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ABSTRACT 

 

By controlling quantum interactions of molecules and light, new technology in quantum 

information science promises to outperform classical-based technology in both function and 

efficiency. In particular, chemists stand to gain much advantage from quantum sensing techniques, 

allowing them to measure new spectroscopic signals that classical techniques cannot do, control 

photochemical reactions in new ways, and even measure nonlinear interactions with a simple push 

of a button. Much of the current work in using entangled photons for spectroscopy has focused on 

the unique physics of the photons. There is still much to be learned about how the molecule’s 

structure influences quantum spectroscopic signals and leaves its signature. In this dissertation, the 

unique ways that organic chromophores interact with entangled photons from spontaneous 

parametric down-conversion (SPDC) has been analyzed in detail. In Chapter 3, I calculate 

entangled two-photon absorption (ETPA) cross-sections for a few diatomic molecules to show 

how the varying dipole properties of the molecules affect the ETPA cross-section oscillation vs 

the entanglement time, Te. With these cross-section calculations, I show that virtual states in the 

molecule can constructively interfere to enhance the ETPA cross-section and increase the period 

between cross-section minima, allowing for better temporal resolution of the ETPA “on” and “off” 

signals. In Chapter 4, new theory shows that the excited state linewidth from ETPA excitation is 

extremely narrow compared to classical TPA excitation. This newly derived linewidth provides 

excellent agreement between calculated ETPA cross-sections of large organic chromophores with 

experimentally measured cross-sections. I show that the reason for the ETPA linewidth being so 

narrow is due to the large arrival time uncertainty of the entangled photon pair, which makes the 

first photons’ absorption time in the molecule largely uncertain and effectively narrows the excited 

state linewidth. In Chapter 5, I used Type-II SPDC to prove, for the first time, that two halogenated 

anesthetic ethers, sevoflurane and isoflurane, have the ability to target and interact with quantum 

particles by showing that they interact with 800 nm entangled photons but not 800 nm classical 

photons. Conversely, I also show that the structurally similar but much less potent anesthetic, 

diethyl ether, is not sensitive to the entangled photons. This work motivates further studies into 
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potential quantum mechanisms of anesthetic-induced unconsciousness and the use of entangled 

photons as a unique probing tool of this mechanism. In Chapter 6, I build an ETPA experimental 

setup that uses CW laser pumping of Type-I SPDC, which is shown to significantly improve the 

accuracy, signal-to-noise ratio (SNR), and limit of detection of ETPA while also making the 

experiment more compact and cost-effective. I also show how to quantify the degree of frequency 

entanglement using the Schmidt decomposition of the joint frequency spectrum and propose how 

the Schmidt modes can be tuned to control photochemical reactions. Theoretical work regarding 

the frequency entanglement of Type-I SPDC photons has shown the great potential for chemists 

to manipulate the excitation pathway of molecules by tuning the frequency correlations of the 

photons and not having to change the structure of the molecule itself. Contrary to prior belief in 

the literature, I show experimentally in Chapter 7 that ETPA with Type-I SPDC increases linearly 

with increasing Te, allowing one to increase the ETPA cross-section by an order of magnitude by 

increasing Te from a few fs to ~10 ps. This enhancement is due to the entanglement area, Ae, 

decreasing as the frequency bandwidth decreases, which is how Te is increased. This spatial-

spectral coupling has previously been overlooked in the context of ETPA, causing previous 

theoretical models to underestimate the ETPA cross-section at ps Te by 3-4 orders of magnitude. 

Using ps Te Type-I SPDC, ps-scale excited state dynamics can be studied using ETPA, and 

photochemical reactions with intermediate steps, such as isomerizations or solvent reorganization, 

can be controlled. The experimental techniques and theoretical work here has provided a much 

needed improvement to make ETPA a more quantitatively robust analytical technique that is useful 

and accessible to the researchers who can benefit most from its applications: chemists, biologists, 

and anyone who studies the quantum principles underlying all aspects of chemistry. 
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CHAPTER 1 

Introduction and Background Information 

 

1.1 Scope 

Quantum information science (QIS) is a multidisciplinary field that aims to utilize the 

unique features of quantum mechanics to develop technology and scientific research methods that 

can outperform classical mechanics-based technology and methods.1, 2 There are a variety of ways 

that quantum technology and methods can outperform their classical counterparts, including 

completing tasks much faster, requiring less resources such as memory and cost to complete tasks, 

and even completing tasks that would be impossible for classical technology and methods to do. 

QIS can be broken down into three main pillars: computing, communication, and sensing. While 

each of these pillars has different end goals, they all rely upon a few important concepts that are 

unique to quantum mechanics. To set the context of this dissertation, the big picture goal of this 

work will be explained, followed by introductory information about the unique aspects of quantum 

mechanics that are important for understanding this work. 

The focus of this dissertation lies within the pillar of quantum sensing. Quantum sensing 

is the multidisciplinary field of using quantum measurement devices to detect or extract 

information from samples that would be extremely difficult, if not impossible, for classical 

measurement devices to do.3, 4 While classical sensing technology today can perform 

measurements on quantum systems, the measurement device itself may not be a quantum system. 

By using a quantum measurement system, the quantum state of the sample can interfere with the 

quantum state of the sensing device, allowing for new signals to be measured that would go unseen 

by a classical measurement system. Some well-known examples today include the 

superconducting quantum interference device (SQUID) to measure extremely small magnetic 

fields5, scanning tunneling microscope for atomic level images6, and avalanche photodiode for 

single photon detection. 
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In the field of optical sensing, lasers are the most common device used to measure 

properties of molecular samples. By measuring the properties of the laser’s light field before and 

after interacting with a sample, information about the sample can be extracted. Most laser 

spectroscopy techniques today can be modeled with classical wave mechanics, making these 

techniques classical-based. The goal of quantum optical sensing is to use a light source that is a 

purely quantum system and measure how the properties of this quantum light field change before 

and after interacting with the sample. The most common quantum light source, which is used 

extensively throughout the work in this dissertation, is entangled photons produced by spontaneous 

parametric down-conversion (SPDC). Using entangled SPDC photon pairs, the technique of 

entangled two-photon absorption (ETPA) has been examined and developed both experimentally 

and theoretically in this work. 

Research on ETPA began with theoretical studies in the 1990s.7-10 These earlier works, 

which are highlighted in more detail in the following sections, focused on the unique physics that 

quantum entangled photons bring to interactions with molecules. Simple molecular systems, such 

as H2, were used as toy models as a first step toward understanding how the physics of two-photon 

absorption changes from using classical photons to entangled photons. Experimental work on 

ETPA began soon after, with ETPA observed in atomic systems and organic chromophores.11, 12 

These works proved many predictions that the theoretical literature suggested some years prior. 

With theoreticians predicting unique advantages that ETPA may provide for chemists, and 

experimentalists demonstrating the ability to measure and manipulate ETPA signals, the next step 

is developing ETPA specifically to make it useful and accessible to chemists, whether they have 

laser spectroscopy and quantum optics experience or not. This next step is where the work in this 

dissertation lies. 

This work begins with two theoretical studies into the molecular properties that influence 

the ETPA cross-section, i.e. the ability for a molecule to absorb entangled photon pairs. Since the 

early theoretical reports focused on the unique physics of the photons, questions remained about 

what the molecules bring to the table during the ETPA interaction. The first work (chapter 3) 

analyzed how the two-photon pathway taken by the entangled photons is influenced by the strength 

of the dipole moments of a molecule. Because of the computationally intensive nature of the 

calculations, diatomic molecules were used as a model. The second work (chapter 4) extends the 
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calculations of ETPA cross-sections to larger organic chromophores that are used experimentally. 

This work considered another molecular property that influences ETPA: the excited state 

lineshape. With the first two works uncovering how molecules influence ETPA, the next two 

works, both experimental, focused on what kinds of molecules can be studied by chemists and how 

chemists can study such molecules in a relatively simple experiment. The first of these works 

(chapter 5) studied a scattering interaction between entangled photons and two anesthetic 

molecules, a molecular system extremely important to biology and medicine that has not been 

studied with entangled photons before. Chapter 6 takes the ETPA experimental setup and shows 

how the experiment can actually be completed in a much smaller, simpler, and more cost-effective 

setup, with the additional benefit of increasing the signal-to-noise ratio of ETPA measurements. 

This development makes ETPA much more appealing and accessible to chemists. The final work 

(chapter 7) reveals an oversight regarding ETPA that had been missed in previous theoretical 

models, that of the importance of frequency-spatial coupling of SPDC. From this work, new uses 

for ETPA that had previously been neglected under the assumption that they were not practical 

experimentally are shown to have great potential for chemists, including new control over 

photochemical reactions. 

Before detailing these works in the subsequent chapters, the remainder of this chapter will 

introduce the key concepts in quantum mechanics, optical spectroscopy, and prior work on ETPA 

that will be necessary to understand the work in this dissertation. 

1.2 Correlations of Quantum States 

1.2.1 Quantum States 

When a measurement is performed on a quantum object, such as an atom, proton, or 

electron, the outcome, i.e. the specific value measured, is determined, in part, by the quantum 

state of the object. The state of an object is the description of the object’s properties, such as 

position, energy, spin, etc., as they exist in reality. For example, an electron can spin counter-

clockwise (called “spin up”) or clockwise (called “spin down”). States can be manipulated or 

measured with operators that act on the state. When an operator acts on a state by extracting a 

piece of information, such as the spin of the electron, without changing the state of the object, 

the state is an eigenstate of that operator, and the information is a scalar called the eigenvalue. 
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Such eigenvalue problems are abundant in quantum mechanics. Some eigenvalue equations of 

the electron’s spin can be written in a shorthand known as Dirac or bra-ket notation as:13 

 �̂�|↑⟩ =
ℏ

2
|↑⟩ (1.1) 

 �̂�|↓⟩ = −
ℏ

2
|↓⟩ (1.2) 

When measuring the spin of the electron with the operator S, the state (also called a 

ket) in eq. 1.1 will always yield spin up, indicated by the eigenvalue ħ/2, and the state in eq. 

1.2 will always yield spin down, indicated by the eigenvalue -ħ/2. However, objects do not 

have to start in an eigenstate of the operator. For example: 

 |𝜓⟩ = 𝑎|↑⟩ + 𝑏|↓⟩ (1.3) 

The state in eq. 1.3 is in a superposition of the spin up state and spin down state. In this 

superposition, the electron’s state has some character of the spin up state and some character 

of the spin down state, each weighted with the coefficients a and b, respectively, but the 

electron is not actually in either of the spin up or spin down states. If the electron’s spin were 

measured while in this superposition, the state would collapse into either the spin up or spin 

down state, with the probability of each outcome equaling its coefficient squared (assuming 

the coefficients are normalized such that the sum of the squares is 1). All of the states in eq. 

1.1-1.3 are examples of pure states because they express single, definable probability 

distributions for the outcome of a measurement. 

Quantum states can also be written as density operators. For pure states, expressing the 

state in the ket form above or the density operator below provides the same information about 

the state. Other states, known as mixed states, can only be defined as a density operator. Mixed 

states are those that are a statistical mixture of multiple pure states, each of which define a 

unique probability distribution. The density operator is defined as:14 

 𝜌 = ∑ 𝑝𝑗|𝜓𝑗⟩⟨𝜓𝑗|
𝑁
𝑗  (1.4) 

Here, pj is the probability for the object to be in the jth state with the outer-product 

|ψj><ψj|, and each |ψj> is a pure state. For pure states, N = 1 and pj = 1. For mixed states, N > 
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1, and the summation of all the pj’s equals 1. As an example, a mixed state involving the pure 

states in eq. 1.1 and 1.2 can be: 

 𝜌 =
1

2
|↑⟩⟨↑| +

1

2
|↓⟩⟨↓| (1.5) 

A mixed state commonly occurs for a large ensemble, where each object in the 

ensemble, such as an electron, is in a pure state, such as spin up or spin down. However, when 

performing a measurement on one electron in the ensemble, it is not known before the 

measurement which pure state that particular electron is in. For the mixed state in eq. 1.5, the 

electron is in either the spin up or spin down state, with their probabilities both being 1/2. For 

both superposition states and mixed states, the outcome of the measurement is not known 

before the measurement is taken. The difference, however, is that with a superposition, the 

initial pure state of the electron is known; with a mixed state, the initial pure state is not known. 

1.2.2 Classical Correlations 

The initial state of a quantum object is important for understanding how two (or more) 

objects can be correlated. In general, correlation refers to the properties of one object 

influencing the properties of another object. Correlations can be classified as classical or 

quantum, with the difference being the initial joint state of the correlated objects. The joint 

state of two classically correlated objects is: 

 𝜌𝐴𝐵 = ∑ 𝑝𝑗|𝜓𝑗⟩𝐴
⟨𝜓𝑗|𝐴⨂|𝜓𝑗⟩𝐵

⟨𝜓𝑗|𝐵
𝑁>1
𝑗 = ∑ 𝑝𝑗𝜌𝑗,𝐴⨂𝜌𝑗,𝐵

𝑁>1
𝑗  (1.6) 

Here, the density operators of objects A and B are separable, meaning that there is a 

defined density operator just for A and one just for B. Each object is in a pure state, and these 

pure states alone do not depend on each other. But, each object has multiple pure states it can 

be in, and the occupied states are correlated such that if object A is in ρj,A, then object B must 

be in ρj,B. Since it is not known which pure state each object is in, the joint system of both 

objects is a mixed state. Suppose there are 2 electrons labeled A and B. Each electron is in 

either the spin up or spin down pure state with the condition that one electron is spin up and 

the other spin down. Without you looking, the electrons are placed in separate boxes. The 

initial joint state of this system of electrons is: 

 𝜌𝐴𝐵 =
1

2
|↑⟩𝐴⟨↑|𝐴⨂|↓⟩𝐵⟨↓|𝐵 +

1

2
|↓⟩𝐴⟨↓|𝐴⨂|↑⟩𝐵⟨↑|𝐵 (1.7) 
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The left term says that if electron A is spin up, then electron B is spin down, and vice 

versa for the right term. Before opening a box, you do not know whether either electron is spin 

up or spin down. If you were to open the box with electron A, there is a 50 % chance of the 

electron being spin up or spin down, noted by the coefficients of ½. When you open the box 

with electron A, and see that the electron is spin up, you now know that electron B is spin 

down, even if you never open the box. By measuring the spin of electron A, you gained 

information about electron B without having to measure it because the two electrons were 

correlated. 

1.2.3 Quantum Correlations and Entanglement 

Quantum correlations have a different initial joint state: 

 𝜌𝐴𝐵 = ∑ 𝑝𝑗|𝜓𝑗⟩𝐴⨂|𝜓𝑗⟩𝐵 ⋅ ⟨𝜓𝑗|𝐴⨂⟨𝜓𝑗|𝐵
𝑁
𝑗 = ∑ 𝑝𝑗𝜌𝑗,𝐴𝐵

𝑁
𝑗  (1.8) 

For this joint state, it is impossible to define a density operator just for A and just for 

B. There is only one density operator for each j that defines both objects together. An example 

joint state for two quantum correlated electrons A and B, with the condition that when 

measured one electron is spin up and the other is spin down, can be: 

 |𝜓⟩
𝐴
⨂|𝜓⟩

𝐵
=

1

√2
(|↑⟩𝐴⨂|↓⟩𝐵 + |↓⟩𝐴⨂|↑⟩𝐵) (1.9) 

This joint state is a superposition of the state where electron A is spin up and electron 

B is spin down, and vice versa. Substituting eq. 1.9 into eq. 1.8, with N = 1 and pj = 1, would 

give the pure joint state of the quantum correlated electron pair. This kind of correlation is 

what is known as quantum entanglement. Suppose again that electrons A and B were placed 

in separate boxes without you looking, and the closed boxes resulted in the joint state in eq. 

1.9. Before you open the box with electron A, both electrons are in a superposition of the spin 

up and spin down states. If you open the box for electron A and see that its state collapses to 

spin up, then you also know electron B has collapsed to spin down without ever having to open 

its box. Though this example may seem similar to the example for the classically correlated 

electrons, they are distinctly different. For the classically correlated electrons, electron A was 

always spin up, and electron B was always spin down, even when the boxes were closed and 

you had not yet looked at electron A. When you looked at electron A by opening its box, you 



7 
 

the observer gained more information about electron B, but the act of opening the box for 

electron A did not change anything about the state of electron B. For the quantum entangled 

electrons, neither electron was spin up nor spin down while the boxes were closed; they were 

both in superpositions. When you opened the box for electron A, you gained information about 

electron B, and the act of opening the box for electron A actually changed the state of electron 

B. This is what Einstein has famously referred to as “spooky action at a distance,” because 

performing a measurement on one object actually changes the state of another distant object 

that has not been directly interacted with. 

1.2.4 Hidden Variables 

There is an important clarification regarding the nature of superpositions that must be 

understood. Some physicists, most notably Albert Einstein, believed there must be “hidden 

variables” that determine the collapsed value of a property’s superposition before the 

measurement occurs.15 Thus, the object was never in a superposition state in reality. The 

mathematical description of the superposition state merely reflects that the observer does not 

know which state the object is actually in. For example, before measuring the spin of an 

electron, the observer did not know whether the spin would be up or down after measuring it. 

But, the hidden variable theory states that the electron had some underlying variable which had 

already determined “this electron will be spin up when it is measured.” The observer could not 

see this variable, and so represented the electron’s state with a superposition, but Einstein and 

others believed the variable must exist. 

While the debate of the existence of hidden variables continued, it was believed the 

theory could not be experimentally tested until John Bell proposed his eponymous theorem in 

1964.16 Bell showed that if the hidden variables were real, then the predicted statistical 

outcomes of measuring two entangled particles separately must obey an inequality, now 

referred to as Bell’s inequalities. However, if there are no hidden variables, the predicted 

statistical outcomes would violate the inequality. Bell’s theorem was first tested by Freedman 

and Clauser in 1972, and the results violated the inequality and confirmed the predictions of 

quantum mechanics without hidden variables.17 The theory of hidden variables is thus 

incorrect, which leaves the original interpretation of the superposition intact. 
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While the hidden variable theory does not correctly explain the concept of 

superposition, the theory does provide an intuitive understanding of the difference between 

classical and quantum correlations. Supposing again that there are two electrons with 

correlated spins such that one is up and one is down, quantum correlations occur when the 

electrons are in a superposition of the spin up and spin down states. The spin state of each 

electron is not determined until the measurement of one of the electrons occurs. For classical 

correlations, one electron was always spin up, and the other was always spin down. However, 

the information of which electron was in which state was hidden to the observer before the 

measurement took place. Measurements of the quantum correlated electrons’ spins would be 

consistent with quantum mechanics without hidden variables, while the hidden variable theory 

would be consistent with the measurements of the classically correlated electrons’ spins. 

1.3 Nonlinear Optics 

1.3.1 Classical Second-Order Nonlinear Optics 

There are a variety of particles that can be entangled, including the example of electrons 

used above. The particles relevant for this dissertation are entangled photons. Before 

explaining what entangled photons are and where they come from, a few concepts in nonlinear 

optics should be understood. 

From a classical optics point-of-view, when a light field passes through a molecule, the 

electric field creates an oscillation of the molecule’s electron density, known as a polarization. 

Assume the molecule is that of an optical crystal with its first electronic excited state far off 

resonance with the light field, as is common for optical crystals used experimentally. At low 

light intensities, the polarization, P, is linear, meaning the oscillation of the electron density 

contains only the frequency of the present light field(s):18 

 �⃑� (𝑡) = 휀0𝜒
(1)�⃑� (𝑡) (1.10) 

In eq. 1.10, ε0 is the vacuum permittivity, χ(1) is the linear or first-order susceptibility 

(a proportionality constant describing the molecule’s ability to be polarized by the electric 

field), and E(t) is the electric field. For simplicity, assuming one electric field with frequency 

ω1 and amplitude E1 enters the crystal, the polarization oscillates according to: 



9 
 

 �⃑� (𝑡) = 휀0𝜒
(1)𝐸1𝑒

−𝑖𝜔1𝑡 (1.11) 

When the molecule loses its polarization, it can emit a photon (in any direction) at the 

frequency it oscillates at: ω1. This is known as Rayleigh scattering (Fig. 1.1a). If the molecule 

absorbs a small amount of energy and relaxes instead to a different vibrational state than it 

started in, the molecule emits a photon (in any direction) at a frequency very close to ω1. This 

is known as Raman scattering (Fig. 1.1b). 

 

Figure 1.1. Energy level diagrams for: a) Rayleigh scattering; b) Raman scattering; c) second 

harmonic generation (SHG). 

When the light field intensity is increased, the molecule can experience nonlinear 

polarizations, where the oscillation of the electron density contains frequencies not found in 

the present light field(s). This leads to several new nonlinear optical phenomena. Here, the 

polarization is written generally as:18 

 �⃑� (𝑡) = 휀0[𝜒
(1)�⃑� (𝑡) + 𝜒(2)�⃑� 2(𝑡) + ⋯ ] (1.12) 

χ(2) is the second-order susceptibility, and similar susceptibilities exist for higher-order terms 

as well. For relevancy to this dissertation, the polarization will be limited to second-order. 

Again assuming one electric field with frequency ω1 and amplitude E1 enters the crystal, the 

polarization oscillates according to: 

 �⃑� (𝑡) = 휀0[𝜒
(1)𝐸1𝑒

−𝑖𝜔1𝑡 + 𝜒(2)𝐸1
2𝑒−𝑖2𝜔1𝑡] (1.13) 

In eq. 1.13, the first term is the Rayleigh scattering term found in eq. 1.11. The second 

term shows that the polarization can also oscillate at two times the frequency of ω1. Thus, in 

addition to Rayleigh scattering, the crystal’s molecules can also convert two photons of the 

electric field at frequency ω1 into one photon at frequency 2ω1 with amplitude E1
2, known as 

second-harmonic generation (SHG), shown in Fig. 1.1c. There are other second-order 
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nonlinear processes that can occur if two electric fields at different frequencies are sent into 

the crystal, but those processes are outside the scope of this dissertation. All second-order 

nonlinear processes are also referred to as three-wave mixing since three waves (or three 

photons) are involved. For SHG, two photons are converted into a new third photon. 

What eq. 1.13 says is that, from a classical nonlinear optics point-of-view, if one 

electric field is sent into a nonlinear crystal, only SHG (or Rayleigh scattering) can occur. 

Classically, it is not possible to send one electric field into a nonlinear crystal and for the crystal 

to convert one photon into two photons, even though such a process would be a second-order 

nonlinear, or three-wave mixing, process. (Note: if a second electric field of lower frequency 

than the first is also sent into the crystal, the second-order nonlinear process of difference 

frequency generation, or DFG, can convert the one photon from the first field into two photons, 

one at the second field’s frequency and one at the difference in the first and second fields’ 

frequencies. This is a classically-allowed process but REQUIRES the second electric field to 

already be present in the crystal to stimulate the process. In this dissertation, only one electric 

field is sent into the crystal.) 

1.3.2 Quantum Second-Order Nonlinear Optics 

Nonlinear optical processes can also be derived from a quantum optics point-of-view. 

In quantum optics, photons exist in modes with defined properties, such as frequency, wave 

vector, polarization, etc. In general, a mode m containing n number of photons is written as the 

state vector |nm>. Photons can be created in a mode or annihilated from a mode with the 

creation and annihilation operators, respectively: 

 �̂�†|𝑛𝑚⟩ = √𝑛 + 1|(𝑛 + 1)𝑚⟩ (1.14) 

 �̂�|𝑛𝑚⟩ = √𝑛|(𝑛 − 1)𝑚⟩ (1.15) 

Quantization of the electromagnetic field is expressed as:19 

 �̂�𝑚(𝑟 , 𝑡) = 𝑖√
2𝜋ℏ𝜔𝑚

𝑉
(�̂�𝑚𝑒𝑖�⃑� ⋅𝑟 −𝑖𝜔𝑚𝑡 − �̂�𝑚

† 𝑒−𝑖�⃑� ⋅𝑟 +𝑖𝜔𝑚𝑡) ≡ �̂�𝑚
(+)(𝑡) + �̂�𝑚

(−)
(𝑡) (1.16) 

The first term in eq. 1.16 is referred to as the positive frequency component of the 

electric field, and contains the annihilation operator, and the second term is referred to as the 
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negative frequency component of the electric field, and contains the creation operator. For a 

three-waving mixing process, three electric field operators must be included in the Hamiltonian 

operator. Since there must be at least one photon annihilated and at least one photon created, 

it can be assumed that E1 will be annihilated and E3 will be created. E2 will be left possible to 

be annihilated or created. The Hamiltonian can then be written as:20 

 �̂�𝑖𝑛𝑡 = �̂�3
(−)

�̂�2�̂�1
(+)

= 𝑖ℏ𝜅 (�̂�3
†�̂�2�̂�1𝑒

−∆�⃑� ⋅∆𝑟 −𝑖(𝜔1+𝜔2−𝜔3)𝑡 + �̂�3
†�̂�2

†�̂�1𝑒
−∆�⃑� ⋅∆𝑟 −𝑖(𝜔1−𝜔2−𝜔3)𝑡) 

   (1.17) 

In the first term, two photons, one at frequency ω1 and one at frequency ω2, are annihilated, 

and one photon at frequency ω3 is created. The probability of this process occurring is 

maximized when ω1 + ω2 = ω3. Since it was assumed that only one electric field entered the 

crystal, the two annihilated photons must be from the same electric field and have the same 

frequency. This first term, then, is SHG, just as seen with the classical nonlinear optics 

approach. Unlike the classical approach, a second term exists in eq. 1.17 from the quantum 

optics approach. This second term annihilates one photon at frequency ω1 (called the pump 

photon) and creates two photons, one at frequency ω2 and one at frequency ω3. The probability 

of this process occurring is maximized when ω1 = ω2 + ω3. However, specific frequencies for 

ω2 and ω3 are not defined. As long as they sum to ω1, the process can occur. This process is 

known as spontaneous parametric down-conversion (SPDC), and the two photons created, 

known as the signal and idler photons or SPDC photons, are entangled. SPDC is a purely 

quantum process since it cannot be explained using a classical approach. The process is shown 

in Fig. 1.2. 

 

Figure 1.2. Energy level diagram and frequency spectrum for SPDC. 

1.3.3 SPDC Phase-Matching 
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Eq. 1.17 clearly shows that energy must be conserved in SPDC. The factor Δk, which 

is the phase mismatch, should also equal 0 to maximize the probability of SPDC occurring. 

This factor takes momentum conservation into account since kj is the wave vector of the j 

photon. The phase mismatch for SPDC is expressed as: 

 ∆�⃑� = �⃑� 𝑝 − �⃑� 𝑠 − �⃑� 𝑖 (1.18) 

kp, ks, and ki are the wave vectors of the pump, signal, and idler photons, respectively. Together, 

satisfying energy conservation and setting eq. 1.18 to 0 are known as the phase-matching 

conditions. As stated previously, the frequencies of the two SPDC photons must sum to the 

pump photon frequency, but neither individual frequency is specifically defined. However, 

these frequencies are also included in the phase mismatch in eq. 1.18 due to the dispersion 

relation that links the wave vector and frequency of a photon: 

 �⃑� 𝑗 = 𝑛𝑗(𝜔𝑗)𝜔𝑗/𝑐 (1.19) 

nj is the refractive index experienced by the photon, which is dependent upon the photon’s 

frequency, ωj, and c is the speed of light in vacuum. Substituting eq. 1.19 into eq. 1.18 yields: 

 ∆�⃑� = [𝑛𝑝(𝜔𝑝)𝜔𝑝 − 𝑛𝑠(𝜔𝑠)𝜔𝑠 − 𝑛𝑖(𝜔𝑖)𝜔𝑖]/𝑐 (1.20) 

Though not necessary, assume for simplicity that the signal and idler have the same 

frequency. Conservation of energy then requires this frequency to be ωp/2, yielding: 

 ∆�⃑� = [𝑛𝑝(𝜔𝑝) −
1

2
[𝑛𝑠(𝜔𝑝/2) + 𝑛𝑖(𝜔𝑝/2)]]𝜔𝑝/𝑐 (1.21) 

If we consider a crystal where the refractive index only depends on photon frequency 

and not on polarization, then ns = ni and: 

 ∆�⃑� = [𝑛𝑝(𝜔𝑝) − 𝑛𝑠(𝜔𝑝/2)]𝜔𝑝/𝑐 (1.22) 

Eq. 1.22 shows that in this crystal, the phase-matching conditions are only satisfied if 

the refractive index at half the pump frequency equals the refractive index at the pump 

frequency. However, assuming the pump photon is not close to resonance with an excited state 

in the crystal (as is the case for nonlinear crystals used in experiments), lower frequencies have 

lower refractive indices, so eq. 1.22 cannot be equal 0. 
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Birefringent crystals are typically used to create SPDC (and other nonlinear processes) 

since the refractive index will also depend on the polarizations of the photons relative to the 

axes of the crystal. A photon in the ordinary ray experiences a refractive index no, while a 

photon in the extraordinary ray experiences a refractive index ne. These rays have orthogonal 

polarizations. While no is constant, ne can be tuned by adjusting the angle between the pump 

beam and the optical axis of the birefringent crystal. This angle can be adjusted such that ne 

has a value that satisfies the phase-matching condition. Thus, the birefringent crystal will 

generate the signal and idler into specific polarization directions that satisfy eq. 1.20. For SPDC 

(and all second-order nonlinear processes), there are three possible polarization combinations: 

Type-0, where all three photons have the same polarizations, or propagate in the same ray; 

Type-I, where the signal and idler have the same polarization and are orthogonal to the pump; 

Type-II, where the signal and idler have orthogonal polarizations and one of them is parallel 

to the pump. 

1.4 SPDC Entanglement Properties 

1.4.1 Frequency Entanglement 

The angular dependence of the phase-matching condition conveniently ensures that 

both processes in the Hamiltonian in eq. 1.17 do not occur (strongly) at the same time. Each 

process requires a different angle between the pump beam and optical axis. Therefore, to 

describe the quantum state of the entangled photons, only the SPDC term in the Hamiltonian 

needs to be considered. The SPDC Hamiltonian, accounting for the volume of the crystal where 

SPDC occurs and considering each wave vector mode that the signal and idler can each be 

created into, is defined as:8 

�̂�𝑆𝑃𝐷𝐶(𝑡) = ∑ ∑ 𝜒(2)(𝜔𝑝; 𝜔1, 𝜔2)𝜉𝑝
1

𝑉
∫ 𝑑3𝑟  𝑒𝑥𝑝(𝑖Δ�⃑� ⋅ 𝑟 )𝑒𝑥𝑝(−𝑖Δ𝜔𝑡)�̂�𝑘1

† �̂�𝑘2

† +
𝑉𝑘2𝑘1

𝐻. 𝑐. 

  (1.23) 

In eq. 1.23, the pump electric field is treated classically since it is much stronger than 

the SPDC fields and the loss of pump photons is negligible compared to the incident intensity 

of the pump beam. The parameter ξp is the coherent amplitude of the pump beam. The phase-
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matching conditions in the exponential functions and the creation operators are integrated over 

the entire volume of the crystal. H.c. is the Hermitian conjugate. In this dissertation, the pump 

propagation path will be defined as the z-axis and parallel to the optical table, with the x-axis 

being perpendicular to the z-axis and parallel to the plane of the optical table, and the y-axis 

being perpendicular to both the z-axis and plane of the optical table. The spatial dimension of 

the crystal in the x-axis is assumed to be much larger than the transverse profile of the pump 

beam, so the integration can be taken from -∞ to ∞: 

 ∫ 𝑑𝑥 𝑒𝑖∆𝑘𝑥∙𝑥−∞

∞
= 𝛿(∆𝑘𝑥) (1.24) 

The delta function in eq. 1.24 simply states that the pump, signal, and idler must be 

perfectly phase-matched in the x-axis. A similar integration occurs for the y-axis. 

Integration along the z-axis is limited to the length of the crystal along the pump 

propagation path. Taking the entry plane of the crystal as z = 0 and the exit plane as z = L, the 

integration along the z-axis becomes: 

 ∫ 𝑑𝑧𝑒𝑖∆𝑘𝑧∙𝑧
𝐿

0
= ∫ 𝑑𝑧 𝑒𝑖∆𝑘𝑧∙𝑧 𝑟𝑒𝑐𝑡 (

𝑧−𝐿/2

𝐿
)

∞

−∞
= 𝑠𝑖𝑛𝑐(𝛥𝑘𝑧 ∙ 𝐿) (1.25) 

While the sinc function in eq. 1.25 is maximized when the phase mismatch in the z-

axis, Δkz, equals 0, the function can still be non-zero even if the phase mismatch is non-zero. 

Because satisfying the phase-matching condition in a birefringent crystal is angular dependent, 

each angle will (typically) only have a perfect phase matching at one frequency. For SPDC, 

the angle between the pump beam and optical axis is usually chosen so that the phase-matching 

condition is satisfied exactly at the degenerate signal/idler frequency, i.e. ωs = ωi = ωp/2. The 

sinc function in eq. 1.25 states that signal/idler frequency pairs that are not degenerate, and 

therefore not perfectly phase-matched, can still have a non-zero probability of being created. 

As a result, the signal and idler both have a frequency spectrum upon their creation. Eq. 1.25 

can be recast in terms of frequency by expanding Δk (along the z-axis) in terms of frequency: 

 ∆𝑘 = 𝑘𝑝 − 𝑘𝑠 − 𝑘𝑖 = 𝐾𝑝 − (𝐾𝑠 + 𝜈
𝑑𝐾𝑠

𝑑𝜔𝑠
|
𝛺𝑠

+
𝜈2

2

𝑑2𝐾𝑠

𝑑𝜔𝑠
2|

𝛺𝑠

+ ⋯) − (𝐾𝑖 − 𝜈
𝑑𝐾𝑖

𝑑𝜔𝑖
|
𝛺𝑖

+

𝜈2

2

𝑑2𝐾𝑖

𝑑𝜔𝑖
2|

𝛺𝑖

+ ⋯)  
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  (1.26) 

In eq. 1.26, the signal (idler) frequency is rewritten in terms of its central frequency, Ωs 

(Ωi) = ωp/2, and a detuning frequency, ν, from the central frequency: ωs = Ωs + ν (ωi = Ωi - ν). 

Kp, Ks, and Ki are the central wave vector components of the pump, signal, and idler, 

respectively, along the z-axis. They follow the relation Kp = Ks + Ki. The signal and idler wave 

vectors are Taylor-expanded to show the deviations of the z-axis wave vector component from 

the central value. The term linear in ν is the inverse group velocity, 1/us (1/ui), for the signal 

(idler). The second-order term is the group velocity dispersion. Higher order terms are 

negligible. Substituting the expanded Δkz into eq. 1.25 results in the sinc function recast into 

frequency terms:21 

 𝑠𝑖𝑛𝑐 (−𝜈𝐷𝐿 −
𝜈2

2
𝐷′′𝐿) (1.27) 

D is the difference in the inverse group velocities of the signal and idler, and D’’ is the sum of 

the group velocity dispersion of the signal and idler. As stated previously, this frequency 

spectrum is maximized when ν = 0 since the birefringent crystal is perfectly phase-matched for 

this frequency pair. For the frequency pairs with a small phase mismatch (ν ≠ 0), their creation 

probability is determined by the bandwidth of the sinc frequency spectrum, which is 

determined by the length of the crystal, L, and the crystal’s group velocity and group velocity 

dispersion. 

The sinc function in eq. 1.27 is the general equation for the SPDC frequency spectrum. 

The spectrum can be further simplified when considering specific types of SPDC. For 

degenerate Type-0 or Type-I SPDC, where the signal and idler have the same polarization, the 

inverse group velocity of both photons is the same, so D = 0. The degenerate Type-0/Type-I 

SPDC frequency spectrum is thus: 

 𝑠𝑖𝑛𝑐 (−
𝜈2

2
𝐷′′𝐿) (1.28) 

For Type-II SPDC and non-degenerate Type-0/Type-I SPDC, the inverse group 

velocities are different, so D is nonvanishing. The first-order term is then much larger than the 

second-order term, so the second-order term can be neglected, leaving: 

 𝑠𝑖𝑛𝑐(−𝜈𝐷𝐿) (1.29) 
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With the volume integration completed in the Hamiltonian in eq. 1.17, the entangled 

photon state vector can be calculated. Using standard perturbation theory, the state vector 

(sometimes called the twin state) is calculated as:7 

 |𝑡𝑤𝑖𝑛⟩ = |0𝑘𝑠
; 0𝑘𝑖

⟩ −
𝑖

ℏ
∫ 𝑑𝑡�̂�𝑆𝑃𝐷𝐶(𝑡)

∞

−∞
|0𝑘𝑠

; 0𝑘𝑖
⟩ (1.30) 

|0ks;0ki> is shorthand for the joint state of the tensor product of |0ks> and |0ki>. The initial state 

vector contains no photons in the signal or idler mode. This state is also called the vacuum 

state. The first term in eq. 1.30 is the first-order perturbation where no interaction occurs. This 

term is commonly neglected since it plays no role in entangled photon interactions with 

molecules. The second term is the second-order perturbation that creates the SPDC. Higher 

order terms are negligible. Substituting eq. 1.17 for the Hamiltonian and integrating over the 

interaction time, t, yields:7 

 |𝑡𝑤𝑖𝑛⟩ = 𝑁𝐿 ∑ ∑ 𝑒𝑥𝑝 [−
(𝜔𝑝−𝜔𝑠−𝜔𝑖)

2

Δ𝜔𝑝
2 ]𝑘𝑖

𝑠𝑖𝑛𝑐 [
Δ𝑘𝑧⋅𝐿

2𝜋
] |1𝑘𝑠

; 1𝑘𝑖
⟩𝑘𝑠
 (1.31) 

N is a normalization constant. The so-called twin state in eq. 1.31 is for SPDC in general. The 

appropriate simplified Δkz can be inserted into the sinc function to obtain the specific twin state 

for Type-0/Type-I or Type-II SPDC. 

The significance of the SPDC photons having a frequency spectrum, and not a single 

defined individual frequency, means the photons, before interacting with anything, are in 

frequency superpositions. However, the exponential in eq. 1.31 (conservation of energy with 

the pump) ensures that when one of the SPDC photons collapses its superposition, the other 

entangled photon must also collapse its superposition to conserve energy, even if this second 

photon has not interacted with anything. This phenomenon is known as frequency 

entanglement. 

1.4.2 Temporal Entanglement 

The bandwidth of the SPDC photons is extremely important for defining other 

entanglement properties in addition to frequency entanglement. It is well known in classical 

optics that a laser beam with a superposition of frequency yields a temporal pulse upon Fourier 

transform. Along similar lines, the superposition of frequency pairs of the signal and idler 
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yields a temporal width for the pair of photons. This temporal width, known as the second-

order correlation time or entanglement time, Te, defines the time window within which the pair 

of photons were created together.7 As the photons travel along a path, if no delay is applied to 

either photon, then Te states that when one photon is measured at a point in space, the second 

photon must arrive at the same point within a time Te. This temporal entanglement can be 

ultrafast, with Te as small as a few tens of femtoseconds using a ~1 mm long bulk nonlinear 

crystal to create the SPDC. The relationship between the frequency spectrum and Te is shown 

in Fig. 1.3. If the photons are filtered in frequency, this filtering also affects the temporal 

correlation function following the properties of Fourier transform. Much of the early work in 

using entangled photon pairs for chemical sensing applications and experiments has focused 

on utilizing this ultrafast entanglement time, which is discussed more in a later section. 

 

Figure 1.3. Generation and propagation of an SPDC pair highlighting the relationship 

between the frequency spectrum and temporal correlation. 

 

1.4.3 Spatial Entanglement 

The spatial properties of the SPDC photons are also coupled to the frequency 

spectrum.22 In the SPDC crystal, each frequency experiences a different refractive index, 

causing each frequency component of the spectrum to propagate at a different angle in the 

crystal. When the SPDC photons reach the exit plane of the crystal, the frequency spectrum is 

spread out in space, shown in Fig. 1.4. This not only causes the transverse spatial location of 

the SPDC to be spread out but also creates an inherent structure to the transverse spatial profile. 

Each frequency component goes to one location, and each location has one frequency 
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component. Therefore, the frequency superposition of the individual photons creates a spatial 

superposition as well. So, when one photon has its frequency measured, its spatial location is 

also now determined. Frequency entanglement causes the second photon to collapse its 

frequency state, which means the second photon must also collapse its spatial state to a specific 

location. Thus, frequency entanglement also causes spatial entanglement, with the uncertainty 

of the transverse spatial location of the photons referred to as the second-order transverse 

spatial correlation or entanglement area, Ae.
7 As will be discussed in more detail in later 

chapters, Ae has historically been assumed to remain constant as the frequency spectrum of the 

SPDC changes.7, 9, 23-25 However, work in this dissertation will show that the coupling of 

frequency and spatial entanglement is essential in properly modelling how entangled photons 

interact with a molecule. In fact, this coupling can be utilized to enhance the interaction. 

 

Figure 1.4. Generation and propagation of SPDC highlighting the relationship between the 

frequency spectrum and transverse spatial correlation. 

The transverse spatial distribution of SPDC photons has a characteristic shape that 

results from the phase-matching conditions. As stated previously, the pump and SPDC photons 

are phase-matched by properly choosing an angle between the pump beam and optical axis of 

the crystal. If the pump beam propagates along the z-axis and in the x-z plane, then the emission 

angle of the SPDC, with respect to the pump beam, in the x-z plane is determined by the wave 

vector that meets the phase-matching condition. This angle, called the opening half angle, is 

typically labeled as the polar angle θ in spherical coordinates. The azimuthal angle φ, which is 

the angle in the x-y plane between the x-axis and the SPDC wave vector, is not dependent on 
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the phase-matching angle determined by the pump beam. As a result, φ can be any value 

between 0 and 2π. With φ being any value and θ being restricted to one value, the SPDC 

photons are emitted within a cone. The transverse cross-section then gives a ring. It should be 

noted that for Type-0/Type-I, where both signal and idler propagate along the ordinary (or 

extraordinary) ray, both the signal and idler are found within the same cone. They have the 

same θ but φs = π + φi to conserve momentum. For Type-II SPDC, the signal and idler are each 

in one of the ordinary or extraordinary ray. The extraordinary ray does not follow Snell’s law, 

so the ordinary and extraordinary rays propagate in different directions. As a result, SPDC 

photons emitted into the extraordinary ray form a cone that is different than the cone of SPDC 

photons in the ordinary ray. As such, Type-II SPDC has two cones, each containing one photon 

in a pair, and the transverse cross-section is a pair of rings. The angle of the pump beam with 

the optical axis determines whether these rings overlap in one, two, or zero points. When the 

two rings overlap, photons found in the overlapping points have polarization entanglement. 

Individually, the photons are in a superposition of the two polarization states. However, the 

phase-matching condition requires the photons to be orthogonally polarized. Measuring the 

polarization of one photon thus collapses the polarization superposition of the second photon 

as well. For the work in this dissertation that utilized Type-II SPDC, the two rings were made 

to overlap in two points, so polarization entanglement was present in the experiments. 

Non-collinear phase-matching occurs when no SPDC photons propagate along the 

pump beam path. For Type-0/Type-I, this occurs when the opening half angle is non-zero. For 

Type-II, this occurs when the two rings intersect at two points. Collinear phase-matching 

occurs when some or all of the SPDC propagates along the same path as the pump. For Type-

0/Type-I, this occurs when the opening half angle is zero. For Type-II, this occurs when the 

rings intersect at one point. These different phase-matching conditions are shown in Fig. 1.5. 
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Figure 1.5. a) non-collinear Type-II SPDC spatial distribution; b) non-collinear Type-I 

SPDC spatial distribution; c) collinear Type-II SPDC spatial distribution; d) collinear Type-I 

SPDC spatial distribution. Green arrows represent the direction of the polarization. For Type-

0 SPDC, the signal/idler polarization arrow is flipped in Type-I SPDC to be parallel to the 

pump. 

 

1.4.4 Uses and Advantages of Entanglement 

By being able to interact with one object and influence the state of another object opens 

the door for new technology that harnesses this unique ability of entanglement. One of the 

earliest known advantages of entanglement is that two entangled particles can be separated in 

time or space and still remain correlated with each other. In 2017, the record for longest open-

air distance between two particles while still measuring entanglement between them was set at 

1200 km.26 Entangled photon pairs were generated on a satellite, split from each other, and 

sent to different receiving stations in China, where correlations between the photons received 

at each station were observed. This experiment shows the potential for long distance sensing 

using entangled photon pairs. 
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Entanglement is also utilized in a quantum sensing technique known as “ghost 

imaging.”27 In this experiment, one photon from an entangled pair interacts with an object, 

while the entangled partner does not. Although the second photon does not interact with the 

object, it reproduces the image of the object because of the photon’s correlations with the 

photon that does interact with the object. Ghost imaging can also be applied to molecular 

studies, where one photon is sent into a sample to be absorbed while the partner photon remains 

outside of the sample.28 The absorption spectrum of the sample can then be measured using 

the photon that never entered the sample. 

Quantum sensing is also concerned with increasing the resolution of measurements 

beyond the limits of classical mechanics. In classical spectroscopy, today’s laser technology 

can provide frequency resolution as small as a few kHz or time resolution as fast as a few 

hundreds of attoseconds. The major obstacle with classical spectroscopy is that these 

resolutions cannot be achieved simultaneously due to the Heisenberg uncertainty principle: 

 ∆𝜔∆𝑡 ≥
ℏ

2
 (1.32) 

Δω (Δt) is the frequency (time) uncertainty, and ħ is the reduced Planck’s constant. Eq. 1.32 

shows that as, Δω gets smaller and the frequency is known with greater certainty, Δt must get 

larger and the time is known with less certainty. Thus for a classical laser pulse, decreasing the 

frequency bandwidth increases the temporal width of the pulse, and vice versa when increasing 

the frequency bandwidth. One may wish to study the energy of a particular excited state in a 

molecule and how that state evolves in time when it is populated. In a classical spectroscopy 

experiment, using a very narrow frequency laser pulse allows for high resolution of the energy 

of the state, but the laser pulse is too broad in time to measure the much faster dynamics of the 

state after excitation. Using an ultrafast pulse allows for these dynamics to be measured, but 

now the broad frequency bandwidth excites multiple nearby excited states as well, which can 

affect the measured dynamics. 

Entangled photons provide a means to circumvent the uncertainty principle in 

spectroscopic measurements.29 The joint frequency spectrum of the photon pair, shown in Fig. 

1.6, defines the probability of the signal having frequency ωs and the idler having frequency 

ωi. There are two spectral widths: Δω+ defined along the ω+ = ωs+ωi axis, and Δω- defined 
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along the ω- = ωs-ωi axis. Δω+ is the range of possible summed frequencies of the photon pair, 

which is defined by the pump laser’s spectral width since the photon pair must have a total 

frequency equal to the pump photon that created them. Δω- is the range of possible phase 

mismatched frequency combinations. There are several combinations of the signal/idler 

frequencies that can yield the same summed frequency, and Δω- defines how many of those 

combinations the photon pair can have. This width is closely related to the frequency spectrum 

width of the individual photons. The spectral widths Δω+ and Δω- have Fourier-transformed 

temporal widths Δt+ and Δt-, respectively. Δt+ is the range of time it takes for the photon pair 

to be created and arrive together at some point in space. Δt- is the range of time it takes for the 

second photon to arrive at some point in space after the first photon arrived at that same point, 

i.e. Δt- is the entanglement time, or Te. 

 

Figure 1.6. Joint frequency spectrum of entangled photon pairs and its 2D Fourier transform 

into the time domain. 

When using an entangled photon pair to excite a molecule, the frequency resolution is 

determined by Δω+ since the energy of the state that is excited is the energy of the total photon 

pair frequency. The temporal resolution is determined by Δt- (Te) since the delay between the 

two interactions with the molecule is the delay between the two photons’ arrivals. Since Δω+ 

and Δt- are not Fourier conjugates, they do not limit each other. Both can be small at the same 

time, and the inequality in eq. 1.32 does not apply. Entangled photons thus provide a means 

for quantum metrology that can probe molecules beyond the limits of classical mechanics. It 

is possible to excite a specific excited state with extremely narrow energy precision while also 

monitoring the dynamics of the state upon excitation. Classical spectroscopy can do one or the 

other but not both at the same time. 
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1.4.5 Schmidt Decomposition 

As explained, the initial two-photon state of entangled photon pairs is a superposition 

of many frequency pairs. Once the first photon interacts with an object, it is usually said for 

simplicity that the photon’s frequency collapses to a single value and so does the second 

photon’s frequency. This picture is a bit oversimplified since the photons’ frequencies do not 

collapse to single values of monochromatic light. Rather, the superposition for each photon 

collapses to a single frequency state, which is still a probability amplitude for one or more 

frequencies. To understand exactly what a molecule is interacting with when exciting it with 

entangled photons, one must look at the frequency states that comprise the frequency entangled 

photons, not just the range of individual frequencies. 

The joint frequency spectrum of entangled photons is most simply represented as a 

double Gaussian in the basis of the frequency states of ω+ = ωs + ωi and ω- = ωs - ωi:
30, 31 

 Ψ(𝜔+, 𝜔−) ≈
1

√2𝜋𝜎𝜔+𝜎𝜔−

𝑒𝑥𝑝 [
−𝜔+

2

4𝜎𝜔+
2 ] 𝑒𝑥𝑝 [

−𝜔−
2

4𝜎𝜔−
2 ] (1.33) 

The widths of the Gaussians are given by σω+(-). In this form, the frequencies of the 

photons are clearly linked, but the frequency states of the signal and idler are not clear. The 

joint frequency spectrum can instead be written in the eigenbasis of the signal and idler 

frequency states through the Schmidt decomposition:32 

 Ψ(𝜔𝑠, 𝜔𝑖) = ∑ √𝜆𝑛𝜓𝑛(𝜔𝑠)𝜙𝑛(𝜔𝑖)
𝑛𝑚𝑎𝑥
𝑛=1  (1.34) 

In this form, the signal photon is in state ψn, and the idler photon is in state φn. If nmax > 1, then 

there is a superposition of frequency state pairs, and neither photon can be identified as being 

in a specific state without knowing the state of the other. In other words, if nmax > 1, the photons 

are entangled. For example, if nmax = 2, then before any interaction takes place, the photon pair 

is in a superposition of the ψ1φ1 and ψ2φ2 pairs of states. If the signal photon collapses to the 

state ψ1 after an interaction, then the idler photon must also collapse to state φ1. Here it is 

clearly seen what the frequency state of each individual photon is upon interaction with an 

object. Typically, the Laguerre-Gaussian or Hermite-Gaussian bases are used to define these 

states. Each of these pairs of states is referred to as a Schmidt mode. The probabilities that the 

photons collapse to each pair of states are λn. As coefficients for the Schmidt modes, the square 
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roots of λn are the Schmidt coefficients. The first three Schmidt modes of a typical SPDC joint 

frequency spectrum is shown in Fig. 1.7. 

 

Figure 1.7. Schmidt decomposition of the joint frequency spectrum of SPDC showing the 

first 3 Schmidt modes. 

Not only does the Schmidt decomposition more clearly show what a molecule 

perceives when interacting with an entangled photon pair, it is also convenient for quantifying 

“how entangled” the photons are. If multiple Schmidt modes have non-zero coefficients, then 

the photon pair is in a superposition of frequency states. It also becomes impossible to define 

the frequency state of one of the photons separate from the other. Therefore, the more non-zero 

Schmidt coefficients there are, the higher the degree of entanglement. If there is only one non-

zero Schmidt mode, i.e. nmax = 1, then the signal has a defined frequency state and so does the 

idler. Neither photon’s frequency state is dependent upon the other photon. These photons are 

not entangled. 

Depending on the distribution of non-zero Schmidt coefficients, the coefficients may 

trend toward zero without ever reaching zero. The only restriction is that the sum of the 

coefficients squared must equal 1, since the photon pair must be in one of the Schmidt modes 

upon collapse. For example, the Schmidt coefficients may follow a Gaussian distribution, 

which never decreases to exactly zero. For this reason, the number of effective occupied 

Schmidt modes can be defined by the Schmidt number, K:33 

 𝐾 = (∑ 𝜆𝑛
2𝑛𝑚𝑎𝑥

𝑛 )
−1

 (1.35) 

The value of K reveals that number of Schmidt modes that play a significant part of the 

frequency superposition. K = 1 for a classical pair of photons, and K > 1 for entangled pairs, 

with K increasing with the degree of entanglement. The degree of entanglement is sometimes 
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also quantified through the entanglement entropy, E, which is related to the von Neumann 

entropy:30 

 𝐸 = −∑ 𝜆𝑛 log2 𝜆𝑛
𝑛𝑚𝑎𝑥
𝑛  (1.36) 

E = 0 for a classical pair of photons. E > 1 for entangled photons, with E increasing with the 

degree of entanglement. 

1.5 Classical Two-Photon Absorption 

 The nonlinear optical processes described in the previous sections occur when the first 

excited electronic state of the media is far from resonance with the incident light field (or two 

photons within the incident light field). Other nonlinear processes occur when there is an excited 

state near resonance with two (or more) photons in the light field. One of the earliest known 

processes, and the most relevant to this dissertation, is two-photon absorption (TPA), shown in 

Fig. 1.8, first predicted by Maria Goeppert-Mayer in 1931.34 Similar to SHG, in TPA, a 

polarization is created in a molecule, and the polarization includes an oscillation component at 

twice the frequency of the incident field. If the molecule has an excited state with energy close to 

resonance with the polarization, the molecule can absorb two photons from the field and use the 

energy to be excited from the ground to the excited state. After the absorption takes place, the non-

stationary excited state can evolve dynamically until it relaxes back to the ground state. If the 

energy is released through a fluorescent photon, the process is known as two-photon excited 

fluorescence (TPEF). 

 

Figure 1.8. Classical TPA and fluorescence energy level diagram and absorption rate vs input 

photon intensity. g, v, j, and f are the ground, virtual, intermediate, and final states, respectively. 
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 A three-level system is typically used to model TPA. The initial state of the molecule is 

typically assumed to be the ground state, and the two-photon excited state is labelled the final state. 

The third state, known as the intermediate state, is between the ground and final state. It is 

important to clarify that the intermediate state is not always excited during the TPA transition. In 

the special case where an intermediate state happens to be resonant with the first absorbed photon, 

TPA can then be modelled as two distinct absorption events: one exciting the molecule from the 

ground to intermediate state, and a second exciting the molecule from the intermediate to final 

state. This process is commonly called two-step excitation (TSE). 

In most cases, the intermediate state is not near resonance with the first absorbed photon. 

