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ABSTRACT

Advances in information technologies not only provide novel tools to support work

in the traditional sectors; they also create additional employment opportunities in the

modern workforce where work contexts have been largely changed. All these changes

call for new efforts to study worker performance. Indeed, information technologies,

especially data science techniques, render unprecedented large-scale rich data and

sophisticated analytic tools to investigate worker performance. However, it remains

unclear how we can combine the strengths of big data analytics in data science and

our existing knowledge in social science to enhance worker performance.

In this dissertation, we propose a human-centered data science framework that

integrates machine learning, causal inference, field experiments, and social science

theories: First, machine learning (with counterfactual reasoning) enables the predic-

tion (and explanation) of human behavior in work practice via large-scale data anal-

ysis. Existing insights from social theories can further enhance its predictive power

by informing feature construction, model architecture, and model explanation. Field

experiments can help to evaluate the effectiveness of these models in real-world prac-

tices. Second, field experiments perform precise interventions and establish causality

with randomized controlled trials. Yet, the experimental analysis mainly supports

the understanding of treatment effects at aggregate levels, such as average treatment

effect. Machine learning empowers more sophisticated analyses of experimental data

by revealing heterogeneous effects at a finer granularity, such as individual treatment

effects. Third, while these data-driven discoveries complement social science theories

xiv



and provide rich insights for describing, explaining, and predicting human behavior,

they require rigorous analytic tools, such as experiments and machine learning, to

validate or disconfirm their applicability in specific contexts. In addition to testing

theories, causal insights derived from field experiments and counterfactual machine

learning models could support the development of new theories that better reflect

reality.

To exemplify the various applications of this framework in both traditional sec-

tors and in the modern workforce, we present three empirical studies: developing

machine learning models to improve the outreach performance for government spe-

cialists, leveraging a field experiment to enhance the performance of the gig economy

workers, and using counterfactual machine learning to unpack individual treatment

effects of field experiments on worker performance in the gig economy. These studies

illustrate that the framework of human-centered data science is effective and flexible

in increasing worker performance.
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CHAPTER I

Introduction

The last three decades, from 1990 to 2019, have seen a great increase in the labor

force participation from 2.3 billion (43.5% of the world population) to 3.5 billion

(45.6% of the world population) people across the world [79, 80]. As of 2019, the

United States’ labor force alone has involved 167 million workers, which represents

about 50% of the total American population ([30, 79]). Investigating the performance

of workers has been increasingly critical for the society. Given its importance, worker

performance has been studied for centuries, establishing a great understanding of

related predictors, mechanisms, and interventions. However, the vast changes in

work contexts and work-support tools brought by modern information technologies

call for new examinations and insights on worker performance.

As highlighted by the World Bank, advances in information technologies have

been changing the nature of work ([12]). On one hand, the development of new

technologies is reshaping the existing work in the traditional sectors by providing

more tools to support work. For example, Zoom and other computer-mediated tools

have been widely used to support distributed collaboration while we have worked

at home during the period of COVID-19. As another example, machine-learning

algorithms have been leveraged to help doctors with medical diagnosis [86]. These

are just two examples among the booming variety of technology-supported tools for
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work. Nonetheless, we are far from fully understanding how to facilitate work with

information technologies, especially data science, and how to do this better.

On the other hand, information technologies create new work contexts. For exam-

ple, the fast growing gig economy platforms, such as Uber, Fiverr, and TaskRabbit,

have facilitated the birth of a modern work force. Compared to the jobs in tradi-

tional companies and organizations, the gig-economy jobs are typically characterized

by low barriers to join, high flexibility in time and location, and high autonomy.

These new work contexts blur the boundaries between full-time employees and casual

labor, and even between work and leisure [126], challenging the traditional definition

of work. Therefore, it is largely unknown whether what we have learned about work

performance holds in the new contexts and whether there would be novel insights for

the modern work force. As of 2019, gig economy platforms had attracted 57 million

workers in the United States alone, and the jobs on such platforms have been fre-

quently referred to as the future of work (e.g., [99]). The broad participation and

wide recognition further increase the significance of investigating worker performance

in the modern era.

Therefore, in this dissertation, we unpack such mysteries about worker perfor-

mance. Specifically, we explore how to improve worker performance.

In approaching this question, we must understand that big data, online platforms,

and the advanced data science techniques have provided us unprecedented opportu-

nities. First, modern technologies allow for the digitization of comprehensive records

regarding workers and customers, organizations, and societal contexts. This large-

scale documentation of data at a fine granularity provides new possibility to more

accurately capture behavioral and contextual characteristics, facilitating the investi-

gation of worker performance. Second, the online platforms not only collect big data,

they also very importantly render easy access to precise and sophisticated behavioral

interventions. The ability to control interactions between users and the platform at
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both individual and session interaction levels affords exciting options for designing

new interventions in randomized field trials, and field trials can add valuable exper-

imental records to the general big data documentation. Third, to make sense of the

vast documentation of data and discover actionable insights, data science provides

advanced analytic tools, such as machine learning.

These emerging opportunities brought by big data, online platforms, and data sci-

ence techniques complement our existing knowledge and methods to enhance worker

performance. In this dissertation, we take such opportunities by proposing a human-

centered data science framework to improve worker performance.

1.1 A Human-Centered Data Science Framework

The special challenge of human-centered data science framework lies in that the

goal of this framework is to describe, predict, understand, and ultimately promote hu-

man behaviors, which are highly complex and heterogeneous. Therefore, this frame-

work must be able to incorporate our existing knowledge about human factors —

commonly reflected in social science theories — in addition to data science techniques

and behavioral interventions. Specifically, as shown in Figure 1.11, this framework

consists of three major components centering around human behavior (i.e., worker

performance in our context): machine learning, field experiment, and social science

theories.

1.1.1 Key Components

Machine Learning

Machine learning enables the prediction of human behavior via large-scale data anal-

ysis. While some machine learning models make it easy to explain the predictive

1Note that research potentials represented by the dashed lines are not covered by the empirical
studies in this dissertation.
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Figure 1.1: A human-centered data science framework

power of features, counterfactual reasoning further strengthens the explainability of

machine learning models. Instead of predicting what will happen as general machine

learning models, counterfactual machine learning predicts what will happen if some-

thing is changed, making the predicted results more interpretable.

Social Science Theories

Social science theories provide rich insights in describing, explaining, and predicting

human behavior. These theories generally refer to theories in social sciences, such as

psychology, economics, organization, marketing, and management.

Field Experiment

Field experiments are randomized control trials that are carried out in real-world

settings [131]. Field experiments establish causal relationships between manipulated

factors (i.e., treatment) and target outcomes (i.e., effect) by performing precise be-

havioral interventions on the randomized treatment and control groups. In contrast
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to lab experiments that usually involve hypothetical experimental settings, field ex-

periments demonstrate causality with data from the real-world context and alleviate

the difficulties of external validity.

1.1.2 Challenges of Traditional Mono-Methods and Opportunities

While these three components each provide powerful tools to investigate worker

performance, traditional mono-method approaches cannot tackle the challenges ren-

dered by large and complex data in the modern era.

Machine learning models are characterized by scalability and can handle high-

dimensional complex data. However, ways to fully incorporate existing knowledge

into the data-driven methods and to discover insights that are more explainable and

actionable remain largely mysterious.

Field experiments are commonly used to establish causality; yet, it requires in-

sights to design effective interventions in the first place and data analytics to discover

reliable and useful results. The latter part is especially challenging given that field

experiments may involve high-dimensional and large-scale datasets, such as those in-

volving thousands of human and contextual factors and millions of records, where

traditional experimental analysis is commonly insufficient.

Social science theories embed our existing knowledge about worker performance in

the traditional job context. However, sophisticated operationalization and analytical

methods are required to examine whether a theory is applicable to new contexts and

to build new theories.

Taken together, these mono-methods either cannot handle complex relationships

among human and contextual factors, or cannot fully incorporate existing knowledge,

or lack the scalability to deal with high-dimensional large-scale data. These challenges

call for interdisciplinary solutions leveraging both the advanced analytic skills of data

science and the deep insights of social sciences.
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1.1.3 Human-Centered Data Science Synthesizing Social Science Theo-

ries, Field Experiment, and Machine Learning

To approach these challenges, we complementarily bridge machine learning, field

experiments, and social science theories into a human-centered data science framework

as demonstrated in Figure 1.1. First, we root the design of field experiments in

theoretical insights, and the causal insights derived from field experiments can then

support the testing and development of social science theories. Second, after collecting

large-scale and complex observational data, especially those from field experiments,

we leverage machine learning and counterfactual reasoning to analyze the data to

identify data-driven insights. While traditional experimental analysis mainly supports

the understanding of treatment effects at aggregate levels, such as average treatment

effect, machine learning empowers more sophisticated analyses of experimental data

by revealing heterogeneous effects at a finer granularity, such as individual treatment

effects. These data-driven discoveries complement theory-based insights to inspire

better experimental designs, and we can in turn evaluate the effectiveness of these

models and insights in real-world practices via field experiments. Third, existing

knowledge from social science theories can further enhance the predictive power of

machine learning models by informing feature construction, model architecture, and

model explanation. The patterns identified by machine learning models can in turn

support the testing of the applicability of existing knowledge and the development

of new theories that better reflect reality. Together, social science theories, field

experiments, and machine learning strengthen one another to better study human

behaviors.

We would like to point out that human-centered data science is different from

the general data science. While human-centered data science leverages general data

science techniques, the goal is mainly to describe, predict, and understand human

behavior by combining data analytic techniques and social theories. Human-centered
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data science emphasizes the interpretation of models through the perspective of hu-

man behaviors. In contrast, general data science either focuses on data analysis

without considering social science theories or separately investigates the three com-

ponents.

In addition, while this framework connects social science theories, field experi-

ments, and machine learning into an organic integration, applications of this frame-

work are very flexible. One does not have to apply the entire framework in a single

study, and there is a rich exploration space for every component and the interac-

tion between any pair of these components. We illustrate this flexibility with three

empirical studies in the next section (as represented by the solid lines in Figure 1.1).

1.1.4 Empirical Applications to Improve Worker Performance

In this dissertation, we present three research projects applying human-centered

data science to improve worker performance.

In the first project, we use machine learning models to help improve the per-

formance of the outreach specialists in New York City’s Tenant Support Unit (a

traditional sector). By providing the predicted probability that tenants in a given

building would need the specialists’ assistance, our models are able to inform the

outreach priorities and facilitate better planning, enhancing the effectiveness and ef-

ficiency of outreach. While an ideal natural next step is to conduct randomized field

trials to verify the performance of the model, we have not finished these trials due

to constraints in reality. Alternatively, we illustrate the deployment of field trials in

another scenario – the ride-sharing economy. In the second project, we conduct a field

experiment and show the effectiveness of theory-informed interventions in enhancing

worker performance on a ride-sharing platform (Didi Chuxing). To further under-

stand the heterogeneous treatment effect of the field experiment on Didi Chuxing, in

the third project, we deploy counterfactual machine learning to analyze hundreds of
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large-scale field experiments, the results of which are shown to be directly actionable

to increase worker performance in the ride-sharing economy.

In the following section, we present the outline of this dissertation with a summary

of the three projects.

1.2 Dissertation Outline

This dissertation proceeds with several chapters. In Chapter II, we review the

preliminaries on field experiments, counterfactual machine learning, and worker per-

formance. We first introduce field experiments. Field experiments are rooted in the

theme of causal inference, which also connects to counterfactual reasoning. There-

fore, here we discuss the preliminaries of causal inference as well as the pros and

cons of field experiments in establishing causality. Next, we present the background

knowledge about counterfactual machine learning, with a comparison between coun-

terfactual machine learning and machine learning. Last, within the huge body of

worker performance literature, we briefly introduce the research studying how to im-

prove worker performance through predictions and interventions, including studies

applying machine learning and field experiments. In this chapter, we prepare the

readers with the fundamentals of field experiments, counterfactual machine learning,

and domain knowledge about worker performance.

Chapters III to V present three research projects that deploy human-centered data

science in real-world applications. The workers who benefit from these applications

span the traditional sectors and the rising gig-economy work force. They each re-

flect different parts of the human-centered data science framework, exemplifying the

flexibility of applying this framework to real-world practices.

In Chapter III, we present a study that applies machine learning to improve the

performance of workers in a traditional sector — the New York City government.

To ensure the existence of affordable housing for low-income tenants, New York City
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has implemented rent-stabilization policies to restrict the maximum annual rate at

which the rent of certain units can be increased. However, some landlords try to

circumvent the laws and “destabilize” these units by illegally forcing the tenants out

so that they can greatly increase the rent. Therefore, the New York City Public

Engagement Unit (PEU) conducts proactive outreach to identify tenants vulnerable

to such rental harassment and assist them in exercising tenants’ rights. However,

the current system that PEU uses only provides a map of residential buildings. In

this project, we help to increase PEU’s work productivity in identifying harassment

cases by providing additional information about the harassment risk levels associated

with these buildings. This study sits in the framework as an application of machine

learning in predicting human behaviors (i.e., rental harassment), the results of which

can further inform intervention (i.e., the outreach to tenants). The analyses based

on historical data show promising results. We note that field trials are the golden

standard to evaluate the effectiveness of such machine learning models, but we have

not had luck to deploy field trials for this project so far. In the next chapter, we will

illustrate the execution of field experiments in the gig economy.

Chapter IV describes the design and implementation of a field experiment to

enhance worker performance in a modern work force of the gig economy — Didi

Chuxing (DiDi). The gig economy provides flexible and low-barrier jobs for millions

of workers globally. However, a lack of both organization identity and social bonds

contributes to the high attrition rate experienced by gig platforms [112]. To help

engage workers, we propose to enhance worker performance by engaging them in

virtual teams and team contests, an intervention inspired by social identity theory

and contest theory. Through a large-scale field experiment with 27,790 drivers, we

show that virtual teams are able to enhance worker performance on DiDi and that the

treated workers continue to work longer hours on the platform even three months after

the end of the experiment. This study demonstrates the effectiveness of informing
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field experiments with theories and using experimental evidence to support theories.

Meanwhile, we note that the experimental analysis of this study stays at the aggregate

levels, leaving rich opportunities to further unpack the treatment effect at a finer

granularity.

In Chapter V, we show that experimental analysis via counterfactual machine

learning enables sophisticated evaluation and optimization of interventions, further

improving worker performance in the gig economy. While virtual teams and team

contests have been shown to effectively enhance worker performance, huge variation

in treatment effects is observed across individuals, teams, and contests. To uncover

the decisive factors behind the treatment effects and identify better team formation

strategies and contest designs, we combine machine learning and counterfactual rea-

soning to answer these questions: (1) What will be the treatment effect on worker

performance if this worker participates in this contest with this team? and (2) What

will be the treatment effect if we change the contest design and team formation? In

addition, to better capture worker behavior, demographics, and contextual factors,

we employ insights from theories in virtual teams, social psychology, and behavioral

economics to design features. The results show the effectiveness and promising poten-

tial of deploying counterfactual machine learning to predict treatment effects at the

individual level and to derive data-driven insights for future experimental intervention

designs. This study complementarily bridges machine learning, field experiments, and

social science theories in promoting worker performance.

Taken together, this dissertation proposes a human-centered data science frame-

work to improve worker performance and presents three studies that illustrate its

flexible applications to solve real-world problems. We summarize the dissertation in

Chapter VI, with a discussion of future research directions.
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CHAPTER II

Preliminaries

To facilitate the understanding of the following chapters, in this chapter, we intro-

duce the key methodologies — field experiments and counterfactual machine learning,

as well as the application domain — worker performance. We first present the concept

of field experiments, typical experimental analysis embedded in the general theme of

causal inference, and its relative advantages and disadvantages in comparison to lab

experiments. Next, we discuss counterfactual machine learning and we point out its

distinguishing characteristics from machine learning in general. At the end of this

chapter, we further prepare the readers with two streams of worker performance re-

search — prediction and intervention. More relevant studies associated with each

project are introduced in the following chapters.

2.1 Field Experiment

2.1.1 Field Experiment and Causal Questions

Humans have a natural interest in discovering causation. In childhood, many of us

have probably been curious about why we have two eyes and one nose, and why we see

the sun in the day and the moon in the night. Our interests in causation extend to the

social and behavioral world as we grow up. What contributes to a good relationship

between parents and children? What are the decisive factors of individual financial
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success? How can we promote social equity among groups of divergent socio-economic

levels? Will employees put more effort into work if they receive additional incentives

to do so? These causal questions span fields of psychology, economics, organization

studies, management, sociology, etc., and all of them fall into key interests of social

science researchers.

Experimentation is one approach to establish causality. By performing different

interventions on the randomly assigned treatment group and control group, random-

ized experiments are able to claim causal relationships between treatment variable(s)

and outcome(s). Experiments can be carried out in the lab and in real-world settings,

and the latter approach is referred to as a field experiment or A/B testing.

To better understand the establishment of causality via field experiments and

experimental analysis, we introduce the field experiments under the umbrella of a

causal inference framework.

2.1.2 The Potential Outcome Framework of Causal Inference

Generally speaking, causal inference answers the question of to what level the

outcome changes if the treatment changes. Neyman [103] and Rubin [117] propose to

estimate the causal effect under a framework of potential outcomes (hereafter referred

to as the Neyman-Rubin framework).

2.1.2.1 Key Components

There are three key elements in this framework: treatment, unit, and outcome.

To make it simple, we illustrate this with binary treatment status in the following

sections. In other words, there is one treatment condition (i.e., treated) and one

control condition (i.e., not treated).

Treatment. Treatment refers to the intervention or action applied to the experi-

mental subject. For example, if we want to understand whether providing additional
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financial incentives increases the salesman’s revenue, the financial incentive would be

the treatment. Treated salesmen would receive the financial incentive, while non-

treated salesmen would not. We denote treatment as W ∈ (0, 1), with W = 1

representing treated and W = 0 representing not treated.

Unit. A unit is an object that receives the treatment (or not). In the salesman

example, a unit is an individual salesman. However, we would like to point out that

a unit is usually, but not always, an individual participant. For example, in the study

of racial discrimination in the job market [22], the researchers sent out resumes with

the applicant name assigned as African American sounding or White sounding to job

ads and compared the difference in interview callback rates. In this case, the unit is

not a person, but rather an application/resume.

Potential Outcomes. For each unit, the potential outcome under a given treatment

is the outcome if the unit receives the given treatment. The outcome is denoted as Y .

For example, when the treatment variable is binary, there are two potential outcomes

for a unit i: Yi(W = 1) if i is receiving the treatment and Yi(W = 0) if i is receiving

no treatment.

2.1.2.2 Treatment Effects Estimation

The treatment, unit, and potential outcomes defined in the Neyman-Rubin frame-

work make a good foundation to define treatment effects.

Individual Treatment Effect (ITE). Individual treatment effect refers to the

causal effect of the treatment on a unit. The individual treatment effect of unit i

is:

ITEi = Yi(W = 1)− Yi(W = 0). (2.1)

Average Treatment Effect (ATE). Average treatment effect aggregates the indi-

vidual treatment effects at the population level:
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ATE = E[Y (W = 1)− Y (W = 0)], (2.2)

where Y (W = 1) (Y (W = 0)) refers to the average potential treated (non-treated)

outcome of the entire population.

Average Treatment Effect on the Treated Group (ATT). Because the treated

group might have different characteristics and potential outcomes from the entire

population, social scientists also define the Average Treatment Effect on the Treated

Group as:

ATT = E[Y (W = 1)|W = 1]− E[Y (W = 0)|W = 1], (2.3)

where Y (W = 1)|W = 1 (Y (W = 0)|W = 1) represents the average potential treated

(non-treated) outcome of the treated units.

Conditional Average Treatment Effect (CATE). Focusing on the treatment

effect of a subgroup, the Conditional Average Treatment Effect is represented as:

CATE = E[Y (W = 1)|X = x]− E[Y (W = 0)|X = x], (2.4)

where Y (W = 1)|X = x (Y (W = 0)|X = x) represents the average potential treated

(non-treated) outcome of a subgroup of units with X = x.

Difference-in-Differences (DID). The DID model considers not only the compar-

ison between the treated and non-treated units, but also the within-unit difference

between the pre-treatment and post-treatment periods. This model is most com-

monly used in natural experiments where the treatment groups and control groups

are naturally assigned by policy changes or natural events, and it is also frequently

applied in the analyses of randomized experiments. Although this is not in perfect

parallel with other treatment effects presented above, we introduce the DID model

here because it is applied in Chapter IV and Chapter V, and this fits best for the
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reading purpose.

The average treatment effect under the DID model can be represented as:

ATEDID =E
[(
Y (W = 1, T = T1)− Y (W = 1, T = T0)

)
−
(
Y (W = 0, T = T1)− Y (W = 0, T = T0)

)]
(2.5)

where T0 (T1) is denoted as the pre-treatment (post-treatment) period.

The regression equation of a DID model generally follows the form of:

YiT = β0 ·Wi + β1 · IT + β2 ·Wi · IT + εiT , (2.6)

where YiT represents the potential outcome of unit i at time T ; Wi ∈ {0, 1} shows

the treatment assigned to unit i; IT is a binary variable indicating the period, with

IT = 0 if T = T0 and IT = 1 if T = T1; εiT refers to the residual term of unit i at

time T ; and β2 presents the treatment effect. Equivalently, it can take the form of:

∆Yi = θ + β ·Wi + εiT , (2.7)

with ∆Yi (= Yi,T=T1 − Yi,T=T0) indicating the within-individual outcome change and

β representing the treatment effect.

2.1.3 Use of Field Experiments to Establish Causality

As suggested by Box et al. [26] that “to find out what happens when you change

something, it is necessary to change it,” randomized (field) experiments, with treat-

ment interventions implemented, have been commonly recognized as the golden stan-
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dard to establish causality.

This is because of the fundamental challenge of causal inference in identifying the

counterfactual outcome [78]. For a unit i, we can only observe Yi(W = 1) if i gets the

treatment or Yi(W = 0) if i is not treated, but not both at the same time. Estimating

the counterfactual outcome — the outcome of treatment that i does not receive — is

thus the key challenge of causal inference.

Randomized experiments help to provide a good approximation of the counterfac-

tual outcome of the treated (control) groups at the aggregate level. The randomized

treatment assignment leads to the independence between treatment assignment W

and the potential outcomes Y (sometimes given X), i.e., W ⊥⊥ Y (W = 1), Y (W =

0)|X 1. If we denote the observed outcome as Y Obs , this gives us:

E[Y (W = w)|X = x] = E[Y (W = w)|W = w,X = x]. (2.8)

Therefore, we will have:

E[Y (W = 1)|X = x] = E[Y (W = 1)|W = 1, X = x]

= E[Y Obs|W = 1, X = x], (2.9)

and

E[Y (W = 0)|X = x] = E[Y (W = 0)|W = 0, X = x]

= E[Y Obs|W = 0, X = x], (2.10)

which leads to:

1This is also commonly referred to as ignorability or unconfoundedness.
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ATE = E[Y (W = 1)− Y (W = 0)]

= Ex

[
E[Y Obs|W = 1, X = x]− E[Y Obs|W = 0, X = x]

]
= E[Y Obs|W = 1]− E[Y Obs|W = 0]. (2.11)

However, we also note that not all randomized assignments successfully satisfy the

randomization threshold. Treated groups and control groups may still be significantly

different on key characteristics. A randomization check helps to rule out some of these

violations.

2.1.4 Field Experiments Versus Lab Experiments

Randomized experiments can be carried on both in the lab (i.e., lab experiments)

and in the field (i.e., field experiments). Compared to the lab experiments that mostly

involve college students as subjects, the results of field experiments rely on the data

in real-world settings, participants of which are more representative of the target

population. This greatly enhances the external validity of experiments.

Despite the rising favor toward field experiments, critics raise concerns about

real-world contexts being too complicated. For example, the messy real-world prac-

tice may challenge the assumptions of causal inference [16], and some assumptions,

like randomization, are hardly verifiable in a large-scale experiment. Moreover, exper-

iments on the online platforms that support social networking, such as social media

platforms, can go against the assumption of Stable Unit-Treatment-Value Assumption

(SUTVA) because participants in different treatment groups may have interactions

with one another. In addition, concurrently launching multiple A/B testing, a type

of field experiments, may expose a participant to several experiments at the same

time, also undermining the reliability of the experimental results. Researchers have
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started to explore methods to approach such problems (e.g., [141]).

