by generating random vertices and computing the weight using the recursion (7.17).

One observes that the relative statistical error diverges exponentially with diagrammatic

order 𝑘 [113], which requires truncation of the series to a finite order 𝑘max.

7.2.3 Scattering amplitude expansion

Other than free energy, we are primarily interested in thermal correlation function of some

operators (𝑋̂1, … , 𝑋̂𝑚):

⟨𝑋̂1… 𝑋̂𝑚⟩ ∶= 1
𝑍 Tr[e−𝛽(𝐻̂−𝜇𝑁̂ )𝒯 (𝑋̂1… 𝑋̂𝑚)], (7.18)

in particular the single-particle Green’s function:

𝐺𝑏𝑎(𝜏 ) = −⟨ ̂𝑐𝑏(𝜏 ) ̂𝑐†𝑎 (0)⟩. (7.19)

One canwrite down a diagrammatic expansion for theGreen’s function similar to Eq. (7.13)

and a corresponding recursion relation [22]. We instead choose to perform the expansion

for a vertex-like object.

In the case of the expansion of the free energy, the corresponding one-particle vertex is

the scattering amplitude 𝑀 [9, 12], defined as:

𝐺(𝜏) = 𝑔(𝜏) + ∫
𝛽

0
d𝜏1d𝜏2 𝑔(𝜏 − 𝜏1)𝑀(𝜏1 − 𝜏2)𝑔(𝜏2), (7.20)
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Figure 7.1: Schematic example of diagrams up to order 2. Diagrams shown here should be understood
as “labeled” diagrams as described in Ref. [39]. Duplicate diagramswith the same topology
are not shown. In the expansion of 𝑍𝜉 , the red diagram is an example of disconnected
diagram, which is absent in the expansion of 𝛺 due to linked cluster theorem.

where multiplication is to be understood as matrix-matrix multiplication in spin-orbitals.

Sampling a one-particle vertex is advantageous because it is independent of the choice of

“external legs” and thus allows measurements of both imaginary time-dependent quantities

(𝐺 and 𝛴) and fixed-time quantities (density, kinetic energy, etc.) in the same simulation.

𝑀 arises naturally as a functional derivative of the grand potential:

𝑀𝑎𝑏(𝜏 ) =
𝛿(𝛺 − 𝛺0)
𝛿𝑔𝑏𝑎(−𝜏)

. (7.21)

We show this relation in Appendix A. Eq. (7.21) expresses the fact that by removing one

line from a (closed) free-energy diagram, we get an interaction correction to the Green’s

function, which is exactly what the scattering amplitude encodes.

Combining Eq. (7.21) with Eq. (7.13) yields a series expansion for 𝑀 :

𝑀𝜉 ,𝑎𝑏(𝜏 ) = −1
𝛽

∞
∑
𝑘=1

𝜉 𝑘 ∫ d𝑘𝓥 𝛿𝐷𝑐(𝓥)
𝛿𝑔𝑏𝑎(−𝜏)

. (7.22)

We thus need to evaluate the functional derivative of the recursion relation (7.17).
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We start with the derivative of the sum of all diagrams 𝐷(𝓥), where we rely on the fol-

lowing identity:
𝛿 det𝐴
𝛿𝐴𝛼𝛽

= (adj𝐴)𝛽𝛼 ∶= (−1)𝛼+𝛽 det𝐴 ̄𝛼 ̄𝛽 , (7.23)

where 𝐴 is an 𝑛 × 𝑛 matrix, adj(𝐴) denotes the 𝑛 × 𝑛 adjugate matrix of 𝐴, and 𝐴 ̄𝛼 ̄𝛽 is the (𝑛 −
1)× (𝑛−1) submatrix of 𝐴with the 𝛼-th row and 𝛽-th column removed. The adjugate matrix

adj𝐴 can be computed in 𝒪(𝑛3) time. The adjugate (or cofactor) matrix arises naturally in

determinantal methods as a result of the Wick’s theorem [9, 12, 114], and is often absorbed

into the inverse matrix if the matrix 𝐴 is not singular. In the context of CDet, however, care

must be taken because 𝐴may be singular while adj𝐴 is still meaningful [115]. We elaborate

on the numerical calculation in Appendix C.

Combining Eq. (7.7) with Eq. (7.23), we have

𝛿𝐷(𝓥)
𝛿𝑔𝑏𝑎(−𝜏)

=
𝑘

∏
𝑖=1

(− 𝑈𝑎𝑖𝑏𝑖𝑐𝑖𝑑𝑖
4 )

2𝑘
∑
𝛼,𝛽

[adj𝑮(𝓥)]𝛼𝛽𝛿𝑎𝛼𝑎𝛿𝑏𝛼𝑏

× [𝛿(𝜏𝛼 − 𝜏𝛽 − 𝜏) − 𝛿(𝜏𝛼 − 𝜏𝛽 + 𝛽 − 𝜏)]

= −
2𝑘
∑
𝛼,𝛽

[A(𝓥)]𝛼𝛽𝛿𝑎𝛼𝑎𝛿𝑏𝛼𝑏[𝛿(𝜏𝛼 − 𝜏𝛽 − 𝜏) − 𝛿(𝜏𝛼 − 𝜏𝛽 + 𝛽 − 𝜏)]

(7.24)

for 0 < 𝜏 ≤ 𝛽 , where 𝑎𝛼 , 𝑏𝛽 , and 𝜏𝛼(𝛽) takes the same meaning as in Eq. (7.9), and we have

defined the 2𝑘 × 2𝑘 matrix

A(𝓥) ∶= −
𝑘

∏
𝑖=1

(− 𝑈𝑎𝑖𝑏𝑖𝑐𝑖𝑑𝑖
4 ) adj𝑮(𝓥), (7.25)

which includes all connected and disconnected amputated diagrams in which internal legs

corresponding to ̂𝑐†𝑎𝛼 (𝜏𝛼 ) and 𝑐𝑏𝛽 (𝜏𝛽) are removed.

For the functional derivative of a connected free-energy diagram (7.26), the sum over all
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Figure 7.2: Schematic illustration of the recursive removal of disconnected amputated diagrams.
Empty boxes stand for the contribution of all diagrams (𝐷 or A), and filled ones for that
connected diagrams only (A𝑐). Symbols inside boxes denote the set of vertices included
in each component. The top relation shows all partitions of [A(𝓥)]𝛼𝛽 into a subset fully
connected to the amputated legs and a disconnected complement set. It is reorganized as
the bottom relation which recursively defines A𝑐(𝓥) by removing all disconnected com-
ponents.

diagrams in Eq. (7.24) with amputated legs A(𝓥) needs to be replaced with the sum over

connected diagrams with amputated legs A𝑐(𝓥):

𝛿𝐷𝑐(𝓥)
𝛿𝑔𝑏𝑎(−𝜏)

= −
2𝑘
∑
𝛼,𝛽

{[A𝑐(𝓥)]𝛼𝛽𝛿𝑎𝛼𝑎𝛿𝑏𝛼𝑏

× [𝛿(𝜏𝛼 − 𝜏𝛽 − 𝜏) − 𝛿(𝜏𝛼 − 𝜏𝛽 + 𝛽 − 𝜏)]}
(7.26)

for 0 < 𝜏 ≤ 𝛽 . The expansion of 𝑀 (7.22) can now be expressed in terms of A𝑐 as

[𝑀𝜉 (𝜏 )]𝛼𝛽 = 1
𝛽

∞
∑
𝑘=1

𝜉 𝑘 ∫ d𝑘𝓥
2𝑘
∑
𝛼,𝛽

{[A𝑐(𝓥)]𝛼𝛽𝛿𝑎𝛼𝑎𝛿𝑏𝛼𝑏

× [𝛿(𝜏𝛼 − 𝜏𝛽 − 𝜏) − 𝛿(𝜏𝛼 − 𝜏𝛽 + 𝛽 − 𝜏)]}.
(7.27)

The sum over connected amputated diagrams A𝑐(𝓥) can be built up from an recursion

technique similar to Eq. (7.17). Defining 𝑣𝛼 and 𝑣𝛽 as vertices where the 𝛼-th and 𝛽-th opera-
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tors are located, respectively, diagrams in [A(𝓥)]𝛼𝛽 can always be partitioned to a connected
part which contains 𝑣𝛼 and 𝑣𝛽 , and the disconnected vacuum diagrams, i.e.

[A(𝓥)]𝛼𝛽 = ∑
𝓢⊆𝓥
𝑣𝛼 ,𝑣𝛽∈𝑆

[A𝑐(𝓢)]𝛼 ′𝛽′𝐷(𝓥\𝓢), (7.28)

where 𝛼′, 𝛽′ are row and column indices within 𝓢 that correspond to the row and column

indices 𝛼, 𝛽 in 𝓥. Extracting the term with 𝓢 = 𝓥, we have the recursion relation for A𝑐 :

[A𝑐(𝓥)]𝛼𝛽 = [A(𝓥)]𝛼𝛽 − ∑
𝓢⊊𝓥
𝑣𝛼 ,𝑣𝛽∈𝑆

[A𝑐(𝓢)]𝛼 ′𝛽′𝐷(𝓥\𝓢). (7.29)

This partitioning process is illustrated in Fig. 7.2. Since𝑀 captures the interaction correction

to the Green’s function which starts at the first order in interaction, the zeroth order contri-

bution A𝑐(∅) = 0. For each fixed 𝓥, we apply Eq. (7.29) to recursively to compute A𝑐(𝓥),
which in turn yields 𝑀 following Eq. (7.27). Algorithmically, Eq. (7.29) can be evaluated by

following Algorithm 1. Algorithm 1 runs in 𝒪(3𝑘𝑘2) time.
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Algorithm 1 Recursive evaluation of A𝑐(𝓥)
Require: Vertices𝓥, 𝑮(𝓥) defined in Eq. (7.10).

1: function Recursion(𝓥, 𝑮)
2: if 𝓥 = ∅ then

3: return A𝑐(∅) = 0.
4: else

5: Compute A(𝓥) from 𝑮 following Eq. (7.25).

6: Initialize A𝑐(𝓥) ← A(𝓥).
7: for 𝓢 ⊊ 𝓥 do

8: Compute 𝐷(𝓥\𝓢) following Eq. (7.7).
9: A𝑐(𝓢) ← Recursion(𝓢, 𝑮[𝓢,𝓢]). ▷ 𝑮[𝓢,𝓢] is the submatrix of 𝑮 whose rows and

columns correspond to the subset 𝓢. Same definition applies to [A𝑐(𝓥)][𝓢,𝓢].

10: Subtract A𝑐(𝓢)𝐷(𝓥\𝓢) from [A𝑐(𝓥)][𝓢,𝓢].

11: end for

12: return A𝑐(𝓥).
13: end if

14: end function

7.2.4 Observables from scattering amplitude

The electron self-energy 𝛴 relates the Green’s function 𝐺 to the non-interacting propagator

𝑔 via the Dyson’s equation (3.34)

𝐺(𝜏) = 𝑔(𝜏) + ∫
𝛽

0
d𝜏1d𝜏2𝑔(𝜏 − 𝜏1)𝛴(𝜏1 − 𝜏2)𝐺(𝜏2). (7.30)
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The expansion of the self-energy 𝛴 can be interpreted as 1PI amputated diagrams, which stay

connected even when any single propagator line is removed (cf. Fig. 7.1). The self-energy is

thus not directly sampled, 𝑀 and 𝛴 are related to each other by [12]

∫
𝛽

0
d𝜏 ′𝛴(𝜏 − 𝜏 ′)𝐺(𝜏 ′) = ∫

𝛽

0
d𝜏 ′𝑀(𝜏 − 𝜏 ′)𝑔(𝜏 ′). (7.31)

Replacing 𝐺 with Eq. (7.20), we have

𝛴−1(i𝜔𝑛) = 𝑀(i𝜔𝑛)−1 + 𝑔(i𝜔𝑛), (7.32)

where 𝑋(i𝜔𝑛) denotes the Fourier transform of 𝑋(𝜏) (𝑋 = 𝛴,𝑀,…) and i𝜔𝑛 is a fermionic

Matsubara frequency.

The one- and two-body contribution to the electronic energy follow from Eqs. (7.30) and

(7.20):

𝐸 = 𝐸0 + 𝐸𝑉 , (7.33a)

𝐸0 = ⟨𝐻̂0⟩ = 1
𝛽 Tr[ℎ𝐺] = ∑

𝑎𝑏
ℎ𝑎𝑏𝜌𝑎𝑏 , (7.33b)

𝐸𝑉 = ⟨𝐻̂𝑉 ⟩ = 1
2𝛽 Tr[𝛴𝐺]

= 1
2 ∫

𝛽

0
d𝜏 ∑

𝑎𝑏
𝑀𝑎𝑏(𝜏 )𝑔𝑏𝑎(−𝜏). (7.33c)

Here 𝜌𝑖𝑗 ≡ ⟨ ̂𝑐†𝑖 ̂𝑐𝑗⟩ is the electron density matrix. Note that 𝐻̂0 does not include the Hartree

and Fock terms of the interaction. See also Appendix B.
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7.2.5 Hartree-Fock shifted Hamiltonian

In systems with significant electron-electron correlations where 𝐸𝑉 has significant contri-

bution to the full energy 𝐸, the perturbation expansions in Eqs. (7.13) and (7.22) may not

converge at 𝜉 = 1.
In order to achieve better convergence by starting from a “better” non-interacting solution

such that 𝐻̂0 is closer to 𝐻̂ , we change the partition of the Hamiltonian 𝐻̂ = 𝐻̂0 + 𝐻̂𝑉 by

adding physically-motivated counter terms to 𝐻̂0 and subtracting the same terms from 𝐻̂𝑉 ,

following the shifted action formalism described in Section 3.5.

We start by adding the simplest counter term in the quadratic form

𝛥𝐻̂𝛼 = ∑
𝑎𝑏

𝛼𝑎𝑏 ̂𝑐†𝑎 ̂𝑐𝑏 (7.34)

to 𝐻̂0 and subtract it from 𝐻̂𝑉 , such that

𝐻̂0,𝛼 = ∑
𝑎𝑏
(ℎ𝑎𝑏 + 𝛼𝑎𝑏) ̂𝑐†𝑎 ̂𝑐𝑏 (7.35)

𝐻̂𝑉 ,𝛼 = 1
4 ∑
𝑎𝑏𝑐𝑑

𝑈𝑎𝑏𝑐𝑑 ̂𝑐†𝑎 ̂𝑐†𝑐 ̂𝑐𝑑 ̂𝑐𝑏 − 𝛼𝑎𝑏 ̂𝑐†𝑎 ̂𝑐𝑏 . (7.36)

The total Hamiltonian 𝐻̂ = 𝐻̂0,𝛼 +𝐻̂𝑉 ,𝛼 is unchanged, whereas the perturbation expansion of

𝐻̂𝜉 = 𝐻̂0,𝛼 + 𝜉𝐻̂𝑉 ,𝛼 can be controlled by choosing different 𝛼 . The counter term need not be

quadratic in general. Though quadratic choices are convenient in the determinantal setup,

recursion schemes have been developed for general counter terms [26].

The shifted non-interacting propagator

𝑔𝛼 (𝜏 ) = [(−𝜕𝜏 + 𝜇)𝑰 − ℎ − 𝛼]−1𝑎𝑎′ (7.37)
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can be seen as a Green’s function with an a priori self-energy 𝛼 .
In themolecular context, a significant contribution to electron correlations can be obtained

by the HF approximation, which is briefly introduced in Section 5.3.1. We therefore choose

𝛼 to be the HF self-energy, i.e. 𝛴HF. 𝛴HF is given by the self-consistent equations at finite

temperature

[𝛴HF]𝑎𝑏 = ∑
𝑐𝑑

𝑈𝑎𝑏𝑐𝑑𝜌𝑐𝑑 , (7.38a)

𝜌 = 𝑓 (ℎ + 𝛴HF − 𝜇𝑰 ). (7.38b)

Here 𝑓 (𝐴) = [𝑰 + exp(𝛽𝐴)]−1 is the matrix-valued Fermi distribution function, and 𝜇 is the

chemical potential which may be adjusted so that the total number of electrons in the system

is adjusted to charge neutrality.

Diagrammatically, the Hartree-Fock shift renormalizes the propagators lines to 𝑔𝛼 , and an
additional effective two-point vertex 𝛼 has to be included in diagrams. The effective vertex

𝛼 cancels any diagram which has at least one vertex connecting to itself with exactly one

propagator line. This removes all “tadpole” diagrams in expansions of 𝐺 and 𝑀 , as well

as that of 𝛺 except for the first order diagram whose vertex connects to itself with two

propagator lines. Fig. 7.3 illustrates the cancellation of such diagrams.

Given a specific set of vertices 𝓥, the removal of all tadpole diagrams is achieved by
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Figure 7.3: Schematic example of diagram cancellations due to the Hartree-Fock counter term. Here
we show all second-order Green’s function diagrams generated by the counter term,
where the red circle indicates the counter term 𝛼 , each introduces a factor of −1. Terms
in each dashed curve cancel each other, leaving only the last term.

replacing the 𝑮 matrix (7.10) defined on internal vertices𝓥 with:

𝑮(𝓥) ∶=

⎡⎢⎢⎢⎢⎢⎢
⎣

0 𝒈𝛼12 ⋯ 𝒈𝛼1𝑘
𝒈𝛼21 0 ⋯ 𝒈𝛼2𝑘
⋮ ⋮ ⋱ ⋮

𝒈𝛼𝑘1 𝒈𝛼𝑘2 ⋯ 0

⎤⎥⎥⎥⎥⎥⎥
⎦

𝒈𝛼𝑖𝑗 ∶= [𝑔
𝛼
𝑏𝑖𝑎𝑗 (𝜏𝑖 − 𝜏𝑗 + 0−) 𝑔𝛼𝑑𝑖𝑎𝑗 (𝜏𝑖 − 𝜏𝑗 + 0−)
𝑔𝛼𝑏𝑖𝑐𝑗 (𝜏𝑖 − 𝜏𝑗 + 0−) 𝑔𝛼𝑑𝑖𝑐𝑗 (𝜏𝑖 − 𝜏𝑗 + 0−)

] .

(7.39)

i.e. by setting all 2×2 diagonal blocks (corresponding to self-connections of vertices) to zero,
and replacing bare propagators with 𝑔𝛼 . Using the modified definition of 𝑮 in Eqs. (7.7) and

(7.25), one can carry out the same recursive calculations in Eq. (7.26) to obtain corresponding

connected quantities.

Note that this introduces a bias in the free-energy evaluation by setting the first order
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contribution (the “dumbbell” diagram) to zero, which needs to be corrected:

𝛺(1)𝛼 = 1
2 ∑
𝑎𝑏𝑐𝑑

𝑈𝑎𝑏𝑐𝑑𝑔𝛼𝑏𝑎(0−)𝑔𝛼𝑑𝑐(0+) −∑
𝑎𝑏

𝛼𝑎𝑏𝑔𝛼𝑏𝑎(0−)

= −12 ∑𝑎𝑏
[𝛴HF]𝑎𝑏[𝜌HF]𝑏𝑎.

(7.40)

In the remainder of this chapter, we will always use a HF counter term and omit the 𝛼
subscripts.

7.2.6 Monte Carlo integration of diagrammatic series

Evaluations of diagrammatic series, such as Eqs. (7.13) and (7.27), can be formally summa-

rized as

𝑋 =
∞
∑
𝑘=0

∫ d𝑘𝓥𝒞(𝓥), (7.41)

where 𝑋 is the physical variable (𝐺, 𝑀 , ...), 𝓥 = (𝑣1, … , 𝑣𝑘) denotes space time indices of

internal vertices, and 𝒞 the contribution of each fixed configuration of 𝓥 to 𝑋 . Here we

take the “physical” value of the coupling constant 𝜉 = 1. To perform a Monte Carlo integral,

we introduce a cutoff 𝑘max of the expansion order, and an a priori probability distribution of

vertex space-time indices 𝑝(𝓥) such that

𝑝(𝓥) ≥ 0,
𝑘max

∑
𝑘=0

∫ d𝑘𝓥𝑝(𝓥) ≡ 1. (7.42)
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Table 7.1: Measurements for physical observables. The imaginary time convolution is defined as

[𝑓 ∗ 𝑔](𝜏 ) = ∫𝛽0 d𝜏 ′𝑓 (𝜏 − 𝜏 ′)𝑔(𝜏 ′). 𝐸HF0 and 𝐸HF𝑉 are kinetic and potential energies from the
HF solution.

𝑋 𝒞(𝓥)

𝑀𝑎𝑏(𝜏 ) 1
𝛽

2|𝓥|
∑
𝛼,𝛽=1

[A𝑐(𝓥)]𝛼𝛽𝛿𝑎𝛼𝑎𝛿𝑏𝛽𝑏[𝛿(𝜏𝛼 − 𝜏𝛽 − 𝜏) − 𝛿(𝜏𝛼 − 𝜏𝛽 + 𝛽 − 𝜏)]

𝑀𝑎𝑏(i𝜔𝑛) = ∫
𝛽

0
d𝜏𝑀𝑎𝑏(𝜏 )𝑒i𝜔𝑛𝜏 1

𝛽
2|𝓥|
∑
𝛼,𝛽=1

[A𝑐(𝓥)]𝛼𝛽𝛿𝑎𝛼𝑎𝛿𝑏𝛽𝑏𝑒i𝜔𝑛(𝜏𝛼−𝜏𝛽 )

𝐺𝑏𝑎(i𝜔𝑛) − 𝑔𝑏𝑎(i𝜔𝑛) = [𝑔𝑀𝑔]𝑏𝑎 1
𝛽

2|𝓥|
∑
𝛼,𝛽=1

[A𝑐(𝓥)]𝛼𝛽𝑔𝑏𝑎𝛼 (i𝜔𝑛)𝑔𝑏𝛽𝑎(i𝜔𝑛)𝑒i𝜔𝑛(𝜏𝛼−𝜏𝛽 )

𝐸0 − 𝐸HF0
1
𝛽

2|𝓥|
∑
𝛼,𝛽=1

[A𝑐(𝓥)]𝛼𝛽 ∑
𝑎𝑏

ℎ𝑎𝑏[𝑔𝑏𝑎𝛼 ∗ 𝑔𝑏𝛽𝑎](𝜏𝛽 − 𝜏𝛼 )

𝐸𝑉 − 𝐸HF𝑉
1
2𝛽

2|𝓥|
∑
𝛼,𝛽=1

[A𝑐(𝓥)]𝛼𝛽{𝑔𝑏𝛽𝑎𝛼 (𝜏𝛽 − 𝜏𝛼 ) +∑
𝑎𝑏
[𝛴HF]𝑎𝑏[𝑔𝑏𝑎𝛼 ∗ 𝑔𝑏𝛽𝑎](𝜏𝛽 − 𝜏𝛼 )}

In addition, we require that 𝑝(𝓥) > 0 whenever 𝒞(𝓥) ≠ 0. The order-𝑘max approximation

to 𝑋 can be estimated stochastically as

𝑋𝑘max
=

𝑘max

∑
𝑘=0

∫ d𝑘𝓥𝒞(𝓥)
𝑝(𝓥) 𝑝(𝓥) = ⟨𝒞𝑝 ⟩

𝑝

≈ 1
𝒩

𝑁
∑
𝑖=1

𝒞(𝓥𝑖)
𝑝(𝓥𝑖)

, 𝓥1, … ,𝓥𝑁 ∼ 𝑝 (7.43)

with a large number𝒩 of Monte Carlo samples {𝓥𝑖} generated following distribution 𝑝(𝓥).
Since the Green’s function 𝐺, self-energy 𝛴, as well as the total electronic energy 𝐸 =

𝐸0 + 𝐸𝑉 can all be derived from the scattering matrix 𝑀 using Eqs. (7.20), (7.32), (7.33), it

is sufficient to only keep track of the amputated diagrams A𝑐(𝓥) and obtain all other ob-

servables as derived quantities. Table 7.1 summarizes some of these measurements. In our

implementation, we onlymeasure the energy and𝑀(i𝜔𝑛)with fermionicMatsubara frequen-
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cies i𝜔𝑛 on the fly, and construct 𝐺(i𝜔𝑛) and 𝛴(i𝜔𝑛) from 𝑀(i𝜔𝑛) following

𝐺(i𝜔𝑛) = 𝑔(i𝜔𝑛) + 𝑔(i𝜔𝑛)𝑀(i𝜔𝑛)𝑔(i𝜔𝑛), (7.44)

𝛴(i𝜔𝑛) − 𝛴HF = [𝑀(i𝜔𝑛)−1 + 𝑔(i𝜔𝑛)]−1 (7.45)

for each frequency. Resampling techniques such as the jackknife or the bootstrap are applied

to avoid biased error estimations.

For efficient Monte Carlo simulations, it is important to choose the a priori distribution

𝑝(𝓥) to achieve importance sampling, such that the simulation samples more frequently

when |𝒞 (𝓥)| is large and less frequently otherwise. Since we measure multiple observables

in one simulation, we need to define such a distribution that works for all measurements.

We find in practice that the following choices provides efficient samplings for most mea-

surements:

𝑝A(𝓥) = ‖A𝑐(𝓥)‖
𝑊A

, 𝑊A =
𝑘max

∑
𝑘=0

∫ d𝑘𝓥‖A𝑐(𝓥)‖, (7.46)

𝑝𝐸(𝓥) = |𝜖(𝓥)|
𝑊𝐸

, 𝑊𝐸 =
𝑘max

∑
𝑘=0

∫ d𝑘𝓥|𝜖(𝓥)|, (7.47)

where ‖ ⋅ ‖ denotes the Frobenius norm of a matrix, and 𝜖(𝓥) is the energy measurement

defined in Table 7.1

𝜖(𝓥) = 1
2𝛽

2|𝓥|
∑
𝛼𝛽=1

[A𝑐(𝓥)]𝛼𝛽{𝑔𝑏𝛽𝑎𝛼 (𝜏𝛽 − 𝜏𝛼 )+

+∑
𝑎𝑏
[2ℎ + 𝛴HF]𝑎𝑏[𝑔𝑏𝑎𝛼 ∗ 𝑔𝑏𝛽𝑎](𝜏𝛽 − 𝜏𝛼 )}, (7.48)

where [𝑓 ∗ 𝑔](𝜏 ) = ∫𝛽0 d𝜏 ′𝑓 (𝜏 − 𝜏 ′)𝑔(𝜏 ′) denotes a convolution in 𝜏 . 𝑝𝐸 performs well for the
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energy measurements, whereas 𝑝A is more robust when measurement of 𝑀 is needed.

At high expansion order 𝑘max, the normalization factors 𝑊A and 𝑊𝐸 are difficult to cal-

culate analytically. Instead, we measure an auxillary quantity whose exact value can be

calculated analytically, and normalize all other measurements against it. For example, we

can normalize against the second-order contribution to the total energy

𝐸(2) = ⟨𝜖(𝓥)𝛿|𝓥|,2
𝑝𝐸(𝓥) ⟩

𝑝𝐸
= 𝑊𝐸⟨sgn[𝜖(𝓥)]𝛿|𝓥|,2⟩𝑝𝐸 . (7.49)

Here we have chosen 𝑝𝐸 as the a priori distribution. Any other measurements can now be

estimated as

𝑋 = ⟨ 𝒞(𝓥)
𝑝𝐸(𝓥)⟩𝑝𝐸

= 𝑊𝐸⟨𝒞 (𝓥)
𝜖(𝓥) ⟩𝑝𝐸

= 𝐸(2) ⟨𝒞 (𝓥)/𝜖(𝓥)⟩𝑝𝐸
⟨sgn[𝜖(𝓥)]𝛿|𝓥|,2⟩𝑝𝐸

. (7.50)

Similar relations apply when we use other choices of a priori distributions or normalization

measurements.

Once 𝑝(𝓥) is defined, we generate Monte Carlo samples as a Markov chain using the

Metropolis–Hastings algorithm detailed in Chapter 4. We adopt the definition II which treats

𝓥 as a set of vertices, and the integration measure includes the permutation sign 1/𝑘!.
In molecular systems, due to the complexity in the multi-orbital Coulomb interaction ten-

sor, as well as the energy differences in non-interacting energy levels, the configuration

space of the Monte Carlo can be uneven and may lead to ergodicity problems in the random

walk. We design the following set of updates which lead to an ergodic random walk in the

configuration space for all systems we investigate in Sec. 7.3.