In this case, TPA occurs through a virtual state acting as an intermediate. A virtual state is an 

extremely short-lived state that is not an energy eigenstate of the molecule. The virtual state is only 

formed in the presence of the light field and can be modelled as a superposition of the ground and 

excited eigenstates in the molecule. Because this superposition of states has a very broad energy 

range, it must be extremely short lived. Since the virtual state is a superposition of the eigenstates 

in the molecule, it takes on some character of those states, most notably the transition dipole 

moments (TDMs). TDMs are a quantification of the selection rules when considering whether a 

transition from one quantum state to another is allowed. TDM = 0 is a forbidden transition, and a 

non-zero TDM increases as the transition becomes allowed and more favorable. Excited states that 

can be excited with TPA are typically forbidden via a single transition. Instead, the first photon 

creates a coupling between the ground and virtual state, and the second photon creates a coupling 

between the virtual and final state, completing the TPA transition. In the superposition defining 

the virtual state, the coefficient for each state is proportional to the product of the TDMs between 

the ground-intermediate and intermediate-final states. As this product increases for a particular 

intermediate state, the virtual state takes on more character of that state. The superposition 

coefficients are also inversely proportional to the energy difference between the intermediate state 

and first photon, called the detuning energy. As this detuning energy decreases for a particular 

intermediate state, the virtual state takes on more character of that state. 

 The most distinct signature of TPA is the quadratic increase of the excitation rate vs input 

photon intensity.35 For any absorption process, be it one- or two-photon, the rate of excitation is 

proportional to the probability of the necessary photon(s) being present. For one-photon absorption 
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(OPA), only one photon is needed, so the excitation rate is proportional to the intensity of the input 

light field. For TPA, the excitation rate is proportional to the probability of the first photon being 

present AND the second photon being present. So, the excitation rate is proportional to the 

intensity of the first light field times the intensity of the second light field. If both photons come 

from the same light field, the TPA rate is proportional to the intensity of the input field squared. 

Thus, as the intensity of the light field increases, the TPA rate increases quadratically. At low input 

intensities, the TPA rate is very low, and absorption/fluorescence signals are very small. At high 

intensities, the TPA rate increases very quickly, yielding very large absorption/fluorescence 

signals. Typically, measurable TPA signals are only obtained when using a focused pulsed laser 

beam since the peak intensity of the pulses provides a strong enough instantaneous intensity. 

 The probability that a molecule will undergo TPA to a particular excited state is quantified 

with the TPA cross-section, δr. Using a three-level system model for TPA, the cross-section is 

calculated using standard second-order perturbation theory as:36 

 𝛿𝑟 =
𝐵

ℏ2
0
2 𝜔0

2𝛿(휀𝑓 − 휀𝑔 − 2𝜔0) × |∑
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2

  

  (1.37) 

In eq. 1.37, the molecule’s ground, intermediate, and final states have energies εg, εj, and εf 

with Lorentzian-broadened linewidths κg, κj, and κf, respectively. The TDM for the j-to-k transition 

is μjk, and the permanent dipole moment for the j state is μjj. The polarization of the SPDC photons 

are represented with the vector e. The photons are assumed to have degenerate frequency ω0. A 

monochromatic light field is assumed. The TPA cross-section is expressed in units of 

cm4s/photon/molecule, though often the units are expressed in GM, where 1 GM = 10-50 

cm4s/photon/molecule. The larger the cross-section, the higher the probability of the molecule 

undergoing TPA. 

 There are advantages for TPA compared to OPA. As mentioned, the symmetry of some 

excited states makes an OPA transition from the ground to this excited state forbidden. TPA can 

then be used to excite and probe this state.37 As mentioned, high input intensities are required to 

obtain a measurable TPA signal due to the quadratic scaling of the TPA rate. Such high intensities 

only occur at the focal point of a focused pulsed laser beam, so in a bulk sample, TPA only occurs 
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at the focal point. This contrasts OPA, which can occur anywhere the light passes through the bulk 

sample. By limiting excitations to only the focal point, TPA offers greatly enhanced spatial 

resolution compared to OPA. This is particularly beneficial for using a microscope with TPA 

excitation since fluorescence will only occur at the focal point, which can be diffraction limited. 

Additionally, TPA uses lower frequency light fields than OPA since the light field should only be 

half of the frequency of the total transition. As energy increases, the density of excited states in 

molecules increases, making higher frequencies more likely to be absorbed than lower frequencies. 

Additionally, higher frequencies are more likely to be scattered. For both of these reasons, lower 

frequencies can penetrate deeper into solid samples to excite the target molecule. This gives TPA 

excitation more depth control than OPA excitation. 

 TPA also comes with disadvantages. While the need for high intensities helps improve the 

spatial resolution, it also comes with a catch. For many molecular samples, particularly 

photosensitive biological samples, the peak intensity of focused pulsed lasers damages the 

sample.38 There can be a fine line between obtaining enough signal to effectively probe the sample 

and not damaging the sample, and sometimes an effective compromise cannot be found. 

Additionally, the need for laser pulses inherently decreases the frequency resolution of the 

experiment since a broad frequency superposition must be formed to create the laser pulses. It is 

also worth noting that pulsed laser systems are much larger, heavier, costlier, more temperamental, 

and require more expertise to operate than continuous-wave (CW) lasers. Most chemists would 

not have the access or experience to use these pulsed lasers in their labs. 

1.6 Entangled Photon Spectroscopy 

1.6.1 Entangled Two-Photon Absorption 

Entangled photon pairs can also be used to excite a two-photon transition through the 

process of entangled two-photon absorption (ETPA), shown in Fig. 1.9.39 In ETPA, the two 

absorbed photons are entangled with each other, which ensures that the two absorption events 

within the molecule are correlated with each other. In classical TPA, the two photons are not 

correlated with each other and so neither are the two absorption events. In this context, classical 

TPA is sometimes referred to as random TPA since the molecule randomly chooses two 

photons to absorb. The quantum correlated vs random nature of the two-photon transition for 

ETPA vs classical TPA, respectively, leads to significant differences in the defining features 
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of the two absorption processes. These differences allow ETPA to overcome the disadvantages 

of classical TPA and to obtain new information about molecules that classical TPA cannot 

reveal. 

 

Figure 1.9. ETPA and fluorescence energy level diagram with absorption rate vs input photon 

intensity compared ETPA and classical TPA. 

While ETPA has many remarkably different properties than classical TPA, there are a 

few aspects of their mechanism that are similar since both are two-photon transitions. Similar 

to classical TPA, the first photon establishes a coupling between the ground and virtual states, 

and the second photon establishes a coupling between the virtual and final state. The virtual 

state, which is not an eigenstate and only exists in the presence of the entangled light field, can 

be expressed as a superposition of the ground and excited eigenstates in the molecule. The 

stronger an intermediate state’s TDM product for the ground-intermediate and intermediate-

final transitions, the more the virtual state takes on the character of that state. Additionally, the 

closer an intermediate state is to the first photon energy, the more the virtual state takes on the 

character of that state. The energy difference between the intermediate j state and first photon 

is called the detuning energy, Δj. In special cases where an intermediate state is resonant with 

the first photon (Δj = 0), the intermediate state would be directly excited as part of the process 

of entangled two-step excitation (ETSE).40 

Although the energy level diagram for ETPA and classical TPA may look similar, the 

different correlations (or lack thereof) for ETPA vs classical TPA make the dynamics of the 

two processes strikingly different. For classical TPA, the transition probability is proportional 

to the probability of absorbing a first photon times the probability of absorbing a second 

photon. Since the two photons are absorbed at random, there is no guarantee that the second 
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photon will be present and get absorbed before the virtual state decays to the ground state. 

Taking a similar probabilistic approach, the ETPA cross-section, σe, would be viewed as 

similar to a random TPA transition, but with the temporal delay and spatial uncertainties more 

well defined by Te and Ae, respectively. The probabilistic model for ETPA then states:7 

 𝜎𝑒 =
𝛿𝑟

𝐴𝑒𝑇𝑒
 (1.38) 

However, for ETPA, temporal entanglement guarantees that the second photon will 

arrive within the time window set by Te (assuming no additional delay has been applied to the 

second photon), so the second photon will always be present before the virtual state decays.41 

This correlation is represented mathematically with the g2 function: 

 𝑔2(𝑡) =
〈𝐼𝑠(𝑡)𝐼𝑖(𝑡)〉

〈𝐼𝑠(𝑡)〉〈𝐼𝑖(𝑡)〉
=

2

〈𝐼𝑆𝑃𝐷𝐶(𝑡)〉
 (1.39) 

Is(i) is the intensity of the signal (idler) beam, and ISPDC is the intensity of the photon pairs. 

Since the probability of detecting a pair of entangled photons equals the probability of 

detecting one of the photons in the pair, all these intensities are equal, leading to the second 

equality in eq. 1.39. For classical coherent states of light: 

 𝑔2(𝑡) =
〈𝐼𝐴(𝑡)𝐼𝐵(𝑡)〉

〈𝐼𝐴(𝑡)〉〈𝐼𝐵(𝑡)〉
=

〈𝐼𝐴(𝑡)〉〈𝐼𝐵(𝑡)〉

〈𝐼𝐴(𝑡)〉〈𝐼𝐵(𝑡)〉
= 1 (1.40) 

The temporal correlation of entangled photons causes the two absorption events to be 

correlated so that the probability of the ETPA transition is not simply proportional to the 

product of the two absorption events occurring. Rather, there is an interference between the 

two absorption events which can enhance the ETPA cross-section to be greater than a simple 

probabilistic estimate. This interference is seen in the ETPA cross-section, σe, derived from 

standard second-order perturbation theory:7, 23 
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This equation for the ETPA cross-section is similar to the classical TPA cross-section 

equation except for a few key factors. First, the constants out front show that σe is inversely 

proportional to Ae and Te. Additionally, the complex exponentials in the modulus squared term 

are the interference factors between the two ETPA absorption events. These terms oscillate as 

a function of Te, allowing the cross-section to be larger than the probabilistic estimate at certain 

Te and smaller at other Te. The enhanced cross-sections can be used to increase ETPA signals 

in weak absorbing excited states, and the decreased cross-sections can be used to turn off ETPA 

signals from unwanted states that provide noise in an experiment. ETPA-based sensors can 

utilize the selective nature of the constructive and destructive interference to turn the ETPA 

signal on and off without having to change the molecule itself or the wavelength or intensity 

of the light source. 

The modulus squared factor in eq. 1.41 contains three terms. The first term is known 

as the virtual state pathway. Here, the first photon creates a coupling between the ground and 

virtual state, and the second photon creates a coupling between the virtual and final state. The 

TDMs determine the strength of these couplings. The second and third terms are known as the 

permanent dipole pathways. Here, the photon pair uses the direct coupling between the ground 

and final state to excite the molecule, with the strength of the transition also being determined 

by the strength of the permanent dipole moment of the ground (second term) or final state 

(third term). All of these pathways in the molecule compete with each other in the presence of 

the light field. This competition is analyzed in greater detail in subsequent chapters. 

1.6.2 Advantages and Literature on ETPA 

One of the earliest predicted hallmarks of ETPA was a linear excitation rate vs input 

photon intensity, even though ETPA is a two-photon process.10 As stated previously, the 

absorption probability is proportional to the probability of the necessary photons being present. 

SPDC photons are guaranteed to exist in pairs from the Hamiltonian operator containing two 

creation operators.42 When the first photon is present, the probability of the second photon 

being present is 1. Thus, the probability of both photons being present for the ETPA absorption 

is equal to the probability of the first photon being present, and the ETPA rate scales linearly 

with the input photon intensity. While the absorption of two entangled photons is linear, there 

is no guarantee that the molecule will always absorb two photons that form an entangled pair. 
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As the intensity of the SPDC photon beam increases, individual pairs are emitted closer and 

closer to each other in time. This increases the probability that the molecule will absorb one 

photon from one pair and then absorb a photon from a second pair arriving slightly later, if the 

time it takes for a second pair to arrive is comparable to Te of the first pair. This scenario would 

be a classical TPA and would scale quadratically. To account for this competing process, the 

total TPA rate, RTPA, is expressed as:7, 10 

 𝑅𝑇𝑃𝐴 = 𝜎𝑒Φ + 𝛿𝑟Φ
2 (1.42) 

The input photon intensity is Φ. At very low intensity, the quadratic classical TPA term is 

negligible, so only ETPA is observed. The two processes become equally probable at the so-

called critical flux, Φ = σe/δr. Above this flux, the measured TPA is quadratic since the second 

term will dominate. For this reason, ETPA experiments are always conducted below the critical 

flux. 

The linear ETPA rate and transition to a quadratic dependence has been confirmed 

experimentally. Georgiades et. al. used a squeezed vacuum source of photon pairs, which have 

similar entanglement properties as SPDC pairs, to excite atomic cesium and measured the 

resulting fluorescence.12 They obtained a fluorescence rate that included both linear and 

quadratic terms vs the input photon intensity. Lee et. al. later observed the linear ETPA, and 

transition to quadratic, in an organic chromophore solution using Type-II SPDC.11 

The linear excitation rate of ETPA is advantageous in overcoming one of the major 

problems with classical TPA. Classical TPA is only observable with high intensities because 

the quadratic TPA rate makes the signal too small to measure at low intensities. At these low 

intensities, ETPA significantly enhances the TPA rate with its linear scaling (Fig. 1.9), 

allowing TPA to be measured at extremely small input intensities that have no risk of damaging 

a sample. The work from Lee et. al. observed ETPA using less than 107 photons/s. A study 

from Harpham et. al. compared the input photon intensities needed to measure ETPA and 

classical TPA.43 While classical TPA required 1022 photons/s/cm2, ETPA only required 1012 

photons/s/cm2, a ten orders of magnitude difference. Linear fluorescence intensity vs input 

photon intensity has also been experimentally confirmed.44, 45 
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Another advantage for ETPA comes with the new control knobs that entangled photons 

offer to modify the excitation of molecules. One of the earliest known control parameters is 

Te. The complex exponential interference term between the two absorption events creates a 

sinusoidal transition probability as a function of Te. By changing Te, the ETPA cross-section 

can change by orders of magnitude, allowing one to turn the absorption signal on and off at 

will. The sinusoidal trend also gives unique control and information about the intermediate 

states involved in ETPA. The Fourier transform of the ETPA cross-section vs Te reveals the 

frequencies of the different intermediate states that contribute to the formation of the virtual 

state.9 This technique, known as virtual state spectroscopy, can identify intermediate states 

that may have too low oscillator strength to be excited directly and identified using linear 

absorption spectroscopy. Each of these intermediate state pathways in ETPA oscillate at a 

different frequency, determined by the detuning energy of that intermediate state with the first 

photon. With the energies of the intermediate states known, Te can be tuned to turn off ETPA 

transitions involving undesired intermediate states and/or turn on ETPA transitions involving 

a specific, desired intermediate state. This would be a new form of control over the pathway 

of nonlinear transitions that classical spectroscopy does not offer. 

It is important to note that Te is not inherently a delay between the signal and idler 

photon wavepackets. For Type-II SPDC, the different polarizations of the photons cause them 

to propagate inside the SPDC crystal at different speeds because of the different refractive 

indices they experience. They will then have a delay when they exit the crystal, and this delay 

is the same magnitude as Te. This delay can then be changed outside the crystal, by sending 

one photon through a delay line or birefringent prism, but Te still remains the same as it 

originally was. This external delay of the entangled photons is often represented as τ. For Type-

I SPDC, the photons leave the crystal with no delay because they have the same polarization. 

The external delay τ can then be changed outside the crystal. When taking τ into account in the 

ETPA cross-section, the complex exponential eiΔjTe is replaced with eiΔjTe+τ+ eiΔjTe-τ.9 Changing 

τ can also be used to control the sinusoidal transition probability of ETPA. This has been 

confirmed experimentally as well, for both ETPA and ETPA-induced fluorescence.11, 45-47 For 

the entangled twin state in eq. 1.31 used in calculating the ETPA cross-section, the SPDC 

photons have a rectangular temporal correlation function with width Te. Thus, the delay τ 

cannot exceed Te or else the photons are no longer temporally correlated, and ETPA cannot 
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occur. SPDC can also have a Gaussian temporal correlation function when the frequency 

spectrum is filtered with a Gaussian filter. In this case, the ETPA probability vs τ is Gaussian 

centered at τ = 0 and with width Te. 

Another unique control parameter of ETPA is the spatial profile of the phase-matching 

condition. The effect of the phase-matching condition on ETPA using Type-II SPDC has been 

explored. It was shown that more overlap between the rings increases the ETPA cross-section, 

with no overlap at all yielding the weakest ETPA.48 The explanation was that the ETPA cross-

section may be proportional to the degree of distinguishability of the entangled photons. When 

the two SPDC cones overlap, the photons at the intersection(s) are indistinguishable since the 

polarization of the photons are superpositions of both possible states. Two overlapping points 

has more indistinguishability than one overlapping does, and no overlapping points has the 

least. This is the same trend observed for the ETPA cross-section. The effect of phase-matching 

on ETPA using Type-I SPDC has been explored in a later chapter of this dissertation. 

Whether ETPA follows the same selection rules as classical TPA is still an open 

question. While the same TDMs are assumed in both derived cross-section equations, 

experiments have shown that the trend in classical TPA cross-sections for a group of molecules 

does not necessarily match the same group’s trend in ETPA cross-sections.44 Additionally, 

these experiments have shown that some molecules can have small classical TPA cross-

sections but relatively large ETPA cross-sections. Other molecules have large classical TPA 

cross-sections but very small ETPA cross-sections. 

More recent work on ETPA has focused on the variety of molecular systems that can 

be probed by entangled photons. A group of thienoacene chromophores with varying degrees 

of dipolar and quadrupolar character have been analyzed with ETPA.47 It was found that the 

dipolar molecule, the only one with a permanent dipole moment, received an enhancement in 

its ETPA cross-section compared to its classical TPA cross-section. It was thus suggested that 

access to the permanent dipole pathway for the dipolar molecule provided this enhancement. 

ETPA has also been used to probe flavin chromophores in free solution and embedded in 

protein environments.49 Results showed an increase in the ETPA cross-section for the flavin 

chromophores when they were embedded in protein environments. More interestingly, this 

enhancement in the cross-section was not found for classical TPA excitation, suggesting that 
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ETPA is a new tool to probe biological environments with more sensitivity than classical 

spectroscopy. 

ETPA excitation is now being incorporated into microscopy experiments. The first 

microscope using ETPA excitation was used to obtain images of aggregates of a 

bis(styryl)benzene derivative.46 ETPA excitation required 6 orders of magnitude lower input 

photon intensity compared to classical TPA excitation. The oscillations of ETPA vs τ were 

also observed. 

There are several other promising theoretical proposals for using entangled photons to 

probe molecules for chemistry applications. Several reviews have been written on this topic.50-

52 Some highlights of these proposals include: 2D spectroscopy that eliminates background 

signal from uncorrelated processes53; enhancement in resonance energy transfer54; exciting 

dark states in cavity polaritons55; virtual-state spectroscopy without a priori knowledge of the 

molecule’s excited states56; suppressing population transfer in the intermediate state of an 

exciton57; higher selectivity of double-exciton states in photosynthetic complexes58; stimulated 

Raman and pump-probe spectroscopy with simultaneous high frequency and time resolution59, 

60. 

While these proposals are exciting, there are currently some obstacles and open 

questions regarding ETPA that is limiting their implementation. As mentioned, the selection 

rules that apply to ETPA transitions, particularly with how they compare to OPA and classical 

TPA selection rules, remains an open research question. It is also unknown how the excited 

state properties after ETPA excitation compare to using OPA or classical TPA excitation. 

While the ETPA cross-section is significantly larger than what would be expected from 

classical probabilistic theory, the ETPA cross-section is typically smaller than OPA cross-

sections by a few orders of magnitude. The relatively smaller cross-sections with ETPA results 

in small absorption and fluorescence signals in experiments. These small signals require longer 

collection times. Finding ways to enhance ETPA cross-sections would benefit development of 

ETPA-induced fluorescence and microscopy applications greatly. It would also allow chemists 

to study the nonlinear properties of excited states with the same efficiency as studying linear 

absorption properties. Finally, due to the low efficiency of generating SPDC photon pairs, 

ETPA experiments have historically used pulsed lasers to create the SPDC. These experimental 
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setups make ETPA less accessible for chemists and biologists due to lack of expertise in 

nonlinear spectroscopy and quantum optics as well as size and cost restraints. 

1.7 Overview of Remaining Chapters 

 The work completed in this dissertation seeks to develop ETPA specifically for its 

applications in chemistry research. The challenges and open questions that have been mentioned 

were studied in great detail, including: how chemical structure affects the transition pathways 

taken during ETPA, which helps to address the ETPA selection rules; how the excited state 

linewidth after ETPA excitation compares to classical TPA excitation, which relates to the unique 

excited state dynamics induced by ETPA; how to make ETPA experiments more accessible to 

chemists and improve the signal-to-noise ratio; how to increase the ETPA cross-section to make it 

more comparable to OPA cross-sections. A variety of molecular systems have been explored, some 

for the first time ever with entangled photons, ranging from small diatomic molecules to larger 

organic chromophores. This wide range of molecular systems explored speaks to the versatility of 

ETPA as a valuable tool for chemists. 

 Chapter 2 explains the methods, both experimental and theoretical, used throughout this 

dissertation. The experimental methods included the linear spectroscopic techniques of UV-vis 

absorption, fluorescence, and Raman spectroscopy and the nonlinear laser spectroscopic 

techniques of ETPA and classical TPA. The details regarding the experimental setups and how 

data was obtained is explained in this chapter. Theoretical methods provided by the help of 

collaborators included the novel electronic structure techniques of multi-reference configuration 

interaction (MRCI) with state-averaged complete active space self-consistent field (SA-CASSCF) 

to define the reference states and second linear response (SLR) time-dependent density functional 

theory (TDDFT). 

 Chapter 3 used a theoretical approach to examine how molecular structure affects the 

transition pathways taken during ETPA transitions. While prior literature has shown how the 

ETPA cross-section oscillates vs Te, referred to as non-monotonic behavior, these previous works 

have focused mostly on the unique physics of entangled photons that give rise to these oscillations. 

It remained unclear how the structure of the molecule affects the observed oscillation pattern. This 

information would be useful so that molecules can be designed to optimize the oscillation pattern 

for a given application. For example, the orders of magnitude drops in the cross-section, known as 
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entanglement-induced transparencies, can be utilized in making ETPA-based sensors. A current 

challenge with developing such a sensor is that the oscillations observed thus far are on an ultrafast 

time-scale, making resolution of the cross-section maxima vs minima difficult. If molecular 

structure can be optimized to increase the period between the transparencies, the development of 

these ETPA sensors would become much more achievable. Additionally, learning how molecular 

structure correlates to the ETPA oscillation pattern would provide insight into the selection rules 

for ETPA. Each pathway in ETPA oscillates at its own frequency, with the strength of each 

pathway in the linear combination of pathways being determined by its TDMs with the ground and 

final states. These TDMs are directly related to the selection rules for optical transitions. 

 To complete this study, the ETPA cross-section was calculated vs Te for a group of 

molecules with varying dipole properties. To calculate ETPA cross-sections, some information 

about the molecule must be known, including the energies and TDMs for the ground and several 

excited states. The accuracy of this molecular information directly impacts the accuracy of the 

ETPA calculations, so the high accuracy method of MRCI with SA-CASSCF was used to calculate 

these molecular parameters by collaborators from the Zimmerman group at the University of 

Michigan chemistry department. In particular, the calculation of the TDM between two excited 

states is difficult, but MRCI can complete this calculation very accurately. Since this theoretical 

method would be too computationally intensive to use large chromophores that are studied 

experimentally, diatomic molecules were used instead. These diatomic molecules also provided 

the advantage of being able to clearly define and vary the dipole character of the molecules. Nitric 

oxide (NO) was chosen as a molecule with a weak but non-zero permanent dipole moment. 

Hydrogen fluoride (HF) provided a strong permanent dipole moment. Dinitrogen (N2) lacked a 

permanent dipole completely. To compare with prior literature, hydroxide (OH) was also studied. 

 The ETPA calculations showed a clear difference between the molecules that had a 

permanent dipole vs N2 which did not. First, N2 had a larger period between entanglement-induced 

transparencies. Additionally, the maxima in the cross-section for N2 were 3-4 orders of magnitude 

larger than the cross-sections predicted from a classical probabilistic model, whereas the 

permanent dipole molecules had maxima within 1 order of magnitude of the probabilistic 

prediction. These results suggest that the virtual state pathway allows for more quantum behavior 

in the ETPA transition, meaning that intermediate states can interfere with each other to both 
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enhance the ETPA transition probability and increase the period between transparencies. 

Permanent dipole pathways lack this interference and lead to more “classical-like” behavior. It is 

clear then that for the application of ETPA sensors, molecules should be designed with strong 

virtual state pathways and weak or non-existent permanent dipole pathways. With regard to the 

selection rules for ETPA, it appears that molecules prefer to use the permanent dipole pathway if 

it exists. However, if the virtual state pathway can be enhanced by designing molecules with 

smaller detuning energies or larger TDMs, perhaps the permanent dipole pathway can be 

overcome. 

 Chapter 4 builds upon the work in chapter 3, extending the accurate calculation of ETPA 

cross-sections to larger organic chromophores that are used in experiments. This work also 

explores how the lineshape of the ETPA transition compares to that of classical TPA. The 

lineshape is an important insight into the excited state dynamics that are induced by a particular 

optical transition. The lineshape for ETPA has previously been assumed to match that of classical 

TPA. However, if the lineshape differs, this information is crucial for understanding how ETPA 

can be used to probe excited state dynamics and for designing molecules that can optimize the 

ETPA lineshape to enhance ETPA cross-sections. 

 Similar to chapter 3, molecular parameters needed to be calculated first in order to then 

calculate the ETPA cross-section. A pair of thiophene dendrimers that had previously been studied 

experimentally with ETPA were the molecules examined in this theoretical work. Development of 

SLR-TDDFT allowed the energies and TDMs of the molecules’ ground and excited states to be 

calculated with much greater computational efficiency compared to other methods. The lineshape 

of ETPA was derived as well. The temporal entanglement and time-ordering of the SPDC photon 

pair yielded a different lineshape for ETPA than that of classical TPA. Specifically, the lineshape 

was significantly more narrow, defined by the spontaneous radiative lifetime of the final state. 

 Calculations of the ETPA cross-sections, performed by collaborators in the Schatz group 

at Northwestern University chemistry department, using the molecular parameters once again 

showed the expected oscillations vs Te. The calculated cross-sections agreed with the 

experimentally measured cross-section to within a factor of 1.3, but only when the newly derived 

narrow lineshape for ETPA was used. Using the same lineshape as classical TPA, the calculated 

cross-sections were orders of magnitude smaller than the experimental values. These results show 
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that ETPA excitation induces unique dynamics for the final excited state. Additionally, the narrow 

lineshape enhances the ETPA cross-section compared to the classical TPA lineshape. This result 

encourages further study into how molecular structure can be designed to narrow ETPA lineshapes 

to enhance their cross-sections. 

 Chapter 5 highlights experimental work regarding a biological molecular system that has 

not before been explored with entangled photons. The interaction between entangled photons and 

halogenated anesthetic ethers was compared to that of weaker anesthetic ethers. The mechanism 

that anesthetic molecules take to induce temporary unconsciousness remains unknown. Theories 

based on classical physics and chemistry have attempted to explain the mechanism for decades, 

but the question remained unclear. As a result, new theories involving quantum mechanisms have 

been proposed. If the mechanism were quantum-based, then the anesthetic molecules would have 

to be sensitive to quantum objects and interact with them through a quantum mechanism. To date, 

no experiment had shown whether anesthetic molecules have this sensitivity. The work in this 

chapter was a proof-of-principle experiment to determine if some anesthetic molecules have the 

ability to interact with quantum objects, in this case the entangled photons. 

 The experiment consisted of measuring the transmission of entangled photons through two 

halogenated, strong anesthetic ethers sevoflurane (SEVO) and isoflurane (ISO). Compared to a 

solvent (methanol) that is known to be transparent to the entangled photons, both SEVO and ISO 

reduced the transmission of the entangled photons. Neither SEVO nor ISO showed sensitivity to 

classical photons at the same wavelength, even with much higher input photon intensities than that 

used for the entangled photon experiments. For comparison, the non-halogenated, weaker 

anesthetic diethyl ether showed no sensitivity to the entangled or classical photons. Linear 

absorption, fluorescence, and Raman spectroscopy was used to try to determine the mechanism 

that caused the entangled photon transmission to be reduced in SEVO and ISO. Electronic structure 

calculations were also completed. The results showed that no excited state is expected to be near 

the one- or two-photon resonance of the entangled photons, so OPA and ETPA was likely not 

possible. The strong Raman activity of the molecules suggests they scattered the entangled 

photons. Since they scattered the entangled photons and not the classical photons, it is clear that 

the quantum nature of the entangled photons is important to the molecules’ sensitivity. This work 
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shows that entangled photons can be a very useful and unique tool for further explorations of how 

anesthetic molecules interact with the brain. 

 Chapter 6 focuses on how ETPA experiments can be improved and made more accessible 

for chemists. In previous ETPA literature, femtosecond pulsed lasers have been used to generate 

SPDC photons. While most chemists know how to use a UV-vis absorption or fluorescence 

spectrometer, not nearly as many have experience with high intensity pulsed lasers. ETPA has 

been heralded as a great new tool for chemists to probe their molecular compounds, but pulsed 

laser SPDC sources are not accessible to most chemists. Additionally, the current background 

noise, or baseline, of ETPA experiments is on the same order of magnitude as the ETPA signal 

itself, resulting in low signal-to-noise ratio (SNR). The SNR must be improved for chemists to be 

able to measure very small nonlinear signals in their compounds, which is one of the main benefits 

for chemists to use ETPA. 

 In this work, a continuous-wave (CW) laser was used to generate SPDC, which is much 

easier to operate, smaller in size and weight, and more cost effective than pulsed laser SPDC 

sources. The entire ETPA experiment, with SPDC source and detection, is much smaller and more 

realistic for a chemist to have in their lab, along the same line of a UV-vis absorption spectrometer. 

Additionally, this CW-pumped SPDC source yielded a 1-2 order of magnitude improvement in the 

SNR, setting a new standard for the smallest measurable ETPA cross-sections at ~10-21 

cm2/molecule. The role of the frequency Schmidt modes of SPDC were also analyzed, showing 

that by tuning the spatial shape of the pump, the joint frequency spectrum of the SPDC can be 

manipulated. This simple manipulation would allow chemists to control which excited states are 

populated by ETPA, offering a new control over photochemistry that classical light cannot offer. 

 Chapter 7 highlights a feature of ETPA that has previously been overlooked. From a 

physics perspective, the coupling between the frequency entanglement, temporal entanglement 

(Te), and spatial entanglement (Ae) has been known. When the frequency spectrum is narrowed, Ae 

gets smaller and Te gets larger. However, previous literature on ETPA has assumed that Ae remains 

constant. The ETPA cross-section expressed in eq. 1.41 would then get smaller as the frequency 

spectrum narrows since Te increases. As a result, ETPA experiments have used femtosecond scale 

Te so as not to decrease the ETPA cross-section. 
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 This work shows experimentally that when the frequency spectrum is narrowed, the ETPA 

cross-section using Type-I SPDC actually increases. This result is explained by the frequency-

spatial coupling of the SPDC. Here, Ae decreases quadratically because of the second-order 

dispersion properties of Type-I SPDC frequency spectrum. Since Te only increases linearly, the 

net result on the ETPA cross-section is an increase. Conversely, Type-II SPDC causes the ETPA 

cross-section to plateau to a constant since Ae decreases linearly from the first-order dispersion 

properties of the frequency spectrum. The experimental data was fit to a theoretical model for how 

Ae changes with the frequency spectrum. The model shows the cross-section should continue 

increasing for Type-I SPDC until Ae reaches the diffraction limit, which occurs at Te = 10 ps. At 

this maximum, the cross-section is an order of magnitude larger compared to the femtosecond Te 

cross-sections reported in literature. Additionally, the cross-section at the maximum is 3-4 orders 

of magnitude larger than what the previous assumption of a constant Ae predicted. 

 The enhancement in the ETPA cross-section from the frequency-spatial coupling is an 

exciting development for chemists. ETPA is now expected to be measurable, and in fact stronger, 

at picosecond Te. This would allow chemists to control photochemical reactions that require an 

intermediate process, such as an isomerization, proton transfer, or singlet-to-triplet energy transfer, 

between two photoexcitations. Additionally, Ae decreases by 4 orders of magnitude simply by 

filtering the SPDC, which would improve the spatial resolution of ETPA microscopy by 4 orders 

of magnitude. All of these advantages can be achieved today by using either a cavity-enhanced 

SPDC source, where the SPDC crystal is placed inside of a cavity so that only frequencies resonant 

with the cavity will be generated61, or a periodically poled SPDC source that uses longer crystals 

with higher nonlinearities to generate much higher SPDC rates compared to thin BBO crystals.62 

Such a source would provide the necessary narrowband SPDC to reach the ETPA cross-section 

maximum. 
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CHAPTER 2 

Experimental and Theoretical Methods 

 

2.1 Overview 

 The experimental and theoretical methods used throughout this dissertation are outlined in 

this chapter. For the experimental methods, the information provided includes: what molecular 

information can be gained from the experiment, how the experimental setup looks, how the data 

is obtained, and any calculations necessary to obtain the molecular information from the data. For 

the theoretical methods, the information provided includes: what molecular information can be 

gained from the calculations, the main equations used in the technique, and the general process of 

how the calculations are performed. 

 

2.2 Experimental Methods 

2.2.1 Linear Absorption 

Often the first spectroscopic experiment performed on a molecular sample is steady-

state linear absorption. This technique measures the frequencies at which the molecule has a 

resonant eigenstate. By sending a broad range of frequencies into the molecular sample, any 

frequency that is resonant with an excited state will be attenuated due to the molecule absorbing 

that frequency of light to be excited from the ground to the excited state. The resulting spectrum 

then reveals the energies and energy widths of the molecule’s excited states. The degree of 

attenuation of each frequency is related to the excited state’s transition dipole moment (TDM) 

with the ground state.1 The TDM is a quantitative measure of the one-photon selection rules 

between that particular excited state and ground state. Transitions that are more strongly 

allowed will have larger absorption intensities. The linear absorption spectrum therefore also 

reveals the TDMs of the one-photon allowed excited states. The absorbance signal is also 

dependent upon the concentration of the molecular solution and the molecule’s extinction 

coefficient, ε, which is directly related to the TDM and one-photon absorption (OPA) cross-
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section, a measure the molecule’s ability to absorb light.1 By measuring the absorbance and 

knowing either the concentration or ε, the other parameter can be easily calculated. 

The range of frequencies measured cover the entire visible light range, as well as some 

frequencies in the low-UV and near-IR, leading to the common name of UV-vis spectroscopy 

for this technique as well. This range of frequencies corresponds to transitions to excited 

electronic states of the molecule. For the large organic chromophores used throughout this 

dissertation, the vibrational states within the excited electronic states have too much overlap 

to resolve them. 

The optical elements within the Agilent 8453 spectrophotometer used throughout the 

work in this dissertation are shown in Fig. 2.1. 

 
Figure 2.1. Optical elements and beam path of the Agilent 8453 spectrophotometer (image 

taken from the instrument’s operator’s manual). 

Fig. 2.1 shows that two lamps are used to create the broad light source: a tungsten lamp for 

370-1100 nm and a deuterium lamp for 190-800 nm. The light is collimated with a lens into a 

parallel beam. When the light is ready to be measured, the shutter opens, allowing the beam to 

pass through the cuvette containing the molecular solution (or solvent for a blank 

measurement). The beam that is transmitted through the cuvette is focused with a lens through 

a slit. The light then reflects off of a grating, which reflects each wavelength at a different 

angle. Therefore, each wavelength hits the photodiode array at a different spatial position. Each 

pixel in the photodiode array measures the intensity of the transmitted photons at the 

wavelength that hits it (with an interval of ~0.9 nm between each pixel). This array can thus 

measure the intensity of each wavelength across the 370-1100 nm wavelength range 

simultaneously. 

To measure the absorption spectrum of the molecule, the intensity of each wavelength 

of light without the sample present needs to be known first. To measure this, clean solvent (the 



47 
 

same solvent used to prepare the molecular solution) is placed in the cuvette. The 

spectrophotometer is then blanked, where the intensity of the transmission through the solvent 

is measured for each wavelength. This information is stored within the spectrophotometer’s 

software. The molecular solution is then placed in the cuvette, and the intensity of the 

transmission through the solution is measured for each wavelength. This transmission through 

the solution will be lower in intensity for wavelengths that are absorbed by the molecule. The 

transmittance, T, at each wavelength is then calculated as:2 

 𝑇 =
𝐼

𝐼0
 (2.1) 

I (I0) is the intensity of the transmitted light through the solution (solvent). Plotting the 

transmittance vs wavelength would provide the transmission spectrum of the molecule. Here, 

the transmittance would be close to 1 at wavelengths where there is no excited state, and the 

transmittance will dip at wavelengths where there are excited states that absorbed the light. 

While the transmittance spectrum provides the information regarding the energies, linewidths, 

and TDMs of the molecule’s excited states, the spectrum is usually converted into an 

absorption spectrum. The absorbance, A, is calculated as:2 

 𝐴 = 𝑙𝑜𝑔10
1

𝑇
 (2.2) 

The absorbance is also commonly called the optical density, OD. By converting the 

transmittance into this log-scale of absorbance, states with weaker absorption can be more 

easily seen instead of being overwhelmed by stronger absorbing states on the linear scale of 

transmittance. It is also more intuitive to identify excited states based on the wavelengths the 

molecule absorbed vs the wavelengths that the molecule did not transmit. Additionally, 

absorbance has a linear relationship with the concentration, path length, l, and ε, compared to 

an exponential relationship with the transmittance. The linear relationship is simpler to deal 

with for further calculations than the transmittance. An example absorption spectrum measured 

for flavin adenine dinucleotide (FAD) is shown in Fig. 2.2. 
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Figure 2.2. Absorption spectrum of flavin adenine dinucleotide. 

The relationship between the absorbance, concentration, and ε is shown through the 

Beer-Lambert Law:2 

 𝐴 = 휀𝑙𝑐 (2.3) 

For molecules where ε is not known, a stock solution of the molecule is made with a 

known weight of solid and volume of solvent, allowing for calculating of the concentration of 

the solution. This stock solution is diluted several times through serial dilutions. A portion of 

the stock solution is placed in a new vial and a specific volume of solvent is added to this vial 

to dilute the solution. A portion of this new solution is placed into a new vial, and that solution 

is again diluted. With at least 3 such solutions prepared, the absorbance of each is measured 

using the same path length cuvette. ε is wavelength dependent, and the most accurate value 

comes from the wavelength at the peak of an absorption band, known as λmax. Plotting 

absorbance at λmax vs concentration yields a linear plot, with the slope equaling ε*l. Division 

by l leaves ε at λmax. 

When ε is known for a molecule, solutions for spectroscopic measurements in the later 

sections can prepared with known concentrations by dissolving some solid compound in 

solvent, measuring the absorbance at λmax, and dividing that by ε and l. When a specific 

concentration is needed, the solution can be diluted until it yields the necessary absorbance at 

λmax. To avoid aggregation between the molecules in solution, the absorbance is usually kept 

below 1. 

The OPA cross-section, σ1, is calculated through standard first-order perturbation 

theory as:1 
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 𝜎1(𝜔) =
2𝜋2𝑒2𝜔𝑗𝑖

3𝜖0ℎ𝑐

𝑔𝑗

𝑔𝑖
𝑔(𝜔)∑ |𝜇𝑗𝑖|

2
𝑗 =

2.303 𝑐

𝑛
 (2.4) 

Here, ω is the frequency of the light, gi is the lineshape of the i state of the molecule (usually 

taken as Lorenztian), g is the lineshape of the light field, e is the charge of the electron, ωji is 

the frequency difference between the i and j states, μji is the TDM between the i and j states, ϵ0 

is the permittivity of free space, h is Planck’s constant, and c is the speed of light. The second 

equality relates the cross-section to the extinction coefficient, with n being the number of 

absorbing molecules. 

 

 

 

2.2.2 Linear Fluorescence 

When a molecule is in an excited electronic state, the molecule cannot remain in that 

higher energy state forever. The molecule will eventually return to the ground state upon 

releasing the energy through one of several mechanisms. The energy relaxation process 

relevant for this dissertation is fluorescence, where the molecule emits one photon of light, 

usually in the visible range, equal in frequency to the energy gap between the excited and 

ground states. Several properties of fluorescence are key pieces of information when trying to 

understand how a molecule behaves when it is in an excited state. These parameters include 

the wavelength spectrum, fluorescence lifetime (amount of time it takes, on average, for the 

excited state to emit a fluorescent photon), and quantum yield (probability the molecule will 

emit a fluorescent photon to decay to the ground state).3 

Steady-state linear fluorescence measures the fluorescence intensity and spectrum from 

a molecule when it is excited at a particular wavelength. A diagram of the Horiba 

QuantaMaster fluorometer used in this work is shown in Fig. 2.3. 
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Figure 2.3. Horiba QuantaMaster fluorometer diagram (image from product brochure). 

 

In the fluorimeter, a Xenon arc lamp is used as a broadband white light source. The white light 

is focused into a monochromator that uses a diffraction grating to reflect the wavelengths 

within the light source at different angles. The angle of the grating is chosen so that the desired 

excitation wavelength will be collected be focused through a narrow slit exiting the 

monochromator. All of the other wavelengths are blocked by the slit. The excitation light is 

then focused into a cuvette containing the molecular solution. Since the transmitted excitation 

light passes directly through the cuvette along a straight path, and fluorescence is emitted 

randomly in all directions, a lens is placed near the cuvette at a 90° angle from the excitation 

light beam. In this manner, only fluorescence light is collected by the lens for emission 

direction. The collected emission is focused into another monochromator that also contains a 

diffraction grating that reflects the wavelengths at different angles. The grating will reflect the 

emission toward another slit that leads to a photomultiplier tube (PMT). The grating will turn, 

allowing the intensity of each wavelength (with a bandwidth determined by the size of the slit) 

to be measured by the PMT one at a time. As the grating turns, the intensity for each 

wavelength is recorded by the software. The data is then plotted as fluorescence intensity vs 

wavelength. An example fluorescence spectrum of FAD is shown in Fig. 2.4. 
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compartment 

Emission 
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Figure 2.4. Steady-state linear fluorescence spectrum of flavin adenine dinucleotide. 

 

 Fluorescence measurements are commonly considered “background-free” since a 

fluorescence signal can only be obtained if the molecule is present and can absorb and emit 

photons. However, the solvent for a molecular solution can also scatter the excitation light 

through Rayleigh or Raman scattering.3, 4 This scattered light can also be collected by the lens 

and measured with the fluorescence spectrum, yielding unexpected peaks in the fluorescence 

spectrum. These peaks, which are not from the molecule under study, can be subtracted out by 

collecting the mission spectrum of the pure solvent in the cuvette, similar to performing a blank 

during linear absorption. Subtraction of the solvent’s emission spectrum from the molecule’s 

emission spectrum yields the desired fluorescence spectrum free of solvent-scattered light. 

Fluorescence typically only comes (appreciably) from the lowest excited electronic 

state in a molecule. Even if a higher electronic state is excited, the molecule was relax to the 

lowest excited state through vibrational relaxation or internal conversion before fluorescing. 

This is known as Kasha’s rule.5 As a result, fluorescence spectra typically only have one peak, 
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corresponding to the energy gap between the excited state and ground state. However, this 

energy gap is usually smaller than the energy gap measured by absorption spectroscopy. 

Treating each electronic state as a well with a minimum energy, a molecule will rest at the 

minimum of the ground state. The coordinate(s) along which the energy of the state changes 

is usually a conformational change of the nuclei of the molecule, such as a bond angle or 

stretch. When the molecule absorbs light, the electronic configuration of the molecule changes 

rapidly to that of the excited state. This change is in electron configuration is much faster than 

the nuclei can move.6 As a result, when the molecule is first excited, the nuclei are not in the 

proper conformation that results in the minimum energy for the excited state’s electron 

configuration. Over time, the nuclei will move toward this minimum energy conformation, 

which is different than the ground state’s minimum energy conformation. The molecule will 

typically emit fluorescence when it is at this minimum energy in the excited state. The energy 

of the fluorescence photon is the energy between the excited state’s minimum energy and the 

ground state’s energy at that nuclei conformation, which is not the minimum energy 

conformation of the ground state. Emitting from the minimum energy of the excited state to 

return to a non-minimum energy of the ground state results in the fluorescence being lower in 

frequency than the absorbed light. The difference between the absorption and fluorescence 

energy is known as the Stokes shift.3 Larger Stokes shifts indicate that the molecule’s nuclei 

conformation changes more drastically upon absorption and relaxation to the excited state’s 

energy minimum. This cycle of absorption and fluorescence is shown in Fig. 2.5. 

 
Figure 2.5. Energy level diagram for absorption and fluorescence on the potential energy 

curves of a molecule. 
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The quantum yield of a molecule can be measured from the fluorescence spectra of 

different concentrations of a molecular solution. The quantum yield is calculated as the percent 

of absorbed photons that result in a fluorescent photon. Since all relaxation processes compete 

with each other, larger quantum yields indicate that the molecule’s fluorescence pathway is 

stronger than the other relaxation pathways.3, 7 In theory, the quantum yield can simply be 

calculated by knowing the number of absorbed and fluoresced photons there are. However, 

determining these number accurately, particularly for fluorescence since only a portion of the 

actual fluorescence is collected and measured, can be difficult and only approximated at best. 

Additionally, pulsed light sources would be needed so that the excitation beam can be turned 

off while the fluorescence photons are counted. Otherwise, the molecule would continuously 

keep absorbing more light. 

A much easier method to calculate the quantum yield is through the comparison 

method.7 In this method, the fluorescence signal as a function of the absorbance for the target 

molecule is compared to the trend for a standard with a known quantum yield. The fluorescence 

spectrum is integrated to calculate the total fluorescence intensity measured with the PMT. 

This intensity is plotted versus the absorbance of that concentration. This is repeated for at 

least 3 concentrations. Since fluorescence is linearly proportional to absorbance, the resulting 

plot should be a linear regression. The slope of the line is proportional to the quantum yield 

(though not equal to the quantum yield) since both the slope and quantum yield are measures 

of the fluorescence obtained per absorption. Therefore, the ratio of the target molecule’s slope, 

mt, to standard’s slope, ms, should equal the ratio of the target’s quantum yield, φt, to standard’s 

quantum yield,φs. The target’s quantum yield is then simply calculated as: 

 𝜙𝑡 =
𝜙𝑠𝑚𝑡

𝑚𝑠
 (2.5) 

The fluorescence spectrum can be an indicator of the quality of a sample. If a sample 

starts to degrade, whether from it being a naturally unstable compound, damage due to laser 

radiation, etc., the bonds within the molecule begin to break. Breaking bonds can change the 

excited states of the molecule, such as changing what the minimum energy nuclei conformation 

for the lowest excited state is. If this conformation changes, the fluorescence spectrum will 

look different compared to how it normally looked before it degraded. The fluorescence 

spectrum can also help identify impurities within a sample or solution, since the impurities will 

emit light at a different wavelength than the sample. 
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2.2.3 Classical Two-Photon Absorption 

Classical two-photon absorption (TPA) is the nonlinear transitions where a molecule 

absorbs two photons whose summed frequencies are resonant with an excited state in the 

molecule.8 Much of the background and advantages of TPA has been explained in Chapter 1.5. 

Briefly, the TPA rate is proportional to the intensity of the input electric field squared. The 

quadratic dependence yields very low TPA signals at low input intensity, requiring focused, 

high intensity laser pulses to produce a measurable signal. The spatial resolution of TPA is 

superior to OPA since TPA only occurs (measurably) at the focal point, which can be 

diffraction-limited.9, 10 The lower laser field frequencies used for TPA compared to OPA allow 

for deeper penetration into samples.11, 12 Finally, excited states that are OPA-forbidden from 

selection rules can be allowed by TPA, allowing these states to be excited and probed.13 

In terms of molecular information that can be gained from TPA, the main molecular 

parameter probed with TPA is the TDMs between excited states.13 Since the first absorbed 

photon only creates a coupling between the ground and intermediate states (via a virtual state 

if the intermediate states are not resonant with the first photon), the second photon must create 

a coupling between the intermediate and final excited states. These latter TDMs cannot be 

probed with steady-state linear absorption. Excited-to-excited state TDMs are helpful to define 

the strength of charge transfer between excited states, which is a crucial dynamical process for 

applications such as fluorescence-based sensors, solar cells, and OLEDs.14-17 By measuring the 

TPA cross-section of a molecule, some insight into the potential strength of charge transfer can 

be gained. 

The TPA cross-section can be measured through a transmittance-based technique 

similar to linear absorption. This technique, know as a z-scan, measures the transmitted power 

of a focused pulsed laser as the molecular solution is scanned across the laser beam path (z-

axis) through the focal point.18 Because the focal point has a much higher intensity than the 

converging or diverging beam, the transmittance will drop as the solution gets closer to and 

enters the focal point. The TPA cross-section can be extracted from the rate at which the 

transmittance drops vs position. 

Though the z-scan technique can measure the TPA cross-section, a fluorescence-based 

technique can provide better accuracy since it is inherently a background-free measurement.19 
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This technique, known as two-photon excited fluorescence, TPEF, was used throughout the 

work of this dissertation and will be explained it further detail. The diagram of the experimental 

setup used to measure the TPA cross-section via TPEF is shown in Fig. 2.6. 

 

Figure 2.6. Experimental setup used to measure two-photon excited fluorescence. 

 

A Spectra-Physics Millenia CW laser with 4 W of 532 nm emission is sent into a KMLabs 

Ti:sapphire oscillator. The oscillator emits fs laser pulses, typically centered around 800 nm 

with ~100 fs temporal width and 80 MHz repetition rate. The central wavelength and temporal 

width has some tunability. The output of the oscillator is sent through a beam sampler, which 

reflects a very small amount of the light into an Ocean Optics spectrometer to measure the 

spectrum. The oscillator is mode-locked by monitoring the spectrum while adjusting a prism 

inside the cavity. Before the oscillator is mode-locked, the emission will be CW, which appears 

as a tall, narrow emission peak at the central wavelength. By slightly pushing the prism’s 
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spring-loaded translational stage, the beam within the cavity is temporally misaligned. 

Releasing the stage back to its original position returns the alignment, allowing the light field 

mode-lock. When it mode-locks, the spectrum will become flatter and broader. The oscillator 

is now producing fs pulses. 

A pair of mirrors redirects the pulses toward the sample compartment. Another beam 

sampler reflects a small portion of the light toward a photodiode, which measures a voltage 

signal proportional to the intensity of the light field. This signal is calibrated to the power of 

the light field with a power meter. A variable neutral density filter wheel is placed in the beam 

path before the beam sampler. The wheel is rotated to different positions to change the 

transmitted laser power. The light transmitted through the beam sampler is measured with a 

power meter. A linear calibration curve of the voltage vs power is recorded across the entire 

power range needed for the experiment, typically 10-100 mW. The power meter is then 

removed, and the power throughout the experiment is measured by recording the voltage signal 

from the photodiode and converting the signal to power. 

The beam is sent into a black box containing the sample holder, monochromator, and 

photomultiplier tube (PMT) detector. A lens focuses the light into the sample holder where the 

cuvette with the molecular solution is placed. Similar to the fluorimeter setup, a lens is placed 

near the sample holder at a 90° angle to the input light beam. This lens collects the TPEF and 

focuses it into the monochromator. A shortpass filter before the monochromator entrance 

blocks scattered light from the input beam, allowing only the fluorescence to enter. The output 

of the monochromator is sent to a PMT to measure the count rate. 

To measure the TPA cross-section, a comparison method with a standard of known 

TPA cross-section is used, similar to the quantum yield measurement.20 First, the TPEF 

spectrum is measured for the target molecule and standard by scanning the monochromator 

and measuring the intensity at each wavelength with the PMT. The TPEF spectrum should 

resemble the linear fluorescence spectrum, though small shifts in the peak wavelength are 

possible since the excited state dynamics for TPA vs OPA can be different. The λmax of the 

TPEF spectrum is used as the detection wavelength for the power scan. In the power scan, the 

TPEF intensity over a range of input light powers is measured. The filter wheel is turned to 

change the power, and ~10 measurements of the TPEF intensity are collected between 10-100 

mW. The TPEF intensity vs power is then plotted. 
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Since the TPEF is created with fs pulses, the resulting fluorescence from each pulse is 

too quick for a detector to resolve the fluorescence signal temporally. The time-averaged 

fluorescence signal, <F(t)>, is related to the input laser power, <P(t)> by:21 

 〈𝐹(𝑡)〉 ≈
1

2
𝑔𝜙𝜂𝑐𝛿𝑟

8𝑛〈𝑃(𝑡)〉2

𝜋𝜆
 (2.6) 

g is the second-order temporal coherence of the laser beam, φ is the fluorescence quantum 

yield (assumed to be the same as for linear fluorescence), η is fluorescence collection efficiency 

of the experimental setup, c is the concentration of the solution, n is the solution’s refractive 

index (assumed to be that of the solvent for dilute solutions), and λ is the wavelength of the 

laser. While direct calculation of the target’s TPA cross-section is possible with eq. 2.6, such 

calculation requires accurate knowledge of g and η. By using the comparison method with a 

standard of known TPA cross-section, and using the same experimental setup and laser 

properties (central wavelength, bandwidth, etc.), these factors will be the same for standard’s 

fluorescence intensity as for the target’s fluorescence intensity. Therefore, once accounting for 

the concentrations and quantum yields of the target and standard, the ratio of the fluorescence 

intensities equals the ratios of the TPA cross-sections. Since eq. 2.6 is a quadratic function, the 

calculation can be further simplified by making a log-log plot of the TPEF intensity vs input 

power for the target and standard. The log-log plot is then governed by: 

 𝑙𝑜𝑔[〈𝐹(𝑡)〉] = 2𝑙𝑜𝑔[〈𝑃(𝑡)〉] + 𝑙𝑜𝑔 [
1

2
𝑔𝜙𝜂𝑐𝛿𝑟

8𝑛

𝜋𝜆
] ≡ 2𝑙𝑜𝑔[〈𝑃(𝑡)〉] + 𝑏 (2.7) 

This log-log equation is linear and has a slope of 2 since the fluorescence intensity is 

proportional to the input power squared for a TPA. Ensuring that the measured log-log plot has 

a slope of 2 is a good check that the fluorescence signal measured is indeed from TPEF. The 

log of all the other parameters is the y-intercept term, b. Since the TPA cross-section is within 

the y-intercept, comparison of the y-intercepts for the target and standard yields the target’s 

TPA cross-section by dividing the target’s y-intercept by the standard’s y-intercept: 

 

1

2
𝑔𝜙𝑡𝜂𝑐𝑡𝛿𝑟,𝑡

8𝑛𝑡
𝜋𝜆

1

2
𝑔𝜙𝑠𝜂𝑐𝑠𝛿𝑟,𝑠

8𝑛𝑠
𝜋𝜆

=
10𝑏𝑡

10𝑏𝑠
 (2.8) 

Rearranging eq. 2.8 and cancelling the parameters that are only laser-dependent, which were 

kept the same for both the target and standard measurement, results in: 

 𝛿𝑟,𝑡 =
10𝑏𝑡−𝑏𝑠𝜙𝑠𝑐𝑠𝛿𝑟,𝑠𝑛𝑠

𝜙𝑡𝑐𝑡𝑛𝑡
 (2.9) 
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2.2.4 Entangled Two-Photon Absorption 

Entangled two-photon absorption (ETPA) is the two-photon optical transition where a 

molecule absorbs a pair of entangled photons to create population on an excited state. The 

mechanism for this transition, from ground to intermediate/virtual to final state, looks similar 

to that of classical TPA, but the quantum correlations of the entangled photons induces unique 

photophysics during the ETPA transition.22 The notable differences and advantages of ETPA 

are explained in greater detail in Chapter 1.6. Briefly, the pair of photons are defined as a single 

quantum object since the properties of one photon cannot be described without the properties 

of the other photon.23, 24 As a single object for the molecule to absorb, ETPA scales linearly 

with the input photon rate, rather than quadratically for classical TPA.25 The linear trend yields 

an enhancement in the absorption rate at low input intensities compared to classical TPA, 

allowing two-photon transitions to be probed at extremely small photon rates where the 

molecule cannot be damaged.26 The TPA rate enhancement also improves the sensitivity of 

ETPA compared to classical TPA since the same absorption/fluorescence signal can be 

obtained using orders of magnitude lower light intensities. 