Experimentation is commonly compared with other causal inference methods for

observational data, such as propensity score matching, regression discontinuity, in-

strumental variables, and structural causal models. While this is outside the scope

of this dissertation, we refer the readers to related reviews for more details, such as

[106], [134], and [143].

2.2 Counterfactual Machine Learning

2.2.1 Counterfactual Machine Learning

In the prior section, we discuss that to address counterfactual questions, a field

experiment (i.e., A/B testing) is commonly regarded as the golden standard. How-

ever, field experiments are both financially costly and time-consuming, and only a

limited number of experiments, if not none, are feasible to launch due to real-world

constraints. Therefore, it is important to estimate the effectiveness of a new treatment

before it has been deployed online. This is referred to as counterfactual estimation

(also called off-policy evaluation and estimation of treatment effects). Counterfactual

estimation enables prediction and evaluation of the effects of a new treatment by

learning from the existing data without collecting new data. This further allows for

policy/treatment optimization. Counterfactual estimation and policy optimization

(also referred to as counterfactual learning), together make up the key components

of counterfactual machine learning (CML) [83].

2.2.1.1 Counterfactual Evaluation and Counterfactual Learning

If we denote Y as the targeted outcome variable, w as the historical treatment(s),

and X as the vector representing individual and contextual factors, CML leverages

the existing data about treatment W to learn a regression of
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Y (X,w) = f(X,w) (2.12)

and predict Y (X,w′) for a new treatment w′.

The most intuitive estimation of the average new treatment outcome is to directly

take the outcome mean of every unit under this treatment. This direct method is also

referred to as the “model-the-world” approach [83]. In other words, the outcome of

the new treatment w′ can be represented by the outcome of unit i ∈ 1, ..., n treated

with w′ as:

Y (W = w′) =
1

n

∑
i

Yi(xi, w
′) (2.13)

However, potential selection bias can undermine the validity of this estimation.

To achieve unbiased results, literature has incorporated inverse propensity score (IPS)

[116]. This is referred to as importance sampling [62], or the “model the bias” [83]

approach. Compared to the direct method, this approach is unbiased but shows

higher variance. The doubly robust estimator combines the direct estimation and

the importance sampling to achieve both low bias and low variance at the same

time [55, 81]. Self-normalized IPS model also reduces the variance by incorporating

normalization to address propensity overfitting [127].

Once f(X,W ) is realized by counterfactual estimation, counterfactual learning

can be leveraged to inform the optimized treatment by solving

W ∗ = argmax
W

f(X,W ) (2.14)

Similarly, this learning approach might suffer from selection bias as well as model

bias. To address such problems, more sophisticated unbiased counterfactual learning

models have been developed by incorporating weighting (e.g., [148]).
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2.2.1.2 Comparing counterfactual machine learning and machine learning

While both machine learning and counterfactual machine learning make predic-

tions, note that they are different in the objectives of their predictions. Machine

learning focuses on predicting what is going to happen given the features, i.e., pre-

dicting the outcome variable Y given X = x. In contrast, counterfactual machine

learning predicts what will happen if the treatment changes, i.e., predicting Y given

W = w′ and X = x.2 The underlying goal of counterfactual machine learning is to

optimize the treatment and derive new treatments through predicting what is going

to happen given the data of historical treatment(s) on some population under some

context. In other words, the goal of machine learning is to make predictions, while

the objective of counterfactual machine learning is to evaluate and optimize through

prediction.

2.2.2 Applications and Evaluations of Counterfactual Machine Learning

The last decade has observed increasing applications of counterfactual machine

learning in industry, which focus on improving user-engagement metrics. Specifi-

cally, most research in this area has been focused on increasing the click-through

rate (CTR) of recommender systems, such as ad placement recommenders [25], ad

format recommenders [129], news article recommenders [95], and search engine result

recommenders [108], except that a few studies have gone beyond CTR to investigate

other user engagement metrics that might be more robust with a longer horizon, such

as advertiser retention, brand-search behavior, and brand-sites navigation in online

ad campaigns (e.g., [31, 92]). For example, Li and his colleagues analyze the search

log data with the IPS counterfactual estimator to evaluate and optimize the click-

through metrics of the spelling correction recommendation in a commercial search

2More generally, counterfactual machine learning is focused on predicting what will happen if
there is some change in predictors, no matter the change is in treatment and/or other feature(s) in
X, i.e. predicting Y given W = w′ and/or X = x′.
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engine [94]. To evaluate the effectiveness of this counterfactual model, they conduct

an A/B testing online and show that the model significantly improves the existing

approach.

Our work in Chapter V extends the application domains of counterfactual machine

learning in the industry from CTR to worker performance. Enhancing worker per-

formance has inherent distinctions from improving CTR. While CTR is more about

accepting and consuming the recommendation of information, service, and goods con-

sumption, worker performance is more about the supply of labor. This difference may

reflect the divergent motivations and thus mechanisms behind the click-through and

working behaviors. In addition, the decisive factors of worker performance, such as

skills, task assignment, organizational context, social relationships with co-workers,

and contextual constraints could all be different by nature from the predictors of

CTR, such as the position and the layout of ads. In the next section, we will have

an overview of worker performance research, with a focus on improving worker per-

formance through predictions and interventions.

2.3 Worker Performance

2.3.1 The Definition and Measurement of Worker Performance

In this dissertation, worker performance is referred to as the aggregated value of

the set of behaviors that a worker contributes to organizational goals both directly

and indirectly [28]. The measurements of worker performance vary across contexts

and disciplines. For example, the work performance of a customer service specialist

is commonly measured by the percentage of tickets successfully solved, whereas the

performance of an Uber driver can be reflected by revenue or the number of rides.

In the empirical studies in this dissertation, we operationalize worker performance

according to organization practices and contexts. In Chapter III, we consider worker
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performance as the number of buildings (or rental units) with rental harassment that

a worker is able to identify. This metric is selected to reflect one of the main goals

of the organization (i.e., NYC’s tenant support unit): to identify as many tenant

rental harassment cases as possible in order to assist the tenants involved. In the

context of the ride-sharing economy (see Chapters IV and V), worker performance is

represented by driver revenue, which is one of the most commonly used metrics in

DiDi, the ride-sharing platform that we collaborate with.

2.3.2 Improving Worker Performance: Prediction and Intervention

Examining established literature on worker performance that broadly spans over

management, organization, economics, human-computer interaction, and data min-

ing, we find that prior studies have leveraged predictions and interventions to improve

worker performance.

Prediction. Predicted results can improve worker performance by informing

better decisions and interventions. For example, machine learning has been used to

promote city inspector performance by informing inspector allocation (e.g., [84]), to

reduce potential adverse events in the police department by helping with police assign-

ment (e.g., [29]), and to facilitate educational proactive intervention by forecasting

student grades and dropout risk (e.g., [87, 91]). Machine learning has also been widely

used to support clinical care management and disease diagnosis (e.g., [86, 111]). These

studies illustrate the power of machine-learning predictions: predicted results from

even off-the-shelf machine-learning algorithms are able to effectively enhance worker

performance. Recent work has also leveraged more advanced prediction techniques,

such as deep learning (e.g., [137]), transfer learning (e.g., [88]), and federal learning

(e.g., [43, 142]), to better incorporate large heterogeneous data, from multiple sources,

organizations, and domains. Our work in Chapter III contributes to this area by iden-

tifying an opportunity to help tenant support specialists: we use machine learning to
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predict the risk of rental harassment, informing more effective specialists’ outreach

to tenants.

Intervention. To enhance worker performance, prior researchers have performed

interventions in lab and field experiments. For example, prior literature has examined

the effect of for-profit versus non-profit motivation designs, performance feedback

incentives, and financial incentives on crowdsourcing worker performance (e.g., [98,

113, 122, 146]). As another example, workers, especially who are geographically

distributed from their co-workers, have been grouped into virtual teams to enhance

their performance; experimental studies have shown that the performance of virtual

teams can depend on various factors related to team design, inputs, and processes,

such as group size, group diversity, anonymity, availability of performance feedback,

group history, and task features (e.g., [14, 45, 65, 107, 147]). A recent study in the

ride-sharing economy shows that grouping drivers into virtual teams and engaging

the teams into cash-rewarded contests are effective in promoting worker performance

[3]. However, it remains unknown whether the effect of virtual teams holds without

financial incentives. Our work in Chapters IV and V approaches this problem with

a large-scale field experiment and counterfactual machine learning in a ride-sharing

platform.

In this dissertation, we contribute to improving worker performance via predic-

tions (i.e., machine learning) and interventions (i.e., field experiments), leveraging the

framework of human-centered data science.
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CHAPTER III

Using Machine Learning to Improve the

Performance of Government Specialists in New

York City

Technology is reshaping the nature of work, including that in the traditional sec-

tors [12]. Given the many ways that technology can affect traditional jobs, data-

science approaches have delved into the possibility of improving work effectiveness

and efficiency by using predictions to inform better decisions and interventions. This

is exactly where we as human-centered data scientists hope to contribute. In this

chapter, we present an example of such intervention-oriented machine learning: we

use machine learning to predict the work outcomes by analyzing historical data of

work results and contextual factors, the results of which help to improve work plan-

ning and thus worker performance. This can be conceptually mapped to the link from

machine learning to human behavior in the framework (Figure 1.1).

Specifically, in this project, we collaborate with the New York City’s government

and help its outreach specialists to improve their performance by informing work plan-

ning with machine learning predictions. Through broad data collection and careful

data analytics, we show that even simple machine learning models have the potential

to increase work performance by as much as 59% for workers in traditional sectors.
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We also discuss the importance of getting the empirical problem appropriately formu-

lated by comparing the results of two different formations. These promising findings

illustrate the effectiveness of applying data science to promote worker performance

in traditional sectors.

3.1 Introduction

In New York City (NYC), one of the world’s most populous and dense cities,

housing availability and affordability is a major concern for residents and city gov-

ernment. From 2009 to 2017, rents rose at twice the rate of wages [136], making it

more difficult for New York City tenants to afford housing.

To help ensure the long-term existence of affordable housing, the New York State

and New York City governments have implemented housing policies, such as rent

stabilization, which restricts yearly rent increases, and a voucher program, which

subsidizes rent for low-income households. Currently, the city has more than 1 million

rent-stabilized housing units [52, 53].

However, the landlords of rent-stabilized units often want to ”destabilize” these

units [140] by forcing tenants out: that is, they want tenants to move out, voluntarily

or through an eviction, to force a larger allowable rent increase that eventually places

the unit beyond the purview of rent-stabilization policies. While the overall num-

ber of housing units has increased, the number of rent-controlled and rent-stabilized

apartments in New York City has decreased by 146,902 units since 1991 [52, 53].

Some of this turnover is the result of landlord harassment, which can take the form

of refusal to make essential repairs, illegally locking tenants out of units they have a

right to live in, and other tactics aimed at inducing tenant turnover [120].

To help vulnerable tenants handle these tactics, in 2015, New York City’s Mayor’s

Office established a Tenant Support Unit (TSU), a team of outreach specialists from

the Mayor’s Public Engagement Unit (PEU). TSU specialists proactively canvass
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door-to-door throughout the city and hold events with local community partners

to find tenants in need of assistance with housing challenges. Once they identify

a case of harassment or other serious housing challenges, specialists further case-

manage tenants to help them access a range of city services, such as emergency

repairs, vouchers and free legal assistance.

Canvassing to find tenants in need is a time-sensitive process — TSU’s goal is to

reach tenants before their problems progress to more serious cases of eviction or other

forms of displacement. Currently, TSU identifies buildings that have rent stabilized

units in 20 ZIP codes prioritized as part of anti-harassment protection legislation.

To locate the buildings, TSU uses an internal address database and canvasses every

apartment unit in these buildings. PEU team leads in each borough send specialists to

each area until all apartment units have been attempted. Once an area is completed,

canvassing begins again in an adjacent area. There are about 150,000 rental units in

the 20 ZIP codes where funding is available for TSU to help tenants in need, but TSU

specialists only have the resources to knock on an average of 5,000 units a month.

Our work is focused on helping TSU prioritize locations where tenants face a high risk

of harassment to help TSU specialists better plan their outreach, increase their work

performance, and serve more tenants in need proactively. We note that, in this study,

work performance is operationalized as the number of harassment cases identified in

a unit of time period.

In collaboration with TSU, we1 deployed machine learning models to help predict

which buildings house tenants who face a high risk of harassment by their landlords.

By analyzing historical outreach results and building and neighborhood characteris-

tics, we showed that a Gradient Boosting model successfully outperformed the current

outreach practice. Specifically, our model increased the precision relative to our base-

line — the unit’s expert-driven success rate — by 59%, helping TSU better allocate its

1This work was done at the Data Science for Social Good Fellowship program at University of
Chicago.
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outreach resources to people most in need and improving its efficiency at helping vul-

nerable tenants. In addition, we also provided analyses of feature importance, helping

the team understand which attributes of buildings and neighborhoods contribute to

the likelihood of rental tenant harassment.

In summary, this paper provides the following contributions:

1. This paper contributes to the prediction of landlord harassment risk by deploy-

ing various machine learning models with a direct measure of landlord harass-

ment and well-defined evaluation metrics.

2. Our model shows significant improvement at identifying buildings at high ha-

rassment risk over TSU’s current approach.

3. In addition to yielding risk scores for tenant harassment, this paper also high-

lights features that can potentially be used as “early warning signs“ of future

harassment or proxy markers for the presence of harassment.

3.2 Related Work

3.2.1 Housing Assistance for Low-income Renters

Social science research documents the negative consequences of housing instability

and shows the mixed effects of rent-stabilization and other rental assistance policies

on combating this instability. On one hand, such assistance may reduce homelessness

[139] and rental burden, increasing financial security (such as to afford health care)

among low-income households [100]. On the other hand, suppressing a unit’s rent

at a level below the rate it would receive on the open market can result in lower-

quality housing [72, 133] and creates incentives for landlords to use legal loopholes,

such as those that allow landlords to increase the rent each time a tenant moves out,

to eventually convert the units to market rate [13].
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Thus, policymakers face a dilemma: how can they use policies such as rent sta-

bilization (which sets an upper limit on the rate at which the rent can be increased

annually) to promote access to affordable housing, while also ensuring that tenants

renting in these affordable units live in habitable conditions and do not face landlord

harassment aimed at getting them to move out? The bulk of existing research focuses

on the former part of the dilemma (the effect of policies on housing access). Less re-

search investigates strategies to ameliorate potential byproducts of rent regulation

policies.

Our work, by predicting where tenants in affordable units are likely to experience

landlord harassment, fills an important gap. The Mayor’s Office of Data Analytics

([104]), referred to as MODA hereafter, also has studied data-driven protection from

landlord harassment, and our project builds upon their efforts in several ways. First,

through this paper we had a more direct measure of landlord harassment. While

MODA ([104]) defined harassment using a proxy variable (i.e., the number of rent-

stabilized units a building lost during a particular time period), TSU’s historical

canvass data allowed us to use harassment cases tenants reported during outreach.

Second, we estimated many different models and evaluated model performance with

well-defined metrics. Finally, the different machine learning models we estimated

allow us to use significantly more features and to learn complex relationships — i.e.,

both linear and nonlinear relationships— between these features and a building’s

observed harassment risk.

3.2.2 Machine learning for Social Good

In recent years, machine learning has been widely applied to problems of social

good and to inform public policies. For example, it has been introduced to forecast

issues of criminal justice [20], detect online rumors on social media [151], identify

political bias in text [70], map wealth and poverty in given areas [23, 67] and even
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facilitate medical diagnoses [86].

In particular, government agencies have used machine learning to inform better

allocation of resources and work outcome. For example, random forest and logistic

regression have been used to identify students at risk of not graduating, so that school

districts can prioritize their limited intervention resources to help these students [91].

Machine learning models can also help government inspectors prioritize inspections to

high-risk units. These efforts include using Yelp reviews to help a government agency

target hygiene inspections [84, 66] and predicting which buildings face a high fire risk

to help the New York City Fire Department narrow its inspection focus [9, 115].

However, far less work has been done to explore how machine learning can inform

housing policies and facilitate housing workers in the public sector, except for making

policy recommendations to reduce home abandonment in Mexico [1] and detecting

home locations by real life photos on social media [152] or by tweets [130], as well as

MODA’s study mentioned in the previous section [104]. In this paper, we highlight

a new application by deploying machine learning methods to predict which buildings

house tenant(s) facing a high risk of harassment by their landlords.

3.3 Problem Formulation

We formulate the tenant harassment risk prediction as a binary classification prob-

lem. For each building, our model produces a risk score for whether there will be at

least one harassment case identified if the TSU specialists canvass the building in the

next month. Our model answers the question: Will there be any cases of harassment

in a given building in the next month?

This formulation leads to two further decisions: 1) what time horizon to predict

for (e.g., a harassment case within the next week, next month, or next year) and 2)

the unit of prediction (e.g., modeling which residential unit faces a high harassment

risk versus modeling which buildings contain tenants who face a high harassment
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Table 3.1: Data sources summary

Dataset Records # Time Window
(Internal) Knock attempts 100K 2016.4 - 2018.2
(Internal) Case records 8K 2015.6 - 2018.2
(Internal) Case issues 30K 2015.6 - 2018.2
(Internal) Building address 1M N/A
(External) ACS (tract-level) 2000 2013 to 2016
(External) PLUTO buildings 1M till 2018.1
(External) HPD violations 4M till 2018.6
(External) Hous. Court litigation 150K till 2018.6
(External) Subsidized housing 16K till 2016

risk). Both of these questions need to be answered reflecting the operational and

policy constraints of our partner, the Tenant Support Unit at NYC.

For 1), we use a month as the time horizon for our prediction because TSU spe-

cialists typically plan their work at the beginning of each month. Monthly prediction

thus matches their outreach planning process.

For 2), we focus on each building rather than each tenant for two reasons. First,

TSU conducts a building-level outreach process. Out of concern for equity among

tenants, TSU specialists believe they should knock on every single unit in a building

once they enter. Second, the majority of information in both TSU internal databases

and public available datasets describes buildings rather than units. Therefore, it’s

both more feasible and more important to know the building-level risk of harassment.

3.4 Data

To explore variables that can help us predict which buildings may be at risk of

harassment, we combined data from multiple sources. Table 3.1 summarizes the

information presented in the data. Details are described in the following sections.
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3.4.1 TSU (Internal) Data

3.4.1.1 Building address

To locate residential units for canvassing, TSU uses an internal database (which

was built using a publicly available dataset) that contains addresses for all the resi-

dential buildings in NYC. For each building, the database records the number of units

and location information such as address, building identifier number and the tract it

belongs to, making it convenient to join with data from other spatial sources.

3.4.1.2 Knock attempts and case records

During canvassing, TSU specialists knock on every apartment unit in the targeted

building(s). If a tenant answers the door, they talk to the person about whether he

or she is facing harassment. These activities are recorded at the unit level in knock

attempts and case records, respectively. Each of the records describes the location

of the unit, the date it was canvassed, the specialist team that did the canvassing,

and the result of the attempt (i.e., knocked, answered, and case identified). The case

database also records the source of the case, allowing us to know which cases came

from canvassing as opposed to other sources, such as referrals. Case records contain

information about our outcome variable — whether or not there was at least one case

of harassment identified in the building.

3.4.1.3 Case issues.

Once a harassment case is identified, such as a landlord refusing to do essential

repairs, the specialists will follow up with the case and separately record each issue

related to the housing unit in the case issues database. The specialists can then

connect the tenants to relevant assistance resources, such as city services or legal

support.
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Figure 3.1 shows the TSU specialists’ canvassing process and our definition for

having a case identified (i.e., the label).

TSU team lead selects 
buildings to canvass 

TSU specialists go to the 
building

TSU specialists get access 
to the building

TSU specialists knock on 
all doors in the building

Tenant opens the door

Specialist identifies case: 
Label = 1

Specialist identifies no 
case: Label = 0

Figure 3.1: Canvassing process with our definition of the outcome label.

3.4.2 Public (External) Data

While the internal canvassing records are critical for understanding where harass-

ment occurs, external data are also important to capture information about buildings

not canvassed by TSU yet or longer term historical data before TSU began their

outreach activities. TSU’s records focus on violations the agency finds based on out-

reach that began in 2015. External data provides both an expanded time window

— which buildings face high rates of landlord issues documented by agencies that

predate TSU’s existence? — and a lens into the characteristics of buildings and

neighborhoods where TSU has historically detected cases.
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3.4.2.1 American Community Survey (ACS)

To gain insight into the demographics of tenants whom TSU specialists conduct

outreach to, we collected American Community Survey 5-year estimates from 2013

to 2016 at the census tract level. The ACS data contain demographic information

such as racial composition, average income, work hours, age distributions and other

demographics of the census tract in which a building is located.

3.4.2.2 Primary Land Use and Tax Lot Output (PLUTO)

The PLUTO records describe attributes of each building, such as its renovation

history, its building class (e.g., is it a high-rise or a walk-up apartment?), the number

of floors, and its recorded owner. We introduced PLUTO data into our model because

we believed building information could shed light upon tenant harassment. For ex-

ample, landlords often own multiple buildings — if TSU canvassing finds harassment

at one of a landlord’s buildings, that same landlord might be engaging in harassment

in other buildings he or she owns. In addition, if a building has been recently reno-

vated, this could be a signal that the landlord is hoping to displace current tenants

and lease the building’s units to higher-paying tenants. Therefore, we believe that

PLUTO features should improve our predictions of harassment.

3.4.2.3 Department of Housing Preservation and Development (HPD)

violations

The HPD issues violations when, after sending inspectors to a unit in response to

a complaint, they find evidence of a Housing Code violation. This database contains

recorded housing violations, which range from more minor, non-hazardous violations

to severe, immediately hazardous violations (e.g., no heat or hot water, a rodent infes-

tation, lead paint). These housing violations could be indicators of rental harassment

since some reflect extreme landlord neglect of living conditions. Mr. Sidibe, a New
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York resident, is a recent example reported in The New York Times. He was first hurt

by a broken hot water tap and then was improperly evicted while he was recovering

in the hospital [13]. Therefore, we hope to use the HPD violation records to improve

the predicted harassment risk of a given building.

3.4.2.4 Housing court litigation.

Similar to the HPD violations, housing court litigation can help the model by

integrating historical violations. It shows the cases that city agencies levy against

an owner when he or she fails to properly address a violation, such as a case legally

compelling an owner to fix the heat and hot water in a unit.

3.4.2.5 Subsidized housing.

This database contains building-level information of 53 different subsidy programs

a building might participate in, such as the low-income affordable marketplace pro-

gram and the HPD mixed income program. The subsidy data complement other

building-specific characteristics in the databases described here.

3.5 Methods

To predict which buildings are likely to house tenants susceptible to experiencing

harassment in the next month, we experimented with Random Forest (RF), Logistic

Regression (LR), Decision Trees (DT), and Gradient Boosting (GB), all of which are

implemented with scikit-learn. We used the data described above to extract numerous

features of buildings: in total we used 92 original features (before further processing

such as reformatting to one-hot vectors) generated from our data sources.
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3.5.1 Feature Generation

We generated features based on our discussion with experts at the PEU as well

as past research on landlord–tenant issues.

3.5.1.1 Building-level features

Building-level features mainly included dynamic features of what harassment-

related behaviors have occurred before and static features of basic building charac-

teristics. For dynamic features, we first generated behavioral features by aggregating

the canvassing activities and the results at the building level. To predict harassment

risk in the upcoming (next) month, for example, we counted the number of knocks,

doors opened and case identifications in the current (this) month in a given build-

ing. We also calculated the number of issues associated with these cases for each type

(e.g., repair, legal) separately. Apart from the count, we created binary variables that

indicate whether there were any knocks, doors opened, or case identifications in the

current (this) month. In addition to recording activity in this month, we aggregated

all the prior historical records (until this month) to assess the predictive utility of

aggregate measures.

Similarly, we created the HPD violations and the housing court litigation features.

The records are aggregated to indicate the number or existence of violations and

litigation, both in this month and all the months until now. To further break down

the type of violations, we included features that describe the number of violations for

each severity class. We also grouped housing court litigation by litigation type (such

as heat and hot water litigation versus tenant actions against owners).

For static features, ZIP codes and borough information were generated from the

internal building address database. We also included dummy variables describing each

canvassing team to account for potential variation between the individual specialists

responsible for given buildings or areas.
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We further extracted basic building characteristics from PLUTO, such as owner-

ship features like owner name and owner type, as well as building renovation features

including the year of each renovation. We also considered the size of the building (in-

dicated by the number of floors and number of residential units), the class of buildings

(identifying whether the building was made of brick and whether it has an elevator),

and the assessed total value of the building.