1. Vertex splitting: Split a random vertex 𝑣 = (𝑎, 𝑏, 𝑐, 𝑑; 𝜏 ) to two new vertices 𝑣1 =
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(𝑎, 𝑏, 𝑐′, 𝑑′; 𝜏 ) and 𝑣2 = (𝑎′, 𝑏′, 𝑐, 𝑑; 𝜏 ′). The new indices 𝑎′, 𝑏′, 𝑐′, 𝑑′, and 𝜏 ′ can be pro-

posed by some a priori probability 𝑝ins. The proposal probability distribution for this

update from order 𝑘 to 𝑘 + 1 is

𝑤prop(𝑣1, 𝑣2; 𝑘 + 1|𝑣 ; 𝑘) = 𝑝ins(𝑎′, 𝑏′, 𝑐′, 𝑑′, 𝜏 ′)
𝑘 (7.51)

2. Vertex merging: Pick two random vertices 𝑣1 = (𝑎, 𝑏, 𝑐′, 𝑑′; 𝜏 ) and 𝑣2 = (𝑎′, 𝑏′, 𝑐, 𝑑; 𝜏 ′)
and merge them into 𝑣 = (𝑎, 𝑏, 𝑐, 𝑑; 𝜏 ). The proposal probability distribution from order

𝑘 + 1 to 𝑘 is
𝑤prop(𝑣 ; 𝑘|𝑣1, 𝑣2; 𝑘 + 1) = 1

𝑘(𝑘 + 1) . (7.52)

3. Vertex shift in time: Update the time label 𝜏 of a vertex 𝑣 to a new value 𝜏 ′.

4. Vertex shift in orbitals: Update one of the orbital labels 𝑎, 𝑏, 𝑐, 𝑑 of a vertex 𝑣 to a random
new value.

Vertex shift in time or orbitals are self-balancing moves, hence the acceptance ratios shares

the same form

𝑅(𝓥2|𝓥1) =
𝑝(𝓥2)
𝑝(𝓥1)

. (7.53)

Vertex splitting and merging are mutually inverse updates. The acceptance ratios are there-

fore

𝑅(𝑣1, 𝑣2; 𝑘 + 1|𝑣 ; 𝑘) = 𝑅(𝑣; 𝑘|𝑣1, 𝑣2; 𝑘 + 1)−1

=𝑤
prop(𝑣 ; 𝑘|𝑣1, 𝑣2; 𝑘 + 1)𝑝(𝑣1, 𝑣2; 𝑘 + 1)
𝑤prop(𝑣1, 𝑣2; 𝑘 + 1|𝑣 ; 𝑘)𝑝(𝑣 ; 𝑘)

= 𝑘 + 1
𝑝ins(𝑎′, 𝑏′, 𝑐′, 𝑑′, 𝜏 ′)

𝑝(𝑣1, 𝑣2; 𝑘 + 1)
𝑝(𝑣 ; 𝑘) . (7.54)
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There is considerable freedom in choosing 𝑝ins. For all systems we study in this work, we

choose 𝑝ins such that

𝑝ins(𝑎′, 𝑏′, 𝑐′, 𝑑′, 𝜏 ′) = 𝑝orb(𝑎′, 𝑏′, 𝑐′, 𝑑′)𝑝time(𝜏 ′), (7.55)

where 𝑝orb(𝑎′, 𝑏′, 𝑐′, 𝑑′) is uniformly distributed if the inserted indices can form non-zero

propagator connections and zero otherwise, and

𝑝time(𝜏 ′) = 𝜑(|𝜏 ′ − ̄𝜏 [𝓥]|). (7.56)

where ̄𝜏 [𝓥] = 1
𝑘 ∑

𝑘
𝑖=1 𝜏𝑘 is the average time coordinate of the existing vertices, and we

choose 𝜑(𝜏) as a function in [0, 𝛽] which has more weight near 𝜏 = 0 and 𝛽 but still non-

negligible weight in between. Since the HF propagators decay exponentially away from 0
and 𝛽 , this makes sure that the new vertex are more likely to stay close to existing vertices so

that the resulting configuration has sizable contribution. In our implementation, we define

𝑓 (𝜏 ) = 𝜆
arctan(𝛽𝜆){

1
1 + (𝜏𝜆)2 + 1

1 + [(𝛽 − 𝜏)𝜆]2 }, (7.57)

as a Lorentzian distribution where 𝜆 is an estimation of the overall energy scale of the system

proportional to e.g. the standard deviation of the HF energy levels.
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7.3 Results

7.3.1 Series convergence

We first present a test of our method on a minimal molecular system: H2 in the STO-6g basis

set [42]. Two hydrogen atoms are placed at distance 𝑟 and finite temperature 𝑇 = 1/𝛽 . The
basis set only contains the 1s orbital in each atom. This setup allows us to easily perform

exact diagonalization (ED) calculations of the full molecular Hamiltonian at any temperature,

such that exact benchmark results for our CDet results are available.

In Fig. 7.4, we compare the total energy 𝐸tot from CDet with order truncation 𝑘max up to

6 to the ED energy at 𝑇 = 50−1 Eh, both as a function of 𝑟 . Around equilibrium distance 𝑟 ≈
1.4 a0, the CDet energy converges well to the ED solution. The systemmoves to the strongly

correlated regime (i.e. a regime far from the HF solution), as we “stretch” the molecule by

increasing 𝑟 . At 𝑟 > 2.0 a0 we start to observe significant systematic deviation at 𝑘max = 6.
Since the kinetic energy of electrons moving between two atoms is significantly reduced as

we increase 𝑟 but the long-range Coulomb repulsion between electrons changes slowly, the

electron-electron interaction becomes more important at larger 𝑟 , and hence it is expected

that the perturbation expansion becomes more difficult to converge. This setup is standard

in quantum chemistry [38] and is similar in spirit to lattice model setups in which a metal-

to-insulator transition is induced by gradually increasing an on-site interaction.

Analytically, the convergence behavior is determined by the properties of the expanded

quantity (e.g. 𝐸[𝜉 ]) as a function of the coupling constant 𝜉 on the complex plane, similar

to the convergence analysis for many-body perturbation theory (MBPT) calculations at 𝑇 =
0 [116–120]. We evaluate the electron energy 𝐸[𝜉 ] for complex values of 𝜉 near 𝜉 = 0 using
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Figure 7.4: Total energy 𝐸tot with Monte Carlo errors for H2, STO-6g, 𝑇 = 50−1 Eh. Top panel: com-
parison of ED and CDet at different 𝑘max. Middle panel: total energy with HF contribution
removed. Bottom panel: difference between ED and CDet.
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Figure 7.5: Analytic structure of electron total energy evaluated with ED as a function of the com-
plex coupling constant 𝜉 . H2, STO-6g. Colors represent complex phases and brightness
indicates the magnitude (see color bars). The black dot at 𝜉 = 1 represents the “physical”
result. The dashed black circle indicates minimum convergence radius necessary for the
perturbation series to converge at 𝜉 = 1. (a) Effect of changing 𝑟 at fixed temperature
𝑇 = 50−1 Eh. At 𝑟 = 1.4 a0 and 𝑟 = 2.0 a0, no singularity is visible in the unit circle and
the series is convergent at 𝜉 = 1. At 𝑟 = 2.8 a0 and 3.6 a0, poles appear in the unit circle,
resulting in a divergent series at 𝜉 = 1. (b) Effect of changing 𝑇 at fixed 𝑟 = 1.4 a0. The
real-axis locations of the vertical “walls” of poles does not change significantly as temper-
ature decreases, while the imaginary-axis spacing of the poles decreases proportionally
with 𝑇 .
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ED at 𝑟 = 1.4, 2.0, 2.8, and 3.6 a0, following

𝑍[𝜉 ] =Tr {𝑒−𝛽[(𝐻̂0+𝐻̂𝛼 )+𝜉 (𝐻̂𝑉−𝐻̂𝛼 )−𝜇𝑁̂ ]}, (7.58)

𝐸[𝜉 ] = 1
𝑍[𝜉 ] Tr {[(𝐻̂0 + 𝐻̂𝛼/2) + 𝜉 (𝐻̂𝑉 − 𝐻̂𝛼/2)]

× 𝑒−𝛽[(𝐻̂0+𝐻̂𝛼 )+𝜉 (𝐻̂𝑉−𝐻̂𝛼 )−𝜇𝑁̂ ]}, (7.59)

where 𝐻̂𝛼 is theHF counter term introduced in Sec. 7.2.5. One can showvia a straight forward

substitution that 𝐸[1] gives the “physical” electron energy and 𝐸[0] recovers the HF energy.
Figure 7.5.a shows the interaction correction 𝐸[𝜉 ]−𝐸[0] to the total energy, where the black
dot represents the physical value at 𝜉 = 1. Since the convergence radius of the power series
around 𝜉 = 0 is determined by the singularity (pole or branch cut) closest to the origin, the

series is convergent at the “physical” point 𝜉 = 1 if and only if there are no singularities in

the unit circle (dashed circles in Fig. 7.5). At 𝑟 = 1.4 a0, all poles are far outside the unit

circle, indicating a rapidly convergent series. As we increase 𝑟 , poles move closer to the unit

circle at 𝑟 = 2.0 a0, implying a slower convergence of the series, and finally enter the unit

circle at 𝑟 = 2.8 a0 and 3.6 a0, resulting in divergent series at 𝜉 = 1.
The analytic properties are reflected directly in the convergence behavior of the CDet

results. For a direct comparison, we calculate the contribution of each order 𝑘 to the total

energy 𝐸(𝑘)tot up to 𝑘max = 8 for the same values of 𝑟 , as shown in Fig. 7.6. At 𝑟 = 1.4 a0,
𝐸(𝑘)tot quickly converges to zero at 𝑘 > 4. At 𝑟 = 2.0 a0, we observe tendency to converge

at 𝑘 = 8 but non-zero systematic deviations remain. For 𝑟 = 2.8 a0 and 3.6 a0, no signs of

convergence are observed up to 𝑘 = 8.
The CDet approach can be applied to different temperatures without adding significant

computational cost, as we will show in Sec. 7.3.2. This is fundamentally different frommeth-

ods such as CT-QMC, where reaching lower 𝑇 is only possible at an exponential cost away
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from half filling [14]. In Fig. 7.7, we show the temperature dependence of the CDet total en-

ergy for H2, STO-6g at 𝑘max = 6, from 𝑇 = 10.0−1 Eh down to 𝑇 = 500.0−1 Eh, in comparison

to the ED solution at 𝑇 = 0. All calculations use the same algorithmic setup and the same

number of Monte Carlo steps. Convergence to the zero-temperature solution is observed as

𝑇 decreases, while the stochastic error estimation does not change significantly. Systematic

deviations can be observed at similar locations (𝑟 > 2.0 a0) for different temperatures, in-

dicating similar convergence behavior for the same system at different temperature. This

can be shown by the temperature dependence of the analytic structure of 𝐸[𝜉 ], as plotted
in Fig. 7.5.b. As temperature is reduced, the spacing of the poles along the imaginary direc-

tion decreases proportionally, but the real-axis locations of the vertical “walls” of poles stay

almost unchanged, which leads to similar convergence radii at different temperature.

The HF shifted action plays an important role in achieving better series convergence in

CDet. Figure 7.8 compares the ED analytic structure of the total energy 𝐸[𝜉 ] with and with-

out the HF shift. Without the shift, even for the equilibrium distance 𝑟 = 1.4 a0 (usually con-
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sidered “weakly correlated”), there are poles deep inside the unit circle, implying a highly

divergent series at 𝜉 = 1. In contrast, the HF shift pushes the poles away from the origin,

which leads to a convergent series as seen in Fig. 7.4 and Fig. 7.6.

The CDet approach gives access to dynamic quantities, such as the Green’s function 𝐺 and

the self-energy 𝛴, through the scattering amplitude𝑀 . The left column of Fig. 7.9 shows the

CDet measurement of 𝑀̂(i𝜔𝑛) in Matsubara frequency space up to 𝑘max = 6 for H2, STO-6g at

𝑟 = 1.4 a0 and 𝑇 = 50−1 Eh. As we increase the expansion order, CDet results gradually con-

verge to the ED solution (black lines), and at order 6 we observe only a small systematic error

due to order truncation. The CDet self-energy 𝛴 is calculated from 𝑀 following Eq. (7.45).

Both quantities exhibit similar behavior, as shown in the right column of Fig. 7.9. At order 3

and higher, the real part of 𝛴̂(i𝜔𝑛) takes non-zero value at high-frequency limit, correspond-

ing to the correction to the frequency-independent HF self-energy 𝛴HF. The CDet Green’s
function, derived from 𝑀 following Eq. (7.44), is shown in Fig. 7.10. Good agreement with

ED is observed at 𝑘max = 6 on the top panel, where both the Monte Carlo error estimation
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and the systematic error due to order truncation is much smaller than the symbol size. The

bottom panel shows convergence of CDet Green’s function to ED by increasing 𝑘max, with

a small but visible systematic deviation at low frequency when 𝑘max = 6.
The generality of our CDet implementation allows a straightforward extension to much

larger basis sets. Going beyond the minimal basis, we compute the CDet total energy of H2

using cc-pVDZ and cc-pVTZ basis sets with 10 and 28 orbitals in total, respectively, and com-

pare to the ED solution as shown in Fig. 7.11. For 𝑟 < 2.0 a0, CDet gives decent convergence
to ED at 𝑘max = 4, with both stochastic and systematic error below 1 mEh. The 2 s and 2 p

orbitals added by cc-pVDZ basis and 3 s, 3 p and 3 d orbitals by cc-pVTZ basis are mostly un-
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occupied, and the most electron excitation occur near the lowest 1 s orbitals. Consequently,

the convergence behavior and computational cost of CDet do not change significantly from

the minimal basis STO-6g.

Finally, we extend our method to bigger molecules by adding more hydrogen atoms to the

system. We consider a chain of 10 hydrogen atoms on a straight line with equal spacing 𝑟 ,
the same benchmark system used in Ref. [44]. At minimal basis STO-6g, all ten 1 s orbitals

contribute equally to the active space of 10 electrons. Compared to H2 with cc-pVDZ, which

has the same number of orbitals, H10 with STO-6g has more orbitals relevant to electron

correlations, and the cost of CDet is higher (for a detailed analysis see Sec. 7.3.2). The left

column of Fig. 7.12 plots the CDet total energy up to 𝑘max = 4 in comparison to ED solution

at 𝑇 = 50−1 Eh. Convergence within 5 mEh is achieved at 𝑘max = 4 for 𝑟 < 2.4 a0, and
systematic deviations are evident for 𝑟 > 2.4 a0. Similar behavior can be found in the the

zero-temperature coupled cluster (CCSD) result (dotted lines), as both methods rely on the

perturbative expansions of electron-electron interactions in different forms. The computa-

tional cost becomes much higher as we go to a bigger basis for H10. With cc-pVDZ, there are

50 atomic orbitals in total, with potential excitations to the empty orbitals from all 10 elec-

trons. As shown in the right column Fig. 7.12, CDet still agrees with the reference method

(MRCI+Q data from Ref. [44] at 𝑇 = 0) for small values of 𝑟 , but the Monte Carlo errors are

significantly larger. Although our generic implementation has achieved decent extensibil-

ity without fine-tuning for each specific system, more efficient Monte Carlo estimators and

sampling schemes as well as analytical resummation techniques should advance the limit of

CDet to more complex systems.

110



−5

−4

E t
ot

 [E
h]

STO-6g

kmax = 2 (T= 50−1 Eh)
kmax = 3 (T= 50−1 Eh)
kmax = 4 (T= 50−1 Eh)
ED (T= 50−1 Eh)

ED (T= 0)
CCSD (T= 0)
MRCI+Q (T= 0)

cc-pVDZ

−0.75

−0.50

−0.25

E t
ot

−
E H

F [
E h

]

1 2 3
r [a0]

−0.002
0.000
0.002

ΔE
to

t
[E

h]

1 2 3
r [a0]

(×25)

Figure 7.12: Total energy 𝐸tot with Monte Carlo errors for H10 with STO-6g (left column) and cc-
pVDZ (right column) basis. ED results are used as reference for STO-6g and MRCI+Q
(𝑇 = 0) from Ref. [44] for cc-pVDZ. Top panels: comparison of reference data and CDet
at different 𝑘max at finite temperature 𝑇 = 50−1 Eh, along with ED and CCSD results
at 𝑇 = 0 for STO-6g basis. Middle panel: total energy with HF contribution removed.
Bottom panels: difference between CDet and reference data at finite temperature, (for
STO-6g) in comparison to difference between CCSD and ED at zero temperature.
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panel, all simulations are carried out using the same setup of Monte Carlo updates and
number of iterations. We estimate the contribution of integrated autocorrelation time
𝜏int to the stochastic error (blue), the computational cost (orange), and the total stochastic
uncertainty of energy𝛥𝐸tot (green) for each simulation, and scale them to the same range
on double-logarithmic plots. (a) Temperature dependence, H2, STO-6g, 𝑘max = 6. (b)
Basis set dependence, H2, 𝑇 = 50−1 Eh, 𝑘max = 4. (c) System size dependence, H𝑛, cc-
pVDZ, 𝑇 = 50−1 Eh, 𝑘max = 4.
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7.3.2 Analysis of computational cost

The computational cost of a Markov chain Monte Carlo simulation, measured as the compu-

tational time needed for reaching a result for observable 𝑋 within a desired accuracy 𝛥𝑋 , is

determined by three factors. First, the cost of each individual update, which is 𝑂(𝑘32𝑘) for a
configuration at expansion order 𝑘 according to Algorithm 1. Second, the number of config-

uration updates needed to reach an independent sample by transversing a Markov chain of

potentially correlated configurations, described by the integrated autocorrelation time 𝜏int.
Finally, the variance Var(𝑋) of the estimator of the quantity of interest (Table 7.1), such that

𝛥𝑋 = √
Var(𝑋)

𝑁 (2𝜏int + 1). (7.60)

To assess the computational cost of our CDet implementation for reaching a certain uncer-

tainty level, as well as how the effort changes with respect to temperature, choice of basis

set, and system size, we perform a series of simulations of convergent series for the hydro-

gen chain H𝑛 with the same Monte Carlo updates and measurements for a fixed number of

Markov chain iterations. In Fig. 7.13, we show estimates of autocorrelation effects, actual

computational costs, and stochastic uncertainties in total energy, as functions of tempera-

ture 𝑇 , the number of orbitals 𝑁orb, or the number of hydrogen atoms 𝑛 in log-log plots.

We rescale the 𝑦-values by an arbitrary factor to emphasize the respective scaling of these

quantities in the same plot.

Figure 7.13.a shows the temperature dependence of CDet simulations of a fixed system

(H2, STO-6g, 𝑟 = 1.4 a0) at 𝑘max = 6. We observe that the simulation time does not change

significantly as we decrease temperature, indicating similar distributions of the expansion

order (usually tilted to the highest order). The error estimate in total energy follows almost

the same tendency as the factor of the autocorrelation effect √2𝜏int + 1, indicating the under-
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lying energy estimator does not have strong temperature dependence. The autocorrelation

effect shows a slow power-law increase as temperature is lowered, implying that our Monte

Carlo updates remain efficient at low temperature.

A similar analysis is shown in Fig. 7.13.b for the basis set dependence of the same system

(H2, 𝑟 = 1.4 a0) at fixed temperature. We perform CDet simulations with 𝑘max = 4 for basis
sets STO-6g, cc-pVDZ, and cc-pVTZ, with 2, 10, and 28 atomic orbitals, respectively. As we

add more “virtual” orbitals to the system, the computational time increases slowly, and the

autocorrelation time even decreases as the additional orbitals improve the connectivity of

Monte Carlo configurations. However, the stochastic error shows a different trend from the

autocorrelation effect and increases (a fit with a power law results in ∼ 𝑁 1.22
orb ), meaning that

the additional orbitals introduce more diagrammatic configurations with alternating signs

that lead to stronger Monte Carlo fluctuations.

As we increase the systems size in Fig. 7.13.c by addingmore hydrogen atoms, the stochas-

tic error (normalized by the system size 𝑛) at fixed computational time increases with a

much larger power law than Fig. 7.13.b (fitted ∼ 𝑛3.48), while the autocorrelation time barely

changes. This implies that adding electrons that contribute to excitations near the Fermi

level rapidly increases the complexity of the diagrammatics. The result is very different

from the situation where additional basis states for the same number of electrons are added

(Fig. 7.13.b).

The behavior illustrated in Fig. 7.13.c also differs fromDiagMCwith short-range or on-site

interactions, which are formulated directly in the thermodynamic limit [18–20] and usually

do not show strong scaling dependencies on system size. We suspect the difference is caused

by the long range nature of the bare Coulomb interaction, which introduces significant non-

local electronic correlations as the system size increases. In this case, the use of “bold” (or

“screened”) interactions instead of the bare Coulomb interactions, as performed in Ref. [44],
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may alleviate the problem. However, “bold” methods must deal with intrinsic issues of mis-

convergence to unphysical solutions [58]. Moreover, adapting such a method to the CDet

framework requires further algorithmic development. This topic is under active develop-

ment [26, 48].

Thus, through the empirical analysis above, we have shown that for convergent series,

the computational cost of our CDet implementation is not very sensitive to changes in tem-

perature or basis sets, but depends strongly on the size of the system, or more specifically,

on the number of valence electrons directly participating in electron excitations.

7.3.3 Realistic impurity: SEET for NiO

Finally, we test our CDet implementation in a general quantum impurity problem setup

that includes the coupling to a non-interacting bath. We employ the SEET framework [95]

for the antiferromagnetic compound NiO, which was studied by Mott [121] as one of the

original correlated insulators. Following the computational setup in Ref. [112], we choose

fcc NiO with lattice constant 𝑎 = 4.1705 Å at temperature 𝑇 ∼ 451 K (𝛽 = 700 Eh−1).
The unit cell is doubled along the [111] direction to capture the antiferromagnetic ordering,

which contains two nickel atoms and two oxygen atoms. We use a 4 × 4 × 4 momentum

discretization and the gth-dzvp-molopt-sr basis set [122] with gth-pbe pseudopotential [123].

The Coulomb integral is decomposed using density fitting with the def2-svp-ri auxiliary

basis [124]. For benchmark purposes, we select the 𝑒𝑔 orbitals of bothNi atoms in the unit cell

as the strongly correlated ‘impurities’, which is the minimal choice of impurities to capture

correlation effects. This yields two independent impurities each with two orbitals. ‘Non-

interacting’ impurity propagators are generated from a converged 𝐺𝑊 simulation of the

complete unit cell following the SEET framework (for details of the computational setup see
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Figure 7.14: Matsubara Green’s function for a NiO 𝑒𝑔 impurity. Top (bottom) row shows the real
(imaginary) part of the Green’s functions, and left (right) column shows values for spin
up (down). Red solid lines: Impurity Green’s function from CDet with 𝑘max = 8. Monte
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dashed lines: Impurity Green’s function fromED,mostly overlappingwith the CDet lines
within line width. Green dash-dotted lines: “Non-interacting” impurity propagator with
discretized hybridization from ED. Purple dotted lines: Impurity Green’s function with
HF counter term as the starting point of CDet.

Ref. [112]).

As a benchmark, we compare our CDet impurity solver to the ED [125] results used in

Ref. [112]. ED requires the discretization of the continuous bath spectrum and its approx-

imation by a few states. In order to separate ED bath fitting errors from the performance

of the CDet method, we run our method for the “non-interacting” impurity Green’s func-

tion 𝑔 corresponding to the discretized non-interacting problem solved by ED. Figure 7.14

shows the impurity Green’s functions for one of the two 𝑒𝑔 impurities. At 𝑘max = 8, the
impurity Green’s function from CDet agrees with the ED solution within line width, and
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the stochastic uncertainty is almost invisible. The spin polarization due to the antiferro-

magnetic ordering is greatly enhanced in both the ED and the CDet solutions, indicating

that dynamical correlations plays an important role and are well captured by the selected

impurity.

In Fig. 7.15, we take a closer look at the convergence of CDet series in comparison to ED by

plotting the differences of CDet impurity Green’s functions to ED at different order trunca-

tions up to 𝑘max = 8. We observe that for both spins, the CDet result consistently converges

to the ED result, giving agreement to within a percent for 𝑘max = 8. The convergence of the
spin down component is slower than spin up, which is consistent to what can be observed in

Fig. 7.14, i.e. the Hartree-Fock contribution already accounts for a greater part of the overall

interaction contribution for the spin up component than for spin down.
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The comparison to ED illustrates that our CDet solver can be reliably applied to general

impurity problems as part of a quantum embedding theory using the exact same framework

as developed for molecules. We emphasize that, at the same complexity, systems with con-

tinuous bath states can be solved. Our method is therefore a controlled method for quantum

impurities with general multi-orbital interactions and hybridizations, not limited by the sys-

tematic error introduced by the bath discretization procedure. The application of the solver

to more complex impurities, where ED calculations are impractical, is a topic of subsequent

publications.

7.4 Conclusion

In conclusion, we have presented a diagrammaticMonte Carlomethod for quantum impurity

models with general interactions and hybridizations using the connected determinant for-

malism [22]. We have tested themethod at the example ofmolecular systems, which presents

a systematic way of changing correlation strength, system size, basis size, and temperature.

We have also tested our method for impurity problems occurring in realistic quantum im-

purity calculations.

Our method is formulated in the language of Green’s functions and self-energies. As

a grand-canonical finite-temperature method, it is able to describe systems with particle

number fluctuations and excited states. However, similar to other perturbative methods, the

diagrammatic series breaks down in the strong correlation regime. This breakdown is clearly

evident in the order-by-order convergence of the series and, as we have shown in detail, can

be traced back to the pole structure of the diagram series.

Our method fills a crucial need of impurity solvers able to treat general four-fermion in-

teraction and general off-diagonal hybridizations in large multi-orbital problem. It should
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therefore find applications in moderately correlated real-material simulations such as those

occurring in DMFT [15, 16] and SEET [35–37, 95].

Furthermethodological progress, such as the use of higher order counter terms [26], better

integration methods [126], complex conformal mapping techniques [34, 49, 127], and other

types of Monte Carlo updates will expand the accessible parameter regime of the method

and may make simulations in the strongly correlated regime possible.
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Chapter 8

Inchworm Algorithm for Interaction

Expansion

This chapter is based on JL, Yang Yu, Emanuel Gull, and Guy Cohen: “Interaction

expansion inchwormMonte Carlo for lattice and impurity models.” (in preparation.)

In a perturbative method described in Chapter 3, it is typically assumed that the non-

interacting Hamiltonian 𝐻̂0 is close to the physical one 𝐻̂ and captures the majority of the

physics in the system. The perturbation series is expected to converge within expansion

orders that is numerically accessible. However, as the interaction strength of the system

becomes stronger, the perturbation expansion of the system becomes increasingly difficult

to converge. Any finite order cutoff in this scenario leads to large truncation errors.

In this chapter, we introduce a Monte Carlo algorithm based on incremental perturbation

expansions of the electron interaction, where each expansion is based on the result of the

previous one. Such a gradual increase of complexity is analogous to the “inchworm” Monte

Carlo algorithm for hybridization expansion methods [27, 29, 31, 33].
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8.1 Imaginary time perturbation theory

We solve electronic systems given by the general Hamiltonian (2.19)

𝐻̂ = 𝐻̂0 + 𝑉̂ ,

𝐻̂0 = ∑
𝑖𝑗,𝜎

ℎ𝑖𝑗 ̂𝑐†𝑖𝜎 ̂𝑐𝑗𝜎 ,

𝑉̂ = 1
2 ∑𝑖𝑗𝑘𝑙

∑
𝜎𝜎 ′

𝑈𝑖𝑗𝑘𝑙 ̂𝑐†𝑖𝜎 ̂𝑐†𝑘𝜎 ′ ̂𝑐𝑙𝜎 ′ ̂𝑐𝑗𝜎

(8.1)

where ̂𝑐†𝑖 , ̂𝑐𝑖 are electron creation and annihilation operators in orbital 𝑖, ℎ is the single-particle
Hamiltonian, and 𝑈 the electronic interaction tensor.