The quantum correlations of the entangled photons also yield unique quantum 

signatures in ETPA signals. Most notably, the two absorption events, first from ground to 

virtual state and second form virtual to final state, interfere with each other.22 Constructive 

interference enhances the ETPA cross-section, and the Fourier transform of the non-monotonic 

signal reveals the energies of excited states in the molecule, even if they cannot be directly 

excited by light.27 ETPA is also not bound by the uncertainty principle for energy and time 

resolution.28 Both variables can have high resolution simultaneously, which classical TPA 

cannot reproduce. 

The ETPA experiments in this work involved measuring the ETPA cross-section in a 

variety of molecules and with different entangled photon properties, most notably the 

frequency bandwidth and spatial phase-matching condition. The entangled photon source was 

spontaneous parametric down-conversion (SPDC). While previous theoretical and 

experimental work has shown some unique benefits of ETPA,29, 30 there is still many lingering 

questions regarding how the ETPA cross-section is dependent upon, including CW SPDC 

pumping vs pulsed laser pumping, Type-I SPDC vs Type-II SPDC, collinear vs non-collinear 

SPDC, and Gaussian frequency spectra vs sinc frequency spectra. For all of these studies, the 
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ETPA cross-section was measured using a transmittance-based technique. The basic layout 

and experimental procedure for measuring the ETPA cross-section using this technique is 

explained below. Modifications to the setup needed to complete these studies and to 

characterize the SPDC sources are explained after. 

The first ETPA experimental setup used in this work is shown in Fig. 2.7. 

 

Figure 2.7. ETPA experimental setup using Type-II SPDC with fs pulse pumping. 

 

A Ti:sapphire oscillator (Spectra-Physics Mai Tai) produces laser pulses centered at 800 nm 

with temporal width of ~100 fs with a 80 MHz repetition rate. The output power is typically 

~1 W. This beam is directed toward a second-harmonic generation (SHG) BBO crystal to 

double the frequency to 400 nm pulses. A prism separates the 400 nm beam from any residual 

800 nm light. The 400 nm beam is the pump for the SPDC process. The beam first passes 

through a variable neutral density filter wheel to control the pump power. The beam is then 

focused with a lens into a Type-II BBO SPDC crystal with length 0.5 mm to create the 
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entangled photons. A lens collimates the output of the crystal. A dichroic mirror reflects the 

residual 400 nm beam and allows the 800 nm-centered SPDC to pass through. The reflected 

400 nm beam is directed to a photodiode that measures a voltage signal. Similar to the classical 

TPA experiment, a calibration curve between pump power and voltage is measured. Then, the 

voltage signal is measured throughout the ETPA experiment and converted to pump power. 

After being transmitted through the dichroic mirror, the SPDC passes through a longpass filter 

with cut-on wavelength of 700 nm and a bandpass filter centered at 800 nm with a 12 nm 

bandwidth. The SPDC is directed toward the sample holder, where a lens focuses the SPDC 

into the center of a cuvette containing the molecular solution (or solvent for a blank). The 

transmitted SPDC is collimated and then focused onto an avalanche photodiode (APD). The 

APD has single photon detection sensitivity, producing a TTL pulse for every photon that hits 

the sensor. The TTL pulse is sent to a counter which counts the number of pulses received 

within a given time window (usually 1 s). This count rate is recorded in a Labview program, 

along with the voltage signal that is passed from the photodiode to a digital multimeter 

(Kiethley). Because the APD can detect single photons, it is crucial that the entire experiment 

to be covered with black boxes to prevent room light and scattered light from the pump laser 

from reaching the APD. The room lights must also remain off throughout the entire 

experiment. 

Measurement of the ETPA cross-section consists of three power scans. First, the 

cuvette is filled with pure solvent that is used for the molecular solution. The pump laser is 

blocked from entering the SPDC crystal so that no entangled photons are created, and no 

photons should reach the APD. The count rate is measured, which will be non-zero due to the 

APD producing false positive TTL pulses. These “dark counts” are from electrons in the APD 

spontaneously exciting thermally and producing a TTL pulse. These dark counts should be on 

the order of 102-103 counts/s. If they are higher, the experimental setup needs to be covered 

more from room light/scattered laser light. The filter wheel is then set to its minimum 

transmission position and the laser is unblocked to allow SPDC to be produced. The count rate 

transmitted through the pure solvent is measured, along with the voltage signal. A total of 5 

measurements are collected, each with a 1 s collection window. The average of these 5 

measurements is the count rate used for further calculations explained below. The standard 

deviation of the 5 measurements is the error. The filter wheel is slightly turned to allow more 
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pump light into the crystal, and the measurement is repeated. A total of ~10 count rates at 

increasing pump power should be measured. The total scan range in terms of count rate should 

cover a minimum of 106 counts/s and up to a maximum of 107 counts/s, though lower minimum 

count rates can be collected if the filter wheel can provide enough attenuation to reach 105 

counts/s. 

The second power scan is another scan of the transmitted count rate through the pure 

solvent in the cuvette. Without moving the cuvette from the sample holder, the original solvent 

can be removed with a pipette, and new solvent can be added. Or to save solvent, a pipette can 

be used to mimic the process of removing the solvent and adding new solvent. The pipette is 

placed inside the filled cuvette, some solvent is collected in the pipette, and the pipette is 

carefully pulled out of the cuvette. With the solvent still in the pipette, the pipette is placed 

back into the cuvette, and the solvent is released. This process is repeated 3 times to mimic 

replacing the solvent. The purpose of this step is to measure how the transmitted count rate 

changes due to mechanical movement of experimental equipment while removing the solvent 

and adding the molecular solution in the before the third and final scan. Such movement would 

slightly alter the beam alignment on the APD, causing the count rate to drop and appear as an 

absorption signal. This step also accounts for how the laser power might fluctuate during the 

time between each scan. If the laser power slightly drops, the count rate would also drop and 

appear as an absorption signal. Both of these count rate drops are false positives. Measurement 

of this count rate drop establishes the baseline for the experiment. For the molecular solution 

in the next step, the count rate must drop more than this baseline to say there is an ETPA signal. 

Without moving the cuvette from the sample holder, the solvent is completely removed 

from the cuvette with a pipette, and the molecular solution is added to the cuvette. The power 

scan completed for the solvent is then repeated for the solution. With the 3 power scans 

completed, the ETPA rate vs input photon rate is calculated as follows: 

First, the count rates measured with the APD must be corrected to account for the dead 

time and quantum efficiency of the detector. The dead time refers to the brief period of time 

immediately after the APD detects a photon during which the APD cannot detect another 

photon until the electrons settle. This time is typically a few ns and is specified in the data sheet 

provided by the APD manufacturer. The quantum efficiency is the probability that the APD 

will detect a photon that hits the sensitive area, which is dependent upon the wavelength of the 
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photon. For 800 nm, the APD used has a quantum efficiency of ~60 %. Both of these factors 

are corrected for using the equation: 

 𝑅𝑐𝑜𝑟𝑟 =
(𝑅𝑚𝑒𝑎𝑠−𝑅𝑑𝑎𝑟𝑘) 𝜙𝑒⁄

1−(𝑅𝑚𝑒𝑎𝑠−𝑅𝑑𝑎𝑟𝑘)𝑇𝐷 𝜙𝑒⁄
 (2.10) 

Rmeas, Rdark, and Rcorr are the measured, dark, and corrected count rates, respectively, φe is the 

quantum efficiency of the APD, and TD is the dead time. Using the corrected count rates, the 

count rates at each pump power for the two solvent scans are subtracted. The difference 

between them is the ETPA baseline, quantifying the sensitivity and detection limit of the 

experiment. The standard deviations for both scans are used to calculate the error of the 

subtraction through standard error propagation. These baselines rates are plotted vs the 

transmitted count rate for one of the solvent scans. Since the solvent does not have an electronic 

energy level close to resonance with the one-photon frequency or summed frequency of the 

entangled photons, it is assumed that the solvent does not absorb any entangled photons in the 

experiment. With this assumption, the transmitted count rate equals the input photon rate. 

Then, the transmitted count rate for the solution power scan is subtracted from the transmitted 

count rate for the second solvent scan.  The difference between them is the baseline difference 

plus the drop due to the solutions absorbing some of the entangled photons. The difference 

between the scans is plotted vs the count rate for the solvent (which is assumed to equal the 

input photon rate). An example plot of the ETPA rate and baseline vs input photon rate is 

shown in Fig. 2.8. 

 

Figure 2.8. ETPA rate for zinc tetraphenylporphyrin (ZnTPP) and baseline vs input photon 

rate. 
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The baseline is then subtracted from the ETPA rate to correct for the count drop due to 

mechanical movement and laser power fluctuations. The result is the corrected ETPA rate vs 

input photon rate, which should have a clear linear trend given the low input photon rates used, 

which are well below the critical flux where the total TPA rate becomes quadratic. The slope 

of this line is the percentage of entangled photons that were absorbed by the sample. This 

percentage is concentration dependent, and for solutions with concentrations below ~200 μM, 

the percentage is typically between 1 and 5 %. The baseline for the experiment using the setup 

in Fig. 2.7 (Type-II SPDC, fs pulse pumping) is 1 %, resulting in a signal-to-noise ratio (SNR) 

of 1-5. 

To calculate the ETPA cross-section from this plot, the cross-section equations starts 

from the standard linear absorption rate: 

 
𝑁𝑎𝑏𝑠

𝑁𝑖𝑛
= 1 − 𝑒−𝜎𝑒𝑙𝑐 (2.11) 

Nabs (Nin) is the photon rate absorbed by (input to) the solution, σe is the ETPA cross-section, l 

is the cuvette path length, and c is the concentration. The exponential function can be Taylor 

expanded and truncated to first order in σe, which results in the approximation: 

 
𝑁𝑎𝑏𝑠

𝑁𝑖𝑛
≈ 𝜎𝑒𝑙𝑐 (2.12) 

The left-hand term is the percent of entangled photons absorbed, i.e. the slope (m) of the ETPA 

rate vs input photon rate. Rearranging eq. 2.12 results in the expression for the ETPA cross-

section: 

 𝜎𝑒 =
𝑚

𝑙𝑐𝑁𝐴
 (2.13) 

NA is Avogadro’s number to calculate the cross-section in units of cm2/molecule. Note, c 

should be converted to units of mol/cm3. 

Chapter 6 of this dissertation shows the use of a newly built ETPA experiment that uses 

a CW pump laser and Type-I SPDC. The experimental setup is shown in Fig. 2.9. 
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Figure 2.9. ETPA experimental setup for CW pumping of Type-I SPDC. 

 

In this setup, a CW diode laser (Crystalaser) with 250 mW of 405 nm light is used to pump the 

SPDC process. A linear variable neutral density filter is mounted on a translation stage oriented 

perpendicular to the laser beam. Moving the translational stage with the filter changes the 

attenuation of the pump beam. The pump is focused into a Type-I BBO SPDC crystal with 

length 1 mm. The output from the crystal is collimated with a lens. A dichroic mirror reflects 

the residual 405 nm beam toward a photodiode that measures a voltage signal, similar as in the 

setup in Fig. 2.7. The transmitted SPDC is passed through a longpass filter cut-on 700 nm and 

a bandpass filter centered at 810 nm. A variety of filters are used with bandwidths of 10, 30, 

and 80 nm. The SPDC is focused into the cuvette containing the molecular solution (or solvent 

for the blank), and the transmitted SPDC is collimated after. The SPDC is then focused onto 

an APD that sends TTL pulses to a counter to measure the count rate as in the setup in Fig. 2.7. 

The entire experimental setup is covered in black boxes to prevent room light and scattered 

laser light from hitting the APD. 

The procedure for collecting data and calculating the ETPA cross-section is the same 

as explained previously. As noted in greater detail in Chapter 6, this setup using CW pumping 

yields a typical ETPA percentage of 1-10 %, with a baseline of 0.1 %, resulting in an improved 

SNR of 10-100 compared to the previous setup’s SNR of 1-5. 

The ETPA rate can also be measured by detecting coincidence counts instead of singles 

counts. For this experiment, the entangled photon pair is split, sending one photon to one APD 

and the other photon to a different APD. For Type-II SPDC, the pairs are split using a 

polarizing beam-splitter since one polarization is reflected and the other transmitted. For Type-

I collinear SPDC, a non-poalrizing 50:50 beam splitter is used, where each photon has a 50:50 

chance of being reflected or transmitted. With this method, the photon pairs may not always 
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be separated since both can be reflected (or transmitted) together. Probabilistically, the 

coincidence rate measured will only be half of the total number of photon pairs present. For 

this reason, it is better to use non-collinear phase-matching for Type-I SPDC, shown in Fig. 

2.10. 

 

Figure 2.10. Experimental setup for measuring coincidence counts with non-collinear Type-I 

SPDC. 

 

Because non-collinear Type-I SPDC pairs are spatially separated from each other 180° around 

the ring to conserve momentum, a mirrored knife-edge prism can separate each photon pair. 

When the SPDC ring is centered on the edge of the prism, each photon within the pair is 

reflected in opposite directions. Then the photons can be focused onto their own APDs. It is 

essential for the experimental setup that the total path distance for each photon from the point 

where they are separated to their respective APDs is the same, and that the BNC cables that 

connect the APDs to the coincidence counter are the same length. Any difference in either of 

these lengths will add an artificial delay to the TTL pulses arriving at the coincidence counter, 

resulting in an inaccurate measurement of the coincidence count rate. 

Once the entangled pairs are separated and aligned to their respective APDS, the two 

APDS send TTL pulses to a coincidence counter each time they detect a photon. The 

coincidence counter has a specific coincidence window, in this case 5 ns. If the two APDs both 

send a TTL pulse to the coincidence counter within this coincidence window, the counter 

registers 1 coincidence count. If the counter receives a TTL pulse from only 1 APD, it does 

not register a coincidence count (though the counter can keep track of the singles counts from 

each APD as well). The probability for an entangled pair to have both photons arrive at their 
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respective APDs within the coincidence window is determined by their entanglement time, Te, 

and any potential delay added to the pair after their generation. In this case, no delay is added, 

so the two photons must arrive at their respective detectors within a time window of width Te. 

As long as Te is shorter than the coincidence window, the entangled pair is guaranteed to arrive 

at the APDs within enough time for the APDs to register a coincidence count with the counter 

(though the dead time and quantum efficiency of the APDs still apply, so not every single 

entangled pair will be detected). 

As mentioned in Chapter 1.4.3, both Type-I and Type-II SPDC have multiple spatial 

phase-matching conditions which yield different spatial distributions of the SPDC rings. To 

optimize SPDC generation, the crystals are cut such that when the crystal face is orthogonal to 

the pump beam, one of the phase-matching conditions will be met by the angle that the pump 

beam is making with the optical axis. To change the spatial phase-matching, the crystal can be 

slightly tilted around the axis that is orthogonal to the pump beam and parallel to the optical 

table. Adding this tilt changes the angle between the pump beam and optical axis, which 

changes the spatial phase-matching condition. 

Chapter 7 details work on measuring the ETPA cross-section using different SPDC 

frequency bandwidths. To control the bandwidth, the SPDC generated from the crystal is 

filtered using either a bandpass filter (80, 30, 10 nm bandwidths) or a monochromator (5, 4, 3, 

2.5, 2 nm bandwidths). For the broader bandwidths, the appropriate bandpass filter is placed 

in the SPDC path with the 700 nm longpass filter after the dichroic mirror in Fig. 2.10. No 

additional alignment is needed. For the narrower bandwidths, the monochromator is placed 

after the dichroic mirror and before the lens that focuses the SPDC into the cuvette. A focusing 

(collimating) lens should be placed immediately before (after) the monochromator to optimize 

coupling of the SPDC into and out of the monochromator. The grating in the monochromator 

is turned so that 810 nm light is centered on the exit slit. The entrance and exit slit widths 

control the bandwidth that exits the monochromator. The exact bandwidth is calculated from 

the grating’s dispersion, d, in nm/mm and the slit width, w, as: 

 Δ𝜆 = 𝑑 × 𝑤 (2.14) 
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Figure 2.11. Experimental setup for adjusting the SPDC frequency bandwidth with a 

monochromator. 

 

An important part of building an ETPA setup is characterizing the entanglement of the 

photon source. In this work, the frequency entanglement was measured. To complete this 

characterization, a monochromator was placed in the beam path of each photon within an 

entangled pair after they have been separated from each other, shown in Fig. 2.12. 

 

Figure 2.12. Experimental setup for measuring the joint frequency spectrum. 

 

As with using the monochromator as a frequency filter, a lens focuses the light into the 

monochromator and another lens collimates the output. The output is then focused onto the 

APD, and coincidence counts are measured between the two APDs. The SPDC joint frequency 

spectrum, which is a 2D spectrum with signal photon frequency on the x-axis and idler photon 

frequency on the y-axis, was measured using the following procedure. A bandpass filter 
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centered at 810 nm with 80 nm bandwidth is placed in the SPDC path before the photons are 

split. The monochromators and APDs do not have sufficient quantum efficiency across the 

entire SPDC spectrum to accurately measure the entire unfiltered SPDC frequency spectrum. 

The bandpass filter keeps the frequency bandwidth within the detection range while also 

providing a large enough bandwidth for accurate extrapolation in a later step. With the 

bandpass filter in place, the entrance and exit slits for both monochromators are adjusted to the 

smallest possible width that allows enough photons to be transmitted for accurate coincidence 

count detection. In this work, the slits were adjusted to achieve at least 103 coincidence counts/s 

when both monochromators are set to 810 nm, which corresponded to a frequency bandwidth 

of ~ 3 nm. The monochromator (Alice) for the signal photon is then set to a central wavelength 

outside the bandpass filter range (ex.: 750 nm). The other monochromator (Bob) for the idler 

photon is scanned across the entire bandpass filter range (ex.: 750-870 nm). The coincidence 

counts are measured 3 times for 1 s each at 1 nm increments. The average of the 3 

measurements for each wavelength is recorded in a Labview program. Alice’s monochromator 

is then changed to a new central wavelength (ex.: 760 nm), and Bob’s scan is repeated. This 

procedure is repeated until Alice’s central wavelength is past the bandpass filter range (ex.: 

870 nm). 

The collected spectra are cross-sections of the 2D joint frequency spectrum of the 

SPDC. The peak in each spectra that Bob measures during his scans occurs at the wavelength 

that conserves energy from the pump beam with Alice’s current central wavelength. Therefore, 

whenever Alice changes her central wavelength, Bob measures a peak at a different 

wavelength than his previous scan. The width of Bob’s spectrum is determined by the pump 

laser spectral width (1 nm) and the spectral resolution of the monochromators (3 nm). Since 

the monochromator bandwidth was greater than the pump spectral width, the measured spectral 

width of Bob’s scans are broader than what the actual spectral width of the SPDC is expected 

to be. To obtain the full joint frequency spectrum, the collected spectra was plotted in Origin 

and fit with the following double-Gaussian: 

 𝑧 = 𝐴 ∙ 𝑒𝑥𝑝 [
−

1

2
(
𝑥∙𝑐𝑜𝑠(𝜃)+𝑦∙𝑠𝑖𝑛(𝜃)−𝑥𝑐∙𝑐𝑜𝑠(𝜃)−𝑦𝑐∙𝑠𝑖𝑛(𝜃)

𝜔+
)
2

−
1

2
(
−𝑥∙𝑠𝑖𝑛(𝜃)+𝑦∙𝑐𝑜𝑠(𝜃)+𝑥𝑐∙𝑠𝑖𝑛(𝜃)−𝑦𝑐∙𝑐𝑜𝑠(𝜃)

𝜔−
)
2]  (2.15) 
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Here, A is the amplitude, x (y) is the frequency along the x-(y-)axis, which have centers xc (yc), 

and θ is the angle between the anti-diagonal and the x-axis. An example is shown in Fig. 2.13. 

 

Figure 2.13. Example of a double-Gaussian of the form in eq. 2.15. 

 

The width ω- is the Fourier conjugate of Te. Therefore, Te can be calculated from the inverse 

of ω-. Additionally, from this double-Gaussian, the widths along the diagonal and anti-diagonal 

can be used to approximate the degree of frequency entanglement. The Fedorov ratio, R, is 

calculated as:31 

 𝑅 =
𝜔−

𝜔+
 (2.16) 

A more accurate calculation of the degree of frequency entanglement is through the Schmidt 

decomposition. As explained in Chapter 1.4.5, the Schmidt decomposition reveals the actual 

frequency states that the two photons are in once they interact with an object.32 Before the 

interaction, the photons are in superpositions of these possible states. The more states in the 

superposition, the stronger the entanglement. The Schmidt decomposition of the fitted double-

Gaussian in eq. 2.15 was performed using a free-to-use Python program.33 Mathematically, the 

Schmidt decomposition is the continuous function form of the singular value decomposition 

ω+ 

ω- 

θ 

xc 

yc 
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(SVD), which decomposes matrices into a basis set. The Schmidt decomposition is easiest 

calculated by converting the double-Gaussian obtained from the fitting with eq. 2.15 into 

matrix form. The SVD is then performed on the matrix using the svd function in the 

numpy.linalg module. The columns in the U and V matrices of the SVD are the vectors for the 

signal and idler frequency eigenstates. Their products are the Schmidt modes. The singular 

values are the Schmidt coefficients. To quantify the degree of frequency entanglement, the 

number of effective occupied Schmidt modes is calculated using eq. 1.35 and/or the entropy 

of entanglement using eq. 1.36. 

 

2.3 Theoretical Methods 

2.3.1 Multireference Configuration Interaction 

The properties of molecular states can be calculated if one knows the correct wave 

function to describe the state of interest. In particular, the states of interest for quantum 

chemistry calculations are the energy eigenstates of the Hamiltonian, H, operator. With the 

eigenstates, Ψi, known, their energies, Ei, can be calculated as: 

 𝐸𝑖 =
⟨Ψ𝑖|�̂�|Ψ𝑖⟩

⟨Ψ𝑖|Ψ𝑖⟩
 (2.17) 

The dipole moments, μji, between states Ψi and Ψj can also be calculated with the dipole 

operator, μ, as: 

 𝜇𝑗𝑖 = ⟨Ψ𝑗|�̂�|Ψ𝑖⟩ (2.18) 

If i ≠ j, the dipole is the transition dipole moment (TDM) between states Ψi and Ψj. If i = j, the 

dipole is the permanent dipole moment of state Ψi. 

The challenge for quantum chemistry calculations is obtaining the correct wave 

functions to substitute into eq. 2.17-2.18. One of the best methods for calculating these wave 

functions is through configuration interaction (CI).34 In this method, a reference electronic 

configuration (obtained from the method in the next section) for the eigenstate of the interest, 

say the ground state, is used as a starting point. Additional configurations are determined by 

exciting electrons from the reference configuration to unoccupied higher energy states. For 

example, the singly excited configurations are those that have one electron from the reference 

configuration excited to a higher state, doubly excited configurations have two electrons 
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excited, etc. The reference configuration and all of the excitation configurations are 

“interacted” by forming a linear combination of the configurations:34 

 |Ψ𝑖⟩ = ∑ 𝑐𝑘|ψ𝑘⟩𝑘 + ∑ 𝑐𝑎|𝜓
𝑎⟩𝑎 + ∑ 𝑐𝑎𝑏|𝜓

𝑎𝑏⟩𝑎𝑏 +⋯ (2.19) 

The states ψa and ψab are the singly and doubly excited configurations. The coefficients for the 

linear combination are optimized such that the resulting wave function will produce the 

minimum possible energy in the Schrodinger equation:34 

 �̂�𝑐 = 휀�̂�𝑐 (2.20) 

Here, c is the eigenvector of the coefficients ck, S is the matrix with elements of the overlap 

between the states |ψk>, and ε is the energy eigenvalue. In general, multiple eigenstates of the 

molecule can be solved for, turning c into a matrix whose columns are the eigenvectors for 

each eigenstate and turning ε into a diagonal matrix of the energies. 

If one were to consider every possible excitation configuration in eq. 2.19, the method 

is known as full CI and results in the exact wave function for the eigenstate. In reality, full CI 

is only possible for the smallest of molecules due to the computational cost being too large as 

the molecule grows in size and number of electrons. Truncated CI methods provide a 

compromise between computational cost and wave function accuracy. Truncated CI methods 

limit the excitations considered, such as only considering the singly excited configurations 

(CIS) or only considering the singly and doubly excited configurations (CISD). When using 

truncated CI methods, the accuracy of the energies of ground and excited eigenstates can be 

improved by considering how these eigenstates can be correlated with each other. This is 

accomplished by using multiple reference configurations in the CI method, known as 

multireference CI (MRCI).35 In MRCI, the excitations from the ground reference configuration 

are considered, and well as excitations from excited state reference configurations:36-38 

 |Ψ𝑖⟩ = ∑ 𝑐𝑘|ψ𝑘⟩𝑘 + ∑ ∑ (𝑐𝑆)𝑎|𝜓𝑆
𝑎⟩𝑎𝑆 + ∑ ∑ (𝐶𝑃)𝑎𝑏|𝜓𝑃

𝑎𝑏⟩𝑎𝑏𝑃 +⋯ (2.21) 

Here, S and P refer to states that have N-1 and N-2 electron holes, respectively. This linear 

combination is then optimized to minimize the energy eigenvalues. MRCI is better at 

calculating the energy gap between states since it is better at considering how the ground state 

may have some correlation with the excited states. Single reference CI will typically 

overestimate the excitation energies. 
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2.3.2 State-Averaged Complete Active Space Self-Consistent Field 

To complete the MRCI calculations, reference configurations must be chosen as the 

starting point for the excitation configurations. One of the earliest methods to approximate the 

wave function of a many-body system was Hartree-Fock.34 This method assumes that the wave 

function can be described as a single Slater determinant, where the determinant represents each 

electron, eN, being in a spin orbital, φN:34 

 |𝜓𝑘⟩ =
1

√𝑁!
|
𝜙1(𝑒1) ⋯ 𝜙𝑁(𝑒1)

⋮ ⋱ ⋮
𝜙1(𝑒𝑁) ⋯ 𝜙𝑁(𝑒𝑁)

| (2.22) 

The Slater determinant follows the antisymmetric rule for fermions, where swapping two 

electrons in their respective spin orbitals results in a sign flip of the wave function. Hartree-

Fock is the self-consistent field (SCF) method that optimizes the spin orbitals to produce the 

Slater determinant that minimizes the energy when solving the Schrodinger equation. Where 

Hartree-Fock fails is in considering how the electrons are correlated with each other. To 

consider the correlations, multi-configurational SCF (MCSCF) uses a set of Slater 

determinants to approximate the wave function, where each Slater determinant is for an excited 

electron configuration. There are multiple methods for completing MCSCF, and the one used 

in this work was complete active space SCF (CASSCF). In CASSCF, an active space is defined 

where the orbitals with occupied electrons can have their electrons excited, and unoccupied 

orbitals can receive an excited electron.36, 38 Orbitals below the active space are “frozen” such 

that their electrons are never excited. Orbitals above the active space of “virtual” such that they 

will never receive an excited electron. Each combination of electrons with the active space has 

a Slater determinant, and the linear combination of these determinants is optimized to have the 

lowest possible energy. State-averaged CASSCF means that the minimized energy is the 

average energy of the molecular eigenstates being calculated. The final configurations 

calculated from CASSCF for the ground and excited eigenstates are used as the reference 

configurations for MRCI. 

 

2.3.3 Second-Linear Response Time-Dependent Density Functional Theory 

While MRCI provides very accurate approximations of the molecular eigenstates’ 

wave functions, the calculations can only be applied to very small systems to complete the 

calculation in a reasonable amount of time and memory. Other quantum chemistry methods 
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attempt to calculate accurate approximations of wave functions for larger molecules. One of 

the most common approaches is density functional theory (DFT).39, 40 In DFT, instead of 

considering how each electron in the molecule is configured, this many-body problem is 

mapped into a single-body problem by defining an electron density functional. The density 

functional, n(r), which is a function of the wave function Ψ, describes the probability of finding 

an electron at each point in space across the structure of the molecule:40 

 𝑛(𝑟) = ∫𝑑3𝑟2…∫𝑑3𝑟𝑁Ψ
∗(𝑟, 𝑟2, … 𝑟𝑁)Ψ(𝑟, 𝑟2, … 𝑟𝑁) (2.23) 

By knowing how the electron density is arranged for an eigenstate, eq. 2.23 can be reversed to 

extract the wave function. As with MRCI, the procedure for DFT is to minimize the energy. 

This is accomplished by calculating the eigenvalues for each energy operator of the 

Hamiltonian (potential energy, V, kinetic energy, T, and electron-electron interaction energy, 

U). The kinetic energy, εk,I, is calculated using the classical kinetic energy operator:40 

 −
ℏ2

2𝑚
∇2𝜑𝑖(𝑟) = 휀𝑘,𝑖𝜑𝑖(𝑟) (2.24) 

Here, the orbitals φi comprise the density functional as:40 

 𝑛(𝑟) = ∑ |𝜑𝑖(𝑟)|
2

𝑖  (2.25) 

The potential energy and electron-electron interaction energy can be expressed:39 

 𝑉𝑠(𝑟) = 𝑉𝑒𝑥𝑡(𝑟) + ∑
𝑍𝑘

|𝑟−𝑟𝑘|
𝑘 + ∫

𝑛(𝑟′)

|𝑟−𝑟′|
𝑑3𝑟 + 𝑉𝑋𝐶[𝑛(𝑟)] (2.26) 

Here, Vext(r) is the potential energy from an external field (such as a light field), the second 

term is the electron-nucleus attraction potential energy, the third term as the classical electron-

electron repulsion potential, and VXC is the exchange-correlation potential. VXC provides 

corrections to the classical kinetic energy and classical electron-electron repulsion energy that 

accounts for the true quantum nature of the electrons, namely the exchange and correlation 

energies. The exchange energy results from the electrons being fermions, meaning no two 

electrons can have the exact same state, so electrons with the same spin will remain further 

apart in space than would be predicted using just the classical repulsion energy. The correlation 

energy considers how the position, momentum, etc. of one electron in the molecule affects the 

same properties of the other electrons. This last term is what limits the accuracy of DFT since 

it is usually not known explicitly. Many approximations exist, though discussion of them is 

outside the scope of this dissertation. The potential energy is thus calculated as:40 

 𝑉𝑠(𝑟)𝜑𝑖(𝑟) = 휀𝑠,𝑖𝜑𝑖(𝑟) (2.27) 
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Optimizing the orbitals φi to minimize the total energy Es = εk + εs results in the final n(r). Of 

course, the third term in eq. 2.26 contains the density functional, and solving eq. 2.26 is part 

of the process in optimizing the density functional. DFT is thus self-consistent and is solved 

iteratively until the calculated density functional matches the input density functional for that 

same iteration through the loop.  

DFT is used principally to calculate the ground state wave function of a molecule. To 

calculate the wave functions for excited states, which are time-dependent states, time-

dependent DFT (TDDFT) is required. TDDFT is analogous to solving DFT, with the exception 

that the external potential, V(r,t) is now time-dependent. As a result, n(r,t) becomes time-

dependent. Now, one solves the time-dependent Schrodinger equation to calculate the 

energy:40 

 �̂�(𝑡)|Ψ(𝑡)⟩ = 𝑖ℏ
𝜕

𝜕𝑡
|Ψ(𝑡)⟩ (2.28) 

Solving for the density functional with TDDFT can be quite computationally 

expensive. To simplify the calculation and minimize the computational cost, if the perturbation 

with the light field is assumed to be small enough that the ground state is not completely 

destroyed, the TDDFT calculation can be limited to first-order in the perturbation, hence linear 

response TDDFT (LR-TDDFT). In other words, when the light field is sufficiently weak, the 

density functional will retain much of its ground state character with the addition of some new, 

small perturbed ground state character. The Hamiltonian can then be described as:40 

 �̂�(𝑡) = �̂�0 + �̂�𝑒𝑥𝑡(𝑡) (2.29) 

The total Hamiltonian is simply the ground state Hamiltonian with no field applied, H0, plus 

the Hamiltonian for the external field, Vext(t), which is time-dependent. 

LR-TDDFT can be used to calculate the properties of a singly excited state in a 

molecule, such as with one-photon absorption. However, for calculating the properties of a 

state excited by a two-photon absorption, two interactions between the density functional and 

light field must be considered. Perhaps the most intuitive way to accomplish this is to take the 

TDDFT calculation to second-order in the density functional response, known as quadratic 

TDDFT. However, quadratic TDDFT scales as N6, where N is the number of electrons, making 

calculation for large organic chromophores too computationally intensive.41 A new approach 

from the Schatz group in the Northwestern University chemistry department is second linear 

response TDDFT (SLR-TDDFT), which scales as N4.41, 42 The idea is to complete LR-TDDFT 
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twice. The first time it is completed as explained above. The resulting output state from the 

first LR-TDDFT, which is the ground orbitals plus some perturbation of the ground orbitals, 

is used as the input reference state for the second LR-TDDFT. The degree to which to include 

the perturbed part is controlled with the scalar λ:41 

 𝜑𝑖,𝑆𝐿𝑅(�⃑⃑�) = 𝜑𝑖(�⃑⃑�) + 𝜆∑ 𝑋𝑎𝑖
𝐼 𝜑𝑎(�⃑⃑�)𝑎  (2.30) 

Here, φi are the ground state orbitals and φa are the virtual orbitals that can receive an electron 

from the perturbation. The perturbation is a linear combination of the virtual orbitals, with 

coefficients Xa. To calculate SLR-TDDFT for a particular excited state, the virtual orbitals for 

that chosen excited state are used for φa. They are added to the ground state orbitals to some 

degree, determined by λ, resulting in the input orbitals for the second LR-TDDFT, φi,SLR. 
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CHAPTER 3 

Predicting and Controlling Entangled Two-Photon Absorption in Diatomic Molecules 

 

The work in this chapter was published as the journal article: 

Burdick, R. K.; Varnavski, O.; Molina, A.; Upton, L.; Zimmerman, P.; Goodson, T.: Predicting 

and Controlling Entangled Two-Photon Absorption in Diatomic Molecules.” The Journal of 

Physical Chemistry A 2018, 122 (41), 8198-8212. 

Modifications have been made for the style and content of this dissertation. References and 

supporting information for the manuscript are included in this chapter. 

 In this chapter, I calculated all of the ETPA cross-sections vs the entanglement time, Te, 

using the molecular parameters that were calculated by Andrew Molina and Paul Zimmerman. I 

completed the analysis of how the wave nature of each of the ETPA pathways interfere with each 

other and contribute to the ETPA cross-section. I performed the approximation calculations for 

using a one or two dominant pathways and compared the resulting oscillation periods to the full 

calculation oscillation periods. 

 

3.1 Abstract 

The use of nonclassical states of light to probe organic molecules has received great 

attention due to the possibility of providing new and detailed information regarding molecular 

excitations. Experimental and theoretical results have been reported which show large 

enhancements of the nonlinear optical responses in organic materials due to possible virtual 

electronic state interactions with entangled photons. In order to predict molecular excitations with 

nonclassical light, more detailed investigations of the parameters involved must be carried out. In 

this report we investigate the details of the state-to-state parameters important in calculating the 

contribution of particular transitions involved in the entangled two-photon absorption process for 

diatomic molecules. The theoretical discussion of the entangled two-photon process is described 

for a set of diatomic molecules.  Specifically, we provide detailed quantum chemical calculations 

which give accurate energies and transition moments for selection-rule allowed intermediate states 



81 
 

important in the entangled nonlinear effect for the diatomic molecules. These results are 

used to estimate in a more accurate manner the nonmonotonic behavior of the entangled two-

photon absorption cross-section. We also derive accurate approximations that can be used to 

predict the period between entanglement-induced transparencies without needing exact values of 

the transition dipole moments. These results suggest that with the additional parameters allotted 

by the entangled two-photon absorption (in comparison to the classical case), it may be possible 

to predict and later control the nonlinear absorption and transparency of a molecule at a constant 

incident photon frequency. 

 

3.2 Introduction 

The interaction of light with organic matter has led to the discovery of many applications.1 

The linear (as well as nonlinear) optical responses of organic materials can be explained to a great 

extent by considering the electronic states of the molecular selection rules regarding the population 

of various transitions in organic molecules as a result of the interaction with light.2-7 These 

processes are well described with the application of classical light. There has been rising interest 

in the use of non-classical states of light for the purposes of exciting organic molecules as well.8-

14 Generation of entangled photons was first reported by Kocher and Commins15 where a calcium 

atomic cascade emitted polarization-correlated photons in a non-Poissonian distribution. Basché 

et al.16 later extended emission of entangled photons to a molecular system by exciting a single 

pentacene molecule in a p-terphenyl crystal, leading to anti-bunching fluorescence. In most 

experiments today, entangled photons are generated from the process of spontaneous parametric 

downconversion (SPDC), first shown by Klyshko et. al.17 SPDC has allotted new insights into the 

possibility of exciting electronic states with entangled photons where the population is extremely 

low.11,12,18-21 In particular, nonlinear optical methods which require relatively large excitation flux 

densities may be carried out at orders of magnitude smaller flux densities with non-classical light, 

with experimental results showing a difference of up to 10 orders of magnitude.8-11,14,22,23 The 

results and discussions of these possibilities have led to many suggestions regarding the use of 

entangled photons in spectroscopy and to creation of a very sensitive detection 

methodology.9,11,13,14,24-30 For example, there have been reported proposals of novel spectroscopic 

techniques such as femtosecond stimulated Raman spectroscopy which offers the possibility of 

combining entangled photons with interference detection to select matter pathways.31 This would 
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ultimately offer enhanced resolution aided by the use of entangled photons. From such reports it 

is now accepted that entangled photons may provide a unique temporal and spectral detection 

window that can better resolve fast excited-state dynamics compared to classical and correlated 

disentangled states of light.10,14,27,28,32,33 However, there is much to learn about the nature of the 

interaction of electronic states in organic molecules with non-classical states of light. It has been 

shown that the entangled two-photon absorption (ETPA) process is sensitive to the pathway and 

available excited states of the molecules investigated.11,13,18,25,26,29,30,34 It was further found that 

there are additional parameters which can drive the population of particular optical transitions 

when one utilizes entangled photons. The entanglement time, delay, and area are critical 

parameters which are connected to the nonmonotonic absorption process observed in the entangled 

two-photon experiments.8-11,14,25,26,34 Recent reports have also observed the nonmonotonic 

behavior in the resulting fluorescence from excitation with non-classical light.11,14 

Theoretically, there have been reports of the connection of the fourth-order correlation 

function with the calculation of the ETPA cross-section.24-26,34 In order to describe these 

interactions between light and matter one often employs higher order optical coherence theory. 

Classical two-photon absorption (TPA) can be described with a second order correlation function. 

The classical two-photon absorption cross-section, 𝛿𝑅, is given by:11 

𝛿𝑅 =
𝐵

ℏ2
0
2 𝜔0

2𝛿(휀𝑓 − 휀𝑔 − 2𝜔0) × |
1

(𝜔0+ 𝑔− 𝑒)−𝑖𝜅𝑒/2
𝜇𝑓𝑒 ⋅ 𝑒𝜇𝑒𝑔 ⋅ 𝑒 +

1

𝜔0−𝑖𝜅𝑔/2
𝜇𝑓𝑔 ⋅ 𝑒𝜇𝑔𝑔 ⋅ 𝑒 +

1

−𝜔0−𝑖𝜅𝑓/2
𝜇𝑓𝑓 ⋅ 𝑒𝜇𝑓𝑔 ⋅ 𝑒|

2

 (3.1) 

where 𝜔0 is the energy of each photon, 𝑒 is the polarization of the field, 휀𝑔, 휀𝑒, and 휀𝑓 are the 

energies of the ground, intermediate, and excited state, respectively, 𝜇𝑖𝑗 are the transition dipole 

matrix elements, and 𝜅𝑗 are the state linewidths. This equation assumes that both photons in this 

process have the same polarization and frequency. The first term in eq. 3.1 describes TPA 

occurring through an intermediate level. The second and third terms describe a process involving 

permanent dipoles. In the classical case these two terms can be simplified to one contribution 

proportional to the permanent dipole difference Δ𝜇𝑓𝑔 = 𝜇𝑓𝑓 − 𝜇𝑔𝑔. The description beyond the 

classical regime of nonlinear optical responses of organic materials, which involves the effects of 

quantum correlated photons in spectroscopy, gives rise to the quantum effects caused by 

entangling the excitation source and a change in the interaction mechanism between the field and 
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the material system.24-26 Not only is the cross-section modified, but also the interactions are no 

longer intensity-squared dependent.24-26 The effects of the interactions between entangled photon 

states and matter have not yet been exploited to the same extent as classical photons utilizing 

quantum computational methods for the electronic structure of organic molecules. 

As mentioned above, in order to describe the fields generated by entangled photons, fourth-

order correlation functions are needed.24-26,34 Developing theoretical models to describe this 

mechanism in certain organic systems with particular electronic (virtual) states is a key critical 

step in understanding and controlling the entangled photon absorption process.24-26,34 The ETPA 

cross-section has been found to have a dependence on the detuning energy (Δj) between the 

entangled photon and the intermediate state, as well as on the intermediate state linewidth, and the 

transition matrix elements.22,24-26,34 For a system with ground, intermediate, and excited state 

wavefunctions, in the Dirac notation |g>, |e>, and |f>, respectively, and under the simplified case 

of a monochromatic pump beam, without a delay between signal and idler beam, one finds for 

𝜎𝑒:11 

𝜎𝑒 =
𝐴

ℏ2
0
2𝐴𝑒𝑇𝑒

𝜔0
2𝛿(휀𝑓 − 휀𝑔 − 2𝜔0) × |

1−𝑒−𝑖(𝜔0+𝜀𝑔−𝜀𝑒)𝑇𝑒−𝜅𝑒𝑇𝑒/2

(𝜔0+ 𝑔− 𝑒)−𝑖𝜅𝑒/2
𝜇𝑓𝑒 ⋅ 𝑒𝑖𝜇𝑒𝑔 ⋅ 𝑒𝑠 +

1−𝑒−𝑖𝜔0𝑇𝑒−𝜅𝑔𝑇𝑒/2

𝜔0−𝑖𝜅𝑔/2
𝜇𝑓𝑔 ⋅ 𝑒𝑖𝜇𝑔𝑔 ⋅ 𝑒𝑠 +

1−𝑒
𝑖𝜔0𝑇𝑒−𝜅𝑓𝑇𝑒/2

−𝜔0−𝑖𝜅𝑓/2
𝜇𝑓𝑓 ⋅ 𝑒𝑖𝜇𝑓𝑔 ⋅ 𝑒𝑠|

2

 (3.2) 

where 𝐴𝑒 and 𝑇𝑒 are entanglement area and entanglement time, respectively, 𝜔0 is the energy of 

each photon, 𝑒𝑠 and 𝑒𝑖 are the polarizations of signal and idler photons, respectively, 휀𝑔, 휀𝑒, and 

휀𝑓 are the energies of the ground, intermediate, and excited state, respectively, 𝜇𝑖𝑗 are the transition 

dipole matrix elements, and 𝜅𝑗 are the state linewidths. A level scheme as depicting two different 

pathways may be suggested where the ETPA could occur through an intermediate level “e,” or the 

ETPA could result from the utilization of permanent dipoles between the initial state “g” and final 

state “f.”11  Interestingly, it is these pathways, combined with good estimates of the populations of 

virtual states, which could give rise to new and interesting features related to the use of non-

classical light for spectroscopy as well as quantum sensing.11,12,18,20,23-26,30 

The terms inside the modulus squared in eq. 3.2 can be rearranged to highlight the wave 

nature of each entangled two-photon transition pathway: 
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𝜎𝑒 ∝ |
𝜇𝑓𝑒⋅𝑒𝑖𝜇𝑒𝑔⋅𝑒𝑠

(𝜔0+ 𝑔− 𝑒)−
𝑖𝜅𝑒

2

−
𝜇𝑓𝑒⋅𝑒𝑖𝜇𝑒𝑔⋅𝑒𝑠

(𝜔0+ 𝑔− 𝑒)−
𝑖𝜅𝑒

2

𝑒−𝑖(𝜔0+ 𝑔− 𝑒)𝑇𝑒−
𝜅𝑒𝑇𝑒

2 +
𝜇𝑓𝑔⋅𝑒𝑖𝜇𝑔𝑔⋅𝑒𝑠

𝜔0−
𝑖𝜅𝑔

2

−

𝜇𝑓𝑔⋅𝑒𝑖𝜇𝑔𝑔⋅𝑒𝑠

𝜔0−
𝑖𝜅𝑔

2

𝑒−𝑖𝜔0𝑇𝑒−
𝜅𝑔𝑇𝑒

2 +
𝜇𝑓𝑓⋅𝑒𝑖𝜇𝑓𝑔⋅𝑒𝑠

−𝜔0−
𝑖𝜅𝑓

2

−
𝜇𝑓𝑓⋅𝑒𝑖𝜇𝑓𝑔⋅𝑒𝑠

−𝜔0−
𝑖𝜅𝑓

2

𝑒𝑖𝜔0𝑇𝑒−𝜅𝑓𝑇𝑒/2|

2

 (3.3) 

In eq. 3.3 above, each pathway can be expressed in a simplified wave form such that: 

 𝜎𝑒 ∝ |∑ 𝐴𝑗 − 𝐴𝑗𝑒𝑖𝜔𝑗𝑇𝑒
𝑗 |

2
 (3.4) 

where 𝐴𝑗 is the amplitude of each wave and 𝜔𝑗 is the frequency. Each wave is also offset from 

oscillating around 0 by its amplitude. Therefore, the ETPA cross-section is proportional to a sum 

of waves offset from oscillating around 0 by the sum of the amplitudes of the waves. This wave 

nature of the transition pathways is purely a quantum effect that does not appear in the classical 

TPA process in eq. 3.1. For the virtual-state pathways, the frequency of the ETPA transition in 

wave form is the negative of the detuning energy. For the two permanent dipole pathways, the 

frequency of the wave is the negative (positive) of the frequency of one of the incident photons. 

These different pathways and their frequencies, ωj, are shown in the energy level diagrams in Fig. 

3.1 below. The state linewidths of these BO atomic states are assumed to be κj << 1. 

 

 
Figure 3.1. Energy level diagrams for the two pathways in ETPA, with the quantity that represents 

ωj in eq. 3.4 labeled for each pathway. 

 

The use of EPTA may allow a more detailed interrogation of the electronic behavior of 

molecules interacting with non-classical light. With knowledge of the possible ETPA transitions 

occurring in a molecule, it may be possible to manipulate the unique quantum optical behavior of 

a molecule by controlling the entanglement beam parameters.11,25,26,29,30,34 Among the unique 
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quantum optical behavior are entanglement-induced transparencies, where the ETPA cross-section 

significantly drops in magnitude compared to the maximum cross-section. This unique behavior 

from using entangled photons may provide a means to create an ETPA “switch,” where the 

absorption/fluorescence signal can be “turned on” or “turned off” without changing anything about 

the molecule itself. In order for this application to be achievable, we must be able to identify at 

which specific entanglement times the transparencies will occur and how much the magnitude will 

drop relative to the maximum cross-section. Since these transparencies arise from the wave nature 

of the ETPA transitions in eq. 3.2-3.4, a complete description of the different transition pathways, 

including both the interband and intraband transitions, is necessary. In order to fully describe these 

transitions, exact values of the electronic properties in molecules are required. One of these 

properties, Δj, offers a new handle on the population of particular electronic states by use of non-

classical states of light.22 In more chemical terms, the detuning is the energy difference between 

the time-dependent ‘virtual’ state induced by the absorbed photon (dotted line in Fig. 3.1 above) 

and nearby Born-Oppenheimer (BO) states (solid line labeled “e” in Fig. 3.1 above).22 Thus, 

creating a model of the relationship between the targeted virtual state and the observed quantum 

optical behavior requires accurate knowledge of the Born-Oppenheimer state properties.22,25,26,34 

Such properties include the state energies, as well as permanent and transition dipole moments 

between all of the involved electronic states. While the potential energies and transition dipole 

moments for interband transitions are readily obtained using standard methods, calculating reliable 

transition dipole moments for intraband transitions is a non-trivial process and requires careful 

selection of the calculation parameters. 

To date, these electronic properties have not been reported with the degree of completeness 

and accuracy necessary for modeling ETPA spectroscopy. While databases such as LIFBASE 

include some electronic properties of small molecules, these values are only approximations.35 The 

databases are also limited to interband transitions in the molecules.35 In order to more accurately 

describe the ETPA process in small molecules, we wanted exact values for the electronic properties 

of both interband and intraband states in the molecules. Even for diatomic molecules, this 

information is not widely known nor easily attainable, from either a computational or experimental 

approach. Prior simulations of the electronic structure and dipole moments for diatomic molecules 

were performed at the multi-configurational self-consistent field (MCSCF) and multireference 

configuration interaction (MRCI) levels by Knowles and Werner in the 1980s.36-39 These 
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simulations are qualitatively similar to the MRCI simulations of the present study, but the 

differences reflect a substantial change in computational power over the last 30 years. In our study, 

large active spaces (where all electronic correlations are treated exactly) were utilized for all 

examples. Prior studies used small active spaces, which were then truncated further (i.e. from 

complete to incomplete active spaces, in terms of electronic configurations) to save computational 

cost.36-39 Where the earlier studies could afford small basis sets (double zeta, polarized), our study 

uses a polarized triple zeta basis augmented with diffuse functions. Both factors make the present 

simulations substantially more accurate, as MRCI theories are variational and therefore more 

closely approach the exact electronic wave functions as the sizes of basis set and active space 

increase. In addition, the early work studying dipole moments of diatomics was performed at a 

single geometry for each species (i.e the equilibrium geometry).36-38 In our present work, the 

ground and excited states were characterized along the diatomic bonding axis, including 

compressed and stretched structures. In total, our present work was able to go far beyond earlier 

studies due to great increases in computational ability over the years, although the spirit of the 

simulations is quite similar. 

Using high-level MRCI calculations, we are able to identify the Born-Oppenheimer states 

that meet the energy and symmetry requirements to be involved in ETPA transitions in diatomic 

molecules. We have completed this work for diatomics first since a complete characterization of 

the ETPA mechanism requires highly accurate calculations of the BO states’ electronic properties, 

an accuracy that is currently not achievable for larger molecules. However, with a complete 

characterization of the ETPA mechanism in diatomic molecules, we can probe the parameters of 

the molecules and their BO states in order to identify the specific parameters that most significantly 

impact the molecules’ ETPA abilities. This methodology will allow us to understand and describe 

the ETPA process in a more complete way than ever before. With a more detailed understanding 

of the ETPA process in small molecules, it is hoped that we may be able to probe the same process 

in larger molecules in a way that is achievable with current computational and/or experimental 

technology. 
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3.3 Theoretical Details 

3.3.1 Electronic Structure Simulations 

Despite the existence of databases such as LIFBASE35 containing energies, transition 

moments, and lifetimes for many small molecules, many of the transitions needed for this work 

were not available, most notably the intraband transitions between two excited states in a 

molecule. Therefore, approaches to calculate these values were carried out. Potential energy 

curves, transition dipole moments (TDMs), and permanent dipole moments for nitric oxide 

(NO), hydrogen fluoride (HF), and dinitrogen (N2) were computed using state-averaged 

complete active space self-consistent field (SA-CASSCF)36,40-42 and multireference 

configuration interaction (MR-CI),37-39 as implemented in MOLPRO.43,44 All calculations were 

performed with the augmented polarized valence triple zeta (aug-cc-pVTZ)40 basis set. Results 

previously reported for carbon monoxide (CO) were replicated to confirm our methodology.41 

We only consider electronic transitions in this work. 

For the heteronuclear systems NO and HF, the active space included all valence 

occupied orbitals and the corresponding unoccupied orbitals. Thus, the active space for NO is 

[1𝜎2  2𝜎2  3𝜎{0−2} 4𝜎{0−2} 1 𝜋{0−4}5𝜎{0−2}2𝜋{0−4}6𝜎{0−2}], which contains four A1, two B1, 

and two B2 orbitals (CAS(11,8)).  For HF, a CAS(6,7) was used.  Due to the high density of 

the states in N2, a larger CAS(10,12) active space including four additional orbitals (two 𝐴𝑔 

and two 𝐵𝑢) was utilized. To maintain consistent results across the different interatomic 

distances, orbitals from proximate geometries are used as initial guesses for each SA-CASSCF 

procedure.  

Due to point group limitations in the program, heteronuclear diatomics (𝐶∞𝑣) were 

treated in the C2v symmetry group and N2 (𝐷∞ℎ) in 𝐷2ℎ.  Because of the lowered symmetry 

assignments, states of 𝛱 symmetry (resulting from 𝜎 → 𝜋 excitations) are described as 𝐵1 or 

𝐵2 symmetry depending on whether the excitation involves a 𝜋𝑥 or 𝜋𝑦 orbital.  A similar 

relationship exists between the 𝛥 and {𝐴1, 𝐴2} groups. For a given two-photon transition, only 

electronic states with appropriate symmetry as allowed by selection rules were considered as 

potential intermediate states. In ETPA,26,34 states higher in energy than the final state’s energy 

can be intermediate states, and therefore states with energies below 1.5 times Δ𝐸𝑖→𝑓 were 

subject to TDM analysis. Due to the arbitrariness in the overall sign of each excited-state wave 

function, the TDMs have been corrected to maintain the same sign at neighboring geometries. 
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3.3.2 TDM Averaging 

Since we calculated a range of TDMs for each pair of states as a function of interatomic 

distance, it was necessary to condense this information down to a single parameter that could 

be applied in the ETPA model equations.  A weighted average was therefore taken using the 

ground state harmonic oscillator probability distribution. Using the natural length, 𝑛𝑙, of the 

quantum harmonic oscillator, the discrete data points along each curve are weighted according 

to the following formula: 

 𝐷𝑎𝑣𝑔 =
∑ (ℎ(𝑥𝑖))

2
𝐷(𝑥𝑖)𝑖

∑ (ℎ(𝑥𝑖))
2

𝑖

 (3.6) 

where ℎ(𝑥𝑖) is the amplitude of the zero-order harmonic wavefunction: 

 ℎ(𝑥) = 𝐴𝑒
−(

x−xe
nl

)
2

 (3.7) 

Since ℎ(𝑥𝑖)2 appears in the numerator and denominator, the normalization factor, A, cancels 

and the equilibrium bond length, 𝑥𝑒 and natural length are provided by the Morse parameters. 