Additionally from the subsidized housing database, we generated a feature to

describe whether the building is included in a subsidy program or not.

3.5.1.2 Tract-level features

At the tract level, we generated demographic features by extracting records from

the American Community Survey database. PEU managers suggested local areas

with a certain demographic composition of tenants might contain buildings with more

harassment. For example, tracts with a higher percentage of low-income tenants

might be more likely to have both a higher concentration of tenants living in rent-

stabilized units and a higher concentration of tenants who, due to a lack of awareness

of city resources, have unmet needs for help with landlord issues. Our features contain

measures of racial demographics, measures of when residents work outside of the home

(which affects the tenants’ ability to answer the door during the main TSU canvassing

hours), and measures of income insecurity, such as receipt of public assistance like

Supplemental Security Income (SSI).

We cleaned (i.e., preprocessed such as removing duplicate records) all the data

mentioned above to generate the features and match data from different sources by

location indicators. We used extrapolation to impute missing data in the features

(not the label), such as imputing missing records in 2018.2 with data from 2018.1.

We further used the min-max scaler in scikit-learn to normalize continuous features,

especially for use in regularized logistic regression models.
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3.5.2 Splitting Data into Training and Testing Sets

To evaluate models with temporal cross-validation, we followed the rule of time-

dependent knowledge restriction to temporally split the data into training and testing

sets. We needed to ensure that the knowledge in the future (i.e., the testing set) does

not inform predictions in the past (i.e., the training set). For example, in one data

split, if we wanted to use data until end of March 2017 (i.e., testing features) to

predict the risk of harassment during April 2017 (i.e., testing label), the training set

should contain features only until end of February 2017. The training label would

then be generated using cases from records during March 2017. Figure 3.2 shows an

example of these training and testing splits, with each row representing one split.

dssg.uchicago.edu @datascifellowsData Science for Social Good 2018

Train Feature Train Label

Test Feature Test Label

Test Feature Test Label

Test Feature Test Label

March 2016 March 2018

…

Time

Train Feature Train Label

Figure 3.2: An example illustrating training and testing splits.

3.5.3 Model Evaluation

3.5.3.1 Metrics

We used variations of standard metrics to evaluate the model performance: pre-

cision and recall at highest predicted risk buildings with a total of k residential units

based on the outreach capacity. We select evaluation metrics that have enough flex-

ibility when applied to labels with missing values since many of the buildings we
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predict at risk will not have been canvassed historically (since the goal of this project

is to suggest new buildings to canvass) and we need to evaluate our models in that

setting.

To help TSU plan their outreach, at the beginning of each month, we will use

the prediction model to recommend a list of buildings with the highest predicted risk

of harassment, adding up to k residential units (hereafter denoted as top k, with k

limited to TSU’s monthly outreach capacity — the number of units they are able to

knock on for outreach in a given month).

We want to evaluate the performance of the model according to the true labels of

buildings in this prioritized list. Our test set (that we predict on) contains three of

types of buildings:

1. buildings with true positive labels, where TSU knocked and identified case(s)

2. buildings with true negative labels, where tenant(s) opened the doors when

TSU canvassed, but no cases were identified

3. buildings missing labels, where (i) TSU specialists did not go to the building

(no knocks) or (ii) no doors were opened when TSU canvassed the building

(knocks but no opens). Traditional precision and recall metrics are not very

informative in this case when the true labels of buildings predicted as positive

might be missing.

We built upon previous literature [91] focusing on resource allocation in scarce

resource settings and used precision and recall at top k as the evaluation metrics. We

denote Nk,all as total number of buildings in the top k building list, Nk,lp as the number

of buildings labeled as positive in the top-k list and Nk,ln as the number of buildings

labeled as negative in the top-k list. Nk,u refers to the number of unlabeled buildings.

Obviously, Nk,all = Nk,lp+Nk,ln+Nk,u. As shown by Equation 3.1, precision at the top

k is the proportion of buildings that are labeled as positive (i.e., resulted in true cases)
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in the top k building list. Recall at the top k represents the proportion of buildings

with true positive labels (i.e., with cases identified) that the model captures in the

top k list (as shown by Equation 3.2). While precision measures the efficiency of the

model, recall measures model coverage. Figure 3.3 shows an example of calculating

precision and recall at top k.

precision at top k =
# of true positive labels in top k

# of total labels in top k

=
Nk,lp

Nk,lp +Nk,ln

(3.1)

recall at top k =
# of true positive labels in top k

# of true positive labels in testing set

=
Nk,lp

# of true positive labels in testing set

(3.2)

Figure 3.3: Example of metrics calculation — if a half of TSU capacity k = 200, then
precision = 2

3
and recall = 2

4
.

3.5.3.2 Choices in determining the top k list

First, to determine k, TSU indicated that they would like to keep half of the

capacity to their own expert-selected buildings so that TSU specialists could also help
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residents who lived in buildings outside the top k list. Therefore, each month, we set

k as half of TSU’s canvassing capacity in a given month (k = 3,000, approximately).

[Top-k list for TSU to canvass]. Second, to suggest a list of the buildings for TSU

to canvass, we first rank all residential buildings by predicted risk scores and then

take the top ones that add up to contain k (apartment) units since the TSU capacity

is based on the number of units and we are predicting at the level of buildings. Note

that if k is in between two buildings in our list, we include the entire building with

at least one unit in the top-k list.

[Top-k list for model performance evaluation]. Third, to evaluate model perfor-

mance, we generated the top-k list of buildings by only including the labeled buildings.

We ranked labeled buildings by the predicted risk of harassment, and marked the top-

k-units buildings as positive. We didn’t deploy the k cut-off on all buildings since the

top-k list of all buildings did not contain enough labeled data to make the precision

scores reliable. On average, TSU canvasses about 300 buildings per month out of

a total of 6,437 in their outreach area, which covers < 5% of all buildings. It was

highly likely that most, if not all, of the (previously canvassed) 300 buildings fell out

of the top-k list, leading to few labeled data in top-k list. In fact, about 20% of the

top-k lists generated by each model in each test month contained no labeled building,

with the rest 80% of models only include a few labeled data. For example, a Random

Forest model proposed 19 buildings in the top-k building list, with only one of them

observed by TSU. The precision would be 1 if TSU identified case(s) in this building

and 0 otherwise. This challenges our confidence in using these precision and recall

metrics to represent the model performance. We thus chose to use the labeled data in

determining the top k list for model performance evaluation. This is typical in prob-

lems with missing labels and we recommend to conduct a field trial with proactive

canvassing on the previously not canvassed buildings to further validate the model

on both labeled and unlabeled data.
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3.6 Results

3.6.1 Predictive Performance

3.6.1.1 Baseline: TSU’s current outreach method

TSU currently uses a simple approach to plan its outreach in the targeted 20-ZIP-

codes areas. TSU specialists systematically go block by block attempting to enter

every building where there is at least one rent-stabilized unit. A list of buildings to

attempt is assigned via a custom-built canvassing app loaded on an iPad.

3.6.1.2 The performance of our models

Our final models were trained on data from July 2016 to December 2017 and were

tested on outreach records from January 2018. We further split the training data into

17 folds as illustrated in the previous section to conduct temporal validation.
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Figure 3.4: Model performance over time (in training stage). X axis represents the
time period (month) and Y axis represents the precision scores of models in the
month. The figure shows that the baseline has been varying across months and our
models generally performed better than the baseline.

Figure 3.4 shows the performance of every model on each data split during the
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training stage. The TSU baseline is represented by the red dashed line. The machine

learning models performed better than the baseline by 36% on average.

The figure also shows that the effectiveness of outreach efforts by TSU in terms

of found cases of tenant harassment varies over time as well. Therefore, to better

interpret how much better our model performed than the baseline in each data split,

we calculated the ratio of model precision to baseline precision (hereafter named as

precision ratio).

To select the best performing model, we first took the average precision ratio score

of all data splits and narrowed down to models that had precision ratios ranked in the

top 10. Because we want the model that TSU uses to not only exhibit high average

precision but also exhibit high stability in performance, we incorporated the standard

error of the precision ratio scores [64] into the evaluation of a model’s performance

by calculating:

precision standard error =
precision mean

precision std/
√

# of precisions

The best model to predict whether there will be at least one case in a building

next month was a Gradient Boosting classifier with 100 estimators. In our test month

(February, 2018), TSU was able to inspect 312 buildings of 7,374 residential units,

covering about 4.85% of all buildings. Therefore, we set k = 3, 687 units to generate

the top k list for evaluation. Table 3.2 shows how our model performed in terms of

false positives, false negatives, true positives and true negatives. Our model was able

to identify about 59% more high-risk buildings than the baseline (with a precision

score of 0.25 in the test month).

Table 3.2: Confusion matrix of the best performing model.

Actual True Actual False
Predicted True 33 50
Predicted False 46 183
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Figure 3.5: Precision and number of labeled data at each k proportion for the Gradient
Boosting model.

In Figure 3.5, the precision scores of the building-level prediction at different

levels of k is represented by the blue line, with X axis representing the proportion of

buildings at k (i.e., Nk,all/Total number of buildings). We also plotted an orange line

to visualize the number of labeled data at each k (i.e., Nk,lp + Nk,ln), which shows

the number of (labeled or successfully canvassed) buildings supporting the precision

calculations. Since TSU only inspected about 300 buildings per month and left most

buildings unlabeled, this supporting number at k helps us assess our confidence in

the precision score at k.

In addition to precision, we calculated two measures of recall: recall of the total

count of cases across buildings and recall of buildings with any case. Figure 3.6 shows

that recall of cases (represented by the yellow-green line) was in general higher than

the recall of buildings with any case (represented by the orange line), indicating that

our model was good at predicting buildings with a larger number of cases rather than

buildings with only one case.

Since both precision and recall measures are relying on labeled data, we wanted
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Figure 3.6: Recall curves at each k proportion for the Gradient Boosting model.

to understand if our overall list of high risk buildings was good at ranking high risk

buildings above low risk buildings. In addition to recall on the labeled positive exam-

ples (orange line), we calculated recall on the labeled negative examples (buildings

with no cases) using all buildings as the denominator (purple line). The intuition

is that a good ranked list will have more (labeled) positive examples than negative

examples at the top of the list and vice versa at the bottom of the list. The gap

between recall on positive examples and recall on negative examples in Figure 3.6

allows us to see this was actually the case. The orange line goes up steeply at the

beginning (more positive examples) and the purple line goes up steeply at the bottom

of the list (more negative examples) giving us confidence in the ranking performance

of our model.

3.6.2 Interpreting the Models: Feature Interpretation

Figure 3.7 shows the top 20 features that have the highest feature importances in

the best performing Gradient Boosting model.
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Figure 3.7: Feature importance from the gradient boosting model. We plot the
20 most important features to understand the top predictors that help us identify
buildings of high risks.

3.6.2.1 Tract-level demographic features

From the figure, we see that most features in the top 20 feature list were generated

from American Community Survey data, which reflects the demographic character-

istics of residents in the tract in which a building is located. For example, measures

of income insecurity were important in predicting harassment — these included the

proportion of people receiving Supplemental Security Income (SSI) in a given tract

(Tract Percent With Supplemental Security Income SSI in figure 3.7) and the per-

centage of households earning less than $10,000 per year (Tract Income Percent Less

Than 10000 in figure 3.7). These features might be important because they may

reflect unmet need — that is, areas where people are both particularly vulnerable

to illegal tactics by landlords and where they also may, prior to TSU’s visit, have

the most difficulty navigating city services that can help. In addition to the income

variables and, more interestingly, 8 of the 20 top features were indicators for the

hours that a tract’s residents work outside the home. For example, the feature, Tract

Working Hours Percent 800Am to 829Am, represented the proportion of people who
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usually leave their apartment to work between 8:00AM and 8:29AM. These features

could be important for two reasons — first, they might serve as additional indicators

of socioeconomic status (e.g., lower-income individuals might face less standard work

schedules); second, they might reflect which tenants are home to answer the door

when TSU specialists go canvassing on weekdays and weekends.

3.6.2.2 Building history and value features

The figure also shows that building-level indicators, such as the total number of

HPD violations in a building up until the given month and the total monetary value

of a building (generated from PLUTO dataset) are informative in predicting harass-

ment risks. These observations provide support to the idea that external information,

including a building’s history of violations as well as the physical and economic at-

tributes of a building (i.e., how much is a building worth?), is valuable in predicting

whether there will be at least one case of harassment in the building next month.

3.6.2.3 Building location features

In addition, the model identified the longitude and latitude of a building as impor-

tant features. This indicates that high-risk buildings are perhaps clustered in specific

locations. To highlight this clustering feature, we predicted the risk of each building

with our best-performing model. We further separated buildings into different lev-

els of risk, with high risk representing buildings with the highest 33.33% risk scores,

low risk representing buildings with the lowest 33.33% risk scores and medium risk

representing the rest. We plotted each building according to its point location, with

high-risk buildings in red, medium-risk buildings in yellow and low-risk buildings in

green (see Figure 3.8). The map highlights clusters of high-risk buildings in Manhat-

tan and the Bronx, with low-risk buildings dispersed throughout Brooklyn, Queens

and Staten Island. This finding suggests that in order to balance canvassing efforts
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across boroughs, we would need to separately rank buildings and provide a high-risk

building list for each borough when deploying the model in practice.

Figure 3.8: Map of buildings predicted as different risk levels. Each point represents
a building: high risk (red), medium risk (yellow), low risk (green). Manhattan and
the Bronx had most of the high-risk buildings. Low- and medium- risk ones were
mainly spread out among Brooklyn, Queens and Staten Island. The marker (i.e.,
circle, triangle, square) size reflects the # of units in the building.

3.6.2.4 Building size

While these features mentioned above indicate that the model took advantage

of information in the data, the high importance of the Number of Residential Units

shows that our problem formulation — predicting any case in a building — leads

us to identify buildings with many residential units. These buildings have a higher

“denominator” of tenants at risk of harassment to generate the label of a single case in
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a particular month. For the test month (Feb, 2018) in particular,buildings predicted

to have high risk of harassment on average contained 70 units per building, which was

about 3 times as many as the average size of all buildings in the targeted area. Figure

3.8 further highlights the correlation between a building being larger and a building

being identified as higher risk: buildings with larger numbers of units (indicated by

marker size) were more likely to be predicted as buildings of high rental harassment

risk (indicated by color of red). Therefore we defined another problem formulation to

try and standardize a building’s count of cases by the number of tenants who might

have a case.

3.6.3 Reformulation: Predicting Case per Unit Ratio above a Threshold

Our reformulated problem uses the label — hereafter called the any-case label —

defined as follows: Y ∈ {1 = any case, 0 = no case} in building i in month m. What

we call the threshold label constructed a binary label using a two-step procedure:

first, we calculated the ratio of cases in a building per number of units; second, we

constructed the binary label as follows: Y ∈ {1 = ratio ≥ threshold, 0 = ratio <

threshold} in building i in month m. The results we present focus on buildings with

a ratio in the top 10% of the training set.

We used the same procedure as in section 6.1 to select the best performing model

for the threshold label. The best-performing model (a Gradient Boosting classifier)

identified 14% more buildings of high case-per-unit ratio than the baseline (with

precision = 0.15 in the test month). Figure 3.9 plots its precision scores and the

supporting number of buildings at each level of k. We found that the threshold

model successfully prioritized buildings with a higher proportion of cases than the

any-case model (with case-per-unit ratio = 0.94 and 0.30, respectively), which means

about 213% more cases could be identified by the threshold model than the any-case

model, holding the number of units canvassed constant.
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Figure 3.9: Precision and number of labeled data at each proportion of buildings for
the Gradient Boosting model using the threshold label.
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Figure 3.10: Feature importance from the best-performing threshold model. We plot
the 20 most important features to understand the top predictors that help us identify
buildings of high risks.

Figure 3.10 plots the 20 most important features from this model. Comparing to

the model using the any-case label, the best-performing model using the threshold

label put more weights on features such as the assessed building value, the year

the building was built in, the year the building was recently renovated (i.e., Year

the (second) most recent alteration began), and number of violations HPD had ever
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recorded, while it was less informed by features such as percentage of households

receiving SSI in the tract and number of units.
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Figure 3.11: Recall curves at each proportion of buildings for the Gradient Boosting
model using the threshold label.

In fact, the model using the threshold label prioritized buildings with smaller sizes

(average number of units = 11) than the model using the any-case label (average

number of units = 70). This may also account for the phenomenon in Figure 3.11:

Recall of buildings with high case-per-unit ratio was higher than average (slope > 1);

recall of cases was not as high.

To further understand how model of any-case label over optimized large buildings,

we additionally compared the two models in two ways. First, we ranked all 6,437

buildings according to the predicted risk score using both models and found that they

were somewhat uncorrelated. Second, for each model, we plotted the buildings in the

top-k list the model suggested TSU to canvass, respectively (see Figure 3.12). Each

point refers to a building with the size of the point representing the number of units in

the building. This map shows that predictions using the threshold label (represented
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by orange square) top ranked more small-size and geographically distributed buildings

than predictions using the any-case label (represented by green circle).

These findings support our assertion that if we only predict whether there would

be any case next month, the model would be more likely to provide a list of large

buildings as opposed to buildings of high case-per-unit ratio. Depending on their

goals, policymakers and canvassing specialists might prefer one or the other — larger

buildings might allow for more efficient canvassing to knock on doors that are more

geographically co-located (supporting the any-case label). On the other hand, the

threshold label gives tenants living in smaller buildings more of an opportunity to

receive outreach and results in a possibly more equitable outreach process.

Figure 3.12: Comparing of any-case label and threshold label suggestions. Each point
is a building with size representing the # of units. Predictions using any-case label
prioritize large size buildings and were more geographically clustered.
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3.7 Discussion: Practical Implications and Next Steps Prior

to Implementation

The Tenant Support Unit hopes to efficiently find more individuals in need of their

help with fewer outreach knocks by generating a list of buildings where tenants are

most likely to experience harassment. At the beginning of each month (when TSU

team leads typically decide which areas to visit next in the upcoming month), the

model will generate a list of buildings for each borough where tenants face high risks

of harassment.

A field trial. Prior to the results being used to inform TSU’s process, the agency

should conduct a field trial to validate the predictions of our model. This field trial

can better inform whether buildings that the model flags as high risk are more likely

to yield cases than buildings that the model flags as low risk.

Selection bias in the labels. One area of future work we want to explore is to

deal with selection bias in our labels and actively collect new labels, with which ran-

domized field trials may also help. Since we only have labels from buildings canvassed

by TSU, and there is some bias in how they select buildings to canvass, our model is

trained only on that data and will most likely be only confident on predictions made

on similar buildings. We want to use the field trials to understand this bias and use

the TSU team to also help improve the model by canvassing new buildings to provide

more representative labels to train our model.

Clustering buildings of high risks. If the model is able to successfully dif-

ferentiate buildings, next steps should include efforts to use the list more efficiently

— that is, to not waste time travelling across the city to canvass buildings in exact

order of high to low risk. TSU could determine clusters of buildings that have a high

enough density of units in high-risk buildings to canvass in one or over multiple days

(see Figure 3.13). Once these cluster areas are created, specialists can canvass ev-
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ery target building in the cluster area without unnecessary travel among exclusively

high-risk buildings across boroughs or neighborhoods.

Figure 3.13: Example of post-model implementation with high-risk buildings clus-
tered.

Ethics and fairness. We also note that prioritizing buildings with high predicted

harassment risks might raise inequality across different areas and sub-population

groups. This inequality in where to canvass (i.e., labeled data) may lead to further

inequality in the understanding of and assistance for different groups. Such poten-

tial inequality, together with the biases in canvassing data collection and modelling

phases, all call for a thorough bias and fairness analysis.

3.8 Conclusion and Take Away

In this study, we use a machine learning approach to help NYC outreach spe-

cialists identify buildings where tenants might face landlord harassment. Our model

significantly outperforms the current outreach method. The predicted risk scores can
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help the agency more accurately prioritize areas of high rental harassment and better

allocate building canvassing specialists to help more tenants in need in an equitable

manner.

In addition, our model provides insights into the important correlates of harass-

ment that might be useful for researchers without access to agency data confirming

harassment, complementing efforts to look at harassment using proxies like a loss

in rent-stabilized units [104]. Our results on feature importance not only find the

relevance of building-specific attributes — for instance, the building’s history of code

violations — but also the utility of local demographic and behavioral data to highlight

where tenants might face housing issues.

By comparing different formulations of the prediction problem, with different pre-

diction labels, we also show that although formulating the harassment prediction as a

binary classification — whether there would be any case next month — significantly

increased the precision, it might be biased towards buildings with many units. Fi-

nally, we discuss how the model can better facilitate canvass planning and resource

allocation by clustering the high-risk buildings for efficient deployment and outreach.

This project shows that even simple machine-learning models have the potential to

largely increase work productivity (59% in this case) and that it is critical to formulate

a practical problem in the right way. Note, too, that in order to verify the practical

effectiveness of the interventions proposed by machine learning models, randomized

field trials in the wild are highly suggested. While the constraints in TSU’s practice

have limited the opportunities for such field trials, in the next chapter, we discuss

how to leverage field experiments to examine and establish the causal relationship

between interventions and work performance .
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CHAPTER IV

Improving Worker Performance in a Gig Economy

with a Field Experiment

In this chapter, we describe the design and deployment of a field experiment to ex-

amine the effectiveness of behavioral interventions in the wild. The study in Chapter

III shows that machine learning models can provide data-driven evidence supporting

interventions for outreach specialists (i.e., informing where to go). To improve worker

performance, one can also come up with interventions by leveraging insights from so-

cial science theories and domain knowledge, as suggested in the framework (Figure

1.1).

However, questions at large are whether these interventions are effective, and to

what extent. To answer such causal questions, randomized field experiments have

been commonly regarded as a gold standard.

In Chapter IV, we illustrate the design and deployment of field experiments with

an application in a gig economy. Specifically, we design a randomized field exper-

iment to examine the effect of virtual teams on worker performance on a leading

gig-economy platform. In collaboration with a ride-sharing platform, Didi Chux-

ing (DiDi), we conduct a large-scale field experiment with 27,790 drivers to organize

drivers into teams that are randomly assigned to one of three experimental conditions.

Treated drivers receive either their team ranking or their individual ranking within
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their team, whereas those in the control condition receive individual performance in-

formation without social comparison. We find that treated drivers generate 2% higher

revenue than those in the control condition. Further, drivers in the team leaderboard

treatment continue to work longer hours on the platform three months after the end

of the experiment. Lastly, we show that drivers with below-median revenue prior

to the experiment benefit the most from a team contest. This study speaks to the

powerful interaction of field experiments and social science theories in this frame-

work (Figure 1.1): one can leverage field experiments to examine the effectiveness of

theory-informed interventions in order to promote worker performance.

4.1 Introduction

The gig economy provides workers with the benefits of autonomy and flexibility

[36], but it does so at the expense of work-related identity and co-worker bonds.

Indeed, many gig platforms have experienced low engagement and high attrition rates

among their workers, who note that they typically work alone with “no interaction

or relationship with other colleagues,” on jobs “that don’t lead to anything” [75,

112]. The 2020 Covid-19 pandemic has created a work structure that has placed

exponentially more workers in a work-from-home scenario that is susceptible to the

same issues related to the lack of in-person interaction as those in a gig economy.

By August 2020, 42 percent of the U.S. labor force was identified as working from

home full-time [15]. Given that we expect at least some portion of this remote work

to remain post-pandemic, an important question is how organizations can help their

workers create and maintain positive work-related social connections while working

remotely.

To answer this question, we conduct a large-scale natural field experiment using

a global ride-sharing platform. Specifically, we form drivers into virtual teams and

engage the teams in contests to strengthen team identity. We then evaluate the effects

56



of these virtual teams on worker productivity and retention.

Our research applies insights from the social identity research from psychology

[128, 27] as well as studies in behavioral economics [4, 5]. In a lab setting, this

research shows that, when people feel a stronger sense of common identity with a

group using either induced [56, 35, 38] or natural identities [68, 41], they exert higher

effort and make more contributions to improve group outcomes. Field experiments

show a similar positive effect of identity-based teams in increasing pro-social behavior

in fruit harvesting [58] and online peer-to-peer pro-social lending [2, 34]. By contrast,

other field experiments have found that when workers are paid by piece rate, providing

team ranking information might reduce average worker productivity for teams that

are not randomly assigned [11].