We take a perturbative approach following the interaction-expansion formalism, by treat-

ing the non-interacting Hamiltonian 𝐻̂0 as the unperturbed system and the interaction 𝑉̂
as the perturbation. The partition function of the system at inverse temperature 𝛽 can be

expanded as a Dyson series in the interaction picture [46, 128],

𝑍 = Tr 𝑒−𝛽𝐻̂ = Tr[𝑒−𝛽𝐻̂0 𝑈̂𝐼 (𝛽)] = 𝑍0⟨𝑈̂𝐼 (𝛽)⟩0,

𝑈̂𝐼 (𝛽) ∶= 𝑒𝛽𝐻̂0𝑒−𝛽𝐻̂ =
∞
∑
𝑘=0

(−1)𝑘
𝑘! ∫

𝛽

0
d𝜏1 ∫

𝛽

0
d𝜏2⋯

⋯∫
𝛽

0
d𝜏𝑘𝒯𝜏 {𝑉̂𝐼 (𝜏1)𝑉̂𝐼 (𝜏2)⋯ 𝑉̂𝐼 (𝜏𝑘)}

(8.2)

where the subscript 𝐼 denotes operators in the interaction picture, 𝑈̂𝐼 (𝜏 ) = 𝑒𝜏 𝐻̂0𝑒−𝜏𝐻̂ the

time evolution operator, 𝑍0 = Tr 𝑒−𝛽𝐻̂0 is the non-interacting partition function, ⟨⋅⟩0 =
𝑍−10 Tr[𝑒−𝛽𝐻̂0(⋅)] is the non-interacting thermal expectation value, and 𝒯𝜏 the time order-
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ing operator. Similarly, the electronic Green’s function in imaginary time, defined as

𝐺𝑖𝑗(𝜏 , 𝜏 ′) = 𝐺𝑖𝑗(𝜏 − 𝜏 ′) = −⟨𝒯𝜏 ̂𝑐𝑖(𝜏 ) ̂𝑐†𝑗 (𝜏 ′ + 0+)⟩, (8.3)

where ⟨⋅⟩ = 𝑍−1 Tr[𝑒−𝛽𝐻̂ (⋅)], can be expanded as [9, 14, 46]

𝐺(𝜏 , 𝜏 ′) = −𝑍0𝑍
∞
∑
𝑘=0

(−1)𝑘
𝑘! ∫

𝛽

0
d𝜏1 ∫

𝛽

0
d𝜏2⋯∫

𝛽

0
d𝜏𝑘×

× ⟨𝒯𝜏 ̂𝑐𝐼 (𝜏 ) ̂𝑐†𝐼 (𝜏 ′)𝑉̂𝐼 (𝜏1)𝑉̂𝐼 (𝜏2)⋯ 𝑉̂𝐼 (𝜏𝑘)⟩0.
(8.4)

We introduce a control parameter 𝜃 ∈ [0, 𝛽], and define an “auxiliary” partition function

𝑍𝜃 ∶= 𝑍0⟨𝑈̂𝐼 (𝜃)⟩0 = Tr[𝑒−(𝛽−𝜃)𝐻̂0𝑒−𝜃𝐻̂ ]. (8.5)

Since 𝑈̂𝐼 (0) is the identity operator, 𝑍𝜃 connects 𝑍0 = 𝑍0⟨𝑈̂𝐼 (0)⟩0 and 𝑍 = 𝑍0⟨𝑈̂𝐼 (𝛽)⟩0 contin-
uously via the parameter 𝜃 , such that 𝑍𝜃=0 = 𝑍0, 𝑍𝜃=𝛽 = 𝑍 . With 𝑈̂𝐼 from Eq. (8.2), 𝑍𝜃 can be

expanded as

𝑍𝜃 = 𝑍0
∞
∑
𝑘=0

(−1)𝑘
𝑘! ∫

𝜃

0
d𝜏1 ∫

𝜃

0
d𝜏2⋯∫

𝜃

0
d𝜏𝑘×

× ⟨𝒯𝜏 𝑉̂𝐼 (𝜏1)𝑉̂𝐼 (𝜏2)⋯ 𝑉̂𝐼 (𝜏𝑘)⟩0,
(8.6)

which corresponds to replacing all upper integration bounds from 𝛽 to 𝜃 in the expansion

of the physical partition function 𝑍 . 𝑍𝜃 = Tr[𝑒−(𝛽−𝜃)𝐻̂0𝑒−𝜃𝐻̂ ] can be understood as a trace

of a “partially dressed” time evolution: from 0 to 𝜃 the system is propagated with the full

Hamiltonian 𝐻̂ , and then from 𝜃 to 𝛽 with the non-interacting Hamiltonian 𝐻̂0.

We can similarly apply this parametrization to the Green’s function, by changing the

bounds of the imaginary time integrals in Eq. (8.4) to 𝜃 . This defines an “auxiliary Green’s
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function”

𝐺𝜃 (𝜏 , 𝜏 ′) = −𝑍0𝑍𝜃
∞
∑
𝑘=0

(−1)𝑘
𝑘! ∫

𝜃

0
d𝜏1 ∫

𝜃

0
d𝜏2⋯∫

𝜃

0
d𝜏𝑘×

× ⟨𝒯𝜏 ̂𝑐𝐼 (𝜏 ) ̂𝑐†𝐼 (𝜏 ′)𝑉̂𝐼 (𝜏1)𝑉̂𝐼 (𝜏2)⋯ 𝑉̂𝐼 (𝜏𝑘)⟩0.
(8.7)

𝐺𝜃 recovers the non-interacting Green’s function at 𝜃 = 0 and the full Green’s function 𝐺 at

𝜃 = 𝛽 , and thus continuously connects the two. In Appendix D we show an explicit non-

perturbative definition of 𝐺𝜃 . Since 𝜃 breaks the time-translational invariance, 𝐺𝜃 cannot be
formulated as a function of a single time parameter as in Eq. (8.3).

8.2 Diagrammatic evaluation of auxiliary quantities

The expansions of physical quantities 𝑍 and 𝐺, when applied to the electronic Hamiltonian

(8.1), can be represented graphically as a sum over Feynman diagrams [128]. A diagram at

order 𝑘 is composed of 𝑘 interaction vertices representing 𝑈𝑖𝑗𝑘𝑙 , each assigned to an imaginary

time index 𝜏𝑖 ∈ [0, 𝛽], 𝑖 = 1, … , 𝑘. Propagator lines representing the non-interacting Green’s

function 𝐺0 connect these vertices. For the partition function 𝑍 , the non-interacting expec-

tation values in Eq. (8.2) can be evaluated using Wick’s theorem, which generates closed

“vacuum” diagrams which can be either connected or disconnected. The Green’s function

expansion in Eq. (8.4) involves two “external” operators ̂𝑐𝐼 (𝜏 ) and ̂𝑐†𝐼 (𝜏 ′) which become ex-

ternal “legs” in Feynman diagrams, and the disconnected components are canceled by the

partition function diagrams of 𝑍 in the denominator, leaving diagrams in which all internal

vertices and external legs are fully connected [39, 128]. Figure 8.1 shows examples of such

“bare” Feynman diagrams.

Since expansions of the auxiliary quantities, Eqs. (8.6) and (8.7), only differ from Eqs. (8.2)
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(a)

(b)

Figure 8.1: Examples of bare Feynman diagrams. Diagram (a) is a third order diagram for 𝑍 , which
can be either connected or disconnected. Diagram (b) is a third order diagram for 𝐺(𝜏 , 𝜏 ′),
which can only be connected. In both diagrams, filled squares are internal vertices rep-
resenting 𝑈𝑖𝑗𝑘𝑙 , lines with arrows are bare propagators representing 𝐺0, and open/closed
circles represent the external operators.

and (8.4) in the integration bounds of internal time indices, the same diagram rules can be

applied to compute 𝑍𝜃 and 𝐺𝜃 , as long as the vertices 𝑈 are confined to the imaginary time

interval [0, 𝜃], as illustrated in Fig. 8.2. The expansions of 𝐺 and 𝐺𝜃 can be formally written

as

𝐺(𝜏 , 𝜏 ′) =
∞
∑
𝑘=0

(−1)𝑘
𝑘! ∫

𝛽

0
d𝜏1 ∫

𝛽

0
d𝜏2⋯∫

𝛽

0
d𝜏𝑘×

× 𝐷bare(𝜏 , 𝜏 ′; 𝜏1, 𝜏2, … , 𝜏𝑘),

𝐺𝜃 (𝜏 , 𝜏 ′) =
∞
∑
𝑘=0

(−1)𝑘
𝑘! ∫

𝜃

0
d𝜏1 ∫

𝜃

0
d𝜏2⋯∫

𝜃

0
d𝜏𝑘×

× 𝐷bare(𝜏 , 𝜏 ′; 𝜏1, 𝜏2, … , 𝜏𝑘),

(8.8)

where 𝐷bare denotes the sum of all connected bare diagrams [39, 128].
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(a)

(b)

Figure 8.2: Examples of valid vertex locations of bare expansions. (a) shows vertices contributing to
expansions of 𝑍 or 𝐺, which can be inserted at any imaginary times in [0, 𝛽]. In (b) we
show valid vertices contributing to expansions of 𝑍𝜃 or 𝐺𝜃 with solid color, which are only
allowed in [0, 𝜃] shown as the solid segment. The shaded vertex in the red dashed circle
is excluded.

Assuming that we know 𝐺𝜃 for some 𝜃 , we aim to express 𝐺𝜃′ for 𝜃′ > 𝜃 as a diagrammatic

series in terms of 𝐺𝜃 instead of 𝐺0, i.e. using 𝐺𝜃 as partially “dressed” propagator lines. As

each 𝐺𝜃 contains infinitely many bare diagram components, each of which is a valid bare

diagram for 𝐺𝜃 where internal vertices reside in the interval [0, 𝜃], diagram topologies for

𝐺𝜃′ which can be obtained from replacing the 𝐺𝜃 propagator with these bare components

would be overcounted if the unmodified diagram rules were applied. Therefore, diagram

rules need to be modified to exclude the overcounted diagram topologies. Panels (d) and (e)

in Fig. 8.3 illustrate an example of such overcounting. We summarize the updated diagram

rules for computing 𝐺𝜃′ from 𝐺𝜃 as follows:

1. For a given set of vertices 𝑈 at 𝜏1, … , 𝜏𝑘 ∈ [0, 𝜃′] and external operators ̂𝑐, ̂𝑐† at 𝜏 , 𝜏 ′:

2. Generate all possible graphs by connecting vertices and operators with propagator

lines;

3. Eliminate all disconnected graphs;

4. Sort the vertices into two categories:
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• “Type 1” if 0 < 𝜏𝑖 < 𝜃 ,

• “Type 2” if 𝜃 < 𝜏𝑖 < 𝜃′;

5. Eliminate all graphs that only contain Type-1 vertices;

6. Eliminate all graphs that contain subgraphs of Type-1 vertices connected with exactly

two propagators to the remainder of the graph.

Figure 8.3 illustrates these rules. The first three rules are the same as in a bare diagram [39,

128], and the additional rules exclude overcounted diagrams. Note that rule 6 is analogous

to the “skeleton” diagram rules of the self-energy for bold-line perturbation theory [52].

The diagrammatic series can be formally written as

𝐺𝜃′(𝜏 , 𝜏 ′) =
∞
∑
𝑘=0

(−1)𝑘
𝑘! ∫

𝜃′

0
d𝜏1 ∫

𝜃′

0
d𝜏2⋯∫

𝜃′

0
d𝜏𝑘×

× 𝐷𝜃 (𝜏 , 𝜏 ′; 𝜏1, 𝜏2, … , 𝜏𝑘)
(8.9)

where 𝐷𝜃 denotes the sum of all diagrams following the updated diagram rules in which 𝐺𝜃
is used as the propagator. We emphasize here that all the internal time indices 𝜏1, … , 𝜏𝑘 are
integrated from 0 to 𝜃′, whereas the external indices 𝜏 and 𝜏 ′ are unconstrained and take

values from 0 to 𝛽 .
For 𝜃′ → 𝜃 , 𝐺𝜃′ continuously approaches 𝐺𝜃 , and the expansion Eq. (8.9) includes substan-

tially fewer diagrams than the bare expansion Eq. (8.8). As we will show in Sec. 7.3, 𝐺𝜃 is
typically a much better starting point than 𝐺0 for a perturbation expansion of 𝐺𝜃′ .
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Type 1:

(a)
(b)

(c)

(d) (e)

()

Type 2:

Figure 8.3: Diagram rules for the inchworm expansion from 𝐺𝜃 to 𝐺𝜃′ with 𝜃 < 𝜃′. (a) Thin lines stand
for the bare propagator 𝐺0, and the “dressed” lines for 𝐺𝜃 . Green (red) crosses represent
Type 1 (2) vertices. (b) Type 1 vertices can only be inserted in [0, 𝜃] (green segment), and
Type 2 vertices in (𝜃, 𝜃′] (red segment). Neither type of vertices are allowed in the dashed
segment. (c) Each “dressed” line can be expanded in to a bare series following Eq. (8.7),
in terms of connected diagrams with only Type 1 vertices. Diagram (d) is an example of
a connected diagram that needs to be excluded from the inchworm expansion, since it is
already included in Diagram (e). In Box (f), the top row of diagrams are excluded by the
diagram rules, where the overcounted components are circled out by dashed red curves;
the bottom row shows valid diagrams for the expansion Eq. (8.9).
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8.3 Inchworm Monte Carlo algorithm

The ability to efficiently obtain 𝐺𝜃′ from 𝐺𝜃 with 𝜃 < 𝜃′ suggests an iterative algorithmwhere

a sequence of 𝑁 simulations for 𝜃1, … , 𝜃𝑁 is performed to obtain 𝐺𝜃𝑛 from 𝐺𝜃𝑛−1 , with 𝜃0 = 0
and 𝜃𝑁 = 𝛽 . The proximity of 𝐺𝜃𝑛 and 𝐺𝜃𝑛−1 reduces the number of diagrams to be evaluated

and thereby accelerates the simulation. Due to its similarity to the inchworm algorithm for

the hybridization expansion [27, 33, 129, 130], which utilizes the same strategy for gradually

increasing the the propagator intervals, we term the parameter 𝜃 the “inchworm time”, and

the expansion from Eq. (8.9) as the “inchworm expansion”. The final solution is guaranteed

to be exact if (1) the perturbation series converges in each inchworm expansion calculation,

and (2) the series is computed to infinite orders.

By making the difference in inchworm time 𝛥𝜃 = 𝜃′ − 𝜃 sufficiently small, such that 𝐺𝜃′
is well approximated by 𝐺𝜃 , we observe that in practic the first assumption is satisfied for

all systems we study in Sec. 7.3. In Appendix E, we connect the convergence of inchworm

series to the skeleton expansion [52], which is typically obtained self-consistently and may

converge to an unphysical fixed point [58].

Satisfying the second assumption is harder as the summation of all diagram is not possible

in practice. However, one may hope that contributions to the observable decay with in the

accessible orders. This behavior is dependent on the systems studied. Section 7.3 shows

examples where this assumption is valid, and systems where contributions do not decay

within the accessible orders.

A complete inchworm simulation proceeds as follows. We first construct two imaginary

time grids: one “inchworm grid” {𝜃𝑛|𝑛 = 0, … , 𝑁 , 𝜃𝑛+1 > 𝜃𝑛} for the sequence of inchworm
times 𝜃 , and one “interpolation grid” {𝜏𝑖|𝑖 = 0, … , 𝑁𝜏 } for measuring and interpolating the

auxiliary Green’s function. The final Green’s function is then computed via 𝑁 “inchworm
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(a) Expansion:

Expansion:(b)

Figure 8.4: Comparison of bare and inchworm Monte Carlo for Green’s function. (a) shows a vertex
configuration for the bare expansion in Eq. 8.4 which is equivalent to an inchworm sim-
ulation with 𝑁 = 1. (b) shows configurations for an inchworm Monte Carlo simulation
with 𝑁 = 4 at each inchworm step. In Monte Carlo samplings of each expansion, Type-1
(Type-2) vertices are sampled in green (red) segments on the imaginary time axis.

steps”: In the 𝑛-th step, we perform an inchworm expansion of 𝐺𝜃𝑛 with respect to 𝐺𝜃𝑛−1 , and
calculate 𝐺𝜃𝑛(𝜏𝑖, 𝜏𝑗) for each pair of 𝑖, 𝑗 = 0, … , 𝑁𝜏 using Monte Carlo as detailed in Sec. 8.4,

with the non-interacting initial condition 𝐺𝜃0 = 𝐺0. Figure 8.4 illustrates the “inching” pro-
cess, in comparisonwith the bare expansionwhich is equivalent to doing only one inchworm

step. 𝐺𝜃𝑛 is interpolated on the interpolation grid for continuous-time evaluations of the next

inchworm step. Since 𝐺𝜃 (𝜏 , 𝜏 ′) is generally not smooth when 𝜏 = 𝜃 or 𝜏 ′ = 𝜃 , the interpo-
lation grid {𝜏𝑖} should be chosen to include all points on the inchworm grid {𝜃𝑛} for good
interpolation results.

In this work, we choose equidistant time points for both grids, and perform linear inter-

polation for measured auxiliary Green’s functions, which provide decent accuracy at high

temperatures. More advanced time grids or interpolation schemes may be employed to op-

timize the method for lower temperatures.
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8.4 Continuous-time Monte Carlo evaluation of inchworm

expansions

We evaluate each inchworm expansion (8.9) using the standard continuous-time quantum

Monte Carlo approach [9, 12, 14, 17, 18, 22, 131]. We employ a finite cutoff of the expan-

sion order 𝑘max, and perform a Monte Carlo importance sampling of the internal spacetime

coordinates following the a priori distribution

𝑝(𝒞 ) ∝ |𝐷𝜃 (𝜏 , 𝜏 ′; 𝒞 )|, (8.10)

where 𝒞 = {𝜏1, … , 𝜏𝑘} is a Monte Carlo configuration. Since 𝐷𝜃 has varying signs due to

its fermionic nature, the absolute value is necessary to ensure 𝑝(𝒞 ) is positive, whereas the
fermionic sign sgn(𝐷𝜃 ) enters measurements of all physical observables. For a given vertex

configuration, 𝐷𝜃 is computed explicitly by summing over all proper inchworm diagrams

according to the diagram rules. In our implementation, we use a graph theory routine to

precompute and save all valid diagram topologies for each expansion order.

We generateMonte Carlo samples asMarkov chain via theMetropolis-Hastings algorithm.

From each configuration 𝒞 , a new configuration 𝒞 ′ is proposed following some proposal

probability distribution 𝑤prop(𝒞 ′|𝒞 ). To ensure detailed balance, an acceptance ratio 𝑅 is

calculated after each proposal as

𝑅(𝒞 ′|𝒞 ) = 𝑤prop(𝒞 |𝒞 ′)𝑝(𝒞 ′)
𝑤prop(𝒞 ′|𝒞 )𝑝(𝒞 ) . (8.11)

The proposal 𝒞 → 𝒞 ′ is accepted with probability

𝑤acc(𝒞 ′|𝒞 ) = min(1, 𝑅(𝒞 ′|𝒞 )). (8.12)
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This ensures the detailed balance of the Markov process, i.e.

𝑤(𝒞 ′|𝒞 )𝑝(𝒞 ) = 𝑤(𝒞 |𝒞 ′)𝑝(𝒞 ′), (8.13)

where

𝑤(𝒞 ′|𝒞 ) = 𝑤acc(𝒞 ′|𝒞 )𝑤prop(𝒞 ′|𝒞 ). (8.14)

which guarantees that samples obtain the equilibrium distribution 𝑝(𝒞 ) after thermalization.

We employ the same Monte Carlo updates as in CT-INT [9] which guarantees ergodicity for

all systems we study in this work, including random insertions and removals of a single

vertex or a pair of vertices. Auxiliary Green’s function 𝐺𝜃 is measured from the Monte

Carlo procedure and normalized against quantities that are analytically available, such as

low-order diagrams.

8.5 Generalization of the inchworm construction

The inchworm parametrization scheme we have introduced so far performs a partial “dress-

ing” in the interval [0, 𝜃] in the imaginary time evolution. This can be generalized to any

open set of the imaginary time 𝛩 ⊂ [0, 𝛽], such that imaginary time evolves with 𝐻̂ in all

disjoint intervals in 𝛩, and with 𝐻̂0 in the rest of [0, 𝛽]. This gives auxiliary quantities 𝑍𝛩
and 𝐺𝛩 that are “dressed” in 𝛩. The bare diagrammatic expansions of these quantities are

the same as in Eqs. (8.6) and (8.7), except that the interaction vertices can only be inserted in

𝛩.
Incremental inchworm expansions of 𝐺𝛩′ with respect to 𝐺𝛩 can be formulated in analogy

to Eq. (8.9) for 𝛩 ⊊ 𝛩′, by simply changing the classification of vertices. A Type 1 vertex

now has imaginary time 𝜏 ∈ 𝛩, and a Type 2 vertex has 𝜏 ∈ 𝛩′\𝛩. The inchworm grid of
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the imaginary time is thus replaced by a sequence of open sets 𝛩0, 𝛩1, … , 𝛩𝑁 , where 𝛩0 = ∅
and 𝛩𝑁 = [0, 𝛽], and 𝛩𝑛 ⊊ 𝛩𝑛+1 for 𝑛 = 0,… , 𝑁 − 1. This brings flexibility to the inchworm

Monte Carlo setup, which can now choose a different sequence of intervals or sets when

left-to-right “inching” is unsuitable.

8.6 Results

This section presents preliminary results obtained from our prototype implementation of

the inchworm algorithm.

We first apply the algorithm to twoHubbard atomswith on-site interaction 𝑈 = 2, coupled
with a hopping amplitude of 𝑡 = 1. In Fig. 8.5, we show inchworm calculation results of the

Green’s function (blue lines) in comparison to bare diagrammatic series (orange lines) and

ED results (dashed black lines), computed at different temperatures. Series expansions in

both the inchworm simulations and the bare ones are truncated at 𝑘max = 6. Hartree–Fock
shift (see, e.g., Sec. 3.5 or Sec. 7.2.5) is applied to remove the tadpole diagrams. We observe

that inchworm agrees with ED at all temperature points we compute here. The fact that bare

simulations also give decent agreement indicates that this problem is weakly-interacting and

the bare series converges fast.

Once we remove the Hartree–Fock shift and simulate directly from the non-interacting

Green’s function 𝑔, the bare series starts to break down, as shown in Fig. 8.6 where the same

system is calculated without the shift. The bare series results do not converge at 𝑘max = 6,
whereas the inchworm show decent agreement with ED. A closer look at the convergence

behavior is presented in Fig. 8.7, in which the top panel shows the same results as the bottom

panel of Fig. 8.6, the middle panel shows the order-by-order contributions in the final inch-

worm step, and the bottom panel shows order-by-order contributions to the Green’s function
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Figure 8.5: Results at different 𝛽 . Hubbard dimer with 𝑈 = 2 and Hartree-shift, half-filling.

133



−0.55

−0.50

−0.45

G00(τ)

inchworm (6)

bare (6)

ED −0.2

0.0

0.2β= 1

G01(τ)

−0.6

−0.5

−0.4

−0.3

−0.25

0.00

0.25
β= 2

−0.5

0.0

0.5

−0.5

0.0

0.5
β= 4

0.0 0.5 1.0

τ/β

−2

0

2

0.0 0.5 1.0

τ/β

−2

0

2
β= 8

Figure 8.6: Results at different 𝛽 . Hubbard dimer with 𝑈 = 2 without Hartree-shift, half-filling, com-
pared to bare.

in the bare calculation. The inchworm calculation converges rapidly and only the first three

expansion orders show significant contribution, whereas in the bare case no convergence

can be observed within 𝑘max = 6. This shows that inchworm avoids the slow convergence

or divergence problems of the bare series.

We nowmove on to a slightly more complex system: a triangular cluster of three Hubbard

atoms at 𝑈 = 2. As shown in Fig. 8.8, even if the system is away from particle–hole symmetry

and a Hartree–Fock shift becomes difficult, inchworm calculations at 𝑘max = 6 agrees with
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Figure 8.7: Convergence comparison between bare and inchworm. Hubbard dimer with 𝑈 = 2, 𝛽 = 8
without Hartree-shift, half-filling.
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Figure 8.8: Results at different 𝛽 . Hubbard trimer with 𝑈 = 2 and 𝜇 = 1, no Hartree-shift.

ED within line width, whereas the bare calculation with the same order truncation fails.

Figure 8.9 illustrates individual inchworm steps and the behavior of the auxiliary Green’s

function 𝐺𝜃 . At each 𝜃𝑖, 𝐺𝜃 (𝜏 , 𝜏 ′) shows discontinuity of the first derivative that 𝜏 = 𝜃 or

𝜏 ′ = 𝜃 . For each inchworm step 𝜃𝑖 → 𝜃𝑖+1, the inchworm expansion corrects the “kink” from

𝐺𝜃𝑖 and introduces a new “kink” to 𝐺𝜃𝑖+1 , as shown by the “strips” in the bottom panel.

In Fig. 8.10, we show the deviations of inchworm results from ED when using the gen-

eralized inchworm scheme with different choices of “dressed” intervals. Results labeled as
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Figure 8.9: Auxiliary Green’s functions at each inchworm steps for Hubbard dimer, 𝑈 = 2, 𝛽 = 2.
Top panel: 𝐺𝜃𝑖(𝜏 , 0) at each step, compared to 𝐺𝜃𝑖−1(𝜏 , 0) and ED. Bottom panel: 𝐺𝜃𝑖(𝜏 , 𝜏 ′) −𝐺𝜃𝑖(𝜏 , 𝜏 ′). Colors not to scale. Red means positive, blue means negative. Hubbard dimer
with 𝑈 = 2, 𝛽 = 2 and Hartree-shift, half-filling.

“left” are obtained from the original formulation where 𝛩𝑛 = [0, 𝑛𝛥𝜃]. The meanings of

the other labels are: “right” corresponds to 𝛩𝑛 = [𝛽 − 𝑛𝛥𝜃, 𝛽], “both” corresponds 𝛩𝑛 =
[0, 𝑛𝛥𝜃/1] ∪ [𝛽 −𝑛𝛥𝜃/2, 𝛽], and “middle” corresponds to 𝛩𝑛 = [𝛽/2−𝑛𝛥𝜃/2, 𝑏𝑒𝑡𝑎/2+𝑛𝛥𝜃/2].
Since the system is particle–hole symmetric, the bare Green’s function 𝑔 already captures

the physics near 𝜏 = 0 and 𝜏 = 𝛽 well. The “both” mode therefore show the largest devia-

tion, whereas the “middle” result shows a much better agreement. This shows that one can

achieve better inchworm results by choosing different propagation schemes according to the

physical properties of the systems. Note that this only matters if the finite order truncation

is applied, not if the series converges.
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Figure 8.10: Difference of final inchwormGF vs EDwith different propagationmodes. Hubbard dimer
with 𝑈 = 2, 𝛽 = 2 and Hartree-shift, half-filling.

8.7 Future directions

The inchworm algorithm introduced in this chapter is the first attempt in applying incre-

mental diagrammatic expansions to the interaction expansion scheme. In this section, we

list a few directions for future developments along this route.

Algorithmic improvements and extensions can be applied to the current theoretical setup:

• The on-site Hubbard interaction can be extended to general four-fermion interaction

tensor 𝑈𝑖𝑗𝑘𝑙 . Monte Carlo updates may need to be adjusted to a similar scheme to ones

used in Chapter 7. This will enable applications to realistic impurities with general

interactions.