The potential energy curves generated with this methodology provide vertical 

excitation energies for each excited state in the molecules. These energies and the weighted-

average dipole moments from eq. 3.6 can then be used as the necessary input for the ETPA 

model in eq. 3.2. 

 

3.4 Results 

The electronic structure methodology explained above provides highly accurate 

calculations of the energies and transition dipole moments for BO states in a molecule. Such high 

accuracy is needed in order to yield the most accurate and complete description of the ETPA 

process in a molecule, since the results of the electronic structure calculations are needed as input 

in the ETPA model in eq. 3.2. However, this methodology is only feasible for small molecules, so 

we chose a few diatomic molecules with different electronic properties as our models. Since ETPA 

can occur through a permanent dipole pathway, as explained above, we wanted to see how the 

relative strength of the dipole moment in a molecule affects its ETPA activity. Therefore, we chose 

NO as a molecule with a weak dipole moment, HF as a molecule with a strong dipole moment, 

and N2 as a molecule with no dipole moment. 
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3.4.1 NO Potential Energy Curves and TDMs 

NO acts a good model for a molecule that has a weak, but nonzero, permanent dipole 

moment. This molecule can reveal how the virtual-state pathway in ETPA interferes with a 

weak permanent dipole pathway. The notation for a two-photon transition used in this paper 

describes the transition as: ground electronic state → intermediate electronic state → final 

electronic state. The two-photon absorption process for NO is described by a 𝛱2 → 𝛴+2 →

𝛱2  transition.45,46 The dominant electronic configuration of the intermediate 𝛴+2  state is 

(… )5𝜎12𝜋2 and the final 𝛱2  state (… )1𝜋35𝜎22𝜋2. Due to the use of an Abelian symmetry 

group (C2v rather than Ch), the calculation distinguishes the 2𝜋𝑥 or 2𝜋𝑦 orbitals. Regardless, 

the pathways are identical in the full symmetry group, and it is only necessary to calculate one 

of these pathways, for the states X 1B1, A 1A1 and C 2B1.  As shown in Fig. 3.2a below, the 

vertical excitation to the only active intermediate state is 8.35 eV (compared to 8.32 eV from 

experiment).47 Over the span of ground state energies shown in Fig. 3.2, the dissociation 

energy, De, and well-width parameter, L, were found to be 7.25 eV and 2.62 Å, respectively 

(experiment: De = 6.62 eV, L = 2.83 Å).48 Dipole moments for these transitions in NO are 

presented in Fig. 3.2b below. 
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Figure 3.2. a) Potential energy curves and b) dipole strength for the three examined states in 

NO.  The polarization of the dipoles is based upon the z-axis being aligned along the 

internuclear axis. 

 

3.4.2 HF Potential Energy Curves and TDMs 

 HF represents a molecule with a strong permanent dipole moment that should compete 

with the virtual-state pathway more strongly. The expected TPA mechanism is 𝑋 𝛴1 + → Π 
1 →

Σ 
+

 
1 , representing an overall 𝜎 → 𝜎∗ electronic excitation.49 Energy gaps to the active states 

are 10.28 eV (10.51 eV)50,51 for the 𝛴1 +state and 14.38 eV (13.03 eV)51 for the 𝛱1  state. The 

Morse parameters De and L are 5.78 eV and 2.33 Å, respectively (experiment: De = 6.08 eV, 
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L = 2.25 Å).52 The potential energy curves and dipole moments for HF are presented in Fig. 

3.3a-b, respectively, below. 

 

 
Figure 3.3. a) Potential energy curves and b) dipole strength for the three examined states in 

HF.  The z-axis is aligned along the internuclear axis.  
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3.4.3 N2 Potential Energy Curves and TDMs 

N2 represents a molecule that has no competition with its virtual-state pathways since 

the homonuclear diatomic lacks a permanent dipole. Because of the high density of the excited 

state manifold in dinitrogen, a number of avoided crossings occur where states of the same 

symmetry become nearly degenerate. To ensure that the electronic properties are accurately 

treated, four additional states of Au and 𝐵2𝑔 symmetries were computed in addition to the states 

of interest. For the TPA transition, the initial state is 𝛴1
𝑔
+ (𝐴𝑔 in the 𝐷2ℎ representation) and 

the final state has 𝛱1
𝑔 (𝐵2𝑔) symmetry, and these can be connected by states with 𝛱1

𝑢 or 

𝛴𝑢
+1  (𝐵2𝑢 or 𝐴𝑢) symmetry.43 At the minimum energy geometry, the virtual states are all above 

the final 𝛱1
𝑔 state (Fig. 3.4). Four total states, 2 Σ1

𝑢
+ states and 2 𝛱1

𝑢 states, are relevant for 

the TPA mechanism based on energy and symmetry selection-rules. The Morse parameters for 

the ground state are De = 9.86 eV and L 2.69 Å, respectively (experiment: De = 9.90 eV, L = 

2.85 Å).48 The potential energy curves and dipole moments for N2 are presented in Fig. 3.4a-

b, respectively, below. 
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Figure 3.4. a) Potential energy curves and b) dipole strength for the six examined states in N2. 

The z-axis is aligned along the internuclear axis. 
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3.4.4 Transition Dipole Analysis for ETPA Calculations 

The potential energy curves in Fig. 3.2-3.4 above provide the energies of all the excited 

states involved in the ETPA process for each molecule. The range of transition dipole moments 

in Fig. 3.2-3.4 were averaged into a single parameter using eq. 3.6. The weight-averaged dipole 

moment values are reported below for use in the ETPA cross-section calculations. The dipole 

moments for HF and NO are presented in Table 3.1 while N2 data is presented in Table 3.2. 

 

Table 3.1. Permanent and transition dipole moments (Debye) in NO and HF. Notation for the 

transition dipoles in the table uses X to represent the ground state, C represents the final excited 

state, and A is the virtual state.  
〈𝑿|𝝁𝒛|𝑿〉 〈𝑨|𝝁𝒛|𝑨〉 〈𝑪|𝝁𝒛|𝑪〉 〈𝑨|𝝁𝒙|𝑿〉 〈𝑪|𝝁𝒙|𝑨〉 

NO 0.086 -

0.144 

0.419 -

0.174 

0.161 

HF 1.750 -

2.588 

-

1.301 

-

1.027 

1.533 

 

In N2, the significant number of low-lying excited states means there is more than one 

possible virtual state. For each pathway, the dipole moments of the first and second transitions 

are always orthogonally polarized in order to maintain the correct excited state symmetry. For 

example, for the 𝛴1
𝑢
+ virtual states, the ground-to-virtual state transition, 𝛴1

𝑔
+ → 𝛴1

𝑢
+, have 

dipole moments along the z-axis whereas for the virtual-to-final state transition, 𝛴1
𝑢
+ → 𝛱1

𝑔, 

it is along the x-axis. For the 𝛱1
𝑢 virtual states, the opposite trend exists, where the ground-

to-virtual state transition is along the x-axis and the virtual-to-final state transition is along the 

z-axis. 

 

Table 3.2. Transition dipole moments for dinitrogen (Debye). Notation for the transition 

dipoles in the table uses X to represent the ground 𝛴𝑔
+1  state, C represents the final 𝛱1

𝑔 

excited state, and A is the virtual state corresponding to the column in which the value is found. 

 𝟏 𝜮𝟏
𝒖
+ 𝟐 𝜮𝟏

𝒖
+ 𝟏 𝜫𝟏

𝒖 𝟐 𝜫𝟏
𝒖 

〈𝑨|𝝁𝒙|𝑿〉 0.0 0.0 0.714 
-

0.481 

〈𝑪|𝝁𝒙|𝑨〉 
-

0.147 
0.368 0.0 0.0 

〈𝑨|𝝁𝒛|𝑿〉 0.014 0.921 0.0 0.0 

〈𝑪|𝝁𝒛|𝑨〉 
0.0 0.0 -

0.580 

-

0.173 
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The results reported in Chapters 3.4.1-4 show that we can use MRCI calculations to 

identify intermediate states that are allowed by both energy and symmetry requirements for 

ETPA transitions, including both interband and intraband transitions. The energies and dipole 

moments involving all of these intermediate states are necessary to calculate the ETPA cross-

section using eq. 3.2. 

 

3.5 Discussion 

The results of our MRCI calculations of the energies and transition dipole moments for 

intermediate states in NO, HF, and N2 above have been shown to be highly accurate through 

comparison with experimental literature values, which we have provided in Chapters 3.4.1-3 above 

for each molecule.47,48,50-52 With these results, we can compare the contributions to the ETPA 

process associated with each intermediate state separately and the ETPA cross-section for each 

molecule when all transition pathways are considered. It is important to note that our ETPA cross-

section expression in eq. 3.2 differs from previously reported expressions in that our expression 

also considers the permanent dipole pathway in heteronuclear diatomics.25,26 We first compare the 

accuracy of our expression to the previously reported expression by calculating the ETPA cross-

section in the hydroxyl radical (OH) and comparing our results to that obtained by Kojima et. al.34 

using the expression derived by Fei et. al.25,26 We then calculate the ETPA cross-section for NO, 

HF, and N2 to characterize how the different electronic properties of these three diatomics affect 

their ability to absorb entangled photons. 

 

3.5.1 ETPA cross-section of OH 

A theoretical study on the heteronuclear diatomic molecule OH showed the presence 

of entanglement-induced transparency in the hydroxyl radical (OH).34 This was demonstrated 

using an entangled two-photon absorption cross-section expression derived using second-order 

perturbation theory and neglecting the intermediate state linewidths.25,26  The selection rules 

for allowed two-photon transitions were determined for the R1(5) rotational line of the A 2Σ+-

X 2Πi transition in OH, where the population is excited from the ground X 2Π3/2 (v
″ = 0, N″’ = 

5) state (544.21 cm-1) to an intermediate state, and from the intermediate state to the excited A 

2Σ+ (v′ = 0, N′ = 6) state (33,150.15 cm-1).34 The selection-rule allowed pathways include both 

electronic and rovibronic transitions, as the possible intermediates states are different 
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rovibronic levels on the X or A electronic states.34 The energies were calculated based on the 

Hamiltonian derived by Luque and Crosley.53 Both electronic (X→A) and vibrational (X→X 

or A→A) transition moments, energies and lifetimes were calculated and included in this 

database as well.53 The wave functions were found from solving the radial Schrodinger 

equation using the potential curves calculated with the Rydberg–Klein–Rees (RKR) method, 

which included the rotational centrifugal term.34 Neither the wavefunction nor RKR 

calculations accounted for Λ-doubling or spin-orbit coupling, but it was reported that this does 

not significantly impact the simulation.34 

Kojima et. al. calculated the ETPA cross-section using 53 different rovibronic 

intermediate states.54 As a starting point, we utilized their data and ETPA cross-section 

expression and calculated the cross-section using only 5 different electronic intermediate 

states, as opposed to all rovibronic states.34 Their ETPA cross-section expression differs from 

eq. 3.2 in that it does not include the permanent dipole terms.25,26,34 By not including the dipolar 

terms, some important physics may have been missed within the ETPA cross-section.4,5,55 The 

calculated and plotted ETPA cross-section is shown in Fig. 3.5a with an entanglement time of 

0-200 fs. The entanglement time was extended to 2,000 fs in Fig. 3.5b. We then used the same 

data and parameters to calculate the ETPA cross-section using eq. 3.2 to compare the effect 

that the permanent dipole terms have on the cross-section. The new plot is shown in Fig. 3.5c 

with an entanglement time of 0-200 fs. The entanglement time was extended to 2,000 fs in Fig. 

3.5d.  
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Figure 3.5. The ETPA cross-section for the A-X transition in OH as a function of entanglement 

time.  The pump is degenerate.  This is based on the data by Kojima et. al.34 (a) previously 

reported ETPA cross-section equation (solid line) and a probabilistic particle analysis 

approximation (dashed line) derived by Fei et. al.25, entanglement time = 0-200 fs; (b) same 

equation as (a), entanglement time = 0-2,000 fs; (c) modified ETPA cross-section equation 

given by eq. 3.2 (solid line) and a probabilistic particle analysis approximation (dashed line)25, 

entanglement time = 0-200 fs; (d) same equation as (c), entanglement time = 0-2,000 fs. 

 

a) 

c) 

d) 

b) 
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Our plot in Fig. 3.5a, which uses the same expression as Kojima et. al.34, shows the 

same cross-section magnitude and period between entanglement-induced transparencies as 

Kojima et. al.34, confirming the accuracy of our plot. However, our plot also shows a splitting 

at each maxima in the cross-section that does not appear in Kojima et. al.’s34 plot. This can be 

attributed to our use of only electronic transitions, while Kojima et. al. considered additional 

rovibronic transitions in their work, offering them more resolution in their plot.34 For the 

purposes of this paper, we wanted to compare how the inclusion of the permanent dipole 

pathway affects the nonmonotonic behavior of the ETPA cross-section, making our 

simplification to considering only electronic transitions sufficient for comparing the results of 

the previously reported ETPA cross-section expression with the results from our expression in 

eq. 3.2. 

Fig. 3.5a-c show that both ETPA cross-section expressions yield similar periods of 

entanglement-induced transparencies: 13.10 fs for the previously derived expression vs 13.00 

fs for eq. 3.2. Both expressions also yield similar maximum cross-sections: 1.811x10-19 cm2 

for the previously derived expression vs 1.147x10-19 cm2 for eq. 3.2. In both plots, the splitting 

at the maxima show the interference pattern created by the competing pathways. This 

interference is stronger when the permanent dipole pathways are included with eq. 3.2, shown 

in Fig. 3.5c. Fig. 3.5b and 3.5d show the ETPA cross-section out to entanglement times of 

2,000 fs. The interference pattern at the maxima in both plots is almost identical, while the 

pattern at the minima in Fig. 3.5d clearly shows a more complex interference pattern resulting 

from the addition of the permanent dipole pathways using eq. 3.2. While the intensity of the 

ETPA cross-section does not change much when permanent dipole pathways are included, the 

interference pattern is clearly affected, which may change when entanglement-induced 

transparencies occur in other molecules. 

 

3.5.2 ETPA cross-section of NO 

Using eq. 3.2 as our expression for the ETPA cross-section, we now use the calculated 

excitation energies from the potentials energy curves in Fig. 3.2-3.4 and the transition dipole 

moments in Tables 3.1 and 3.2 to compare the entangled two-photon absorption cross-sections 

of the three diatomic molecules. The cross-sections were calculated and plotted as functions of 

the entanglement time. Entanglement times at which the cross-section drops by at least 1 order 
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of magnitude can be considered entanglement-induced transparencies. For NO, we probe the 

Π 
2 → Σ+

 
2  and Σ+

 
2 → Π 

2  transitions which occur via the Σ+
 

2  intermediate state.45,46 The 

permanent dipole for NO is 0.159 D,56 and the excited state lifetime is 1.95 ps.57 The ETPA 

cross-section for NO is plotted in Fig. 3.6, with entanglement times out to 200 fs in Fig. 3.6a 

and out to 2,000 fs in Fig. 3.6b. 

 

 
Figure 3.6. The ETPA cross-section of NO as a function of entanglement time, ranging from 

(a) entanglement time = 0-200 fs, and (b) entanglement time = 0-2,000 fs. The probabilistic 

particle analysis approximation (dashed line) derived by Fei et. al. is shown for comparison.25 

 

The maximum cross-section in Fig. 3.6, found at Te = 1.47 fs, is 9.636x10-23 cm2. There 

are significant drops in cross-section magnitude (3 or more orders) occurring every 59.25 fs. 

Between each of these large drops in magnitude, there are more frequent relative minima that 

occur every 6.84 fs. Since each of these more frequent minima are approximately 1 order of 

magnitude less than their nearby maxima, all of these minima can be considered entanglement-

induced transparencies, making the period between transparencies 6.84 fs in NO. 

 

a) 

b) 
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3.5.3 ETPA cross-section of HF 

For HF, we probe the  Σ1
 
+ → Π 

1   and  Π 
1 → Σ 

+
 

1  transitions.49 HF has a dipole 

moment of 1.83 D,56 and the excited state lifetime is 30 fs.58 The ETPA cross-section for HF 

is shown in Fig. 3.7, out to entanglement times of 200 fs in Fig. 3.7a and 2,000 fs in Fig. 3.7b. 

 

 
Figure 3.7. The entangled two-photon absorption cross-section of HF as a function of 

entanglement time, ranging from (a) entanglement time = 0-200 fs, and (b) entanglement time 

= 0-2,000 fs. The probabilistic particle analysis approximation (dashed line) derived by Fei et. 

al. is shown for comparison.25 

 

The maximum cross-section in Fig. 3.7, found at Te = 1.95 fs, is 5.112x10-20 cm2. The 

cross-section drops by at least 2 orders of magnitude every 5.28 fs, making the period of 

entanglement-induced transparencies 5.28 fs in HF. 

 

3.5.4 ETPA cross-section of N2 

For N2, we probe two transition pathways: the 𝑋 Σ 
1

𝑔 →  𝑎′ Σ 
1

𝑢  and  𝑎′ Σ 
1

𝑢 → 𝑎 Π1
𝑔 

transition which occurs via the 𝑎′ Σ 
1

𝑢 transition state, and the 𝑋 Σ 
1

𝑔 → Π1
𝑢  and Π1

𝑢 → 𝑎 Π1
𝑔 

a) 

b) 
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transition which occurs via the Π1
𝑢 transition state.43 N2 has no permanent dipole, and the 

excited state lifetime is 115 μs for N2.
43 The ETPA cross-section, calculated with eq. 3.2, is 

shown in Fig. 3.8, out to entanglement times of 200 fs in Fig. 3.8a and 2,000 fs in Fig. 3.8b. 

 

 
Figure 3.8. The entangled two-photon absorption cross-section of N2 as a function of 

entanglement time, ranging from (a) entanglement time = 0-200 fs, and (b) entanglement time 

= 0-2,000 fs. The probabilistic particle analysis approximation (dashed line) derived by Fei et. 

al. is shown for comparison.25 

 

The maximum cross-section in Fig. 3.8, found at 14.14 fs, is 3.122x10-20 cm2. While 

there are relative minima in the cross-section that occur every 3.42 fs, these minima have 

almost the same magnitude cross-section as the nearby maxima and are not considered 

transparencies. There are much more significant minima that occur every 34.96 fs, with these 

minima dropping by up to 3 orders of magnitude compared to the maxima. The period of 

entanglement-induced transparencies in N2 is thus 34.96 fs. 

Fig. 3.8 also highlights a very unique feature to entangled photon spectroscopy: the 

ability to utilize Born-Oppenheimer intermediate states that are higher in energy than the final 

a) 

b) 
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state. The potential energy curves for N2 in Fig. 3.4a show that all the intermediate states are 

higher in energy than the final state at the minimum energy geometry. If the utilization of 

intermediate states above the final state were not allowed, Fig. 3.8a would not show any ETPA 

activity for N2. The fact that the plot does show ETPA activity shows that entangled photon 

spectroscopy can utilize these higher energy intermediate states, unlike spectroscopy using a 

classical light source. 

 

Table 3.3. Summary of MRCI and ETPA results for OH, NO, HF, and N2. ETPA cross-

sections were calculated using eq. 3.2. OH transition probabilities and intermediate state 

energies for detunings were obtained from Kojima et. al.34 

 

 

Table 3.3 summarizes the results of our MRCI calculations for NO, HF, and N2 and our 

ETPA calculations using eq. 3.2 for OH, NO, HF, and N2. In first comparing the effect that the 

presence of a permanent dipole pathway has on a molecule, the additional competition from 

the permanent dipole pathway seems to keep the period between entanglement-induced 

transparencies very short. N2, which is the only molecule in Table 3.3 that does not have a 

permanent dipole, has a period that is several times longer than OH, NO, and HF. The lack of 

a permanent dipole in N2 does not appear to affect the magnitude of the cross-section, since 

N2’s maximum cross-section is larger than NO’s maximum cross-section (weak permanent 

dipole) but smaller than OH’s and HF’s maximum cross-sections (strong permanent dipoles).  

The ETPA behavior reported in Table 3.3 is more directly affected by the virtual-state pathway 

properties in the molecules. Most significantly, the presence of multiple virtual-state pathways 

in a molecule increases the period between transparencies, as evidenced by OH and N2, which 

have multiple virtual states, having longer periods than NO and HF, which only have one 
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virtual state. Even though OH has 5 virtual states compared to the 4 virtual states in N2, N2 has 

a much longer period than OH. This is likely due to the permanent dipole pathway in OH 

decreasing the period. These results suggest that when a molecule undergoes ETPA, two (or 

more) virtual-state pathways will interfere constructively to increase the period between 

transparencies while a virtual-state pathway and a permanent dipole pathway will not 

significantly interfere to change the period between transparencies. 

The magnitude of the ETPA cross-section has more factors at play. Based on eq. 3.2, 

we expect the cross-section to be proportional to the transition probability and permanent 

dipole and inversely proportional to the detuning, which the results in Table 3.3 confirm. The 

molecules with the largest permanent dipoles and transition probabilities, OH and HF, have 

the largest magnitude cross-sections. When comparing OH and HF to each other, the much 

smaller detunings in OH lead to a larger cross-section. In addition, the constructive interference 

between virtual-state pathways also seems to increase the cross-section magnitude. For 

example, N2 and HF have similar detunings, but HF has a much larger transition probability, 

so HF would be expected to have a much larger cross-section than N2. However, the cross-

sections of the two molecules are roughly the same, which can be attributed to the virtual-state 

pathways’ constructive interference in N2, a property that HF does not have because it only has 

one virtual state. This enhancement in the ETPA activity of N2 arising from the interference 

between its virtual-state pathways may be viewed as a coupling between the pathways’ 

respective transition dipole moments. Hanczyc et. al.59 recently reported a similar phenomenon 

where the classical TPA activity of amyloid fibers was enhanced due to exciton coupling from 

the symmetric transition dipole moments in tyrosine chromophores. The coupling in the 

amyloid fibers is an intermolecular interaction between the same transition dipole moment in 

multiple tyrosine chromophores. However, the coupling in N2 is an intramolecular interaction 

between different transition dipole moments in a single molecule. 

Each of the dotted curves in Fig. 3.5-3.8 show the result of using the probabilistic 

particle analysis derived by Fei et. al.25,26 This approximation estimates the ETPA cross-section 

(eq. 3.2) to be proportional to the classical TPA cross-section (eq. 3.1) by the expression:25,26 

 𝜎𝑒 =
𝛿𝑟

2𝐴𝑒𝑇𝑒
 (3.8) 

Since the magnitude of both the ETPA cross-section, σe, and classical TPA cross-section, δr, 

depend upon the transition probabilities and detunings, the probabilistic particle analysis in eq. 
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3.8 may provide a reasonable estimate of the magnitude of the ETPA cross-section. But since 

the approximation does not account for the wave nature of ETPA transitions, a purely quantum 

effect, this approximation should be viewed as showing “classical-like” behavior that does not 

account for quantum interference effects. It is therefore expected that the exact quantum 

calculation of the ETPA cross-section by eq. 3.2 should oscillate around this classical 

approximation, with constructive interference causing the cross-section to be larger at certain 

entanglement times and destructive interference causing the cross-section to be smaller at 

certain entanglement times. The more the exact quantum ETPA cross-section deviates from 

this classical approximation, the more significant are the quantum effects of the ETPA process. 

Looking at the cross-sections for OH and HF in Fig. 3.5 and 3.7, respectively, the probabilistic 

particle analysis ETPA cross-section is always within 1 order of magnitude from the maxima 

of the exact ETPA cross-section, with the transparencies dropping below the classical 

approximation as expected. But in NO and N2, even many of the minima in the exact ETPA 

cross-section are larger in magnitude than the probabilistic particle analysis, showing much 

stronger deviation from the classical approximation. This may be attributed to the relative 

strength of the permanent dipoles in the molecules. The molecules with larger permanent 

dipoles (OH and HF) see more “classical-like” behavior. NO, which has a small permanent 

dipole, sees more deviation from the “classical-like” behavior than OH and HF. N2, which has 

no permanent dipole, sees the most deviation from “classical-like” behavior. In fact, out to 

entanglement times of 2,000 fs in Fig. 3.8b, the exact ETPA cross-section is almost always 

larger in magnitude than the probabilistic particle analysis ETPA cross-section, with the 

maxima being 3 or more orders of magnitude larger than the classical approximation25,26. This 

is evidence that the virtual-state pathways in ETPA lead to more quantum behavior, while 

permanent dipole pathways cause the molecule to behave more “classical-like.” As the 

permanent dipole becomes weaker, the deviation from classical behavior becomes stronger. 

Thus, in order to take advantage of the quantum effects from using entangled photons, the 

permanent dipole pathway contribution to ETPA must be minimized, or ideally, be non-

existent, as is the case with N2. 
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3.5.5 Sum-of-waves Analysis for Transition Pathways in ETPA 

The results in Fig. 3.5-3.8 and Table 3.3 clearly show that the wave nature of an ETPA 

transition largely affects a molecule’s ability to absorb entangled photons. In order to more 

fully understand the quantum interference among the different transition pathways, we sought 

a complete description of the wave mechanics of the transitions and interference patterns. With 

a more complete understanding of the quantum interference in these diatomic molecules, we 

hope to extend this knowledge to be able to describe the interference effects in larger molecules 

undergoing ETPA. 

Looking at the transition pathways individually, since each wave is offset from 0 by 

the value of its amplitude, as shown in eq. 3.3 and 3.4, the wave will equal zero at its minima, 

if the amplitude is negative, or at its maxima, if the amplitude is positive. When the wave 

equals 0, its intensity, i.e. the amplitude squared, which is proportional to the ETPA cross-

section in eq. 3.4, will also be 0, thus creating a transparency in the cross-section. Since these 

transparencies will always occur at the minima of the intensity, they occur at the same 

frequency of the wave itself. Therefore, transparencies resulting from individual pathways 

occur at entanglement times of: 

 𝑇𝑒 =
2𝑛𝜋

𝜔𝑗
     𝑛 = 0, 1, 2, … (3.9) 

The period of transparencies will therefore increase as the frequency, i.e. the detuning energy 

for virtual-state pathways or the incident photon energy for permanent dipole pathways, 

decreases. Eq. 3.9 matches that derived by Fei et. al.25 where they assumed one intermediate 

state dominated the summation over all intermediate state pathways. 

Analysis of the individual pathways in the four molecules we studied can explain more 

thoroughly why N2 has a much larger period between entanglement-induced transparencies 

compared to OH, NO, and HF. Table 3.4 below shows the amplitudes, transition probabilities, 

and magnitude of the frequencies for each individual pathway in each molecule. For each 

molecule, the pathway(s) with the largest amplitude will dominate the ETPA transition. In 

chemical terms, the amplitude of each virtual-state pathway (labeled with a “V” in Table 3.4) 

is proportional to its transition probability (product of the transition dipole moments) and 

inversely proportional to its detuning energy. The amplitude of each permanent dipole pathway 

(labeled with a “P” in Table 3.4) is proportional to its transition probability (permanent dipole 

strength) and inversely proportional to the energy of the incident photons. As a result of these 
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two dependencies in each pathway, there can be a trade-off that one must consider when 

identifying the most dominant transition pathway in ETPA. While one pathway may have a 

large transition probability, the pathway may also have a large detuning, which would 

negatively affect its amplitude. In order to compare the relative strength of two or more 

pathways in an ETPA process using a single parameter, the total amplitude of each pathway’s 

wave equation (as in eq. 3.3 and 3.4) must be considered. However, the frequencies shown in 

Table 3.4 are all very large, with even the smallest frequency being over 12,000 cm-1. 

Javanainen and Gould have reported that a detuning of less than 50 cm-1 is necessary to see 

ETPA activity experimentally.22 Because each transition that we have studied has a 

detuning/incident photon energy >> 50 cm-1, we can reasonably assume for these specific 

molecules that the amplitude of each transition will only be dependent on the magnitude of its 

transition probability, or dipole moments. Thus, when comparing the amplitudes of two 

transitions in Table 3.4, we are really comparing their transition probabilities, to a very 

reasonable approximation. This may not be the case for other molecules that have very small 

detunings. From the data in Table 3.4 below, OH, HF and N2 each have two dominant 

pathways: pathways P6 and P7 in OH, pathways P2 and P3 in HF, and pathways V2 and V3 

in N2. NO only has one dominant pathway: pathway P3. 
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Table 3.4. The amplitudes (Aj), transition probabilities, and magnitude of the frequencies (|ωj|) 

for each individual pathway’s wave equation in all four molecules studied. For virtual-state 

pathways, denoted by “V#,” the frequency is the detuning energy for the pathway’s virtual 

state. For permanent dipole pathways, denoted by “P#,” the frequency is the energy of the 

incident photons. OH transition probabilities and intermediate state energies for detunings 

were obtained from Kojima et. al.34 

Molecule Pathway Aj (D2∙cm-1) Transition 

probability (D2) 

|ωj| (cm-

1) 

OH V1 8.074E-05 1.3 16101 

 V2 6.241E-07 0.00796 12755 

 V3 7.712E-05 1.24 16079 

 V4 7.739E-05 1.24 16023 

 V5 7.864E-05 1.24 15769 

 P6 1.015E-04 1.655 16303 

 P7 1.015E-04 1.655 16303 

NO V1 7.890E-07 0.028 35488 

 P2 4.080E-07 0.013 31859 

 P3 2.009E-06 0.064 31859 

HF V1 2.140E-05 1.574 73558 

 P2 8.064E-05 3.343 41457 

 P3 5.994E-05 2.485 41457 

N2 V1 4.583E-08 0.002 43635 

 V2 4.980E-06 0.339 68073 

 V3 5.598E-06 0.414 73961 

 V4 1.054E-06 0.083 78720 

 

Since NO only has one dominant pathway in its ETPA process, we can approximate 

the period between its entanglement-induced transparencies using eq. 3.9: 6.57 fs, compared 

to its exact period of 6.84 fs in Fig. 3.6a. OH and HF are both dominated by their permanent 

dipole pathways, and Table 3.4 shows that the permanent dipole pathways in each molecule 

will have the same wave frequency. As a result, no beat pattern forms from their interference, 

and the period between transparencies when the permanent dipole pathways interfere is the 

same as the period in each individual pathway. Thus, we can approximate the period between 

entanglement-induced transparencies in OH and HF using eq. 3.9: 12.85 fs in OH, compared 

to its exact period of 13.00 fs in Fig. 3.5c; 5.05 fs in HF, compared to its exact period of 5.28 

fs in Fig. 3.7a. 

Since the two dominant pathways in N2 are virtual-state pathways with slightly 

different frequencies, a complex beat pattern forms when they interfere, producing a carrier 

wave whose amplitude oscillates according to upper and lower limit modulating waves. The 
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resulting ETPA cross-section is thus the part of the carrier wave that is contained within the 

envelope created by the modulating waves. The oscillations of the amplitude of the beat pattern 

can be characterized by this envelope, i.e. the modulus of the sum of the waves involved. The 

envelope of the beating pattern for two arbitrary pathways (pathway 1 = 𝐴1𝑒𝑖𝜔1𝑇𝑒 and pathway 

2 = 𝐴2𝑒𝑖𝜔2𝑇𝑒)  can be characterized as (see Supporting Information for full derivation): 

 ±√(𝐴1𝑒𝑖𝜔1𝑇𝑒 + 𝐴2𝑒𝑖𝜔2𝑇𝑒) × 𝑐. 𝑐. (3.10) 

 = ±√𝐴1
2 + 𝐴2

2 + 2𝐴1𝐴2 cos[(𝜔1 − 𝜔2)𝑇𝑒] (3.11) 

These two equations for the upper and lower limit of the envelope must be offset by 𝐴1 + 𝐴2, 

as shown by the original expression in eq. 3.4. The carrier wave that oscillates between the two 

envelope waves in eq. 3.11 will have relative minima occurring at every entanglement time 

that the carrier wave hits the lower limit envelope. When the lower limit envelope equals 0, an 

absolute minima can occur in the carrier wave. Since the ETPA cross-section is proportional 

to the sum of pathways involved (eq. 3.4), the locations of entanglement-induced 

transparencies can occur at these relative and absolute minima. The entanglement times at 

which the absolute minima occur can be calculated (see Supporting Information for full 

derivation): 

 (𝐴1 + 𝐴2 ± √𝐴1
2 + 𝐴2

2 + 2𝐴1𝐴2 cos[(|𝜔1| − |𝜔2|)𝑇𝑒])

2

= 0 (3.12) 

 𝑇𝑒 =
2𝑛𝜋

||𝜔1|−|𝜔2||
       𝑛 = 0, 1, 2, … (3.13) 

The relative minima can only be considered transparencies if their magnitude is 

significantly smaller than the magnitude of the nearby maxima. One way to compare the 

intensity of the relative minima in the ETPA cross-section to its nearby maxima is by 

calculating the ratio between the two envelope waves at the maximum of the lower limit 

envelope, i.e. one-half of the period of the absolute minima calculated above. This value 

represents the largest that a relative minimum in the ETPA cross-section can be. Thus, at 𝑇𝑒 =

𝑛𝜋

||𝜔1|−|𝜔2||
, the ratio of the intensities of the envelope waves are (see Supporting Information 

for full derivation): 
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(𝐴1+𝐴2+√𝐴1
2+𝐴2

2+2𝐴1𝐴2 cos[(|𝜔1|−|𝜔2|)
𝜋

||𝜔1|−|𝜔2||
])

2

(𝐴1+𝐴2−√𝐴1
2+𝐴2

2+2𝐴1𝐴2 cos[(|𝜔1|−|𝜔2|)
𝜋

||𝜔1|−|𝜔2||
])

2 (3.14) 

 =
𝐴1

2

𝐴2
2 (3.15) 

If A2 is chosen to be the larger amplitude, then eq. 3.15 can be expressed as a percentage. Only 

when this percentage is large will the relative minima be similar in magnitude to the maxima, 

thus allowing us to neglect the relative minima as true transparencies. In chemical terms, a 

large percentage from eq. 3.15 reveals that significant constructive interference occurs between 

the two ETPA transitions pathways. Fig. 3.9 below shows the sum of the two dominant 

pathways in N2, along with the envelope waves. 

 

 

Figure 3.9. The beat pattern formed by adding pathways V2 and V3 in N2. The upper and 

lower limit envelope waves are shown. 
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2 

A2
2 

Absolute minimum Relative minimum 
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In Fig. 3.9, the sum of pathways V2 and V3 in N2 shows that the lower limit envelope 

(orange) is close in magnitude to the upper limit envelope (green). At 𝑇𝑒 =
𝑛𝜋

||𝜔1|−|𝜔2||
 = 17.79 

fs, eq. 3.15 calculates that the lower limit envelope is ~79 % as intense as the upper limit 

envelope. As a result, the relative minima of the sum of the pathways (blue) are similar in 

intensity to the nearby maxima. For these two pathways, the relative minima are close enough 

in magnitude to the maxima that they should not be considered transparencies. Only the 

absolute minima, when the lower limit envelope reaches zero, will show transparencies in the 

ETPA signal. These entanglement times can be calculated using eq. 3.13: 35.57 fs, compared 

to its exact period of 34.96 fs in Fig. 3.8a. This period, which is much longer than the periods 

in OH, NO, and HF, results from the significant constructive interference between the two 

dominant pathways in N2, which can only occur because the intermediate states for the two 

pathways have very similar transition probabilities. This is confirmed from the TDM data for 

N2 in Table 3.3: pathway V2, which uses a 1Σ+ virtual state, has a transition probability of 0.339 

D2; pathway V3, which uses a 1Πu virtual state, has a transition probability of 0.414 D2. 

Table 3.5 below summarizes what we calculated the period between entanglement-

induced transparencies to be based on our approximations above. These predictions are 

compared to the exact periods found in the plotted ETPA cross-sections in Fig. 3.5-3.8 for OH, 

NO, HF, and N2, respectively. 

 

Table 3.5. The dominant ETPA transition pathways in each molecule studied, used to calculate 

the approximated period between entanglement-induced transparencies. The exact periods 

were obtained from the plotted ETPA cross-sections in Fig. 3.5-3.8 for OH, NO, HF, and N2, 

respectively. 

Molecule Dominant 

pathway(s) 

Approximated period 

(fs) 

Exact period 

(fs) 

OH P6 + P7 12.85 13.00 

NO P3 6.57 6.84 

HF P2 + P3 5.05 5.28 

N2 V2 + V3 35.57 34.96 

 

The results in Table 3.5 confirm the accuracy of the approximations in our sum-of-

waves methodology and the derived expressions for when one or two pathways dominate the 

ETPA process. All of our calculated periods based on our approximations are within 1 fs of 

the exact plotted period when all pathways are considered. Since our approximations only 
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require the energies of the Born-Oppenheimer states in each molecule, which can be easily 

obtained with current computational techniques or experimental data, these approximations 

may allow for the calculation of the periods of entanglement-induced transparencies in much 

larger molecules where a full ETPA calculation using eq. 3.2 would not be feasible with current 

computational technology. The transition dipole moments for interband and especially 

intraband transitions are much harder to calculate than the energies of the BO states. Using our 

approximations, exact values for the dipole moments are no longer required. As long as one 

can reasonably compare the relative strengths of the dipole moments for two BO states in a 

molecule, one can then identify which pathway(s) are most dominant in the ETPA process. 

This comparison would be much less computationally-intensive than the high-level MRCI 

calculations we completed in this work, allowing our methodology to be applied to much larger 

molecules. 

Our modeling of the ETPA cross-section for OH, NO, and HF show that ETPA 

transitions can occur through permanent dipole pathways in addition to virtual-state pathways. 

However, molecules with permanent dipole pathways and large detuning energies for the 

virtual-state pathways will have short periods between entanglement-induced transparencies, 

as seen with OH, NO, and HF in this work. Other molecules not studied here that have 

permanent dipoles and small detuning energies can have long periods between entanglement-

induced transparencies. In this case, the virtual-state pathway would have a much smaller 

frequency, and therefore much higher amplitude, in eq. 3.4 than the permanent dipole pathway, 

making the virtual-state pathway dominate the ETPA transition. Thus, the detuning energy of 

the virtual-state pathway would be used in eq. 3.9 to determine the period between 

entanglement-induced transparencies, and since the detuning energy would be small, the period 

between entanglement-induced transparencies would be long. In general, for molecules with 

large detuning energies, the permanent dipole pathway must be reduced or eliminated if a long 

period between transparencies is desired; otherwise, the virtual-state pathways will be 

overshadowed, and the period will be short. For molecules with small detuning energies, a 

permanent dipole pathway will not present an issue to increasing the period between 

transparencies since the virtual-state pathways will dominate the ETPA transition anyway. 

While N2 has a longer period between transparencies than the other diatomics studied 

here, this molecule does not represent the maximum limit. Eq. 3.9 and 3.13 show that the period 
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is only dependent upon the detunings of the virtual states. N2 has very large detunings for all 

of its virtual states, thus limiting how long its period can be. If a molecule had smaller 

detunings than N2, the period between transparencies would be longer. If a molecule has more 

than one such intermediate state, the virtual-state pathways would constructively interfere and 

increase the period between transparencies even more, making resolution between cross-

section maxima and minima experimentally achievable with current technology. 

 

3.6 Conclusions 

Unlike classical two-photon absorption, the ways in which the competing transition 

pathways of ETPA interfere greatly impact their absorption signal. The number of competing 

virtual-state pathways, the magnitude of their transition dipoles, and the strength of any permanent 

dipole pathways all impact this signal. Maximizing these parameters in novel organic molecules 

to increase constructive interference may be the key to rational material design and the 

development of molecules with maximized ETPA cross-sections. In order to study these 

parameters, highly accurate descriptions of the electronic states in the molecule are needed. 

We have shown that we can identify Born-Oppenheimer intermediate states in molecules 

that meet both energy and symmetry requirements to be involved in ETPA transitions. Specifically 

for each molecule: NO can have intraband transitions with the 2Σ+ state in the 2Π → 2Π transition; 

HF can have intraband transitions with the 1Π state in the 1Σ+ → 1Σ+ transition; N2 can have 

intraband transitions with the 1Σu
+ or 1Πu states in the 1Σg

+ → 1Πg transition. Using the accurately 

calculated vertical excitation energies and dipole moments for these states, we have completely 

modeled the ETPA cross-section as a function of entanglement time for each molecule’s transition, 

taking into account the permanent dipole pathways in addition to the virtual-state pathways, an 

analysis that has not been completed before. With this complete model of the ETPA process in 

these small molecules, we were then able to probe the specific parameters in the molecules that 

most significantly impact its ETPA transitions in order to gain a deeper understanding of the ETPA 

process. This description of the ETPA process in small molecules may be extended to the ETPA 

process in large molecules without the need for exact electronic state calculations that would be 

too computationally intensive for large molecules. 

To a greater extent than previous studies, we have analyzed the origin of the nonmonotonic 

behavior of the ETPA cross-section as a function of entanglement time. We have derived 
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expressions to characterize the complex beat pattern that arises from the quantum interference 

between competing transition pathways. Using these expressions, we have determined when an 

ETPA process can be reasonably approximated to one or two dominant pathways. These dominant 

pathways determine the magnitude of the ETPA cross-section and the period of entanglement-

induced transparencies. When multiple electronic states in a molecule have similar transition 

pathway amplitudes, the pathways associated with those states constructively interfere to increase 

the period between entanglement-induced transparencies. These transition pathway amplitudes are 

proportional to the transition probabilities and inversely proportional to the detuning energies in 

virtual-state pathways or the incident photon energies in the permanent dipole pathways. We have 

shown that virtual-state pathways lead to stronger quantum interference effects that deviate from 

classical behavior, while permanent dipole pathways induce more “classical-like” behavior. Thus, 

molecules with weaker permanent dipole moments can more strongly exhibit the quantum effects 

that are unique to using entangled photons. In particular, N2 deviates from the classical 

approximation by 3 or more orders of magnitude because it only has virtual-state pathways. 

Using only the dominant pathways’ energies, we can now calculate when entanglement-

induced transparencies will occur in molecules with two significant advantages: 1) the ETPA 

cross-section does not need to be calculated over a large range of entanglement times to determine 

when transparencies will occur; 2) precise calculations of the dipole moments are no longer 

needed, which are extremely difficult for intraband transitions and become increasingly complex 

when scaling up the size of the molecule under study. We have confirmed the accuracy of our 

approximations by comparing the approximated period to the exact period when a full ETPA 

calculation is completed, and our approximated period was within 1 fs of the exact period of all 

four molecules studied. These accurate approximations may be applied to larger molecules to 

calculate the locations of their entanglement-induced transparencies without needing to complete 

a full ETPA calculations with transition dipole moments. 

 The implication of these unique behaviors in the ETPA cross-section is that it may be 

possible to design a molecule to act as an ETPA “switch,” a molecule that can exhibit ETPA 

behavior (signal “turned on”) or be ETPA transparent (signal “turned off”) without having to 

change anything about the molecule itself. In order to make this experiment feasible with current 

technology, the period between entanglement-induced transparencies will have to be larger than 

current technology’s resolution limit. Increasing the period between transparencies can be 
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achieved through constructive interference between virtual-state pathways. Because permanent 

dipole pathways often dominate the ETPA process in molecules with large detuning energies, 

longer periods between transparencies are easier to achieve with molecules that do not have 

permanent dipoles, such as N2. However, we have also explained how a molecule with a small 

detuning energy will have a long period between transparencies regardless of whether or not it has 

a permanent dipole. When the virtual-state pathways dominate the ETPA transition over the 

permanent dipole pathways, a longer period between transparencies is achieved. 
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3.7 Supporting Information 

Sum-of-Waves Analysis for Transition Pathways in ETPA 

 When two ETPA transition pathways compete with each other, their wave nature creates 

an interference pattern in the ETPA cross-section as a function of entanglement time. If the 

pathways have different frequencies, a beat pattern results, where the amplitude of the summation 

oscillates according to an envelope wave. This envelope, which characterizes the upper and lower 

limit of the sum of waves, can be expressed as the modulus of the sum of the waves, as in eq. 3.16 

below for two generic pathways, pathway 1 = 𝐴1𝑒𝑖𝜔1𝑇𝑒 and pathway 2 = 𝐴2𝑒𝑖𝜔2𝑇𝑒. Multiplying 

out by the complex conjugate in eq. 3.S16 results in eq. 3.17. The complex exponential terms can 

be rearranged so that there is one exponential function added with it complex conjugate (eq. 3.18), 

which is the same as the real part of the function, i.e. the cosine (eq. 3.19). Eq. 3.19 can be used as 

a simpler expression for the upper and lower limit envelope waves when two pathways interfere. 

 ±√(𝐴1𝑒𝑖𝜔1𝑇𝑒 + 𝐴2𝑒𝑖𝜔2𝑇𝑒) × 𝑐. 𝑐. (3.16) 

 = ±√𝐴1
2 + 𝐴2

2 + 𝐴1𝐴2𝑒𝑖𝜔1𝑇𝑒𝑒−𝑖𝜔2𝑇𝑒 + 𝐴1𝐴2𝑒−𝑖𝜔1𝑇𝑒𝑒𝑖𝜔2𝑇𝑒 (3.17) 

 = ±√𝐴1
2 + 𝐴2

2 + 𝐴1𝐴2(𝑒𝑖(𝜔1−𝜔2)𝑇𝑒 + 𝑒−𝑖(𝜔1−𝜔2)𝑇𝑒) (3.18) 

 = ±√𝐴1
2 + 𝐴2

2 + 2𝐴1𝐴2 cos[(𝜔1 − 𝜔2)𝑇𝑒] (3.19) 

When two pathways in ETPA have significant constructive interference, the period of 

entanglement-induced transparencies can be calculated to occur whenever the envelope wave 

squared equals 0, since the ETPA cross-section is proportional to the envelope squared. The 

envelope wave must first be offset from 0 by the amplitudes of the two waves that are interfering, 

as seen in eq. 3.3 and 3.4 in the article. Thus, the entanglement times can be calculated by squaring 

this envelope wave and setting it equal to 0, as shown in eq. 3.20. Note: only the absolute values 

of the frequencies are needed since cosine is an even function. Eq. 3.21 results from taking the 

square root and subtracting A1 and A2 from both sides. After squaring both sides (eq. 3.22), all the 

amplitudes will cancel from both sides, resulting in the cosine expression in eq. 3.23. Solving for 

Te results in eq. 3.24. 

 (𝐴1 + 𝐴2 ± √𝐴1
2 + 𝐴2

2 + 2𝐴1𝐴2 cos[(|𝜔1| − |𝜔2|)𝑇𝑒])

2

= 0 (3.20) 
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 ±√𝐴1
2 + 𝐴2

2 + 2𝐴1𝐴2 cos[(|𝜔1| − |𝜔2|)𝑇𝑒] = −(𝐴1 + 𝐴2) (3.21) 

 𝐴1
2 + 𝐴2

2 + 2𝐴1𝐴2 cos[(|𝜔1| − |𝜔2|)𝑇𝑒] = (𝐴1 + 𝐴2)2 = 𝐴1
2 + 𝐴2

2 + 2𝐴1𝐴2 (3.22) 

 cos[(𝜔1 − 𝜔2)𝑇𝑒] = 1 (3.23) 

 𝑇𝑒 =
2𝑛𝜋

||𝜔1|−|𝜔2||
       𝑛 = 0, 1, 2, … (3.24) 

To determine whether or not there is significant constructive interference between two 

competing pathways, we can compare the magnitudes of the upper and lower limit envelopes at 

the entanglement time 𝑇𝑒 =
𝑛𝜋

||𝜔1|−|𝜔2||
. At this entanglement time, the lower limit will be at a 

maximum, yielding the largest value that a relative minimum in the ETPA cross-section can be. If 

this relative minimum is still significantly smaller than the maximum of the cross-section, then the 

relative minima are considered entanglement-induced transparencies. If the relative minimum is 

roughly the same magnitude as the maxima, the relative minima are not transparencies. We begin 

this comparison of the magnitudes of the upper and lower limit by dividing the lower limit 

envelope wave squared by the upper limit envelope wave squared, both at the entanglement time 

𝑇𝑒 =
𝑛𝜋

||𝜔1|−|𝜔2||
, shown in eq. 3.25. Since cos(π)=1, eq. 3.25 reduces to eq. 3.26. The simplification 

steps in eq. 3.27-3.28 are straightforward, with eq. 3.30 showing the most simplified result. The 

ratio of the upper and lower limit envelope waves is equal to the ratio of the square of the 

amplitudes of the two pathways that are competing. 

 

(𝐴1+𝐴2+√𝐴1
2+𝐴2

2+2𝐴1𝐴2 cos[(|𝜔1|−|𝜔2|)
𝜋

||𝜔1|−|𝜔2||
])

2

(𝐴1+𝐴2−√𝐴1
2+𝐴2

2+2𝐴1𝐴2 cos[(|𝜔1|−|𝜔2|)
𝜋

||𝜔1|−|𝜔2||
])

2 (3.25) 

 =
(𝐴1+𝐴2+√𝐴1

2+𝐴2
2−2𝐴1𝐴2)

2

(𝐴1+𝐴2−√𝐴1
2+𝐴2

2−2𝐴1𝐴2)

2 (3.26) 

 =
(𝐴1+𝐴2+√(𝐴1−𝐴2)2)

2

(𝐴1+𝐴2−√(𝐴1−𝐴2)2)
2 (3.27) 

 =
(𝐴1+𝐴2+𝐴1−𝐴2)2

(𝐴1+𝐴2−𝐴1+𝐴2)2 (3.28) 

 =
(2𝐴1)2

(2𝐴2)2
 (3.29) 
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 =
𝐴1

2

𝐴2
2 (3.30) 
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CHAPTER 4 

Efficient Modeling of Organic Chromophores for Entangled Two-photon Interferometry 

 

The work in this chapter was published as the journal article: 

Kang, G.;  Nasiri Avanaki, K.;  Mosquera, M. A.;  Burdick, R. K.;  Villabona-Monsalve, J. P.;  

Goodson, T.; Schatz, G. C., “Efficient Modeling of Organic Chromophores for Entangled 

Two-Photon Absorption.” Journal of the American Chemical Society 2020, 142 (23), 10446-

10458. 

Modifications have been made for the style and content of this dissertation. References and 

supporting information for the manuscript are included in this chapter. 

 In this chapter, I provided the understanding of how the calculated ETPA linewidth relates 

to the ETPA cross-section when performing ETPA experimentally. Namely, I connected the 

arrival time uncertainty of the entangled photon pair to the absorption time uncertainty in the 

molecule, which is what effectively narrows the final state linewidth when using ETPA excitation. 

This connection justifies the use of the newly derived narrow ETPA linewidth for calculating 

ETPA cross-sections even though the molecules studied are large and in solution (experimentally), 

which would result in many collisions and relaxation mechanisms that would normally be expected 

to broaden the excited state linewidth. 

 

4.1 Abstract 

The use of a nonclassical light source for studying molecular electronic structure has been 

of great interest in many applications. Here we report a theoretical study of entangled two-photon 

absorption (ETPA) in organic chromophores, and we provide new insight into the quantitative 

relation between ETPA and the corresponding unentangled TPA based on the significantly 

different line widths associated with entangled and unentangled processes. A sum-over-states 

approach is used to obtain classical TPA and ETPA cross sections and to explore the contribution 

of each electronic state to the ETPA process. The transition moments and energies needed for this 

calculation were obtained from a second linear-response (SLR) TDDFT method [J. Chem. Phys., 



122 
 

2016, 144, 204105], which enables the treatment of relatively large polythiophene dendrimers that 

serve as two-photon absorbers. In addition, the SLR calculations provide estimates of the excited 

state radiative line width, which we relate to the entangled two-photon density of states using a 

quantum electrodynamic analysis. This analysis shows that for the dendrimers being studied, the 

line width for ETPA is orders of magnitude narrower than for TPA, corresponding to highly 

entangled photons with a large Schmidt number. The calculated cross sections are in good 

agreement with the experimentally reported values. We also carried out a state-resolved analysis 

to unveil pathways for the ETPA process, and these demonstrate significant interference behavior. 

We emphasize that the use of entangled photons in TPA process plays a critical role in probing the 

detailed electronic structure of a molecule by probing light-matter interference nature in the 

quantum limit. 

 

4.2 Introduction 

Since the initial discovery of two-photon absorption (TPA) in the 1930s, TPA has attracted 

significant interest in studying fundamental aspects of light–matter interaction.1,2 In addition, the 

use of two-photon sources has been considered in a variety of applications including 

photopolymerization,3-4 optical data storage,5,6 microfabrication,3,6,7 and light harvesting.8,9 With 

classical light sources, TPA is a second-order nonlinear optical process (Rate = δrϕ
2, where δr is 

the cross section, and ϕ is the photon flux), thus a very high ϕ (∼1022 photons cm–2 s–1) is required 

to overcome the small TPA cross-sections. Typical cross-sections for TPA in most organic 

chromophores are on the order of 10–48 cm4 s photon–1, and are usually quoted in the units of 

Goeppert-Mayer (GM), where 1 GM is 10–50 cm4 s photon–1. 

Important technical developments in the past decades have occurred to facilitate TPA for 

the purpose of demonstrating quantum optical effects. Specifically, recent advances in nonclassical 

light sources of entangled photons have enabled new directions in nonlinear spectroscopy for 

investigating quantum effects in light–matter interaction and developing optical quantum 

computers.10-12 The first discovery of entangled photons was reported by Kocher and Commins in 

1967, where polarization correlation of two photons simultaneously emitted in the atomic cascade 

in calcium was observed.13 Since then, thorough studies of the properties of entangled photons 

have been carried out both experimentally14-17 and theoretically.18,19 Further improvements in 

photon detection instruments in the past decades have enabled the application of entangled photons 
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to broader problems including entangled two-photon absorption (ETPA) spectroscopy applied to 

molecules. Indeed, the unique nonclassical spectral and temporal features of entangled photons 

make them a potentially powerful probe of molecular electronic structure. 