To estimate the causal effects of team incentives on productivity and retention,

we randomly assign teams into different experimental conditions using DiDi Chuxing

(DiDi), which is the largest ride-sharing platform in China. We then examine the

effect of team contests on individual driver behavior. To our knowledge, this is the

first natural field experiment to examine the effect of virtual teams in a large-scale

field setting. To design our contests, we draw on insights obtained from an earlier field

experiment conducted in the southern Chinese city of Dongguan in August 2017. In

this earlier experiment, we randomly assigned 2,100 drivers drivers into seven-person

teams to compete for a cash prize across a five-day period. Team compositions are

determined either randomly or based on homophily in age, hometown location, or

productivity. The results from this earlier experiment show that, compared to those

in the control condition, treatment drivers work longer hours and earn 12% higher

revenue during the contest period. We find that teams formed based on age similarity

are more productive two weeks post-contest than randomly-formed teams [3].

Encouraged by the results of this first field experiment, in 2018, DiDi conducted

1,548 team contests across 180 cities in China, involving over two million drivers
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placed into teams based on hometown or age similarity. These contests, typically

one week in duration, helped the platform meet the high tourist demands during

national holidays, and increased both driver income and retention [145]. A common

feature among the 1,548 team contests DiDi ran in 2018 is that they were all one-

week contests with cash incentives, and the teams existed only for the duration of the

contest. As a result of this latter factor, the DiDi contest initiative did not provide

an opportunity to study the long-term effects of team membership on organization

identity and teammate bonds.

Our study investigates the long-term effects of team formation on the same plat-

form in the context of contests, but without a monetary incentive to participate in

the contest. Specifically, in October 2018, we conducted a natural field experiment on

the DiDi platform involving 27,790 drivers across three cities: Beijing, Kunming, and

Taiyuan. The experiment ran from October 22 to December 3, 2018. To evaluate our

treatment effect on driver retention, we continued to collect data for three months

after our experiment ended.

In our experiment design, we vary whether teams receive social comparison infor-

mation through the provision of a leaderboard that indicates team ranking or indi-

vidual ranking within a team, or whether they receive only individual performance

information (control). In the Team Leaderboard treatment, drivers are provided with

access to both team and individual leaderboards. We send a daily reminder to these

drivers to check the rankings of the same five teams within their leaderboard, as well

as individual teammate rankings within their team. In the Individual Leaderboard

treatment, drivers are provided with access only to the individual leaderboard within

their team. Again, we send a daily reminder to drivers to check their individual rank-

ings. Finally, in the control condition, drivers receive no leaderboard access. However,

to maintain the same communication frequency across experimental conditions, these

drivers receive a daily reminder that they are able to access their own income statis-
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tics in the app. With the exception of the normal piece rate, there is no monetary

incentive in any of the experimental conditions.

Across the three-week contest intervention, we find that drivers in the team and

individual leaderboard treatments generated 1.7% higher revenue than those in the

control condition. Investigating the two treatments separately, we find that drivers

under the team (individual) leaderboard treatment generated 1.8% (2%) higher rev-

enue than those in the control condition. Examining the city level results, the team

leaderboard treatment in Taiyuan (individual leaderobard in Beijing) leads to a 5.3%

(2.3%) increase in driver revenue compared to the control condition, whereas neither

treatment has a significant effect in Kunming. Our observed city-level difference is

likely due to the fact that both Beijing and Taiyuan had a respective 90% passen-

ger order fulfillment rate pre-intervention, compared to Kunming, which was already

meeting 98% of passenger orders pre-intervention. Three months after the experiment

ended, we find that drivers in the team leaderboard treatment continue to work longer

hours on the platform. Within the teams themselves, we find that those identified as

“laggards” benefit the most from team contests.

Overall, our results show that platform designers can leverage team identity and

team contests to increase revenue and worker engagement in a gig economy. More

broadly, our research demonstrates the value of a social-relational approach [110]

which puts teams and social relationships into the gig economy.

4.2 Related Work

4.2.1 The Gig Economy

Our research contributes to the rapidly growing literature on the gig economy and

the future of work more broadly. To inform better design of the gig-economy work

practices, a growing literature investigates the operation and estimates the benefits
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and risks of the gig economy for individuals and society (e.g., [54, 59, 90, 93, 109]).

Specifically, in the ride-sharing economy, researchers have explored the socio-economic

effects on and consequences of ride-sharing platforms, such as Uber and Lyft [49,

54, 82, 96, 150]. Another stream of literature focuses on motivation and incentives

for participation. Inspired by the findings that economic gains positively influence

people’s intention to participate [74], research has quantified the positive effect of

dynamic pricing [37], subsidy [61] on improving supply-demand efficiency, the gender

wage gap in ride-sharing [50], the value of flexible work [36], the determinants of

tipping [32, 33], the effects of apologies for late trips [73], and the value of passenger

waiting time [69]. Our study adds to this literature by investigating the effectiveness of

team identity and social information on driver participation in a ride-sharing economy.

4.2.2 Team Contest and Team Identity

Team contests have been widespread among humans in the real world, such as

the sports teams who compete for the victory of games [118]. A recent survey study

summarizing findings in more than a hundred studies shows a common phenomenon

that people expend more effort when participating in the team contests [124]. While

this finding is robust in both theoretical prediction and laboratory experiments, there

is seldom an opportunity to test in the field.

With the rise of modern technologies, team competitions have been increasingly

applied in online communities, such as in crowdsourcing [114], education [119], online

games [44], charitable giving [39, 2], and ride-sharing service provision [3]. These

empirical studies have shown that team competitions are effective in promoting par-

ticipation and work quality (e.g., [105, 119, 3]). In particular, a crowdsourcing field

experimental study examining the effect of team contest (versus individual and indi-

vidual contest) and the bonus allocation strategy (rewarded according to team per-

formance or individual performance) on crowdsourcing productivity [114] shows that
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workers are the most productive when they are in teams with both team-based bonus

and individual-based bonus. Recent field work in the ride-sharing context shows that

cash-rewarded team contests are effective in promoting driver participation during

the contests [3].

4.3 Experiment Design

As mentioned, we conduct a natural field experiment on the DiDi platform in-

volving 27,790 drivers across Beijing, Kunming, and Taiyuan, three cities chosen to

exemplify diversity in demographics, location, and the number of team contests hosted

on DiDi prior to our experiment (see Table 4.1 for more details). Our experiment is

approved by the University of Michigan IRB (HUM00153090), and pre-registered at

the AEA RCT Registry [144].

Table 4.1: City Characteristics

City Location
# of historical

contests
Order

fulfillment rate
Population
(million)

# of drivers registered
the experiment

# of
participants

Beijing Northern 17 0.90 21.54 21,126 18,900

Taiyuan Central 14 0.90 4.42 4,648 3,815

Kunming Southwest 5 0.98 6.85 5,776 5,075

Note: Order-fulfillment rate is calculated by data of two weeks before the experiment (i.e.,
2018/10/08-2018/10/21).

Of the three cities where we implemented our experiment, Beijing is the capital

of China, located in northern China, with over 21.54 million residents. Taiyuan is

the capital of Shanxi province, located in central China, with a population of 4.42

million. Kunming is the capital of Yunnan province, located in southwest China, with

a population of 6.85 million.1

1Population data at the end of the year of 2018 are retrieved from:
the National Bureau of Statistics of China (http://www.stats.gov.cn/tjsj/ndsj/2019/indexch.htm),
the Province Bureau of Statistics of Yunnan (http://stats.yn.gov.cn/tjsj/tjnj/201912/t20191202 908222.html),
and the City Bureau of Statistics of Taiyuan (http://stats.taiyuan.gov.cn/doc/2019/05/14/845586.shtml).
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The experiment was conducted from October 22, 2018 to December 3, 2018. To

evaluate our treatment effect on driver retention, we continue to collect data for three

months after our experiment, until March 15, 2019. In addition to our recruitment and

team formation stage, our experiment is organized into pre-intervention, intervention,

and post-intervention stages (see Figure 4.1 for the experimental process).

10.22-10.28

10.29-11.4

11.5-11.25

11.27-12.3

Stage 1 Driver recruitment and team formation
Stage 2
Pre-intervention
Contest
(1 week)

Team contest for cash prize
(All participants)

Stage 3
Intervention:
Status Contest
(3 weeks)

Treatment 1 Treatment 2 Control
Team Leaderboard 
(Team & individual 

rankings)

Individual Leaderboard
(Individual ranking)

Individual Income
(No ranking)

Stage 4
Post-intervention
Contest
(1 week)

Team contest for cash prize
(same as in Stage 2)

Post-experiment Post-experiment survey

Figure 4.1: Experiment process

Driver recruitment and team formation. For the driver recruitment and team

formation stage, the platform used its built-in process which was informed by our

earlier experiment [3]. To obtain our participants, we ask DiDi to send an invitation

on October 22, 2018 to all drivers in our three cities to participate in a week-long

team contest for a monetary prize. To do so, our collaborators at DiDi send out both

text messages and in-app push notifications2 to inform all drivers in the experimental

cities about the team contest. The English translation of the call for participation to

the drivers reads as follows:

The DiDi driver team contest is about to start soon! Say goodbye to the

2Text message refers to the normal message sent out by DiDi. In-app push notification refers to
the message popping up within the DiDi app.
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lonely driving work on your own. Get to know new driver friends and

compete for rewards with your teammates! Click here to register for the

contest. Please keep up your good service and drive safely.

Interested drivers are invited to sign up for the contest and start forming teams.

Drivers can create a new team as a captain, invite others to join their team, or join

an existing team if invited to do so.

While teams are designed to have seven members, 36% of our teams achieved the

desired size during the team formation period. Those that reached the desired size

during the team formation period are referred to as self-formed teams. At the end

of recruitment stage, the system then randomly selects 90% of the drivers in under-

sized teams and groups them into full-sized teams, which we refer to as system-formed

teams. The system-formed teams are based on either hometown or age similarity, two

of the most successful team formation algorithms from our earlier experiment [3]. The

remaining 10% are not assigned to any team and do not participate in the contest.

These drivers are referred to as solo drivers. In our analysis, we control for whether

a team is self-formed.

Finally, we sort teams into contest groups. To assign the teams into contest

groups, we first sort teams within each city decreasingly based on their prior revenue

(the sum of individual team members’ revenue in the two weeks prior to the beginning

of the experiment). We then partition every five adjacent teams into a contest group,

also referred to as a leaderboard. Teams compete only with other teams in the same

leaderboard. Our grouping method ensures that teams in the same leaderboard have

similar prior productivity. We now describe the three stages of the team contest.

The pre-intervention contest. Following previous studies that find that inter-

group competition is among the most successful methods used for creating a strong

sense of group identity [56], we conduct a pre-intervention best-of-five team contest.

63



In this contest, within each leaderboard, the team with the highest cumulative team

revenue during the contest week wins a cash prize, whereas the other four teams re-

ceive no prize. Following DiDi’s current contest practice, we exclude the lowest driver

revenue in a given team in each day when calculating the team’s daily cumulative

team revenue. This allows one driver on a team to take a day off without affecting

team performance.3 The cash prize is 1,000 RMB (per winning team) for Beijing, and

650 for Taiyuan and Kunming, respectively, adjusted by the drivers’ average hourly

revenue in each city. The prize is allocated to members of the winning team propor-

tional to their contributions to the cumulative team revenue, an allocation shown to

incentivize group members in laboratory contests [124], and is credited to their driver

accounts immediately after the contest.

During this stage, all drivers participating in the contest can use the DiDi app to

access both a team leaderboard and an individual leaderboard for social information,

as illustrated in Figure 4.2. The team leaderboard shows the cumulative revenue of

each of the five teams in the contest group in descending order (top left panel of Figure

4.2). The top three teams are highlighted with badges. The individual leaderboard

shows individual members’ daily revenue in descending order for those within a given

team (top right panel of Figure 4.2). In addition, we mark the average performance of

that team with a line on the individual leaderboard to enhance the effect of ranking

[40, 42]. The team ranking is updated every hour while individual revenue is updated

in real time. We send each driver a daily reminder of the contest and the leaderboards

at the end of each day. The reminder is sent by both text message and in-app push

notification as follows.

The driver team contest has become more intense! Want to know your

team’s ranking? Want to check your teammates’ performance? Want to

know your competitors’ performance? Click this link and you can access

3In some cities, such as Beijing, to reduce air pollution, each license plate must be off the street
on a designated day of the week, typically determined by the last digit of the plate number.
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all the above information. Please keep up your good service and drive

safely.
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Figure 4.2: APP interfaces (mock-up) of team leaderboard, individual leaderboard,
and control group

The intervention: A status contest. Immediately after the pre-intervention

contest, we randomly assign each leaderboard to one of three experimental conditions

and conduct a three-week status contest between November 5-25 to examine the effect

of team identity on driver revenue and retention.

• Team Leaderboard. In this treatment, drivers continue to have access to both

the team and individual leaderboards as in the short-term contest. We send out

a daily reminder to these drivers to check the rankings of the same five teams

within their leaderboard, as well as individual member rankings within their

team.

• Individual Leaderboard. In this treatment, drivers have access to only the indi-

vidual leaderboard within their team. Again, we send out a daily reminder to

drivers to check their individual rankings.
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Table 4.2: Randomization check and summary of statistics

Beijing Taiyuan Kunming
Team Individual Control Team Individual Control Team Individual Control

Daily Revenue 381.97 381.71 381.70 171.64 180.54 176.09 212.71 214.21 218.03
before experiment (215.35) (216.15) (213.83) (126.25) (129.99) (125.88) (144.30) (143.99) (144.56)

Age 36.82 36.91 37.35 36.53 36.63 36.86 36.49 35.91 37.02
(8.12) (8.09) (8.28) (8.26) (8.22) (8.34) (8.50) (8.58) (8.81)

Male 0.97 0.97 0.97 0.97 0.95 0.96 0.93 0.92 0.93
(0.17) (0.16) (0.17) (0.18) (0.22) (0.19) (0.26) (0.26) (0.26)

DiDi age (month) 24.69 24.97 24.86 24.08 23.88 24.55 15.06 14.70 14.51
(13.19) (13.11) (13.01) (11.13) (11.62) (11.04) (11.04) (11.01) (10.98)

Self-formed teams 0.38 0.37 0.37 0.36 0.38 0.26 0.31 0.31 0.30
(0.49) (0.48) (0.48) (0.48) (0.49) (0.44) (0.46) (0.46) (0.47)

Hometown distance 451.93 465.04 463.66 114.50 121.68 109.06 249.72 293.28 289.13
to the contest city (281.53) (283.85) (285.47) (117.96) (135.84) (100.40) (219.29) (326.88) (343.39)

# of leaderboards 180 180 180 37 36 36 49 48 48
# of teams 900 900 900 185 180 180 245 240 240
# of drivers 6,300 6,300 6,300 1,295 1,260 1,260 1,715 1,680 1,680

Standard deviation in parentheses
Pairwise Kolmogorov-Smirnov tests for every variable across the three conditions are not significant (p > 0.10) for
each of Beijing, Taiyuan, and Kunming.

• Control. In the control condition, drivers cannot access either leaderboard.

However, to keep the same communication frequency, drivers continue to receive

a daily reminder that they can access their own income statistics in the app.

While drivers continue to earn piece rate, we do not provide additional monetary

incentives for the status contest.

The randomization is stratified based on the average productivity of a given leader-

board prior to the experiment. Kolmogorov-Smirnov tests show that the distribution

of pre-experiment revenue, age, gender, length of time with DiDi, team formation

approach, and hometown distance to the contest city is not significantly different in

pairwise comparisons across the three conditions (p > 0.10, see Table 4.2). Table 4.2

also reveals interesting facts about our drivers: more than 95% of them are male,

with an average age of 37. Looking at their hometown distance to the contest city, we

conclude that Taiyuan drivers are predominantly local, whereas Beijing and Kunming

drivers are mostly migrants. In China, DiDi drivers comprise of workers laid off from

their traditional jobs, veterans, migrant workers from rural areas, and commuters
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who offer rides during their daily commute.

We carefully manipulate the communications provided to drivers during this stage.

The corresponding notification and reminder for the three experiment conditions in

the long-term status competition include:

1. Team leaderboard treatment.

At the beginning of this stage, drivers in the team leaderboard condition are

notified by text message that:

The team contest is over. The ranking information will continue to be

updated during November. Please pay attention to the performance

of your team and your teammates. DiDi is amazing because of you!

The following reminder is sent by text message and in-app push notification

once a day during the evening:

Latest performance just came out! Want to know your team’s and

teammates’ performance? Click this link and you can access all the

information. Please keep up your good service and drive safely.

2. Individual leaderboard treatment. At the beginning of this stage, we send

the following text message to notify drivers in the individual leaderboard con-

dition that:

The team contest is over. The ranking information will continue to

be updated during November. Please keep your attention on the

performance of your teammates. DiDi is amazing because of you!

The following individual performance reminders are sent every evening by both

text message and in-app push notification:
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Latest performance just came out! Want to know your teammates’

performance? Click this link and you can access all the information.

Please keep up your good service and drive safely.

3. Control.

At the beginning of this stage, we send the following text message to drivers in

the control group that:

The team contest is over. Please pay your attention to your perfor-

mance. DiDi is amazing because of you!

An individual performance update reminder is sent every evening by text mes-

sage and in-app push notification as follows:

Latest performance just came out! Want to know the your outcome?

Click this link and you can go to the your revenue page. Please keep

up your good service and drive safely.

The post-intervention contest. On November 26, we send each driver a message

announcing a one-week contest for a cash prize from November 27 to December 3

under the same leaderboard groups, and prize parameters as the pre-intervention

contest. This post-intervention contest is designed to evaluate the treatment spillover

effects on individual driver productivity immediately after the intervention. The

following text message announcement is sent to all drivers in all three conditions on

the day before the pre-intervention contest to notify them of the contest:

Here comes the driver team contest again (from 2018.11.27 to 2018.12.3)!

You don’t need to form a team again. Team members and competitor

teams will remain the same as in the last contest. Please contact your

team members and get ready to compete for the cash prize!
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The post-experiment survey. After the post-intervention contest, all drivers re-

ceive a survey which evaluates their sense of belonging related to their team as well

as to the organization (DiDi). The survey questions and responses are included in

Section 4.6.9 of the Extended Materials.

4.4 Results

Our experiment yields findings related to the immediate and long-term effects of

virtual teams on driver productivity and retention, both overall [144] and at the city

level. On the DiDi platform, drivers receive 81% of the revenue they generate and give

the remaining 19% to the platform. Therefore, using revenue as one of our outcome

variables is equivalent to using driver earning or platform profit.

We first examine the average treatment effect on driver revenue during the ex-

periment period. In Figure 4.3, we plot the weekly average driver revenue for each

experimental group. To better compare the treatments, we realign the lines based

on revenue earned during the pre-experiment period. The y-axis presents the rev-

enue difference between a given week and the baseline week in the pre-experiment

period. Note that the three lines coincide up to the start of the pre-intervention con-

test period. However, during the status contest intervention, since drivers in different

treatment conditions receive different social information, the lines in Figure 4.3 (a)

start to diverge. Pooling all three cities, we observe that our treatment drivers are

more productive on average than those in the control condition both during and after

the intervention.

In our first pre-registered hypothesis, based on prior laboratory experiments on

social identity and team competition [56], we predict that drivers in our treatment

conditions will generate higher revenue than those in the control condition as their

exposure to a leaderboard should facilitate a team identity. The comparison between

team leaderboard and individual leaderboard is motivated by laboratory experiments
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(d) Kunming

Figure 1: Average driver revenue within each condition over a week. To better visualize
the change over time, we rescale the revenue within each condition in reference to its pre-
experiment average weekly revenue from two weeks before the experiment to seven weeks
after the experiment. For example, each point in the treatment line equals the weekly average
revenue per driver in the treatment group minus the mean of the pre-experiment weekly average
revenue per driver in the treatment group.

2

Figure 4.3: Average weekly driver revenue under each experimental condition. To
better visualize the changes over time, we re-scale the revenue within each experi-
mental condition with reference to its pre-experiment average weekly revenue from
the week of October 8-14, i.e., two weeks before the start of the experiment. For
example, each point represents the weekly average revenue per driver under that ex-
perimental condition minus the pre-experiment weekly average revenue per driver
under the same experimental condition.
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in group contests [46, 47].

Hypothesis 1 (Status contest). (a) Treated drivers are more productive than those

in the control condition; and (b) drivers in the team leaderboard condition are more

productive than those in the individual leaderboard condition during the status contest

phase.

To quantify the average treatment effects on outcome, Y , we construct the follow-

ing difference-in-differences model:

∆Yi,t = β0 + β1Treated + αc + εi,t, (4.1)

where ∆Yi,t represents the outcome change in the t-th week in the current period

compared to the corresponding pre-contest week(s),4 and αc captures city fixed effects.

Hypothesis 1(a) implies that β1 > 0 in Equation (4.1).

We report the main results in Tables 4.3 to 4.6 in the main text, and the results

of our robustness checks in the Extended Materials (EM). To correct for multiple

hypothesis testing, we report the false discovery rate adjusted q-values in square

brackets [18, 7]. To claim significance, we use a 5% (10%) cutoff for our p-values

(q-values) [57].

The results in column 1 of Table 4.3 show that our treatment conditions increase

driver revenue by 34.53 RMB, or 1.66% of the average weekly revenue per driver,

during the three-week intervention (p < .05). Therefore, we reject the null hypothesis

in favor of Hypothesis 1(a). We further find a significant treatment effect for drivers

in Beijing (41.67 RMB, p < .05, 1.69% of average weekly revenue), but not in Taiyuan

or Kunming. Our findings are strengthened (39.08 RMB, or 1.88% of average weekly

4For the pre-experiment baseline week(s), we use the week before the experiment (Oct. 15-21,
2018) for one-week target periods, i.e., the pre-intervention contest, the post-intervention contest,
and retention. For the status contest, we use the two weeks before the experiment (Oct. 8-21, 2018)
as our baseline, as the week of October 1-7, 2018 was a national holiday with drastically different
demand and supply for ride-sharing.
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Table 4.3: Average and heterogeneous treatment effects on weekly revenue during the
intervention (status contest): Difference-in-differences panel regressions.

Outcome variable: ∆ of Weekly Revenue (CNY)
Treatment effects Control individual heterogeneity

(1) (2) (3) (4) (5) (6) (7) (8)
All BeijingTaiyuanKunming All Beijing Taiyuan Kunming

Treated 34.53∗∗41.67∗∗ 33.99 8.25 39.08∗∗ 45.82∗∗ 38.40 14.53
(In a virtual team) (15.37)(21.01) (23.86) (24.97) (15.31) (20.93) (23.69) (24.81)

[0.17] [0.18] [0.33] [0.09] [0.12] [0.23]

Age 6.98∗∗∗ 7.47∗∗∗ 1.90 8.39∗∗∗

(Year) (0.83) (1.17) (1.37) (1.27)

DiDi age 32.16∗∗∗ 40.85∗∗∗ 3.64 3.43
(Year) (7.47) (9.59) (11.53) (13.39)

Hometown distance -0.02 -0.01 -0.12∗∗ -0.03
to contest city (km) (0.02) (0.02) (0.05) (0.02)

Self-formed team -45.25∗∗∗-60.09∗∗∗ -24.18 -4.10
(16.09) (21.59) (27.49) (26.90)

City fixed effect Yes - - - Yes - - -

# of clusters 11,890 8,100 1,625 2,165 11,890 8,100 1,625 2,165
# of drivers 27,790 18,900 3,815 5,075 27,790 18,900 3,815 5,075

Notes: Standard errors in parentheses are clustered at the team (individual) level for
treated (control) drivers. False Discovery Rate adjusted q-values calculated separately for
individual cities (2-4) & (6-8) are reported in square brackets.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

revenue) when we control for demographics and self versus system formation of teams

(columns 5-8). Consistent with social identity theories focusing on the effects of social

status and social distance on individual identification with social groups [21, 123], a

driver’s hometown distance from the contest city is negatively correlated with their

productivity (p < 0.05, column 7). Interestingly, self-formed teams generate lower

revenue compared to system-formed teams using hometown or age similarity (p <

0.01, columns 5-6). We also note that older drivers and those who have joined the

platform earlier generate higher revenue.