• The maximum expansion order is the main limitation of this method. Potential im-

provements include: in-memory caching of diagram topologies, e.g., using the least-

frequently-used (LFU) cache; direct sampling of diagrammatic topologies (which re-

quires carefully designed Monte Carlo updates); CDet-like recursion relations (may

require two-particle objects).
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On the theory aspect, one could explore one of the following directions:

• Different integration scheme. In the current integration schemewith finite order cutoff

𝑘max, in early inchworm steps where the dressed interval is small, the effective “den-

sity” of vertices is higher than in later steps, which lead to the asymmetry observed

in the results. If the series can be reformulated to separate integrals over the “old”

interval from those over the “new” interval, the situation may be improved. Note that

this implies a different perturbation series, not simply reweighing the Monte Carlo

integration, which only affects the stochastic error, not the truncation error.

• If we have dressed an interval 𝛩 = [0, 𝜃], by the circular property of the trace, we also

obtain auxiliary quantities with dressed interval 𝛩′ = [𝛥𝜃, 𝜃 + 𝛥𝜃] for some 𝛥𝜃 auto-
matically. It would be interesting to see if one can “merge” two dressed propagators,

such that [0, 𝜃](+)[𝜃, 2𝜃] → [0, 2𝜃]. This implies that in the diagrammatic series, we

now have three types of vertices: vertices belonging to either interval or neither of

them, as well as (at least) two types of propagators.

• The diagram rules are designed assuming the perturbation expansion is summed up to

infinite order, whereas in practice we only perform a finite order simulation. Onemight

gain additional insight by formulating the incremental expansion in a “partially-bold”

scheme [48].
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Chapter 9

Numerical Representations of the Green’s

Function

This chapter is partially based on JL, MarkusWallerberger, Naoya Chikano, Chia-

Nan Yeh, Emanuel Gull, and Hiroshi Shinaoka: “Sparse sampling approach to effi-

cient ab initio calculations at finite temperature.” Phys. Rev. B 101, 035144 (2020).

The key quantity in diagrammatic methods for correlated electrons is the electron Green’s

function 𝐺(𝜏), both as a component (the “propagator”) in diagrammatic evaluations and as

the target quantity of these methods. In ab initio calculations, the difference between the

scales of the bare Hamiltonian (which sets a frequency range), temperature (which dictates

the frequency resolution), and the energy scales for competing quantum phenomena spans

many orders of magnitude. As a consequence, a naive representation of the Green’s function

requires an imaginary-time grid too large to store in memory, and solving equations such

as the Dyson equation to the required accuracy becomes prohibitively expensive. This issue

becomes even more pronounced for two-particle response functions, which are generically

a function of multiple time and orbital indices.
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Compact representations of Green’s functions are crucial to address this problem. Repre-

sentations based on power meshes [132, 133], Legendre polynomials [134, 135], Chebyshev

polynomials [136, 137], intermediate numerical representations (IR) [138–140], quadrature

rules [141, 142], and spline interpolations [143] have been proposed, as well as high fre-

quency tail expansions [5, 144, 145]. In this chapter, we briefly review some of the rep-

resentations, and introduce the sparse sampling method [146, 147] which allows compact

representations of the Green’s function in both frequency and in time, and provides efficient

transformations between the two.

9.1 High-frequency expansion

We start with the non-interacting Green’s function of a single-band atom at energy level

𝜀 = 0 as an example. Following (3.13), we have

𝑔(i𝜔𝑛) = 1
i𝜔𝑛 − 𝜀 = 1

i𝜔𝑛
. (9.1)

The inverse Fourier transform writes

𝑔(𝜏) = 1
𝛽

∞
∑
𝑛=−∞

𝑒−i𝜔𝑛𝜏
i𝜔𝑛

. (9.2)

If we take the limit 𝜏 → 0−, which corresponds to the density matrix, the Fourier transform

become a harmonic series, which does not converge absolutely and requires to be evaluated

as principle values. As a result, any truncations of the frequency, which is necessary in

numerical methods, results in incorrect results. A common solution to this problem [144,

145] is to remove the high-frequency “tails”, defined as polynomials of the inverse frequency

1/i𝜔𝑛, when performing Fourier transforms, and add back the corresponding functions in 𝜏
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representation afterwards:

𝐺tail(i𝜔𝑛) ∶= 𝐺I

i𝜔𝑛
+ 𝐺II

(i𝜔𝑛)2
+ ⋯ ,

𝐺̃(i𝜔𝑛) ∶= 𝐺(i𝜔𝑛) − 𝐺tail(i𝜔𝑛),

𝐺̃(𝜏 ) Inverse Fourier←−−−−−−−−−−−− 𝐺̃(i𝜔𝑛),

𝐺(𝜏) = 𝐺̃(𝜏 ) + 𝐺tail(𝜏 ),

(9.3)

where 𝐺tail(𝜏 ) is obtained from inverse Fourier transforms of 1/(i𝜔𝑛)𝑘 . Here we list examples

of Fermion “tails” for the first three orders:

1
i𝜔𝑛

∼ −12,
1

(i𝜔𝑛)2
∼ 2𝜏 − 𝛽

4 ,
1

(i𝜔𝑛)3
∼ 𝜏(𝛽 − 𝜏)

4 ,

…

(9.4)

Suppose we have a time-ordered correlation function defined as 𝐹(𝜏) = ⟨𝒯𝜏 𝐴̂(𝜏 )𝐵̂(0)⟩,
where 𝐴̂ and 𝐵̂ are Heisenberg picture operators of the same (Bosonic/Fermionic) statistics.

The Matsubara representation of 𝐹 is

𝐹(i𝜔𝑛) = ∫
𝛽

0
𝐹(𝜏)𝑒i𝜔𝑛𝜏d𝜏 , (9.5)

where i𝜔𝑛 are the corresponding Bosonic/Fermionic Matsubara frequencies.
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The high frequency moments of 𝐹(i𝜔𝑛) can be derived from integration by parts, i.e.

𝐹(i𝜔𝑛) = ∫
𝛽

0
𝐹(𝜏)𝑒i𝜔𝑛𝜏d𝜏

= 𝐹(𝜏)𝑒i𝜔𝑛𝜏
i𝜔𝑛

|
𝛽

0
− 1
i𝜔𝑛 ∫

𝛽

0
𝐹 ′(𝜏 )𝑒i𝜔𝑛𝜏d𝜏

= ⋯

= 𝜁𝐹(𝛽) − 𝐹(0)
i𝜔𝑛

− 𝜁𝐹 ′(𝛽) − 𝐹 ′(0)
(i𝜔𝑛)2

+ 𝜁𝐹″(𝛽) − 𝐹″(0)
(i𝜔𝑛)3

− ⋯

(9.6)

where 𝜁 = ±1 for Bosonic/Fermionic statistics. We can induce from above that the high

frequency expansion of 𝐹(i𝜔𝑛) is

𝐹(i𝜔𝑛) =
∞
∑
𝑘=1

𝑚𝑘
(i𝜔𝑛)𝑘

, (9.7)

where

𝑚𝑘 = (−1)𝑘−1 [𝜁 𝐹 (𝑘−1)(𝛽) − 𝐹 (𝑘−1)(0)]

= (−1)𝑘−1 [𝐹 (𝑘−1)(0−) − 𝐹 (𝑘−1)(0+)]

= (−1)𝑘 [𝐹 (𝑘−1)(0+) − 𝐹 (𝑘−1)(0−)]

(9.8)

is the 𝑘-th moment. Using the equation of motion of the Heisenberg picture operators, we

have

𝐹 (𝑘−1)(𝜏 ) = ⟨𝒯𝜏 𝜕𝑘𝜏 𝐴̂(𝜏 )𝐵̂(0)⟩ = ⟨𝒯𝜏 [𝐻̂ , 𝐴̂](𝑘)(𝜏 )𝐵̂(0)⟩, (9.9)

where [⋅, ⋅](𝑘) is the sequential commutator defined as

[𝐻̂ , 𝐴̂](𝑘) = [𝐻̂ , [𝐻̂ , 𝐴̂](𝑘−1)], [𝐻̂ , 𝐴̂](0) = 𝐴̂. (9.10)
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With this, the high-frequency moments can be expressed as

𝑚𝑘 = (−1)𝑘 [𝐹 (𝑘−1)(0+) − 𝐹 (𝑘−1)(0−)]

= (−1)𝑘 [⟨[𝐻̂ , 𝐴̂](𝑘−1)𝐵̂⟩ − 𝜁 ⟨𝐵̂[𝐻̂ , 𝐴̂](𝑘−1)⟩]

= (−1)𝑘⟨[[𝐻̂ , 𝐴̂](𝑘−1), 𝐵̂]𝜁 ⟩,

(9.11)

where [⋅, ⋅]𝜁 is commutator for Bosons, anticommutator for Fermions.

In Appendix F, the first three high-frequency tails of the Green’s function are derived for

the general Hamiltonian (2.24).

9.2 Chebyshev polynomials

The Green’s function 𝐺(𝜏) is a continuous and bounded function in the interval [0, 𝛽]. When

mapped into the interval [−1, 1], it can be exactly represented by orthogonal polynomials,

such as Legendre or Chebyshev polynomials. These polynomials can serve as efficient basis

representations of the Green’s function (see, e.g., Refs. [134, 135] for Legendre, Refs. [136,

137] for Chebyshev.) In addition, these orthogonal systems are accompanied by Gauss

quadrature rules for numerical integration, which provides a natural replacement to the

uniform imaginary time grid which is inefficient in realistic calculations. In this section, we

briefly summarize properties of the Chebyshev representation.

The Chebyshev polynomials of the first kind 𝑇𝑙(𝑥) form an orthogonal system in the in-

terval [−1, 1], which can be mapped in to the interval [0, 𝛽] via

𝑥(𝜏) = 2𝜏
𝛽 − 1, 𝜏 (𝑥) = 𝛽(𝑥 + 1)

2 (9.12)

such that 𝑇 𝛼𝑙 (𝜏 ) = 𝑇𝑙[𝑥(𝜏 )]. We use the notation 𝑇𝑙(𝜏 ) to represent the order 𝑙 Chebyshev
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polynomial mapped onto the interval [0, 𝛽].
Approximating an analytical function with the first 𝑁 Chebyshev polynomials is conve-

nient due to the discrete orthogonality on the roots of the (𝑁 +1)-th Chebyshev polynomial

1
𝑁

𝑁−1
∑
𝑘=0

𝑇𝑖(𝑥𝑘)𝑇𝑗(𝑥𝑘) =
1 + 𝛿𝑖,0

2 𝛿𝑖𝑗 (9.13)

where 𝑥𝑘 are the roots of 𝑇𝑁 (𝑥). The Chebyshev coefficients are therefore well approximated

by Clenshaw–Curtis quadrature:

𝐺𝛼
𝑙 = 2

𝑁(1 + 𝛿0,𝑙)
𝑁−1
∑
𝑘=1

𝐺𝛼 (𝜏𝑘)𝑇𝑙(𝜏𝑘) + 𝒪(2−𝑁 ) (9.14)

where 𝜏𝑘 = 𝜏(𝑥𝑘) defined in (9.12).

With the Chebyshev coefficients 𝐺𝛼
𝑙 , one can perform fast interpolation of 𝐺𝛼 (𝜏 ) at any

𝜏 ∈ [0, 𝛽] using recursion relations. Fourier transforms of the basis function ̂𝑇 𝛼𝑙 (i𝜔𝛼𝑛 ) can also
be computed, see Ref. [136].

9.3 Intermediate representation

The intermediate representation (IR) basis introduced in Refs. [138, 139] is designed to better

capture properties of Green’s functions in physical systems rather than arbitrary analytic

functions. The IR basis has been applied to numerical analytic continuation [148] and DMFT

calculations [149]. This section provides a brief description of the IR basis following the

notation used in Ref. [140]. The IR basis originates from the Lehmann representation of the
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single-particle Green’s function

𝐺𝛼 (𝜏 ) = −∫
𝜔max

−𝜔max

d𝜔𝐾𝛼 (𝜏 , 𝜔)𝜌𝛼 (𝜔), (9.15)

where 𝛼 denotes the statistics (F for fermions and B for bosons), and the spectrum 𝜌𝛼 (𝜔)
is bounded in the interval [−𝜔max, 𝜔max] (𝜔max is a cutoff frequency). The kernel 𝐾𝛼 (𝜏 , 𝜔)
reads

𝐾𝛼 (𝜏 , 𝜔) ≡ 𝜔𝛿𝛼,B 𝑒−𝜏𝜔
1 ± 𝑒−𝛽𝜔 (9.16)

for 𝜏 ∈ [0, 𝛽], where the + and − signs are used for fermions and bosons, respectively. The

extra 𝜔 factor for bosons in Eq. (9.16) is introduced in order to avoid a singularity of the

kernel at 𝜔 = 0.
For a fixed value of 𝛽 and 𝜔max, the IR basis functions are defined through the singular

value decomposition (SVD)

𝐾𝛼 (𝜏 , 𝜔) =
∞
∑
𝑙=0

𝑆𝛼𝑙 𝑈 𝛼
𝑙 (𝜏 )𝑉 𝛼

𝑙 (𝜔) (9.17)

where one observes an exponential decay of the singular values 𝑆𝛼𝑙 (> 0) with increasing 𝑙.
𝑈𝑙(𝜏 ) and 𝑉𝑙(𝜔) form an orthonormal system for 𝜏 ∈ [0, 𝛽] and 𝑦 ∈ [−𝜔max, 𝜔max], respec-
tively.

A Green’s function can be expanded as

𝐺𝛼 (𝜏 ) =
∞
∑
𝑙=0

𝐺𝛼
𝑙 𝑈 𝛼

𝑙 (𝜏 ), (9.18)

𝐺𝛼
𝑙 = −𝑆𝛼𝑙 𝜌𝛼𝑙 , (9.19)

146



0 25 50 75 100
l

1

10−4

10−8

10−12

S
F l

β = 100

β = 1000

β = 10000

−1.0 −0.5 0.0 0.5 1.0
ω

−2

0

2

4

V
F l
(ω

)

l = 0

l = 1

l = 10

0.0 0.2 0.4 0.6 0.8 1.0
τ/β

−0.2

0.0

0.2

0.4

U
F l
(τ

)

l = 0

l = 1

l = 10

(a) (b) (c)

Figure 9.1: (From Ref. [147].) (a) Singular value 𝑆𝛼𝑙 computed for various values of 𝛽 , (b), (c) IR ba-
sis functions 𝑈 𝛼

𝑙 (𝜏 ) and 𝑉 𝛼
𝑙 (𝜔) computed for 𝛽 = 100. Here, we present the results for

fermions and 𝜔max = 1. The data were calculated using irbasis [140].

where

𝜌𝛼𝑙 ≡ ∫
𝜔max

−𝜔max

d𝜔𝜌𝛼 (𝜔)𝑉 𝛼
𝑙 (𝜔). (9.20)

If |𝜌𝛼𝑙 | does not grow, the exponential decay of 𝑆𝛼𝑙 ensures exponential convergence of 𝐺𝛼
𝑙 .

The accuracy of the expansion can be controlled by applying a cut-off on the singular values.

𝑈 𝛼
𝑙 (𝜏 ) can be Fourier transformed to Matsubara frequencies:

𝑈̂ 𝛼
𝑙 (i𝜔𝛼𝑛 ) = ∫

𝛽

0
d𝜏𝑈 𝛼

𝑙 (𝜏 )𝑒i𝜔
𝛼𝑛 𝜏 , (9.21)

where the “hat” indicates quantities inMatsubara frequency representation. Figure 9.1 shows

examples of the IR basis functions.

Note that 𝑈̂ 𝛼
𝑙 (i𝜔𝛼𝑛 ) does not compactly describe a constant shift in Matsubara frequency

which corresponds to an unbounded spectrum. Thus, any constant term must be subtracted

beforehand particularly when expanding the self-energy. Also, 𝑈 B𝑙 (𝜏 ) does not describe a

constant shift in imaginary time, corresponding to a zero-energy mode. Such terms must be

treated separately as well [139].

In calculations of realistic systems, one can set 𝜔max large enough to capture the expected
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spectral width. The basis functions change their shapes through the change of the dimen-

sionless quantity 𝛬 = 𝛽𝜔max as temperature is lowered. This leads to a logarithmic growth

of the basis size with respect to 𝛽 .
The dimensionless form of the IR basis is defined as

𝑈 𝛼
𝑙 (𝜏 ) = √

2
𝛽 𝑢

𝛼
𝑙 (𝑥(𝜏 )), (9.22)

𝑈̂ 𝛼
𝑙 (i𝜔𝛼𝑛 ) = √𝛽𝑢𝛼𝑙𝑛

= √
𝛽
2 ∫

1

−1
d𝑥𝑒i𝜋{𝑛+(1/2)𝛿𝛼,F}(𝑥+1)𝑢𝛼𝑙 (𝑥), (9.23)

where 𝑢𝛼𝑙 (𝑥) form an orthonormalized basis for 𝑥 ∈ [−1, 1].

9.4 Sparse sampling

Green’s function representations, in addition to being compact, also need to enable effi-

cient calculations. The two main stages in most methods introduced in Chapter 5 are the

evaluation of self-energy diagrams (usually best done in imaginary time, as the interaction

is instantaneous) and the solution of the Dyson equation (usually best done in Matsubara

space, where the equation is diagonal in frequency). Some representations, such as the cubic

splines [132, 133] or the high frequency tails, are only compact in either time or frequency,

and transforming between those domains is expensive or involves a loss of accuracy. Oth-

ers, such as the orthogonal polynomial bases, can efficiently and accurately be transformed

between coefficients and imaginary time sampling points, but frequency transforms result

in a loss of compactness.

It is therefore natural to ask if there is a set of “sparse” sampling points in both frequency

and time such that, if the Green’s function is evaluated on these points, one may reconstruct

148



the continuous Green’s functions in both time and frequency to high precision. This will

then allow to perform diagram calculations in time, Dyson equation solutions in frequency,

and transformations in between with minimal loss of accuracy.

The sparse sampling method [146] is a framework to generate compact representations

in both time and frequency by proposing a sparse sampling scheme for finite temperature

Green’s functions, following prior efforts using frequency interpolation [143, 150] and MP2

quadratures [142]. We illustrate our scheme at the example of Chebyshev [136] and IR basis

functions [138]. It accurately resolves all the information contained within finite tempera-

ture Green’s functions in a compact set of sampling points, and enables efficient and accurate

transforms between imaginary time and Matsubara frequency. The sparsity of the sampling

points directly corresponds to the compactness of the basis representation, which leads to

system-independent time and frequency grids with few control parameters.

9.4.1 General description and notation

We expand the Green’s function 𝐺𝛼 into a compact representation in terms of 𝑁 basis func-

tions, such that in imaginary time and Matsubara frequencies

𝐺𝛼 (𝜏 ) =
𝑁−1
∑
𝑙=0

𝐺𝛼
𝑙 𝐹 𝛼𝑙 (𝜏 ), (9.24)

𝐺̂𝛼 (i𝜔𝛼𝑛 ) =
𝑁−1
∑
𝑙=0

𝐺𝛼
𝑙 ̂𝐹 𝛼𝑙 (i𝜔𝛼𝑛 ) (9.25)

̂𝐹 𝛼𝑙 (i𝜔𝛼𝑛 ) = ∫
𝛽

0
d𝜏𝐹 𝛼𝑙 (𝜏 )𝑒i𝜔

𝛼𝑛 𝜏 , (9.26)

where 𝐺𝛼
𝑙 are expansion coefficients, 𝐹 𝛼𝑙 (𝜏 ) imaginary time basis functions with Fourier

transform ̂𝐹 𝛼𝑙 (i𝜔𝛼𝑛 ) (the “hat” denoting frequency representations), 𝜔𝛼𝑛 = 𝜋(2𝑛+𝛿𝛼,𝐹 )/𝛽 Mat-
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subara frequencies, and 𝛼 denotes the statistics (F for fermions and B for bosons).

In the Chebyshev representation,

𝐹 𝛼𝑙 (𝜏 ) ≡ 𝑇𝑙[𝑥(𝜏 )], (9.27)

where 𝑇𝑙(𝑥) are Chebyshev polynomials of the first kind and 𝑥(𝜏) = 2𝜏/𝛽 −1. In the IR basis,

𝐹 𝛼𝑙 (𝜏 ) ≡ 𝑈 𝛼
𝑙 (𝜏 ) (9.28)

where 𝑈 𝛼
𝑙 (𝜏 ) depend on the statistics and a dimensionless parameter𝛬 = 𝛽𝜔max with a cutoff

frequency 𝜔max.

To determine 𝐺𝛼
𝑙 from 𝐺𝛼 (𝜏 ), we choose a finite set of 𝑀 sampling points ̄𝜏𝛼0 , … , ̄𝜏𝛼𝑀−1 ∈

[0, 𝛽] (𝑀 ≥ 𝑁 ). If these points are chosen such that the discretized basis vectors {𝐹 𝛼0 ( ̄𝜏𝛼𝑘 )}, … ,
{𝐹 𝛼𝑁−1( ̄𝜏𝛼𝑘 )} are linearly independent, the exact values of 𝐺𝛼

𝑙 can be computed (transformed)

from sampled values of 𝐺𝛼 (𝜏 ). Similarly, if a subset of Matsubara frequencies {i𝜔̄𝛼
𝑘 } is chosen

such that the basis functions are linearly independent, 𝐺𝛼
𝑙 can be obtained from 𝐺̂𝛼 (i𝜔̄𝛼

𝑘 ).
If as many sampling points 𝑀 are chosen as imaginary time points 𝑁 , these transforma-

tions are

𝐺𝛼
𝑙 =

𝑁−1
∑
𝑘=0

[F−1𝛼 ]𝑙𝑘𝐺𝛼 ( ̄𝜏𝛼𝑘 ) (9.29)

=
𝑁−1
∑
𝑘=0

[F̂−1𝛼 ]𝑙𝑘𝐺̂𝛼 (i𝜔̄𝛼
𝑘 ), (9.30)
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where F𝛼 and F̂𝛼 are 𝑁 × 𝑁 matrices:

[F𝛼 ]𝑘𝑙 = 𝐹 𝛼𝑙 ( ̄𝜏𝛼𝑘 ) (9.31)

[F̂𝛼 ]𝑘𝑙 = ̂𝐹 𝛼𝑙 (i𝜔̄𝛼
𝑘 ). (9.32)

This procedure only requires evaluating the Green’s function on 𝑁 sampling points, and

linear transforms between the time or frequency domain and the basis representation 𝐺𝛼
𝑙

become invertible. 𝐺𝛼
𝑙 can thus serve as a proxy to transform between imaginary time and

frequency sampling points, as well as evaluation at arbitrary 𝜏 and i𝜔𝑛 values, as illustrated
in Fig. 9.2.

For 𝑀 > 𝑁 (more sampling points than basis coefficients), the inverses in Eqs. (9.29)

and (9.30) are replaced by the corresponding pseudoinverses F+ ≡ (F†F)−1F†, and the exact

transform is replaced by a least squares fitting procedure.

In practical calculations, different choices of basis functions and sampling points lead to

differently conditioned equation systems. A naive choice of sampling points, such as uni-

formly distributed time or frequency grids, results in almost linearly dependent basis vec-

tors and ill-conditioned transforms, which improve very slowly when additional grid points

are added. For an efficient method, a minimal set of sampling points that generates well-

conditioned transformation matrices is desired in order to minimize the number of function

evaluations and the loss of accuracy during transforms.

In the remainder of this section, we show that such a set with 𝑀 = 𝑁 can be generated

according to the distribution of the roots of the basis functions.
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Figure 9.2: Schematic illustration of relations between different representations. Solid lines denote
transformations between the basis representation coefficients 𝐺𝛼

𝑙 (center) and Green’s
functions evaluated at imaginary time or frequency sampling points via transformation
matrices. Dashed lines represent basis expansions of 𝐺𝛼

𝑙 to arbitrary imaginary time or
frequency points.

9.4.2 Imaginary time sampling

Chebyshev.– For a truncated Chebyshev basis of size 𝑁 , the 𝑁 sampling points in 𝜏 are

naturally given by the roots of the (𝑁 + 1)-th basis function 𝑇𝑁 (𝜏 ) as

̄𝜏𝛼𝑘 ≡ 𝜏 (cos (𝜋 2𝑘 + 1
2𝑁 )) , (9.33)

for 𝑘 = 0, … , 𝑁 − 1 with the mapping 𝜏 (𝑥) = 𝛽(𝑥 + 1)/2. These sampling points lead to very

well conditioned transformation matrices due to the discrete orthogonality of Chebyshev

polynomials, and the condition number of F𝛼 (defined as ‖F𝛼 ‖2‖F−1𝛼 ‖2) takes the constant

value of √2.
IR basis.– For the IR basis with 𝑁 basis functions and given 𝛽 and 𝜔max, we choose the

sampling points { ̄𝜏𝛼𝑘 } to be the midpoints of the grid composed of the 𝑁 − 1 roots of the

highest order basis function 𝑈 𝛼𝑁−1(𝜏 ) and the boundary points 0 and 𝛽 . We choose not to use

the roots of the next basis function 𝑈 𝛼𝑁 (𝜏 ) like in the Chebyshev case due to the fact that the
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IR basis is a numerical basis, and thus it is more convenient to determine sampling points

from the available basis functions.

9.4.3 Matsubara frequency sampling

We generate sampling points in Matsubara frequencies following an algorithm similar to

the imaginary time cases, with two additional considerations. First, function values should

only be evaluated on the discrete Matsubara frequencies. Second, fermionic and bosonic

Matsubara frequencies have to be treated separately, and the zero bosonic frequency (which

represents static physics) has to be considered explicitly.

Chebyshev.–In the Chebyshev representation, we follow the same heuristics as in the 𝜏
sampling by finding or approximating zeros of the next basis function ̂𝑇 𝛼𝑁 (i𝜔𝛼𝑛 ) defined in

Matsubara frequency.

For fermions and even 𝑁 , when continued to continuous Matsubara frequency space,

̂𝑇 F𝑁 (i𝜔𝛼𝑛 ) has 𝑁 roots on the imaginary axis (−i∞, i∞). We take 𝑁 Matsubara frequencies

closest to these roots as sampling points.

For bosons and odd 𝑁 , ̂𝑇B𝑁 (i𝜔𝛼𝑛 ) has 𝑁 − 1 roots. We define 𝑁 − 1 sampling points as the

Matsubara frequencies closest to the roots. We take the zero bosonic frequency i𝜔B𝑛 = 0 as
the last sampling point. The zero bosonic frequency, which corresponds to a constant offset

in 𝜏 and often has to be treated separately, serves as a natural complement.

The requirement that even 𝑁 should be used for fermions and odd 𝑁 for bosons is nec-

essary because the other cases (odd 𝑁 for fermions or even 𝑁 for bosons) will not yield

adequate number of sampling points due to the analytic structure of ̂𝑇 𝛼𝑁 (i𝜔𝛼𝑛 ).
IR basis.–For the IR basis, the procedure for getting frequency sampling points is more

empirical due to the numerical nature of the basis function. We partition all Matsubara
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frequencies into contiguous groups such that the highest order basis function 𝑈̂ 𝛼
𝑙max

(i𝜔𝛼𝑛 ) has
the same sign within each group (𝑙max ≡ 𝑁 − 1). 𝑈̂ 𝛼

𝑙max
(i𝜔𝛼𝑛 ) is either purely real (for even

𝑙max) or purely imaginary (for odd 𝑙max). We therefore use the sign of the corresponding real

or imaginary part as the sign of 𝑈̂ 𝛼
𝑙max

(i𝜔𝛼𝑛 ). The sampling points i𝜔̄𝛼
𝑘 are chosen to be those

that maximize |𝑈̂ 𝛼
𝑙max

(i𝜔𝛼𝑛 )| in each group.

By checking the resulting sampling points numerically, we conclude that by requiring 𝑁
to be even (𝑙max odd) for fermionic basis and odd (𝑙max even) for bosonic basis, the number

of sampling points is exactly 𝑁 , and the bosonic sampling points naturally include zero.

9.4.4 Numerical demonstration

The transformation defined in Eqs. (9.29) and (9.30) is exact if the Green’s function is a lin-

ear combination of a finite set of basis functions (9.24). With physical Green’s functions,

this is seldom the case, and any finite expansion incurs a truncation error. Fortunately, in

both the IR and the Chebyshev expansion, the truncation error is controlled: the analyticity

of the finite-temperature Green’s function in (0, 𝛽) guarantees exponential convergence of
the Chebyshev expansion, and the construction of the IR basis from analytic continuation

guarantees the same thing for the IR expansion [138].