In many ETPA experiments, entangled photons are generated through a nonlinear process 

called spontaneous parametric down-conversion (SPDC). In SPDC, one photon of higher energy 

from a pump laser is converted into a pair of photons (namely, signal and idler photons) of lower 

energy through interaction with a nonlinear crystal. Both energy and momentum are conserved 

through this process as the combined energy and momentum of an entangled photon pair are the 

same as those of a pump photon. The twin photons can exit the nonlinear crystal at different times 

that are dictated by the time needed to propagate the length of the crystal. Entanglement time (Te) 

is the largest estimate of this range of times, as dictated by the dimensions of the crystal, which 

can be further tuned by placing a quartz plate to adjust the refractive index of the medium. More 

accurately, Te is determined by the width of the fourth-order temporal coherence function of the 

entangled photon pair.20 In addition to the temporal coherence, polarization entanglement is 

produced for the photon pairs generated using SPDC. Among two types of SPDC processes (Type-

I and II), Type-II SPDC generates perpendicularly polarized photon pairs using a BBO (β-barium 

borate) crystal. Recently entangled photons from the Type-II SPDC process have been extensively 

applied to the study of various two-photon absorbing chromophores by Goodson and co-

workers.21-25 In these works, the correlated photon pairs arrive at the absorbing medium with a flux 

density, ϕe, per photon pair (photons cm–2 s–1). The overall ETPA rate, Re, is known to be linearly 

dependent on the input flux:21,22,24,26  

 𝑅𝑒 = 𝜎𝑒𝜙𝑒 (4.1) 

where σe is the ETPA cross-section. The ETPA cross-sections are reported on the order of 10–

17 cm2 using low photon fluxes (1012 photons cm–2 s–1). The cross sections are many orders of 

magnitude higher than those which would be obtained from TPA using high photon fluxes 

(1022 photons cm–2 s–1 × 10–48 cm4 s photons-1 = 10–26 cm2).21-24  

There have been a few theoretical studies in which ETPA cross-sections were evaluated 

for atoms and small molecules. Fei et al. derived a Kramers-Heisenberg-like expression for the 

ETPA cross-section expression for the first time and used it to obtain the ETPA cross section of 

atoms.26,27 Recently, Burdick et al. have provided detailed quantum chemical descriptions of 

ETPA for diatomic molecules.28 In addition, extensive work to simulate the frequency-resolved 



124 
 

absorption of model systems by entangled photons through a pump–probe scheme has been 

proposed by the Mukamel group.29-31 Although these previous theoretical studies provided 

meaningful insights for understanding ETPA for model systems, a quantitative description of 

entangled photon interactions with large organic chromophores has been lacking, yet it is 

important for understanding the applicability of ETPA. In addition, future experiments may be 

able to better control the entanglement beam parameters based on a detailed understanding of 

entangled photon generation, including sources other than SPDC.32,33 Since the electronic structure 

of a molecule becomes more complicated with increasing size of the molecule, a systematic and 

efficient approach to obtain ETPA cross-sections is required. 

Motivated by the above discussion, we use a recently developed approach34,35 called 

second linear response time-dependent density functional theory (SLR-TDDFT), in combination 

with a new approach to the determination of line shape functions for entangled photons, to 

calculate both TPA and ETPA cross-sections, and to make quantitative comparisons with 

experiment for large organic molecules. SLR-TDDFT is an extension of traditional linear response 

TDDFT for the description of excited state properties, including transition multipoles and 

permanent dipole moments involving excited states. SLR-TDDFT is in principle exact (in practice 

approximate depending on the choice of exchange-correlation approximation). Formally it 

involves examining the response of the initial state of the system to a weak external perturbation. 

This analysis is performed in the linear response regime. SLR-TDDFT is a different approach with 

respect to standard (linear response) TDDFT as the latter refers to excitations only from the ground 

electronic state of the molecule being studied. SLR-TDDFT is designed to rigorously determine 

transition moments between two excited states by doing two calculations, first a conventional 

TDDFT (ground state) calculation, and then a second in which the initial state is described by the 

ground state plus a small amount of the excited state of interest. There are other ways to calculate 

transition moments between different excited states, such as quadratic TDDFT, however SLR-

TDDFT has superior scaling properties that are useful for the large molecules being studied in this 

work. An advantage of the SLR-TDDFT algorithm is that the energy spectrum obtained from 

standard (or first) linear response TDDFT can be used to compute the excited-state-to-excited-

state excitation frequencies, so if the energy spectrum is accurate so are spectroscopic properties. 

Furthermore, in the algorithm developed by Mosquera et al.,34 the calculation of a single excited 
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state has the same cost of a standard LR-TDDFT computation, thus offering computational 

advantages to the calculation of the ETPA and TPA cross sections for large molecules. 

In this work, we apply SLR-TDDFT to the efficient calculation of TPA and ETPA cross-

sections for thiophene dendrimers, making comparison with experimental results which have been 

determined previously. In addition, we describe methods for determining the line shape functions 

for TPA and ETPA (needed for evaluating cross-sections) in which we take into account the 

different excited state densities associated with classical and entangled excitation. We justify this 

analysis by examining the quantum electrodynamics of a three level model of ETPA, where we 

show that high degrees of entanglement arise when the radiative lifetime of the two-photon excited 

state is much smaller than that for the one-photon excited states that serve as intermediates in 

ETPA. The calculated cross-sections show good agreement with the experimental values, 

indicating the accuracy of both our SLR-TDDFT approach and our model for estimating line 

shapes. Further, we provide a state-resolved analysis of the interference patterns in the ETPA 

cross-section over varying entanglement time, and show that the quantum light source provides 

new information about molecular electronic states that is not available with classical photons. 

 

4.3 Theoretical Details 

4.3.1 Classical Two-Photon Absorption Cross-Section 

The TPA cross section for a classical two-photon source, δr, is given by the following 

equation under near-resonance conditions:36-38  

 𝛿𝑟 =
𝜋

2
𝜔1𝜔2〈𝑆𝑟

2〉𝑔𝑟(𝜔0, Γ) (4.2) 

where ω1 and ω2 are the signal and idler frequencies, respectively. In most TPA and ETPA 

measurements, the frequencies of the two sources are degenerate (ω1 = ω2 = ωp/2). gr(ω0, Γ) is 

the line shape function for excitation by classical photons. The line shape broadening is 

determined by the excited state damping factor Γ and is often chosen to be 0.1 eV for TPA, 

corresponding to the measured two-photon line shape for many molecules.38-41 Later we show 

that this choice of damping factor provides reasonable quantitative agreement between 

measured and calculated cross-sections, but one could argue that values larger or smaller by a 

factor of 2 could also have been used, indicating the level of uncertainty of our results 

(consistent with previous work42). Here we assume a Lorentzian line shape function for gr(ω0, 

Γ):38  
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 𝑔𝑟(𝜔0, Γ) =
1

𝜋

Γ

(𝜔1+𝜔2−𝜔0)2+Γ2
 (4.3) 

Under the two-photon resonance condition, gr(ω0, Γ) = 1/πΓ. If the half width is 0.1 eV, 

then the resulting line shape function yields a value of 13 fs for the effective excited state 

lifetime. ⟨Sr
2⟩ is the rotationally averaged TPA strength in the molecular coordinate to account 

for ensemble averaging in bulk samples. This term is expressed as a sum of two-photon 

transition matrix elements Sr,ab with polarization-dependent parameters (F, G, and H):43  

 〈𝑆𝑟
2〉 =

1

30
∑ (𝐹𝑆𝑟,𝑎𝑎𝑆�̅�,𝑏𝑏 + 𝐺𝑆𝑟,𝑎𝑏𝑆�̅�,𝑎𝑏 + 𝐻𝑆𝑟,𝑎𝑏𝑆�̅�,𝑏𝑎)𝑎𝑏  (4.4) 

For linearly polarized light with parallel polarization, F = G = H = 2, whereas F = H = 

−1 and G = 4 for perpendicularly polarized light. In the experiment, parallel polarization is 

generally used for classical TPA measurements whereas perpendicular polarization generated 

through the Type-II SPDC process is used for ETPA measurements. The classical two-photon 

transition probability between the initial state |i⟩ and final state |f⟩, Sab, is expressed as the 

following sum-over-states expression: 

 𝑆𝑟,𝑎𝑏
𝑖𝑓

= ∑ [
𝐷𝑎𝑏

(𝑗)

Δ1
(𝑗)

−𝑖𝜅𝑗/2
+

𝐷𝑏𝑎
(𝑗)

Δ2
(𝑗)

−𝑖𝜅𝑗/2
]𝑗  (4.5) 

where κj is a phenomenological line width of the intermediate state |j⟩ which can be considered 

a constant for a sufficiently weak photon-flux density. This is also referred to as a dephasing 

factor due to various effects including vibronic and solvent effects. Because of the technical 

difficulty in accurately obtaining the value both experimentally and theoretically, we will study 

the cases, where (1) κj is zero and (2) has a commonly accepted upper limit which is 0.1 eV. 

Later in this work, we conclude that the cross-sections are not sensitive to this range of values 

of κj. The transition matrix element with the molecular electric dipole moment components in 

the molecular coordinates is given by Dab
(j) = ⟨f|μb|j⟩⟨j|μa|i⟩. Energy mismatches are defined as 

Δ1
(j) = ϵj – ϵi – ω1 and Δ2

(j) = ϵj – ϵf + ω2, where the phase matching condition is ωp = ω1 + ω2. 

Note that the denominators in the first and the second summation terms of the transition matrix 

element are identical only if the energy sum of the signal and idler photons is resonant with 

the energy difference between the final and initial states: ϵf – ϵi = ω1 + ω2. One should note that 

the transition probability for either entangled or unentangled absorption does not necessarily 

require a summation over molecular electronic states; instead, these molecular states provide 

a convenient expansion for the virtual states that are the intermediates. However, we have 

adopted the sum-over-states formulation derived by Teich and co-workers26,27 for the purpose 
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of providing a practical tool for probing the molecular electronic structure in this work. 

Especially for ETPA, this formalism is found to provide a rapidly converging representation 

of the virtual states, including interferences that arise from the entangled photons. Also, we 

assume the electronic resonance condition in which both energy mismatch expressions can be 

generalized as Δk
(j) = ϵj – ϵi – ωk. The terms inside the brackets of the above transition 

probability element are summed over all electronic states including the ground and final states 

(j ≥ i). Under the two-photon resonance condition with degenerate photon energies, eq. 

4.5 reduces to the following form: 

 𝑆𝑟,𝑎𝑏
𝑖𝑓

= 2∑
𝐷𝑎𝑏

(𝑗)

Δ
(𝑗)

−𝑖𝜅𝑗/2
𝑗 = ∑ 𝛽𝑎𝑏

(𝑗)
𝑗  (4.6) 

In eq. 4.6, we introduced a single-state transition probability element, βab
(j), to resolve the role 

of each intermediate state and the interaction among multiple states. 

 

4.3.2 Entangled Two-Photon Absorption Cross-Section 

The ETPA cross-section was determined quantum mechanically for a time-entangled 

twin state wave packet.26,27 Analogous geometrical considerations used in the simplified 

probabilistic model yield the following expression for the ETPA cross-section: 

 𝜎𝑒 =
𝜋

4𝐴𝑒𝑇𝑒
𝜔1𝜔2〈𝑆𝑒

2〉𝑔𝑒(𝜔𝑓) (4.7) 

where Ae is the entanglement area which we assume has the value Ae = 10–6 cm2 based on 

previous work with SPDC sources.26 Te is the entanglement time between the photon pairs 

which is determined by the experimental setup within the range of 50–100 fs. The line shape 

function for ETPA is ge(ωf) which will be discussed in detail below. We assume that the 

entangled photon pairs are created by parametric Type-II down-conversion, where the 

polarization of the signal photon is orthogonal to that of the idler photon. Using second-order 

time-dependent perturbation theory with an entangled twin state yields the following transition 

probability matrix element from the ground state |i⟩ to the final excited state |f⟩: 

 𝑆𝑒,𝑎𝑏
𝑖𝑓

= ∑ [𝐷𝑎𝑏
(𝑗) 1−𝑒𝑥𝑝[−𝑖𝑇𝑒Δ1

(𝑗)
−𝑇𝑒𝜅𝑗/2]

Δ1
(𝑗)

−𝑖𝜅𝑗/2
+ 𝐷𝑏𝑎

(𝑗) 1−𝑒𝑥𝑝[−𝑖𝑇𝑒Δ2
(𝑗)

−𝑇𝑒𝜅𝑗/2]

Δ2
(𝑗)

−𝑖𝜅𝑗/2
]𝑗  (4.8) 

Using βab
(j) defined in eq. 4.6, the above expression can be reduced to the following: 

 𝑆𝑒,𝑎𝑏
𝑖𝑓

= ∑ 𝛽𝑎𝑏
(𝑗)

[1 − 𝑒𝑥𝑝 [−𝑖𝑇𝑒Δ
(𝑗)

− 𝑇𝑒𝜅𝑗/2]]𝑗  (4.9) 
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Three parameters dependent on the choice of intermediate state |j⟩ are included in this 

expression: the transition matrix element D(j), the energy mismatch Δ(j) and the line width of 

the state κj. The strengths of the transition matrix elements and the transition symmetry are 

critical in determining D(j), as this depends on the dot product of two transition elements. The 

excited state energies relative to the excitation energy are determined by Δ(j). Since the 

evaluation of κj is not straightforward for molecules with large numbers of degrees of freedom, 

we assume a constant line width parameter in this work. Although the entanglement time Te is 

not a material dependent factor (it depends on the source properties), the variation in the ETPA 

cross section on Te will be also considered due to uncertainty in its value. 

 

4.3.3 ETPA Line Shape 

It is important to emphasize that the line shape for ETPA, ge, is different from the 

classical TPA line shape function, gr. The line width associated with gr is associated with rapid 

dephasing of the two-photon excited state by any process, while that for ge reflects decay via 

entangled photons. There are certain excited states of atoms where these two line widths can 

be the same, so previous studies of atomic systems have not considered this issue, but in the 

present case the differences are many orders of magnitude. To understand how this works, we 

consider two-photon excitation in the three-level model shown in Fig. 4.1. 

 
Figure 4.1. Three-level model used for the description of two-photon absorption. The molecule 

initially is in its ground state and may absorb a photon with excitation energy ωβ and absorption 

rate γβ, followed by the absorption of a second photon with excitation energy ωα and rate γα. 

In this model, the molecule in its ground state may absorb a photon with excitation 

energy of ωβ and absorption rate γβ, followed by absorption of a second photon with excitation 
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energy of ωα and rate γα. In this version of the analysis we consider unentangled photons. The 

interaction Hamiltonian, in the rotating-wave approximation, for this system is expressed as 

follows: 

 �̂�𝐼 = ℏ𝑔𝛼
∗ �̂�𝑚𝑒

† �̂�𝑒−𝑖Ω𝛼𝑡 + ℏ𝑔𝛽
∗ �̂�𝑔𝑚

† �̂�𝑒−𝑖Ω𝛽𝑡 + 𝐻. 𝑐. (4.10) 

where ω – ωi = Ωi. The molecule-field couplings in the dipole approximation are given by gα
*= 

⟨μme · E(r)⟩ and gβ
* = ⟨μgm · E(r)⟩, where μme and μgm are the corresponding dipole matrix 

elements and E(r) is the electric field interacting with the system. It should be noted that the 

coupling matrix elements are assumed to be averaged over all possible orientations. The 

transition operators for the absorption scheme shown in Fig. 4.1 are defined by the following: 

�̂�𝑚𝑒
† = |𝑒⟩⟨𝑚|, �̂�𝑔𝑚

† = |𝑚⟩⟨𝑔| 

 �̂�𝑚𝑒 = |𝑚⟩⟨𝑒|, �̂�𝑔𝑚 = |𝑔⟩⟨𝑚| (4.11) 

The overall set of basis functions is given by |0⟩ ⊗ |g⟩, |0⟩ ⊗ |m⟩, and |0⟩ ⊗ |e⟩ and we use 

this basis to construct the interaction Hamiltonian, 

 �̂�𝐼 = ℏ [

0 𝑔𝛽𝑒−𝑖Ω𝛽𝑡 0

𝑔𝛽
∗ 𝑒−𝑖Ω𝛽𝑡 0 𝑔𝛼𝑒−𝑖Ω𝛼𝑡

0 𝑔𝛼
∗𝑒−𝑖Ω𝛼𝑡 0

] (4.12) 

Given this Hamiltonian, the time evolution of the density matrix is specified by the Liouville 

equation as follows: 

 
𝜕𝜌𝑖𝑗

𝜕𝑡
= −

𝑖

ℏ
∑ (𝐻𝑖𝑘𝜌𝑘𝑗 − 𝜌𝑖𝑘𝐻𝑘𝑗) − (𝛾𝑖𝜌𝑖𝑗 − 𝜌𝑖𝑗𝛾𝑗)𝑘  (4.13) 

where we include for the relaxation of each state using ⟨i|γ̂|j⟩ = γiδij. The decay rates of the 

populations of the first and second excited states will be denoted γα and γβ, respectively. It 

should be noted that here have not included dephasing in eq. 4.13 (as can be done using the 

Lindblad equation) so as to simplify the analysis. In order to obtain the solution to these 

equations of motion, it is more convenient to reformulate it using the transition operators ρij(t) 

= ϕî(t)ϕĵ
*(t) as follows:44  

 
𝜕�̂�𝑖(𝑡)

𝜕𝑡
= −

𝑖

ℏ
∑ 𝐻𝑖𝑗�̂�𝑗(𝑡) − 𝛾𝑖�̂�𝑖(𝑡)𝑗  (4.14) 

which can be simplified in a matrix form, 

 [

�̇�𝑔

�̇�𝑚

�̇�𝑒

] = [

−𝑖𝜔𝑔 −𝑖𝑔𝛽 0

−𝑖𝑔𝛽
∗ −(𝛾𝛽 + 𝑖𝜔𝑚) −𝑖𝑔𝛼

0 −𝑖𝑔𝛼
∗ −(𝛾𝛼 + 𝑖𝜔𝑒)

] [

𝜙𝑔

𝜙𝑚

𝜙𝑒

] (4.15) 
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With no further approximations, the above coupled set of equations can be solved numerically. 

However, it is more instructive and sufficiently accurate at low intensities to assume that we 

are in a weak interaction regime so that the population of the intermediate state does not change 

over time, i.e., ϕ̇m = 0, therefore we have the following: 

 𝜙𝑚 =
𝑖𝑔𝛽

∗

𝛾𝛽−𝑖𝜔𝑚
𝜙𝑔 −

𝑖𝑔𝛼

𝛾𝛽−𝑖𝜔𝑚
𝜙𝑒 (4.16) 

Substituting the above expression in eq. 4.15 and diagonalizing the matrix, the general solution 

for this set of differential equations with the initial condition of ρee(t = 0) = ρmm(t = 0) = 0 and 

ρgg(t = 0) = 1, is given by: 

 𝜌𝑔𝑔(𝑡) = 𝜙𝑔 (𝑡)𝜙𝑔
∗(𝑡) = 𝑒−2𝜃𝑡, where 𝜃 =

𝛾𝛽|𝑔𝛽|
2

𝛾𝛽
2+𝜔𝛽

2  

 𝜌𝑒𝑒(𝑡) = 𝜙𝑒 (𝑡)𝜙𝑒
∗(𝑡) = 𝐾𝑒[𝑒

−2𝛾𝛼𝑡 − 2𝑒−(𝛾𝛼+𝜃)𝑡𝑐𝑜𝑠(𝜔𝛽𝑡) + 𝑒−2𝜃𝑡] (4.17) 

where, 

 𝐾𝑒 =
|𝑔𝛼𝑔𝛽|

2

(𝜔𝛼𝜔𝛽+𝜔𝛽
2+𝛾𝛼𝛾𝛽−|𝑔𝛽|

2
)
2
+(𝜔𝛼𝛾𝛽+𝜔𝛽𝛾𝛽+𝜔𝛽𝛾𝛼)

2
. 

We obtained the above expressions assuming ωg = 0, ωm = ωβ, and ωe = ωα + ωβ. Note 

that here ρgg, ρmm, and ρee are the density of ground, intermediate and excited states, 

respectively. We see that the excited state probability ρee(t) involves the competition between 

two time scales, one determined by γα and the other by θ. Here, θ is determined by the pumping 

rate to the intermediate state. If this is fast enough, then the time dependence of ρee is governed 

by θ. Alternatively for slower pumping, γα determines the time scale for populating the excited 

state. Below we show that the parameters relevant to the present work are where γα dominates. 

We may determine the ground and excited state densities in the frequency domain for a more 

advanced analysis, 

 𝜌𝑔𝑔(𝜔) =
4θ

4θ2+(𝜔−𝜔𝛽)
2 

 𝜌𝑔𝑔(𝜔) =
4𝛾𝛼

4𝛾𝛼
2+(𝜔−𝜔𝛼)2

−
2(𝛾𝛼+𝜃)

𝜔𝛽
2+(𝛾𝛼+𝜃)2+(𝜔−𝜔𝛼)2

+
4θ

4θ2+(𝜔−𝜔𝛼)2
 (4.18) 

In Fig. 4.2 we plot ρgg and ρee as a function of frequency using parameters discussed 

later for the planar 6T molecule. This shows the extremely narrow line shape for ρee near ω = 

ωα that arises using the small value of γα that results from the SLR-TDDFT calculations. 
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Figure 4.2. Population of ground and two-photon excited states for the three-level model. In 

the calculations, we used the values in Tables 4.1 and 4.3 for the excitation energies of 6T-

planar (ωα, ωβ), and the widths γα = 0.001 and γβ = 1.6 MHz. 

 

In the supporting information (SI), we present a similar analysis of the Liouville 

equation within the context of quantum electrodynamics, as applied to emission process 

starting from the two-photon excited state. In this case, the emission line width is determined 

by the second order frequency correlation function of the emitted photons: 

 𝑔𝑥
(2)(𝜔) = 𝛾𝛼𝛾𝛽 [

𝛾𝛽

𝛾𝛼
− 1]

1

(𝜔−𝜔𝛼−𝜔𝛽)
2
+𝛾𝛼

2
×

1

(𝜔−𝜔𝛽)
2
+𝛾𝛽

2
 (4.19) 

The width of resonances in this correlation function, which determines the 

characteristic width of the frequency anticorrelation, is governed by γα as long as γα ≪ γβ. The 

spectra associated with g×
(2) are plotted in Fig. 4.10 using the calculated values for the 

molecules of interest in this work. Note that two sharp peaks are associated with the emission 

process. The peaks represent the detection of one and two emitted photons where the width 

corresponding to the two-photon process is much narrower than that of the one-photon process. 

Therefore, γα can be interpreted as a width factor while it is the emission rate of the first photon. 

We also note that γα ≪ γβ is required for producing a highly entangled state (large Schmidt 

number) in two-photon emission.45 

It is interesting to note that the molecule does not broaden the line width due to 

collisions with its environment, relaxation through non-radiative processes, etc. This rather 
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unusual result stems from not being able to define exactly when ETPA took place. Though the 

time difference of the two absorption events is well-defined as less than or equal to Te, the time 

at which the pair as a whole arrives at the molecule, and therefore the time at which the first 

photon is absorbed, is not well defined. From the monochromatic pump beam assumed here, 

the entangled photons can be created at any time in the crystal since the pump beam is always 

on inside the crystal, as opposed to being a pulsed beam whose intensity comes and goes with 

the repetition rate. There is therefore great uncertainty in when the entangled photons were 

created. Note that the creation time of the pair as a whole is the Fourier conjugate of the pump 

bandwidth, since smaller pump bandwidths are broader in time and therefore spend more time 

in the crystal. Since the time at which the photons were absorbed has a large uncertainty, the 

time at which the excited state in the molecule relaxes must also have a large uncertainty. 

Therefore, the line width in frequency must be very narrow as the Fourier conjugate. It is 

expected that broadening the pump laser in frequency would shorten the excited state life time 

and broaden the line width. More work to confirm this is required. 

We conclude that the width γα of the two-photon state ρee shows up equivalently in both 

the absorption and emission processes. We note that this use of the spontaneous radiative 

emission lifetime of the two-photon excited state to determine the line width for the ETPA 

cross section was used previously for the OH molecule.46 In the present applications, we 

determined the ETPA line shape using the spontaneous radiative lifetime from Fermi’s golden 

rule: 

 𝑔𝑒 (𝜔𝑓) = 𝜏𝑟 = [∑
4

3ℏ
(
|𝜔𝑖𝑓|

𝑐
)
3

|𝜇𝑖𝑓|
2

𝑗<𝑓 ]

−1

 (4.20) 

based on results for the two-photon excited state from the SLR-TDDFT calculations. In 

addition, we have verified from our calculations that the two-photon allowed excited state has 

a much longer radiative lifetime than the intermediate states produced after emission of the 

first photon. Due to this huge difference in lifetimes, two-photon absorbing dyes are an ideal 

system for maximum ETPA efficiency. 

 

4.4 Computational Details 

The geometries of the molecules investigated in this work were first optimized with the 

B3LYP hybrid functional and the 6-31G* basis set. This same level of theory was used for the 
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excited state calculations, as for 18T this is the highest level that is feasible with the facilities 

available to us. For each molecule, a SLR-TDDFT calculation was carried out to generate the 15 

lowest-lying excited states. DFT and TDDFT calculations were performed using the NWChem 

computational package version 6.6 modified by Mosquera et al. to calculate oscillator strengths 

and transition dipole matrix elements for intraband transitions between two excited states.34,35 In 

this approach, the intraband transition dipoles are effectively calculated by running two steps of 

TDDFT. In the first step, a standard linear response TDDFT calculation is run, and the ground 

state orbitals are redefined as follows (the Tamm-Dancoff approximation is used here): 

 𝜑𝑖𝜎(�⃑� ) ← 𝜑𝑖𝜎(�⃑� ) + 𝜆∑ 𝑋𝑎𝑖𝜎
𝐼 𝜑𝑎𝜎(�⃑� )𝑎  

` 𝜑𝑎𝜎(�⃑� ) ← 𝜑𝑎𝜎(�⃑� ) − 𝜆∑ 𝑋𝑎𝑖𝜎
𝐼 𝜑𝑖𝜎(�⃑� )𝑖  (4.21) 

where the indices i and a denote occupied and virtual orbitals, respectively, σ denotes the z-

spin, Xaiσ
I is the excitation vector from standard TDDFT for the excited state labeled I, and λ is a 

small number (in spin-restricted calculations we set φp,↑ = φp,↓). These new orbitals, with the exact 

XC potentials, could represent the density of the linear combination Ψ0 + λΨI, where Ψ0 is the true 

ground-state wave function, and ΨI is the true excited state of interest. With the redefined orbitals, 

the LR-TDDFT equations are solved once again, and the transition dipoles of the perturbed and 

original LR-TDDFT calculations are compared. In ref. [34], we showed that the numerical 

derivative 

 𝒅𝑗,𝐼 =
𝒅𝑗,0(𝜆)−𝒅𝑗,0(𝜆=0)

𝜆
 (4.22) 

can be used to compute the transition dipole (dJ,I) for the excitation from state I to 

state J (where J is in a chosen energy window). In the above equation, dJ,0 denotes the transition 

dipoles for excitation from the reference to the state labeled J. On the basis of our previous 

calculations on oligomers of polythiophene,35 we determined that λ = 10–2 is appropriate for 

calculations of the above derivative (the results do not change significantly by further reducing 

this value). The SLR-TDDFT calculation yields a new family of excitation vectors, which we refer 

to as SLR vectors. However, if some roots are degenerate, then the SLR-TDDFT calculation can 

slightly break the degeneracy, and the SLR vectors have to be rematched with their first LR 

counterparts. To reorganize the roots, we used the following criterion: a first linear response 

vector X and an SLR vector X̅ correspond to one another if 1 – Cr < |X · X̅ | < 1 + Cr. We use the 

value Cr = 0.05. We thus have two sets of transition dipoles, one for the ground-state reference, 

and another for the perturbed reference, constructed with the formula shown in eq. 4.22; these 
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transition dipoles are computed using the first and second LR excitation vectors, respectively. 

Once the transition dipoles are obtained, both TPA and ETPA cross sections were calculated using 

a home-built Python code. 

 

4.5 Results and Discussion 

In order to study a model system to obtain TPA and ETPA cross sections, structures of 

thiophene monomer (1T) and two thiophene dendrimers with 6 and 18 monomers (6T and 18T) 

were optimized using DFT and the corresponding optimized geometries are shown in Fig. 4.3.  

 
Figure 4.3. DFT optimized structures of thiophene dendrimers with 1, 6, and 18 thiophene 

monomers. Two different conformers of the 6T molecule were optimized with planar and twisted 

geometries (white: hydrogen; gray: carbon; and yellow: sulfur). 

These thiophene dendrimers were selected because experimental measurements on both 

TPA and ETPA cross sections were reported by the Goodson group.22 1T was not experimentally 

studied, but we included this molecule for comparison. These molecules can serve as a good model 

system due to structural simplicity as well as chemical similarity among the molecules as dictated 

by the thiophene unit. Two structural conformers of 6T were generated so as to test the effects of 

a torsional geometry change and changes in delocalization of the π electrons on the results. The 

planar structure in which all atoms are positioned in a single plane is more energetically stable by 

29 meV than the twisted structure. However, the thermodynamic barrier between the two structures 

is small enough for 6T to undergo dynamic structural evolution between different conformers at 

room temperature. The same issue arises for 18T, but to keep the calculations manageable we will 

only consider the structure presented in Fig. 4.3. 
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Absorption spectra of thiophene dendrimers were first simulated to estimate the optically 

allowed transitions and compare them to UV–vis spectra. In Fig. 4.4, the absorption peaks are 

broadened using a Lorentzian broadening function with a full-width half-maximum (FWHM) of 

0.1 eV. The simulated spectra are compared with the previously reported experimental absorption 

spectra.22 

 
Figure 4.4. Calculated absorption spectra of 1T (black), 6T (blue), and 18T (red) using LR-

TDDFT. The vertical lines indicate positions and oscillator strengths of excitation. Experimental 

absorption spectra are shown in the inset as a comparison.22  

As shown in the simulated spectra, the first absorption bands at 2.92 and 3.10 eV, 

corresponding to planar and twisted 6T, respectively, match well with the experimental peak at 3.2 

eV. The torsional twist in 6T slightly blue-shifts absorption energies as a result of the reduced 

planar π-conjugated structure, as expected. However, the small twist in the geometry does not 

impact the optical transitions significantly. The major absorption peak for 18T experimentally 

observed at 3.2 eV is likely due to the peaks in the range of 2.7 to 3.1 eV. Also, the first absorption 

peak at 2.42 eV can be matched with the shoulder peak at ∼2.7 eV in the experiment. This shoulder 

peak is attributed to absorption by α-thiophene chains of longer lengths within the dendron. Even 

though the TDDFT calculations are performed for isolated molecules, the simulated absorption 

spectra predict the energies for optically allowed transitions fairly well compared with the 

experiment carried out in solution. We also note that the absorption peaks of the thiophene 
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monomer are located well above 6 eV, so dendrimer formation (and the expected delocalization 

of the π electrons) is important for meaningful two-photon absorption spectroscopy experiments. 

In Table 4.1, the energy, dipole moment, and oscillator strength of each transition for the ten lowest 

excited states of 6T and 18T are listed. The first transitions are dipole-allowed transitions with 

significant oscillator strengths for both molecules. Some calculated transitions are dipole-

forbidden with zero dipole moment and not shown in the absorption spectra in Fig. 4.4. However, 

these states play an important role in determining the TPA cross section as the transition symmetry 

is different for the two-photon process. Therefore, all excited states from both dipole-allowed and 

dipole-forbidden transitions were included in the cross section calculations. 

Table 4.1. Transition Energy, Dipole, and Oscillator Strength for the Ten Lowest Singlet 

Transitions of 6T and 18Ta 

 

aES refers to excited state for each transition. 

In Fig. 4.5, TPA cross-sections for 6T and 18T are plotted as a function of pump energy 

ωp. Three cross-sections are presented for each molecule, corresponding to choosing the first three 

excited states as the two-photon excited state. 

 
Figure 4.5. TPA cross section plots for (A) planar 6T, (B) twisted 6T and (C) 18T with three 

lowest excited states chosen as the two-photon excited state. Solid lines and squared dots represent 

cross sections with excited state line widths κj = 0.0 and 0.1 eV, respectively. 

As expected from eq. 4.2, a quadratic relationship between the TPA cross section and ωp is 

observed for both molecules. The quadratic relationship breaks if the intermediate state is resonant 
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for one photon excitation, however this is not the case for the molecules considered in this work. 

For both planar and twisted 6T, the second excited state (ES2), located at 3.08 and 3.52 eV, 

respectively, yields the highest TPA cross-sections when it is chosen as the final state. (24 and 19 

GM at ωp = 3.1 eV for planar and twisted structures, respectively). When ES1 is chosen as the 

final state, the TPA cross-section is smaller by a factor of 4 with a value of 6 GM for the planar 

structure. However, with ES2 as the final state, the TPA cross-section becomes negligible for the 

twisted geometry. Regardless of the structure of 6T, the choice of ES3 as the final state shows a 

minimal effect in the TPA cross-section. For 18T, the highest TPA cross-section is found when 

ES3 is selected as the final state (288 GM at ωp = 3.1 eV). A negligible contribution by ES1 to the 

cross-section is observed, whereas ES2 yields a meaningful cross-section value of 90 GM. Note 

that the states yielding high TPA cross-sections for every molecule are dipole-forbidden for one-

photon transitions as shown in Table 4.1. The symmetry of each transition is visualized as a 

transition density in Fig. 4.11 (SI). Although the transition densities from the ground state (GS) to 

ES1 for both 6T and 18T are localized along a linear dendrimer chain, they are distributed from 

one end of the molecule to the other. However, the two-photon allowed transitions for 6T (GS to 

ES2) are localized around the thiophene dimer moiety at the center, and this decreases the linearity 

of the transition density distribution. For 18T, the transition density is more delocalized over the 

dendrimer complex for two-photon allowed transitions (GS to ES2 and ES3). This analysis 

indicates that assigning the final state for calculating the TPA cross section requires close attention. 

The squared dots in Fig. 4.5 show the trend in the TPA cross section with a finite line width 

value (κj) of 0.1 eV. Surprisingly, no significant difference in the cross-section value with variation 

in κj was observed for any of the cases even though this value is toward the upper limit of typical 

line widths for organic molecules. This is because the energy mismatch Δk
(j) in the denominator of 

the two-photon transition probability (eq. 4.5) is much greater than κj/2 unless a real state exists 

near the one photon energy. This infers that the existence of real states between the ground and the 

final states can impact the TPA cross-section significantly. However, this condition does not apply 

to thiophene dendrimers and many organic chromophores as two-photon allowed states are usually 

higher in energy than the one-photon allowed state by a minimal amount. The TPA cross-section 

values for the experimental excitation energy ωp = 3.1 eV were calculated and are shown in Table 

4.2. The comparison between experiment and theory shows excellent agreement (never worse than 

a factor of 4) for both 6T and 18T. The theoretical values slightly overestimate the TPA cross-
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section, which could arise from a variety of factors including the existence of multiple structural 

conformers, intermolecular interactions, dielectric medium effects, issues with the choice of 

excited state line width, and errors in the SLR-TDDFT results. 

 

Table 4.2. Comparison between Experimental22 and Theoretical TPA Cross Sections for 6T and 

18Ta 

 

a Theoretical cross sections were calculated with ωp = 3.1 eV and κj = 0.0 eV. 

In order to calculate the ETPA cross-section σe, the final states chosen for the TPA cross 

section calculation (Table 4.2) were used. Calculated σe values as a function of the entanglement 

time Te and pump energy ωp are shown as the colormap in Fig. 4.6 for two values of the excited 

state line widths (κj = 0.0 (left) and 0.1 eV (right)). 
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Figure 4.6. ETPA cross section (σe) colormaps as a function of Te (x-axis) and ωp (y-axis) for (A) 

planar 6T (f = ES2), (B) twisted 6T (f = ES2), (C) 18T (f = ES2), and (D) 18T (f = ES3). The 

excited state line width is κj = 0.0 and 0.1 eV for the left and right colormaps, respectively. The 

colormaps are represented in the log scale of σe. 

As reported in previous works,26-28 σe oscillates with Te due to the exponential in the cross 

section expression in eq. 4.8. Since the oscillating nature of this formula originates from 

interference between the nonclassical photons and the electronic states of the molecule, detailed 

analysis of the pattern is desired. For both planar and twisted 6T (Fig. 4.6a-b), one wave dominates 

the oscillation, with small distortions due to interference with other minor features. When the 

geometry is twisted, the ETPA cross-section is attenuated as in the TPA case with shorter 

oscillation periods by 1–2 fs, regardless of Te and ωp. Unlike 6T, multiple waves with slightly 

different oscillation periods are overlapped with each other for 18T with either ES2 or ES3 chosen 

as the final state (Fig. 4.6c-d). The waves interfere all together and result in some irregular local 

maxima and minima in the cross section colormaps. Also, it is clear that longer oscillation periods 
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are observed for 18T than for 6T. This is due to energy mismatch values (Δk
(j)) that are smaller for 

the larger molecule, as will be discussed later in detail. Note that higher ETPA cross-sections are 

obtained with ES2 than ES3 chosen as the final state. This is an unexpected result since the TPA 

cross section is higher by a factor of 3 when ES3 is the final state. Such discrepancy is due to the 

difference in the lifewidth for random and entangled TPA processes. As discussed in 

the Theoretical Details (Chapter 4.3), the line width for the ETPA process is related to the radiative 

emission lifetime of the two-photon excited state, whereas that for random TPA (the 0.1 eV width) 

is assumed independent of the final state. 

Calculated ETPA cross sections as well as line widths for chosen final states are listed 

in Table 4.3. Due to a large variation in the ETPA cross section, we chose local maximum values 

at ∼100 fs and ωp = 3.1 eV in the colormaps for the comparison between experiment and theory. 

 

Table 4.3. Comparison between Experimental and Theoretical ETPA Cross Sections for 6T and 

18Ta 

 

aLocal maximum values at ∼100 fs are chosen at ωp = 3.1 eV in the colormaps in Fig. 4.6. (κj = 

0.0). 

The excited state lifetime values (which determine the line width for ETPA) vary within 

the temporal range from 100 to 1000 μs depending on the choice of the final state. These lifetimes 

are extremely long compared with typical one-photon excited state radiative lifetimes, due to the 

small frequency associated with transition between the intermediate state and the two-photon 

excited state. This is also supported by the obtained line width ratios of the final and the first 

excited states listed in Table 4.3 where we see γf ≪ γ1 which is in line with our assumptions from 

the quantum electrodynamic analysis for the presence of a highly entangled state. The existence 

of a long-lived state excited by the entangled photon pair boosts the cross section significantly 

compared to the unentangled result. For 6T, the lifetime of the entangled two-photon excited state 

(ES2) becomes shorter for the twisted geometry, resulting in a decreased ETPA cross section. It is 



141 
 

noticeable that ES2 results in a higher ETPA cross section than ES3 does for 18T due to the 

significantly longer lifetime value. This emphasizes that both the magnitude of the transition 

matrix element Dab
(j) and the lifetime of the excited state induced by the entangled photons play 

critical roles in determining the ETPA cross-section. 

In addition to the wave-like features of the ETPA cross-section, the dependence of cross 

section on the finite state line width κj is notable. A comparison between the left (κj = 0.0 eV) and 

right (κj = 0.1 eV) colormaps in Fig. 4.6 shows the attenuation of the ETPA cross-section with a 

finite value of κj. Without any changes in the oscillation pattern of the cross-section, only the 

magnitude of the ETPA cross-section decreases for a nonzero κj. This is in contrast to classical 

TPA in which the finite value of κj barely affects the cross-section value. This is because of the 

presence of the dephasing factor in the exponential in eq. 4.8, indicating that the transition 

probability is more sensitive to dephasing of the intermediate states when the two photons 

responsible for excitation are entangled. In addition, the ETPA cross-section further decreases with 

increasing Te for a nonzero κj. This is somewhat intuitive as the dephasing effect becomes more 

significant with increasing temporal coherence between the two photons. The correlation between 

κj and Te in the ETPA cross-section hints that even more detailed information such as vibronic 

features can be obtained using a source with a precise temporal resolution. 

We now analyze the oscillating behavior of the ETPA cross-sections in more detail. 

Specifically, it is essential to understand the relationship between the cross-section behavior and 

the properties of each excited state. To do so, we used the single-state transition probability 

element suggested in eq. 4.6 to distinguish the contribution from different intermediate states in 

the TPA cross-section. Note that we used the classical TPA cross-section values for the state-

resolved analysis to ignore the dependence on the entanglement time and line width of the ETPA 

cross-section. Since the TPA cross-section is proportional to the square of the two-photon 

transition probability, it can be expressed as a double summation over the intermediate states: 

 𝛿𝑟 ∝ 〈𝑆𝑟
2〉 = ∑ 〈𝛽

(𝑗)
𝛽

(𝑘)〉𝑗,𝑘 ∝ ∑ 𝛿𝑟
𝑗𝑘

𝑗,𝑘  (4.23) 

The coupling between two intermediate states is included in the above expression, and a fractional 

TPA cross-section δr
jk is introduced which is dependent on the choice of two intermediate states. 

The fractional TPA cross-section is positive when j = k, but can be negative otherwise. In Fig. 4.7, 

couplings between states |j⟩ and |k⟩ are represented by the fractional TPA cross-section δr
jk in the 

colormaps. Red spots represent the most dominant interstate coupling terms. 
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Figure 4.7. Distributions of fractional TPA cross section, δr

jk, between states |j⟩ and |k⟩ for (A) 

planar 6T (f = ES2), (B) twisted 6T (f = ES2), (C) 18T (f = ES2), and (D) 18T (f = ES3). (κj = 0.0). 

In all cases, the diagonal term involving ES1, δr
11, is the most dominant contributing term 

to the TPA cross-section. In addition, cross coupling terms between ES1 and other states show 

minor contributions to the cross section, as represented with orange and blue spots for positive and 

negative values, respectively. The positive and negative contributions to the cross-section are 

attributed to constructive and destructive interference among states, respectively. Specifically, 

destructive interference is observed if two transition matrix elements have different signs as a 

result of different symmetry. Despite the existence of multiple negative fractional cross-sections 

originating from destructive interference, the sum of all contributions is always positive as a single 

term dominates over the others. This result justifies the approximation of using one or two 

intermediate states in calculating cross-section values. 

The state-resolved analysis also shows how molecular structure and size affect the 

distribution of fractional cross-sections for different states. A comparison between Fig. 4.7A-B 

shows that the δr
11 value for 6T becomes less dominant compared to other fractional cross-sections 
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when the molecule is twisted. This is because the distorted structure results in a weaker transition 

matrix element between GS and ES1 which leads to a lower δr
11 value. For a larger molecular size, 

the distributions of fractional cross-sections for 18T (Fig. 4.7C-D) show that more states are 

involved in the total cross-section as expected from the higher density of states. The choice of 

different final states (ES2 and ES3) yields a similar pattern of fractional TPA cross-sections in 

which ES1 contributes dominantly and ES6 shows minor positive contributions, whereas ES7 and 

ES10 yield minor negative fractional cross-sections. This hints that ES2 and ES3 play similar roles 

as the final state in determining the TPA cross-section in terms of symmetry. However, the 

transition probability from ES1 is higher to ES3 than to ES2 and thereby results in a higher cross-

section. The transition density distributions for the first excitations (Fig. 4.11 (SI)) obviously form 

linearly distributed dipoles along the molecules. However, upper states with zero transition dipole 

moments are centrosymmetric. 

Unlike classical TPA, the fractional ETPA cross-sections provide significant information 

due to their strong oscillation with varying entanglement time. Specifically, different temporal 

behaviors are expected depending on the choice of intermediate states. In analogy to the fractional 

TPA cross-section in eq. 4.23, the fractional ETPA cross section is defined as follows: 

 𝜎𝑒 ∝ 〈𝑆𝑒
2〉 = ∑ 〈𝛽

(𝑗)
𝛽

(𝑘)〉𝑗,𝑘 [1 − 𝑒𝑥𝑝 [−𝑖𝑇𝑒Δ
(𝑗)

−
𝑇𝑒𝜅𝑗

2
]] × [1 − 𝑒𝑥𝑝 [−𝑖𝑇𝑒Δ

(𝑘)
−

𝑇𝑒𝜅𝑘

2
]] 

 ∝ ∑ 𝜎𝑒
𝑗𝑘

𝑗,𝑘  (4.24) 

In Fig. 4.8, total and fractional ETPA cross-sections for 6T and 18T are plotted as a function 

of Te for ω = 3.1 eV and κ = 0.0 eV. 
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Figure 4.8. ETPA cross section plots for ωp = 3.1 eV and κj = 0.0 eV for (A) planar 6T (f = ES2), 

(B) twisted 6T (f = ES2) and (C) 18T (f = ES2), and (D) 18T (f = ES3). Bold black curve: total σe, 

bold blue curve: major σe
jk, blue dashed curve: minor positive σe

jk, and red dashed curve: absolute 

value of minor negative σe
jk. The unit of σe is cm2 and the y-value is plotted in a log scale for σe. 

A careful look at the peaks and dips of the total cross-section (bold black curves) indicates 

that a single wave dominates the behavior of the total ETPA cross-section, with minor interference 

with other small waves. As is the case with classical TPA, σe
11 (blue bold curves) is the most 

dominant fractional cross-section for both 6T and 18T. Therefore, the oscillation period of the total 

ETPA cross section can be approximated to that of σe
11. When the coupling states are identical (|j⟩ 

= |k⟩), the fractional ETPA cross-section can be written as follows: 

 𝜎𝑒
𝑗𝑗

∝ 〈𝛽
(𝑗)2〉 [1 + 𝑒−𝑇𝑒𝜅𝑗 − 2𝑒−𝑇𝑒𝜅𝑗/2𝑐𝑜𝑠(𝑇𝑒Δ𝑘

(𝑗)
)] (4.25) 

According to eq. 4.25, the cross section oscillates with a period of 2π/Δk
(j). As discussed in Fig. 

4.6, the ETPA cross sections oscillate with shorter periods for 6T than for 18T. The calculated 

periods with j = ES1 are 19 and 17 fs for planar and twisted 6T, respectively. (Fig. 4.8A-B) 
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However, longer periods of oscillation with a value of 30 fs are observed for 18T when either ES2 

or ES3 is chosen as the final state. (Fig. 4.8C-D) Although the oscillations in total cross sections 

are dominated by a single state, attenuation of the peak intensities is observed due to multiple 

minor contributions. Thus, we expect the peaks and dips in the ETPA cross-section as a function 

of Te to be less sharp as the size of the molecule increases. The dependence of the ETPA 

oscillations on the excited state line widths κj is even more dramatic. In Fig. 4.12 (SI), ETPA cross-

sections are plotted as a function of Te with κj = 0.1 eV. The dephasing in the excited states leads 

to a decrease in the coherence between the entangled photons and the electronic states. Therefore, 

oscillations in the ETPA cross-section become featureless with increasing entanglement time. As 

the amount of coherence between the photonic and electronic states diminishes, the magnitude of 

the transition matrix elements dominates in determining the ETPA cross-section, approaching the 

classical limit. Here we conclude that the increased molecular size and broader state line width can 

lead to decreased coherence in the ETPA process. In addition, any factors that increase the degrees 

of freedom of the molecule such as vibronic coupling, interactions with surrounding medium, and 

intermolecular interaction are likely to result in further decoherence. Experimentally, the 

dependence of the ETPA cross-section on Te is poorly studied due to technical limitations. Further 

experimental improvements with a better temporal resolution will offer detailed information 

regarding the relationship between the ETPA cross-sections and the electronic structure of a 

molecule. 

 

4.6 Conclusions 

In summary, we developed a new theoretical method for calculating TPA and ETPA cross-sections 

for relatively large organic chromophores and have used it to provide a quantitative interpretation 

of TPA/ETPA measurements. The second linear response TDDFT method was used to efficiently 

calculate the transition dipoles and excitation frequencies for the dominant excited states that 

correspond to absorption of the first or second photon. For both unentangled TPA and ETPA, the 

calculated cross-sections were in good agreement with previously determined experimental values. 

A new feature in this work is that we use the radiative lifetime of the two-photon excited state to 

define the line width used in calculating the ETPA cross section. We justify this result by 

examining the interaction of an entangled photon pair with a three level system, showing that the 

two-photon radiative lifetime defines the entangled line shape as long as this lifetime is much 



146 
 

longer than the intermediate state lifetime. The difference between the radiative lifetime of the 

entangled and unentangled states plays a major role in making the ETPA cross-section many orders 

of magnitude larger than the TPA result. Finally we have examined the role of each intermediate 

state in the TPA and EPTA cross-sections. This shows that various factors including molecular 

size, shape, excited state line width, and the choice of the excited state can affect oscillation 

patterns in the ETPA cross-section. Such factors can be studied by resolving the ETPA cross-

section into two components: one related to the contribution of transition probabilities which scales 

with the TPA cross section, and one which scales with the two-photon radiative lifetime. Our 

results in this work show that the first term grows larger with increasing molecular size, but in 

general the second one shows a nonsystematic variation with molecular size. This conclusion 

indicates that in future work it will be important to search for rules governing the radiative lifetimes 

of two-photon excited states. In conclusion, our study successfully provides a pathway to interpret 

the interaction between entangled photons and relatively large molecules, which is of relevance to 

a number of chemical applications related to quantum light. 
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4.7 Supporting Information 

Here we consider the quantum electrodynamics of two-photon emission, rather than 

absorption, with the goal of determining parameters of the three-level model that leads to the 

generation of highly entangled photons. In the cascade emission model, we define the excited 

molecule as a three-level system (see Fig. 4.9) generating a photon pair as a result of cascading 

from excited state |e> through the intermediate state |m> and to the ground state |g>. The molecule 

is initially excited at t = 0 to the top level |e>  with the energy ħ(ωα + ωβ) and width γα which means 

it can stay on this state for a duration of γα
-1. 

 
Figure 4.9. Three-level configuration used for the observation of two-photon cascade emission. 

 

For the two-photon emission process, the molecule is in the excited state |ei and the field 

modes are in the vacuum state |0> at t = 0. Then the state vector of the molecule-field system can 

be described by: 

 |𝜓(𝑡)⟩ = 𝜂𝑒(𝑡)|𝑒; 0⟩ + ∑ 𝜂𝑚.𝑘(𝑡)|𝑚; 1𝑘⟩𝑘 + ∑ 𝜂𝑔;𝑘𝑞(𝑡)|𝑔; 1𝑘 , 1𝑞⟩𝑘𝑞  (4.26) 

where the symbol |1k, 1q> represents the tensor product |1k> ⊗ |1q>  of two single-photon states in 

the frequency mode ωk(q) of a subsystem α (or β) with the probability amplitude of η(ωk, ωq) ≡ ηkq. 
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We can determine the states of the molecule and the radiation field at time t when the molecule 

starts to emit photons following Weisskopf-Wigner theory. By substituting eq. 4.26 into the time-

dependent Schrödinger equation, the following equations of motions for the probability amplitudes 

ηe, ηm,k, and ηg.k.q are obtained: 

�̇�𝑒 = −𝑖 ∑𝑔𝛼𝑘
𝜂𝑚.𝑘𝑒

𝑖(𝜔𝛼−𝜔𝑘)𝑡

𝑘

 

�̇�𝑚,𝑘 = −𝑖𝑔𝛼𝑘
𝜂𝑒𝑒

−𝑖(𝜔𝛼−𝜔𝑘)𝑡 − 𝑖 ∑𝑔𝛽𝑞
𝜂𝑔,𝑘𝑞𝑒

𝑖(𝜔𝛽−𝜔𝑞)𝑡

𝑞

 

 �̇�𝑔,𝑘𝑞 = −𝑖𝑔𝛽𝑞
𝜂𝑚.𝑘𝑒

−𝑖(𝜔𝛽−𝜔𝑞)𝑡 (4.27) 

With an assumption that the modes of the field are closely spaced in frequency, we can replace the 

summation over k and q with an integral: 

 ∑ →𝑘 2
𝑉

(2𝜋)3
∫ 𝑑𝜙 ∫ 𝑠𝑖𝑛𝜃𝑑𝜃 ∫ 𝑘2𝑑𝑘

∞

0

𝜋

0

2𝜋

0
 (4.28) 

The radiative decay constants are determined according to Fermi’s golden rule: 

𝛾𝛼 =
Γ𝛼

2
=

4𝜔𝛼
3𝜇𝑒𝑚

2

3ℏ𝑐3
 

 𝛾𝛽 =
Γ𝛽

2
=

4𝜔𝛽
3𝜇𝑚𝑔

2

3ℏ𝑐3  (4.29) 

Solving the integration implied by eq. 4.261,2 one obtains the probability amplitudes as follows: 

 𝜂𝑚,𝑘(𝑡) = −𝑔𝛼,𝑘
𝑒−𝑖(𝜔𝑘−𝜔𝛼)𝑡−𝛾𝛼𝑡−𝑒

−𝛾𝛽𝑡

(𝜔𝑘−𝜔𝛼)+𝑖(𝛾𝛼−𝛾𝛽)
 (4.30a) 

 𝜂𝑔,𝑘𝑞(𝑡) =
𝑔𝛼,𝑘𝑔𝛽,𝑞

(𝜔𝑘−𝜔𝛼)+𝑖(𝛾𝛼−𝛾𝛽)
{
1−𝑒−𝑖(𝜔𝑘−𝜔𝛼)𝑡−𝛾𝛼𝑡

𝜔𝑞−𝜔𝛽+𝑖𝛾𝛽
−

1−𝑒
𝑖(𝜔𝑘+𝜔𝑞−𝜔𝛼−𝜔𝛽)𝑡−𝛾𝛼𝑡

𝜔𝑘+𝜔𝑞−𝜔𝛼−𝜔𝛽+𝑖𝛾𝛼
} (4.30b) 

The first term in eq. 4.30b is dominated by γβ, which is related to the unentangled 

component of the evolution with a fast decay rate. As time proceeds the second term in eq. 4.30b, 

controlled by γα, dominates the probability amplitude. In fact this term shows how the ground state 

population amplitude rises up with time as is determined by e−γαt. We may simplify the two-photon 

state in the long time limit (t >> γα
-1, γβ

-1): 

 |𝐼𝐼, 𝐶𝑎𝑠⟩ = ∑ 𝜂𝑐𝑎𝑠|1𝑘, 𝛼; 1𝑞 , 𝛽⟩𝑘𝑞  (4.31) 

where both ηm,k(t) and ηe(t) are zero and we used ηcas = ηg,k,q(∞). Recall that for a linearly polarized 

field E(+)(ri, ti) = ∑k ake
-iωkti+ik·ri, the second order correlation function for the two-photon process 

is recast as: 
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 𝐺(2)(𝑡, 𝜏) = ⟨𝐼𝐼, 𝐶𝑎𝑠|𝐸(−)(𝜏)𝐸(−)(𝑡)𝐸(+)(𝑡)𝐸(+)(𝜏)|𝐼𝐼, 𝐶𝑎𝑠⟩ 

= ∑⟨𝐼𝐼, 𝐶𝑎𝑠|𝐸𝛼
(−)

(𝜏)𝐸𝛽
(−)

(𝑡)|{𝑛}⟩ ⟨{𝑛}|𝐸𝛼
(+)

(𝑡)𝐸𝛽
(+)

(𝜏)|𝐼𝐼, 𝐶𝑎𝑠⟩

{𝑎}

 

 = ⟨𝐼𝐼, 𝐶𝑎𝑠|𝐸𝛼
(−)

𝐸𝛽
(−)

|0⟩ ⟨0|𝐸𝛼
(+)

𝐸𝛽
(+)

|𝐼𝐼, 𝐶𝑎𝑠⟩ (4.32) 

Here a complete set of states n is used, but only the vacuum state survives while the others lead to 

zero. Using the two-photon wave function introduced earlier in eq. 4.31 and defining:1 

 Ψ(2)(𝑡, 𝜏) = ⟨0|𝐸𝛼
(+)

(𝑡)𝐸𝛽
(+)

(𝜏)|𝐼𝐼, 𝐶𝑎𝑠⟩ 

 = ∑ 𝜂𝑐𝑎𝑠𝑒
−𝑖𝜔𝑘𝜏−𝑖𝜔𝑞𝑡

𝑘𝑞  

 = −
2𝐿√𝛾𝛼𝛾𝛽

𝑐
𝑒−(𝑖𝜔𝛼+𝑖𝜔𝛽+𝛾𝛼)𝜏Θ(𝜏)𝑒−(𝑖𝜔𝛽+𝛾𝛽)(𝑡−𝜏)Θ(𝑡 − 𝜏) (4.33) 

and substituting the above result into eq. 4.32, we obtain following correlation function: 

 𝐺(2)(𝑡, 𝜏) = |Ψ(2)(𝑡, 𝜏)|
2
=

4𝐿2𝛾𝛼𝛾𝛽

𝑐2 Θ(𝑡)Θ(𝑡 − 𝜏)𝑒−2𝛾𝛼𝜏𝑒−2𝛾𝛽(𝑡−𝜏) (4.34) 

For a bipartite system, the correlation between parts can be determined by following the 

normalized cross temporal correlation function: 

 𝑔𝑥
(2)(𝑡, 𝜏) =

⟨𝐼𝐼, 𝐶𝑎𝑠|𝐸𝛼
(−)

(𝜏)𝐸𝛽
(−)

(𝑡)𝐸𝛼
(+)

(𝑡)𝐸𝛽
(+)

(𝜏)|𝐼𝐼, 𝐶𝑎𝑠⟩

⟨𝐼𝐼, 𝐶𝑎𝑠|𝐸𝛼
(−)

(𝑡)𝐸𝛼
(+)

(𝑡)|𝐼𝐼, 𝐶𝑎𝑠⟩⟨𝐼𝐼, 𝐶𝑎𝑠|𝐸𝛽
(−)

(𝑡)𝐸𝛽
(+)

(𝜏)|𝐼𝐼, 𝐶𝑎𝑠⟩
 

 ≈ 𝛾𝛼𝛾𝛽 (
𝛾𝛽

𝛾𝛼
− 1)Θ(𝑡)Θ(𝑡 − 𝜏)𝑒−2𝛾𝛼𝜏𝑒−2𝛾𝛽(𝑡−𝜏) (4.35) 

A Fourier transform of the above equation leads to: 

 𝑔𝑥
(2)(𝜔) ≈ 𝛾𝛼𝛾𝛽 (

𝛾𝛽

𝛾𝛼
− 1)

1

(𝜔−𝜔𝛼−𝜔𝛽)
2
+𝛾𝛼

2
×

1

(𝜔−𝜔𝛽)
2
+𝛾𝛽

2
 (4.36) 

As a result, we obtain the final expression for gx
(2)(t, τ) assuming double resonance; ∆ = 

|ωα − ω1| ≅ |ωβ − ω2| → 0. The correlation function, which gives the characteristic width of the 

frequency anticorrelation, is equal to γα. The spectra associated with gx
(2) are plotted in Fig. 4.10 

using the calculated values for the molecules of interest in the main manuscript. Note that two 

sharp peaks arise due to the presence of two Lorentzians in the expression. Each peak represents 

the detection of one and two emitted photons where the width corresponding to the two-photon 

process is much narrower than that of the one-photon process. Here γα can be interpreted as a width 

factor while it is the emission rate of the first photon. Then it is convincing to say that the light 
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emission is dominated by γα as long as γα << γβ. Thus γα is the linewidth factor associated with 

emission of two highly entangled photons. 