Investigating the two types of interventions separately (Hypothesis 1(b)), we fur-
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ther expect that drivers in the team leaderboard treatment will generate higher rev-

enue than those in the individual leaderboard treatment, who in turn will generate

higher revenue than those in the control group during our intervention period. This

hypothesis implies that β1 > 0, β2 > 0, and that β1 > β2 in Equation (4.2) below.

∆Yi,t = β0 + β1Team Leaderboard + β2Individual Leaderboard + αc + εi,t, (4.2)

The results in column 1 of Table 4.4, show that drivers in the team leaderboard

treatment generate 32.12 RMB marginally higher weekly revenue compared with the

control group (p < .10), while those in the individual leaderboard condition gener-

ate 36.96 RMB higher revenue compared with the control group (p < .05). After

controlling for demographics and self versus system formation of teams, we see from

column 5 that the team (individual) leaderboard generates 36.7 RMB (41.47 RMB)

more weekly revenue, equivalent to a 1.76% (1.99%) increase (p < .05 in each case),

although the difference between the two treatments is not significant (p > .10).

We next examine our city-level results. From Table 4.4, we see that only the

individual leaderboard treatment has a significant effect on revenue (56.32 RMB per

week, or 2.29% of the weekly revenue of the control group, p < .05) for drivers in

Beijing (columns 2 and 6), whereas in Taiyuan (columns 3 and 7), only the team

leaderboard treatment has a significant effect on revenue compared to the control

condition (58.49 RMB per week, p < .05). By contrast, neither treatment has a

significant effect on weekly revenue for drivers in Kunming. As shown in Table 4.1,

passenger order fulfillment rate was already quite high (98%) in Kunming before our

experiment; thus, there was little room for a substantial improvement in revenue.

In comparison, 90% of the orders were fulfilled in Beijing and Taiyuan during the

same time period. After controlling for demographics and team formation methods
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Table 4.4: Average and heterogeneous treatment effects on weekly revenue during the
intervention (status contest): Difference-in-differences panel regressions investigating
the two treatments separately.

Outcome variable: ∆ of Weekly Revenue (CNY)
Treatment effects Control individual heterogeneity

(1) (2) (3) (4) (5) (6) (7) (8)
All BeijingTaiyuanKunming All Beijing TaiyuanKunming

Team leaderboard 32.12∗ 27.03 58.49∗∗ 30.54 36.70∗∗ 32.40 62.31∗∗ 33.81
(β1) (17.97)(24.61) (26.60) (29.91) (17.90) (24.50) (26.57) (29.69)

[0.08] [0.44] [0.09] [0.44] [0.04] [0.33] [0.06] [0.34]

Individual leaderboard36.96∗∗56.32∗∗ 8.81 -14.50 41.47∗∗ 59.24∗∗ 13.68 -5.18
(β2) (17.90)(24.49) (28.76) (28.03) (17.82) (24.37) (28.43) (27.86)

[0.08] [0.09] [0.86] [0.86] [0.04] [0.06] [0.61] [0.62]

Age 6.98∗∗∗ 7.47∗∗∗ 1.91 8.35∗∗∗

(Year) (0.83) (1.17) (1.37) (1.28)

DiDi age 32.15∗∗∗ 40.77∗∗∗ 3.57 3.29
(Year) (7.46) (9.59) (11.57) (13.39)

Hometown distance -0.02 -0.01 -0.12∗∗ -0.03
to contest city (km) (0.02) (0.02) (0.05) (0.02)

Self-formed team -45.22∗∗∗ -59.76∗∗∗ -23.62 -3.96
(16.10) (21.59) (27.40) (26.91)

City fixed effect Yes - - - Yes - - -

H0: β1 = β2 (p-value) 0.79 0.25 0.08∗ 0.13 0.80 0.29 0.08∗ 0.18

# of clusters 11,890 8,100 1,625 2,165 11,890 8,100 1,625 2,165
# of drivers 27,790 18,900 3,815 5,075 27,790 18,900 3,815 5,075

Notes: Standard errors in parentheses are clustered at the team (individual) level for treat-
ment (control) conditions. False Discovery Rate adjusted q-values are calculated separately
for all cities (1) & (5) and for individual cities (2-4) & (6-8) and are reported in square
brackets.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

(columns 6-8 of Table 4.4), the city-level treatment effects remain statistically and

economically significant, with the size of the individual and team leaderboard effect

equal to 59.24 RMB in Beijing and 62.31 RMB in Taiyuan (p < .05 in each case).

Furthermore, the difference between the two treatments in Taiyuan is in the direction
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we hypothesize (Hypothesis 1b), albeit marginally significant (p < .10, columns 3 and

7). This leads to our first main result.

Result 1 (Virtual teams and productivity). During the status contest inter-

vention, (1) drivers in virtual teams generate 1.9% higher revenue than those in the

control condition; (2) drivers in the team (individual) leaderboard treatment gener-

ate 1.8% (2%) higher revenue than those in the control condition; and (3) at the city

level, the team (individual) leaderboard treatment leads to a 5.3% (2.3%) increase in

driver revenue in Taiyuan (Beijing) compared to the control group, whereas neither

treatment has a significant effect in Kunming.

Note that our status contest belongs to the class of information provision exper-

iments. The effect sizes reported in Result 1 are largely consistent with the meta-

analysis results using 126 randomized control trials covering 23 million individuals

[51].

We are also interested in the question of whether our team effect persists over time.

To evaluate the short-term spillover effect of our intervention, we implement a one-

week best-of-five contest with a monetary reward immediately after the intervention.

We expect that the treatment effects will persist during this post-intervention contest

(pre-registered Hypothesis 2).

Hypothesis 2 (Treatment Persistence). Drivers in the team leaderboard condition

are more productive than those in the individual leaderboard condition, who in turn

are more productive than those in the control condition during the post-intervention

contest.

The results in column 1 of Table 4.5 show that drivers in the team leaderboard

treatment generate 49.91 RMB higher weekly revenue during our post-intervention

contest, or a 2.49% increase, compared to those in the control group (p < .05). By

contrast, drivers in the individual leaderboard treatment do not differ significantly
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Table 4.5: Average and heterogeneous treatment effects on weekly revenue in the
post-intervention contest: Difference-in-differences panel regressions.

Outcome variable: ∆ of Weekly Revenue (CNY)
Treatment effects Control individual heterogeneity

(1) (2) (3) (4) (5) (6) (7) (8)
All BeijingTaiyuanKunming All Beijing Taiyuan Kunming

Team leaderboard 49.91∗∗ 59.89∗ 58.03 6.05 55.75∗∗ 67.20∗∗ 59.78 11.14
(β1) (23.80)(32.49) (37.50) (39.57) (23.44) (31.92) (36.92) (39.00)

[0.08] [0.32] [0.32] [0.56] [0.04] [0.27] [0.27] [0.39]

Individual leaderboard 11.75 38.98 -68.26∗ -30.36 17.55 42.82 -65.75∗ -18.30
(β2) (24.30)(33.12) (39.25) (39.52) (23.84) (32.42) (38.27) (39.01)

[0.46] [0.32] [0.32] [0.36] [0.30] [0.27] [0.27] [0.39]

Age 10.56∗∗∗11.31∗∗∗ 4.72∗∗∗ 11.57∗∗∗

(Year) (1.07) (1.50) (1.70) (1.68)

DiDi age 84.14∗∗∗97.94∗∗∗ 38.20∗∗ 38.55∗∗

(Year) (9.62) (12.33) (15.49) (17.20)

Hometown distance -0.03 -0.04 -0.16∗∗ 0.02
to contest city (km) (0.02) (0.03) (0.06) (0.03)

Self-formed team -20.55 -39.15 23.93 28.60
(21.57) (28.73) (38.61) (37.24)

City fixed effect Yes - - - Yes - - -

H0: β1 = β2 (p-value) 0.11 0.53 0.00∗∗∗ 0.33 0.11 0.45 0.00∗∗∗ 0.42

# of clusters 3,970 2,700 545 725 3,970 2,700 545 725
# of drivers 27,790 18,900 3,815 5,075 27,790 18,900 3,815 5,075

Notes: Standard errors in parentheses are clustered at the team level. False Discovery
Rate adjusted q-values are calculated separately for all cities (1) & (5) and for individual
cities (2-4) & (6-8) and are reported in square brackets.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

from those in the control group (p > .10). Although the coefficient for the team

leaderboard dummy is greater than that for the individual leaderboard, this differ-

ence is not significant at the aggregate level (p = .11, column 1). Our results are

strengthened when we control for demographics as well as self versus system forma-

tion of teams (column 5).

At the city level, Beijing drivers in the team leaderboard treatment generate 59.89

RMB marginally higher revenue during our post-intervention contest than those in
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the control group (p < .10, column 2), and significantly higher when we control

for demographics and team formation methods (67.20 RMB, p < .05, column 6).

By contrast, we find no persistent effect of the individual leaderboard treatment for

Beijing drivers.

For drivers in Taiyuan, those in the team leaderboard treatment do not differ

significantly from those in the control group (β1 = 58.03 RMB, p = .12), but do

generate significantly higher revenue during our post-intervention contest than those

in the individual leaderboard treatment (β1 6= β2, p < .01 in columns 3 and 7). It is

worth noting that those in the individual leaderboard treatment exhibit a marginally

significant reduction in average weekly revenue during the post-intervention contest

compared to the control group (-68.26 RMB, p < .10, columns 3 and 7). Again, we

observe no treatment effect for drivers in Kunming (columns 4 and 8). Based on a

theoretical model of individual status contests [101], depending on the properties of

the ability distribution function, the aggregate revenue under an individual leader-

board can be lower than that under the control condition, as we observe in Taiyuan.

We state our results related to the persistence of our treatment effect below.

Result 2 (Treatment Persistence). During the one-week post-intervention con-

test, drivers in the team leaderboard treatment continue to generate 2.49% more

weekly revenue compared to those in the control group, whereas the individual leader-

board treatment no longer has an effect.

In addition to testing whether teams incentivize individual drivers to generate

more revenue, we are interested in whether these individuals are more likely to con-

tinue working as drivers. Driver retention is a key challenge for ride-sharing platforms

across the globe. As such, an important goal for our intervention is to evaluate the

effects of virtual teams on driver retention. Specifically, we hypothesize that drivers

who are part of a virtual team are more likely to continue as drivers than those in
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the control group (our pre-registered Hypothesis 3).

Hypothesis 3 (Retention). Drivers in the team and individual leaderboard conditions

are more likely to stay in DiDi than those in the control condition both during and

post our experiment.

To examine the effect of team membership on driver retention, we measure driver

retention one week, one month, and three months after the end of our experiment.

Unlike workers in traditional sectors whose departure is unambiguous, gig workers

who quit typically do not delete their app. Furthermore, it is possible those who have

quit driving may still log into the app. Therefore, we use whether they drive for the

platform in a given day rather than app login as our retention measure. Specifically,

we measure retention as the number of days that a driver provides at least one ride and

separately analyze retention during the week immediately (Table 4.11), one month

(Table 4.13), and three months (Table 4.6) after the post-intervention contest.

As shown in Figure 4.4, drivers in the team leaderboard treatment consistently

exhibit higher retention than those from either of the other experimental conditions.

From Table 4.6, we see that drivers in the team leaderboard treatment on average

work 0.1 days (or an hour) more than those in the control group in the week three

months after the experiment ended (p < 0.01, columns 1 and 5). Furthermore, we find

that drivers in the team leaderboard treatment also outperform those in the individual

leaderboard treatment (p = 0.02, columns 1 and 5). The effect is robust and the effect

size is stable across different time windows (Tables 4.11 and 4.13 in SM). Finally, we

observe no significant difference in retention across any of the periods between those

in the individual leaderboard treatment and those in the control group. These results

are robust after controlling for demographic covariates and team characteristics, such

as whether a team has won the post-intervention contest.

Examining our city-level results, columns 2 to 4 in Table 4.6 show significant

differences in driver retention across cities. Indeed, only in Taiyuan do we see a
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(b) Beijing
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(c) Taiyuan
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Figure 2: Average work frequency of each condition over a week (all cities). To better visualize
the change over time, we scale each condition by taking a difference of the average weekly days
of driving during the week before the experiment. For example, each point in the treatment line
equals the weekly average working days per driver of treatment group minus the mean of the
pre-experiment weekly average working days per driver of the treatment group. The month of
Spring Festival is omitted where the temporary retention (compared to that of the week before
the experiment) ranges from −3.59 to −0.95 across different conditions.

3

Figure 4.4: Average work frequency of each condition over a week (all cities). To
better visualize the change over time, we scale each condition by taking a difference
of the average weekly days of driving during the week before the experiment. For
example, each point in the treatment line equals the weekly average working days
per driver of treatment group minus the mean of the pre-experiment weekly average
working days per driver of the treatment group. The month of Spring Festival is
omitted where the temporary retention (compared to that of the week before the
experiment) ranges from −3.59 to −0.95 across different conditions.
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Table 4.6: Average and heterogeneous treatment effects on weekly number of working
days during the second week of March (March 4-10, 2019), about three months after
the experiment ended: Difference-in-differences panel regressions.

Outcome variable: ∆ of weekly # of work days
Treatment effects Control individual heterogeneity

(1) (2) (3) (4) (5) (6) (7) (8)
All BeijingTaiyuanKunming All BeijingTaiyuanKunming

Team leaderboard 0.10∗∗ 0.06 0.33∗∗∗ 0.05 0.11∗∗ 0.08 0.33∗∗∗ 0.06
(β1) (0.05) (0.06) (0.12) (0.10) (0.04) (0.05) (0.11) (0.10)

[0.06] [1.00] [0.03] [1.00] [0.02] [0.50] [0.02] [1.00]

Individual leaderboard -0.01 -0.01 -0.02 0.01 0.01 -0.00 -0.01 0.04
(β2) (0.05) (0.06) (0.12) (0.10) (0.04) (0.05) (0.12) (0.10)

[0.70] [1.00] [1.00] [1.00] [0.77] [1.00] [1.00] [1.00]

Age 0.03∗∗∗ 0.03∗∗∗ 0.02∗∗∗ 0.03∗∗∗

(Year) (0.00) (0.00) (0.01) (0.00)

DiDi age 0.22∗∗∗ 0.24∗∗∗ 0.08 0.18∗∗∗

(Year) (0.02) (0.02) (0.05) (0.05)

Hometown distance -0.00∗∗∗-0.00∗∗∗ -0.00∗∗ -0.00
to contest city (km) (0.00) (0.00) (0.00) (0.00)

Self-formed team -0.07∗ -0.16∗∗∗ 0.10 0.16∗

(0.04) (0.05) (0.10) (0.09)

Team won in post- 0.66∗∗∗ 0.68∗∗∗ 0.63∗∗∗ 0.61∗∗∗

intervention contest (0.05) (0.06) (0.12) (0.11)

City fixed effect Yes - - - Yes - - -

H0: β1 = β2 (p-value) 0.02∗∗ 0.17 0.00∗∗∗ 0.66 0.02∗∗ 0.12 0.00∗∗∗ 0.85

# of drivers 27,790 18,900 3,815 5,075 27,790 18,900 3,815 5,075

Notes: False Discovery Rate adjusted q-values are calculated separately for all cities (1)
& (5) and for individual cities (2-4) & (6-8) and are reported in square brackets. The
results hold if we alternatively control for the number of wins in the two short contests
instead of the team that wins the post-intervention contest.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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consistent positive effect of the team leaderboard treatment on retention (0.33 days,

p < 0.01), with a similar significant effect between the team and individual leader-

board treatments. In Kunming, we find a positive albeit insignificant effect of the

team leaderboard treatment on retention only during the one-week window compared

to the control group (0.22 days, p < 0.05, Table 4.11). We observe no significant dif-

ference between treatments for drivers in Beijing. We summarize the results of our

driver retention analysis below.

Result 3 (Virtual Teams and Retention). For up to three months after the

experiment, drivers in the team leaderboard treatment work an average of 0.1 days

longer per week than those in the control group. At the city level, Taiyuan drivers

in the team leaderboard treatment work 0.3 days longer per week, whereas treated

drivers in Beijing and Kunming do not behave differently from those in their respec-

tive control groups.

To better understand driver incentives within each team, we conduct analyses on

driver preferences to be a team captain based on our last pre-registered hypothesis.

Hypothesis 4 (Leadership). Drivers with higher productivity prior to our experi-

ment, a longer tenure on the platform, and previous contest captain positions will be

more likely to volunteer to be a team captain.

We use a Logistic regression model (eq. 4.3) to understand how past experience

on DiDi affects a driver’s choice to be a team captain. The results (Table 4.16), which

reject the null in favor of Hypothesis 4, show that drivers with higher revenue prior to

the experiment and who have served as captains before are significantly more likely

to volunteer to be a captain overall and at the city level.
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Result 4 (Leadership). Drivers with a higher revenue, a longer tenure on the

platform, and previous contest captain positions prior to our experiment are more

likely to volunteer to be team captains.

To rule out the possibility that captains are the main drivers of our treatment

effects, we re-run all analyses excluding team captains, and find that our results are

robust to this specification (Tables 4.9 for Hypothesis 1, 4.10 for Hypothesis 2, and

4.12, 4.14, and 4.15 for Hypothesis 3). This indicates that captains are not the only

people benefiting from the team contests.

In addition, to understand who benefits more from virtual team contests, we par-

tition the drivers into two subgroups by whether their pre-experiment revenue was

above or below the median in their respective city. As shown in Fig. 4.5, drivers

whose revenue falls in the lower half in their city consistently generated a larger rev-

enue increase than their above-median counterparts in the pre-intervention, status,

and post-intervention contests. More specifically,in the pre-intervention contest (Ta-

ble 4.17), below-median drivers generate a 628.50 RMB revenue increase compared to

their above-median counterparts (p < .01). This asymmetric effect has been observed

in other information intervention field experiments [40, 42], and could be attributed to

any combinations of social information, team identity, and monetary rewards. When

the latter is removed in the three-week status contest, social information and team

identity remain present among treated drivers, whereas none of the three channels

is available to drivers in the control condition, although we cannot rule out the pos-

sibility that drivers in the control condition continue to use the social information

from the pre-intervention contest as a reference point. The fact that below-median

drivers in the control condition continue to outperform their more productive coun-

terparts during the three week intervention indicates that social information alone

could sustain better performance for workers who used to be lagging behind.

At the end of our experiment, we sent out a survey to all drivers (EM Section
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4.6.9). While the survey response rate is only 15%, feedback from the 4,295 drivers

who completed the survey yields insights on how drivers benefit from virtual teams.

More than 82% of the drivers like the contests (Q1), citing team belonging (Q17),

making friends (Q2, Q6), and identification with the organization (Q18) as benefits.

We also find evidence of peer information exchange, learning and skill improvement

among team members (Q4e), providing empirical evidence for information sharing in

teams [19].

4.5 Main Conclusion

Our study examines the effect of virtual teams on worker productivity, retention,

and well-being on an online ride-sharing platform. Hailed as the future of work,

the gig economy provides flexible, low-barrier jobs for millions of workers globally.

However, a lack of both organization identity and social bonds contributes to the

high attrition rate experienced by gig platforms [112]. In this paper, we investigate

the efficacy of virtual teams on worker productivity and retention in a global ride-

sharing platform. Using a large-scale natural field experiment with 27,790 drivers, we

organize drivers into virtual teams via self and system formation. We then randomly

assign teams to one of three conditions: team leaderboard, individual leaderboard,

and no leaderboard/social comparison information (control). We find that treated

drivers are significantly more productive in terms of revenue generated than those in

the control group. Three months after the experiment ended, we find that drivers

in the team leaderboard treatment continue to work longer hours on the platform,

indicating that virtual teams have the potential to increase team identity and facilitate

bonds with co-workers, which in turn increases productivity and worker retention.
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4.6 Extended Materials

4.6.1 Power Analysis

We use a subset of the experimental data from our 2017 field experiment conducted

among DiDi drivers in the city of Dongguan to generate an estimated effect size and

variance parameters for our power analysis and sample size calculation. For our

experiment, we would like to have a sample size large enough to obtain 90% power.

In the 2017 experiment, drivers are randomized into treatment and control con-

ditions. Among the treated drivers, we deem teams for which the captain submits a

pre-contest questionnaire as responsive and those who do not submit a questionnaire

as unresponsive. In our power analysis, we use the responsive teams as our treatment

condition and the unresponsive teams as our control condition since the 2017 placebo

control drivers are not formed into teams. We use the five contest days as five periods.

With this setting, we run the following fixed effects panel regression:

Table 4.7: Panel analysis with 2017 experiment data by fixed-effects (within-subject)
regression

∆ of Daily Orders
Game day -1.35∗∗

(0.29)
Responsive 2.81 ∗∗

(0.37)

# of observations = 17,500; # of groups = 250;
σu = 4.01; σe = 12.10; ρ = 0.10;
Standard errors in parentheses.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

According to the results in Table 4.7, we use the PowerBBK package [17] to

compute the power of the new design, assuming similar behavioral responses as in

the 2017 experiments.

The parameters are determined based on the following considerations (see Table

4.7 for statistics):
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• budget = 125 teams per condition × 2 experimental conditions × 5 contest

periods = 1250.

• beta = (15.24, 2.8) since (1) 15.24 = 16.582− 1.347 is the daily number of trips

of the unresponsive teams during the contest, (2) whereas 2.8 is the treatment

effect of responsiveness.

• muvar = σ2
u = 16.

• espva = σ2
e = 144.

• panel allocation = 0.4 since 40% of the teams were unresponsive.

This command yields a power of 0.896. As we have three experimental conditions

in our main analyses, we need 375 teams.

Increasing the budget by 1.5 (from 250 to 375 teams in two conditions) would give

us a power of 0.982. In this case, having 564 teams (4,000 drivers) would be sufficient

for our analysis. The caveat is that we do not know the potential treatment effect

in the leader board phase, and therefore, cannot account for this effect in our power

calculation.

4.6.2 Prize Determination across Cities

To make the experiment in each city most comparable, we determine the bonus

volume for the winner team by keeping the rate of the bonus above the city-specific

drivers’ hourly earnings. Specifically, we first calculate the average hourly pay using

the 30-day data from DiDi prior to the experiment. We carefully exclude the national

holiday period (2018/10/01 - 2018/10/07) from our calculations to obtain a better

indication of the average hourly earnings. As a result, we measure the average hourly

pay based on data from 2018/09/10 - 2018/09/29 and 2018/10/08 - 2018/10/17. The

details of the financial reward for each city are reported in Table 4.8.
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Table 4.8: Details of prize in each city (money in CNY)

City Calculated team prize Rounded team prize Team leader extra prize
Beijing 1,000 1,000 10

Taiyuan 654.21 650 10

Kunming 663.02 650 10
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4.6.3 Robustness Checks: Treatment Effects on Driver Revenue after

Excluding Team Captains

Table 4.9: Average and heterogeneous treatment effects on weekly revenue during the
intervention (status contest) after excluding team captains: Difference-in-differences
panel regressions investigating the two treatments separately.

Outcome variable: ∆ of Weekly Revenue (CNY)
Treatment effects Control individual heterogeneity

(1) (2) (3) (4) (5) (6) (7) (8)
All Beijing Taiyuan Kunming All Beijing Taiyuan Kunming

Team leaderboard 35.90∗ 26.81 69.93∗∗ 43.43 41.13∗∗ 32.82 73.10∗∗ 47.72
(β1) (19.30) (26.54) (28.34) (30.87) (19.24) (26.47) (28.36) (30.58)

[0.03] [0.46] [0.04] [0.27] [0.02] [0.27] [0.03] [0.19]

Individual leaderboard 48.39∗∗ 65.11∗∗ 25.95 2.55 52.92∗∗∗ 68.21∗∗∗ 30.54 11.61
(β2) (19.12) (26.14) (31.12) (29.97) (19.07) (26.06) (30.96) (29.89)

[0.02] [0.04] [0.47] [0.87] [0.01] [0.03] [0.31] [0.48]

Age 6.54∗∗∗ 7.13∗∗∗ 1.31 7.75∗∗∗

(Year) (0.90) (1.26) (1.54) (1.37)

DiDi age 30.20∗∗∗ 38.62∗∗∗ 7.69 -1.25
(Year) (8.05) (10.32) (13.22) (14.06)

Hometown distance -0.01 -0.00 -0.13∗∗ -0.02
to contest city (km) (0.02) (0.03) (0.05) (0.03)

Self-formed team -43.83∗∗ -54.71∗∗ -19.99 -21.97
(17.19) (23.11) (29.20) (28.05)

City fixed effect Yes - - - Yes - - -

H0: β1 = β2 (p-value) 0.52 0.16 0.14 0.18 0.55 0.19 0.15 0.23

# of clusters 10,570 7,200 1,445 1,925 10,570 7,200 1,445 1,925
# of drivers 23,820 16,200 3,270 4,350 23,820 16,200 3,270 4,350

Notes: Standard errors in parentheses are clustered at the team (individual) level for ranking
(control) conditions. False Discovery Rate adjusted q-values are calculated separately for all
cities (1) & (5) and for individual cities (2-4) & (6-8) and are reported in square brackets.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 4.10: Average and heterogeneous treatment effects on weekly revenue in
the post-intervention contest after excluding team captains: Difference-in-differences
panel regressions.