To demonstrate the behavior of the sparse sampling scheme when applied to physical

Green’s functions, we consider a model with semicircular density of states (full bandwidth

is 2) for the IR basis in Fig. 9.3:

𝜌(𝜔) = 2
𝜋 √1 − 𝜔2. (9.34)

As an example, the top left panel shows 𝑈 F34 as a function of imaginary time (blue lines)

and illustrates the 𝑁 = 34 sampling points for the fermionic basis of 𝛽 = 100 and 𝜔max = 1
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Figure 9.3: Distribution of sampling points and results transformed from imaginary time (left panels)
and Matsubara frequency (right panels) for the IR basis by sparse sampling. We consider
a model of a semicircular density of states of half width 1 at 𝛽 = 100 defined in Eq. (9.34).
We take 𝜔max = 1 for the IR basis. The sampling points are denoted by crosses. Top row:
The basis functions used to generate sampling points (𝑙 = 33). Bottom row: Comparison
of the reconstructed Green’s function to exact results.

155



(red crosses). The sampling points cluster near 𝜏 = 0 and 𝛽 , where this basis function is

rapidly oscillating.

The top right panel of Fig. 9.3 shows the distribution of the Matsubara frequency sampling

points generated for the same basis for 𝑁 = 34. The Fourier transformed basis function

𝑈̂ F33(i𝜔𝑛) (blue lines) exhibits 𝑁 − 1 = 33 sign changes, which define 𝑁 = 34 sampling points

(red crosses). The sampling points are distributed almost logarithmically, which allows us

to capture all the features of 𝑈̂ F𝑙max
(i𝜔𝑛) from low to high frequency.

In the bottom row of Fig. 9.3, the left and right panels illustrate the sampling of 𝐺(𝜏) and
𝐺̂(i𝜔𝑛), respectively. The sampling points capture relevant features of the Green’s function

in both cases. We compare the interpolated and extrapolated results with the numerically

exact values. For imaginary time, one can see agreement at the level of ∼ 10−12 in the whole

interval of [0, 𝛽], which matches the singular value cutoff we used (10−12).For Matsubara

frequency, the coefficients obtained by the sparse sampling not only interpolate 𝐺̂(i𝜔𝑛) but
also extrapolate it precisely beyond the highest sampling frequency.

9.4.5 Technical details

In practical applications, it is advisable to precompute the sampling points and transforma-

tion matrices for the basis functions employed, to avoid unnecessary evaluations of ̂𝑇 𝛼𝑙 (i𝜔𝛼𝑛 )
and 𝑈̂ 𝛼

𝑙 (i𝜔𝛼𝑛 ).
The irbasis library [140] provides numerical data of the IR basis functions in the dimen-

sionless form for selected values of 𝛬 from 𝛬 = 10 up to 𝛬 = 107. The numerical evaluation

of the basis functions in Matsubara frequency is also implemented.

The procedures we have presented are not unique, and we do not claim that they are

optimal definitions of sampling points. One may design other choices with similar or, po-
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tentially, better numerical performance. The number of sampling points may also exceed

the basis size 𝑁 , as long as inversions in Eqs. (9.29) and (9.30) are replaced with a pseudoin-

verse, and the resulting transformations are well-conditioned. Nevertheless, the algorithms

introduced in this section provide a systematic and unambiguous way to obtain the mini-

mum sets of sampling points which yield well-conditioned numerical transforms and high

accuracy.

9.4.6 Application to GF2 and GW

Wefirst briefly recap definitions of GF2 andGW introduced in Chapter 5. The self-consistency

in GF2 and GW is defined by the Dyson equation (3.34)

𝐺̂(i𝜔F𝑛 ) = [(i𝜔F𝑛 + 𝜇)𝐼 − 𝐹 − ̂𝛴̃(i𝜔F𝑛 )]−1. (9.35)

The Fock matrix 𝐹 = ℎ+𝛴HF includes the frequency independent Hartree-Fock contribution

𝛴HF𝑖𝑗 = (2𝑉𝑖𝑗𝑘𝑙 − 𝑉𝑖𝑙𝑘𝑗)𝜌𝑘𝑙 , (9.36)

where 𝑖, 𝑗, 𝑘, 𝑙 are orbital indices. GF2 approximates the frequency-dependent self-energy 𝛴̃
as

𝛴̃𝑖𝑗(𝜏 ) = −𝐺𝑘𝑙(𝜏 )𝐺𝑞𝑚(𝜏 )𝐺𝑛𝑝(−𝜏)×

× 𝑉𝑖𝑘𝑝𝑞(2𝑉𝑙𝑗𝑚𝑛 − 𝑉𝑚𝑗𝑙𝑛), (9.37)

while GW approximates 𝛴̃ as

𝛴̃𝑖𝑗(𝜏 ) = −𝐺𝑙𝑘(𝜏 )𝑊̃𝑖𝑙𝑘𝑗(𝜏 ), (9.38)
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GF2 & GW GW only

Figure 9.4: Illustration of GF2 and GW procedures using the sparse sampling scheme. The red and
blue lines denote GF2-only and GW -only steps, respectively. Dashed arrows indicate
evaluations that change the statistics of the representation.

where 𝑊̃ = 𝑊 − 𝑉 is the frequency-dependent part of the screened interaction 𝑊 . 𝑊 is

calculated by the random phase approximation (RPA) [151] as

𝑊̂𝑖𝑗𝑘𝑙(i𝜔B𝑛 ) = 𝑉𝑖𝑗𝑘𝑙 + 𝑉𝑖𝑗𝑝𝑞 ̂𝑃𝑞𝑝𝑠𝑟 (i𝜔B𝑛 )𝑊̂𝑟 𝑠𝑘𝑙(i𝜔B𝑛 ), (9.39)

where the bare polarization is given by

𝑃𝑖𝑗𝑘𝑙(𝜏 ) = −𝐺𝑖𝑙(𝜏 )𝐺𝑗𝑘(−𝜏). (9.40)

At self-consistency, physical properties are evaluated from 𝐺 and 𝛴. For example, density

matrix 𝜌 is given by 𝜌𝑖𝑗 = 𝐺𝑗𝑖(0−) = −𝐺𝑗𝑖(𝛽), and the total electronic energy is

𝐸 =Tr [𝜌𝐻0] + 1
2 Tr [𝜌𝛴HF]

+ 1
2𝛽 ∑

𝑛
Tr [ ̂𝛴̃(i𝜔F𝑛 )𝐺̂(i𝜔F𝑛 )]. (9.41)

Fig. 9.4 illustrates how the self-consistent calculations can be performed by sparse sam-

pling. In a GF2 calculation, we first evaluate Green’s function at sampling points ̄𝜏F𝑘 , and con-
struct the self-energy 𝛴̃( ̄𝜏F𝑘 ) following second-order approximation (9.37). The self-energy is
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then transformed to the basis representation 𝛴̃F𝑙 following Eq. (9.29), which is then evaluated

on the frequency sampling points to get ̂𝛴̃(i𝜔̄F𝑘 ). The Dyson equation (3.34) is solved for each
i𝜔̄F𝑘 to obtain 𝐺̂(i𝜔̄F𝑘 ). We then transform the Green’s function to its basis representation 𝐺F𝑙
following Eq. (9.30). The updated Green’s function in 𝜏 is recovered by evaluating 𝐺F𝑙 on

sampling points ̄𝜏F𝑘 . The procedure is repeated using the updated Green’s function until self-

consistency, which corresponds to the inner loop in Fig. 9.4. We can see that the compact

basis representations 𝐺F𝑙 and 𝛴̃F𝑙 serve as proxies to convert back and forth between 𝜏 and
frequency domains, all evaluated on corresponding sampling points.

While all quantities involved in GF2 are fermionic, in GW we have to switch between

fermionic quantities (𝐺 and 𝛴) and bosonic quantities (𝑃 and 𝑊 ). This is achieved again

by using compact basis representations as proxies: when calculating the polarization 𝑃 , we
evaluate 𝐺F𝑙 on the bosonic sampling points ̄𝜏B𝑘 and assemble 𝑃( ̄𝜏B𝑘 ) following Eq. (9.40). We

then carry out the calculation of 𝑊̃ on the frequency sampling points i𝜔̄B𝑘 , and obtain the

compact basis representation 𝑊̃ B𝑙 . Finally we evaluate 𝑊̃ B𝑙 back on the fermionic sampling

points ̄𝜏F𝑘 , and compute self-energy using the GW approximation (9.38). The rest of the

procedure is identical to GF2. Two additional matrices may be precomputed to allow fast

switching between fermionic and bosonic representations in GW :

[FF→B]𝑘𝑙 = 𝐹 F𝑙 ( ̄𝜏B𝑘 ) (9.42)

[FB→F]𝑘𝑙 = 𝐹B𝑙 ( ̄𝜏F𝑘 ). (9.43)

Note that the inverse transform of those matrices are not well defined in general, since sam-

pling points generated for one type of statistics usually do not serve as good sampling points

for the other.

In the total energy evaluation (9.41), the frequency summation term can be rewritten using
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an auxiliary scalar quantity 𝑆 such that

1
2𝛽 ∑

𝑛
Tr [ ̂𝛴̃(i𝜔F𝑛 )𝐺̂(i𝜔F𝑛 )] = 1

2𝛽 ∑
𝑛

̂𝑆(i𝜔F𝑛 )

= 1
2𝑆(0

−) = −12𝑆(𝛽) (9.44)

where

̂𝑆(i𝜔F𝑛 ) = Tr [ ̂𝛴̃(i𝜔F𝑛 )𝐺̂(i𝜔F𝑛 )]. (9.45)

We first evaluate ̂𝑆(i𝜔̄F𝑘 ) on the frequency sampling points i𝜔̄F𝑘 , which is then transformed to

the basis representation 𝑆F𝑙 . The value of 𝑆(𝛽) is now a straightforward basis expansion at

𝜏 = 𝛽
𝑆(𝛽) =

𝑁−1
∑
𝑙=0

𝑆F𝑙 𝐹F𝑙 (𝛽). (9.46)

For the Chebyshev basis we simply have 𝑇𝑙(𝛽) = 1. In the case of IR basis, it is desirable to also

tabulate the values 𝑈 F𝑙 (𝛽) along with the transformation matrices for efficient evaluations of

relevant quantities.

Similarly, the calculation of the density matrix 𝜌 is a straightforward evaluation at 𝜏 = 𝛽
from 𝐺F𝑙 . In calculations where the number of electrons is fixed, the chemical potential 𝜇
needs to be adjusted in each self-consistent iteration through a root finding procedure to

conserve particle number [4]. This step involves repeated density evaluations and solutions

of the Dyson equation using the frequency-dependent self-energy, and sometimes becomes

the bottleneck of the calculation. The sparse sampling scheme massively reduces the num-

ber of frequency points needed in this process, which leads to a significant speedup over

traditional approaches.

Note that sincemost basis functions, including Chebyshev and IR, cannot capture constant
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shifts in frequency (which correspond to a delta function at 𝜏 = 0), it is important that one

only expands the frequency-dependent components such as 𝛴̃ and 𝑊̃ using compact basis

representations. One also needs to be careful when zero-energy mode exists in a bosonic

quantity, in which case the IR basis function cannot describe the constant shift in imaginary

time [139].

9.4.7 Results

Hydrogen chain

Wefirst apply our sparse sampling scheme to GF2 andGW caculations of a system composed

of 10 hydrogen atoms placed on a straight line with equal spacing 𝑟 . The hydrogen chain, due
to its simplicity, serves as a benchmark platform for testing numerical methods of correlated

electrons. Reference data for the hydrogen chain were carefully compared and analyzed in

Ref. [44] with many methods including GF2 and GW. It is therefore convenient to use this

system to analyze the sparse sampling scheme.

We perform GF2 and GW calculations for H10 with 𝑟 = 1 a0 and 𝛽 = 1000 Eh−1 (𝑇 ∼
315.8 K). We use the minimal basis set STO-6g with only one 1𝑠 orbital per atom. Hartree-

Fock calculations show that the difference between the highest and the lowest Hartree-Fock

energy levels is about 𝛥𝐸 ≈ 5.76 Eh (∼ 156 eV). The dimensionless parameter for the IR basis

can thus be estimated by taking 𝛬 to bound the value 𝛽𝛥𝐸 ≈ 5.76 × 103. We take 𝛬 = 105 in
all our calculations.

Both Chebyshev and IR basis functions are used togetherwith the sparse sampling scheme.

To demonstrate convergence, we examine a series of calculations with different sizes of basis

functions. Typically we choose 𝑁 to be an even number, which is then used as the size of the

fermionic basis. For corresponding bosonic basis functions in GW, we used the closest odd
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number 𝑁 −1 as the basis size. The Python library irbasis version 2.0.0b1 [140] is used for

calculating IR basis functions.

With each basis of fixed size 𝑁 , we perform self-consistent GF2 and GW calculations fol-

lowing the procedures described in the previous section. The initial guess of the Green’s

function is constructed from Hartree-Fock calculations using the PySCF library [152]. Self-

consistent calculations, as illustrated in Fig. 9.4, are then executed repeatedly until the energy

difference is below the convergence tolerance 𝐸tol = 10−8 Eh between two consecutive itera-

tions. Energy values converged with respect to basis size𝑁 are cross-checked with reference

data to ensure correctness. All results are then compared to converged values to assess errors

in energy and density matrix as a function of basis size 𝑁 .

In the left panel of Fig. 9.5, we show the convergence of errors in total energy with re-

spect to 𝑁 . GF2 and GW share similar convergence behavior, in that the error decreases

almost exponentially with respect to 𝑁 in either basis representation. In the Chebyshev rep-

resentation, we obtain convergence of the total energy below the tolerance 𝐸tol with around

350 Chebyshev polynomials. With IR basis, convergence is reached with less than 100 basis

functions. Similarly, the right panel of Fig. 9.5 illustrates the convergence of the maximum

error in density matrix, exhibiting an exponential decay of errors. This indicates that with

a reasonable number of sampling points, we can reach very high precision in both global

observables such as the energy and local properties like the density matrix. The observation

that GW shows a convergence behavior similar to GF2 indicates that no substantial addi-

tional errors are introduced during the frequent switching between fermionic and bosonic

representations.

The sparse sampling scheme is stable thanks to the well-conditioned transformation ma-

trices generated from the sampling points. We demonstrate this in Fig. 9.6, which shows the

relative magnitude of basis expansion coefficients for the converged solution. 𝑁 is chosen
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large enough to ensure that all quantities are well approximated by the basis representations,

with 𝑁 = 600 for Chebyshev and 𝑁 = 130 for IR with 𝛬 = 105. Even after several iterations

with multiple transforms forward and backward between different types of sampling points,

we see that for all quantities, expansion coefficients decay at least exponentially as we ex-

pect from the properties of the basis, down to a relative size below 10−12. The truncation

error due to the finite basis expansion is therefore controlled, and no amplification of error

is observed during the self-consistent iterations.

The sparse sampling scheme ensures that the number of 𝜏 grid points and the number of

Matsubara frequencies is the same as the basis size𝑁 . We reach a precision of 8 digits in total

energywith only hundreds of 𝜏 points andMatsubara frequencies, a significant improvement

from the conventional approach used in Ref. [44], where ∼ 104 Matsubara frequencies were

used for higher temperature (𝛽 ∼ 100 Eh−1) and bigger convergence threshold (𝐸tol ∼ 10−6 Eh
or 10−7 Eh). This greatly reduces the computational cost and memory requirement in all

parts of the calculations while still being accurate. The sparse sampling scheme thus allows

to tackle problems that were too costly to calculate, especially low temperature calculations

of systems with large energy scales.

Noble gas atoms

Noble gas atoms such as Kr have deep core states, if no pseudopotentials are employed. Due

to the large energy scale caused by the core states, it is computationally very demanding for

conventional methods to resolve sharp features close to 𝜏 = 0 or 𝛽 in 𝐺(𝜏) or the slow de-

cay of 𝐺̂(𝑖𝜔𝑛) at high frequency. Even with a compact polynomial basis such as Chebyshev,

thousands of basis functions are required to represent the Green’s functions [136], and effec-

tive core potentials (ECP), which absorb electron in inner orbitals to the ionic potential, have

to be employed in most practical calculations. We choose this problem to demonstrate the
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power of the sparse sampling method when dealing with large energy scales, while avoiding

additional physical or technical difficulties.

The IR basis is a natural choice for systemswith large energy scales. As long as the spectral

cutoff 𝜔max is chosen to include all energy scales in the system, exponential convergence of

the coefficients is guaranteed by construction, usually with no more than a couple hundred

basis functions [138]. The full potential of IR basis is realized when combined with the sparse

sampling scheme developed in this paper. Numerical difficulties in either 𝜏 or frequency

domain are reduced to a single issue: whether the basis functions can capture all relevant

quantities well. Therefore, by using a sparse sampling method with the IR basis, we are able

to treat noble gas atoms efficiently even in all-electron calculations.

We choose the all-electron correlation consistent basis set cc-pVDZ [43], and perform GF2

and GW calculations of four noble gas atoms: He, Ne, Ar, and Kr, at 𝛽 = 1000 Eh−1. Similar

to the case for H10, we estimate the dimensionless parameter 𝛬 according to the Hartree-

Fock energy spectrum for each individual atom: 𝛬 = 104 for He, 𝛬 = 105 for Ne, and 𝛬 = 106

for Ar and Kr. The sparse sampling scheme is used in all calculations, and we vary the basis

size 𝑁 to explore the convergence behavior. The energy convergence threshold is set to

𝐸tol = 10−8 Eh, which is much smaller than the energy scale of Kr (∼ 103 Eh).
Fig. 9.7 shows the energy convergence of all four atoms with respect to basis size 𝑁 with

GF2 (left column) andGW (right column). The upper panels indicate that the basis converges

for all atoms, with absolute difference in energy dropping in an exponential trend below the

convergence tolerance 𝐸tol. The lower panels put the convergence in a relative scale, where

all atoms in both GF2 and GW can reach ∼ 10−10 relative convergence.
Our results show that we can obtain fast basis convergence with around 100 basis func-

tions for all systems studied. This is consistent with the property of IR basis that the basis

size 𝑁 scales only logarithmically with 𝛬 [139].
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9.4.8 Numerical stability of sparse sampling

When the expansion coefficients are numerically evaluated using the sparse sampling proce-

dures, numerical errors, such as round-off errors from floating point operations or truncation

errors from a finite basis cutoff, may be amplified due to the (pseudo-)inversion process. This

error amplification can be quantified by the condition number of the transformationmatrices

F𝛼 and F̂𝛼 , defined as the product of the 2-norms of the matrix and its inverse. In Fig. 9.8 we

show the behaviors of such condition numbers for the IR basis as a function of the basis size

𝑁 = 𝐿 (left panel, compared to the Chebyshev representation), and as a function of 𝛬 (right

panel). We can see that up to a significant number of basis functions, the condition numbers

are < 104, which indicates well-conditioned inversion problems. In addition, the condition

numbers show an approximate scaling of 𝑂(𝐿1/2), which is slower that of the Chebyshev

representation 𝑂(𝐿3/2). Since the values of 𝐿 and 𝛬 shown in Fig. 9.8 cover most values used

in the calculations reviewed in this paper, the sparse sampling scheme guarantees stable

numerical routines to get accurate results.

In practical applications of the sparse sampling method, one should take care not to in-

troduce large systematic errors in the basis representation, such as large truncation errors

due to insufficient basis size 𝐿 or control parameter 𝛬. For example, a systematic error at

the level of 10−3 in the basis representation, amplified by a condition number of 103 of the
“fitting” procedure, may lead to a numerical error greater than the actual result. As shown

in Fig. 9.9, such a situation could make the simulation unstable. Therefore, to ensure stable

numerical calculations with the sparse sampling method, one should choose the appropriate

basis parameters 𝐿 and 𝛬 such that the basis representation stays accurate.

Figure 9.9 shows examples of stable and unstable GW calculation of the Krypton atom

in cc-pVDZ basis with 𝛽 = 10 000 Eh−1 using sparse sampling. We carried out five GW
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Figure 9.8: Condition number of the IR transformation matrices F̂F and FF [146]. Left panel shows the
condition number of frequency transformation matrices F̂F as a function of basis size 𝑁 =
𝐿, in comparison with the Chebyshev representation. Right panel shows the condition
number of both 𝜏 and 𝑖𝜔𝑛 transformation matrices with respect to 𝛬, where 𝑁 is chosen
to be the maximum number of coefficients with the same cutoff in singular values 𝑆𝛼𝑙 ,
provided in the irbasis library [139].

iterations with different choices of 𝛬, and plotted the norms of 𝐺𝑙 from each iteration. The

left panel of Fig. 9.9 shows results for 𝛬 = 107. At each iteration, the Green’s function is well

approximated by the IR basis and the basis truncation error is small, resulting in a stable

simulation. In the right panel, a smaller 𝛬 = 106 is used, which is insufficient for this system

and introduces a large systematic error (around 10−3), while the condition number of F is

∼ 103. The systematic error is amplified by fitting procedure, rendering the 𝐺𝑊 simulation

unstable.
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Chapter 10

Conclusion and Outlook

The ability of computing the electronic properties of strongly-correlated materials from the

first principles would profoundly deepen our quantitative understanding of electron corre-

lation effects, and potentially enable predictive calculations for discovering new correlated

materials with desired functionalities. Numerous theoretical and numerical methods are

being proposed to achieve that goal. Among these developments, diagrammatic methods,

based on a straightforward perturbative expansion in terms of the electron–electron inter-

action, have seen rapid progress and show significant potential, due to their theoretical sim-

plicity, flexibility in formulation, and improving efficiency in numerical calculations. This

thesis provides an overview of the fundamentals for developing diagrammatic methods for

realistic systems, and presents our progress towards a truly general diagrammatic solver for

realistic systems.

The first half of the thesis briefly summarizes basic notations and concepts common in

diagrammatic methods, especially DiagMC. In Chapter 2, we define the general mathemat-

ical problem we aim to solve — the electronic Hamiltonian, as well as its atomic basis sets

representation. In Chapter 3, we introduce the general formalism for performing pertur-
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bation expansion of the electron Hamiltonian, and basic rules for Feynman diagrammatic

representations. Chapter 4 reviews the Monte Carlo integration technique with importance

sampling and its application to diagrammatic series. In Chapter 5, we review the defini-

tion of the Luttinger–Ward functional, the general self-consistent diagrammatic framework

based on the functional, and examples of such self-consistent methods.

Chapter 6 summarizes two benchmark projects for state-of-the-art many-body methods

in realistic systems, including many diagrammatic methods. Strengths and limitations of

these methods are investigated systematically, and the results are carefully cross-checked

with other methods. These benchmarks demonstrate a systematic approach for reaching a

theoretical “consensus” of methods with different areas of applicability, and provide valuable

reference for future developments

Chapter 7 proposes a general DiagMC solver for systems with realistic interactions fol-

lowing the CDet approach, and systematically tests the solver on realistic molecules. The

method handles multiple orbitals, low temperatures, and sparse interaction matrices well at

moderate electron correlation. In the strongly-correlated regime, the method is limited by

the potential divergence of the perturbation series.

Chapter 8 shows our attempt to mitigate the convergence problem from a direct diagram-

matic expansion as used in Chapter 7. The interaction-expansion inchworm Monte Carlo

method introduced in this Chapter obtains the physical observables via a sequence of in-

cremental diagrammatic expansions. Preliminary results from inchworm show convergent

solutions in systems where bare DiagMC fails.

Chapter 9 summarizes the technical methods for representing the electron correlation

functions efficiently. We reviewed multiple compact representations, and introduced the

sparse sampling method which enables efficient storage and fast computation in both imag-

inary time and Matsubara frequencies.
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Going forward, two fundamental (and often intertwined) problems remain that limit the

applicability of DiagMC methods in realistic systems. The first one is the efficient computa-

tion of high-order Feynman diagrams. CDet has been a recent breakthrough, which signifi-

cantly simplifies the Monte Carlo sampling scheme and speeds up calculations of high-order

diagrams. However, because CDet eliminates individual diagrammatic topologies from the

procedure to gain efficiency, it looses some flexibilities from the original DiagMC frame-

work. For example, it cannot be applied to self-consistent skeleton series (so far) due to its

reliance toWick’s theorem. Formulating CDet in frequency and momentum representations

may be difficult. Arbitrary counter terms for better perturbation starting points often lead

to a redesign of the recursive procedure. Any progress along these directions would further

widen the applicability of CDet. Alternatively, a smart partial summation based on diagram-

matic topologies may retain the advantages of explicit diagram sampling in DiagMC, while

avoiding a severe sign problem at high expansion orders.

The second problem is the convergence (or the lack thereof) of the diagrammatic series.

Bare diagrammatic expansions are destined to diverge in the strong-correlation limit. The

inchwormMonte Carlo approach introduced in Chapter 8 improves the convergence behav-

ior, but still does not guarantee a fast convergence. Analytical resummation techniques may

be useful if they can be fully automatized and can work with multi-orbital systems. More

complex counter terms based on the shifted action formalism, introduced in Section 3.5, may

enable systematic control of the convergence by changing the starting points of diagram-

matic expansions if the diagrammatic series can be computed efficiently. Reformulating the

diagrammatic language in terms of two-particle quantities may also provide useful insights,

e.g., by normalizing the interaction vertices. A faster convergence would also reduce the

number of expansion orders required for a certain numerical precision, which in turn alle-

viates the first problem.
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In essence, diagrammatic methods all try to solve the unknown problem starting from the

known in a perturbative manner. It would be interesting to know the true limit of these

methods, through careful theoretical thinking and numerical optimizations, which may hint

at fundamental challenges of either the interacting electron problem, or the classical com-

puting paradigm.
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Appendix A

Definitions and Properties of the

Scattering Amplitude

The intuition in defining the 𝑀 object is similar to the relation between the self-energy 𝛴
and the Luttinger-Ward functional 𝛷[𝐺] introduced in Chapter 5

𝛴(𝑥′, 𝑥) = 𝛿𝛷[𝐺]
𝛿𝐺(𝑥, 𝑥′) , (A.1)

which gives the 1PI amputated diagrams with the “bold” propagator 𝐺 [52]. Here we have

employed the compound space-time indices 𝑥 = (𝑎, 𝜏 ). To get the connected amputated

diagrams with the “bare” propagator instead, we define a similar relation

𝑀(𝑥′, 𝑥) = 𝛽 𝛿(𝛺 − 𝛺0)
𝛿𝑔(𝑥, 𝑥′) = −𝛿 log𝑍/𝑍0𝛿𝑔(𝑥, 𝑥′) . (A.2)

We show that by carrying out this functional derivative, we will recover the definition of𝑀
as in Eq. (7.20).

Switching to the action formalism using coherent state path-integrals of Grassmann vari-
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ables [39], we rewrite the partition function as

𝑍 = ∫𝒟[ ̄𝑐, 𝑐]𝑒−𝑆[ ̄𝑐,𝑐], (A.3)

where the action is given as

𝑆 = 𝑆0 + 𝑆𝑉 ,

𝑆0 = −∫ d𝑦d𝑦 ′ ̄𝑐(𝑦 ′)𝑔−1(𝑦 ′, 𝑦)𝑐(𝑦),

𝑆𝑉 = 1
4 ∫ d𝜏 ∑

𝑎𝑏𝑐𝑑
𝑈𝑎𝑏𝑐𝑑 ̄𝑐𝑎(𝜏 ) ̄𝑐𝑐(𝜏 )𝑐𝑑(𝜏 )𝑐𝑏(𝜏 ).