 
Figure 4.10. Second order frequency correlation function gx

(2)(ω) in the emission process. In these 

set of calculations, we used the values in Table 4.1 and 4.3 in the main text for the excitation 

energies (ωα, ωβ). For planar 6T, twisted 6T and 18T (f = 2 and 3) γα = 0.001, 0.0057, 0.0011, 

0.012 MHz, and γβ = 1.6, 1.8, 1.9, 1.9 MHz respectively. 
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Figure 4.11. Transition density plots for planar 6T (top), twisted 6T (middle), and 18T (bottom) 

of three lowest singlet transitions calculated using LR-TDDFT. 
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Figure 4.12. ETPA cross section plots at ωp = 3.1 eV and κj = 0.1 eV for (A) planar 6T (f = ES2), 

(B) twisted 6T (f = ES2) and (C) 18T (f = ES2), and (D) 18T (f = ES3). Bold black curve: total σe, 

bold blue curve: major σe
jk, blue dashed curve: minor positive σe

jk, and red dashed curve: absolute 

value of minor negative σe
jk. The unit of σe is cm2 and the y-value is plotted in a log scale of σe. 
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CHAPTER 5 

Modern Anesthetic Ethers Demonstrate Quantum Interactions with Entangled Photons 

 

The work in this chapter was published as the journal article: 

Burdick, R. K.; Villabona-Monsalve, J. P.; Mashour, G. A.; Goodson, T., Modern Anesthetic 

Ethers Demonstrate Quantum Interactions with Entangled Photons. Scientific Reports 2019, 9 

(1), 11351. 

Modifications have been made for the style and content of this dissertation. References and 

supporting information for the manuscript are included in this chapter. 

 In this chapter, I performed the experimental measurements of the UV-vis spectra, linear 

fluorescence spectra, entangled photon transmission measurements, and classical TPA 

measurements of the ethers and standards. I also performed the electronic structure calculations 

that estimated the energies of the ethers’ excited states. I provided the analysis and discussion of 

the implications of the halogenated anesthetic ethers being sensitive to the entangled but not the 

classical photons, and diethyl ether not being sensitive to either type of photons. 

 

5.1 Abstract 

Despite decades of research, the mechanism of anesthetic-induced unconsciousness 

remains incompletely understood, with some advocating for a quantum mechanical basis. Despite 

associations between general anesthesia and changes in physical properties such as electron spin, 

there has been no empirical demonstration that general anesthetics are capable of functional 

quantum interactions. In this work, we studied the linear and non-linear optical properties of the 

halogenated ethers sevoflurane (SEVO) and isoflurane (ISO), using UV-Vis spectroscopy, time 

dependent-density functional theory (TD-DFT) calculations, classical two-photon spectroscopy, 

and entangled two-photon spectroscopy. We show that both of these halogenated ethers interact 

with pairs of 800 nm entangled photons while neither interact with 800 nm classical photons. By 

contrast, nonhalogenated diethyl ether does not interact with entangled photons. This is the first 
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experimental evidence that halogenated anesthetics can directly undergo quantum interaction 

mechanisms, offering a new approach to understanding their physicochemical properties. 

 

5.2 Introduction  

Inhalational anesthetics were first used more than 170 years ago, when simple aliphatic 

ethers, such as diethyl ether, were commonly used to induce unconsciousness. Most inhalational 

anesthetics in clinical use today are halogenated ethers, such as sevoflurane (SEVO) and isoflurane 

(ISO), which can be considered derivatives of the anesthetic diethyl ether. To date, a description 

of the mechanism of anesthetic-induced unconsciousness has been approached from the 

perspective of classical chemistry interactions between anesthetics and neuronal compounds on 

the macroscopic level.1 This approach has shown how anesthetics can target particular proteins 

and protein-based compounds to manipulate the conformation of these compounds found in 

neurochemical synapses, leading to changes in the chemical potential of the surrounding 

environment. However, other studies have suggested that anesthetics may undergo a quantum 

interaction mechanism to induce unconsciousness,2-5 but—unlike the foundational empirical 

studies identifying binding between anesthetics and protein targets—it is unclear if general 

anesthetics can interact directly with quantum systems, including those involving long-distance 

entanglement. In order for a quantum interaction mechanism to be possible, two initial conditions 

would have to be met: 1) the anesthetic molecules must have the ability to target particles much 

smaller than the macroscopic compounds previously studied, as only atomic and subatomic 

particles will strongly adhere to the unique behaviors of quantum mechanics; and 2) the 

interactions cannot be explained using classical mechanics. Two previous studies have shown how 

quantum properties may play a role in anesthetic-induced unconsciousness. Turin et al.6 reported 

electron spin changes in fruit flies that occurred after they were given anesthetics and Li et al.7 

reported that xenon isotopes without nuclear spin were more potent anesthetics than isotopes with 

nuclear spin. Although both of these studies indirectly suggest that quantum mechanics might 

relate to the mechanism of general anesthesia, neither study investigated whether anesthetics could 

directly interact with a quantum system.  

Previous physical, pharmacological, and neuroscientific studies have not been able to 

describe completely the mechanism of anesthetic action for SEVO and ISO. Despite studies of 

SEVO’s and ISO’s NIR/IR optical properties8-17 as well as ground state chemical structures and 
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properties,10,18-29 very little is known about their linear and nonlinear optical properties in the 

visible and UV light range and their excited state electronic properties. Although the optical 

properties of anesthetics have not been studied in an attempt to understand their ability to change 

neuronal functioning and induce unconsciousness, spectroscopy experiments have been completed 

on neurons to produce action potentials using only light. Hirase et al.30 used high intensity pulsed 

IR light to trigger action potentials in pyramidal neurons. Although this experiment with high 

energy laser light damaged the cells, Wells et al.31 performed a similar experiment using IR light 

with much lower incident laser power and triggered action potentials in neurons in vivo, attributed 

to a photothermal effect32, without damaging the cells. The low light intensity required to trigger 

the action potentials shows the high sensitivity of neurons to light. In addition to these experimental 

light sources, biophotons, i.e. light emitted by cells during specific metabolic processes,33 have 

been identified in neural tissue and hypothesized as auxiliary carriers in neuronal information 

transfer.34-38  Thus, the study of photons is justified in the context of neural function and anesthetic-

induced disruption of information processing 

In this study we investigated the direct interaction between anesthetics and a quantum 

system using entangled two-photon spectroscopy. This spectroscopy technique utilizes pairs of 

photons whose quantum states are strongly correlated such that they must be treated as one body 

(i.e., they are entangled). The interaction mechanisms of a molecule with entangled photons vs 

classical photons are different, as shown in previous work by Lee et al39. Therefore, both 

interaction processes must be investigated for a complete understanding of the optical properties 

of the molecule. Using 800 nm photons in a classical two-photon spectroscopy experiment, neither 

SEVO nor ISO interacted with the classical photons despite using very high light intensity (i.e. 

large number of photons) in our experiment. However, SEVO and ISO did interact with the 800 

nm entangled photons at extremely low light intensity. By contrast, diethyl ether (a nonhalogenated 

ether used for reference) did not, showing a unique and unexpected sensitivity to a quantum 

correlated system in association with halogenation. 

 

5.3 Methods 

5.3.1 Computational methods 

Ground state and first excited state electronic structure calculations were completed 

using GAMESS.40 Optimization of ground state geometries and calculation of molecular 
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orbitals were completed with DFT using the B3LYP functional and 6-311+G(2d,p) basis set. 

A previous study confirmed the accuracy of this functional and basis set for SEVO and another 

halogenated ether, halothane.27 We compared our optimized geometries, ground state dipole 

moments, and molecular orbitals with previous studies to confirm the accuracy of our 

calculations.18,20-22,27,41 Images of molecular orbitals in the supporting information were 

created using wxMacMolPlt.42 Electronic properties of the first excited state, including the 

excitation energy, transition dipole moment, oscillator strength, and TPA cross-section, were 

completed with TD-DFT using the same functional and basis set. 

 

5.3.2 Materials 

Sevoflurane (C4H3F7O) and isoflurane (C3H2ClF5O) were obtained commercially and 

used without further purification methods. No impurities were found in their respective mass 

spectra (See supporting information). HPLC grade methanol (≥ 99.9 %) and diethyl ether (≥ 

99.9 %) were obtained from Sigma-Aldrich and used as received. 

 

5.3.3 Steady-state spectroscopy 

UV-Vis absorption spectra (190 – 900 nm) were measured on an Agilent 8432 

UV−visible spectrometer. Fluorescence spectra were collected on a Varian Cary Eclipse 

fluorimeter. 1.0 cm pathlength quartz cuvettes were used for all measurements. 

 

5.3.4 Classical two-photon excited fluorescence (TPEF) 

The two-photon excited fluorescence technique43,44 was used for the classical two-

photon experiments. Our experimental setup has been described elsewhere.45,46 In brief, the 

pure liquid (or a liquid solution of the compound of interest) contained in a 1 cm path length 

quartz cuvette is excited with the output beam of a Ti:Sapphire femtosecond pulsed laser 

(KMLabs, 800 nm, Δt ~30 fs) with a 80 MHz repetition rate. The fluorescence emission was 

collected at 90° angle to the excitation beam. Fluorescence emission at a selected wavelength 

was detected using a monochromator (ORIEL, Cornerstone 130) and a photomultiplier tube 

(Hamamatsu). The power of the 800 nm excitation beam was changed by using a variable 

neutral density filter.  

 

https://pubchem.ncbi.nlm.nih.gov/search/#collection=compounds&query_type=mf&query=C4H3F7O&sort=mw&sort_dir=asc
https://pubchem.ncbi.nlm.nih.gov/search/#collection=compounds&query_type=mf&query=C3H2ClF5O&sort=mw&sort_dir=asc
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5.3.5 Entangled two-photon spectroscopy 

The entangled two-photon spectroscopy technique has been previously 

described.39,47,48,45 A sketch of the experimental setup used in this work is presented in Figure 

5.1. Orthogonally polarized entangled photon pairs were generated by the spontaneous 

parametric down-conversion (SPDC) process. A 0.5 mm BBO (β-Barium Borate) crystal (type 

II) is pumped with the second harmonic generation (SHG) beam, 400 nm, of a Ti:Sapphire 

pulsed laser emitting ~70 fs pulses (MaiTai, Spectra Physics). Entangled photon intensity is 

varied by changing the pump power on the SPDC crystal with a variable neutral density filter. 

Transmitted entangled photons are focused onto an avalanche photodiode (SPCM-AQR13, 

Perkin Helmer). Fig. 5.1 shows the complete set-up, previously shown by Harpham et al.48 

 

 
Figure 5.1. Experimental setup used for entangled two-photon spectroscopy. 

 

5.4 Results 

5.4.1 Linear optical properties 

Previous studies of steady-state UV absorption of SEVO and ISO were completed in 

the gas phase.49,50 It was stated that SEVO did not have any absorption above 200 nm, and no 

absorption spectrum was shown.49 ISO had an UV absorption onset at 215 nm and continued 

to increase down to 200 nm,49 with another report showing the UV absorption continuing to 

increase down to 120 nm.50 To the best of our knowledge, the UV absorption spectra for SEVO 

and ISO in Fig. 5.2 are the first reported absorption spectra for ISO in the liquid phase and for 
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SEVO in any phase. The absorption spectrum for diethyl ether, an aliphatic ether with a similar 

structure as SEVO and ISO, is shown for comparison. Fig. 5.2 also shows the emission spectra 

of SEVO and ISO when excited at their respective λmax (while 190 nm may not be the true λmax 

of liquid SEVO, it was the lowest wavelength available from our spectrophotometer and thus 

treated as λmax for emission experiments). The emission spectrum for diethyl ether, excited at 

210 nm, is also shown for comparison. 

 
Figure 5.2. UV absorption and emission spectra of sevoflurane, isoflurane and diethyl ether in 

liquid phase. 

 

The absorption spectrum for ISO peaks at 200 nm, the same as diethyl ether, while the 

absorption spectrum of SEVO is blue-shifted and continues to increase down to 190 nm 

without peaking. No absorption was shown for either compound above 270 nm. Previous 

studies have shown that fluorinated ethers have an UV absorption that is blue-shifted relative 

to aliphatic ethers51,52, as we see when comparing SEVO to diethyl ether in Fig. 5.2. However, 

the fluorinated ether ISO, which also contains a chlorine atom, is not blue-shifted from diethyl 

ether at all. Although diethyl ether shows broad emission from ~270 nm to beyond 400 nm, 
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peaking around 310 nm (which corresponds well with a previous study that reported an 

emission peak around 306 nm53), neither SEVO nor ISO show any emission above background 

noise. 

 

5.4.2 Ground and first excited state electronic properties 

Ground and first excited state electronic structure calculations were completed for 

SEVO and ISO to explain the linear optical properties in Fig. 5.2. In order to understand the 

effect that the halogens in SEVO and ISO have on the molecular orbitals and energy levels, 

calculations were also completed for aliphatic ethers that have the same structure as the 

halogenated ethers but with all halogens replaced with hydrogens. The aliphatic parent ether 

of SEVO is methyl isopropyl ether and that of ISO is ethyl methyl ether. The results of the TD-

DFT calculations for the ground-state-to-excited-state transitions in all four molecules are 

summarized in Table 5.1. Results for diethyl ether are also shown to compare with the 

experimental linear optical properties obtained in Fig. 5.2. 

 

Table 5.1. TD-DFT/B3LYP/6-311+G(2d,p) calculations for SEVO, ISO, their aliphatic parent 

ethers (methyl isopropyl ether and ethyl methyl ether, respectively), and diethyl ether. 

Compound 

S0 → S1 

excitation 

energy 

(eV / nm) 

HOMO-

LUMO 

gap 

(eV) 

S0 → S1 

transition 

dipole 

moment 

(D) 

S0 → S1 

oscillator 

strength 

Permanent 

dipole 

moment 

(D) 

methyl isopropyl ether 6.307 / 196.6 7.185 0.6318 0.0096 1.2974 

SEVO 8.339 / 148.7 9.290 0.6905 0.0151 2.2638 

ethyl methyl ether 6.368 / 194.7 7.313 0.9523 0.0219 1.2461 

ISO 6.923 / 179.1 8.324 0.2374 0.0015 1.8675 

diethyl ether 6.343 / 195.5 7.268 0.8621 0.0179 1.1498 

 

Similar to the observed blue-shift for SEVO (compared to diethyl ether) in the UV 

absorption spectra in Fig. 5.2, the TD-DFT results in Table 5.1 also show a blue-shift for SEVO 

in the first excitation energy, corresponding to the ground state (S0) to first excited state (S1) 

transition, compared to its aliphatic parent ether, methyl isopropyl ether. A similar blue-shift 

is observed in ISO compared to its aliphatic parent ether, ethyl methyl ether, though the shift 

(+0.555 eV) is not as large as compared to SEVO’s blue-shift (+2.032 eV). This correlates well 

with our UV absorption spectra in Fig. 5.2, where SEVO has a large blue-shift compared to 
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the aliphatic ether while ISO has little to no blue-shift. This difference between SEVO and ISO 

is most likely due to the different characteristics of their HOMOs, shown in Fig. 5.3. The 

HOMO for SEVO is located predominantly on the oxygen lone pairs, while that of ISO is 

located predominantly on the chlorine lone pairs. 

 

Figure 5.3. HOMO for a) SEVO, and b) ISO. Isosurface values were chosen such that only 

the most predominant location of each orbital is shown in order to identify the character of the 

HOMO. 

 

The excitation wavelength for SEVO in Table 5.1 (148.7 nm) shows why λmax is not 

seen in the UV absorption spectrum in Fig. 5.2, since the calculated energy to the first excited 

state in SEVO requires a wavelength beyond the limits of our spectrophotometer. The 

wavelength of the first excitation energy in Table 5.1 for diethyl ether (195.5 nm) corresponds 

very well with the peak in the absorption spectrum for diethyl ether in Fig. 5.2 (200 nm), thus 

confirming the accuracy of our electronic structure calculations. The calculated permanent 

dipole moments are also very close to literature values for diethyl ether,41 SEVO,18,20,21,27 and 

ISO.22 Additional electronic structure calculation results for molecular orbitals are provided in 

supporting information. 

 

5.4.3 Nonlinear optical properties 

Since the absorption spectra in Fig. 5.2 and the theoretical calculations in Table 5.1 

show that the first excited electronic state for both SEVO and ISO is below 200 nm, neither 
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compound was expected to have a two-photon interaction with 800 nm photons through 

nonlinear optical processes. The classical two-photon interaction properties of pure SEVO and 

pure ISO were tested by measuring the two-photon excited fluorescence (TPEF) using 800 nm 

incident light. The results are shown in the inset of Fig. 5.4, using Coumarin 153 as a standard. 

The entangled two-photon interaction properties of pure SEVO and pure ISO were 

studied next, also using 800 nm incident light. The results are shown in Fig. 5.4, using ZnTPP 

as a standard. In our entangled two-photon experiments, the transmission of the entangled 

photons through a blank (solvent) is compared with the transmission through the sample 

(SEVO and ISO). Any difference between the transmission intensities is due to an interaction 

between the sample and entangled photons. 

 

Figure 5.4. Entangled photon interaction rate per molecule vs input photon rate for sevoflurane 

and isoflurane, with ZnTPP used as a standard. Classical two-photon results for sevoflurane 

and Coumarin 153 as a standard are shown in the inset. Error bars were calculated first for the 

sample and solvent transmission scans separately using the percent standard deviation of 50 

single photon count measurements for toluene (a non-interacting solvent) at 4 different incident 

laser powers. This error was then propagated to calculate the interaction signal error bars. 
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As expected for the classical two-photon experiment, seen in the inset of Fig. 5.4, 

neither SEVO nor ISO interacted with the 800 nm light. Coumarin 153, used as a standard, 

showed the expected quadratic dependence of TPEF on the input photon flux, validating our 

experimental method. Surprisingly, the entangled two-photon experiment did show interaction 

with the 800 nm entangled photons for the SEVO and ISO solutions, seen in Fig. 5.4. The log 

scale of the y-axis in Fig. 5.4 (entangled photon interaction rate per molecule) shows that 

SEVO and ISO yielded entangled two-photon interaction signals that are 5 and 6 orders of 

magnitude smaller than that of the standard, ZnTPP, respectively. The difference in signal 

intensity between the anesthetics and ZnTPP is expected since the molecules undergo different 

interaction mechanisms, shown in Fig. 5.5. 

 

Figure 5.5. Comparison of interaction mechanisms using entangled photons: a) absorption 

transitions resonant with excited electronic states, seen in ZnTPP; b) far-off-resonant 

interactions yielding no electronic excitation, seen in SEVO and ISO. 

 

For chromophores that can absorb light at 400 nm, like ZnTPP, the two 800 nm photons 

are resonant with a real, excited electronic state in the molecule, seen in Fig. 5.5a. When the 

incoming entangled photons are resonant with a real eigenstate, the molecule can interact with 

the photons through two pathways (as explained in previous work47,48): 1) the virtual state 

pathway, where the light can create a coupling with an intermediate virtual state, and the 
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molecule will absorb the two photons in a two-step transition through that virtual state; 2) the 

permanent dipole pathway, where the light can create a coupling between the permanent 

dipoles of the ground and excited electronic state, and the molecule will absorb the two photons 

simultaneously. The probability of the virtual state pathway is inversely proportional to the 

detuning energy of the virtual state, i.e. the difference in energy between the virtual state and 

the real eigenstates in the molecule. Since this detuning energy is usually quite large (~12,500 

cm-1), the virtual state pathway has a low probability; but the higher probability of the 

permanent dipole pathway leads to a large optical signal, as seen in many chromophores 

studied previously39,45,47,49,50, including ZnTPP. 

For SEVO and ISO, the 800 nm entangled photons are far-off-resonance with the first 

excited electronic state, shown in Fig. 5.5b. Because the energy difference between the 

photons’ combined energy and the first electronic excited state is ~25,000 cm-1, a two-photon 

absorption mechanism, like that seen in ZnTPP, is impossible. Fig. 5.5b shows two other 

possible ways that SEVO and ISO may interact with the entangled photons. The first photon 

must create a coupling with a virtual state. The second photon can then induce a stimulated 

one-photon scattering back to the ground state, or it can create a coupling with a second virtual 

state and induce a two-photon scattering. As explained above, these virtual state couplings are 

very weak because the detuning energy with real eigenstates is very small, particularly in 

SEVO and ISO which will have detuning energies twice as large as that for ZnTPP. These 

large detuning energies make either of the mechanisms in Fig. 5.5b have a very low probability, 

so any optical signal seen through these mechanisms will be extremely small. As expected, the 

entangled two-photon interaction signal for SEVO and ISO are 5 and 6 orders of magnitude 

smaller than the signal from ZnTPP, respectively. 

In order for SEVO and ISO to have a nonlinear interaction with the entangled photons 

as described in Fig. 5.5b, the ethers must have vibrational modes that are active to these 

nonlinear interactions. To confirm this, we analyzed the neat liquids with Raman spectroscopy, 

particularly in the low frequency shift “fingerprint” region, with spectra shown in Fig. 5.6.  
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Figure 5.6. Raman spectra of SEVO, ISO, and diethyl ether with excitation of 785 nm. 

 

Both SEVO and ISO have many Raman-active modes in the low frequency shift region, 

unlike diethyl ether shown for comparison. Another experimental study15 has previously 

shown SEVO and ISO to have active modes in coherent anti-Stokes Raman scattering (CARS), 

another nonlinear interaction mechanism. While our Raman study and the CARS study15 used 

classical photons, it has already been shown theoretically that entangled photons can be used 

to induce Raman and other nonlinear interactions.56,57 Additionally, it has already been shown 

experimentally by Upton et al.47 that the use of entangled photons for nonlinear interactions 

can offer an enhancement in the signal compared to using classical photons. Our experimental 

results show a similar result: since the entangled photon experiment shows an interaction signal 

while the classical photon experiment does not show a signal, SEVO and ISO gain an 

enhancement in their interaction with the use of entangled photons, suggesting that the two 

anesthetics have a preference for interacting with the quantum system of photons as opposed 

to the classical system of photons. 
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Because the experiment is extremely sensitive and can measure very small signals, it 

is important to ensure that the signal we measure is from SEVO and ISO, not any impurity that 

may be in the sample. Both neat SEVO and neat ISO were analyzed using mass spectrometry. 

The mass spectra, shown in the supporting information, were compared with literature 

spectra58,59 and show no signs of impurities. (Note, an additional peak at 39.9 m/z in Fig. 5.13 

for ISO is attributed to Ar gas leaking into the instrument during analysis.) We can rule out 

any possibility of an impurity interacting with the entangled photons. 

Given how sensitive the entangled two-photon experiment is to the small signals from 

SEVO and ISO, it must also be emphasized that this interaction signal seen in SEVO and ISO 

is not common and cannot be found in just any organic compound. Other organic solvents, 

such as methanol and toluene, show no signal in this experimental set-up. We also compared 

the halogenated ethers with another ether that is nonhalogenated, diethyl ether, which showed 

no signal. The ability to interact with entangled photons through a far-off-resonance transition 

is a property that is unique to SEVO and ISO and not found in any other organic compounds 

studied to date. 

 

5.5 DISCUSSION 

Although previous studies on the mechanism of action of anesthetics have focused on 

anesthetics’ ability to interact with macromolecules such as lipid bilayers and proteins, our results 

show that individual anesthetic molecules can interact with photons. Even more significant is that 

the halogenated ethers studied here selectively interacted with a quantum system, entangled 

photons, as opposed to the classical system of photons. This distinction is important because the 

interaction mechanisms with classical vs entangled photons are different. In both two-photon 

interactions, the molecule interacting with the photons can take different pathways to go from its 

initial state to its final state. In classical two-photon interactions, the pathways cannot be 

controlled, due to the Fourier uncertainty relationship between frequency and time.60 However, in 

entangled two-photon interactions, specific pathways can be selected because the entangled 

photons are not limited by the Fourier uncertainty principle.60 In other words, during the interaction 

event with two entangled photons, the molecule and the photons become correlated such that the 

specific interaction pathway in the molecule is strongly correlated with the quantum state of the 

photons.60 In order for a molecule to interact with entangled photons, it must be able to interact 
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with the strongly correlated photons such that it enters into a correlation with them and thus affects 

the state of the photons; in this case, the molecule affects the photons by interacting with them 

instead of allowing them to transmit through the medium. Fig. 5.4 clearly shows that the 

anesthetics have the ability to interact with the strongly correlated 800 nm entangled photons in 

our experiment. This is the first empirical evidence that certain anesthetic molecules can directly 

interact with particles through a quantum mechanism. In addition, diethyl ether, a structurally 

similar ether, does not interact with the 800 nm entangled photons (transmission plots provided in 

the supporting information). Thus, SEVO and ISO have a unique property that diethyl ether does 

not have. Although not explored in this work, this property may be related to the specific actions 

of SEVO and ISO vs diethyl ether. We have only investigated the interaction the ethers have with 

one wavelength of entangled photons, 800 nm. It is not known whether the ethers studied here can 

or cannot interact with entangled photons of other wavelengths, and this would be an interesting 

direction for further study. 

This result does not prove any mechanism of anesthetic-induced unconsciousness but it 

serves as a first proof-of-principle demonstration that anesthetic molecules meet the initial 

conditions we have outlined to be necessary for a quantum interaction mechanism that may induce 

unconsciousness. This result motivates further studies on the possible quantum interactions that 

anesthetic molecules may have in the brain and the atomic or subatomic particles they may be 

targeting, such as their interaction with the dynamic electronic states of proteins known to be 

targeted by general anesthetics.61 

Methodologic strengths of this study include a well-defined experimental model that can 

differentiate quantum vs. non-quantum interactions as well as the use of both halogenated and non-

halogenated ethers. Methodologic limitations include the purely in vitro experiments, the high 

concentration of the anesthetics used, the fact that the anesthetic was in liquid rather than gaseous 

phase, and the lack of spectral resolution. These limitations make it impossible to determine if 

there is any neurobiological or clinical relevance associated with the resultant data. Furthermore, 

the data do not suggest that general anesthesia has an exclusively quantum basis because diethyl 

ether is an effective anesthetic but demonstrated no quantum interactions. However, we have not 

conducted a systematic study of all possible quantum interactions with photons, including 

interaction with other entangled photon wavelengths, or other physical substrates such as 

microtubules, which have been posited to mediate quantum effects of general anesthetics.2,5 
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Further studies should explore other quantum systems as well as more neurobiologically relevant 

models.  

In conclusion, this is (to our knowledge) the first experimental study to rigorously assess 

the ability of a general anesthetic to interact with subatomic particles with quantum vs. classical 

features. The finding that halogenation confers the ability of an ether to engage in quantum 

mechanical processes advances our understanding of these critically important drugs and motivates 

further investigation regarding non-classical mechanisms of action. 
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5.6 Supporting Information 

Fig. 5.7-5.11 show the HOMO and LUMO of methyl isopropyl ether, SEVO, ethyl methyl 

ether, ISO, and diethyl ether, respectively. Isosurface values were chosen such that only the most 

predominant location of each orbital is shown in order to identify the character of each orbital. The 

orbitals for SEVO in Fig. 5.8 show a nO → σC-H
* HOMO-LUMO transition, and the orbitals for 

ISO in Fig. 5.11 show a nCl → σC-Cl
* HOMO-LUMO transition, both of which match previously 

reported orbital characteristics for SEVO3,4 and ISO5, respectively. While the orbitals for SEVO 

and ISO have been reported before, we show our results here as further confirmation of the 

accuracy of our electronic structure calculations. 

Fig. 5.12-5.13 show the mass spectra of the SEVO and ISO, respectively, used in our 

experiments. Mass spectra were obtained through electron ionization using a Micromass AutoSpec 

Ultima magnetic sector mass spectrometer. 

Because the laser power in the entangled two-photon spectroscopy set-up can fluctuate in 

a short period of time, each time a new solution is to be tested, a fresh solvent transmission scan 

must be completed before the transmission scan of the new solution. This method ensures the 

highest accuracy when comparing a solution’s transmission line to a solvent’s transmission line to 

determine whether or not the solution is interacting with entangled photons. When completing 

these two scan back-to-back, the random fluctuations of the laser’s power should be minimized, 

as opposed to comparing a solution’s transmission lines to a solvent transmission line taken hours 

earlier. Each of the transmission lines for the solutions tested in Fig. 5.14-5.17 are compared with 

the solvent transmission line acquired immediately before the solution was tested. The pure liquids 

SEVO and ISO were tested, with each solution’s transmission lines (and solvent transmission lines 

of pure methanol) shown in Fig. 5.14 for SEVO and Fig. 5.15 for ISO. The same experiment and 

analysis were completed for diethyl ether and methanol, shown in Fig. 5.16. Zinc 

tetraphenylporphyrin (ZnTPP) in toluene was used as a standard to validate our experiment and 

analysis, shown in Fig. 5.17. 

Fig. 5.17 shows a difference between the transmission lines for ZnTPP and toluene, which 

is expected since this compound has previously been reported to interact with entangled photons6,7, 

thus validating our experiment and analysis. Fig. 5.16 shows that the transmission lines for diethyl 

ether and methanol lie within each other’s error bars. Therefore, interaction is not occurring in 

diethyl ether, and the difference in the transmission lines is due to random fluctuations of the laser. 
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However, SEVO in Fig. 5.13 and ISO in Fig. 5.14 have transmission lines outside of the error bars 

of their respective solvent transmission lines. Therefore, these two samples are interacting with 

entangled photons. 

 

           

Figure 5.7. HOMO (left) and LUMO (right) of the ground state (S0) of methyl isopropyl ether. 

           

Figure 5.8. HOMO (left) and LUMO (right) of the ground state (S0) of SEVO. 
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Figure 5.9. HOMO (left) and LUMO (right) of the ground state (S0) of ethyl methyl ether. 

           

Figure 5.10. HOMO (left) and LUMO (right) of the ground state (S0) of ISO. 

           

Figure 5.11. HOMO (left) and LUMO (right) of the ground state (S0) of diethyl ether. 
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Figure 5.12. Mass spectrum of SEVO. 

 

 

Figure 5.13. Mass spectrum of ISO. 
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Figure 5.14. Transmission rate as a function of incident laser power for pure SEVO, compared to 

methanol. 
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Figure 5.15. Transmission rate as a function of incident laser power for solutions of ISO, compared 

to methanol. 
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Figure 5.16. Transmission rate as a function of incident laser power for diethyl ether, compared 

to methanol. 
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Figure 5.17. Transmission rate as a function of incident laser power for ZnTPP in toluene, 

compared to toluene. 
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CHAPTER 6 

Measurements of Entangled Two-Photon Absorption in Organic Molecules with CW 

Pumped Type-I Spontaneous Parametric Down-Conversion 

 

The work in this chapter was published as the journal article: 

Villabona-Monsalve, J. P.; Burdick, R. K.; Goodson, T. “Measurements of Entangled Two-

Photon Absorption in Organic Molecules with CW-Pumped Type-I Spontaneous Parametric 

Down-Conversion.” The Journal of Physical Chemistry C 2020, 124 (44), 24526-24532. 

Modifications have been made for the style and content of this dissertation. References and 

supporting information for the manuscript are included in this chapter. 

 In this chapter, I built the ETPA experimental setup with CW pumping of Type-I SPDC. I 

measured the ETPA cross-sections of each molecule studied. I measured the SPDC joint frequency 

spectra and calculated the Schmidt decomposition to quantify the degree of frequency 

entanglement. I calculated the estimated losses due to linear optical processes. I provided the 

analysis of tuning the Schmidt modes to control photochemical reactions. 

 

6.1 Abstract 

Entangled photons exhibit strong nonclassical frequency and time correlations 

simultaneously, which allow them to excite and extract information about molecules in new ways 

compared to classical spectroscopy. In this report, we demonstrate the accessibility of entangled 

two-photon absorption (ETPA) as an analytical technique using CW-pumped Type-I degenerate 

spontaneous parametric down-conversion. We made improvements to lower the noise, error, and 

limit of detection of the ETPA experiment. We prove and quantify frequency entanglement from 

the experimentally measured joint frequency spectrum by using the Schmidt decomposition. As 

evidence of the ETPA process, we found a clear linear dependence of the ETPA and ETPA-

induced fluorescence rates with the entangled input photon rate for all the studied chromophores. 

This ETPA experiment can be used to analyze a wide variety of chromophores of chemical and 
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biological significance and shows the potential for ETPA-induced fluorescence detection 

capabilities. As an application of our work, we show one may control the population of specific 

excited states in molecules with the use of a spatial light modulator in the setup. 

 

6.2 Introduction 

Entangled photons (EP) can interact with and extract information from atoms or molecules 

in unique ways compared to classical spectroscopy techniques, reviewed in detail by Dorfman et 

al.1 The power of EP spectroscopy lies in the fact that EP are not restricted to the uncertainty 

principle, allowing them to achieve high-frequency and high-time resolution simultaneously.2 

Classical light sources can only produce one of these at a time. Entangled two-photon absorption 

(ETPA) is at the forefront of new spectroscopic techniques for studying the electronic states of 

molecules. It can selectively excite electronic states in atoms3 or molecules4 and requires orders of 

magnitude less input flux compared to classical two-photon absorption (cTPA)5 because it scales 

linearly with the input intensity.6 ETPA offers a negligible risk of damaging photosensitive 

samples–which is often a problem when performing non-linear spectroscopy with intense classical 

laser sources–, phototoxicity reduction, and potential in bio-imaging applications.2, 7-12 ETPA is 

highly attractive as an analytical technique to a wide range of researchers in the physical sciences.  

The most common method to produce EP for ETPA is spontaneous parametric down-

conversion (SPDC). Here, we demonstrate the performance of an ETPA experiment using EP 

generated by CW-pumped Type-I degenerate SPDC. ETPA is measured in a variety of 

chromophores of chemical and biological significance, demonstrating the applicable range of 

ETPA. Previous experiments suffered from the error being on the same order of magnitude as the 

ETPA signal.13, 14 While qualitative measurements to compare the trends of ETPA cross-sections 

in molecules were possible, the low signal-to-noise ratio (SNR) prevented ETPA from being a 

robust, quantitatively reliable analytical technique. In this work, we have made significant 

improvements to the ETPA experiment that offers lower noise, error, and limit of detection (LOD). 

We show how all other possible light-matter interactions are negligible compared to the ETPA 

signal.  

For the SPDC source characterization, we prove and quantify frequency-entanglement 

from the experimental joint frequency spectrum (JFS) using the Schmidt decomposition (SD).15, 16 
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The SD allows to reformulate the JFS as a linear combination (LC) of many frequency modes, also 

called Schmidt modes. The Schmidt coefficients, {λn}, which are the weights of each Schmidt 

mode, define the JFS that is produced. We propose a method for achieving control with EP by 

controlling the values of {λn} to tune the JFS, allowing one to control the excited state (ES) 

populations in molecules. This method would be advantageous for controlling photochemical 

reactions and excited state populations. 

We use Type-I SPDC in particular because it produces a broader frequency spectrum of EP 

than Type-II SPDC,17, 18 providing more flexibility for tuning the JFS for controlling ES 

populations. Additionally, Type-I SPDC produces more photon pairs than Type-II SPDC.18, 19 

Previously, ETPA using CW-pumped Type-I SPDC was studied with the collinear phase-matching 

condition where the EP are spatially overlapped.11 Here, we focus on the non-collinear phase-

matching condition since it allows for more effective spatial separation of the photons when 

measuring the JFS. For comparison purposes, collinear ETPA measurements are provided in the 

SI.  

ETPA using ultrafast lasers to pump SPDC is expensive and requires significant space on 

the optical table. Instead, CW-pumped SPDC significantly reduces the size, weight, and cost of 

ETPA experiments, suggesting the potential for portability. Additionally, our CW-pumped ETPA 

experiment is easier to operate and maintain, offering an accessible route for measuring higher-

order light-matter interactions by researchers who are not experts in ultrafast spectroscopy. 

 

6.3 Methods 

6.3.1 ETPA and JFS experimental setup 

The experimental setup is presented in Fig. 6.1. It consists of two black boxes. In the 

first box, EP are generated by using non-collinear Type-I degenerate SPDC from a BBO crystal 

pumped using 405 nm focused light (f = 5 cm) from a CW diode laser. A variable neutral 

density filter mounted on a motorized and computer-controlled stage allows us to change the 

pump power for the SPDC process. Our source produces EP at a rate of 1.4x105 photons/s per 

mW of pump power. EP are collimated after the BBO crystal with a plano-convex lens (f = 5 

cm) and separated from the pump beam by using a combination of a dichroic mirror and a 

bandpass filter (λc = 810 nm, Δλ= 30, or 80 nm). In the second black box, EP are focused into 
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the sample with a plano-convex lens and collimated with another lens after the sample (both f 

= 5 cm). After collimation, transmitted EP are focused on an avalanche photodiode (APD) by 

using a plano-convex lens (f = 2.5 cm).  To obtain the ETPA rate, the EP transmission through 

a cuvette of pure solvent is measured first. Then the solvent is replaced with a dilute 

chromophore solution, and the EP transmission is measured again. A loss in the entangled 

photon transmission is due to ETPA.  

For non-collinear Type-I SPDC photons, the photons form a ring centered around the 

pump beam axis. Because entangled pairs must conserve momentum with the pump, each 

photon is located on the ring 180° from its entangled partner. By aligning the center of the ring 

onto the edge of a mirrored knife-edge prism, EP on opposite sides of the ring are reflected in 

opposite directions. For JFS measurements, the spatially separated EP are sent through 

monochromators and focused (f = 2.5 cm) onto separated APDs. Coincidence counts are 

measured with a coincidence counter with a 10 ns time window. 

 

 

Figure 6.1. Entangled photon spectroscopy optical setup for completing ETPA and JFS 

measurements. 
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6.3.2 Proof of frequency-entanglement in Type-I SPDC 

Before the ETPA experiments, it is necessary to characterize the entanglement between 

the photons. For Type-II SPDC, it is common to characterize the polarization entanglement by 

measuring the visibility of the polarization Bell state. For Type-I SPDC, which we use here, 

the frequency-entanglement can be characterized by measuring the JFS and performing the 

Schmidt decomposition (SD).  SPDC follows energy conservation and momentum 

conservation, expressed as: 𝜔𝑝 = 𝜔𝑠 + 𝜔𝑖  and  �⃗� 𝑝 = �⃗� 𝑠 + �⃗� 𝑖, the so-called phase-matching 

conditions, where 𝜔 and �⃗�  correspond to energy (frequency) and wave vectors for the pump, 

signal, and idler (p, s, and i) photons. The possible energy (or wave vector) combinations are 

determined by the solutions to the Helmholtz equation, such as the Hermite-Gaussian modes 

(H-GM). The LC of these Schmidt modes with their respective weights (Schmidt coefficients, 

{λn}) gives the joint frequency amplitude of the EP. The JFS, which is the modulus squared of 

the joint amplitude, has the physical interpretation that if the signal photon is measured to have 

frequency X, then the idler photon has a distribution Y of possible frequencies, with the 

bandwidth of the distribution determined by the bandwidth of the pump. 

To quantify the frequency-entanglement, the SD can decompose the measured joint 

frequency amplitude into the H-GM and calculate their weights.15, 16 This decomposition is the 

continuous function formulation of the matrix singular value decomposition (SVD). The 

degree of entanglement (DOE) is more accurately determined by the effective number of 

occupied Schmidt modes, often called the Schmidt number, K:16 

 𝐾 = (∑ 𝜆𝑛
2

𝑛 )−1 (6.1) 

where λn is the Schmidt coefficient for the nth mode. Entanglement is also sometimes quantified 

with the entanglement entropy, E:16 

 𝐸 = −∑ 𝜆𝑛𝑙𝑜𝑔2𝜆𝑛𝑛  (6.2) 

As shown previously16, if two photons are not entangled, K = 1 and E = 0. If two photons are 

entangled, K > 1 and E > 0, and both parameters increase as the DOE increases. Previous works 

have quantified frequency-entanglement in SPDC based on theoretical simulations.20-22 

However, few reports have experimentally measured and calculated the SD, K, and E for the 
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JFS of SPDC.23-26 The details about how to measure the JFS and fit it with a model that 

provides a more precise SD are presented in the supporting information.  

 

6.4 Results 

6.4.1 Proof of and Quantifying Entanglement 

For our Type-I degenerate, CW-pumped SPDC source passing through an 810 nm 

centered, FWHM = 30 or 80 nm bandpass (BP) filter, the values of K and E for non-collinear 

phase-matching obtained from experimental spectra are reported in Table 6.1. Also shown in 

Table 6.1 is the experimentally measured Fedorov ratio, R, which has been used to try to 

simplify the measurement of the DOE.20, 27, 28 R is calculated as the width of the single-photon 

SPDC spectrum divided by the width of the coincidence count SPDC spectrum. Previous 

works have suggested that R should closely approximate K,20, 27, 28 so we compare the two 

parameters in Table 6.1. 

 

Table 6.1. Schmidt number, K, Fedorov ratio, R, and entanglement entropy, E, for non-

collinear phase-matching of Type-I degenerate, CW-pumped SPDC from a BBO crystal. 

Parameter 810-30 nm BP filter 810-80 nm BP filter 

K 5.11 ± 0.11 12.62 ± 0.30 

R 7.65 14.03 

E 2.63 ± 0.03 3.90 ± 0.03 

 

The results in Table 6.1, K > 1, and E > 0, prove that our SPDC photons are frequency 

entangled. Comparing the DOE for the two different frequency bandwidths, the number of 

effectively occupied Schmidt modes (K) more than doubles when increasing the bandwidth 

from 30 to 80 nm. Using different width bandpass filters thus provides a simple way to tailor 

the DOE for the desired application. We expect the unfiltered SPDC to have even more 

frequency-entanglement, but since the SPDC spectrum is broader than the APDs detection 

range, direct measurement of K and E of the unfiltered SPDC is not possible with our current 

experimental setup. 

As seen in Table 6.1, R overestimates K for both frequency bandwidths. While the 

collection of data and calculation is quicker for R than for K, the results may significantly differ 

in the CW-pumping regime. It is particularly troublesome that R overestimates K because R > 
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1 does not guarantee that K > 1, i.e., R > 1, does not definitively proof frequency-entanglement 

for CW-pumped SPDC. 

 

6.4.2 ETPA with Type-I degenerate, CW-pumped SPDC 

Having proven frequency-entanglement between our Type-I SPDC photons, we then 

demonstrate the linear ETPA rate at very low input entangled photon rates, a well-known 

hallmark of ETPA.4, 6 ETPA was measured in a variety of molecules of chemical and biological 

importance, shown in Fig. 6.2. 

  

 

Figure 6.2. Chemical structures of the molecular systems studied in this work: bowtie (bis-

[18]annulene) (1), zinc tetraphenyl porphyrin (ZnTPP) (2), flavin adenine dinucleotide (FAD) 

(3), OM82C dendrimer (4),29 flavin mononucleotide (FMN) (5). 

 

In our experiment, the CW pump power for Type-I SPDC ranges from 7 mW to 70 

mW, producing 1x106 photons/s to 1x107 photons/s, respectively. In comparison, our Type-II 

SPDC source used in previous work4 required 100 mW to produce 1x107 photons/s, showing 

that Type-I SPDC is more efficient at producing EP. This is expected from theory as well if 

one uses the equations derived by Schneeloch et al.30 to calculate the EP pair rate for Type-I 

and Type-II SPDC.  

For ETPA, the total TPA absorption rate, RTPA, is defined by:7 

 𝑅𝑇𝑃𝐴 = 𝜎𝑒Φ + 𝛿𝑟Φ
2 (6.3) 
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where σe is the ETPA cross-section, δr is the classical or “random” TPA cross-section, and Φ 

is the input photon flux. At low Φ, the linear term in (eq. 6.3), which is ETPA, dominates the 

total TPA rate. In our experiments, we use small input photon fluxes so that only ETPA, i.e., 

the linear term, contributes to the measured signal. Results for the ETPA rate using non-

collinear phase-matched Type-I degenerate, CW-pumped SPDC are shown in Fig. 6.3.  The 

slope of each linear fit represents the percentage of input EP that is absorbed by the sample. 

Using this slope, the path length of the cuvette (l), and the concentration (c) of the sample, σe 

(in cm2/molecule) is calculated by the equation9: 

 𝜎𝑒 =
𝑠𝑙𝑜𝑝𝑒

𝑐×𝑙×𝑁𝐴
 (6.4) 

where NA is Avogadro’s number. The ETPA cross-section for each chromophore is shown in 

Table 6.2. 

 

 

Figure 6.3. ETPA as a function of input entangled photon rate for organic chromophores using 

non-collinear Type-I degenerate, CW-pumped SPDC. Error bars are the propagated error of 

the sample’s and the solvent’s standard deviation of 5 transmission rate measurements. Inset: 

ETPA-induced fluorescence for collinear Type-I CW-pumped SPDC EP excitation.  
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Table 6.2. ETPA cross-section, σe, at 405 nm pump wavelength using non-collinear Type-I 

degenerate, CW-pumped SPDC. 

Sample σe (x10-19 cm2/molecule) 

Bowtie (bis-[18]annulene) 45.0 ± 5.8 

OM82C dendrimer 30.8 ± 0.6 

FAD 9.79 ± 0.09 

ZnTPP 7.54 ± 0.10 

FMN 0.38 ± 0.02 

 

The ETPA as a function of the EP input rate shows the expected linear dependence 

dominance at low photon rates (eq. 6.3) and fits well to calculate σe (eq. 6.4). The σe values 

presented in Table 6.2 are within one order of magnitude reported previously.8, 9, 11, 12 As might 

be anticipated on a first rough approximation,5 bowtie and the OM82C dendrimer present the 

largest σe given its large cTPA cross-section at 800 nm (150 GM and 370 GM respectively)8, 9 

and correspondingly FMN has the smallest σe given its smallest (1.6 GM) cTPA cross-

section.12 

ETPA cross-sections with collinear Type-I SPDC EP were smaller than the non-

collinear case, except for ZnTPP (Fig. 6.9 in the SI). When measuring ETPA-induced 

fluorescence, the fluorescence collection efficiency (FCE) of our experiment is ~0.4%, 

calculated by using the 405 nm CW beam to excite the sample, measuring the resulting 

fluorescence, and comparing the measured fluorescence count rate to the expected 

fluorescence count rate for a one-photon excitation of the sample. To compensate for the very 

small efficiency, we maximized the entangled photon input rate by sending the entire spectrum 

of entangled photons into the sample (no BP filter). Additionally, we used collinear phase-

matching for fluorescence excitation since collinear Type-I SPDC has a broader bandwidth 

than non-collinear,18 which increases the photon flux.31 Because the APDs saturate around 107 

photons/s, the entangled photon rate was estimated using an absorptive filter to range between 

109-1010 photons/s. With this high entangled photon flux, we measured ETPA-induced 

fluorescence in bowtie (inset of Fig. 6.3). 

 

6.5 Discussion 

In our experiment, the input EP rate is on the order of 106 photons/s when the CW pump 

power ranges from 7-70 mW. The ETPA rate is calculated by measuring the difference in 
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entangled photon transmission through pure solvent and the chromophore solution. The difference 

in transmission between two trials of pure solvent is used as a reference “blank” and is subtracted 

from the chromophore’s loss in transmission. We measured transmission losses on the order of 

104-105 photons/s, which equals a percent loss of 1-10 % of the input photon rate. To ensure that 

the chromophore’s loss in transmission is due to ETPA and not any other process, we have 

carefully analyzed any potential losses (shown in Table 6.3), and mechanical movements 

experienced during the experiment that can alter beam alignment. See the supporting information 

for details. 

 

Table 6.3. Summary of losses in entangled photon transmission due to various processes.  = 810 

nm for all the processes. 

Mechanism Percent loss 

(%) 

ETPA 1-10 

OPA < 0.1 

Rayleigh scattering (chromophore) < 10-8 

Resonant hyper-Rayleigh scattering (chromophore) < 10-10 

cTPA 10-15 

Rayleigh scattering (solvent) 10-6 

Noise/baseline/LOD 0.1 

Error 0.1 

 

By making chromophore solutions with a concentration < 1000 µM, ETPA signals can 

reach 10% of the input photon rate, allowing signal-to-noise (SNR) and signal-to-error ratios on 

the order of 100. We measured this for the FAD solution in Fig. 6.3, which had an ETPA signal of 

10.9 % and noise/error of ~0.1%. With this SNR of 10-100, the analysis summarized in Table 6.3 

shows that loss in transmission from OPA, cTPA, chromophore or solvent scattering, or 

mechanical movement is within the noise of the experiment and does not contribute to the ETPA 

signal. Concentration values in this range enable us to perform ETPA experiments without 

potential artifacts in the signal due to scattering. Aggregation effects have been previously 

analyzed for ETPA in mM concentration Rhodamine B and ZnTPP samples.11 We keep all of our 

concentrations in the μM range to avoid aggregation effects. Therefore, the chromophore’s 1-10 

% loss in transmission can only be caused by ETPA. In other ETPA experiments, the noise level 

and ETPA signal can both be on the order of 1 % of the input entangled photon rate, resulting in 
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SNR on the order of ~1.14 Such a result would require more complex techniques to isolate the 

ETPA signal from background noise. 

With the measures we took to reduce the noise, the SNR is now limited by the electronic 

noise of the detectors/counter and fluctuation of the pump laser power. Since the noise level and 

error of our experiment is 0.1 % of the input photon rate, this also represents the LOD of our 

experiment. Using a chromophore solution with a ≤ 1 mM concentration, we determine the 

smallest measurable σe in our experiment to be ~2x10-21 cm2/molecule. This cross-section limit is 

a factor of 10x improvement compared to previous ETPA using either Type-I or Type-II SPDC.11, 

13 

Due to the very small FCE, only bowtie was able to yield a measurable ETPA-induced 

fluorescence signal because it was the only molecule tested here that had both a relatively large 

ETPA cross-section (~10-18 cm2/molecule) and a reasonably large quantum yield (0.45). To the 

best of our knowledge, this is the first ETPA-induced fluorescence in an organic chromophore 

using Type-I SPDC, and the first ETPA-induced fluorescence in an organic chromophore using 

SPDC pumped by a CW laser. Future design of a unit with higher FCE could greatly increase 

ETPA-induced fluorescence measurements. Previous ETPA-fluorescence results for different 

organic chromophores (bowtie among them) were obtained with fs-pumped Type-II SPDC.9, 10, 13 

Recently, the fluorescence emission from fluorescein and the laser dye DCM by exciting with 

squeezed light has been reported.32 However, squeezed light preparation by four-wave mixing 

requires a more complex array than entangled photons generation by CW-pumped Type-I SPDC.  

The {λn} measured for our EP create one specific LC of the Schmidt frequency modes. 