Outcome variable: ∆ of Weekly Revenue (CNY)
Treatment effects Control individual heterogeneity

(1) (2) (3) (4) (5) (6) (7) (8)
All Beijing Taiyuan Kunming All Beijing Taiyuan Kunming

Team leaderboard 56.43∗∗ 61.42∗ 72.75∗ 24.86 64.07∗∗∗ 70.28∗∗ 74.40∗∗ 32.40
(β1) (24.94) (34.15) (38.10) (40.85) (24.58) (33.61) (37.54) (40.17)

[0.05] [0.28] [0.28] [0.35] [0.02] [0.17] [0.17] [0.34]

Individual leaderboard 21.20 47.30 -55.35 -19.28 27.71 51.81 -52.66 -7.36
(β2) (25.36) (34.63) (39.99) (40.84) (24.95) (34.02) (39.08) (40.50)

[0.25] [0.28] [0.28] [0.35] [0.15] [0.21] [0.22] [0.40]

Age 10.60∗∗∗ 11.55∗∗∗ 4.08∗∗ 11.27∗∗∗

(Year) (1.14) (1.60) (1.77) (1.79)

DiDi age 81.98∗∗∗ 95.10∗∗∗ 29.31∗ 45.30∗∗

(Year) (10.34) (13.22) (16.78) (18.50)

Hometown distance -0.02 -0.03 -0.15∗∗ 0.04
to contest city (km) (0.02) (0.03) (0.07) (0.03)

Self-formed team -28.48 -45.97 18.55 9.83
(22.57) (30.18) (39.59) (38.17)

City fixed effect Yes - - - Yes - - -

H0: β1 = β2 (p-value) 0.16 0.68 0.00∗∗∗ 0.26 0.14 0.59 0.00∗∗∗ 0.30

# of clusters 3,970 2,700 545 725 3,970 2,700 545 725
# of drivers 23,820 16,200 3,270 4,350 23,820 16,200 3,270 4,350

Notes: Standard errors in parentheses are clustered at the team level. False Discovery Rate
adjusted q-values are calculated separately for all cities (1) & (5) and for individual cities
(2-4) & (6-8) and are reported in square brackets.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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4.6.4 Robustness Checks: Treatment Effects on Driver Retention after

Excluding Team Captains or Using Different Time Windows

Table 4.11: Average and heterogeneous treatment effects on weekly number of working
days during the week after the experiment ended (December 5-11, 2018): Difference-
in-differences panel regressions.

Outcome variable: ∆ of weekly # of work days
Treatment effects Control individual heterogeneity

(1) (2) (3) (4) (5) (6) (7) (8)
All Beijing Taiyuan Kunming All Beijing Taiyuan Kunming

Team leaderboard 0.11∗∗∗ 0.05 0.39∗∗∗ 0.14 0.12∗∗∗ 0.06 0.41∗∗∗ 0.15
(β1) (0.04) (0.05) (0.11) (0.09) (0.04) (0.05) (0.11) (0.09)

[0.01] [0.61] [0.002] [0.46] [0.004] [0.43] [0.001] [0.34]

Individual leaderboard -0.03 -0.01 -0.01 -0.12 -0.02 -0.00 0.02 -0.09
(β2) (0.04) (0.05) (0.11) (0.09) (0.04) (0.05) (0.11) (0.09)

[0.30] [0.90] [0.90] [0.55] [0.48] [0.86] [0.86] [0.51]

Age 0.02∗∗∗ 0.02∗∗∗ 0.02∗∗∗ 0.03∗∗∗

(Year) (0.00) (0.00) (0.01) (0.00)

DiDi age 0.14∗∗∗ 0.15∗∗∗ 0.01 0.15∗∗∗

(Year) (0.02) (0.02) (0.05) (0.04)

Hometown distance -0.00 -0.00 -0.00 0.00
to contest city (km) (0.00) (0.00) (0.00) (0.00)

Self-formed team -0.08∗∗ -0.13∗∗∗ -0.16∗ 0.19∗∗

(0.03) (0.04) (0.09) (0.08)

Team won in post- 0.86∗∗∗ 0.91∗∗∗ 0.77∗∗∗ 0.71∗∗∗

intervention contest (0.04) (0.05) (0.11) (0.10)

City fixed effect Yes - - - Yes - - -

H0: β1 = β2 (p-value) 0.00∗∗∗ 0.24 0.00∗∗∗ 0.01∗∗∗ 0.00∗∗∗ 0.18 0.00∗∗∗ 0.01∗∗

# of drivers 27,790 18,900 3,815 5,075 27,790 18,900 3,815 5,075

Notes: False Discovery Rate adjusted q-values are calculated separately for all cities (1) &
(5) and for individual cities (2-4) & (6-8) and are reported in square brackets. The results
hold if we alternatively control for the number of wins in the two short contests instead of
the winning team in the post-intervention contest.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 4.12: Average and heterogeneous treatment effects on weekly number of working
days during the week after the contest (December 5-11, 2018) after excluding team
captains: Difference-in-differences panel regressions.

Outcome variable: ∆ of weekly # of work days
Treatment effects Control individual heterogeneity

(1) (2) (3) (4) (5) (6) (7) (8)
All Beijing Taiyuan Kunming All Beijing Taiyuan Kunming

Team leaderboard 0.13∗∗∗ 0.04 0.47∗∗∗ 0.22∗∗ 0.15∗∗∗ 0.05 0.49∗∗∗ 0.23∗∗

(β1) (0.04) (0.05) (0.11) (0.10) (0.04) (0.05) (0.11) (0.10)
[0.01] [0.94] [0.001] [0.09] [0.002] [0.59] [0.001] [0.06]

Individual leaderboard -0.00 -0.01 0.09 -0.05 0.01 0.00 0.10 -0.02
(β2) (0.04) (0.05) (0.11) (0.10) (0.04) (0.05) (0.11) (0.10)

[0.95] [1.00] [0.94] [1.00] [0.66] [1.00] [0.59] [1.00]

Age 0.02∗∗∗ 0.02∗∗∗ 0.02∗∗∗ 0.03∗∗∗

(Year) (0.00) (0.00) (0.01) (0.00)

DiDi age 0.13∗∗∗ 0.15∗∗∗ -0.02 0.15∗∗∗

(Year) (0.02) (0.02) (0.05) (0.05)

Hometown distance -0.00 -0.00 -0.00∗ 0.00
to contest city (km) (0.00) (0.00) (0.00) (0.00)

Self-formed team -0.07∗ -0.13∗∗∗ -0.09 0.16∗

(0.04) (0.04) (0.10) (0.09)

Team won in post- 0.87∗∗∗ 0.95∗∗∗ 0.74∗∗∗ 0.71∗∗∗

intervention contest (0.04) (0.05) (0.12) (0.10)

City fixed effect Yes - - - Yes - - -

H0: β1 = β2 (p-value) 0.00∗∗∗ 0.41 0.00∗∗∗ 0.01∗∗∗ 0.00∗∗∗ 0.32 0.00∗∗∗ 0.01∗∗

# of drivers 23,820 16,200 3,270 4,350 23,820 16,200 3,270 4,350

Notes: False Discovery Rate adjusted q-values are calculated separately for all cities (1) &
(5) and for individual cities (2-4) & (6-8) and are reported in square brackets. The results
hold if we alternatively control for the number of wins in the two short contests instead of
the winning team in the post-intervention contest.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 4.13: Average and heterogeneous treatment effects on weekly number of working
days during the week of January 12-18, 2019, about one month after the experiment
ended: Difference-in-differences panel regressions.

Outcome variable: ∆ of weekly # of work days
Treatment effects Control individual heterogeneity

(1) (2) (3) (4) (5) (6) (7) (8)
All Beijing Taiyuan Kunming All Beijing Taiyuan Kunming

Team leaderboard 0.11∗∗ 0.08 0.24∗∗ 0.11 0.12∗∗∗ 0.10∗ 0.26∗∗ 0.12
(β1) (0.04) (0.05) (0.11) (0.10) (0.04) (0.05) (0.11) (0.10)

[0.02] [0.43] [0.18] [0.56] [0.01] [0.18] [0.11] [0.39]

Individual leaderboard 0.03 0.05 -0.08 0.03 0.04 0.06 -0.05 0.06
(β2) (0.04) (0.05) (0.11) (0.10) (0.04) (0.05) (0.11) (0.10)

[0.36] [0.57] [0.63] [0.98] [0.20] [0.39] [0.71] [0.71]

Age 0.03∗∗∗ 0.03∗∗∗ 0.01∗∗∗ 0.03∗∗∗

(Year) (0.00) (0.00) (0.01) (0.00)

DiDi age 0.19∗∗∗ 0.22∗∗∗ 0.03 0.18∗∗∗

(Year) (0.02) (0.02) (0.05) (0.04)

Hometown distance -0.00∗∗∗ -0.00∗∗ -0.00∗∗ -0.00
to contest city (km) (0.00) (0.00) (0.00) (0.00)

Self-formed team -0.05 -0.10∗∗ -0.09 0.18∗∗

(0.04) (0.05) (0.10) (0.09)

Team won in post- 0.69∗∗∗ 0.73∗∗∗ 0.58∗∗∗ 0.60∗∗∗

intervention contest (0.04) (0.05) (0.11) (0.10)

City fixed effect Yes - - - Yes - - -

H0: β1 = β2 (p-value) 0.05∗ 0.52 0.00∗∗∗ 0.37 0.05∗ 0.43 0.00∗∗∗ 0.53

# of drivers 27,790 18,900 3,815 5,075 27,790 18,900 3,815 5,075

Notes: False Discovery Rate adjusted q-values are calculated separately for all cities (1) &
(5) and for individual cities (2-4) & (6-8) and are reported in square brackets. The results
hold if we alternatively control for the number of wins in the two short contests instead of
the winning team in the post-intervention contest.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 4.14: Average and heterogeneous treatment effects on weekly number of working
days during the week of January 12-18, 2019, about one month after the experiment
ended, after excluding team captains: Difference-in-differences panel regressions.

Outcome variable: ∆ of weekly # of work days
Treatment effects Control individual heterogeneity

(1) (2) (3) (4) (5) (6) (7) (8)
All Beijing Taiyuan Kunming All Beijing Taiyuan Kunming

Team leaderboard 0.12∗∗ 0.07 0.31∗∗∗ 0.14 0.14∗∗∗ 0.09∗ 0.32∗∗∗ 0.16
(β1) (0.05) (0.06) (0.12) (0.11) (0.05) (0.06) (0.12) (0.11)

[0.02] [0.49] [0.05] [0.49] [0.01] [0.30] [0.05] [0.30]

Individual leaderboard 0.04 0.06 -0.01 0.02 0.06 0.07 0.00 0.05
(β2) (0.05) (0.06) (0.12) (0.11) (0.05) (0.06) (0.12) (0.11)

[0.24] [0.65] [0.88] [0.88] [0.12] [0.38] [0.53] [0.53]

Age 0.03∗∗∗ 0.03∗∗∗ 0.01∗∗ 0.04∗∗∗

(Year) (0.00) (0.00) (0.01) (0.01)

DiDi age 0.19∗∗∗ 0.22∗∗∗ 0.02 0.16∗∗∗

(Year) (0.02) (0.02) (0.05) (0.05)

Hometown distance -0.00∗∗∗ -0.00∗∗ -0.00∗∗ -0.00
to contest city (km) (0.00) (0.00) (0.00) (0.00)

Self-formed team -0.05 -0.12∗∗ -0.00 0.19∗∗

(0.04) (0.05) (0.11) (0.09)

Team won in 0.69∗∗∗ 0.76∗∗∗ 0.54∗∗∗ 0.58∗∗∗

surprise short contest (0.05) (0.06) (0.12) (0.11)

City fixed effect yes - - - yes - - -

H0: β1 = β2 (p-value) 0.09∗ 0.77 0.01∗∗∗ 0.24 0.09∗ 0.65 0.01∗∗∗ 0.32

# of drivers 23,820 16,200 3,270 4,350 23,820 16,200 3,270 4,350

Notes: False Discovery Rate adjusted q-values are calculated separately for all cities (1) &
(5) and for individual cities (2-4) & (6-8) and are reported in square brackets. The results
hold if we alternatively control for the number of wins in the two short contests instead of
the winning team in the post-intervention contest.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 4.15: Average and heterogeneous treatment effects on weekly number of working
days during the second week of March (March 4-10, 2019), about three months after
the experiment ended, after excluding team captains: Difference-in-differences panel
regressions.

Outcome variable: ∆ of weekly # of work days
Treatment effects Control individual heterogeneity

(1) (2) (3) (4) (5) (6) (7) (8)
All Beijing Taiyuan Kunming All Beijing Taiyuan Kunming

Team leaderboard 0.09∗ 0.04 0.38∗∗∗ 0.06 0.11∗∗ 0.06 0.37∗∗∗ 0.07
(β1) (0.05) (0.06) (0.12) (0.11) (0.05) (0.06) (0.12) (0.11)

[0.15] [1.00] [0.01] [1.00] [0.06] [1.00] [0.02] [1.00]

Individual leaderboard -0.03 -0.05 0.04 0.00 -0.01 -0.03 0.03 0.03
(β2) (0.05) (0.06) (0.13) (0.11) (0.05) (0.06) (0.13) (0.11)

[0.42] [1.00] [1.00] [1.00] [0.78] [1.00] [1.00] [1.00]

Age 0.03∗∗∗ 0.03∗∗∗ 0.02∗∗∗ 0.03∗∗∗

(Year) (0.00) (0.00) (0.01) (0.01)

DiDi age 0.21∗∗∗ 0.24∗∗∗ 0.08 0.16∗∗∗

(Year) (0.02) (0.02) (0.06) (0.05)

Hometown distance -0.00∗∗∗ -0.00∗∗∗ -0.00∗∗ -0.00
to contest city (km) (0.00) (0.00) (0.00) (0.00)

Self-formed team -0.07 -0.17∗∗∗ 0.19∗ 0.15
(0.04) (0.05) (0.11) (0.10)

Team won in post- 0.64∗∗∗ 0.68∗∗∗ 0.56∗∗∗ 0.54∗∗∗

intervention contest (0.05) (0.06) (0.13) (0.11)

City fixed effect Yes - - - Yes - - -

H0: β1 = β2 (p-value) 0.02∗∗ 0.12 0.01∗∗∗ 0.61 0.02∗∗ 0.11 0.01∗∗∗ 0.74

# of drivers 23,820 16,200 3,270 4,350 23,820 16,200 3,270 4,350

Notes: False Discovery Rate adjusted q-values are calculated separately for all cities (1) &
(5) and for individual cities (2-4) & (6-8) and are reported in square brackets. The results
hold if we alternatively control for the number of wins in the two short contests instead of
the winning team in the post-intervention contest.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

4.6.5 Preference for Being a Captain

To better understand driver incentives, we conduct an additional analysis on driver

preferences to be a team captain. We use a Logistic regression model (eq. 4.3) to
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Table 4.16: Results of preference for being team captains: Logistic regression with
all participants.

Outcome: Whether drivers
volunteer to be captains

(1) (2) (3) (4)
All Beijing Taiyuan Kunming

Pre Experiment Revenue 0.04∗∗∗ 0.04∗∗∗ 0.07∗∗ 0.08∗∗∗

(in 10,000 RMB) (0.01) (0.01) (0.03) (0.02)
[0.00] [0.00] [0.01] [0.00]

Served as captain before 0.22∗∗∗ 0.22∗∗∗ 0.23∗∗∗ 0.22∗∗∗

(Binary indicator) (0.00) (0.00) (0.02) (0.01)
[0.00] [0.00] [0.00] [0.00]

DiDi age 0.01∗∗∗ 0.02∗∗∗ -0.01∗∗ 0.00
(Year) (0.00) (0.00) (0.01) (0.01)

[0.00] [0.00] [0.01] [0.10]
City fixed effect Yes - - -

# of drivers 27,790 18,900 3,815 5,075

Notes: Average marginal effect with delta-method SE in parenthe-
ses.False Discovery Rate adjusted q-values are calculated separately
for all cities (1) and for individual cities (2-4) and are reported in
square brackets.
∗p < 0.1,∗∗p < 0.05,∗∗∗p < 0.01

understand how past experience on DiDi affects a driver’s choice to be a team captain

(H4), where V refers to the indicator function which equals 1 if a driver volunteers

to be a team captain, and Pre-Experiment Productivity is operationalized as driver

revenue in the two weeks before our experiment. Served as Captain Before is a binary

variable that shows whether the driver had been a captain before he participated in

the current team contest. We include γc to control for city-specific characteristics.

Pr(V = 1) = Φ(β0+β1Pre-Experiment Productivity+β2Served as Captain before+β3Didi Age+γc)

(4.3)

The results (Table 4.16) show that drivers with higher performance prior to the

experiment and who have served as captains before are significantly more likely to

volunteer to be a captain overall and at the city level. However, the effects of DiDi

age are more complicated. DiDi age is positively correlated with captain preference
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overall and in Beijing (with β = 0.01, p < .01 and β = 0.02, p < .01, respectively),

while it is negatively related to captain preference in Taiyuan (with β = −0.01,

p < .05) and has no significant relationship with captain preference in Kunming.

4.6.6 Who Benefits More from Team Contests? Below- versus Above-

median Drivers

In this analysis, we examine who benefits more from the team identity and social

information by testing the heterogeneous treatment effects on drivers with differ-

ent levels of pre-experiment revenue. We differentiate drivers by whether their pre-

experiment revenue is below the city median. As shown in Fig. 4.5, drivers whose

revenue falls in the lower half in their city consistently exhibit a greater revenue

increase than their counterparts, in the status contest across all cities.

Specifically during the longer-term contest, pooling drivers in all cities (table 4.18

(1)), we find that drivers whose pre-experiment revenue is below the city median

generate 782.07 Yuan more than drivers whose pre-experiment revenue is above the

city median (p < .01), accounting for about 37.53% of the average weekly revenue.

This pattern is consistent in each of the three cities, with a revenue increase of 943.36

Yuan in Beijing (38.32% of Beijing average weekly revenue, p < .01), 401.99 Yuan

in Taiyuan (36.08% of Taiyuan average weekly revenue, p < .01), and 462.37 Yuan

in Kunming (33.19% of Kunming average weekly revenue, p < .01). No interaction

effect is identified across cities and treatments. Additional tests show that drivers

with below-median revenue in the team (H0: β3 + β4 = 0) and individual (H0:

β3 + β5 = 0) leaderboard conditions exhibit a greater revenue increase during the

status competition overall and in each of the three cities.

From Table 4.19, we see that drivers with below-median revenue also benefit more

in the rewarded post-intervention contest: they generate a higher revenue of 837.31

Yuan (p < .01) than the above-median drivers overall, which accounts for 41.80%
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of the average weekly revenue of all drivers in the control groups in the three cities.

Among these drivers, below-median drivers in Beijing exhibit a higher increase of

1013.26 Yuan (43.08% of Beijing average weekly revenue, p < .01), while drivers

in Taiyuan and Kunming generate 386.66 Yuan (34.50% of Taiyuan average weekly

revenue, p < .01) and 517.18 Yuan (38.15% of Kunming average weekly revenue,

p < .01), respectively, compared to the above-median drivers. Results of additional

tests (H0: β3 + β4 = 0 and H0: β3 + β5 = 0) confirm that the below-median drivers

in both the team and individual leaderboard conditions exhibit a greater revenue

increase during the post-intervention contest period overall and in each of the three

cities.
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Figure 3: The effect of team and individual leaderboards for drivers with below and above me-
dian pre-contest revenue with standard error as error bars. (Pre-I. C.: Pre-intervention contest;
Status C.: Status contest; Post-I. C.: Post-intervention contest.)

4

Figure 4.5: The effect of team and individual leaderboards for drivers with below
and above median pre-contest revenue with standard error as error bars. (Pre-I.
C.: Pre-intervention contest; Status C.: Status contest; Post-I. C.: Post-intervention
contest.)
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Table 4.17: Below- versus above-median drivers: Difference-in-differences regressions
during the pre-intervention contest.

Outcome: ∆ of Weekly Revenue (CNY)
(1) (2) (3) (4)
All Beijing Taiyuan Kunming

Below median 628.50∗∗∗ 784.24∗∗∗ 281.89∗∗∗ 308.65∗∗∗

(15.95) (20.65) (26.39) (26.39)

City fixed effect Yes - - -

# of drivers 27,790 18,900 3,815 5,075

Notes: Standard errors in parentheses are clustered at the team level.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 4.18: Below- versus above-median drivers: Difference-in-differences regressions
during the intervention.

Outcome: ∆ of Weekly Revenue (CNY)
(1) (2) (3) (4)
All Beijing Taiyuan Kunming

Team leaderboard 35.43 34.86 47.50 28.68
(β1) (23.86) (31.53) (40.82) (43.01)

[0.11] [0.81] [0.81] [1.00]

Individual leaderboard 46.50∗∗ 67.87∗∗ 14.69 -8.29
(β2) (23.59) (31.28) (42.13) (42.99)

[0.11] [0.22] [1.00] [1.00]

Below median 782.07∗∗∗ 943.36∗∗∗ 401.99∗∗∗ 462.37∗∗∗

(β3) (23.15) (31.32) (36.21) (38.36)

Team leaderboard * Below median -17.03 -20.60 6.94 -7.68
(β4) (34.34) (46.24) (51.32) (53.54)

Individual leaderboard * Below median -22.48 -27.47 -13.00 -14.47
(β5) (34.15) (45.60) (52.96) (54.99)

City fixed effect Yes - - -

H0: β1 = β2 (p-value) 0.65 0.31 0.43 0.40
H0: β3 + β4 = 0 (p-value) 0.00∗∗∗ 0.00∗∗∗ 0.00∗∗∗ 0.00∗∗∗

H0: β3 + β5 = 0 (p-value) 0.00∗∗∗ 0.00∗∗∗ 0.00∗∗∗ 0.00∗∗∗

H0: β1 + β4 = 0 (p-value) 0.46 0.68 0.09∗ 0.56
H0: β2 + β5 = 0 (p-value) 0.33 0.23 0.96 0.50
H0: β1 + β4 = β2 + β5 (p-value) 0.83 0.46 0.13 0.21

# of drivers 27,790 18,900 3,815 5,075

Notes: Standard errors in parentheses are clustered at the team (individual) level for the
leaderboard (control) conditions. False Discovery Rate adjusted q-values are calculated
separately for all cities (1) & (5) and for individual cities (2-4) & (6-8) and are reported
in square brackets.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 4.19: Below- versus above-median drivers: Difference-in-differences regressions
during the post-intervention contest.