(A.4)

Observe that

𝛿 log𝑍
𝛿𝑔(𝑥, 𝑥′) =

1
𝑍

𝛿
𝛿𝑔(𝑥, 𝑥′) ∫𝒟[ ̄𝑐, 𝑐]

× exp [∫ d𝑦d𝑦 ′ ̄𝑐(𝑦 ′)𝑔−1(𝑦 ′, 𝑦)𝑐(𝑦) − 𝑆𝑉 ]

= ∫ d𝑦d𝑦 ′ 𝛿𝑔
−1(𝑦 ′, 𝑦)

𝛿𝑔(𝑥, 𝑥′)
1
𝑍 ∫𝒟[ ̄𝑐, 𝑐] ̄𝑐(𝑦 ′)𝑐(𝑦)𝑒−𝑆

= ∫ d𝑦d𝑦 ′ 𝛿𝑔
−1(𝑦 ′, 𝑦)

𝛿𝑔(𝑥, 𝑥′) 𝐺(𝑦, 𝑦 ′).

(A.5)

Using the fact that for an invertible matrix 𝑨,

(𝑨 + 𝛿𝑨)−1 − 𝑨−1 = −𝑨−1𝛿𝑨𝑨−1 (A.6)

𝛿[𝑨−1]𝑖𝑗
𝛿𝑨𝑘𝑙

= −[𝑨−1]𝑖𝑘[𝑨−1]𝑙𝑗 , (A.7)

we have
𝛿 log𝑍
𝛿𝑔(𝑥, 𝑥′) = −∫ d𝑦d𝑦 ′𝑔−1(𝑥′, 𝑦)𝐺(𝑦, 𝑦 ′)𝑔−1(𝑦 ′, 𝑥). (A.8)
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Similarly in the non-interacting case,

𝛿 log𝑍0
𝛿𝑔(𝑥, 𝑥′) = −∫ d𝑦d𝑦 ′𝑔−1(𝑥′, 𝑦)𝑔(𝑦 , 𝑦 ′)𝑔−1(𝑦 ′, 𝑥)

= −𝑔−1(𝑥′, 𝑥). (A.9)

Putting it all together, we have

𝑀(𝑥′, 𝑥) = −𝛿 log(𝑍/𝑍0)𝛿𝑔(𝑥, 𝑥′)
= ∫ d𝑦d𝑦 ′𝑔−1(𝑥′, 𝑦)[𝐺(𝑦, 𝑦 ′) − 𝑔(𝑦, 𝑦 ′)]𝑔−1(𝑦 ′, 𝑥). (A.10)

Therefore

𝐺(𝑦, 𝑦 ′) = 𝑔(𝑦, 𝑦 ′) + ∫ d𝑥d𝑥′𝑔(𝑦, 𝑥′)𝑀(𝑥′, 𝑥)𝑔(𝑥, 𝑦 ′) (A.11)

which is exactly the same as Eq. (7.20).

Expanding compound indices 𝑥, 𝑦 , …, Eq. (A.2) can be rewritten as

𝑀𝑎𝑏(𝜏1, 𝜏2) = 𝛽 𝛿(𝛺 − 𝛺0)
𝛿𝑔𝑏𝑎(𝜏2, 𝜏1)

. (A.12)

In practice, we usually work with the time-translational invariant functions 𝑀(𝜏) and 𝑔(𝜏)
instead of their two-variable form. To that effect, we consider for 0 < 𝜏 ≤ 𝛽 ,

𝛽 𝛿(𝛺 − 𝛺0)
𝛿𝑔𝑏𝑎(−𝜏)

= ∑
𝑎′𝑏′

∫
𝛽

0
d𝜏1d𝜏2

𝛽𝛿(𝛺 − 𝛺0)
𝛿𝑔𝑏′𝑎′(𝜏2, 𝜏1)

𝛿𝑔𝑏′𝑎′(𝜏2, 𝜏1)
𝛿𝑔𝑏𝑎(−𝜏)

= ∑
𝑎′𝑏′

∫
𝛽

0
d𝜏1d𝜏2𝑀𝑎′𝑏′(𝜏1 − 𝜏2)

𝛿𝑔𝑏′𝑎′(𝜏2, 𝜏1)
𝛿𝑔𝑏𝑎(−𝜏)

,
(A.13)
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in which

𝛿𝑔𝑏′𝑎′(𝜏2, 𝜏1)
𝛿𝑔𝑏𝑎(−𝜏)

= 𝛿𝑔𝑏′𝑎′(𝜏2 − 𝜏1)
𝛿𝑔𝑏𝑎(−𝜏)

= 𝛿𝑏′𝑏𝛿𝑎′𝑎[𝛿(𝜏2 − 𝜏1 + 𝜏)𝛩(𝜏1 − 𝜏2)

− 𝛿(𝜏2 − 𝜏1 + 𝜏 − 𝛽)𝛩(𝜏2 − 𝜏1)].

(A.14)

Therefore

𝛽 𝛿(𝛺 − 𝛺0)
𝛿𝑔𝑏𝑎(−𝜏)

= ∑
𝑎′𝑏′

∫
𝛽

0
d𝜏1d𝜏2𝑀𝑎′𝑏′(𝜏1 − 𝜏2)

× 𝛿𝑏′𝑏𝛿𝑎′𝑎[𝛿(𝜏2 − 𝜏1 + 𝜏)𝛩(𝜏1 − 𝜏2)

− 𝛿(𝜏2 − 𝜏1 + 𝜏 − 𝛽)𝛩(𝜏2 − 𝜏1)]

= ∫
𝛽

0
d𝜏1d𝜏2[𝑀𝑎𝑏(𝜏 )𝛿(𝜏2 − 𝜏1 + 𝜏)𝛩(𝜏1 − 𝜏2)

− 𝑀𝑎𝑏(𝜏 − 𝛽)𝛿(𝜏2 − 𝜏1 + 𝜏 − 𝛽)𝛩(𝜏2 − 𝜏1)]

= 𝑀𝑎𝑏(𝜏 ) ∫
𝛽

0
d𝜏1d𝜏2[𝛿(𝜏2 − 𝜏1 + 𝜏)𝛩(𝜏1 − 𝜏2)

+ 𝛿(𝜏2 − 𝜏1 + 𝜏 − 𝛽)𝛩(𝜏2 − 𝜏1)]

= 𝑀𝑎𝑏(𝜏 ) ∫
𝛽

0
d𝜏1 ∫

𝜏1+𝛽

𝜏1
d𝜏2𝛿(𝜏2 − 𝜏1 + 𝜏 − 𝛽)

= 𝛽𝑀𝑎𝑏(𝜏 ),

(A.15)

which gives Eq. (7.21).
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Appendix B

Thermal Expectation Value of the Electron

Energy

The one-body energy is straightforward:

𝐸0 = ⟨𝐻̂0⟩ = ∑
𝑎𝑏

ℎ𝑎𝑏⟨ ̂𝑐†𝑎 ̂𝑐𝑏⟩ = ∑
𝑎𝑏

ℎ𝑎𝑏𝜌𝑎𝑏 . (B.1)

Expression for the two-body energy term can be derived in multiple ways such as using the

equation of motion or the Schwinger-Dyson equation. Here we provide a simple derivation

following Ref. [56]. We introduce a coupling constant 𝜉 to the action defined in Eq. (A.4)

such that 𝑆𝜉 = 𝑆0 + 𝜉𝑆𝑉 and 𝜉 → 1 recovers the “physical” results. Now we have

d𝑍𝜉
d𝜉 |

𝜉=1
= − ∫𝒟[ ̄𝑐, 𝑐]𝑆𝑉 𝑒−𝑆0−𝜉𝑆𝑉 |𝜉=1

= −𝑍 ⟨∫
𝛽

0
d𝜏 𝑈𝑎𝑏𝑐𝑑4 ̄𝑐𝑎(𝜏 ) ̄𝑐𝑐(𝜏 )𝑐𝑑(𝜏 )𝑐𝑏(𝜏 )⟩

= −𝑍𝛽⟨𝐻̂𝑉 ⟩. (B.2)
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Introducing a change of variables such that 𝑐 → 𝑐/𝜉 1/4 and ̄𝑐 → ̄𝑐/𝜉 1/4, then

𝒟[ ̄𝑐, 𝑐] = lim𝒩→∞

𝒩
∏
𝛼=1

d ̄𝑐𝛼d𝑐𝛼

→ lim𝒩→∞ 𝜉+𝒩 /2
𝒩
∏
𝛼=1

d ̄𝑐𝛼d𝑐𝛼

= lim𝒩→∞ 𝜉+Tr[𝐼 ]/2
𝒩
∏
𝛼=1

d ̄𝑐𝛼d𝑐𝛼

=𝜉+Tr[𝐼 ]/2𝒟[ ̄𝑐, 𝑐] (B.3)

where the indices 𝛼 denote states at each discretized time point on the integration path,

Tr[𝐼 ] = ∫ d𝑥𝛿(𝑥, 𝑥) in which 𝑥 is the compound spacetime index, and the plus sign on the

exponent is due to the nature of Grassmann integrals. The partition function is unaffected

by the change of variables, which now takes the form

𝑍𝜉 = 𝜉Tr[𝐼 ]/2 ∫𝒟[ ̄𝑐, 𝑐]𝑒−𝜉−1/2𝑆0−𝑆𝑉 . (B.4)

Therefore

d𝑍𝜉
d𝜉 |

𝜉=1
= Tr[𝐼 ]

2 𝑍 + ∫𝒟[ ̄𝑐, 𝑐] 𝜉
−3/2

2 𝑆0𝑒−𝜉−1/2𝑆0−𝑆𝑉 |
𝜉=1

= Tr[𝐼 ]
2 𝑍 − 1

2 ∫𝒟[ ̄𝑐, 𝑐]𝑔−1(𝑥′, 𝑥) ̄𝑐(𝑥′)𝑐(𝑥)𝑒−𝑆

= Tr[𝐼 ]
2 𝑍 − 𝑍

2 𝑔
−1(𝑥′, 𝑥)𝐺(𝑥, 𝑥′)

= 𝑍
2 Tr[𝐼 − 𝑔−1𝐺] (B.5)
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Comparing (B.2) and (B.5), we have

⟨𝐻̂𝑉 ⟩ = 1
2𝛽 Tr[𝑔−1𝐺 − 𝐼 ] = 1

2𝛽 Tr[(𝑔−1 − 𝐺−1)𝐺]

= 1
2𝛽 Tr[𝛴𝐺] (B.6)
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Appendix C

Numerical Computation of the Adjugate

Matrix

We calculate the adjugate adj(𝐴) of a matrix 𝐴 ∈ ℝ𝑛×𝑛 numerically by first performing a

rank-revealing factorization on the matrix [153], such as the pivoted QR via the Householder

algorithm

𝐴 = 𝑄𝐷𝑅𝑃 (C.1)

where 𝑄 is an orthogonal matrix of Householder reflections, 𝐷 is a diagonal matrix, 𝑅 is

an upper triangular matrix in which all diagonal elements equal 1, and 𝑃 is a permutation

matrix of the columns. The rank of the matrix 𝑟 = rank(𝐴) is determined by the number of

nonzero diagonal elements of 𝐷.
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If 𝐴 is not singular, i.e. 𝑟 = 𝑛, then the adjugate is given by

adj(𝐴) = det(𝐴)𝐴−1

= det(𝑃) det(𝐷) det(𝑄)𝑃𝑇𝑅−1𝐷−1𝑄𝑇

= [(−1)𝑛𝑃𝑛𝑄
𝑛

∏
𝑖=1

𝑑𝑖]𝑃𝑇𝑅−1𝐷−1𝑄𝑇 , (C.2)

where 𝑛𝑃 is the number of transpositions in the permutation 𝑃 , 𝑛𝑄 is the number of House-

holder reflections in 𝑄, and 𝑑𝑖 are diagonal elements of 𝐷. The scaling as a function of 𝑛 for
the complexity of calculating the adjugate is the same as the one for calculating 𝐴−1, and we

obtain det(𝐴) at the same time.

If 𝐴 is singular, i.e. 𝑟 < 𝑛, det(𝐴) becomes zero, and Eq. (C.2) is replaced by

adj(𝐴) = [(−1)𝑛𝑃𝑛𝑄]𝑃𝑇𝑅−1 adj(𝐷)𝑄𝑇 . (C.3)

If 𝑟 = 𝑛 − 1, there is one zero in the diagonal of 𝐷. Assuming 𝑑𝑛 = 0 and 𝑑𝑖 ≠ 0 for

𝑖 = 1, … , 𝑛 − 1, the adjugate of 𝐷 follows directly from the definition (7.23)

adj(𝐷) = diag([0, … , 0,
𝑛−1
∏
𝑖=1

𝑑𝑖]). (C.4)

If 𝑟 < 𝑛 − 1, adj(𝐷) = 0, therefore adj(𝐴) = 0.
In the presence of off-diagonal propagators, it is possible that the amputated diagrams

A(𝓥) is nonzero while the vacuum diagrams 𝐷(𝓥,∅) vanish. Therefore it is crucial to

implement the adjugate of singular matrices as discussed above.
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Appendix D

Explicit Definition of the Auxiliary

Green’s Function

Introducing

̂𝑆𝐼 (𝜏 , 𝜏 ′) = 𝑈̂𝐼 (𝜏 )𝑈̂−1𝐼 (𝜏 ′), (D.1)

we can write the physical Green’s function 𝐺 in interaction picture as

𝐺(𝜏 , 𝜏 ′) =
⎧⎪
⎨⎪⎩

− 1
𝑍 Tr[𝑒−𝛽𝐻̂0 ̂𝑆𝐼 (𝛽, 𝜏 ) ̂𝑐𝐼 (𝜏 ) ̂𝑆𝐼 (𝜏 , 𝜏 ′) ̂𝑐†𝐼 (𝜏 ′) ̂𝑆𝐼 (𝜏 ′, 0)] 𝜏 > 𝜏 ′

1
𝑍 Tr[𝑒−𝛽𝐻̂0 ̂𝑆𝐼 (𝛽, 𝜏 ′) ̂𝑐†𝐼 (𝜏 ′) ̂𝑆𝐼 (𝜏 ′, 𝜏 ) ̂𝑐𝐼 (𝜏 ) ̂𝑆𝐼 (𝜏 , 0)] 𝜏 < 𝜏 ′

(D.2)
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The auxiliary Green’s function can be formulated in a similar manner:

𝐺𝜃 (𝜏 , 𝜏 ′) =

⎧⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪
⎩

− 1
𝑍𝜃 Tr[𝑒

−𝛽𝐻̂0 ̂𝑐𝐼 (𝜏 ) ̂𝑐†𝐼 (𝜏 ′) ̂𝑆𝐼 (𝜃, 0)], 𝜏 > 𝜏 ′ > 𝜃,
1
𝑍𝜃 Tr[𝑒

−𝛽𝐻̂0 ̂𝑐†𝐼 (𝜏 ′) ̂𝑐𝐼 (𝜏 ) ̂𝑆𝐼 (𝜃, 0)], 𝜏 ′ > 𝜏 > 𝜃,

− 1
𝑍𝜃 Tr[𝑒

−𝛽𝐻̂0 ̂𝑐𝐼 (𝜏 ) ̂𝑆𝐼 (𝜃, 𝜏 ′) ̂𝑐†𝐼 (𝜏 ′)𝑈 (𝜏 ′)], 𝜏 > 𝜃 > 𝜏 ′,
1
𝑍𝜃 Tr[𝑒

−𝛽𝐻̂0 ̂𝑐†𝐼 (𝜏 ′) ̂𝑆𝐼 (𝜃, 𝜏 ) ̂𝑐𝐼 (𝜏 )𝑈 (𝜏)], 𝜏 ′ > 𝜃 > 𝜏 ,

− 1
𝑍𝜃 Tr[𝑒

−𝛽𝐻̂0 ̂𝑆𝐼 (𝜃, 𝜏 ) ̂𝑐𝐼 (𝜏 ) ̂𝑆𝐼 (𝜏 , 𝜏 ′) ̂𝑐†𝐼 (𝜏 ′)𝑈 (𝜏 ′)], 𝜃 > 𝜏 > 𝜏 ′,
1
𝑍𝜃 Tr[𝑒

−𝛽𝐻̂0 ̂𝑆𝐼 (𝜃, 𝜏 ′) ̂𝑐†𝐼 (𝜏 ′) ̂𝑆𝐼 (𝜏 ′, 𝜏 ) ̂𝑐𝐼 (𝜏 )𝑈 (𝜏)], 𝜃 > 𝜏 ′ > 𝜏 .

(D.3)

One can verify that this is equivalent to Eq. (8.7) by plugging in the Dyson series for ̂𝑆𝐼 [46]:

̂𝑆𝐼 (𝜏 , 𝜏 ′) =
∞
∑
𝑘=0

(−1)𝑘
𝑘! ∫

𝜏

𝜏 ′
d𝜏1 ∫

𝜏

𝜏 ′
d𝜏2⋯∫

𝜏

𝜏 ′
d𝜏𝑘𝒯𝜏 {𝑉̂𝐼 (𝜏1)𝑉̂𝐼 (𝜏2)⋯ 𝑉̂𝐼 (𝜏𝑘)}. (D.4)

Expanding all interaction picture operators explicitly, we have

𝐺𝜃 (𝜏 , 𝜏 ′) =

⎧⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪
⎩

− 1
𝑍𝜃 Tr[𝑒

−(𝛽−𝜏)𝐻̂0 ̂𝑐𝑒−(𝜏−𝜏 ′)𝐻̂0 ̂𝑐†𝑒−(𝜏 ′−𝜃)𝐻̂0𝑒−𝜃𝐻̂ ], 𝜏 > 𝜏 ′ > 𝜃,
1
𝑍𝜃 Tr[𝑒

−(𝛽−𝜏 ′)𝐻̂0 ̂𝑐†𝑒−(𝜏 ′−𝜏)𝐻̂0 ̂𝑐𝑒−(𝜏−𝜃)𝐻̂0𝑒−𝜃𝐻̂ ], 𝜏 ′ > 𝜏 > 𝜃,

− 1
𝑍𝜃 Tr[𝑒

−(𝛽−𝜏)𝐻̂0 ̂𝑐𝑒−(𝜏−𝜃)𝐻̂0𝑒−(𝜃−𝜏 ′)𝐻̂ ̂𝑐†𝑒−𝜏 ′𝐻̂ ], 𝜏 > 𝜃 > 𝜏 ′,
1
𝑍𝜃 Tr[𝑒

−(𝛽−𝜏 ′)𝐻̂0 ̂𝑐†𝑒−(𝜏 ′−𝜃)𝐻̂0𝑒−(𝜃−𝜏)𝐻̂ ̂𝑐𝑒−𝜏𝐻̂ ], 𝜏 ′ > 𝜃 > 𝜏 ,

− 1
𝑍𝜃 Tr[𝑒

−(𝛽−𝜃)𝐻̂0𝑒−(𝜃−𝜏)𝐻̂ ̂𝑐𝑒−(𝜏−𝜏 ′)𝐻̂ ̂𝑐†𝑒−𝜏 ′𝐻̂ ], 𝜃 > 𝜏 > 𝜏 ′,
1
𝑍𝜃 Tr[𝑒

−(𝛽−𝜃)𝐻̂0𝑒−(𝜃−𝜏 ′)𝐻̂ ̂𝑐†𝑒−(𝜏 ′−𝜏)𝐻̂ ̂𝑐𝑒−𝜏𝐻̂ ], 𝜃 > 𝜏 ′ > 𝜏 ,

(D.5)

which can be used to compute 𝐺𝜃 analytically.
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Appendix E

Connection of the Inchworm Expansion to

the Skeleton Series

The diagram rules for the inchworm expansion are reminiscent of the skeleton diagram

rules [52] due to the exclusion of two-particle reducible Type 1 components. The connection

between the inchworm expansion (8.9) and the skeleton series can be revealed in the limit

where 𝜃′ = 𝛽 , 𝜃 = 𝛽 −𝛥𝜃 , and 𝛥𝜃 → 0. For convenience, rewrite Eq. (8.6) as a coherent state
path integral [39]

𝑍𝜃 = ∫𝒟[ ̄𝑐, 𝑐]𝑒−𝑆0 exp (−∫
𝜃

0
d𝜏𝑉 (𝜏 )) , (E.1)

where ̄𝑐(𝜏 ) and 𝑐(𝜏 ) are Grassmann fields, 𝑆0 the non-interacting action, and 𝑉 (𝜏) the Grass-
mann function obtained by replacing operators ̂𝑐† and ̂𝑐 in 𝑉̂ with the Grassmann fields.

The generating function 𝒲𝜃 of the auxiliary Green’s function is the logarithm of 𝑍𝜃 with a
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bilinear source term 𝐽 [39]:

𝑍𝜃 [𝐽 ] = ∫𝒟[ ̄𝑐, 𝑐] exp ( − 𝑆0 − ∫
𝜃

0
d𝜏𝑉 (𝜏 )+

+ ∫
𝛽

0
d𝜏 ′d𝜏 ̄𝑐(𝜏 ′)𝐽 (𝜏 ′, 𝜏 )𝑐(𝜏 )),

𝒲𝜃 [𝐽 ] ∶= log𝑍𝜃 [𝐽 ],
𝛿𝒲𝜃

𝛿𝐽 (𝜏 ′, 𝜏 ) |𝐽=0 = 𝐺𝜃 (𝜏 , 𝜏 ′).

(E.2)

When 𝛥𝜃 → 0, we have

𝐺𝜃 − 𝐺𝜃−𝛥𝜃 ≈
𝜕𝐺𝜃
𝜕𝜃 𝛥𝜃 = 𝛿

𝛿𝐽
𝜕𝒲𝜃
𝜕𝜃 |

𝐽=0
𝛥𝜃. (E.3)

If the series expansion of 𝜕𝜃𝒲𝜃 uniformly converges near 𝐽 = 0, its derivative is also ex-

pected to converge. The convergence of this infinitesimal inchworm expansion for 𝐺𝜃 is

thus directly related to the convergence properties of 𝜕𝜃𝒲𝜃 |𝐽=0 = 𝜕𝜃 log𝑍𝜃 .
From (E.1), we have

𝜕
𝜕𝜃 log𝑍𝜃 =

1
𝑍𝜃

𝜕𝑍𝜃
𝜕𝜃 = 1

𝑍𝜃 ∫
𝒟[ ̄𝑐, 𝑐](−𝑉 (𝜃))𝑒−𝑆0×

× exp ( − ∫
𝜃

0
d𝜏𝑉 (𝜏 )).

(E.4)

When taking 𝜃 = 𝛽 , 𝑍𝜃 becomes 𝑍 , and the integral of 𝑉 (𝜏) recovers the interacting action

𝑆𝑉 and we have

𝜕
𝜕𝜃 log𝑍𝜃 |𝜃=𝛽 = 1

𝑍 ∫𝒟[ ̄𝑐, 𝑐](−𝑉 (𝛽))𝑒−𝑆 = −⟨𝑉̂ ⟩, (E.5)

where 𝑆 = 𝑆0 + 𝑆𝑉 is the full action of the system. For a standard four-fermion interaction

𝑉̂ , the expectation value can be formulated in terms of the Green’s function 𝐺 and the self-
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energy 𝛴
⟨𝑉̂ ⟩ = 1

2𝛽 ∑
𝑛
Tr[𝛴(i𝜔𝑛)𝐺(i𝜔𝑛)]. (E.6)

𝛴 can be obtained as a functional derivative of the Luttinger-Ward functional 𝛷[𝐺] [52]:

𝛿𝛷
𝛿𝐺 = 𝛴[𝐺], (E.7)

and the skeleton series can be formally written as [52, 56]

𝛴[𝐺] =
∞
∑
𝑘=1

𝛴(𝑘)[𝐺], 𝛷[𝐺] =
∞
∑
𝑘=1

𝛷(𝑘)[𝐺],

𝛷(𝑘) = 1
2𝑘 Tr[𝛴(𝑘)𝐺] = 1

2𝑘 ∑
𝑛
Tr[𝛴(𝑘)(i𝜔𝑛)𝐺(i𝜔𝑛)],

(E.8)

where 𝛴(𝑘) is the sum of all 𝑘-th order skeleton diagrams. Combining Eqs. (E.5), (E.6), and

(E.8), we have

𝜕
𝜕𝜃 log𝑍𝜃 |𝜃=𝛽 = −

∞
∑
𝑘=1

1
2𝛽 ∑

𝑛
Tr[𝛴(𝑘)(i𝜔𝑛)𝐺(i𝜔𝑛)]

= −1
𝛽

∞
∑
𝑘=1

𝑘𝛷(𝑘).
(E.9)

This directly relates the inchworm expansion at 𝜃 = 𝛽 to the skeleton expansion of the

Luttinger-Ward functional. If the skeleton series (E.8) is absolutely convergent, so should

Eq. (E.9), which implies a convergent inchworm expansion at 𝐺𝜃=𝛽 .
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Appendix F

High-frequency Tails of the Green’s

Function

We start deriving the high-frequency tails for Green’s functions with the most general type

of interaction from (2.24):

𝐻̂ = ∑
𝑖𝑗

ℎ𝑖𝑗 ̂𝑐†𝑖 ̂𝑐𝑗 + 1
4 ∑𝑖𝑗𝑘𝑙

𝑈𝑖𝑗𝑘𝑙 ̂𝑐†𝑖 ̂𝑐†𝑗 ̂𝑐𝑙 ̂𝑐𝑘 (F.1)

where 𝑖, 𝑗, ... are compound spin-orbital indices, ℎ𝑖𝑗 is the non-interacting matrix elements

(including the chemical potential contribution −𝜇𝛿𝑖𝑗 ), and 𝑈𝑖𝑗𝑘𝑙 is the fully antisymmetrized

interaction (2.23):

𝑈𝑖𝑗𝑘𝑙 = 𝑉𝑖𝑗𝑘𝑙 − 𝑉𝑖𝑗𝑙𝑘 = −𝑈𝑖𝑗𝑘𝑙 = −𝑈𝑗𝑖𝑘𝑙 . (F.2)

The high frequency expansion of the Green’s function 𝐺𝑖𝑗(𝜏 ) = −⟨𝒯𝜏 ̂𝑐𝑖(𝜏 ) ̂𝑐†𝑗 (0)⟩ is given by

𝐺𝑖𝑗(i𝜔𝑛) =
∞
∑
𝑘=1

(−1)𝑘
𝐺(𝑘−1)
𝑖𝑗 (𝜏 = 0+) − 𝐺(𝑘−1)

𝑖𝑗 (𝜏 = 0−)
(i𝜔𝑛)𝑘

=
∞
∑
𝑘=1

(−1)𝑘−1
⟨{[𝐻̂ , ̂𝑐𝑖](𝑘−1), }⟩

(i𝜔𝑛)𝑘
(F.3)
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We focus on the first three moments of the Green’s function.

Now we derive the first few moments of the Green’s function. Here are some useful

properties of the (anti-)commutators that will be used in the derivation.

{𝐴𝐵, 𝐶} = 𝐴[𝐵, 𝐶] + {𝐴, 𝐶}𝐵

{𝐴, 𝐵𝐶} = {𝐴, 𝐵}𝐶 − 𝐵[𝐴, 𝐶]

{𝐴𝐵, 𝐶} = 𝐴{𝐵, 𝐶} − [𝐴, 𝐶]𝐵

[𝐴𝐵, 𝐶] = 𝐴{𝐵, 𝐶} − {𝐴, 𝐶}𝐵

(F.4)

The derivations are given as follows. We use Einstein’s summation rule to simplify notations.