This LC of modes forms the joint spectrum (shown in the supporting information). If one were to 

change the values of {λn}, a different LC of modes, and therefore different JFS, would be produced. 

The JFS can thus be tailored to have control over the transition pathway and ES populations of any 

sample. Frequency shaped EP have shown theoretically to shape the fluorescence spectrum of 

molecular aggregates, which have potential applications in quantum spectroscopy and the control 

of photoreaction pathways with EP of biological systems.33  

As a model, consider two TPA pathways, each populating a different final ES, that can be 

very close in energy and interfere with each other when exciting a sample (Fig. 6.4a). In one 

pathway, there are strong transition dipole moments from the ground state, |𝑔⟩, to an intermediate 
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ES, |𝑒1⟩, and from |𝑒1⟩, to the final ES, |𝑓1⟩. In the second pathway, the intermediate state, |𝑒2⟩, 

and final ES, |𝑓2⟩,  are strongly coupled, but the transition |𝑔⟩→|𝑒2⟩ is very weak. As a result, 

when exciting the sample via cTPA, |𝑔⟩ is largely coupled to |𝑒1⟩ and not |𝑒2⟩, creating population 

on |𝑓1⟩ after absorbing the second photon. 

By tuning the JFS so that the photon pair will be more resonant with the |𝑔⟩→|𝑒2⟩→|𝑓2⟩ 

pathway, |𝑓2⟩  can be populated instead of |𝑓1⟩. Controlling {λn} in this manner would be 

advantageous for many applications, including being able to measure spectroscopic properties of 

ESs that are difficult to excite with classical light or that are energy degenerate but with different 

electronic configurations, achieving a new way to control chemical reactions. While tuning a laser 

may provide the necessary frequency resolution to excite only |𝑓2⟩ (e.g., a ns pulse or CW light), 

|𝑒2⟩ may be coupled to |𝑒1⟩  by some ultrafast (fs time-scale) non-radiative decay channel. 

Therefore, to achieve control over the ES populations, simultaneous high-frequency- and high-

time-resolution is required, which a classical laser cannot achieve. EP inherently have a fs 

entanglement time, allowing them to have high-frequency- and high-time-resolution 

simultaneously. 

To change {λn}, it has been shown that the spatial profile of the pump, tuned with a spatial 

light modulator (SLM), is mapped onto the JFS of the EP.34 We then propose that the SLM can be 

incorporated into a feedback loop in our Type-I ETPA experiment. By measuring the JFS after 

some of the EP have been absorbed by a sample, one can identify which frequency pairs resulted 

in the most absorption, revealing the locations of intermediate-to-final state ETPA pathways. 

Using the SLM, the JFS can be changed to remove frequency pair probability from one pathway 

(|𝑔⟩→|𝑒1⟩→|𝑓1⟩) and increase frequency pair probability at another pathway (|𝑔⟩→|𝑒2⟩→|𝑓2⟩). 

This loop leads to precise control over which ES is populated. 
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Figure 6.4. a) Energy level diagram with interfering ESs. The intermediate states, |𝑒1⟩ and |𝑒2⟩, 
can be coupled with an ultrafast non-radiative decay (knr) process. The thickness of each arrow 

represents the strength of the transition dipole moment between the connected states. Spatial 

distribution for the pump (left panels) and corresponding JFS (right panels) for b) Gaussian, c) 

symmetric Laguerre-Gauss, and d) asymmetric Laguerre-Gauss pump beam. The dotted lines show 

the plane on which EP have the JFS shown. Circles on the JFS indicate intermediate-to-final state 

pathways that will interact selectively with the entangled beam (a) for c) and d) cases. 

 

Fig. 6.4b-d shows examples of how different pump spatial profiles produce different JFS 

of the EP. Fig. 6.4b shows the trivial case of a Gaussian pump, creating a very broad JFS that 

overlaps with both pathways in the molecule. Here, the most intense part of the JFS does not 

overlap with either pathway in the molecule, making ETPA very inefficient. Fig. 6.4c shows a 

Laguerre-Gauss (LG) beam, which produces a JFS that is most intense at the frequency pairs that 

overlap with the pathways in the molecule. This JFS would yield a much more efficient ETPA 

than that in Fig. 6.4b. In Fig. 6.4d, an asymmetric LG beam is produced so that in the JFS, there is 

only SPDC intensity at the weaker pathway (leading to |𝑓2⟩) and no intensity at the stronger 

pathway that keeps dominating the ETPA excitation (leading to |𝑓1⟩). With this JFS, |𝑓2⟩ can be 

populated instead of |𝑓1⟩. It is important to note that for an asymmetric pump, entangled photon 

pairs in different planes will have different JFS due to the asymmetry. The dotted lines in Fig. 6.4 

show the plane from which EP have the JFS shown. 
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Fig. 6.5 shows the corresponding {λn} for each JFS presented in Fig. 6.4, highlighting that 

by changing the pump spatial profile, the SD of the JFS has changed. 

 

 

Figure 6.5. Contribution for each Schmidt mode for the considered spatial distributions of the 

pump beam and corresponding JFS presented in Fig. 6.4b-d. The lines for each curve are to guide 

the eye. 

 

Previous work has shown that the final state population, pf, is directly related to {λn} of the EP:35 

 𝑝𝑓(𝑡) = ∑ 𝜆𝑛
2∞

𝑛=1   (6.5) 

Fig. 6.5 shows that the different pump beams directly impact {λn} of the EP they each produce. 

Therefore, each pump beam creates a unique final state population in the molecule. For molecular 

systems with a high density of ESs, simple manipulation of the pump with an SLM provides a new 

level of control over the ES population in ETPA experiments. 

 

6.6 Conclusions 

Spectroscopy experiments with EP have previously been performed mainly in the 

framework of quantum optics studies. While there have been several proposals for using EP in 

physical chemistry applications, experiments with EP had yet to achieve the quantitative accuracy 

and reliability needed for such studies. By using a CW-pumped Type-I SPDC experimental setup, 

we have created an entangled photon experiment that significantly improves the accuracy of ETPA 

measurements in chromophore solutions. We have ruled out all other sources of photon-matter 
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interactions that may contribute to the noise of the ETPA signal, and we determined the LOD of 

our ETPA technique is 0.1% of the input photon rate. Our experiment is quantitatively robust, and 

previous quantum optics or ultrafast spectroscopy experience is not required to operate it. By 

detecting the ETPA-induced fluorescence signal for a bowtie solution and observing the linear 

dependence with the entangled photon flux, we demonstrated the use of CW-pumped Type-I 

SPDC for ETPA-induced fluorescence. Additionally, we have illustrated how one can achieve ES 

population control through ETPA by manipulating the EP frequency correlations, for instance, 

with a spatial light modulator. The presented experimental array paves the way for the future 

realization of difficult spectroscopic tasks that classical techniques cannot handle. For instance, 

with Type-I non-collinear SPDC one can conveniently create an on-demand JFS that might allow 

distinguishing between different interference pathways which leads to final states close in energy 

for a given molecular system. 
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6.7 Supporting Information 

6.7.1 Absorption Spectra 

 

Figure 6.6. Absorption spectra of all molecules studied in this work. 

 

6.7.2 Joint frequency spectrum and Schmidt decomposition 

To calculate K and E of the SPDC photons in our experiment, the joint photon 

frequency spectrum must be measured, and then the Schmidt decomposition performed on this 

spectrum. First, the entangled photons are passed through a bandpass (BP) filter centered at 

the degenerate wavelength (810 nm) so that only wavelengths within the APD’s detection 

range are collected. The photons are then separated from each other in space. For non-collinear 

phase-matching, the entangled photons can easily be separated from each other with a mirrored 

knife-edge prism. Once separated, each photon is sent through its monochromator and focused 

onto its APD. The joint frequency spectrum is measured by performing a series of scans as 

follows: one monochromator (Bob’s) for the signal photon is set at a given wavelength (e.g. 
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840 nm). Then the other monochromator (Alice’s) for the idler photon is scanned across the 

wavelength range of the bandpass filter (775-845 nm in our experiment). Photon counts after 

the two monochromators are measured in coincidence. The sum of the entangled photons’ 

frequencies must equal the pump photon’s frequency: ωA + ωB = ωp, or equivalently, 
1

𝜆𝐴
+

1

𝜆𝐵
=

1

𝜆𝑝
. Additionally, two entangled photons are also strongly correlated in time, so they can 

only produce a coincidence count with each other. Therefore, if Alice’s photon is entangled 

with Bob’s 840 nm photon, coincidence counts should be registered when, and only when, 

Alice has her monochromator set at 780 nm. The joint frequency spectrum is obtained by 

scanning one of the monochromators, while the other´s wavelength is kept fixed. 

There is a very small chance that two photons that are not entangled happen to arrive 

at the two APDs within the coincidence window, known as an accidental count. These 

accidental counts can be subtracted out of the true coincidence count signal. They can be 

measured by adding a delay to one of the APD’s channels to the coincidence counter. This 

delay (100 ns in our experiment) must be longer than the coincidence window (10 ns in our 

experiment) so that only the accidental coincidence counts are measured and can then be 

subtracted from the joint frequency spectrum. The joint frequency spectrum then only contains 

coincidence counts from entangled photon pairs. 

Before applying the Schmidt decomposition to the experimental joint frequency 

spectrum, we can make the decomposition more precise by fitting the experimental spectrum 

with an analytical model and applying the decomposition to this analytical model. The model 

consists of two components: the joint photon intensity (i.e. square of the joint photon 

amplitude) and the BP filter used in the experiment. It has previously been shown that in the 

limit of long-pulse-width pumping of SPDC (of which CW pumping is the most extreme limit), 

the joint photon amplitude of Type I SPDC can be accurately modeled with a double-

Gaussian1: 

 𝑧 = 𝐴 ∙ 𝑒𝑥𝑝 [
−

1

2
(
𝑥∙𝑐𝑜𝑠(𝜃)+𝑦∙𝑠𝑖𝑛(𝜃)−𝑥𝑐∙𝑐𝑜𝑠(𝜃)−𝑦𝑐∙𝑠𝑖𝑛(𝜃)

𝜔1
)
2

−
1

2
(
−𝑥∙𝑠𝑖𝑛(𝜃)+𝑦∙𝑐𝑜𝑠(𝜃)+𝑥𝑐∙𝑠𝑖𝑛(𝜃)−𝑦𝑐∙𝑐𝑜𝑠(𝜃)

𝜔2
)
2] (6.6) 

where A is the maximum coincidence count probability, x (y) is the frequency of Alice’s 

(Bob’s) photon, xc (yc) is the central frequency of Alice’s (Bob’s) one-photon amplitude, ω1 
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(ω2) is the diagonal (anti-diagonal) width of the two-photon amplitude, and θ is the angle of 

the coincidence count amplitude relative to the x-axis. These parameters are labeled in the 

example double-Gaussian contour plot in Fig. 6.7.  

 

 

Figure 6.7. Example double-Gaussian showing the parameters to be optimized. Note: when 

normalized, A = 1. 

 

The double-Gaussian model is particularly attractive because the Schmidt modes of a 

double-Gaussian can be found analytically1. Additionally, the double-Gaussian in eq. 6.6 

contains only real terms, which is important when one considers that in our experiment with 

APDs, we measure the joint photon intensity, not the joint photon amplitude. Therefore, our 

experimental data must be fit with the square of the double-Gaussian in eq. 6.6, and this can 

be completed in Matlab. Since all terms are real, we can use the square root of our fit as the 

absolute value of the joint photon amplitude for the Schmidt decomposition. When calculating 

K and E, the square of the Schmidt coefficients are used, so the use of the absolute value of the 

joint amplitude does not affect our calculation of K and E. 

To confirm the accuracy of our model, we experimentally measured the joint frequency 

spectrum of SPDC filtered with a BP filter centered at 810 nm with FWHM = 30 nm (810-30 

nm BP filter) and compared this experimental data with the model’s calculation of the joint 

frequency spectrum, where the model is the double-Gaussian spectral amplitude times the 810-

30 nm BP filter function. The results are shown in Fig. 6.8. We compared slices of the 2D 

model to the experimental data at various points of interest: a) when energy is conserved so 

ω2 

θ 
xc 

yc 
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that ωA + ωB = ωp, b) when Bob’s wavelength is constant at the degenerate wavelength, 810 

nm, and c) when ωA = ωB. These plots are also shown in Fig. 6.8. All plots and data have been 

normalized. 
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Figure 6.8. Model of non-collinear Type-I degenerate, CW-pumped SPDC filtered by an 810-

30 nm BP filter. Shown is the full 2D model as well as slices used to compare with 

experimental data. 

The plots in Fig. 6.8 confirms that our fitted model of the filtered SPDC joint frequency 

spectrum accurately compares to experimental data. Therefore, to quantify the degree of 

frequency entanglement of our filtered SPDC photons, the Schmidt decomposition is 

performed on this fitted model of the joint frequency spectrum. Since the Schmidt 

decomposition is a continuous function reformulation of the matrix formulated singular value 

decomposition (SVD), we can discretize our continuous function model into a matrix. The 

SVD can then be performed on the matrix form of our fitted model using the SVD function 

from a linear algebra programming package, such as NumPy or Matlab. With the calculated 

Schmidt coefficients, we then determine K and E, as shown in the manuscript. 

 

6.7.3 ETPA signal details 
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Error bars are calculated as the propagated error from the standard deviation of 5 

measurements. For a reference “blank,” we measure the entangled photon transmission through 

two different pure solvent trials. The difference in their transmission is the baseline of the 

experiment, and we subtract that baseline from the measured ETPA signal. When removing 

the solvent from the cuvette and adding either the chromophore solution or second solvent 

sample, the black box containing the cuvette always remains closed. An injection port 

connecting the lid of the box to the cuvette allows for easy removal and addition of liquid from 

the cuvette. By not opening the box during experiments, the entangled photon alignment on 

the APD remains as steady as possible, which helps to lower the noise level and limit of 

detection of the experiment. 

 

6.7.4 Analysis of potential signals interfering with the ETPA signal 

The probability of OPA at the entangled photon wavelength (810 ± 15 nm) is very 

small since none of the chromophores have excited states near the entangled photon 

wavelength. Any small loss due to OPA can be estimated using the UV-vis absorbance at 810 

± 15 nm. Since there are no excited states at those wavelengths (Fig. 6.6), we can use the limit 

of detection of the spectrophotometer as an upper-bound for OPA: absorbance = ~0.0005, 

which equates to a 0.1 % loss in transmission. For an input of 106 photons/s, this loss equates 

to, at most, 103 photons/s, 1-2 orders of magnitude smaller than the chromophore’s loss in 

transmission in our ETPA experiment. Classical TPA cross-sections of chromophores are 

typically around ~10-47 cm4/s/molecule or smaller, which could only result in an extremely 

small loss in transmission of 10-11 photons/s. 

Previous ETPA experiments have used chromophore concentrations as high as 110 mM 

without noticeable scattering from the chromophore.2 To be cautious with avoiding scattering, 

we use solutions no more concentrated than 1 mM, where the chromophore-to-solvent 

molecule ratio is at most ~1:104. Scattering detected from such a diluted solution comes mainly 

from the solvent, and the solvent scattering is typically around 1-2 orders of magnitude larger 

than the chromophore’s scattering in dilute solutions.3 Anyway, scattering from the solvent is 

accounted for in the pure solvent transmission scan and is subtracted out of the ETPA signal. 

Nonetheless, we can estimate the intensity of scattering from both the chromophore and solvent 

file://///lsa-research04.m.storage.umich.edu/lsa-research04/tgoodson/group/Ryan/mini_ETPA_paper/Supporting%20information_cwETPA_JPC_09292020.docx%23_ENREF_2
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to definitively rule out the possibility of scattering contributing to our measured signal. For the 

chromophores, the most probable sources of scattering could come from non-resonant 

Rayleigh scattering at 810 nm or resonant hyper-Rayleigh scattering of the entangled photon 

pair at the two-photon energy, 405 nm. It has been shown that for chromophores with molar 

extinction coefficients of ~105 M-1 cm-1 (which is typical for chromophores, if not smaller), 

the intensity of resonance Rayleigh scattering is only 4x10-6 of the one-photon absorption at 

the same wavelength.4 The intensity of non-resonant Rayleigh scattering would be an 

additional 1-2 orders of magnitude smaller than the resonance Rayleigh scattering.3 Using our 

estimate of OPA at 810 ± 15 nm, the non-resonant Rayleigh scattering of the chromophore 

would at most be 10-4 photons/s. To estimate resonant hyper-Rayleigh scattering, we first 

estimate the non-resonant hyper-Rayleigh scattering intensity, which is 3-4 orders of 

magnitude smaller than non-resonant Rayleigh scattering.5 Resonant hyper-Rayleigh 

scattering can have an enhancement over the non-resonant scattering by about a factor of 5.6 

Therefore, at most, the loss in transmission from resonant hyper-Rayleigh scattering would be 

10-6 photons/s. Raman or hyper-Raman scattering would have even smaller intensities. 

For the solvent, the scattering cross-section for an organic solvent is on the order of 10-

26 cm2/molecule.7 We calculate the number of solvent molecules within the beam path using 

its density and estimate that the solvent would only scatter 10-2 photons/s. As expected, the 

solvent would scatter more than the chromophore by 2 orders of magnitude,3 but the solvent 

scattering is still several orders of magnitude smaller than ETPA. 

To reduce the mechanical movement of the equipment during the experiment, we use 

an injection port attached to the cuvette that opens at the lid of the black box containing all the 

optics and detectors. We can remove and refill liquid in the cuvette without opening the black 

box or disturbing the equipment inside it. In this way, all sources of mechanical movement in 

the setup are significantly reduced. 

The noise level, or baseline, of our ETPA experiment, is measured by comparing the 

entangled photon transmission for two different pure solvent trials. The process of removing 

the first solvent trial from the cuvette and replacing it with the second solvent trial in the cuvette 

perfectly mimics the process of adding a chromophore solution to the cuvette. This process 

accounts for any remaining movement to the equipment caused by inserting the pipette into 

file://///lsa-research04.m.storage.umich.edu/lsa-research04/tgoodson/group/Ryan/mini_ETPA_paper/Supporting%20information_cwETPA_JPC_09292020.docx%23_ENREF_4
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the injection port. It also accounts for fluctuations in the average pump laser power over time, 

which would change the input entangled photon rate. For entangled photon input rates on the 

order of 106 photons/s, the noise level is around 103 counts/s, which corresponds to 0.1 % of 

the input rate. 

The error in the ETPA signal is measured by taking multiple measurements (in our 

experiment, 5) at each input rate. The standard deviations of the measured transmitted count 

rates for the solvent reference and the chromophore solution are propagated to calculate error 

bars. This error accounts for fluctuations in the input entangled photon rate, caused primarily 

by power fluctuations of the CW pump laser, and accounts for the electronic noise of the APDs 

and counter. For entangled photon input rates on the order of 106 photons/s, the typical error 

is around 103 counts/s, the same as the 0.1 % noise level. These results were summarized in 

Table 6.3 in the main manuscript. 

 

6.7.5 ETPA with Collinear Type-I CW-Pumped SPDC 

Results for the ETPA rate using collinear phase-matched Type-I degenerate, CW-

pumped SPDC are shown in Fig. 6.9. 
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Figure 6.9. ETPA results obtained with type-I collinear SPDC entangled photons excitation. 

 

6.7.6 Fluorescence ETPA experiments 

For fluorescence ETPA experiments, the entangled photons were focused by using a 

plano-convex lens, fl = 2.5 cm. A previously designed fluorescence collection unit (Ref. 8 and 

references therein), lcut = 450 and 650 nm long and short pass filters, and a photomultiplier 

tube with a single photon counting module were used to isolate and detect the ETPA induced 

fluorescence signal. 

 

6.7.7 Control on the population of a final state through the frequency joint spectrum  

The probability on a three-level system to be in a final state f, driven by entangled two-

photon excitation from the ground state (g) and using intermediate states (e), as a function of 

time, obtained perturbatively is9: 

 〈�̂�𝑓(𝑡)〉𝜓 = 〈�̂�𝑓𝑔
† (𝑡)�̂�𝑓𝑔(𝑡)〉  (6.8) 

The transition amplitude corresponds to: 
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 �̂�𝑓𝑔(𝑡) = ∫𝑑𝜔1 ∫𝑑𝜔2 𝑇𝑡(𝜔1, 𝜔2)�̂�2(𝜔2)�̂�1(𝜔1)  (6.9) 

 𝑇𝑡(𝜔1, 𝜔2) = (
𝐸0

ℏ
)
2
∑ (

𝜇𝑔𝑒

𝜔1−𝜔𝑒+𝑖𝛾𝑒
+𝑒

𝜇𝑔𝑒

𝜔2−𝜔𝑒+𝑖𝛾𝑒
) (

𝜇𝑒𝑓

𝜔1+𝜔2−𝜔𝑓+𝑖𝛾𝑓
𝑒−𝒊(𝜔1+𝜔2)𝑡)  (6.10) 

�̂�𝑓𝑔(𝑡) is expressed in terms of the transition dipole moments (𝜇𝑔𝑒 and 𝜇𝑒𝑓) and subscripts 1 

and 2 represent signal and/or idler photon. 𝜔𝑒 and 𝜔𝑓 correspond to the energy of the 

intermediate and final states; and  𝛾𝑥 (x = e, f ) is the state linewidth.  

As can be seen from eq. 6.8–6.10, the population of a particular final excited state can 

be adjusted precisely by tuning the frequency correlations of the entangled pair.9,10 The 

frequency correlation can be controlled by shaping the spatial distribution of the pump beam.  

It was demonstrated that the optimal 𝑇𝑓 function can be represented in a Schmidt 

decomposition of the matter response function as9 

 𝑇𝑡(𝜔1, 𝜔2) = ∑ 𝑟𝑘𝜓𝑘
∗(𝜔1)𝑘 𝜙𝑘

∗(𝜔2) (6.11) 

𝜓𝑘 and 𝜙𝑘 functions form an orthonormal basis set, with 𝑟𝑘 chosen to be real and positive 

numbers. This orthonormal set is also a way to represent the ideal joint spectrum of the 

entangled photon pairs inducing with maximum probability the ETPA transition from an initial 

to final states through selectively excited intermediate states. 

  

file://///lsa-research04.m.storage.umich.edu/lsa-research04/tgoodson/group/Ryan/mini_ETPA_paper/Supporting%20information_cwETPA_JPC_09292020.docx%23_ENREF_9
file://///lsa-research04.m.storage.umich.edu/lsa-research04/tgoodson/group/Ryan/mini_ETPA_paper/Supporting%20information_cwETPA_JPC_09292020.docx%23_ENREF_10
file://///lsa-research04.m.storage.umich.edu/lsa-research04/tgoodson/group/Ryan/mini_ETPA_paper/Supporting%20information_cwETPA_JPC_09292020.docx%23_ENREF_9


213 

 

References 

1. Fedorov, M. V.; Mikhailova, Y. M.; Volkov, P. A. Gaussian Modelling and Schmidt Modes 

of SPDC Biphoton States. J. Phys. B: At. Mol. Opt. Phys. 2009, 42, 175503. 

2. Villabona-Monsalve, J. P.; Calderón-Losada, O.; Nuñez Portela, M.; Valencia, A. Entangled 

Two Photon Absorption Cross Section on the 808 nm Region for the Common Dyes Zinc 

Tetraphenylporphyrin and Rhodamine B. J. Phys. Chem. A 2017, 121, 7869-7875. 

3. Anglister, J.; Steinberg, I. Z. Depolarized Rayleigh Light Scattering in Absorption Bands 

Measured in Lycopene Solution. Chem. Phys. Lett. 1979, 65, 50-54. 

4. Anglister, J.; Steinberg, I. Z. Resonance Rayleigh Scattering of Cyanine Dyes in Solution. J. 

Chem. Phys. 1983, 78, 5358-5368. 

5. Xu, C.; Shear, J. B.; Webb, W. W. Hyper-Rayleigh and Hyper-Raman Scattering 

Background of Liquid Water in Two-Photon Excited Fluorescence Detection. Anal. Chem. 

1997, 69, 1285-1287. 

6. Wang, C.-K.; Macak, P.; Luo, Y.; Ågren, H. Effects of Π Centers and Symmetry on Two-

Photon Absorption Cross Sections of Organic Chromophores. J. Chem. Phys. 2001, 114, 

9813-9820. 

7. Schomacker, K. T.; Delaney, J. K.; Champion, P. M. Measurements of the Absolute Raman 

Cross-Sections of Benzene. J. Chem. Phys. 1986, 85, 4240-4247. 

8. Varnavski, O.; Pinsky, B.; Goodson, T. Entangled Photon Excited Fluorescence in Organic 

Materials: An Ultrafast Coincidence Detector. J. Phys. Chem. Lett. 2017, 8, 388-393. 

9. Schlawin, F.; Buchleitner, A. Theory of Coherent Control with Quantum Light. New J. Phys. 

2017, 19, 013009. 

10. Roslyak, O.; Marx, C. A.; Mukamel, S. Nonlinear Spectroscopy with Entangled Photons: 

Manipulating Quantum Pathways of Matter. Phys. Rev. A 2009, 79, 033832. 

 

 



214 

 

CHAPTER 7 

Enhancing Entangled Two-Photon Absorption for Picosecond Quantum Spectroscopy 

 

The work in this chapter is part of a manuscript in preparation for publication: 

Burdick, R. K.; Schatz, G. C.; Goodson III, T. “Enhancing Entangled Two-Photon Absorption 

for Picosecond Quantum Spectroscopy.” 

Modifications have been made for the style and content of this dissertation. References and 

supporting information for the manuscript are included in this chapter. 

 In this chapter, I conceived of using the SPDC frequency bandwidth to control the 

entanglement area, Ae, expanding on previous literature that showed the connection between Ae 

and the SPDC crystal length. I measured the Type-I and Type-II ETPA cross-sections vs SPDC 

frequency bandwidth. I proposed the Ae expressions for Type-I and Type-II SPDC and performed 

the fitting of the expressions with the experimental cross-sections. I provided the analysis and 

discussion for using longer Te SPDC to control photochemical reactions and study ps excited state 

dynamics. 

 

7.1 Abstract 

 Entangled two-photon absorption (ETPA) is known to create photoinduced transitions with 

extremely low light intensity, reducing the risk of phototoxicity in sensitive samples compared to 

classical two-photon absorption. Previous theoretical works have predicted the ETPA cross-

section, σe, to vary inversely with the product of entanglement time (Te) and the entanglement area 

(Ae), i.e. σe ~ 1/AeTe. The decreasing σe with increasing Te has limited ETPA to fs-scale Te, while 

ETPA applications for ps-scale spectroscopy have been unexplored. However, we show that 

spectral-spatial coupling, which reduces Ae as the SPDC bandwidth (σf) decreases, plays a 

significant role in determining σe when Te ≳ 100 fs. For Type-I ETPA, σe increases as σf decreases 

down to 0.1 ps-1. For Type-II SPDC, the influence of spectral filtering on Ae cancels the effect on 

Te, resulting in a constant σe for a wide range of σf. We illustrate these results by experimentally 

measuring σe for zinc tetraphenylporphyrin at several σf values. With a theoretical analysis of the 
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data, the maximum Type-I σe would occur at σf = 0.1 ps-1, or Te = 10 ps. At this maximum, σe is 1 

order of magnitude larger than fs-scale σe and 3 orders of magnitude larger than what previous 

predictions of ps-scale σe would be. By utilizing the spectral-spatial coupling of the entangled 

photons, narrowband Type-I ETPA provides a new opportunity to increase the efficiency of 

measuring nonlinear optical signals and to control photochemical reactions requiring ps temporal 

precision. 

 

7.2 Introduction 

 Entangled two-photon absorption (ETPA) was shown to be measurable in atoms1, 2 and 

organic chromophores3 using extremely low light intensity more than a decade ago. The well-

known linear absorption rate for ETPA vs photon flux significantly enhances the ETPA rate 

compared to classical two-photon absorption (TPA) rate at these low light intensities.4, 5 To date, 

ETPA has only been performed in the fs-scale of the fourth-order temporal correlation, or 

entanglement time, Te. ETPA with ps Te would be beneficial for probing chemical processes such 

as isomerization,6, 7 proton transfer,8, 9 water solvation,10, 11 and ligand binding/unbinding.12, 13 

However, previous reports on ETPA suggest that ETPA would not be measurable practically with 

ps-scale Te because the ETPA cross-section, σe, was predicted to decrease with increasing Te.
14-18 

Other parameters of SPDC, such as the fourth-order transverse spatial correlation, or entanglement 

area, Ae, may be used to counteract the effect of increasing Te. 

With spontaneous parametric down-conversion (SPDC) as the entangled photon source, 

the ETPA cross-section with a Gaussian frequency filter has been derived previously as:19, 20 

 𝜎𝑒 =
√2𝜔𝑠

0𝜔𝑖
0

ℏ2
0
2𝑐2𝐴𝑒𝑇𝑒

𝑘𝑓

( 𝑓− 𝑔−𝜔𝑠
0−𝜔𝑖

0)
2
+(

𝑘𝑓

2
)
2 |∑ 𝜇𝑓𝑗𝜇𝑗𝑔𝑇𝑒𝐹[(Δ𝑗 − 𝑖𝑘𝑗/2)𝑇𝑒]𝑗 |

2
 (7.1) 

Here, εg, εj, εf are the energies of the molecule’s ground, intermediate, and final states, respectively; 

μjg and μfj are the transition dipole moments (TDMs) from the ground-to-intermediate and 

intermediate-to-final states, respectively; ω0
s/i are the central frequencies of the signal/idler 

entangled photons, respectively; 𝛥j = εj – εg – ω0
s is the detuning energy; F is the plasma dispersion 

function. We assume a monochromatic pump. The molecule’s excited states are Lorentzian 

broadened with linewidths kj and kf for the intermediate and final states, respectively. Previous 

work showed that the lifetime of the final ETPA excited state can be calculated using the 

spontaneous radiative lifetime for two-photon emission.17 
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While eq. 7.1 provides the exact σe dependence on Te, a simpler probabilistic model is used 

to describe σe when the Te dependence of the modulus squared term is negligible (Te ≳ 500 fs):14 

 𝜎𝑒 =
𝛿𝑟

2𝐴𝑒𝑇𝑒
 (7.2) 

Here δr is the classical TPA cross-section. In previous theoretical14-17 and experimental3, 21, 22 

reports, it was assumed that Te can be changed while Ae remains constant. From eq. 7.2, if Ae is 

constant, σe decreases as Te increases. However, there exists a coupling between the spectral and 

spatial properties of the entangled photon wavefunction (see supporting information).14 To change 

Te, the bandwidth of the photons from SPDC must change, which should also change Ae. While 

this spectral-spatial coupling has been discussed in the literature before,23, 24 how the coupling 

affects the ETPA cross-section has not been considered nor explored experimentally. 

 

7.3 Results and Discussion 

Here we consider the effect of a spectral filter, with bandwidth σf, that is applied to the 

SPDC photons after they emerge from the SPDC process. Full details of our experimental setup 

have been reported previously25 and can be found in the SI. In Fig. 7.1a, the experimental σe for 

Type-I and Type-II filtered SPDC are plotted as a function of σf ranging from 0.9-40 ps-1. In our 

passive filtering technique, where SPDC photons are produced in a crystal and filtered after their 

generation, the input photon rate for ETPA decreases with decreasing σf. We found that we can 

choose σf as small as 0.9 ps-1 before the input rate was too small to measure an ETPA signal. Due 

to the limited wavelength detection range of APDs, we could not obtain σe at σf > 40 ps-1. The 

smooth curves in this figure are the results of an analytical theory that we describe below. 

Given that eq. 7.1-7.2 show that σe varies inversely with Te, it is of interest to convert Fig. 

7.1a to show dependence on Te. Standard filter theories can be used to show that Te varies inversely 

with σf,
26-28 so experimentally, Te increases when filtering the SPDC with different bandwidth 

filters or a monochromator. Since σf was always smaller than the initial SPDC bandwidth emitted 

by the crystal (σL), Te was calculated in Fig. 7.1b from σf, taking dispersion into account using the 

standard relation for the pulse width in a dispersive medium:29 

 𝑇𝑒 =
1

𝜎𝑓

√1 + (4𝑙𝑛2
𝐺𝐷𝐷

(
1

𝜎𝑓
)

2)

2

 (7.3) 
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GDD in this expression is the group delay dispersion for the optical elements in our experiment. 

 
Figure 7.1. a) Experimental and theoretical Type-I and Type-II ETPA cross-sections, σe, vs σf for 

a ~20 μM solution of zinc tetraphenylporphyrin (ZnTPP). b) Same as (a) with the x-axis converted 

to Te. 

The experimental data in Fig. 7.1 shows that for Type-I SPDC at small σf, σe increases as 

σf decreases (Te increases). For Type-II SPDC at long Te, σe is constant as σf decreases. Not only 

do the two SPDC Types differ from each other in their cross-section trends, they are also 

incompatible with the constant Ae prediction that σe should decrease as σf decreases. We note that 

the GDD term in eq. 7.3 leads to two branches in the curves in Fig. 7.1b: an upper branch 

corresponding to small σf in which Te is determined by Te=1/σf
., and a lower branch corresponding 

to large σf where the GDD dominates, and Te is proportional to σf. Fig. 7.1 shows that both branches 

are involved in the data fit. However, we are only concerned with the small σf branch. Even with 

eq. 7.3 factored in, the variation of σe with σf is still not explained by the assumption of a constant 

Ae. We then take into account the spectral-spatial coupling and how changing σf would change Ae. 

The solid curves in Fig. 7.1 are the theoretical model in eq. 7.1 including the spectral-spatial 

coupling, which is explained below. 

The origin of Ae is the uncertainty in the SPDC emission angles from the crystal source, as 

determined by the polar and azimuthal entanglement angles, θe and φe, respectively.30, 31 Because 

each frequency within the SPDC frequency superposition experiences a different refractive index 

inside the crystal, each frequency propagates at a different angle. Therefore, uncertainty in the 

frequency causes an uncertainty in the propagation angle and ultimately the spatial position. 

a) b) 
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Decreasing the frequency uncertainty (σf), is then expected to decrease Ae, which should increase 

σe. However, decreasing σf also increases Te, which should decrease σe. From the experimental data 

in Fig. 7.1a, for Type-II SPDC, these competing effects cancel each other, leaving σe constant for 

small σf. For Type-I SPDC, the decreasing Ae outweighs the increasing Te, resulting in a net 

increase in σe. 

The work in ref. [32] showed that the entanglement angle θe, and thus Ae, is dependent on 

the length, L, of the SPDC crystal. As the crystal length increases, θe decreases linearly. This is 

expected from the reasoning above since as the length of the SPDC crystal increases, the frequency 

bandwidth decreases (eq. 1.28-1.29 in Chapter 1). This linear relationship between L and θe is true 

for Type-I and Type-II SPDC. In our experiment, the Type-I Ae is expected to have a quadratic 

dependence on the frequency bandwidth because the frequency bandwidth is quadratically 

dependent on L (eq. 1.28). A quadratic relationship between L and the bandwidth, and a linear 

relationship between L and the entanglement angle/area, results in a quadratic relationship between 

the bandwidth and Ae. Since this previous work did not directly correlate the frequency bandwidth 

to Ae, we propose the following relationships between Ae and the SPDC frequency bandwidth (for 

small σf) for Type-I and Type-II (see supporting information for more details): 

 Type-I: 𝐴𝑒 = (
𝛼

𝜎𝑓
2 +

𝛽

𝜎𝐿
2)

−1

+ 𝐴𝑑 ∝ (𝛼𝑇𝑒,𝑓
2 + 𝛽𝑇𝑒,𝐿

2 )
−1

+ 𝐴𝑑  (7.4) 

 Type-II: 𝐴𝑒 = (
𝛾

𝜎𝑓
+

𝜎𝐿
)
−1

+ 𝐴𝑑 ∝ (𝛾𝑇𝑒,𝑓 + 𝜁𝑇𝑒,𝐿)
−1

+ 𝐴𝑑 (7.5) 

σL is the bandwidth of the SPDC that is emitted from the crystal before filtering, which is controlled 

by the length, L, and represents the upper limit for σf in our experiment. Te,L is the corresponding 

entanglement time. The term Ad recognizes that there is a lower bound to the area Ae that is 

determined by diffraction. The coefficients α, β, γ, and ζ are solved for by fitting with the 

experimental data in Fig. 7.1. Substituting eq. 7.4-7.5 into eq. 7.2 provides new probabilistic 

models (to highest order in Te) for Type-I and Type-II ETPA, respectively: 

 Type-I: 𝜎𝑒 ∝ 𝛿𝑟𝑇𝑒,𝑓 (7.6) 

 Type-II: 𝜎𝑒 ∝ 𝛿𝑟 (7.7) 

Eq. 7.6-7.7 predict the σe vs Te trends (for small σf) that we see with the experimental data in Fig. 

7.1b for both SPDC Types. To confirm the validity of eq. 7.6-7.7, we substitute the equations into 

eq. 7.1 and fit the resulting equations with our experimental data to determine the coefficient values 

and extract Ae. See supporting information for calculation parameters. The models are accurate 
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until σf decreases to the point where Ae reaches Ad, as determined by eq. 7.4-7.5, which we calculate 

below to occur around Te = 10 ps. 

The resulting fits for Type-I and Type-II are shown in Fig. 7.1 as the solid curves, and they 

agree reasonably well with the experimental data. The trends for σf < 5 ps-1 are the same if a sinc 

SPDC spectrum is considered for the theoretical equation (see supporting information). For σf > 

10 ps-1, dispersion significantly increases Te and decreases σe, which is shown in Fig. 7.1b as the 

bottom branch that decreases with increasing Te. For σf in the range 0.9-40 ps-1, the Type-I Ae 

ranges 1.95x10-7-7.39x10-6 cm2, and the Type-II Ae ranges 4.12x10-7-6.91x10-6 cm2. These ranges 

are within an order of magnitude of the assumption of Ae = 1x10-6 cm2 in previous theoretical 

works for fs-scale Te.
14, 16, 17 

Inclusion of the Ad parameter in eq. 7.4-7.5 assumes that there is a diffraction limit to Ae. 

In the supporting information, we provide estimates of σe where this limit has been assumed to be 

(λ/2)2=1.6x10-9 cm2. Fig. 7.2 shows how the Type-I ETPA cross-section changes as the SPDC 

bandwidth is decreased until Ae reaches the diffraction limit. For comparison, the same theoretical 

model (eq. 7.1) but using a constant Ae is shown. 

 
Figure 7.2. Comparison of the Type-I ETPA experimental data for ZnTPP with theoretical model 

(eq. 7.1) for constant Ae (black) and decreasing Ae (blue). 

In Fig. 7.2, at the smallest experimental bandwidth (~1 ps-1), the model with a constant Ae 

is more than an order of magnitude smaller than the experimental value. For the decreasing Ae, the 

maximum occurs at σf = 0.1 ps-1 (Te = 10 ps), and here σe is ~3x10-17 cm2, which is over 3 orders 

of magnitude larger than what the constant Ae predicts (~1x10-20 cm2). 
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Comparison of ETPA with one-photon absorption (OPA) at the intermediate state has 

previously been explored.20, 33, 34 In this report, we considered a molecular system where the 

intermediate states are far off-resonance with the single photon energies, such that OPA at the 

intermediate states is negligible. The final-state OPA cross-section of ZnTPP at 405 nm is ~2x10-

16 cm2/molecule.35 At the maximum, σe is within an order of magnitude of the final-state OPA 

cross-section, rather than 2 orders of magnitude smaller in the tens of ps-1 range where ETPA 

experiments are performed today.43-45 

It is clear from the data in Fig. 7.2 that the ETPA cross-section increases with decreasing 

SPDC frequency bandwidth due to Ae decreasing. As Ae decreases, the spatial location of the 

entangled photons becomes known to the molecule with greater certainty, i.e. the entangled 

photons become more localized. Since it is important for any TPA transition that the two absorbed 

photons overlap with the same molecule in the solution, having the entangled photons become 

more localized increases the probability that they will overlap with the same molecule, thus 

enhancing the molecule’s ability to absorb them. It is important to note that Ae is different, and in 

fact smaller, than the total spatial distribution of the SPDC beam, i.e. the SPDC ring(s). For 

classical TPA, the location of the two absorbed photons has an uncertainty of the entire spatial 

distribution of the laser beam. For ETPA, the uncertainty (Ae) is smaller than the entire spatial 

distribution and can be tuned separately from the entire spatial distribution. ETPA thus has a 

unique control knob for tuning the cross-section that classical TPA does not have. 

With this unique control knob, ETPA may be used to measure the size of molecules or 

chemical structures by measuring how the ETPA cross-section changes with Ae. Of course the 

cross-section should increase with decreasing Ae, but the rate of the cross-section’s increase may 

be dependent upon the size of the molecule or structure. Thus, by measuring the exact rate that the 

cross-section changes with Ae may be used to measure the size of chromophores, different 

generations of dendrimers, quantum dots, proteins, or cell organelles. 

While the ETPA cross-section increases from 1 to 10 ps, the photon pair rate decreases as 

the SPDC is passively filtered more and more. The increasing cross-section and decreasing input 

SPDC rate can leave the ETPA signal unchanged. To fully take advantage of the increased ETPA 

cross-section, the SPDC rate cannot be drastically reduced through filtering. The SPDC pair rate 

through the monochromator in this work was 0.114 pairs/s/mW per GHz of SPDC bandwidth. This 

rate resulted in ~1x104 pairs/s at Te = 1.1 ps, and upon further filtering, the pair rate was too small 
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to measure an ETPA signal. This establishes the current minimum count rate needed to measure 

an ETPA signal at 1x104 pairs/s. Filtering the SPDC to a 0.1 ps-1 bandwidth would only leave 

~1x103 pairs/s, an order of magnitude too small to measure the ETPA signal. We propose using 

one of the following techniques to measure ETPA at the cross-section maximum: cavity-enhanced 

SPDC or periodically poled SPDC. We outline both of these techniques in the following section. 

 

7.4 Proposed Techniques for ETPA Cross-Section Maxima Measurements 

Usually when more narrowband SPDC photons are needed, an active filtering technique 

called cavity-enhanced SPDC (CE-SPDC) is used.36-42 In this technique, the SPDC crystal is 

placed inside of an optical cavity. Common arrangements for the cavity include Fabre-Perot and 

bowtie. The pump beam is sent into the cavity to pass through the crystal where SPDC is produced. 

The length of the cavity is fine-tuned using piezo-electric elements on one of the mounted cavity 

mirrors. The piezo element locks the cavity length to be resonant with at least one of the SPDC 

photon fields. Because one (or both) of the SPDC fields is resonant with the cavity, the frequency 

of the emitted SPDC must be resonant with a cavity mode. This requirement essentially adds 

another condition to the SPDC phase-matching conditions. The SPDC is still created inside the 

SPDC crystal, which has a sinc frequency distribution, but the entire sinc distribution is not 

resonant with a cavity mode. The frequency spectrum of the SPDC is therefore the product of the 

cavity modes times the sinc distribution from the SPDC crystal. The spectrum resembles a 

frequency comb with a sinc envelope. This is shown in Fig. 7.3. 

 
Figure 7.3. Frequency spectrum of cavity-enhanced SPDC. 

 

 The width of the cavity modes in Fig. 7.3 is determined by the length of the optical cavity 

and its finesse, which is a measure of how long the photons stay inside the cavity before exiting. 

Longer cavities and higher finesse keep the SPDC photons inside the cavity longer and have 
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stricter bounds on the frequencies resonant with the cavity, which narrows the cavity modes. The 

width of the cavity modes, Δνcav, is calculated as:36 

 ∆𝜈𝑐𝑎𝑣 =
𝑐

𝐹�̃�𝐿𝑟𝑡
≈

𝛼𝑟𝑡𝑐

2𝜋�̃�𝐿𝑟𝑡
 (7.8) 

F is the cavity finesse, which is approximated as 2π/αrt for the second equality, and αrt is the power 

loss from the cavity during one round trip. The finesse is mostly determined by the reflectivity of 

the input and output couplers of the cavity. Lrt is the length of the cavity for one round trip, and ñ 

is the average refractive index inside the cavity. For CE-SPDC, Te is inversely proportional to the 

cavity mode linewidth. 

 While the maximum ETPA cross-section in Fig. 7.2 occurs around Te = 10 ps, any Te within 

the range of 2.5-75 ps would yield a cross-section on the order of 10-17 cm2/molecule, which is 

within an order of magnitude of the OPA cross-section and an order of magnitude larger than the 

cross-sections with Te < 250 fs where ETPA is commonly performed today. A cavity mode 

linewidth on the order of 10 ps is relatively large for a cavity, so a low finesse and short cavity 

length would be needed. Assuming a power loss of 90 % per round trip from an input mirror 

reflectivity of 99 % and an output coupler with 10 % reflectivity, the finesse would be ~7. For a 

short path length SPDC crystal such as a 0.5 mm BBO, ñ ≈ 1. A Fabre-Perot cavity would need a 

mirror separation of 8.5 mm to then achieve a mode linewidth of 14 GHz, or Te = 70 ps. 

CE-SPDC has the advantage that the number of photons created is enhanced compared to 

free-space SPDC. The SPDC frequencies resonant with the cavity create a standing wave and 

constructively interfere to increase their intensity. Therefore, even though free-space SPDC and 

CE-SPDC can be passively filtered to the same bandwidth, the CE-SPDC would have more 

photons at that same bandwidth. The cavity can be resonant with just the signal photon (singly-

resonant oscillator, or SRO) or both the signal and idler photons (doubly-resonant oscillator, or 

DRO). DRO provides a higher enhancement in the photon rate per mode since both photons will 

experience constructive interference. Degenerate SPDC, as is needed for the proposed experiment, 

will naturally be doubly-resonant since both photons have the same central frequency. The 

enhancement in the pairs/s of SPDC bandwidth for DRO SPDC compared to free-space SPDC is 

a factor of the finesse squared. In the free-space Type-I SPDC setup used in this work, filtering 

the SPDC to 14 GHz would leave an SPDC rate of 1.6x102 pairs/s. The DRO finesse of 7 gives an 

x49 enhancement in the count rate, yielding 7.8x103 pairs/s in each cavity mode. However, many 

modes of the cavity are excited as long as they are within the phase-matching bandwidth of the 
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SPDC crystal. The frequency spacing between the modes, known as the free spectral range, Δνfsr, 

is given by: 

 ∆𝜈𝑓𝑠𝑟 = ∆𝜈𝑐𝑎𝑣𝐹 (7.9) 

The free spectral range for this case would be 98 GHz. Filtering the CE-SPDC output with a simple 

10 nm bandwidth bandpass filter leaves ~47 modes, resulting in a total SPDC pair rate of 3.7x105 

pairs/s. Using a broader bandpass filter can increase the pair rate more. While this method of 

creating ps Te is possible, such a short cavity would be challenging to stabilize. Additionally, 

achieving Te = 70 ps is already pushing the technique to its constraints. To achieve Te = 10 ps, the 

cavity length would have to be 1 mm. Configuring such an extremely short cavity to keep the 

SPDC crystal aligned inside and keep the cavity length stabilized would be very difficult. 

Another method for creating ps Te SPDC with a higher pair rate is using periodically poled 

(pp) SPDC. In this technique, longer crystals (L ≥ 10 mm) made from materials with higher 

nonlinear susceptibilities compared to BBO, commonly potassium titanyl phosphate (KTP) or 

lithium niobate (LN), are used to generate SPDC.43-45 The longer crystals and higher nonlinearities 

can greatly increase the generated SPDC rate. However, these materials do not have the proper 

refractive indices to phase-match the SPDC. If a pump beam were to enter a crystal of these 

materials without periodic poling, some SPDC could be generated at the front of the crystal, but 

as the signal and idler fields become out of phase with the pump field due to the lack of phase-

matching, destructive interference destroys the SPDC fields. As the pump field continues 

propagating through the crystal, signal and idler fields can be generated again once they are back 

in phase with the pump, but this cycle of destructive interference will occur again once the fields 

are out of phase. To obtain any SPDC at all, the crystal would have to be cut to a very precise 

length on a μm scale. Such a short crystal would provide very few photons/s, not to mention it 

would be technically challenging to make and very fragile. 

To counteract the lack of phase-matching in the materials, the crystals can have the 

direction of their nonlinearity flipped at periodic lengths along the crystal. This length, called the 

poling period, Λ, is chosen so that when the pump field becomes out of phase with the signal and 

idler fields, the flipped nonlinearity will allow SPDC to be generated from these out of phase fields. 

When the fields are in phase again, the nonlinearity flips back, and so on throughout the whole 

crystal. The generated signal and idler fields throughout the crystal can then constructively 
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interfere to yield a large photon rate exiting the crystal. This process is known as quasi-phase-

matching. The phase-mismatch for quasi-phase-matching is given as:46 

 ∆�⃑� = �⃑� 𝑝 − �⃑� 𝑠 − �⃑� 𝑖 −
2𝜋

Λ
 (7.10) 

The longer crystals and higher nonlinearity of ppKTP and ppLN allow for much more 

efficient SPDC generation compared to thin BBO crystals. For a 30 mm ppKTP crystal, Type-0 

SPDC can be generated at a rate of 352 pairs/s/mW per GHz of SPDC bandwidth.43 The Type-0 

SPDC from this crystal will naturally have a bandwidth of ~30 nm, but filtering it with a 

monochromator or volume bragg grating to a bandwidth of 14 GHz would yield 4.9x105 pairs/s of 

Te = 70 ps SPDC at 100 mW of pump power. Additionally, unlike the CE-SPDC, the ppSPDC pair 

rate increases with increasing bandwidth. To achieve the maximum ETPA cross-section at Te = 10 

ps, a 100 GHz bandwidth is needed. For 100 mW of pump power of the ppKTP, a pair rate of 

3.5x106 pair/s is obtained. This pair rate is larger than the free-space BBO with Te = 100 fs pair 

rate but with a much smaller SPDC bandwidth to achieve the smallest possible Ae. This pair rate 

is plenty to excite a molecule and measure its ETPA signal. All of the pair rates for each SPDC 

source at various Te values are summarized in Table 7.1. 

 

Table 7.1 Pairs/s rates at various Te for 3 SPDC sources: free-space BBO, cavity-enhanced BBO, 

and free-space ppKTP. 

SPDC source Pairs/s at Te = 100 fs Pairs/s at Te = 10 ps Pairs/s at Te = 70 ps 

Free-space BBO 1.1x105 1.1x103 1.6x102 

Cavity-enhanced 

BBO 

- - ≥ 3.7x105 

Free-space ppKTP 3.5x108 3.5x106 4.9x105 

 

 For the purposes of the proposed experiment of measuring ETPA with Te = 10 ps 

degenerate Type-I/Type-0 SPDC, the best method is to use free-space ppSPDC with passive 

filtering with a monochromator or volume bragg grating to the necessary bandwidth. The much 

higher pair rates of ppSPDC compared to SPDC from a thin BBO crystal compensates for the 

passive filtering removing many photons. It is still an open question whether other molecules may 

have maximum cross-sections at other Te values. If so, particularly if the maxima are at Te > 10 ps, 

the CE-SPDC technique would become the more favorable technique since the pair rate from CE-
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SPDC increases with increasing Te, compared to the decreasing pair rate with increasing Te from 

free-space ppSPDC. 

 

7.5 Conclusion 

With ps-scale Te entangled photons easily achievable, the maximum σe in Fig. 7.2 can be 

reached today. Ae at this maximum σe is more than 3 orders of magnitude smaller than Ae at the fs-

scale Te (see supporting information). This much smaller Ae would improve the spatial resolution 

of ETPA microscopy by more than 3 orders of magnitude, while also yielding brighter images due 

to the enhanced σe.
22 This enhancement would also provide chemists the ability to measure 

nonlinear optical signals, which are notoriously much weaker than linear signals, with the same 

absorption efficiency as linear OPA. Chemists could then more easily identify, for example, 

molecules with efficient charge transfer for solar cells or OLEDs. 

Most interestingly, ETPA at ps-scale Te provides a new opportunity to control chemical 

reactions that require intermediate conversion processes with fs-ps times, such as an isomerization, 

proton transfer, or intersystem crossing to a triplet state. A primary example is the photochemical 

reactivity of Tn triplet states in green fluorescence proteins (GFPs).47, 48 With ps Te ETPA, the first 

photon would excite the GFP to the S1 state, allow the population to cross to the T1 state, and then 

the second photon would excite the GFP to the Tn state. Entangled photons are particularly unique 

in that they can provide high frequency resolution simultaneously with the required temporal 

resolution.49 Classical ps laser pulses are Fourier limited, so they would lack frequency resolution 

in this photochemical reaction. Since excited states become closer in energy as the energy 

increases, maintaining high frequency resolution with the temporal resolution is crucial for control 

over the photochemical reaction. 
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7.6 Supporting Information 

7.6.1 Origin and Derivation of Entanglement Area 

When the location of the signal photon in the transverse plane is measured, the 

transverse location of the idler photon is also known to within an uncertainty determined by 

the entanglement area, Ae.
50 The origin of Ae is an uncertainty in the emission angles of the 

idler photon from the SPDC crystal, shown in Fig. 7.4.30, 31  

 

Fig. 7.4. Emission angles and their uncertainties of Type-I SPDC from a crystal with length L 

along the pump beam propagation axis (z-axis). 

The idler photon is emitted in the x-z plane at the central polar angle θi
°
 with an 

uncertainty, or polar entanglement angle, θi
e. The polar entanglement angle creates uncertainty 

of the photon location in the x-z plane, Δx. The uncertainty in the y-direction, Δy, comes from 

the azimuthal entanglement angle, φi
e. This angle originates from the divergence angle of the 

focused pump beam with waist w. Ae is defined by the product of uncertainties Δx and Δy.50 

While the azimuthal entanglement angle is easily seen from the pump divergence angle, 

where Δy is proportional to 1/w, the polar entanglement angle has a more complicated origin. 

When SPDC photons are created inside of the crystal, they are in a superposition of 

frequencies, which originates from the phase mismatch of the pump and SPDC photons’ wave 

vectors along the z-axis, Δkz. It is well known that expanding Δkz as a Taylor series results in 

the approximation:26 
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 ∆𝑘𝑧 ≈ −𝜈𝐷 −
𝜈2

2
𝐷′′ (7.8) 

Here, ν is the detuning frequency from the central frequency of the SPDC photons, D is the 

difference in inverse group velocity of the signal and idler, and D’’ is the group velocity 

dispersion (GVD) of the photons. Higher order terms in ν are negligible. For Type-II SPDC 

(and non-degenerate Type-I/-0 SPDC), the signal and idler have different group velocities, so 

D is non-zero, and the second-order term is negligible. For degenerate Type-I/-0 SPDC (which 

we will refer to as “Type-I” from here for brevity), the signal and idler have the same group 

velocity, so D vanishes and only the second-order term is left. Thus, the phase mismatch for 

Type-II SPDC depends linearly on the SPDC frequency, while the phase mismatch for Type-I 

SPDC depends quadratically on the SPDC frequency. 