Outcome: ∆ of Weekly Revenue (CNY)
(1) (2) (3) (4)
All Beijing Taiyuan Kunming

Team leaderboard 55.11 72.12 43.92 1.54
(β1) (34.27) (45.54) (59.38) (59.27)

[0.28] [0.52] [0.61] [0.96]

Individual leaderboard 22.57 60.18 -109.98∗ -15.16
(β2) (34.60) (45.88) (62.99) (61.09)

[0.35] [0.52] [0.52] [0.93]

Below median 837.31∗∗∗ 1013.26∗∗∗ 386.66∗∗∗ 517.18∗∗∗

(β3) (32.26) (42.87) (52.94) (49.32)

Team leaderboard * Below median -21.54 -29.80 13.82 -3.69
(β4) (45.47) (60.95) (71.06) (68.99)

Individual leaderboard * Below median -25.31 -47.23 86.81 -33.15
(β5) (45.43) (60.55) (74.45) (70.54)

City fixed effect Yes - - -

H0: β1 = β2 (p-value) 0.35 0.80 0.01∗∗ 0.77
H0: β3 + β4 = 0 (p-value) 0.00∗∗∗ 0.00∗∗∗ 0.00∗∗∗ 0.00∗∗∗

H0: β3 + β5 = 0 (p-value) 0.00∗∗∗ 0.00∗∗∗ 0.00∗∗∗ 0.00∗∗∗

H0: β1 + β4 = 0 (p-value) 0.27 0.31 0.17 0.96
H0: β2 + β5 = 0 (p-value) 0.93 0.76 0.56 0.25
H0: β1 + β4 = β2 + β5 (p-value) 0.23 0.48 0.05∗∗ 0.28

# of drivers 27,790 18,900 3,815 5,075

Notes: Standard errors in parentheses are clustered at the team level. False Discovery
Rate adjusted q-values are calculated separately for all cities (1) & (5) and for individual
cities (2-4) & (6-8) and are reported in square brackets.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

4.6.7 The Effect of Being Treated on Driver Revenue Change

To examine the general effect of having a leaderboard, we code the binary variable

treated as 0 if the driver is in the control group and as 1 if the driver is in the team

or individual leaderboard condition. We use models represented by Equation 4.1 to

capture the effect.
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We have discussed the effects of being treated int the main text and Table 4.3. Here

we examine the persistent effects of being treated during the post-intervention contest.

We see from the results in Table 4.20 that the treatment of having a leaderboard

marginally significantly improves drivers revenue by 49.44 RMB (p < .10, 2.10%

of average weekly revenue) in Beijing, but has no significant effect overall, or in

Taiyuan or Kunming. Controlling for individual heterogeneity, we find that having

a leaderboard improves drivers revenue by 36.72 RMB (1.83% of average weekly

revenue) with marginal significance (p < .10) and by 55.00 RMB (2.34% of average

weekly revenue) with significance (p < .05) overall.

Table 4.20: Average and heterogeneous treatment effects on weekly revenue during
the post-intervention contest: Difference-in-differences panel regressions.

Outcome variable: ∆ of Weekly Revenue (CNY)
Treatment effects Control individual heterogeneity

(1) (2) (3) (4) (5) (6) (7) (8)
All Beijing Taiyuan Kunming All Beijing Taiyuan Kunming

Treated 30.90 49.44∗ -4.25 -11.97 36.72∗ 55.00∗∗ -1.94 -3.42
(In a virtual team) (20.81) (28.32) (33.04) (34.82) (20.45) (27.77) (32.22) (34.38)

[0.32] [1.00] [1.00] [0.17] [1.00] [1.00]

Age 10.57∗∗∗ 11.31∗∗∗ 4.67∗∗∗ 11.61∗∗∗

(Year) (1.07) (1.50) (1.70) (1.68)

DiDi age 84.07∗∗∗ 97.86∗∗∗ 38.37∗∗ 38.65∗∗

(Year) (9.62) (12.33) (15.43) (17.18)

Hometown distance -0.03 -0.04 -0.16∗∗ 0.02
to contest city (km) (0.02) (0.03) (0.06) (0.03)

Self-formed team -20.27 -38.85 22.50 28.50
(21.57) (28.71) (39.11) (37.24)

City fixed effect Yes - - - Yes - - -

# of clusters 3,970 2,700 545 725 3,970 2,700 545 725
# of drivers 27,790 18,900 3,815 5,075 27,790 18,900 3,815 5,075

Notes: Standard errors in parentheses are clustered at the team level. False Discovery
Rate adjusted q-values are calculated separately for individual cities (2-4) & (6-8) and are
reported in square brackets.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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4.6.8 Does Virtual Team Contests Encourage Risky Driving?

To understand whether virtual team contests have an adverse effect on driving

safety, we additionally analyze the driver safety score provided by DiDi. This is a

comprehensive indicator representing driver’s overall risk of accidents and transporta-

tion violations. Specifically, to calculate the safety score, DiDi incorporates multiple

driving-behavior indicators, including over-speed driving, distracted driving, fatigue

driving, harsh braking, and acceleration. DiDi has an algorithm to periodically up-

date the safety score using the latest driving data. Therefore, the safety score is

a good proxy for safe driving. Figure 4.6 shows the average safety score for each

experimental condition over time.

Beijing Taiyuan

Kunming

Figure 4.6: Average driver safety score of each condition over week. The red dashed
lines separate the new and old safety-score formulas.
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We conduct pairwise Kolmogorov-Smirnov tests across the three experiment con-

ditions.5 To capture the safety score pre-experiment, during contests, and post-

experiment, we conduct separate tests on 2018.10.21 (the day before the experiment),

2018.11.04 (the last day of the pre-intervention contest), 2018.11.15 (during the sta-

tus contest), and 2018.12.15 (about 10 days after the end of the experiment) for each

pair of conditions. No significant difference is identified at the .05 significance level.

Therefore, we conclude that drivers in each condition had no significantly different

safety score before, during, and after the experiment.

4.6.9 Survey and Results

After the experiment, we sent a survey to every teamed-up driver in the contest;

4,295 drivers completed our survey in Beijing, Taiyuan and Kunming together, which

covered about 15.46% out of 27,790 teamed drivers.

To examine the tendency of drivers to complete the survey, we conduct logistic

regression analysis with results shown in Table 4.21.

5Since during the experiment period (on 2018.11.15), DiDi implemented a new safety score for-
mula during the experiment period (on 2018.11.15) and the score has been updated monthly since
then, we choose not to conduct a pre-experiment and post-experiment difference-in-differences model
to avoid possible confounds. This is also why there is a similar score increase for each condition on
2018.11.15 as shown in Figure 4.6.
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Table 4.21: Logistic regression results of driver tendency to complete the survey.

Outcome: Whether driver completes survey
(1) (2) (3) (4)
All Beijing Taiyuan Kunming

Is captain 0.08∗∗∗ 0.09∗∗∗ 0.06∗∗∗ 0.06∗∗∗

(Binary) (0.01) (0.01) (0.02) (0.01)

Team won in post-intervention contest 0.12∗∗∗ 0.11∗∗∗ 0.13∗∗∗ 0.13∗∗∗

(Binary) (0.00) (0.01) (0.01) (0.01)

Pre-contest average daily revenue 0.07∗∗∗ 0.00 0.22∗∗∗ 0.21∗∗∗

(in 1000 Yuan) (0.01) (0.01) (0.05) (0.04)

Male 0.06∗∗∗ 0.03∗ 0.11∗∗∗ 0.10∗∗∗

(0.01) (0.02) (0.04) (0.02)

Hometown distance to contest city -0.03∗∗∗ -0.02∗∗∗ -0.01 -0.02
(in 1000 km) (0.01) (0.01) (0.03) (0.01)

Age 0.03∗∗∗ 0.03∗∗∗ 0.03∗∗∗ 0.02∗∗∗

(in 10 years) (0.00) (0.00) (0.01) (0.01)

DiDi age 0.01∗∗∗ 0.01∗∗ -0.01 0.00
(Year) (0.00) (0.00) (0.01) (0.01)

# of drivers 34,335 18,900 3,815 5,075

Notes: Average marginal effect with delta-method SE in parentheses. The results hold
if we alternatively control for the number of wins of the two short-term contests.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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1. To what extent do you like the recent team contest from October 29, 2018 to

December 3, 2018? Please rate on a scale between 0 (I don’t like it at all) and

6 (I like very much). Depending on your answer, choose either question #2 or

#3.

0 - I don’t like it at all. (201 out of 4,295, 4.68% )

1 - I don’t like it a moderate amount . (53 out of 4,295, 1.23% )

2 - I don’t like it a little. (75 out of 4,295, 1.75% )

3 - Neither like nor dislike. (196 out of 4,295, 4.56% )

4 - I like it a little. (152 out of 4,295, 3.53% )

5 - I like it a moderate amount. (245 out of 4,295, 5.70%

6 - I like it very much. (3,373 out of 4,295, 78.53% )

[Branch: for those who choose like]

2. Why do you like this team contest? (Please check all that apply.)

(a) Because I like the sense of team belonging. (2,601 out of 3,966, 65.58% )

(b) Because I like the fun and excitement of the contest. (2,025 out of 3,966,

51.06% )

(c) Because I got to know more friends during the contest. (2,025 out of 3,966,

51.06% )

(d) Because winning the contest gave me a sense of honor. (2,417 out of 3,966,

60.94% )

(e) Because I won the monetary bonus. (2,196 out of 3,966, 55.37% )

(f) Other reasons. Please specify .
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[Branch: for those who choose dislike]

3. Why do you dislike this team contest? (Please check all that apply.)

(a) Because my team members were not collaborative or united enough. (118

out of 330, 35.76% )

(b) Because my team was not active enough to justify its existence. (121 out

of 330, 36.67% )

(c) Because the captain did not have good leadership or management skills.

(83 out of 330, 25.15% )

(d) Because the contest rules were too complicated to understand. (77 out of

330, 23.33% )

(e) Because the contest rules were unfair. (106 out of 330, 32.12% )

(f) Because the financial bonus was not large enough to attract me. (172 out

of 330, 52.12% )

(g) Other reasons. Please specify .

4. As a team member, what did you get from this team contest? (Please check all

that apply.)

(a) I got to know more friends. (2,749 out of 4,295, 64.00% )

(b) I improved my leadership skills. (1,443 out of 4,295, 33.60% )

(c) I improved my communication skills. (2,067 out of 4,295, 48.13% )

(d) I improved my collaboration skills with other drivers. (2,541 out of 4,295,

59.16% )

(e) I became more experienced and skillful about taking DiDi orders. (2,452

out of 4,295, 57.09% )
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(f) I received emotional support from my teammates when I was down. (1,516

out of 4,295, 35.30% )

(g) Other reasons. Please specify .

5. During this event, which option best describes how your team members got

along with each other?

(a) Our team shared commonalities and common interests. (586 out of 4,295,

13.64% )

(b) Although team members each had our own personalities, we got along well.

(683 out of 4,295, 15.90% )

(c) Everyone contributed for our team honor during the contest. (2,377 out

of 4,295, 55.34% )

(d) Inactive team members influenced others’ enthusiasm for the contest. (649

out of 4,295, 15.11% )

(e) Other reasons. Please specify . (0)

6. To what extent do you agree that you have developed deep friendship with your

teammates? (from 0 being strongly disagree to 6 being strongly agree)

0 - Strongly disagree. (288 out of 4,295, 6.71% )

1 - Disagree. (49 out of 4,295, 1.14% )

2 - Somewhat disagree. (100 out of 4,295, 2.33% )

3 - Neither agree nor disagree. (268 out of 4,295, 6.24% )

4 - Somewhat agree. (203 out of 4,295, 4.73% )

5 - Agree. (264 out of 4,295, 6.15% )

6 - Strongly agree. (3,123 out of 4,295, 72.71% )
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7. (A reverse coding question) To what extent do you not believe that you are a

part of your team? (from 0 being not agree at all to 6 being agree very much)

0 - Strongly disagree. (1,481 out of 4,295, 34.48% )

1 - Disagree. (312 out of 4,295, 7.26% )

2 - Somewhat disagree. (236 out of 4,295, 5.49% )

3 - Neither agree nor disagree. (255 out of 4,295, 5.94% )

4 - Somewhat agree. (177 out of 4,295, 4.12% )

5 - Agree. (94 out of 4,295, 2.19% )

6 - Strongly agree. (1,740 out of 4,295, 40.51% )

8. Which option do you prefer if you participate in a team contest again?

(a) I prefer to be a team captain. (2,648 out of 4,295, 61.65% )

(b) I prefer to be a team member. (1,647 out of 4,295, 38.35% )

[Branch: if choose team member]

9. Why did you choose NOT to be a team captain? (Please check all boxes that

apply.)

(a) I don’t want to initiate communications with strangers. (146 out of 1,647,

8.86% )

(b) I don’t know how to lead a team. (519 out of 1,647, 31.51% )

(c) The extra bonus for a captain was not enough. (196 out of 1,647, 11.90% )

(d) I was concerned that being a captain would entail a lot of extra work. (257

out of 1,647, 15.60% )
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(e) I was inexperienced with team leadership and needed more practice in the

first place. (1,053 out of 1,647, 63.93% )

(f) Other reasons. Please specify .

[Branch: if choose team captain]

10. What do you think a team captain should do? (Please check all boxes that

apply.)

(a) A captain should be a good example for other teammates. (2,351 out of

2,648, 88.78% )

(b) A captain should be positive and energetic. (2,093 out of 2,648, 79.04% )

(c) A captain should help his teammates to become more active. (2,108 out

of 2,648, 79.61% )

(d) A captain should help his team win the contest. (1,940 out of 2,648,

73.26% )

(e) A captain should provide feedback and suggestions to the DiDi platform

on behalf of team members. (1,621 out of 2,648, 61.22% )

(f) Other. Please specify .

11. Through which approach do you prefer to build your team?

(a) I prefer to wait for others’ phone calls to invite me to join a team. (480

out of 4,295, 11.18% )

(b) I prefer to call other people and ask if I can join their team. (2,983 out of

4,295, 69.45% )

(c) I prefer to join a team without prior communication and then contact

teammates online. (832 out of 4,295, 19.37% )
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(d) Other. Please specify .

12. What do you hope would happen to your team?

(a) I hope it was a temporary team and I might be able to join a different

team next time. (3,457 out of 4,295, 80.49% )

(b) I hope it is a long-lasting team and team members will keep in touch after

the contest. (838 out of 4,295, 19.51% )

13. How do you communicate with your teammates during the contests?

(a) WeChat (3,372 out of 4,295, 78.51% )

(b) phone calls (2,300 out of 4,295, 53.55% )

(c) text messages (1,363 out of 4,295, 31.73% )

(d) face-to-face (966 out of 4,295, 22.49% )

14. How often do you communicate with your teammates during the first-week

contest? During the three weeks in between the contests and during the last

contest?

(a) Never (First short term: 712 out of 4295, 16.58%; Longer-term: 717 out

of 4,295, 16.69%; Post-intervention contest: 755 out of 4,295, 17.58% )

(b) Once a week (First short term: 725 out of 4295, 16.88%; Longer-term:

796 out of 4,295, 18.53%; Post-intervention contest: 757 out of 4,295,

17.63% )

(c) Multiple times a week, but not every day (First short term: 1,142 out of

4295, 26.59%; Longer-term: 1,153 out of 4,295, 26.85%; Post-intervention

contest: 1,097 out of 4,295, 25.54% )
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(d) At least once per day (First short term: 1,716 out of 4295, 39.95%; Longer-

term: 1,629 out of 4,295, 37.93%; Post-intervention contest: 1,686 out of

4,295, 39.25% )

15. (Treated drivers only.) During the three-week contest (November 5-25, 2018),

do you hope to see your team ranking on top? (from 0 being not at all to 6

being very much so)

0 - Not hope so at all (47 out of 2,824, 1.66% )

1 - Not hope so (10 out of 2,824, 0.35% )

2 - Somewhat not hope so (28 out of 2,824, 0.99% )

3 - Neither hope nor not hope (73 out of 2,824, 2.58% )

4 - Somewhat hope so (50 out of 2,824, 1.77% )

5 - Hope so (73 out of 2,824, 2.58% )

6 - Hope so very much (2,543 out of 2,824, 90.05% )

16. (Treated drivers only.) During the three-week contest (November 5-25, 2018),

which statement(s) about the leaderboard do you agree with? Please check all

that apply.

(a) Although there was no team bonus, keeping the team relationship makes

me feel not lonely anymore. (1,813 out of 2,824, 64.20% )

(b) Although there was no team bonus, I was curious about my ranking within

my team members. (1,459 out of 2,824, 51.66% )

(c) (Team-leaderboard drivers only.) Although there was no team bonus, I

was curious about my team ranking among our competitor teams. (694

out of 1,390, 49.93% )
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(d) The ranking was meaningless since there was no monetary bonus, so I

didn’t care about the ranking and team. (561 out of 2,824, 19.87% )

17. On a scale of 0 to 6, 0 being not at all, and 6 being very much so, how would

you evaluate your sense of belonging to your team?

0 - Very not strong (207 out of 4,295, 4.82% )

1 - Not strong (70 out of 4,295, 1.63% )

2 - Somewhat not strong (92 out of 4,295, 2.14% )

3 - Moderate (257 out of 4,295, 5.98% )

4 - Somewhat strong (205 out of 4,295, 4.77% )

5 - Strong (296 out of 4,295, 6.89% )

6 - Very strong (3,168 out of 4,295, 73.76% )

18. On a scale of 0 to 6, 0 being not at all, and 6 being very much so, how would

you evaluate your sense of belonging to DiDi?

0 - Very not strong (237 out of 4,295, 5.52% )

1 - Not strong (74 out of 4,295, 1.72% )

2 - Somewhat not strong (91 out of 4,295, 2.12% )

3 - Moderate (237 out of 4,295, 5.52% )

4 - Somewhat strong (187 out of 4,295, 4.35% )

5 - Strong (256 out of 4,295, 5.96% )

6 - Very strong (3,213 out of 4,295, 74.81% )

19. To what extent do you believe that your DiDi income is the primary source of

income for your household?
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(a) Yes, it’s the only source of income for our household. (2,076 out of 4,295,

48.34% )

(b) It’s the primary source of income, but not the only one. (1,110 out of

4,295, 25.84% )

(c) It’s a good amount of income, but not the primary income of the household.

(660 out of 4,295, 15.37% )

(d) It’s just an additional source of income. We don’t depend on DiDi’s income

to live a life at all. (449 out of 4,295, 10.45% )

20. Why do you want to be a DiDi driver?

(a) I would like to be a full-time DiDi driver for a long time. (3,188 out of

4,295, 74.23% )

(b) I am and will be a full-time DiDi driver until I find the next job. (406 out

of 4,295, 9.45% )

(c) I have another job. I regard DiDi revenue as my extra pocket money in

addition to my job. (375 out of 4,295, 8.73% )

(d) I want to kill time by driving. It doesn’t matter too much for me whether

I make money from it. (77 out of 4,295, 1.79% )

(e) Simply driving is my habit. I like driving. (249 out of 4,295, 5.80% )

21. What suggestions do you have for future team activities?

22. Please fill out the phone number which you use to log into the DiDi driver APP:

.
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4.7 Discussion and Take Away

This chapter details a field experiment that is designed to examine whether virtual-

team interventions are effective in improving worker performance in a ride-sharing

platform. Results show that virtual teams are able to increase driver performance

during a bonus-free status contest and enhance driver retention even three months

after the experiment ended.

Mapping to the framework of human-centered data science (Figure 1.1), this chap-

ter illustrates that social science theories are able to inform intervention design, the

effectiveness of which can be examined by a field experiment.

While this study mainly examines the effect on driver revenue, we note that it

is important to examine how virtual teams and contests affect other critical metrics,

such as driver happiness, driver health, and rider satisfaction. From an ethical point

of view, it would be important to understand, for instance, whether longer working

hours are negatively associated with driver health; while there is no evidence to

confirm a negative relationship, we believe such ethical question is critical, which

both we and the platform designer have been caring about. Future work could help

to further understand how virtual teams and team contests affect other aspects of

workers and riders besides driver revenue.

In addition, while the causal findings of this experiment are promising in general,

there are many open questions related to the effects and optimal design of the inter-

ventions. For example, we observe variations of the treatment effects across different

cities. Why does the same intervention work in one city but not in another? Will

this intervention work in a new city? Who can benefit more from the contest? In

addition, most of the contest design options, such as bonus and contest group size,

are set up according to theoretical evidence or domain expert suggestions. Yet, what

is the optimal design in the ride-sharing context? Furthermore, would the optimal

design be different for another city or different driver participants?
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These questions are challenging to answer because they require sophisticated

analysis of heterogeneous treatment effects at a fine granularity on large-scale high-

dimensional data, which traditional experimental analysis can hardly support. To

approach such problems, we provide data-driven insights by adopting counterfactual

machine learning, as discussed in the next chapter.
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CHAPTER V

Predicting Individual Treatment Effects of Field

Experiments with Counterfactual Machine

Learning

To improve worker performance in the gig economy, in this chapter, we further in-

tegrate machine learning, field experiments, and social science theories. As described

in Chapter IV, participants may experience different behavioral changes even if they

engage in the same experimental intervention. We therefore ask, (1) Who benefits

more from the intervention? and (2) How should we design optimal interventions for

different participants subgroups and divergent contexts? These questions require a

comprehensive understanding of heterogeneous treatment effects at a finer granular-

ity, such as at the individual level.

In industry, the common practice of launching a series of field experiments with

some variation in intervention provides rich data and unprecedented opportunity to

answer such questions. For example, DiDi has launched thousands of team-contest

experiments, which vary in terms of participating drivers, teams, cities, and con-

test designs. These team-contest experiments have generated large-scale and high-

dimensional data to unpack heterogeneous treatment effects.

However, traditional experimental analyses are not enough to take full advantage
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of such rich data. First, traditional experimental analysis usually focuses on the

treatment effect at the aggregate levels and can hardly approach individual treatment

effect analysis. Second, traditional experimental analyses have constraints on dealing

with high-dimensional data that might involve hundreds of features.

To approach these questions, this chapter uses counterfactual machine learning

to predict the effect of team contests at the individual level and discovers actionable

insights by interpreting the predictive models. Our best-performing models are able to

reduce the prediction error from the baseline by more than 24%. By interpreting the

model, we identify findings that are directly actionable to inform team formation and

contest design for future experimental interventions. Further counterfactual analysis

via simulation shows that our findings have the potential to increase the treatment

effect of a real contest by as much as 26%. We also highlight that theoretical insights

from social sciences are additionally adopted in the feature generation process so that

we can leverage existing knowledge about human behavior to improve the predictions.

This study demonstrates that integrating machine learning, field experiments,

and social science theories could expand our understanding of human behavior at a

finer granularity, which enables precise intervention and data-driven design for the

follow-up experiments, as shown in the framework (Figure 1.1).

5.1 Introduction

The rise of the sharing economy has brought dramatic changes to work and life in

modern society. The financial benefits and work schedule flexibility offered by online

ride-sharing platforms, such as Uber, Lyft, and Didi Chuxing, have attracted tens of

millions of drivers to serve as ride providers. While the drivers enjoy all the values

of the ride-sharing economy [36], they commonly complain about new barriers to job

satisfaction and retention, such as working alone, having few bonds with colleagues,

no clear career paths, and a lack of a sense of achievement (e.g., [75]). How to retain
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and incentivize service providers to better cover the dynamics of demand has also

been a critical problem for the platforms.

Team contests, practices rooted in social identity theory [4] and contest theories

[135], have been recognized as a potential cure for the pain on both sides. Through

competing as teams, drivers are able to (1) build team identity and social bonds with

teammates; (2) create a sense of achievement by winning a contest; and (3) increase

their satisfaction and performance at work [3]. The increase in driver productivity

often outweighs the cost of organizing and providing financial incentives for these

contests, which creates a win-win situation for both the drivers and the platform.

Indeed, Didi Chuxing (DiDi), one of the world’s leading ride-sharing companies,

has launched recommender systems to help their drivers form teams and has organized

many financially rewarded team contests to enhance their satisfaction and productiv-

ity [149]. In 2018 alone, more than 1,400 team contests were successfully held across

180 cities, which together involved more than 1 million drivers, who provided 130

million rides. These contests have yielded promising outcomes overall: the average

return on investment is larger than 5, indicating that the increased platform revenue

through these contests is five times the cost.

Behind the overall success, however, plenty of unknowns, pitfalls, and challenges

remain. There is huge heterogeneity among the cities, the contests, the teams, and

the drivers. Such heterogeneity produces variation in outcomes (or the treatment

effects of these experiments): What types of drivers and teams benefit more from

team contest? What contest designs better increase driver performance? In what

context is a contest more likely to be effective? Why does a design work in one

city but not in another? Understanding how these factors predict the outcomes of

individual drivers would not only help the platforms find the optimal design of team

contests for different populations of drivers, but would also help them generalize the

success to new contexts.
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Addressing these questions is challenging not only for human operational prac-

titioners but also for data mining algorithms. First, it is intrinsically difficult to

measure the causal effect of experiments, which requires a careful definition of in-

dividual outcome measures and targets of prediction. Second, the variable space to

capture driver, team, contest, and context characteristics is high-dimensional, with

complex relationships among them. Identifying the potential predictive factors calls

for sophistication in both domain knowledge and data analytics. Third, the large-

scale data involve millions of drivers and transactions and many real-world contexts,

requiring the prediction algorithms to be scalable and interpretable.