• 𝐺I𝑖𝑗 = ⟨{𝑐𝑖, ̂𝑐†𝑗 }⟩ = 𝛿𝑖𝑗

• 𝐺II𝑖𝑗 = − ⟨{[𝐻̂ , ̂𝑐𝑖] , ̂𝑐†𝑗 }⟩, in which

[𝐻̂ , ̂𝑐𝑖] =ℎ𝑝𝑞 [ ̂𝑐†𝑝 ̂𝑐𝑞 , ̂𝑐𝑖] + 1
4𝑈𝑝𝑞𝑚𝑛 [ ̂𝑐†𝑝 ̂𝑐†𝑞 ̂𝑐𝑛 ̂𝑐𝑚, ̂𝑐𝑖]

=ℎ𝑝𝑞 ( ̂𝑐†𝑝��
��>

0
{ ̂𝑐𝑞 , ̂𝑐𝑖} − { ̂𝑐†𝑝 , ̂𝑐𝑖} ̂𝑐𝑞) + 1

4𝑈𝑝𝑞𝑚𝑛 ( ̂𝑐†𝑝 ̂𝑐†𝑞 ̂𝑐𝑛����:0{ ̂𝑐𝑚, ̂𝑐𝑖} − { ̂𝑐†𝑝 ̂𝑐†𝑞 ̂𝑐𝑛, ̂𝑐𝑖} ̂𝑐𝑚)

= − ℎ𝑝𝑞𝛿𝑖𝑝 ̂𝑐𝑞 − 1
4𝑈𝑝𝑞𝑚𝑛 ( ̂𝑐†𝑝 ̂𝑐†𝑞����*

0
{ ̂𝑐𝑛, ̂𝑐𝑖} − [ ̂𝑐†𝑝 ̂𝑐†𝑞 , ̂𝑐𝑖] ̂𝑐𝑛) ̂𝑐𝑚

= − ℎ𝑖𝑞 ̂𝑐𝑞 + 1
4𝑈𝑝𝑞𝑚𝑛 ( ̂𝑐†𝑝 { ̂𝑐†𝑞 , ̂𝑐𝑖} − { ̂𝑐†𝑝 , ̂𝑐𝑖} ̂𝑐†𝑞 ) ̂𝑐𝑛 ̂𝑐𝑚

= − ℎ𝑖𝑞 ̂𝑐𝑞 + 1
4𝑈𝑝𝑞𝑚𝑛 ̂𝑐†𝑝 ̂𝑐𝑛 ̂𝑐𝑚𝛿𝑞𝑖 − 1

4𝑈𝑝𝑞𝑚𝑛 ̂𝑐†𝑞 ̂𝑐𝑛 ̂𝑐𝑚𝛿𝑝𝑖
= − ℎ𝑖𝑞 ̂𝑐𝑞 + 1

4𝑈𝑝𝑖𝑚𝑛 ̂𝑐†𝑝 ̂𝑐𝑛 ̂𝑐𝑚 − 1
4𝑈𝑖𝑞𝑚𝑛 ̂𝑐†𝑞 ̂𝑐𝑛 ̂𝑐𝑚

(F.5)

Respect the symmetry of the interaction matrix (F.2) and renaming dummy indices, we

have

[𝐻̂ , ̂𝑐𝑖] = −ℎ𝑖𝑞 ̂𝑐𝑞 − 1
2𝑈𝑖𝑞𝑚𝑛 ̂𝑐†𝑞 ̂𝑐𝑛 ̂𝑐𝑚 (F.6)
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Therefore

𝐺II𝑖𝑗 = − ⟨{[𝐻̂ , ̂𝑐𝑖] , ̂𝑐†𝑗 }⟩ = ℎ𝑖𝑞 ⟨{ ̂𝑐𝑞 , ̂𝑐†𝑗 }⟩ + 1
2𝑈𝑖𝑞𝑚𝑛 ⟨{ ̂𝑐

†𝑞 ̂𝑐𝑛 ̂𝑐𝑚, ̂𝑐†𝑗 }⟩

= ℎ𝑖𝑞𝛿𝑞𝑗 + 1
2𝑈𝑖𝑞𝑚𝑛 ⟨ ̂𝑐†𝑞 [ ̂𝑐𝑛 ̂𝑐𝑚, ̂𝑐†𝑗 ] −����*0

{ ̂𝑐†𝑞 , ̂𝑐†𝑗 } ̂𝑐𝑚 ̂𝑐𝑛⟩

= ℎ𝑖𝑗 + 1
2𝑈𝑖𝑞𝑚𝑛 ⟨ ̂𝑐†𝑞 ̂𝑐𝑛 { ̂𝑐𝑚, ̂𝑐†𝑗 } − ̂𝑐†𝑞 { ̂𝑐𝑚, ̂𝑐†𝑗 } ̂𝑐𝑛⟩

= ℎ𝑖𝑗 + 1
2𝑈𝑖𝑞𝑚𝑛 (𝜌𝑞𝑛𝛿𝑚𝑗 − 𝜌𝑞𝑚𝛿𝑛𝑗)

= ℎ𝑖𝑗 + 1
2 (𝑈𝑖𝑞𝑗𝑛𝜌𝑞𝑛 − 𝑈𝑖𝑞𝑚𝑗𝜌𝑞𝑚)

= ℎ𝑖𝑗 + 𝑈𝑖𝑞𝑗𝑛𝜌𝑞𝑛

(F.7)

where 𝜌𝑖𝑗 = ⟨ ̂𝑐†𝑖 ̂𝑐𝑗⟩ is the density matrix.

• 𝐺III𝑖𝑗 = ⟨{[𝐻̂ , [𝐻̂ , ̂𝑐𝑖]] , ̂𝑐†𝑗 }⟩. From (F.6) we have

[𝐻̂ , [𝐻̂ , ̂𝑐𝑖]] = − ℎ𝑖𝑞 [𝐻̂ , ̂𝑐𝑞] − 1
2𝑈𝑖𝑞𝑚𝑛 [𝐻̂ , ̂𝑐†𝑞 ̂𝑐𝑛 ̂𝑐𝑚] (F.8)

The first term goes as

−ℎ𝑖𝑞[𝐻̂ , ̂𝑐𝑞] = −ℎ𝑖𝑞 (−ℎ𝑞𝑟 ̂𝑐𝑟 − 1
2𝑈𝑞𝑟𝑠𝑡 ̂𝑐

†𝑟 ̂𝑐𝑡 ̂𝑐𝑠)

= ℎ𝑖𝑞ℎ𝑞𝑟 ̂𝑐𝑟 + 1
2ℎ𝑖𝑞𝑈𝑞𝑟𝑠𝑡 ̂𝑐

†𝑟 ̂𝑐𝑡 ̂𝑐𝑠 .
(F.9)

From the previous calculation we have ⟨{ ̂𝑐†𝑞 ̂𝑐𝑚 ̂𝑐𝑛, ̂𝑐†𝑗 }⟩ = 𝜌𝑞𝑚𝛿𝑛𝑗 − 𝜌𝑞𝑛𝛿𝑚𝑗 , therefore

⟨{−ℎ𝑖𝑞[𝐻̂ , ̂𝑐𝑞], ̂𝑐†𝑗 }⟩ = ℎ𝑖𝑞ℎ𝑞𝑟𝛿𝑟 𝑗 + 1
2ℎ𝑖𝑞𝑈𝑞𝑟𝑠𝑡 (𝜌𝑟 𝑡𝛿𝑠𝑗 − 𝜌𝑟 𝑠𝛿𝑡 𝑗) = (ℎ2)𝑖𝑗 + ℎ𝑖𝑞𝑈𝑞𝑟𝑗𝑠𝜌𝑟 𝑠 . (F.10)
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To evaluate the second term, we first investigate the following commutation relation

[𝐻̂ , ̂𝑐†𝑞 ̂𝑐𝑛 ̂𝑐𝑚] = ℎ𝑖𝑗 [ ̂𝑐†𝑖 ̂𝑐𝑗 , ̂𝑐†𝑞 ̂𝑐𝑛 ̂𝑐𝑚] + 1
4𝑈𝑖𝑗𝑘𝑙 [ ̂𝑐†𝑖 ̂𝑐†𝑗 ̂𝑐𝑙 ̂𝑐𝑘 , ̂𝑐†𝑞 ̂𝑐𝑛 ̂𝑐𝑚]

= ℎ𝑖𝑗 ([ ̂𝑐†𝑖 , ̂𝑐†𝑞 ̂𝑐𝑛 ̂𝑐𝑚] ̂𝑐𝑗 + ̂𝑐†𝑖 [ ̂𝑐𝑗 , ̂𝑐†𝑞 ̂𝑐𝑛 ̂𝑐𝑚])

+ 1
4𝑈𝑖𝑗𝑘𝑙 ([ ̂𝑐†𝑖 ̂𝑐†𝑗 , ̂𝑐†𝑞 ̂𝑐𝑛 ̂𝑐𝑚] ̂𝑐𝑙 ̂𝑐𝑘 + ̂𝑐†𝑖 ̂𝑐†𝑗 [ ̂𝑐𝑙 ̂𝑐𝑘 , ̂𝑐†𝑞 ̂𝑐𝑛 ̂𝑐𝑚])

= ℎ𝑖𝑗 (����*0
{ ̂𝑐†𝑖 , ̂𝑐†𝑞 } ̂𝑐𝑛 ̂𝑐𝑚 ̂𝑐𝑗 − ̂𝑐†𝑞 { ̂𝑐†𝑖 , ̂𝑐𝑛 ̂𝑐𝑚} ̂𝑐𝑗 + ̂𝑐†𝑖 { ̂𝑐𝑗 , ̂𝑐†𝑞 } ̂𝑐𝑛 ̂𝑐𝑚 − ̂𝑐†𝑖 ̂𝑐†𝑞 { ̂𝑐𝑗 , ̂𝑐𝑛 ̂𝑐𝑚})

+ 1
4𝑈𝑖𝑗𝑘𝑙 ( ̂𝑐†𝑖 { ̂𝑐†𝑗 , ̂𝑐†𝑞 ̂𝑐𝑛 ̂𝑐𝑚} ̂𝑐𝑙 ̂𝑐𝑘 − { ̂𝑐†𝑖 , ̂𝑐†𝑞 ̂𝑐𝑛 ̂𝑐𝑚} ̂𝑐†𝑗 ̂𝑐𝑙 ̂𝑐𝑘 + ̂𝑐†𝑖 ̂𝑐†𝑗 ̂𝑐𝑙 { ̂𝑐𝑘 , ̂𝑐†𝑞 ̂𝑐𝑛 ̂𝑐𝑚} − ̂𝑐†𝑖 ̂𝑐†𝑗 { ̂𝑐𝑙 , ̂𝑐†𝑞 ̂𝑐𝑛 ̂𝑐𝑚} ̂𝑐𝑘)

= ℎ𝑖𝑗 (− ̂𝑐†𝑞 { ̂𝑐†𝑖 , ̂𝑐𝑛} ̂𝑐𝑚 ̂𝑐𝑗 + ̂𝑐†𝑞 ̂𝑐𝑛 [ ̂𝑐†𝑖 , ̂𝑐𝑚] ̂𝑐𝑗 + ̂𝑐†𝑖 ̂𝑐𝑛 ̂𝑐𝑚𝛿𝑗𝑞 − ̂𝑐†𝑖 ̂𝑐†𝑞����*
0

{ ̂𝑐𝑗 , ̂𝑐𝑛} ̂𝑐𝑚 + ̂𝑐†𝑖 ̂𝑐†𝑞 ̂𝑐𝑛 [ ̂𝑐𝑗 , ̂𝑐𝑚])

+ 1
4𝑈𝑖𝑗𝑘𝑙( ̂𝑐†𝑖 ����*0

{ ̂𝑐†𝑗 , ̂𝑐†𝑞 } ̂𝑐𝑛 ̂𝑐𝑚 ̂𝑐𝑙 ̂𝑐𝑘 − ̂𝑐†𝑖 ̂𝑐†𝑞 [ ̂𝑐†𝑗 , ̂𝑐𝑛 ̂𝑐𝑚] ̂𝑐𝑙 ̂𝑐𝑘 −����*0
{ ̂𝑐†𝑖 , ̂𝑐†𝑞 } ̂𝑐†𝑗 ̂𝑐𝑛 ̂𝑐𝑚 ̂𝑐𝑙 ̂𝑐𝑘 + ̂𝑐†𝑞 [ ̂𝑐†𝑖 , ̂𝑐𝑛 ̂𝑐𝑚] ̂𝑐†𝑗 ̂𝑐𝑙 ̂𝑐𝑘

+ ̂𝑐†𝑖 ̂𝑐†𝑗 ̂𝑐𝑙 { ̂𝑐𝑘 , ̂𝑐†𝑞 } ̂𝑐𝑛 ̂𝑐𝑚 − ̂𝑐†𝑖 ̂𝑐†𝑗 ̂𝑐𝑙 ̂𝑐𝑘�����:0[ ̂𝑐𝑘 , ̂𝑐𝑛 ̂𝑐𝑚] − ̂𝑐†𝑖 ̂𝑐†𝑗 { ̂𝑐𝑙 , ̂𝑐†𝑞 } ̂𝑐𝑛 ̂𝑐𝑚 ̂𝑐𝑘 + ̂𝑐†𝑖 ̂𝑐†𝑗 ̂𝑐†𝑞�����:0[ ̂𝑐𝑙 , ̂𝑐𝑛 ̂𝑐𝑚] ̂𝑐𝑘)

= ℎ𝑖𝑗 (− ̂𝑐†𝑞 ̂𝑐𝑚 ̂𝑐𝑗𝛿𝑖𝑛 + ̂𝑐†𝑞 ̂𝑐𝑛 (−𝛿𝑖𝑚 + 2 ̂𝑐†𝑖 ̂𝑐𝑚) ̂𝑐𝑗 + ̂𝑐†𝑖 ̂𝑐𝑛 ̂𝑐𝑚𝛿𝑗𝑞 + ̂𝑐†𝑖 ̂𝑐†𝑞 ̂𝑐𝑛 (2 ̂𝑐𝑗 ̂𝑐𝑚))

+ 1
4𝑈𝑖𝑗𝑘𝑙( − ̂𝑐†𝑖 ̂𝑐†𝑞 (− ̂𝑐𝑛 { ̂𝑐†𝑗 , ̂𝑐𝑚} + { ̂𝑐†𝑗 , ̂𝑐𝑛} ̂𝑐𝑚) ̂𝑐𝑙 ̂𝑐𝑘 + ̂𝑐†𝑞 (− ̂𝑐𝑛 { ̂𝑐†𝑖 , ̂𝑐𝑚} + { ̂𝑐†𝑖 , ̂𝑐𝑛} ̂𝑐𝑚) ̂𝑐†𝑗 ̂𝑐𝑙 ̂𝑐𝑘

+ ̂𝑐†𝑖 ̂𝑐†𝑗 ̂𝑐𝑙 ̂𝑐𝑛 ̂𝑐𝑚𝛿𝑘𝑞 − ̂𝑐†𝑖 ̂𝑐†𝑗 ̂𝑐𝑛 ̂𝑐𝑚���>
(− ̂𝑐𝑙𝛿𝑘𝑞)

̂𝑐𝑘𝛿𝑙𝑞)

= ℎ𝑖𝑗(− ̂𝑐†𝑞 ̂𝑐𝑚 ̂𝑐𝑗𝛿𝑖𝑛 − ̂𝑐†𝑞 ̂𝑐𝑛 ̂𝑐𝑗𝛿𝑖𝑚 + ̂𝑐†𝑖 ̂𝑐𝑛 ̂𝑐𝑚𝛿𝑗𝑞 + 2
�������������:

̂𝑐†𝑞 ̂𝑐𝑚 ̂𝑐𝑗𝛿𝑖𝑛
( ̂𝑐†𝑞 ̂𝑐𝑛 ̂𝑐†𝑖 ̂𝑐𝑚 ̂𝑐𝑗 + ̂𝑐†𝑖 ̂𝑐†𝑞 ̂𝑐𝑛 ̂𝑐𝑗 ̂𝑐𝑚))

+ 1
4𝑈𝑖𝑗𝑘𝑙 ( ̂𝑐†𝑖 ̂𝑐†𝑞 ̂𝑐𝑛 ̂𝑐𝑙 ̂𝑐𝑘𝛿𝑗𝑚 − ̂𝑐†𝑖 ̂𝑐†𝑞 ̂𝑐𝑚 ̂𝑐𝑙 ̂𝑐𝑘𝛿𝑗𝑛 − ̂𝑐†𝑞 ̂𝑐𝑛 ̂𝑐†𝑗 ̂𝑐𝑙 ̂𝑐𝑘𝛿𝑖𝑚 + ̂𝑐†𝑞 ̂𝑐𝑚 ̂𝑐†𝑗 ̂𝑐𝑙 ̂𝑐𝑘𝛿𝑖𝑛 + 2 ̂𝑐†𝑖 ̂𝑐†𝑗 ̂𝑐𝑙 ̂𝑐𝑛 ̂𝑐𝑚𝛿𝑘𝑞)

= ℎ𝑖𝑗 ( ̂𝑐†𝑞 ̂𝑐𝑚 ̂𝑐𝑗𝛿𝑖𝑛 − ̂𝑐†𝑞 ̂𝑐𝑛 ̂𝑐𝑗𝛿𝑖𝑚 + ̂𝑐†𝑖 ̂𝑐𝑛 ̂𝑐𝑚𝛿𝑗𝑞)

+ 1
4𝑈𝑖𝑗𝑘𝑙( ̂𝑐†𝑖 ̂𝑐†𝑞 ̂𝑐𝑛 ̂𝑐𝑙 ̂𝑐𝑘𝛿𝑗𝑚 − ̂𝑐†𝑖 ̂𝑐†𝑞 ̂𝑐𝑚 ̂𝑐𝑙 ̂𝑐𝑘𝛿𝑗𝑛 +�������:

̂𝑐†𝑖 ̂𝑐†𝑞 ̂𝑐𝑛 ̂𝑐𝑙 ̂𝑐𝑘𝛿𝑗𝑚
̂𝑐†𝑞 ̂𝑐†𝑗 ̂𝑐𝑛 ̂𝑐𝑙 ̂𝑐𝑘𝛿𝑖𝑚

−�������:
̂𝑐†𝑖 ̂𝑐†𝑞 ̂𝑐𝑚 ̂𝑐𝑙 ̂𝑐𝑘𝛿𝑗𝑛

̂𝑐†𝑞 ̂𝑐†𝑗 ̂𝑐𝑚 ̂𝑐𝑙 ̂𝑐𝑘𝛿𝑖𝑛 − ̂𝑐†𝑞 ̂𝑐𝑙 ̂𝑐𝑘𝛿𝑛𝑗𝛿𝑖𝑚 +������:
− ̂𝑐†𝑞 ̂𝑐𝑙 ̂𝑐𝑘𝛿𝑖𝑚𝛿𝑗𝑛

̂𝑐†𝑞 ̂𝑐𝑙 ̂𝑐𝑘𝛿𝑗𝑚𝛿𝑖𝑛 + 2 ̂𝑐†𝑖 ̂𝑐†𝑗 ̂𝑐𝑙 ̂𝑐𝑛 ̂𝑐𝑚𝛿𝑘𝑞)

= ℎ𝑖𝑗 ( ̂𝑐†𝑞 ̂𝑐𝑚 ̂𝑐𝑗𝛿𝑖𝑛 − ̂𝑐†𝑞 ̂𝑐𝑛 ̂𝑐𝑗𝛿𝑖𝑚 + ̂𝑐†𝑖 ̂𝑐𝑛 ̂𝑐𝑚𝛿𝑗𝑞)

+ 1
2𝑈𝑖𝑗𝑘𝑙 ( ̂𝑐†𝑖 ̂𝑐†𝑞 ̂𝑐𝑛 ̂𝑐𝑙 ̂𝑐𝑘𝛿𝑗𝑚 − ̂𝑐†𝑖 ̂𝑐†𝑞 ̂𝑐𝑚 ̂𝑐𝑙 ̂𝑐𝑘𝛿𝑗𝑛 − ̂𝑐†𝑞 ̂𝑐𝑙 ̂𝑐𝑘𝛿𝑛𝑗𝛿𝑖𝑚 + ̂𝑐†𝑖 ̂𝑐†𝑗 ̂𝑐𝑙 ̂𝑐𝑛 ̂𝑐𝑚𝛿𝑘𝑞)

(F.11)
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To avoid confusion, we change the dummy indices in the result above from {𝑖, 𝑗, 𝑘, 𝑙} to
{𝑟 , 𝑠, 𝑡 , 𝑣 }, which gives

[𝐻̂ , ̂𝑐†𝑞 ̂𝑐𝑚 ̂𝑐𝑛] =ℎ𝑟 𝑠( ̂𝑐†𝑞 ̂𝑐𝑚 ̂𝑐𝑠𝛿𝑟𝑛 − ̂𝑐†𝑞 ̂𝑐𝑛 ̂𝑐𝑠𝛿𝑟𝑚 + ̂𝑐†𝑟 ̂𝑐𝑛 ̂𝑐𝑚𝛿𝑠𝑞)

+ 𝑈𝑟 𝑠𝑡𝑣
2 ( ̂𝑐†𝑟 ̂𝑐†𝑞 ̂𝑐𝑛 ̂𝑐𝑣 ̂𝑐𝑡𝛿𝑠𝑚 − ̂𝑐†𝑟 ̂𝑐†𝑞 ̂𝑐𝑚 ̂𝑐𝑣 ̂𝑐𝑡𝛿𝑠𝑛 + ̂𝑐†𝑟 ̂𝑐†𝑠 ̂𝑐𝑣 ̂𝑐𝑛 ̂𝑐𝑚𝛿𝑡𝑞 − ̂𝑐†𝑞 ̂𝑐𝑣 ̂𝑐𝑡𝛿𝑛𝑠𝛿𝑟𝑚)

(F.12)

Plugging this into the second term of (F.8), we have

− 1
2𝑈𝑖𝑞𝑚𝑛 [𝐻̂ , ̂𝑐†𝑞 ̂𝑐𝑛 ̂𝑐𝑚] = −12𝑈𝑖𝑞𝑚𝑛ℎ𝑟 𝑠(�����:− ̂𝑐†𝑞 ̂𝑐𝑛 ̂𝑐𝑠𝛿𝑟𝑚

̂𝑐†𝑞 ̂𝑐𝑚 ̂𝑐𝑠𝛿𝑟𝑛 − ̂𝑐†𝑞 ̂𝑐𝑛 ̂𝑐𝑠𝛿𝑟𝑚 + ̂𝑐†𝑟 ̂𝑐𝑛 ̂𝑐𝑚𝛿𝑠𝑞)

− 𝑈𝑖𝑞𝑚𝑛𝑈𝑟 𝑠𝑡𝑣
4 (�������:− ̂𝑐†𝑟 ̂𝑐†𝑞 ̂𝑐𝑚 ̂𝑐𝑣 ̂𝑐𝑡𝛿𝑠𝑛

̂𝑐†𝑟 ̂𝑐†𝑞 ̂𝑐𝑛 ̂𝑐𝑣 ̂𝑐𝑡𝛿𝑠𝑚 − ̂𝑐†𝑟 ̂𝑐†𝑞 ̂𝑐𝑚 ̂𝑐𝑣 ̂𝑐𝑡𝛿𝑠𝑛 + ̂𝑐†𝑟 ̂𝑐†𝑠 ̂𝑐𝑣 ̂𝑐𝑛 ̂𝑐𝑚𝛿𝑡𝑞 − ̂𝑐†𝑞 ̂𝑐𝑣 ̂𝑐𝑡𝛿𝑛𝑠𝛿𝑟𝑚)

= 𝑈𝑖𝑞𝑚𝑛ℎ𝑟 𝑠
2 (2 ̂𝑐†𝑞 ̂𝑐𝑛 ̂𝑐𝑠𝛿𝑟𝑚 − ̂𝑐†𝑟 ̂𝑐𝑛 ̂𝑐𝑚𝛿𝑠𝑞)

+ 𝑈𝑖𝑞𝑚𝑛𝑈𝑟 𝑠𝑡𝑣
4 (2 ̂𝑐†𝑟 ̂𝑐†𝑞 ̂𝑐𝑚 ̂𝑐𝑣 ̂𝑐𝑡𝛿𝑠𝑛 − ̂𝑐†𝑟 ̂𝑐†𝑠 ̂𝑐𝑣 ̂𝑐𝑛 ̂𝑐𝑚𝛿𝑡𝑞 + ̂𝑐†𝑞 ̂𝑐𝑣 ̂𝑐𝑡𝛿𝑛𝑠𝛿𝑟𝑚)

(F.13)

We then analyze the following anti-commutation relation

{ ̂𝑐†𝑟 ̂𝑐†𝑠 ̂𝑐𝑣 ̂𝑐𝑛 ̂𝑐𝑚, ̂𝑐†𝑗 } = ̂𝑐†𝑟 ̂𝑐†𝑠 { ̂𝑐𝑣 ̂𝑐𝑛 ̂𝑐𝑚, ̂𝑐†𝑗 } −������*0
[ ̂𝑐†𝑟 ̂𝑐†𝑠 , ̂𝑐†𝑗 ] ̂𝑐𝑣 ̂𝑐𝑛 ̂𝑐𝑚

= ̂𝑐†𝑟 ̂𝑐†𝑠 ̂𝑐𝑣 [ ̂𝑐𝑛 ̂𝑐𝑚, ̂𝑐†𝑗 ] + ̂𝑐†𝑟 ̂𝑐†𝑠 { ̂𝑐𝑣 , ̂𝑐†𝑗 } ̂𝑐𝑛 ̂𝑐𝑚
= ̂𝑐†𝑟 ̂𝑐†𝑠 ̂𝑐𝑣 ( ̂𝑐𝑛{ ̂𝑐𝑚, ̂𝑐†𝑗 } − { ̂𝑐𝑛, ̂𝑐†𝑗 } ̂𝑐𝑚) + ̂𝑐†𝑟 ̂𝑐†𝑠 ̂𝑐𝑛 ̂𝑐𝑚𝛿𝑗𝑣
= ̂𝑐†𝑟 ̂𝑐†𝑠 ̂𝑐𝑣 ( ̂𝑐𝑛𝛿𝑚𝑗 − ̂𝑐𝑚𝛿𝑛𝑗) + ̂𝑐†𝑟 ̂𝑐†𝑠 ̂𝑐𝑛 ̂𝑐𝑚𝛿𝑗𝑣

(F.14)

Using this together with that ⟨{ ̂𝑐†𝑞 ̂𝑐𝑚 ̂𝑐𝑛, ̂𝑐†𝑗 }⟩ = 𝜌𝑞𝑚𝛿𝑛𝑗 − 𝜌𝑞𝑛𝛿𝑚𝑗 , we have (define 𝜒𝑖𝑗𝑘𝑙 =
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⟨ ̂𝑐†𝑖 ̂𝑐†𝑗 ̂𝑐𝑙 ̂𝑐𝑘⟩)

⟨{−12𝑈𝑖𝑞𝑚𝑛 [𝐻̂ , ̂𝑐†𝑞 ̂𝑐𝑛 ̂𝑐𝑚] , ̂𝑐†𝑗 }⟩

= 𝑈𝑖𝑞𝑚𝑛ℎ𝑟 𝑠
2 (2 (𝜌𝑞𝑛𝛿𝑠𝑗 − 𝜌𝑞𝑠𝛿𝑛𝑗) 𝛿𝑟𝑚 −

���������:
2𝜌𝑟𝑚𝛿𝑛𝑗

(𝜌𝑟𝑚𝛿𝑛𝑗 − 𝜌𝑟𝑛𝛿𝑚𝑗)𝛿𝑠𝑞)

+ 𝑈𝑖𝑞𝑚𝑛𝑈𝑟 𝑠𝑡𝑣
4 (⟨2 ( ̂𝑐†𝑟 ̂𝑐†𝑞 ̂𝑐𝑚�������:

2 ̂𝑐𝑣𝛿𝑡 𝑗
( ̂𝑐𝑣𝛿𝑡 𝑗 − ̂𝑐𝑡𝛿𝑣𝑗) + ̂𝑐†𝑟 ̂𝑐†𝑞 ̂𝑐𝑣 ̂𝑐𝑡𝛿𝑗𝑚) 𝛿𝑠𝑛

− ( ̂𝑐†𝑟 ̂𝑐†𝑠 ̂𝑐𝑣��������:
−2 ̂𝑐𝑚𝛿𝑛𝑗

( ̂𝑐𝑛𝛿𝑚𝑗 − ̂𝑐𝑚𝛿𝑛𝑗) + ̂𝑐†𝑟 ̂𝑐†𝑠 ̂𝑐𝑛 ̂𝑐𝑚𝛿𝑗𝑣) 𝛿𝑡𝑞⟩

+
���������:

2𝜌𝑞𝑣 𝛿𝑡 𝑗
(𝜌𝑞𝑣 𝛿𝑡 𝑗 − 𝜌𝑞𝑡𝛿𝑣𝑗)𝛿𝑛𝑠𝛿𝑟𝑚)