For Type-II SPDC, each frequency of the idler photon travels at a different polar angle 

inside the crystal due to the different refractive indices. Thus, the frequencies are spread out in 

space when they exit the crystal. Because the idler has an uncertainty in its frequency (the 

bandwidth of its frequency superposition), the photon also has an uncertainty in its polar 

emission angle, i.e. the polar entanglement angle. Decreasing the frequency uncertainty also 

reduces the polar entanglement angle linearly. For Type-I SPDC, each frequency of the idler 

is dispersed inside the crystal due to GVD. The GVD, which is second-order dispersion, then 

determines the uncertainty in the polar emission angle. Reducing the frequency uncertainty 

thus decreases the polar entanglement angle quadratically. 

One way to change the polar entanglement angle is by changing the crystal length, L, 

which was shown in a paper from Joobeur et. al.30 They showed that by increasing L, the polar 

entanglement angle decreases, which would decrease Ae. Increasing L has the effect of 

decreasing the SPDC bandwidth, and so decreasing the bandwidth should also decrease the 

polar entanglement angle and Ae.
26 In our experiments, we keep L constant and decrease the 

SPDC bandwidth with frequency bandpass filters and a monochromator. For Type-I SPDC, 

since the frequency uncertainty is dependent on second-order dispersion, the uncertainty 

should be related to the filter or monochromator’s bandwidth (σf) squared. The relationship 

between Ae and the bandwidth can be represented simply (taking the Δy contribution to be 

independent of σf) as: 

 𝐴𝑒 ∝ 𝜃𝑖
𝑒 ∝ 𝛼𝜎𝑓

2 + 𝐴𝑑 (7.9) 
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α is a coefficient to be solved for by fitting experimental results, and here we include a constant 

parameter Ad in this formula to account for the fact that Ae cannot be smaller (at least for 

classical light) than the diffraction limited area. As mentioned in the main manuscript, Ad 

should be a number on the order of (λ/2)2=1.6x10-9cm2.  

While eq. 7.9 shows that Ae decreases as σf decreases, it also suggests that Ae would 

increase as long as σf continues to increase. This latter point, however, is not physically realistic 

since the SPDC has an initial bandwidth determined by the SPDC crystal length before the 

photons are filtered further downstream. The SPDC bandwidth, and thus Ae, cannot be bigger 

than that initially formed in the SPDC crystal. We can account for this upper limit with the 

following phenomenological modification to eq. 7.9: 

 𝐴𝑒 ∝ 𝜃𝑖
𝑒 ∝ (

𝛼

𝜎𝑓
2 +

𝛽

𝜎𝐿
2)

−1

+ 𝐴𝑑 (7.10) 

σL is the SPDC bandwidth defined by the crystal with length L, and it has a coefficient β to be 

solved for. Eq. 7.10 is a simple way to represent that when σf << σL, the second term is 

negligible, and Ae is determined by the filter but subject to a diffraction limit. When σf >> σL, 

the first term is negligible, and Ae is determined by the SPDC crystal. Eq. 7.10 was used in eq. 

7.1 to fit with the Type-I experimental data in Fig. 7.1. The coefficients α and β were the fitting 

parameters. With the coefficients, Ae was calculated with eq. 7.10, and the upper and lower 

bounds in our experiment are reported in the main text. 

For Type-II SPDC, the frequency uncertainty is determined by first-order dispersion, 

and thus is related to the SPDC bandwidth linearly. Following along the same lines as eq. 7.9-

7.10 for Type-I, but keeping Ae proportional to the frequency bandwidth linearly, a similar 

expression for Ae when using Type-II SPDC can be used: 

 𝐴𝑒 ∝ 𝜃𝑖
𝑒 ∝ (

𝛾

𝜎𝑓
+

𝜎𝐿
)
−1

+ 𝐴𝑑 (7.11) 

γ and ζ are the coefficients, which were calculated by using eq. 7.11 in eq. 7.1 and fitting with 

the Type-II experimental data in Fig. 7.1 of the main text. The upper and lower Ae are reported 

in the main text. 

Using the fitted parameters for eq. 7.11, the range of Ae from its minimum to maximum 

value for both SPDC Types are plotted in Fig. 7.5. 
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Figure 7.5. Ae vs the SPDC bandwidth for Type-I and Type-II SPDC. 

 

7.6.2 ETPA Cross-Section vs Te for Sinc and Gaussian Function SPDC Spectra with and 

without Dispersion 

The ETPA cross-section vs Te was calculated using eq. 7.1 from the main text for three 

cases: increasing Ae with increasing σf using eq. 7.10 (7.11) for Type-I (Type-II) SPDC, 

constant Ae that has been assumed historically, and decreasing Ae for comparison. In the 

calculation, we use the model of a strong TPA chromophore.51 We consider the Q band in 

ZnTPP at 550 nm as the most dominant intermediate state due to its smallest detuning energy.52 

Calculating the linewidth of intermediate excited states in molecules can be very challenging, 

so using an upper limit of kj = 0.1 eV for organic chromophores in solution is reasonable and 

standard practice.53 The TDM product in eq. 1 was estimated to be 16.1 D2 using the classical 

TPA cross-section of ZnTPP and the classical TPA cross-section equation.16, 54 These 

parameters were used for the calculations in Fig. 7.1-7.2 and Fig. 7.6-7.7. In Fig. 7.6, a 

Gaussian SPDC spectrum was used, and both the cases with and without dispersion were used 

to calculate Te (eq. 7.3) are shown. The sinc spectra (Fig. 7.7) yield the well-known oscillations 

when Te < ~500 fs,14 but the overall trend as Te increases is the same regardless of the SPDC 

spectral function. Two important features of Figs. 7.6 and 7.7 are: (1) For the results that 

include dispersion, there are two branches to the cross-sections (the upper branch 

corresponding to small σf and the lower branch for high σf) when plotted as a function of Te for 

both Type-I and Type-II, with the two branches coming together at Te slightly below 100 fs; 
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(2) For the upper branch, the Type-I cross-section increases linearly with increasing 1/σf as σf 

goes toward 0.1 ps-1, where Ae is limited by the diffraction area Ad. At this bandwidth, the 

Type-I cross-section reaches a maximum, and the Type-II cross-section plateaus before 

decreasing. 

 

 

Figure 7.6. a) Type-I ETPA cross-section, σe, vs σf using Gaussian SPDC spectra for 

increasing Ae (red), constant Ae (black), and decreasing Ae (blue) with (solid) and without 

(dotted) dispersion. The shaded region is the bandwidth range that is shown in Fig. 7.2; b) 

Same as (a) but with the x-axis converted to Te; c) Type-II σe vs σf using Gaussian SPDC 

spectra for increasing Ae (red), constant Ae (black), and decreasing Ae (blue) with (solid) and 

without (dotted) dispersion. d) Same as (c) but with the x-axis converted to Te; The same 

parameters from Fig. 1 of the main text are used here. 

a) b) 

c) d) 
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Figure 7.7. a) Type-I ETPA cross-section, σe, vs σf using sinc SPDC spectra for increasing 

Ae (red), constant Ae (black), and decreasing Ae (blue) with (solid) and without (dotted) 

dispersion. The shaded region is the bandwidth range that is shown in Fig. 7.2; b) Same as 

(a) but with the x-axis converted to Te; c) Type-II σe vs σf using sinc SPDC spectra for 

increasing Ae (red), constant Ae (black), and decreasing Ae (blue) with (solid) and without 

(dotted) dispersion. d) Same as (c) but with the x-axis converted to Te; The same parameters 

from Fig. 1 of the main text are used here. 

 

7.6.3 Experimental Details 

Our experimental setup uses a 405 nm CW laser with maximum SPDC pump power of 

~150 mW. The pump beam is focused into a Type-I or Type-II SPDC crystal cut for 

a) b) 

c) d) 
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degenerate, non-collinear phase-matching. After removing the residual pump beam with a 

dichroic mirror and longpass filters, the SPDC is sent through one of several bandpass filters 

with different bandwidths (10, 30, and 80 nm) or a monochromator with variable bandwidth 

(2, 2.5, 3, 4, and 5 nm) to alter the SPDC spectral bandwidth. After filtering, the SPDC is 

focused into a cuvette, and the transmitted entangled pairs are separated with a knife-edge 

mirrored prism. Coincidence counts were measured with single-photon detecting APDs with a 

5 ns coincidence window. The difference in the transmitted coincidence counts for the cuvette 

filled with pure solvent vs the sample solution (~20 μM zinc tetraphenylporphyrin, ZnTPP, in 

toluene) gives the ETPA rate. Calculation of the ETPA cross-section from this rate was 

completed as reported in previous works:25, 54 

 𝜎𝑒 =
𝑚

𝑙𝑐𝑁𝐴
 (7.12) 

m is the slope of the linear fit for ETPA rate vs input rate, l is the cuvette length, c is the 

concentration, and NA is Avogradro’s number. The plots of ETPA rate in ZnTPP vs input rate 

are given in Fig. 7.8-7.9. Since reducing the SPDC bandwidth also reduces the input rate in a 

passive filtering scheme used here, the input rates were normalized for each bandwidth for 

easy comparison of the slopes. The y-axis was normalized so that the slope for each bandwidth 

is the same as what it was before normalization. 
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Figure 7.8. Type-I ETPA rate in ZnTPP vs input rate for all SPDC bandwidths. 
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Figure 7.9. Type-II ETPA rate in ZnTPP vs input rate for all SPDC bandwidths. 

 

The dependence of the SPDC attenuation percentage (slope of ETPA rate vs input rate) 

on the SPDC bandwidth, or Te, shows that the SPDC attenuation is due to ETPA and not other 

linear optical processes, such as one-photon absorption or scattering. These other optical 

processes would not depend on Te. Additionally, the different ETPA cross-section dependences 

vs σf (or Te) for Type-I vs Type-II SPDC also show that the measured signal is not due to other 

optical processes since for a one-photon process, Type-I and Type-II SPDC only differ in the 

polarizations of the photons. The molecule being in solution would rotationally average out 

any polarization dependence of a one-photon optical process. Thus, if a one-photon process 

were attenuating the SPDC, the Type-I and Type-II SPDC would have yielded the same ETPA 

cross-section with no dependence on σf or Te. This is clearly not the case in our measurements. 
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7.6.4 ETPA cross-section measurements in flavin adenine dinucleotide 

To ensure that the ETPA cross-section vs σf trends we measured in ZnTPP for Type-I 

and Type-II SPDC are indicative of the SPDC properties and not something unique to ZnTPP, 

we performed similar measurements in another molecule that has been studied with ETPA: 

flavin adenine dinucleotide (FAD).25, 55 Fig. 7.10-7.11 shows the normalized ETPA rate vs 

input rate plots for the cross-sections for FAD. We obtained the same cross-section trends for 

Type-I and Type-II ETPA with FAD, shown in Fig. 7.12, validating our proposed theory that 

changing σf is also changing Ae, independent of the chromophore. 

 

 

Figure 7.10. Type-I ETPA rate vs input rate in FAD for all SPDC bandwidths. 
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Figure 7.11. Type-II ETPA rate vs input rate in FAD for all SPDC bandwidths. 
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Figure 7.12. a) Experimental (points) and theoretical (solid curve) Type-I ETPA cross-

sections, σe, vs σf for FAD, with dispersion applied. b) Same as (a) but with the x-axis 

converted to Te. c) Experimental (points) and theoretical (solid curve) Type-II σe vs σf for FAD, 

with dispersion applied. d) Same as (c) but with the x-axis converted to Te. 

 

7.6.5 Pitfalls When Using Low Entangled Photon Rates 

When measuring the ETPA cross-section using passively filtered SPDC, the input 

entangled photon rate decreases as the frequency spectrum is narrowed. When using low 

entangled photon rates (< 105 pairs/s), great care must be taken to ensure accurate 

measurements of the ETPA signal. These troubleshooting steps are important during any ETPA 

experiment if the ETPA signal is not consistent with previous measurements. These steps are 

especially important as the input SPDC rate decreases due to frequency filtering. 

a) b) 

c) d) 
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First, the pump power at the crystal needs to remain as stable as possible, both during 

the measurement at each pump power and when repeating each pump power step for the 

solvent and sample power scans. Changes in the pump power will hurt the accuracy of the 

subtraction method for quantifying the ETPA signal above the solvent baseline. The ETPA 

signal will be underestimated if the pump power increases during the sample scan or 

overestimated if the pump power decreases during the sample scan. To ensure the most stable 

pump power, the laser should be warmed up for approximately 2 hours before beginning ETPA 

measurements. Monitoring the voltage signal from the reference photodiode can help 

determine when the pump power is stable. Additionally, the power before and after each 

attenuation filter before the SPDC crystal should be measured for a few minutes to ensure the 

transmission through each filter is stable. If the transmission is unstable, the filter should be 

slightly moved so that the laser beam passes through a new spot, cleaned to remove dust, or 

both. It is also worth cleaning dust from all optics elements in the beam path, though the filters 

are the most important. 

In addition to having a stable pump power, the alignment of the SPDC on the APD 

must remain steady for consistent readings of the count rate. All optics must be securely 

tightened to their mounts, mounts to their posts and bases, and bases to the optical table. The 

cuvette should not be touched or removed between solvent and sample scans. If the black box 

containing the cuvette must remain covered to prevent room light from hitting the APD, then 

an injection port that passes through the black box lid should be attached to the cuvette. The 

solvent can be removed with a pipette gently placed through the injection port, and the sample 

can be placed into the cuvette with a pipette. Measurement of the ETPA baseline (difference 

in count rate for two successive solvent scans) can be used to monitor the stability of the 

measured SPDC rate. The baseline should have a slope of no more than ~0.1 % of the SPDC 

rate, and the y-axis should also be no higher than ~0.1 %. 

 

7.6.6 Effects of Vibrational Relaxation and of Molecular Motion 

Vibrational relaxation could also cause the modulus squared term to decrease as Te 

increases if eq. 7.1 included the vibrational wave function of the molecule. However, assuming 

that the vibrational states have an exponential decay like the electronic states, the modulus 

squared term would have a Lorentzian function dependent on the vibrational lifetime. The tails 
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of a Lorenztian decrease slower than the plasma dispersion function which defines the 

electronic state relaxation in eq. 7.1, so the vibrational lifetime would not cause the light-matter 

coupling to decrease any faster than it is already decreasing from the electronic lifetime. As a 

result, the trend of the ETPA cross-section vs Te should hardly be affected by vibrations. This 

same reasoning applies to the rotational movement of the molecule. 

 

  



243 

 

References 

 

1. Dayan, B.;  Pe'er, A.;  Friesem, A. A.; Silberberg, Y., Two Photon Absorption and Coherent 

Control with Broadband Down-Converted Light. Physical Review Letters 2004, 93 (2), 

023005. 

2. Dayan, B.;  Pe’er, A.;  Friesem, A. A.; Silberberg, Y., Nonlinear Interactions with an 

Ultrahigh Flux of Broadband Entangled Photons. Physical Review Letters 2005, 94 (4), 

043602. 

3. Lee, D.-I.; Goodson, T., Entangled Photon Absorption in an Organic Porphyrin Dendrimer. 

Journal of Physical Chemistry B 2006, 110 (51), 25582-25585. 

4. Javanainen, J.; Gould, P. L., Linear intensity dependence of a two-photon transition rate. 

Physical Review A 1990, 41 (9), 5088-5091. 

5. Harpham, M. R.;  Süzer, Ö.;  Ma, C.-Q.;  Bäuerle, P.; Goodson, T., Thiophene Dendrimers 

as Entangled Photon Sensor Materials. Journal of the American Chemical Society 2009, 131 

(3), 973-979. 

6. Jung, Y. O.;  Lee, J. H.;  Kim, J.;  Schmidt, M.;  Moffat, K.;  Šrajer, V.; Ihee, H., Volume-

conserving trans–cis isomerization pathways in photoactive yellow protein visualized by 

picosecond X-ray crystallography. Nature Chemistry 2013, 5 (3), 212-220. 

7. Zheng, J.;  Kwak, K.;  Xie, J.; Fayer, M. D., Ultrafast Carbon-Carbon Single-Bond Rotational 

Isomerization in Room-Temperature Solution. Science 2006, 313 (5795), 1951. 

8. Zhang, Y.;  de La Harpe, K.;  Beckstead, A. A.;  Improta, R.; Kohler, B., UV-Induced Proton 

Transfer between DNA Strands. Journal of the American Chemical Society 2015, 137 (22), 

7059-7062. 

9. Stoner-Ma, D.;  Jaye, A. A.;  Matousek, P.;  Towrie, M.;  Meech, S. R.; Tonge, P. J., 

Observation of Excited-State Proton Transfer in Green Fluorescent Protein using Ultrafast 

Vibrational Spectroscopy. Journal of the American Chemical Society 2005, 127 (9), 2864-

2865. 

10. Li, T.;  Hassanali, A. A.;  Kao, Y.-T.;  Zhong, D.; Singer, S. J., Hydration Dynamics and 

Time Scales of Coupled Water−Protein Fluctuations. Journal of the American Chemical 

Society 2007, 129 (11), 3376-3382. 

11. Pham, V.-T.;  Penfold, T. J.;  van der Veen, R. M.;  Lima, F.;  El Nahhas, A.;  Johnson, S. 

L.;  Beaud, P.;  Abela, R.;  Bressler, C.;  Tavernelli, I.;  Milne, C. J.; Chergui, M., Probing 

the Transition from Hydrophilic to Hydrophobic Solvation with Atomic Scale Resolution. 

Journal of the American Chemical Society 2011, 133 (32), 12740-12748. 

12. Kim, S.; Lim, M., Picosecond Dynamics of Ligand Interconversion in the Primary Docking 

Site of Heme Proteins. Journal of the American Chemical Society 2005, 127 (16), 5786-

5787. 

13. Kim, S.; Lim, M., Protein Conformation-Induced Modulation of Ligand Binding Kinetics:  

A Femtosecond Mid-IR Study of Nitric Oxide Binding Trajectories in Myoglobin. Journal 

of the American Chemical Society 2005, 127 (25), 8908-8909. 



244 

 

14. Fei, H.-B.;  Jost, B. M.;  Popescu, S.;  Saleh, B. E. A.; Teich, M. C., Entanglement-Induced 

Two-Photon Transparency. Physical Review Letters 1997, 78 (9), 1679-1682. 

15. Saleh, B. E. A.;  Jost, B. M.;  Fei, H.-B.; Teich, M. C., Entangled-Photon Virtual-State 

Spectroscopy. Physical Review Letters 1998, 80 (16), 3483-3486. 

16. Burdick, R. K.;  Varnavski, O.;  Molina, A.;  Upton, L.;  Zimmerman, P.; Goodson, T., 

Predicting and Controlling Entangled Two-Photon Absorption in Diatomic Molecules. The 

Journal of Physical Chemistry A 2018, 122 (41), 8198-8212. 

17. Kang, G.;  Nasiri Avanaki, K.;  Mosquera, M. A.;  Burdick, R. K.;  Villabona-Monsalve, J. 

P.;  Goodson, T.; Schatz, G. C., Efficient Modeling of Organic Chromophores for Entangled 

Two-Photon Absorption. Journal of the American Chemical Society 2020, 142 (23), 10446-

10458. 

18. Mukamel, S.;  Freyberger, M.;  Schleich, W.;  Bellini, M.;  Zavatta, A.;  Leuchs, G.;  

Silberhorn, C.;  Boyd, R. W.;  Sánchez-Soto, L. L.;  Stefanov, A.;  Barbieri, M.;  Paterova, 

A.;  Krivitsky, L.;  Shwartz, S.;  Tamasaku, K.;  Dorfman, K.;  Schlawin, F.;  Sandoghdar, 

V.;  Raymer, M.;  Marcus, A.;  Varnavski, O.;  Goodson, T.;  Zhou, Z.-Y.;  Shi, B.-S.;  Asban, 

S.;  Scully, M.;  Agarwal, G.;  Peng, T.;  Sokolov, A. V.;  Zhang, Z.-D.;  Zubairy, M. S.;  

Vartanyants, I. A.;  del Valle, E.; Laussy, F., Roadmap on quantum light spectroscopy. 

Journal of Physics B: Atomic, Molecular and Optical Physics 2020, 53 (7), 072002. 

19. de J León-Montiel, R.;  Svozilík, J.;  Salazar-Serrano, L. J.; Torres, J. P., Role of the spectral 

shape of quantum correlations in two-photon virtual-state spectroscopy. New Journal of 

Physics 2013, 15 (5), 053023. 

20. Nakanishi, T.;  Kobayashi, H.;  Sugiyama, K.; Kitano, M., Full Quantum Analysis of Two-

Photon Absorption Using Two-Photon Wave Function: Comparison of Two-Photon 

Absorption with One-Photon Absorption. Journal of the Physical Society of Japan 2009, 78 

(10), 104401. 

21. Varnavski, O.;  Pinsky, B.; Goodson, T., Entangled Photon Excited Fluorescence in Organic 

Materials: An Ultrafast Coincidence Detector. Journal of Physical Chemistry Letters 2017, 

8 (2), 388-393. 

22. Varnavski, O.; Goodson, T., Two-Photon Fluorescence Microscopy at Extremely Low 

Excitation Intensity: The Power of Quantum Correlations. Journal of the American Chemical 

Society 2020, 142 (30), 12966-12975. 

23. Zeilinger, A., Experiment and the foundations of quantum physics. Reviews of Modern 

Physics 1999, 71 (2), S288-S297. 

24. Yin, L.;  Li, J.;  Zhai, W.;  Xia, M.;  Hu, Y.; Zheng, X., Analysis of the Spatial Properties of 

Correlated Photon in Collinear Phase-Matching. Photonics 2021, 8 (1). 

25. Villabona-Monsalve, J. P.;  Burdick, R. K.; Goodson, T., Measurements of Entangled Two-

Photon Absorption in Organic Molecules with CW-Pumped Type-I Spontaneous Parametric 

Down-Conversion. The Journal of Physical Chemistry C 2020, 124 (44), 24526-24532. 

26. Yoon-Ho, K., Measurement of one-photon and two-photon wave packets in spontaneous 

parametric downconversion. Journal of the Optical Society of America B 2003, 20 (9), 1959-

1966. 

27. Campos, R. A.;  Saleh, B. E. A.; Teich, M. C., Fourth-order interference of joint single-

photon wave packets in lossless optical systems. Physical Review A 1990, 42 (7), 4127-4137. 

28. Rubin, M. H.;  Klyshko, D. N.;  Shih, Y. H.; Sergienko, A. V., Theory of two-photon 

entanglement in type-II optical parametric down-conversion. Physical Review A 1994, 50 

(6), 5122-5133. 



245 

 

29. The Effect of Dispersion on Ultrashort Pulses. https://www.newport.com/n/the-effect-of-

dispersion-on-ultrashort-pulses (accessed April 19, 2021). 

30. Joobeur, A.;  Saleh, B. E. A.;  Larchuk, T. S.; Teich, M. C., Coherence properties of entangled 

light beams generated by parametric down-conversion: Theory and experiment. Physical 

Review A 1996, 53 (6), 4360-4371. 

31. Joobeur, A.;  Saleh, B. E. A.; Teich, M. C., Spatiotemporal coherence properties of entangled 

light beams generated by parametric down-conversion. Physical Review A 1994, 50 (4), 

3349-3361. 

32. Joobeur, A.;  Saleh, B. E. A.;  Larchuk, T. S.; Teich, M. C., Coherence properties of entangled 

light beams generated by parametric down-conversion: Theory and experiment. Physical 

Review A 1996, 53 (6), 4360. 

33. Oka, H., Two-photon absorption by spectrally shaped entangled photons. Physical Review A 

2018, 97 (3), 033814. 

34. Oka, H., Enhanced vibrational-mode-selective two-step excitation using ultrabroadband 

frequency-entangled photons. Physical Review A 2018, 97 (6), 063859. 

35. Dixon, J. M.;  Taniguchi, M.; Lindsey, J. S., PhotochemCAD 2: A Refined Program with 

Accompanying Spectral Databases for Photochemical Calculations¶. Photochemistry and 

Photobiology 2005, 81 (1), 212-213. 

36. Slattery, O.;  Ma, L.;  Zong, K.; Tang, X., Background and review of cavity-enhanced 

spontaneous parametric down-conversion. Journal of Research of the National Institute of 

Standards and Technology 2019, 124, 1-18. 

37. Tomoyuki, H., Quantum key distribution with mode-locked two-photon states. 2015 

Conference on Lasers and Electro-Optics Pacific Rim 2015, 27P_41. 

38. Fekete, J.;  Rieländer, D.;  Cristiani, M.; de Riedmatten, H., Ultranarrow-Band Photon-Pair 

Source Compatible with Solid State Quantum Memories and Telecommunication Networks. 

Physical Review Letters 2013, 110 (22), 220502. 

39. Kuklewicz, C. E.;  Wong, F. N. C.; Shapiro, J. H., Time-Bin-Modulated Biphotons from 

Cavity-Enhanced Down-Conversion. Physical Review Letters 2006, 97 (22), 223601. 

40. Ou, Z. Y.; Lu, Y. J., Cavity Enhanced Spontaneous Parametric Down-Conversion for the 

Prolongation of Correlation Time between Conjugate Photons. Physical Review Letters 

1999, 83 (13), 2556-2559. 

41. Polzik, J. S. N.-N. a. B. M. N. a. H. T. a. A. I. V. a. E. S., High purity bright single photon 

source. Optics Express 2007, 15 (13), 7940-7949. 

42. Bao, X.-H.;  Qian, Y.;  Yang, J.;  Zhang, H.;  Chen, Z.-B.;  Yang, T.; Pan, J.-W., Generation 

of Narrow-Band Polarization-Entangled Photon Pairs for Atomic Quantum Memories. 

Physical Review Letters 2008, 101 (19), 190501. 

43. Jabir, M. V.; Samanta, G. K., Robust, high brightness, degenerate entangled photon source 

at room temperature. Scientific Reports 2017, 7 (1), 12613. 

44. Kuklewicz, C. E.;  Fiorentino, M.;  Messin, G.;  Wong, F. N. C.; Shapiro, J. H., High-flux 

source of polarization-entangled photons from a periodically poled 

${\mathrm{KTiOPO}}_{4}$ parametric down-converter. Physical Review A 2004, 69 (1), 

013807. 

45. Fiorentino, M.;  Spillane, S. M.;  Beausoleil, R. G.;  Roberts, T. D.;  Battle, P.; Munro, M. 

W., Spontaneous parametric down-conversion in periodically poled KTP waveguides and 

bulk crystals. Optics Express 2007, 15 (12), 7479-7488. 

https://www.newport.com/n/the-effect-of-dispersion-on-ultrashort-pulses
https://www.newport.com/n/the-effect-of-dispersion-on-ultrashort-pulses


246 

 

46. Peeters, W. H.; van Exter, M. P., Optical characterization of periodically-poled KTiOPO4. 

Optics Express 2008, 16 (10), 7344-7360. 

47. Byrdin, M.;  Duan, C.;  Bourgeois, D.; Brettel, K., A Long-Lived Triplet State Is the Entrance 

Gateway to Oxidative Photochemistry in Green Fluorescent Proteins. Journal of the 

American Chemical Society 2018, 140 (8), 2897-2905. 

48. Mohr, M. A.;  Kobitski, A. Y.;  Sabater, L. R.;  Nienhaus, K.;  Obara, C. J.;  Lippincott-

Schwartz, J.;  Nienhaus, G. U.; Pantazis, P., Rational Engineering of Photoconvertible 

Fluorescent Proteins for Dual-Color Fluorescence Nanoscopy Enabled by a Triplet-State 

Mechanism of Primed Conversion. Angewandte Chemie International Edition 2017, 56 (38), 

11628-11633. 

49. Schlawin, F.;  Dorfman, K. E.; Mukamel, S., Entangled Two-Photon Absorption 

Spectroscopy. Accounts of Chemical Research 2018, 51 (9), 2207-2214. 

50. Peřina, J.;  Saleh, B. E. A.; Teich, M. C., Multiphoton absorption cross section and virtual-

state spectroscopy for the entangled $n$-photon state. Physical Review A 1998, 57 (5), 3972-

3986. 

51. Lahankar, S. A.;  West, R.;  Varnavski, O.;  Xie, X.;  Goodson, T.;  Sukhomlinova, L.; Twieg, 

R., Electronic interactions in a branched chromophore investigated by nonlinear optical and 

time-resolved spectroscopy. The Journal of Chemical Physics 2003, 120 (1), 337-344. 

52. Barnett, G. H.;  Hudson, M. F.; Smith, K. M., Concerning meso-tetraphenylporphyrin 

purification. Journal of the Chemical Society, Perkin Transactions 1 1975,  (14), 1401-1403. 

53. Kang, G.;  Nasiri Avanaki, K.;  Mosquera, M. A.;  Burdick, R. K.;  Villabona-Monsalve, J. 

P.;  Goodson Iii, T.; Schatz, G. C., Efficient modeling of organic chromophores for entangled 

two-photon absorption. Journal of the American Chemical Society 2020. 

54. Upton, L.;  Harpham, M.;  Suzer, O.;  Richter, M.;  Mukamel, S.; Goodson, T., Optically 

Excited Entangled States in Organic Molecules Illuminate the Dark. Journal of Physical 

Chemistry Letters 2013, 4 (12), 2046-2052. 

55. Villabona-Monsalve, J. P.;  Varnavski, O.;  Palfey, B. A.; Goodson, T. I., Two-Photon 

Excitation of Flavins and Flavoproteins with Classical and Quantum Light. J. Am. Chem. 

Soc. 2018, 140 (44), 14562-14566. 

 

 



247 
 

Chapter 8 

Overall Summary and Future Directions 

 

8.1 Overall Summary 

 As spectroscopic techniques develop, chemists are continuously seeking new ways to 

probe their molecules. Some wish to understand how certain molecules interact with their 

environment, such as chromophore-protein interactions, protein solvation, and media effects on 

chromophores’ nonlinear properties.1-3 Others seek to optimize the performance of newly 

synthesized molecules, such as for light harvesting and energy storage.4-7 Regardless of the specific 

applications that chemists are studying, the heart of the matter lies in how the excited states in 

molecules interact with other quantum states and how these interactions develop in time. It is only 

after a molecule has been excited to a higher energy state that interesting chemistry happens. The 

goal of all spectroscopy, be it classical- or quantum-based, is to obtain snapshots of what happens 

inside of a molecule once it has been excited. With this spectroscopic information, chemists hope 

to form a picture of how the structure of a molecule influences how it evolves dynamically. This 

structure-function relationship is what allows chemists to then design new molecules that can 

replicate processes in nature, such as photosynthesis,8 or optimize the performance of synthetic 

systems, such as OLEDs.9 

 Chemical research using light as a probing device began as early as 1859 when Gustav 

Kirchhoff theorized that the dark Fraunhofer lines seen in the sun’s light spectrum where do to the 

molecules of the sun absorbing those specific wavelengths of light.10 Research later took a major 

leap forward with the invention of the laser in 1960 by Theodore Maiman.11 Since then, classical 

spectroscopy has developed numerous experimental setups and methods to extract information 

about a molecule’s excited states, dynamics, and interactions. As important and helpful as classical 

spectroscopy has been, it has inherent limitations that can provide issues to chemists. Most notably, 

the frequency and time resolutions limit each other, where as one increases, the other must 

decrease.12 As a result, the more knowledge chemists gain about the energy of a state, the less they 

know about how that state evolves in time, and vice versa. Additionally, classical states of light 
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are limited in their potential interactions with the states of a molecule. Quantum states can interfere 

with other states in ways that classical states cannot, allowing quantum states of light to probe 

molecules in new ways that are not possible with classical states of light.13, 14 

The goal of quantum sensing within the multidisciplinary field of quantum information 

science (QIS) is to use quantum states of light to probe these interactions with molecules that 

classical spectroscopic techniques simply cannot do.15 One of the hottest approaches to do 

quantum spectroscopy is with entangled photon pairs produced by spontaneous parametric down-

conversion (SPDC).14 SPDC is the nonlinear optical process where a higher frequency pump field 

loses one photon, and the energy from it is transferred to two new photons, referred to as signal 

and idler.16, 17 The signal and idler are quantum-correlated, meaning that the correlations between 

them cannot be explained using classical mechanics. Though the two photons can exist in two 

different points in space, they can only be described as a single quantum object. The properties of 

the photons as a pair are well-defined, but the properties of either photon individually have 

complex superpositions. Measurement of the properties of one photon, including its frequency, 

momentum, position, and polarization, causes a change in the quantum state of the other photon 

that was not interacted with. It is also true that if both photons were to interact with an object, the 

two interaction events would be correlated with each other. This is where the interest and 

application of entangled photon spectroscopy for chemistry research lies. 

In classical spectroscopy techniques, a molecule can have two (or more) interactions with 

a light field to induce excitation or particular excited state dynamics. In particular relevance to this 

work, classical two-photon absorption (TPA) is the process where a molecule absorbs two photons 

to be excited to a higher energy state.18 While the two absorption events must occur very quickly 

together before the short-lived virtual intermediate state decays, the events are not correlated with 

each other. Rather, the molecule absorbs one photon and then absorbs another photon at random, 

hence classical TPA also being known as random TPA. With entangled two-photon absorption 

(ETPA), when the molecule absorbs one photon, the second absorbed photon is a specific photon 

within the light field, with a specific arrival time, frequency state, position, polarization, etc. as 

determined by the first absorbed photon. Therefore, the dynamics of the two absorption events are 

correlated, leading to unique signatures and interferences between the absorption events and the 

molecule’s excited states.19, 20 
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The earliest research on ETPA focused on the advantage of the ETPA rate scaling linearly 

with the input photon intensity.20, 21 This scaling is a unique feature of ETPA since, classically, 

two-photon interactions scale quadratically with input intensity. Since entangled photon pairs are 

actually just one quantum object, the ETPA rate scales linearly with the intensity of these quantum 

objects.22 The benefit of the linear scaling allows ETPA signals to be measured using extremely 

lower input intensities compared to classical TPA. Experimental work showed this difference 

being 10 orders of magnitude.23 The extremely low input intensities for ETPA allow for two-

photon transitions in molecules to be excited and probed without risk of damaging the molecule, 

which can often happen with the high intensity pulsed lasers needed for classical TPA.24 

While the linear ETPA rate is very advantageous for chemists, this property of the 

entangled photons does not provide new quantum signals that yield new information about 

molecules that classical spectroscopy cannot reveal. An important work from the Teich group at 

Boston University theorized a new form of spectroscopy, called virtual-state spectroscopy (VSS), 

that does yield new information about a molecule that classical spectroscopy cannot replicate.25 

VSS utilizes the correlation of the two absorption events in ETPA to reveal a unique quantum 

interference pattern that arises from changing the temporal correlation, or entanglement time, Te, 

of the entangled photons. As Te is increased, the ETPA cross-section oscillates, changing by orders 

of magnitude at its maxima and minima. This oscillation also occurs when changing the time delay 

between the entangled photons after their generation. This oscillation is an interference between 

the two absorption events of the ETPA transition, and only occurs because the photons are 

temporally correlated. The oscillation usually has a beating pattern as well, due to interference 

between the different intermediate states that can be used for the ETPA transition. The Fourier 

transform of this non-monotonic pattern then yields the frequency spectrum of the excited states 

in the molecule that contribute to the ETPA transition. Assuming none of the states are near 

resonance with either of the entangled photons, these states are being probed without actually being 

excited by the photons. This means that even states with small oscillator strength that cannot be 

directly excited by light can now be discovered and probed using ETPA. 

VSS was one of the earliest examples of new molecular spectroscopic information that can 

only be obtained from entangled photon spectroscopy. Since its initial proposal, experiments have 

shown the oscillations of the ETPA cross-section when changing the time delay between the two 

entangled photons.21, 26, 27 VSS has thus become an exciting experiment to realize in its full 
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potential. Theoretical research has continued suggesting improved ways to complete VSS, such as 

with a temperature-controlled SPDC source.28 While all of these developments over the past 

couple of decades has made great strides toward making quantum spectroscopy a useful tool for 

chemists, the prior work has focused heavily on the unique physics of the entangled photons. But 

for VSS to be useful to chemists, it must be known how the molecule under study affects the 

measured signal. In other words, each molecule should have a unique oscillation pattern that is 

dependent upon the excited state properties of the molecule. Only by knowing the signatures that 

the molecule leaves on the oscillation pattern can new molecules with unknown excited state 

properties can be probed with VSS. The work in this dissertation begins at this point. When it 

comes to interactions between entangled photon pairs and molecules, what does the molecule bring 

to the table? 

In addition to understanding the role that molecules play during ETPA excitation, this work 

also aims to show how ETPA provides an opportunity to make studies of excited state interactions 

much simpler and more accessible compared to the classical spectroscopy techniques used today. 

While classical nonlinear spectroscopy provides useful information about molecules, completing 

these experiments requires specialized knowledge and experience in using the necessary 

equipment and collecting the data. Most chemists are not able to complete these experiments 

themselves, as opposed to measuring the linear absorption spectrum with a UV-vis 

spectrophotometer, which any chemist should know how and have the means to do. However, 

development of simpler ways to generate and measure entangled photons makes ETPA a much 

more accessible way to measure excited state interactions, a la a kind of “ETPA 

spectrophotometer.” Such a device would allow any chemist to measure nonlinear properties of 

molecules with the push of a button. 

Chapter 1 set the context for the work in this dissertation. My interests are in making the 

unique physics of quantum entangled photon interactions with molecules more interesting, useful, 

and accessible to chemists. While the application of this work lies in chemistry, there are several 

important physical concepts needed to understand what makes the entangled photons so special 

compared to classical light. The background information needed as a foundation for this work is 

also highlighted in chapter 1. The experimental and theoretical methods used in completing this 

work has outlined in detail in chapter 2. The information provided includes what the experiments 
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look like, how they work, how data is collected from them, and what useful molecular information 

is gained from them. 

I began my graduate studies working on a theoretical investigation of how different dipole 

pathways between the ground and final state affect the ETPA oscillation pattern vs Te.
29 As 

mentioned, while previous work on these oscillation patterns focused on how the unique physics 

of entangled photons causes the oscillations, it was largely unknown how the properties of the 

molecule can affect the oscillations. In the prior works, only the energy of different excited states 

in the molecule was considered, which showed that the frequency of the oscillations was 

determined by the detuning energy between the excited states and first absorbed entangled photon. 

While the energies of excited states are certainly important, another crucial aspect of excited state 

interactions in chemistry applications is the strength of transition dipole moments (TDMs). The 

TDMs determine how strongly states can interact and transfer energy between each other. When 

looking at a TPA transition, whether classical or entangled, the first photon can create a coupling 

between the ground and virtual state, which is represented as a superposition of many non-resonant 

intermediate excited states in the molecule, and the second photon would then create a coupling 

between the virtual and final state. The strength of these couplings is determined by the TDMs 

between the states involved. This is known as the virtual-state pathway. However, the photons can 

also use the permanent dipole moment (PDM) of the ground or final state, if it is non-zero. Then 

the first utilize the PDM and the TDM directly between the ground and final state. This is known 

as the permanent dipole pathway. I was curious about how these different pathways interfere with 

each other during ETPA and how this interference affects the oscillation pattern. With calculations 

of molecular parameters from multi-reference configuration interaction (MRCI) from the 

Zimmerman group in the University of Michigan Chemistry department, I calculated the ETPA 

cross-sections for four diatomic molecules with varying permanent dipole strength: HF, strong 

PDM; OH, intermediate PDM; NO, weak PDM; N2, no PDM. The results showed that N2 has a 

significantly higher enhancement in ETPA cross-section due to constructive interference between 

the virtual-state pathways. The other molecules, whose transitions were dominated by the 

permanent dipole pathway, had a much smaller enhancement above a classical approximation. 

Additionally, the oscillations for N2 had a much longer period between its minima, so-called 

entanglement-induced transparencies. This longer period provides easier resolution between the 

maxima and minima, allowing for the development of ETPA-based sensors that can turn the signal 
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on and off by changing the entangled photon delay or Te, without having to change the molecule, 

its environment, or frequency of the light. These results indicate that the ETPA oscillation pattern, 

and ETPA in general, is very sensitive to the dipole moments of the molecule. The dipole strength 

of the excited states ultimately determines the pathway the entangled photons are most likely to 

take to excite the molecule. This suggests that VSS may also be able to identify the pathway of 

nonlinear transitions in molecular be probing how the ETPA pathways interfere with each other. 

In my ETPA experiments, I use organic chromophores as my molecular systems. While it 

would have been interesting to study such chromophores with the MRCI calculations and ETPA 

cross-sections, these molecules are too large for MRCI to calculate their excited state energies and 

TDMs in a reasonable amount of time. However, recent development of second-linear response 

time-dependent perturbation theory (SLR TD-DFT) has allowed these molecular parameters to be 

calculated in large organic chromophores on reasonable time scales.30, 31 SLR TD-DFT then 

allowed for a natural extension of the work in Chapter 3. Chapter 4 presented work on the ETPA 

oscillation pattern of organic chromophores, the calculations for which were completed by the 

Schatz group in the Northwestern University chemistry department.32 In addition to studying the 

oscillation pattern for two organic dendrimers, another molecular parameter was explored to see 

how it contributes to ETPA: the excited state lineshape. The lineshape determines what the excited 

state population will look like upon excitation, which will influence how the state evolved 

dynamically. For future ETPA experiments that probe how the excited state evolves after ETPA 

excitation, knowledge of the initial lineshape will be crucial. As expected, the ETPA cross-sections 

showed oscillations vs Te. The magnitude of the calculated cross-sections agreed remarkably well 

with the experimental values, to within a factor of 1.3 for both dendrimers studied. With regards 

to the lineshape, the ETPA lineshape was shown to be orders of magnitude narrower compared to 

classical TPA excitation. The narrower lineshape is due to the large uncertainty of the arrival time 

of the photon pair as a whole, making the absorption and relaxation times have large uncertainty. 

Previous studies on the ETPA cross-section have assumed the ETPA lineshape would be the same 

as in classical TPA. However, this work showed that only when the newly derived narrow ETPA 

lineshape is used do the calculations match the experimental cross-sections. This new insight into 

how the lineshape affects ETPA is useful for future studies that wish to study the dynamics of 

excited states after ETPA excitation. 
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Chapter 5 shifted gears to the experimental work of this dissertation. In this chapter, a 

molecular system not previously probed with entangled photons was studied, that of halogenated 

ether anesthetics.33 Anesthetics have been used for decades to temporarily induce unconsciousness 

in surgical patients. However, the mechanism of action remains almost completely unknown. 

Attempts to explain the mechanism using classical biology, chemistry, and physics concepts have 

not been completely successful. In recent years, researchers have hypothesized that the mechanism 

may be explained with quantum mechanics. While ideas have been proposed,34 no experiment has 

demonstrated whether anesthetic molecules even have the ability to target quantum particles and 

interact through a quantum mechanism. This proof-of-principle is essential before any theories 

about the mechanism of anesthetic action can be proposed. The goal of this project was to complete 

the proof-of-principle experiment: can some anesthetics interact with quantum particles (in this 

case, entangled photons)? The transmission of entangled photon pairs through two halogenated 

ether anesthetics, sevoflurane (SEVO) and isoflurane (ISO), were measured. Despite linear 

absorption spectra and quantum chemical calculations showing no electronic states near the one- 

or two-photon resonance of the entangled pair, the transmission rate was attenuated. Conversely, 

classical light at the same wavelength showed no interaction, even with much stronger intensities 

than the entangled photon pair. For comparison, the non-halogenated diethyl ether, a much weaker 

anesthetic, did not show interaction with either the classical or entangled photons. Both SEVO and 

ISO showed very strong Raman scattering activity, which suggests that the ethers were able to 

scatter the entangled photons. The exact scattering mechanism is still unclear. However, what is 

clear is that the ethers were sensitive only to the entangled photons. This work encourages further 

studies into the interaction between anesthetics and entangled photons, providing future studies of 

anesthetic action a valuable new tool in entangled photons. 

Chapter 5 showed an exciting new application for entangled photon spectroscopy in 

molecular biological. However, the experimental setup used a fs pulsed laser with frequency 

doubling before even creating the SPDC. While experienced spectroscopists are easily capable of 

operating such a setup, most chemists will not be looking to do this experiment themselves in their 

labs. However, it is well-known that a CW diode laser can pump SPDC with no worse efficiency 

than a pulsed laser. The SPDC generation rate seems to be determined more by the average pump 

power, not instantaneous pump power of an ultrafast laser pulse like other nonlinear processes. I 

was then interested in implementing ETPA in a smaller, simpler, and more cost effective 
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experimental setup, one that could resemble an “ETPA spectrometer” that any chemist would be 

able to use daily in their own labs.35 This ETPA experimental setup used a CW diode laser already 

at 405 nm (no frequency doubling required) to pump Type-I SPDC in a BBO crystal. The entangled 

photons were passed through a cuvette and focused onto an APD for singles detection. ETPA was 

measured in a variety of molecules ranging in size and structure. While the experimental setup 

itself was certainly simpler than the previously used pulsed laser setup, the ETPA data showed 

another advantage for chemists. The noise of the experiment was improved by an order of 

magnitude compared to the pulsed laser experiments, and the SNR of the experiment was 10-100 

times better than the pulsed laser experiments. This improvement in the SNR, as well as the lower 

detection limit from the lowered noise, makes ETPA a quantitatively robust analytical technique 

for chemists. Additionally, since singles detection was used, it was important to ensure that the 

measured attenuation was due to ETPA and not a linear one-photon interaction. Calculations of 

one-photon absorption (OPA) and various scattering mechanisms showed that ETPA is orders of 

magnitude more likely to occur. This provides confidence in using singles detection for the 

experiment, which is simpler than using coincidence detection. Finally, this work outlined the 

process of quantifying frequency entanglement of the SPDC source, which is an essential step to 

prove entanglement between the photons. By measuring the joint frequency spectrum and 

completing the Schmidt decomposition, the frequency entanglement was proven and quantified. 

The Schmidt decomposition also revealed a new potential for controlling excited state populations 

with ETPA. By tuning the spatial profile of the pump beam, the entangled frequency states can be 

manipulated to selectively excite certain energy states and not excite others. This would be a useful 

application for controlling photochemical reactions. Chemists would be able to use the ETPA 

spectrometer not only to measure ETPA cross-sections but also as a tool for completing 

photochemical reactions, particularly reactions that classical light sources cannot catalyze. 

The final work in this dissertation, found in Chapter 7, explored an oversight from previous 

theory on ETPA.36 Previous work showed that the ETPA cross-section is inversely proportional to 

Te as well as the entanglement area, Ae, which is the spatial uncertainty of one photon given the 

location of the other photon.19 Ae was assumed to remain constant in an experiment, even if Te 

changes. Thus, when Te is increased, the ETPA cross-section was expected to decrease. However, 

the literature has shown that the origin of both Te and Ae is the frequency spectrum of the SPDC, 

caused by dispersion within the SPDC crystal.37 Thus, since changing the frequency bandwidth is 
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required to change Te, Ae would also have to change when Te changes. As a result, the ETPA cross-

section may not simply decrease as Te increases. If so, Ae would be a previously neglected control 

knob to control ETPA cross-sections. Historically, Te has remained in the timescale of a few 

hundred fs and no more, since increasing Te was expected to decrease the cross-section. To 

measure ETPA at much longer Te, such as the ps scale, was not thought possible. However, if Ae 

can be systematically decreased to compensate for the increasing Te, ETPA could still be 

measurable at longer Te. This would open new avenues of ETPA spectroscopy for chemists, 

allowing them to study longer time scale dynamics, such as the ps dynamics of isomerizations, 

solvation, ligand binding/unbinding, and proton transfer.38-45 Some multistep photochemical 

transitions also require time delays between light interactions, such as in green fluorescent proteins 

that need time to transfer energy from an excited singlet to a triplet state before being further 

excited.46, 47 In this work, the ETPA cross-section for degenerate Type-I SPDC was shown to 

actually increase as Te increased from ~250 fs to 1.1 ps. Te was increased by decreasing the SPDC 

frequency bandwidth with filters and a monochromator. A theoretical model presented in this work 

shows that as the frequency bandwidth decreases, Ae must also decrease due to the coupling 

between the frequency and spatial position of the SPDC photons. This coupling arises from 

dispersion in the crystal, which is second-order for degenerate Type-I SPDC, causing Ae to 

decrease quadratically with the frequency bandwidth. The quadratic decrease in Ae compensates 

the linear increase in Te, resulting in a net linear increase in the ETPA cross-section until Ae reaches 

the diffraction limit around Te = 10 ps. The cross-section at this maximum is an order of magnitude 

larger than the low fs Te cross-section, 4 orders of magnitude more than previous predictions of ps 

Te cross-sections, and within an order of magnitude of the OPA cross-section. Type-II SPDC, on 

the other hand, plateaued as Te increased. For Type-II SPDC, the dispersion in the SPDC crystal 

is first-order, so Ae only decreases linearly with the frequency bandwidth. This effect cancels the 

linear increase in Te, leaving the cross-section constant until Ae reaches the diffraction limit. This 

work shows that not only is ETPA at ps Te measurable, it is actually stronger than fs Te. And ps Te 

is achievable today using one of two methods: cavity-enhanced SPDC, which produces more 

narrowband SPDC by placing the crystal inside of an optical cavity,48 or filtering of periodically 

poled SPDC, which produces orders of magnitude more SPDC photons than thin BBO crystals so 

that enough photons still remove after filtering.49 
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8.2 Future Directions 

 The experimental and theoretical results obtained throughout this dissertation have shown 

avenues for future work that further develops ETPA as a useful technique for chemistry research. 

As more is learned about the unique ways that molecules interact with entangled photons, as well 

as enhancing measurements of ETPA to yield both larger signals and larger SNRs, the interest 

among chemists will only continue to grow. The work on the effect that TDMs and PDMs have 

on ETPA transitions suggests ways that ETPA cross-section can be enhanced with rational design 

of chromophores. To maximize the constructive interference of ETPA pathways, the virtual-state 

pathways should be made more favorable and the permanent dipole pathways less favorable with 

proper design of the chromophore’s structure. One approach is to make molecules more symmetric 

in an effort to reduce the strength of PDMs, as was seen with the symmetric diatomic molecule 

N2. It is interesting to note that throughout this work, zinc tetraphenylporphoryin (ZnTPP) has 

shown to be particularly sensitive to ETPA, yielding some of the largest cross-sections among the 

chromophores studied. ZnTPP is a symmetric molecule, which should help it have a very small 

PDM and allow its virtual-state pathways to be stronger for ETPA transitions. It would be 

interesting to study then how other symmetric chromophores respond to ETPA, compared to 

asymmetric chromophores with similar functional groups. Another approach to encourage stronger 

virtual-state pathways could be to increase the conjugation length of chromophores. Increased 

conjugation should lower the excited state energies,50 making their detuning energies with the first 

absorbed photon smaller and making the virtual-state pathways stronger compared to the 

permanent dipole pathways. Measurements of the ETPA cross-section on increasing conjugation 

length would be interesting to explore. 

 With the new understanding of the ETPA lineshape, this is another molecular parameter 

that can be tuned to enhance ETPA cross-sections. The lineshape was shown to be affected by the 

temporal properties of the entangled photons upon their creation. The results suggest that narrower 

pump beams increase the excited state life time since the time at which the pair as a whole was 

absorbed is less well defined. Work completed in this dissertation used pulsed and CW pump lasers 

to complete ETPA. Though the measured cross-sections were not exactly the same, they were still 

on the same order of magnitude. The frequency bandwidths of the pulsed and CW lasers were also 

on the same order of magnitude. For this reason, it would be interested to see how using a much 

more narrowband pump laser would affect the measured ETPA cross-section. CW lasers today can 
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have linewidths as narrow as a few MHz, compared to the hundreds of GHz bandwidth CW laser 

used here. This extremely more narrow pump laser may be able to enhance the ETPA cross-section 

by significantly narrowing the excited state linewidth. 

 The work on the entangled photon interaction with the anesthetics revealed an interesting 

potential for entangled photon spectroscopy: entangled photon scattering. While ETPA provides 

excitation and information of electronic excited states, entangled photon scattering may provide 

unique information about the vibrational state of molecules. Advantages for using entangled 

photon pairs in a variety of scattering mechanisms can be explored. Spontaneous Raman scattering 

with one of the entangled photons would allow the other photon to remain outside the sample and 

be measured to probe the interaction that occurs between its partner and the sample, a form of 

remote sensing. Stimulated Raman can be induced with the second photon, with the broad 

frequency bandwidth of the entangled photon able to probe a wide range of vibrational state and 

the narrow summed frequency of the photons still yielding high frequency resolution. Two-photon 

scattering, or hyper-Raman, may be enhanced in an analogous way to TPA being enhanced using 

entangled pairs. The effect of Te and/or entangled photon time delay on the ETPA cross-section 

would be interesting to explore as well. The interference between the two interactions may produce 

oscillations similar to ETPA, allowing for a vibrational state form of VSS. 

 One of the most exciting potentials for chemistry-based ETPA applications is the control 

of photochemical reactions. Since chemical reactions are triggered from certain molecular states, 

high precision of the photoexcited state can be required from some reactions.51 Prior work has 

shown how the simultaneous frequency and time resolution of entangled photons can populate 

excited states that require an ultrafast-decaying intermediate.52 Classical spectroscopy does not 

provide the simultaneous high frequency and time resolution needed for this experiment. Another 

method stemming from this work to control photochemical reactions is by manipulation of the 

entangled photons frequency states. Photon pairs can be created at the specific frequency pairs that 

can excite the desired state, while frequency pairs that would excite undesirable states would be 

suppressed. The random nature of classical TPA would not allow the suppression of the 

undesirable states to happen since the frequency state of one photon is not affect by the other. 

Control of the entangled photon frequency states is rather simple using a spatial light modulator to 

tune the spatial profile of the pump beam.53 Another method for controlling photochemical 

reactions is through ETPA with longer Te. While some photochemical reactions may have 
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ultrafast-decaying intermediates, others have intermediate processes that must be allowed to occur 

before the second photon interaction. An example is that of the singlet-to-triplet charge transfer in 

GFP in between the first and second photoexcitation.46, 47 ETPA with ps Te would allow these 

intermediate processes to occur before the second excitation. 

 Finally, applications for studying ps-scale dynamics with ETPA have been explored since 

ETPA was previously assumed to be too weak with ps Te. ps dynamics are important in many 

molecular and biological systems, including isomerizations, solvation, ligand binding/unbinding, 

and proton transfer.38-45 Time-delayed experiments with ps Te would allow for higher spectral 

resolution than similar experiments using classical fs or ps pulses since narrowband CW lasers can 

be used to pump the ps Te SPDC. Knowing that ETPA can be measured into the ps range allows 

for full implementation of a transient absorption-like experiment using entangled photons. In fact, 

pulsed lasers would not even be required to obtain transient absorption measurements since even 

CW lasers can generate temporally-resolved entangled photons. Future developments of “ETPA 

spectrometers” can include time-resolved nonlinear spectroscopy measurements simply at the push 

of a button. 
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