= 𝑈𝑖𝑞𝑚𝑛ℎ𝑟 𝑠(𝜌𝑞𝑛𝛿𝑠𝑗𝛿𝑟𝑚 − 𝜌𝑞𝑠𝛿𝑛𝑗𝛿𝑟𝑚 − 𝜌𝑟𝑚𝛿𝑛𝑗𝛿𝑠𝑞)

+ 𝑈𝑖𝑞𝑚𝑛𝑈𝑟 𝑠𝑡𝑣
4 (⟨4 ̂𝑐†𝑟 ̂𝑐†𝑞 ̂𝑐𝑚 ̂𝑐𝑣𝛿𝑡 𝑗𝛿𝑠𝑛 + 2 ̂𝑐†𝑟 ̂𝑐†𝑞 ̂𝑐𝑣 ̂𝑐𝑡𝛿𝑗𝑚𝛿𝑠𝑛

+ 2 ̂𝑐†𝑟 ̂𝑐†𝑠 ̂𝑐𝑣 ̂𝑐𝑚𝛿𝑛𝑗𝛿𝑡𝑞 − ̂𝑐†𝑟 ̂𝑐†𝑠 ̂𝑐𝑛 ̂𝑐𝑚𝛿𝑗𝑣𝛿𝑡𝑞⟩ + 2𝜌𝑞𝑣 𝛿𝑡 𝑗𝛿𝑛𝑠𝛿𝑟𝑚)

= 𝑈𝑖𝑞𝑚𝑛ℎ𝑚𝑗𝜌𝑞𝑛 − 𝑈𝑖𝑞𝑚𝑗ℎ𝑚𝑠𝜌𝑞𝑠 + 𝑈𝑖𝑞𝑚𝑗ℎ𝑟𝑞𝜌𝑟𝑚 + 1
2𝑈𝑖𝑞𝑚𝑛𝑈𝑚𝑛𝑗𝑣𝜌𝑞𝑣

+ 𝑈𝑖𝑞𝑚𝑛𝑈𝑟𝑛𝑗𝑣𝜒𝑟𝑞𝑣𝑚 + 1
2𝑈𝑖𝑞𝑗𝑛𝑈𝑟𝑛𝑡𝑣𝜒𝑟𝑞𝑡𝑣 +

1
2𝑈𝑖𝑞𝑚𝑗𝑈𝑟 𝑠𝑞𝑣𝜒𝑟 𝑠𝑚𝑣 −

1
4𝑈𝑖𝑞𝑚𝑛𝑈𝑟 𝑠𝑞𝑗𝜒𝑟 𝑠𝑚𝑛

(F.15)

To sum up, we have

𝐺III𝑖𝑗 = (ℎ2)𝑖𝑗 + ℎ𝑖𝑞𝑈𝑞𝑟𝑗𝑠𝜌𝑟 𝑠 + 𝑈𝑖𝑞𝑚𝑛ℎ𝑚𝑗𝜌𝑞𝑛 − 𝑈𝑖𝑞𝑚𝑗ℎ𝑚𝑠𝜌𝑞𝑠 + 𝑈𝑖𝑞𝑚𝑗ℎ𝑟𝑞𝜌𝑟𝑚 + 1
2𝑈𝑖𝑞𝑚𝑛𝑈𝑚𝑛𝑗𝑣𝜌𝑞𝑣

+ 𝑈𝑖𝑞𝑚𝑛𝑈𝑟𝑛𝑗𝑣𝜒𝑟𝑞𝑣𝑚 + 1
2𝑈𝑖𝑞𝑗𝑛𝑈𝑟𝑛𝑡𝑣𝜒𝑟𝑞𝑡𝑣 +

1
2𝑈𝑖𝑞𝑚𝑗𝑈𝑟 𝑠𝑞𝑣𝜒𝑟 𝑠𝑚𝑣 −

1
4𝑈𝑖𝑞𝑚𝑛𝑈𝑟 𝑠𝑞𝑗𝜒𝑟 𝑠𝑚𝑛

(F.16)
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Recall that 𝐺II𝑖𝑗 = ℎ𝑖𝑗 +𝑈𝑖𝑞𝑗𝑛𝜌𝑞𝑛, which gives (𝐺II)2𝑖𝑗 = (ℎ2)𝑖𝑗 +ℎ𝑖𝑞𝑈𝑞𝑚𝑗𝑛𝜌𝑚𝑛+𝑈𝑖𝑞𝑚𝑛ℎ𝑚𝑗𝜌𝑞𝑛+
𝑈𝑖𝑞𝑚𝑛𝑈𝑚𝑠𝑗𝑣𝜌𝑞𝑛𝜌𝑠𝑣 . Collecting identical terms in 𝐺𝐼 𝐼 𝐼

𝐺III𝑖𝑗 =(𝐺II)2𝑖𝑗 −���������:
𝑈𝑖𝑞𝑚𝑛𝑈𝑟𝑛𝑗𝑣𝜌𝑟𝑣𝜌𝑞𝑚

𝑈𝑖𝑞𝑚𝑛𝑈𝑚𝑠𝑗𝑣𝜌𝑞𝑛𝜌𝑠𝑣 − 𝑈𝑖𝑞𝑚𝑗ℎ𝑚𝑠𝜌𝑞𝑠 + 𝑈𝑖𝑞𝑚𝑗ℎ𝑟𝑞𝜌𝑟𝑚 + 1
2𝑈𝑖𝑞𝑚𝑛𝑈𝑚𝑛𝑗𝑣𝜌𝑞𝑣

+ 𝑈𝑖𝑞𝑚𝑛𝑈𝑟𝑛𝑗𝑣𝜒𝑟𝑞𝑣𝑚 + 1
2𝑈𝑖𝑞𝑗𝑛𝑈𝑟𝑛𝑡𝑣𝜒𝑟𝑞𝑡𝑣 +

1
2𝑈𝑖𝑞𝑚𝑗𝑈𝑟 𝑠𝑞𝑣𝜒𝑟 𝑠𝑚𝑣 −

1
4𝑈𝑖𝑞𝑚𝑛𝑈𝑟 𝑠𝑞𝑗𝜒𝑟 𝑠𝑚𝑛

=(𝐺II)2𝑖𝑗
+ 𝑈𝑖𝑞𝑚𝑛𝑈𝑟𝑛𝑗𝑣 (𝜒𝑟𝑞𝑣𝑚 − 𝜌𝑟𝑣𝜌𝑞𝑚)

− 𝑈𝑖𝑞𝑚𝑗ℎ𝑚𝑠𝜌𝑞𝑠 + 𝑈𝑖𝑞𝑚𝑗ℎ𝑟𝑞𝜌𝑟𝑚
+ 1
2𝑈𝑖𝑞𝑚𝑛𝑈𝑚𝑛𝑗𝑣𝜌𝑞𝑣 +

1
2𝑈𝑖𝑞𝑗𝑛𝑈𝑟𝑛𝑡𝑣𝜒𝑟𝑞𝑡𝑣 +

1
2𝑈𝑖𝑞𝑚𝑗𝑈𝑟 𝑠𝑞𝑣𝜒𝑟 𝑠𝑚𝑣

− 1
4𝑈𝑖𝑞𝑚𝑛𝑈𝑟 𝑠𝑞𝑗𝜒𝑟 𝑠𝑚𝑛

(F.17)

If we assume that all elements in ℎ𝑖𝑗 and 𝑈𝑖𝑗𝑘𝑙 are real, and so is 𝜌𝑖𝑗 and 𝜒𝑖𝑗𝑘𝑙 , then since

the Hamiltonian is Hermitian, we have the following additional symmetry:

ℎ𝑖𝑗 =ℎ𝑗𝑖
𝑈𝑖𝑗𝑘𝑙 =𝑈𝑘𝑙𝑖𝑗

(F.18)

𝜌𝑖𝑗 (𝐺𝑖𝑗 ) and 𝜒𝑖𝑗𝑘𝑙 follows the same symmetry as ℎ𝑖𝑗 and 𝑈𝑖𝑗𝑘𝑙 respectively. We can make
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use of these properties to simplify the result above.

𝐺III𝑖𝑗 =(𝐺II)2𝑖𝑗
+ 𝑈𝑖𝑞𝑛𝑚𝑈𝑟𝑛𝑣 𝑗(𝜒𝑟𝑞𝑣𝑚 − 𝜌𝑟𝑣𝜌𝑞𝑚)

+ 1
2𝑈𝑖𝑞𝑚𝑛𝑈𝑚𝑛𝑗𝑣𝜌𝑞𝑣

+ 1
2(𝑈𝑖𝑞𝑗𝑛 − 𝑈𝑖𝑛𝑗𝑞)𝑈𝑟𝑛𝑡𝑣𝜒𝑟𝑞𝑡𝑣⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
zero under symmetry 𝑖↔𝑗

− 1
4𝑈𝑖𝑞𝑚𝑛𝑈𝑟 𝑠𝑞𝑗𝜒𝑟 𝑠𝑚𝑛

=(𝐺II)2𝑖𝑗
+ 𝑈𝑖𝑞𝑛𝑚𝑈𝑟𝑛𝑣 𝑗(𝜒𝑟𝑞𝑣𝑚 − 𝜌𝑟𝑣𝜌𝑞𝑚)

− 1
4𝑈𝑖𝑞𝑚𝑛𝑈𝑟 𝑠𝑞𝑗𝜒𝑟 𝑠𝑚𝑛

+ 1
2𝑈𝑖𝑞𝑚𝑛𝑈𝑚𝑛𝑗𝑣𝜌𝑞𝑣

(F.19)

Nowwe treat the orbital and spin indices separately. To simplify notations, we introduce the

following convention: suppose we have a compound index 𝑖 = {𝑜𝑖, 𝜎𝑖} where 𝑜𝑖 is the orbital
index and 𝜎𝑖 is the spin index, we denote the corresponding vector quantity to be 𝐴𝑖 = 𝐴𝑖𝑖,

in which the subscript is always the orbital index, and the superscript is always the spin

index. Einstein’s summation rule is applied to all orbital indices, namely the subscript. Spin

summations should always be written with the summation symbol explicitly, and the indices

under the summation symbol only refer to the spin. We further assume that the Hamiltonian

takes the following spin-preserving form:

𝐻 = ∑
𝑠
ℎ𝑠𝑖𝑗 ̂𝑐𝑠†𝑖 ̂𝑐𝑠𝑗 + 1

2 ∑𝑖𝑗
𝑉 𝑖𝑗
𝑖𝑗𝑘𝑙 ̂𝑐𝑖†𝑖 ̂𝑐𝑗†𝑗 ̂𝑐𝑗𝑙 ̂𝑐𝑖𝑘 (F.20)
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which relates to the previous spin-orbital notations as follows (Einstein’s summation rule is

NOT implied here):

ℎ𝑖𝑗𝑖𝑗 = ℎ𝑖𝑖𝑗𝛿 𝑖𝑗

𝑉 𝑖𝑗𝑘𝑙
𝑖𝑗𝑘𝑙 = 𝑉 𝑖𝑗

𝑖𝑗𝑘𝑙𝛿 𝑖𝑘𝛿 𝑗𝑙

𝑈 𝑖𝑗𝑘𝑙
𝑖𝑗𝑘𝑙 = 𝑉 𝑖𝑗𝑘𝑙

𝑖𝑗𝑘𝑙 − 𝑉 𝑖𝑗𝑙𝑘
𝑖𝑗𝑙𝑘 = 𝑉 𝑖𝑗

𝑖𝑗𝑘𝑙𝛿 𝑖𝑘𝛿 𝑗𝑙 − 𝑉 𝑖𝑗
𝑖𝑗𝑙𝑘𝛿 𝑖𝑙𝛿 𝑗𝑘

(F.21)

Since the Hamiltonian preserves spin, the observables should also reflect such preservation

(Einstein’s summation rule is NOT implied here):

𝐺 𝑖𝑗
𝑖𝑗 = 𝐺 𝑖𝑖𝑗𝛿 𝑖𝑗

𝜌𝑖𝑗𝑖𝑗 = 𝜌𝑖𝑖𝑗𝛿 𝑖𝑗

𝜒 𝑖𝑗𝑘𝑙
𝑖𝑗𝑘𝑙 = 𝜒 𝑖𝑗

𝑖𝑗𝑘𝑙𝛿 𝑖𝑘𝛿 𝑗𝑙 − 𝜒 𝑖𝑗
𝑖𝑗𝑙𝑘𝛿 𝑖𝑙𝛿 𝑗𝑘(1 − 𝛿 𝑖𝑗)

(F.22)

where 𝜒 𝑖𝑗
𝑖𝑗𝑘𝑙 = ⟨ ̂𝑐𝑖†𝑖 ̂𝑐𝑗†𝑗 ̂𝑐𝑗𝑙 ̂𝑐𝑖𝑘⟩. Now we evaluate the tails under this convention.

• The first tail is simply (𝐺I)𝑠𝑖𝑗 = 𝛿𝑖𝑗

• The second tails turns into

(𝐺II)𝑠𝑖𝑗 = ℎ𝑠𝑖𝑗 +∑
𝑖𝑞𝑗𝑛

𝛿 𝑖𝑠𝛿 𝑗𝑠(𝑉 𝑖𝑞
𝑖𝑞𝑗𝑛𝛿 𝑖𝑗𝛿𝑞𝑛 − 𝑉 𝑖𝑛𝑖𝑞𝑛𝑗𝛿 𝑖𝑛𝛿𝑞𝑗)𝜌𝑞𝑞𝑛𝛿𝑞𝑛

= ℎ𝑠𝑖𝑗 + (∑
𝑠′

𝑉 𝑠𝑠′𝑖𝑞𝑗𝑛𝜌𝑠
′
𝑞𝑛 − 𝑉 𝑠𝑠𝑖𝑞𝑛𝑗𝜌𝑠𝑞𝑛)

(F.23)

from which we recognize the familiar Hartree and Fock self energies.
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• The third tail goes as (here ̄𝜎 denotes the opposite spin of 𝜎 )

(𝐺III)𝑖𝑖𝑗 =(𝐺II)𝑖𝑖𝑘(𝐺II)𝑖𝑘𝑗
+ ∑

𝑞𝑚𝑛𝑟𝑣
(𝑉 𝑖𝑞

𝑖𝑞𝑚𝑛𝛿 𝑖𝑚𝛿𝑞𝑛 − 𝑉 𝑖𝑞
𝑖𝑞𝑛𝑚𝛿 𝑖𝑛𝛿𝑞𝑚)(𝑉 𝑟𝑛𝑟𝑛𝑗𝑣𝛿 𝑟 𝑖𝛿𝑛𝑣 − 𝑉 𝑟𝑛𝑟𝑛𝑣𝑗𝛿 𝑟𝑣𝛿𝑛𝑖)

((𝜒 𝑟𝑞𝑟𝑞𝑣𝑚𝛿 𝑟𝑣𝛿𝑞𝑚 − 𝜒 𝑟𝑞𝑟𝑞𝑚𝑣 𝛿 𝑟𝑚𝛿𝑞𝑣 (1 − 𝛿 𝑟𝑞)) − 𝜌𝑟𝑟𝑣𝛿 𝑟𝑣𝜌𝑞𝑞𝑚𝛿𝑞𝑚)

+12 ∑
𝑞𝑚𝑛𝑣

(𝑉 𝑖𝑞
𝑖𝑞𝑚𝑛𝛿 𝑖𝑚𝛿𝑞𝑛 − 𝑉 𝑖𝑞

𝑖𝑞𝑛𝑚𝛿 𝑖𝑛𝛿𝑞𝑚)(𝑉𝑚𝑛𝑚𝑛𝑗𝑣𝛿𝑚𝑖𝛿𝑛𝑣 − 𝑉𝑚𝑛𝑚𝑛𝑣𝑗𝛿𝑚𝑣 𝛿𝑛𝑖)𝜌𝑞𝑞𝑣 𝛿𝑞𝑣

−14 ∑
𝑞𝑚𝑛𝑟𝑠

(𝑉 𝑖𝑞
𝑖𝑞𝑚𝑛𝛿 𝑖𝑚𝛿𝑞𝑛 − 𝑉 𝑖𝑞

𝑖𝑞𝑛𝑚𝛿 𝑖𝑛𝛿𝑞𝑚)(𝑉 𝑟 𝑠𝑟𝑠𝑞𝑗𝛿 𝑟𝑞𝛿 𝑠𝑖 − 𝑉 𝑟 𝑠𝑟𝑠𝑗𝑞𝛿 𝑟 𝑖𝛿 𝑠𝑞)

(𝜒 𝑟 𝑠𝑟𝑠𝑚𝑛𝛿 𝑟𝑚𝛿 𝑠𝑛 − 𝜒 𝑟 𝑠𝑟 𝑠𝑛𝑚𝛿 𝑟𝑛𝛿 𝑠𝑚(1 − 𝛿 𝑟 𝑠))

=(𝐺II)𝑖𝑖𝑘(𝐺II)𝑖𝑘𝑗
+(𝑉 𝑖𝑖𝑖𝑞𝑚𝑛𝑉 𝑖𝑖𝑟𝑛𝑗𝑣 (𝜒 𝑖𝑖𝑟𝑞𝑣𝑚 − 𝜌𝑖𝑟𝑣𝜌𝑖𝑞𝑚) − 𝑉 𝑖 ̄𝑖𝑖𝑞𝑚𝑛𝑉 𝑖 ̄𝑖𝑟𝑛𝑗𝑣𝜒 𝑖 ̄𝑖𝑟𝑞𝑚𝑣

−∑
𝑟
𝑉 𝑖𝑖𝑖𝑞𝑚𝑛𝑉 𝑟 𝑖𝑟𝑛𝑣 𝑗(𝜒 𝑟 𝑖𝑟𝑞𝑣𝑚 − 𝜌𝑟𝑟𝑣𝜌𝑖𝑞𝑚) −∑

𝑞
𝑉 𝑖𝑞
𝑖𝑞𝑛𝑚𝑉 𝑖𝑖𝑟𝑛𝑗𝑣 (𝜒 𝑖𝑞𝑟𝑞𝑣𝑚 − 𝜌𝑖𝑟𝑣𝜌𝑞𝑞𝑚)

+∑
𝑞𝑟

𝑉 𝑖𝑞
𝑖𝑞𝑛𝑚𝑉 𝑟 𝑖𝑟𝑛𝑣 𝑗(𝜒 𝑟𝑞𝑟𝑞𝑣𝑚 − 𝜌𝑟𝑟𝑣𝜌𝑞𝑞𝑚))

+12(∑𝑞
𝑉 𝑖𝑞
𝑖𝑞𝑚𝑛𝑉 𝑖𝑞

𝑚𝑛𝑗𝑣𝜌𝑞𝑞𝑣 − 𝑉 𝑖𝑖𝑖𝑞𝑚𝑛𝑉 𝑖𝑖𝑚𝑛𝑣𝑗𝜌𝑖𝑞𝑣 − 𝑉 𝑖𝑖𝑖𝑞𝑛𝑚𝑉 𝑖𝑖𝑚𝑛𝑗𝑣𝜌𝑖𝑞𝑣 +∑
𝑞
𝑉 𝑖𝑞
𝑖𝑞𝑛𝑚𝑉 𝑞𝑖

𝑚𝑛𝑣𝑗𝜌𝑞𝑞𝑣)

−14(𝑉
𝑖𝑖𝑖𝑞𝑚𝑛𝑉 𝑖𝑖𝑟 𝑠𝑞𝑗𝜒 𝑖𝑖𝑟 𝑠𝑚𝑛 − 𝑉 𝑖 ̄𝑖𝑖𝑞𝑚𝑛𝑉 ̄𝑖𝑖𝑟 𝑠𝑞𝑗𝜒 ̄𝑖𝑖𝑟 𝑠𝑛𝑚 −∑

𝑞
𝑉 𝑖𝑞
𝑖𝑞𝑚𝑛𝑉 𝑖𝑞

𝑟𝑠𝑗𝑞𝜒 𝑖𝑞𝑟𝑠𝑚𝑛

−∑
𝑞
𝑉 𝑖𝑞
𝑖𝑞𝑛𝑚𝑉 𝑞𝑖

𝑟𝑠𝑞𝑗𝜒 𝑞𝑖𝑟𝑠𝑚𝑛 + 𝑉 𝑖𝑖𝑖𝑞𝑛𝑚𝑉 𝑖𝑖𝑟 𝑠𝑗𝑞𝜒 𝑖𝑖𝑟 𝑠𝑚𝑛 − 𝑉 𝑖 ̄𝑖𝑖𝑞𝑛𝑚𝑉 𝑖 ̄𝑖𝑟 𝑠𝑗𝑞𝜒 𝑖 ̄𝑖𝑟 𝑠𝑛𝑚)

(F.24)
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In the case of Coulomb interactions, the interaction is spin-independent, i.e.

𝑉 𝑖𝑗
𝑖𝑗𝑘𝑙 = 𝑉𝑖𝑗𝑘𝑙 = ∫ 𝑑r1𝑑r2𝜙∗𝑖 (r1)𝜙∗𝑗 (r2) 1

|r1 − r2|
𝜙𝑙(r2)𝜙𝑘(r1) (F.25)

We further make the following assumptions, which is usually the case in typical quantum

chemistry calculations

1. Non-interacting Hamiltonian is real and spin-independent: ℎ𝑠𝑖𝑗 = ℎ𝑖𝑗 = ℎ𝑗𝑖;

2. Interaction is real: 𝑉𝑖𝑗𝑘𝑙 = 𝑉𝑘𝑗𝑖𝑙 = 𝑉𝑖𝑙𝑘𝑗 = 𝑉𝑗𝑖𝑙𝑘 .

In this case, the tails become

• (𝐺I)𝑠𝑖𝑗 = 𝛿𝑖𝑗

• (𝐺II)𝑠𝑖𝑗 = ℎ𝑠𝑖𝑗 +∑𝑠′ 𝑉𝑖𝑞𝑗𝑛𝜌𝑠
′
𝑞𝑛 − 𝑉𝑖𝑞𝑛𝑗𝜌𝑠𝑞𝑛 = ℎ𝑖𝑗 + 𝑉𝑖𝑞𝑗𝑛 ∑𝑠′ 𝜌𝑠

′
𝑞𝑛 − 𝑉𝑖𝑞𝑛𝑗𝜌𝑠𝑞𝑛

• It can be shown that 𝐺III = (𝐺II)2+𝛴I, where 𝛴I is the 1/i𝜔𝑛 moment of the self-energy,
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which we can get from the previous derivations as

(𝛴I)𝜎𝑖𝑗 =(𝑉𝑖𝑞𝑚𝑛𝑉𝑟𝑛𝑗𝑣 (𝜒𝜎𝜎𝑟𝑞𝑣𝑚 − 𝜌𝜎𝑟𝑣𝜌𝜎𝑞𝑚) − 𝑉𝑖𝑞𝑚𝑛𝑉𝑟𝑛𝑗𝑣𝜒𝜎 ̄𝜎𝑟𝑞𝑚𝑣 − 𝑉𝑖𝑞𝑚𝑛𝑉𝑟𝑛𝑣 𝑗 ∑
𝜎 ′
(𝜒𝜎 ′𝜎𝑟𝑞𝑣𝑚 − 𝜌𝜎 ′𝑟𝑣 𝜌𝜎𝑞𝑚)

− 𝑉𝑖𝑞𝑛𝑚𝑉𝑟𝑛𝑗𝑣 ∑
𝜎 ′
(𝜒𝜎𝜎 ′𝑟𝑞𝑣𝑚 − 𝜌𝜎𝑟𝑣𝜌𝜎 ′𝑞𝑚) + 𝑉𝑖𝑞𝑛𝑚𝑉𝑟𝑛𝑣 𝑗 ∑

𝜎 ′𝜏 ′
(𝜒𝜎 ′𝜏 ′𝑟𝑞𝑣𝑚 − 𝜌𝜎 ′𝑟𝑣 𝜌𝜏 ′𝑞𝑚))

+12(𝑉𝑖𝑞𝑚𝑛𝑉𝑚𝑛𝑗𝑣 ∑𝜎 ′
𝜌𝜎 ′𝑞𝑣 − 𝑉𝑖𝑞𝑚𝑛𝑉𝑚𝑛𝑣𝑗𝜌𝜎𝑞𝑣 − 𝑉𝑖𝑞𝑛𝑚𝑉𝑚𝑛𝑗𝑣𝜌𝜎𝑞𝑣 + 𝑉𝑖𝑞𝑛𝑚𝑉𝑚𝑛𝑣𝑗 ∑

𝜎 ′
𝜌𝜎 ′𝑞𝑣 )

−14(𝑉𝑖𝑞𝑚𝑛𝑉𝑟 𝑠𝑞𝑗𝜒
𝜎𝜎𝑟𝑠𝑚𝑛 − 𝑉𝑖𝑞𝑚𝑛𝑉𝑟 𝑠𝑞𝑗𝜒 ̄𝜎𝜎𝑟𝑠𝑛𝑚 − 𝑉𝑖𝑞𝑚𝑛𝑉𝑟 𝑠𝑗𝑞 ∑

𝜎 ′
𝜒𝜎𝜎 ′𝑟 𝑠𝑚𝑛

− 𝑉𝑖𝑞𝑛𝑚𝑉𝑟 𝑠𝑞𝑗 ∑
𝜎 ′

𝜒𝜎 ′𝜎𝑟𝑠𝑚𝑛 + 𝑉𝑖𝑞𝑛𝑚𝑉𝑟 𝑠𝑗𝑞𝜒𝜎𝜎𝑟𝑠𝑚𝑛 − 𝑉𝑖𝑞𝑛𝑚𝑉𝑟 𝑠𝑗𝑞𝜒𝜎 ̄𝜎𝑟𝑠𝑛𝑚)

=(𝑉𝑖𝑞𝑚𝑛𝑉𝑟𝑛𝑗𝑣 (𝜒𝜎𝜎𝑟𝑞𝑣𝑚 − 𝜌𝜎𝑟𝑣𝜌𝜎𝑞𝑚) − 𝑉𝑖𝑞𝑚𝑛𝑉𝑟𝑛𝑗𝑣𝜒𝜎 ̄𝜎𝑟𝑞𝑚𝑣 − 𝑉𝑖𝑞𝑚𝑛𝑉𝑟𝑛𝑣 𝑗 ∑
𝜎 ′
(𝜒𝜎 ′𝜎𝑟𝑞𝑣𝑚 − 𝜌𝜎 ′𝑟𝑣 𝜌𝜎𝑞𝑚)

− 𝑉𝑖𝑞𝑛𝑚𝑉𝑟𝑛𝑗𝑣 ∑
𝜎 ′
(𝜒𝜎𝜎 ′𝑟𝑞𝑣𝑚 − 𝜌𝜎𝑟𝑣𝜌𝜎 ′𝑞𝑚) + 𝑉𝑖𝑞𝑛𝑚𝑉𝑟𝑛𝑣 𝑗 ∑

𝜎 ′𝜏 ′
(𝜒𝜎 ′𝜏 ′𝑟𝑞𝑣𝑚 − 𝜌𝜎 ′𝑟𝑣 𝜌𝜏 ′𝑞𝑚))

+𝑉𝑖𝑞𝑚𝑛𝑉𝑚𝑛𝑗𝑣 ∑
𝜎 ′

𝜌𝜎 ′𝑞𝑣 − 𝑉𝑖𝑞𝑚𝑛𝑉𝑚𝑛𝑣𝑗𝜌𝜎𝑞𝑣

−12(𝑉𝑖𝑞𝑚𝑛𝑉𝑟 𝑠𝑞𝑗𝜒
𝜎𝜎𝑟𝑠𝑚𝑛 − 𝑉𝑖𝑞𝑚𝑛𝑉𝑟 𝑠𝑞𝑗𝜒 ̄𝜎𝜎𝑟𝑠𝑛𝑚 − 𝑉𝑖𝑞𝑛𝑚𝑉𝑟 𝑠𝑞𝑗 ∑

𝜎 ′
𝜒𝜎 ′𝜎𝑟𝑠𝑚𝑛)

(F.26)
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