In this paper, we take a systematic approach to address these challenges. We

formulate the problem as a task to predict the treatment effects of a team contest

on individual drivers, to which we apply both linear and non-linear machine learning

models. Combining insights from both business practice and literature on virtual

teams and team contest, we construct a large variety of features and train the pre-

diction model using the data of hundreds of large contests and half a million drivers.

The objective of this study is not to prove the causal effect of team contest but to

predict individual driver’s performance in out-of-sample/future contests. The former

is analyzed in an earlier study based on a rigorously randomized field experiment

(with no self-selection or pre-participation) using formal econometric analysis [3].

Evaluated on out-sample contests, the best-performing model is able to reduce

the prediction error from the baseline by 24.50%. A careful interpretation of the

models reveals intriguing predictive power of many factors (for individual treatment

effects): some are intuitive, such as team homophily, social influence, supply-demand

ratio, and weather conditions; some are rather surprising, such as team diversity,

pre-contest activities, and the design of monetary incentives; and many of them have

never been reported in the literature. Some of the factors are directly actionable

in business practice, and a simulation analysis demonstrates that by simply varying
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several contest design options, one is expected to increase the average treatment effect

of a contest by as much as 26%.

To summarize, we make the following major contributions:

• We present the first study of individual treatment effects of team contests in a

sharing economy. While existing work measures the average effect of an experi-

ment, we analyze heterogeneous, per-driver outcomes across many experiments.

• We define a robust estimation of individual treatment effects and formulate

a novel approach to predicting individual treatment effects through machine

learning.

• We train effective machine learning models on large-scale data collected from

hundreds of historical experiments, which combine a comprehensive set of fea-

tures of individual drivers, teams, contest designs, and experimental environ-

ments, and we evaluate the models on out-sample experiments.

• We reveal the predictive power of a variety of factors for the outcome of indi-

vidual drivers, most of which are novel.

• We identify actionable implications for business practice and demonstrate sig-

nificant potential improvements in experimental outcomes by varying several

contest design options.

5.2 Related Work

This study is related to the following lines of literature:

Sharing economy. A growing literature investigates the socio-economic effects

on and consequences of ride-sharing platforms, such as Uber and Lyft [150]. Inspired

by the findings in [74] that economic gains positively influence people’s intention

to participate, a stream of work quantifies the positive effect of financial incentives,
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such as subsidy [61], on improving supply-demand efficiency. Our study adds to this

literature by investigating the effect of rewarded team contests on service provision

in a ride-sharing economy.

Team contest. Team competitions and team contests have been increasingly

applied in online communities, such as crowdsourcing [114], education [119], online

games [44], and charitable giving [39]. It has been shown that team contests are ef-

fective in improving key metrics, such as participation [119]. Data-mining researchers

have developed team matching algorithms to ensure team formation of high efficiency,

effectiveness, and fairness, taking into account factors such as demographics, social

networks, and tasks (e.g., [2, 149, 6]).

Most of these studies demonstrate the effect of team contests through either field

experiments or analyzing observational data. The former usually estimate the treat-

ment effect at the experiment level, averaged over all treated teams and participants

(e.g., [39, 119, 114]). Studies of the latter have examined team-level properties and

their influences on team performance in online games, such as the positive factor

of diverse team composition [44]. To the best of our knowledge, few have aimed

to analyze and predict the heterogeneous effect of team contests on individual team

members, especially in the context of the sharing economy.

Individual treatment effects & counterfactual analysis. Recent work in

causal inference and machine learning has focused on a finer granularity – individual

treatment effect (ITE) estimation, citing its potential in precision medicine [60] and

online platforms [97]. Estimating ITE has been done with random forests [10] and

deep neural networks [121], and it has taken into account hidden confounders from

network information [71]. We base our analysis on a collection of online controlled

experiments [85]. We are able to estimate ITE with difference-in-differences (DID),

as the team contests already include randomly selected control groups. We thus focus

on the prediction of ITE.
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Figure 5.1: Workflow and treatment effect of a team contest

Another related stream of literature is counterfactual learning, where the focus

is to learn what policies maximize some rewards, such as engagement or conversion

in online advertising [25, 127]. The counterfactual estimators are typically based on

importance sampling. Our paper also examines how policy (which is the contest

design in our setting) predicts ITE, but we study the predictors of ITE in a much

more complex socio-economic setting.

5.3 Problem Setup

5.3.1 Team Contests on DiDi

Since 2017, team contests have been widely introduced as driver incentive cam-

paigns in DiDi [3]. A typical team contest is held in one city and consists of two

periods: a team building period and a contest period (see Figure 5.1).

Team building period. The team building period starts with a call for partici-

pation and usually lasts 3-7 days. During this period, interested drivers sign up for

the contest and start teaming up. Drivers can create a new team as captain or join
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an existing team by invitation, and they can invite other drivers into a team either

manually or assisted by a recommender system [149]. All participating teams in one

contest have the same size: one captain and 2 to 7 other regular members.

About half of the teams achieve the desired size during the team building period;

these are referred to as self-formed teams. At the end of the team building period,

the system randomly selects 90% of the unteamed drivers and groups them into full-

sized teams, which we refer to as system-formed teams. The other 10% are not

assigned to any team and will not participate in the contest; they are referred to

as solo drivers. These solo drivers have the same motivation level (to participate in

the contest), productivity, and other demographic properties compared to the drivers

who are assigned to teams, and they form a nice group for comparison. The system

keeps track of the solo drivers for control.

Contest period. Both self-formed and system-formed teams will compete during

the contest period. The teams are further partitioned into smaller contest groups.

Each contest group contains the same number of (usually 5) teams of comparable

competitiveness, measured by their productivity prior to the contest. A team only

competes with other teams within the contest group and will win a cash reward

according to its standing in that group. The performance of a team is calculated

by summing the productivity of team members, measured by their daily revenue,

number of rides, or a combination of both. During the contest period, a driver can

check the performance of their team members and competitor teams through a real-

time leaderboard. Under these general constraints, every city can choose among

finer-grained design options (such as incentive structures). We will summarize these

contest design options in Section 5.4.1.

These team contests have been quite successful in general. During a contest, a

driver’s daily revenue on average increases by 22%, and the revenue over investment
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(ROI, which measures revenue of the platform over cost) is over 5. While the average

treatment effect provides an overall picture of the effectiveness of team contests, it

is critical to understand the treatment effect on individual drivers to untangle the

complex interplays among participants, teams, contest design, and experimental en-

vironments. Only through this can the platform optimize their recommender systems

and contest designs, provide targeted interventions for different population of drivers,

and to generalize the success to new contests, cities, and countries.

5.3.2 Estimating the Individual Treatment Effect

We need to first estimate the individual treatment effects before analyzing and

predicting them. Estimating the individual treatment effect by itself can be challeng-

ing in natural experiments and observational data [10, 97, 121]. In our scenario it is

easier, as all the contests followed a rigorous experimental design.

The individual treatment effect (ITE) refers to the effect of a single team contest

on the revenue of an individual driver. In other words, the effect measures how much

additional revenue a driver generates by participating in a team contest as opposed

to otherwise. Given the contest setting, we estimate the individual treatment effect

using a standard difference-in-differences (DID) approach [8] in causal inference. The

intuition of DID is to first compute the difference in revenue before and during the

contest for each driver, aggregate such within-driver differences by treatment status

(treatment vs. control), and compare the differences between the two conditions. In

our case, the control group is clear - the solo drivers (drivers who are not teamed).

We have two possible definitions of the treatment group: (1) drivers in both system-

formed and self-formed teams; (2) drivers in system-formed teams only. Ideally,

drivers in system-formed teams are the most comparable to solo drivers, as self-formed

teams might differ in motivation or pre-contest history, which introduces a potential

selection bias. In business operation, however, we do care about making predictions
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for all drivers. We therefore separately analyze the two scenarios: using “all teams”

and using “system-formed teams” as treatment group. If the results are consistent,

that means the estimation of ITE can generalize from system-formed teams to all

teams.

Formally, we define Rj,T as the average daily revenue generated by driver j in the

time period T . T = T1 indicates the contest period while T = T0 indicates a baseline

period before contest starts. T0 is selected as the most recent days prior to the call

for participation, conditioned on matching the length and the day(s)-of-the-week of

T1. The choice of T0 rules out day-of-the-week confounds on revenue (see Figure 5.1

for illustration).

The within-driver difference in revenue between the contest period and the baseline

period can thus be calculated as

∆Rj = Rj,T1 −Rj,T0 . (5.1)

We then aggregate the revenue change in the control group as

∆Rcontrol =
1

|control|
∑

i∈control

∆Ri. (5.2)

Finally, we can obtain the individual treatment effect as

∆RITE
j = ∆Rj −∆Rcontrol, (5.3)

for every driver j in a team. If we calculate the average value of the ITE of a given

contest, we will get the average treatment effect (ATE) of that contest. More precisely,

since we can only obtain the ITE of treated drivers (participating in the team contest),

the aggregated ITE represents the average treatment effect on the treated (ATET).

5.3.3 Predicting the Individual Treatment Effect

We collect a dataset from all contests held between January 1, 2018 and August

23, 2018. Contests that did not hold out the 10% solo drivers are excluded, as we lack
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Table 5.1: Summary of statistics
Item Number Item Number

# of Cities 143 # of Unique Drivers 520,611
# of Contests 520 # of Cumulative Participation 887,842

the control condition to calculate ITE. We also exclude the contests conducted during

the lunar new year, as the supply and demand pattern in that period is irregular. For

all selected contests, we collect the demographics and historical activities of all drivers

who sign up for the contests, regardless of whether they are in the treatment or control

group. Table 5.1 presents the summary statistics of the contests included.

Based on this dataset, given every contest Ck, we are able to represent it with a

list of driver-independent features (such as information about the city and the contest

design), FCk
. For every treated driver j in Ck, we are able to estimate the treatment

effect of Ck on j, ∆RITE
Ck,j

. Let the start time of the team contest period of Ck be tk;

we represent a driver j with a set of features about their demographics or activities

that are observed before tk, denoted as Fj,tk . We are also able to represent the team

that j joins, team(j), with a set of features Fteam(j). Note that Fteam(j) could contain

aggregated features of its members, or Fteam(j) ∼ g(Fi,tk |i ∈ team(j)).

Given these notations, we define the problem of predicting the individual treat-

ment effect as finding a function f(·) that maps the feature representations of the

contest Ck, a driver j, and the team team(j) to the treatment effect of Ck on j, that

is,

∆RITE
Ck,j

= f(FCk
,Fj,tk ,Fteam(j)). (5.4)

The prediction problem as defined is intrinsically challenging. First, predicting

human behavior is hard given the great complexity in cognition and decision making

[125]. Second, ∆RITE
Ck,j

as defined is essentially a “change” in behavior, which is

harder to predict than the behavior itself. Moreover, the huge heterogeneity among

drivers, teams, contests, time, and environments results in a wide variation in the

ITE. These challenges call for a careful selection of features and predictors. In the

126



following sections, we show how to extract the feature representations of FCk
, Fj,tk ,

and Fteam(j), and how to find the function f(·) through a machine learning approach.

5.4 Predictive Features

Our comprehensive dataset presents unprecedented opportunities to measure a

wide portfolio of conditions related to the driver, the team, the contest, and the

experimental environment. In this section, we characterize these conditions as in-

formative features, generated based on the theoretical insights from the literature

on contest theory, social identity theory, and virtual teams, as well as the domain

knowledge from the operational practitioners at DiDi.

5.4.1 Contest Design

We start with contest design features, such as the winning condition and the prize

structure. This set of features determine the utility function of the participants and

directly affect their motivation and efforts devoted. Currently, the platform relies on

their intuitions to decide contest designs. They are eager for actionable insights and

guidance on how to optimize these designs. Apart from execution options such as

team size, contest-group size, and timing, we build upon the theoretical inferences

in contest theory or social identity theory to describe the incentive mechanisms in

contest design.

For example, how to allocate the prizes in a contest group? Give them all to the

best-performing team or split over several placements? Although this question has

been analyzed in contest theory: under certain assumptions, rewarding the best in

the contest group is the optimal strategy [101], it is seldom tested in field. We code

the team bonus for each of the top 5 teams in a contest group.

127



5.4.2 Driver Properties

This set of features capture the demographics and behavioral patterns of a driver

before the contest, which we assume would affect the outcomes. To depict driver

behavioral patterns before contests, we retrieve drivers’ daily revenue, daily number of

rides, and daily hours on the platform, each in three periods: the baseline period (see

Section 5.3.2 and Figure 5.1), 7 days before the contest starts, and 30 days before the

contest starts. These features are designed to capture the most comparable activities

to the contest period, the most recent activities before contest, and the longer-term

work habits. We also collect driver demographics, such as age, gender, and number

of months on platform (i.e., DiDi age).

5.4.3 Team Properties

This set of features are related to team-level characteristics that may significantly

influence the behaviors of a member. Apart from basic team characteristics (e.g., size),

we investigate team diversity, team history, team competitiveness, and the influence

of team on individual driver, drawing upon previous literature [138, 2, 107, 102].

For example, we capture team diversity from three aspects: age diversity, home-

town diversity, and diversity in activity region. As illustrated by Figure 5.2a, age

diversity is shown to be a potential strong predictor of ITE. For another example,

to depict team history, we calculate the average number of times that any two team-

mates have been in the same team before this contest. While literature has reported

both the positive and the negative effect of team history on team performance [107],

Figure 5.2b shows that the relationship between team history and ITE follows an

inverse-U shape: no history and too much history could be equally harmful! Teams

perform the best when on average half of the pairs of drivers have been teammates

before, or translated to roughly 70% old members and 30% new members if a team

is built on a previous team.
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(a) (b)

Figure 5.2: Relationship between features and ITE

5.4.4 City Properties

We also consider the environments where a contest is held, which may influence

the motivation and outcome of the contest. We describe the status quo of DiDi in the

contest city with the number of historical team contests, the number of DiDi drivers,

and their average hourly pay. Moreover, we consider general demographics of the

city, such as its development level and the province it belongs to. We also retrieve

the weather reports of the city during a contest.

A more comprehensive list of features can be found in Table 5.2. Preliminary

analysis has identified many correlations between these features and the ITE, although

we only show two of them due to the space limit, promising the feasibility of predicting

the ITE.

5.5 Predicting ITE

To what extent can the combination of the factors in Section 5.4 jointly predict

the ITE? Practically, it is also valuable to know how these predictions generalize to

out-sample, new contests. Building machine learning predictors is a desirable solution

for both aspects.
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Table 5.2: Examples of features with detailed description

Whether there is a fixed-amount team bonus for the 1st-rank team in each competition group

[Total fixed-amount bonus] & [Individual expectated bonus amount] for the 1st-rank team in each competition group

Daily Avg of total fixed-amount bonus for the 1st-rank team in each competition group

Whether the competition uses pooling (vs fixed) bonus for the 1st-rank teams in each competition group

[Total amount] & [Individual expectated bonus amount] of bonus pool for the 1st-rank teams in each competition group

Threshold Whether there is a minimal-performance requirement to get a team bonus

Whether there is an extra bonus for the captain of the 1st-rank team in each competition group

Total extra bonus for the captain of the 1st-rank team in each competition group

Other Bonus Whether there is an extra individual goal-setting bonus: one can get a reward as long as him/herself satisfies the requirement

Evaluation Metrics Whether the worst individual performance counts towards team performance and bonus allocation

Team size Number of teams in a competition group

Day of week Number of workdays in the competition

Basics Age and gender of driver

DiDi Specific DiDi age (time after joining DiDi) of driver

Productivity Daily revenue Avg. & Std. of the driver [in the baseline period] & [in 7 days before the contest] & [in 30 days before the contest]

Number of historical competitions a driver has participated in before

ITE of the driver in last competition participated

Age Std. of driver age in a team

Hometown Avg. pairwise geographical distance of hometowns

Avg. pairwise distance of the center locations of driving activities

Avg. pairwise cosine similarity of the vectors representing number of rides taken in each sub-area

Avg. & Std. of pairwise number of times competing in the same team before this competition

Avg. & Std. of number of times any half of the team competing in the same team before this competition

Absolute Avg. of team daily revenue [in the baseline period] & [in 7 days before the contest] & [in 30 days before the contest]

Relative Difference of team Avg daily revenue between this team and [the mean of all teams] & [the best team] in the competition groups

Team-driver Difference of driver Avg daily revenue between this driver and the mean of all drivers in the team

Best Team-driver Difference of driver Avg daily revenue between this driver and the mean of the best team in the competition group

Team Size Number of drivers in the team

Formulation System-formed versus self-formed

Hourly Pay Avg. of hourly pay of all drivers in the city [in the baseline period] & [in 7 days before the contest] & [in 30 days before the contest]

Supply-demand Avg. of city-level daily supply-demand rate [in the baseline period] & [in 7 days before the contest] & [in 30 days before the contest]

# of Drivers Number of drivers in the city worked [in the baseline period] & [in 7 days before the contest] & [in 30 days before the contest]

Rewarded Activity Number of days that the city has other city-level rewarded activities events during the competition

Region Administrative (Province) and geographical region of the city

City Classification Tier of the city which comprehensively represents the development, population, economics, etc. of the city

Other

DiDi Related

Demographics

Fixed 
Team Bonus

Pooling 
Team Bonus

Diversity

Region of Activity

History Team History

Competitiveness

Social Influence

Contest Design

City Properties

Team Properties

Driver Properties

Bonus 

Captain bonus

Other

Demographics

Behavioral
Contest History
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5.5.1 Model Training and Evaluation

We expand the feature exploration and craft 555 features to represent factors of

contests, drivers, teams, and cities (see Table 5.2).

We follow the standard practice and split the contests in our analysis into training,

validation, and test sets based on the time of the contests. Contests that ended on or

before June 30, 2018 are used for training and contests that fell entirely in July are

used as validation set.

To determine the hyperparameters, we conduct grid-search using the training and

validation set. Apart from the model specific hyperparameters, we also select the

best configuration of feature scales (i.e., original, Min-Max, standardization). We

apply Min-Max and standardization for Lasso and Ridge, finding standardization

performing the best. For GBRT models, the data of the original scale out of all three

scaling methods derives the best performance.

Finally, we use all contests that ended on or before July 31, 2018 to retrain the

model and report its performance on the test set, which contains the contests starting

in August 2018.

The performance of a machine learning predictor can be measured with RMSE :

RMSE =

√∑
k,j

(
∆RITE

Ck,j
−∆R̂ITE

Ck,j

)2
/
∑
k

N(Ck), (5.5)

where N(Ck) is the number of drivers participating in contest Ck.

There are many machine learning models that can be used for building the pre-

dictors. Our main goal is not to optimize the prediction accuracy but rather to

understand the effect of individual predictive factors on the target – the ITE. There-

fore, we consider two objectives in selecting the machine learning algorithms: (1)

they should be able to capture the linear and non-linear effects of features and their

interactions; (2) they should provide an easy mechanism to interpret the predictive

power of individual features. We select two standard and commonly used algorithms.
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One is Lasso [132]. As a linear model, the learned coefficients provide a natural

interpretation of the predictive power of features. The other is Gradient Boosted

Regression Tree (GBRT) [63], which can capture the non-linearity and interactions

of the features. The feature importances reported by GBRT can help interpret the

contributions of different features in predicting ITE.1 We also train Ridge models

[77] to verify the robustness of linear models to different regularization. We did

not choose neural networks as it is harder to interpret the importance of individual

features with a deep neural network.

5.5.2 The Prediction Performance

We tune the hyperparameters of the machine learning models rigorously based

on validation RMSE and report the performance of the models on test set (contests

starting in August) in Table 5.3. We construct two baseline predictors for comparison.

The uniform baseline predicts all ITE as the mean ITE in the training set, while the

random baseline draws from a Gaussian distribution estimated from the ITEs in the

training set. We separately train the models in two settings, one with drivers in

all teams and one with system-formed teams only. From Table 5.3, GBRT, Lasso,

and Ridge all achieve similar performance, reducing RMSE from the better baseline

(Uniform) by up to 24.50% (p < .01) on all teamed drivers and 24.77% (p < .01) on

drivers in the system-formed teams only. The consistency between the two settings

suggests that the estimation of ITE can generalize from the system-formed teams to

all teams.

Note that both GBRT and Lasso are ”selecting” features during the training

process. By examining the non-zero coefficients in Lasso and the positive feature

importances in the GBRT, we can know which salient factors the two models rely on

to make predictions. As we can see from Table 5.3, the numbers of features selected

1We use glmnet 3.0-2 package (https://cran.r-project.org/web/packages/glmnet/index.html) for
Lasso, Ridge; scikit-learn 0.20.0 package (https://scikit-learn.org/stable/) for GBRT.
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(a) GBRT (b) Lasso (with Normalized Features)
              * The worst performance counts towards team performance: 0 = counts, 1 = doesn’t count

*

Figure 5.3: Importance scores of selected features from the best-performing GBRT
and Lasso model for all teamed drivers

by the different models are quite different (251 vs. 119). In other words, the two

models achieve similar performance based on different sets of features, due to the

different model structures.

Table 5.3: Model performance, evaluated by RMSE

All-teams Drivers System-formed-teams Drivers
Model Val. R. Test R. # Ftr. Val. R. Test R. # Ftr.
GBRT 139.19 147.96 251 125.00 139.67 248
Lasso 141.75 148.46 119 137.25 141.40 116
Ridge 142.16 150.55 555 136.26 143.65 552
Uniform - 195.97 - - 185.66 -
Random - 266.34 - - 250.63 -

5.6 Analyzing Prediction Results

5.6.1 Which Features Predict Treatment Effects?

We examine the most predictive features nominated from both models. Figure 5.3a

and 5.3b each show 20 selected features from the best-performing GBRT and Lasso

models with all-teams dataset. Both all-teams and system-formed-teams datasets

produce similar results, and we choose to report the former since we do care about

making predictions for everyone when deployed in the operations.
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5.6.1.1 Contest Environment

We start with a set of factors about the environment of the contest.

Weather. The largest (negative) factor by Lasso for the individual treatment

effect is the proportion of snowstorm days during a contest (p < .01). This is easy

to understand as severe weather conditions would limit travel activities and driving

efficiency.

Location. We observe clear heterogeneity of ITE in different locations. Con-

tests held in certain provinces or cities have significantly higher/lower effects. Basic

demographics of the city (such as population) do not appear to be predictive. The

geographical heterogeneity may attribute to other properties of the locations.

Supply-Demand Rate. Surprisingly, the second largest negative factor identi-

fied by Lasso is the supply-demand ratio of the city where a contest is held. Team

contests are more effective in cities of greater supply shortage (p < .01). This makes

sense, as when supply can’t meet demand, more effort of a driver ensures more profit.

When supply exceeds demand, even if drivers intend to work harder, they are unlikely

to receive more orders. This finding is directly actionable: sharing economy platforms

should prioritize incentive-based experiments in areas of a greater supply shortage.

5.6.1.2 Driver Demographics

Young means high? No! The sharing economy has been commonly perceived

as a ”young people’s business.” 2 However, we find that middle-aged drivers and those

who have joined the platform earlier experience greater treatment effects. In both

GBRT and Lasso, age of driver is one of the most predictive features. Indeed, in

Figure 5.4a, we observe that the treatment effect of team contests increases with age,

tops among drivers in their 40’s, and decreases when drivers are over 50. One possible

2https://www.forbes.com/sites/homaycotte/2015/05/05/millennials-are-driving-the-sharing-
economy-and-so-is-big-data/, retrieved in October, 2019.
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interpretation may be the high economic pressure on the middle-aged group. ITE also

increases with a driver’s age on platform. A longer lifespan on the platform indicates

more experience and a greater motivation to stay in the business. From Figure 5.4b,

veterans (on DiDi for over a year) have higher ITE (p < .05), and the trend does not

drop down.

Rental Cars. Results show that drivers are more productive in contests when

they don’t own their vehicles but have rented from a DiDi partner (p < .01). One

possible reason is that these drivers are more motivated to earn extra rewards to cover

the rental cost, or simply the rental vehicles are in better conditions.

5.6.1.3 Pre-contest Activities

The pre-contest activities of a driver show strong predictive power.

Productivity in Previous contest. Results (see Figure 5.3a) suggest that

the individual treatment effect of this contest depends on the revenue the same driver

received in the previous contest they participated in (p < .01). Not surprisingly, if a

treatment was effective on someone, the same thing would likely work again.

Productivity Variation. One of the most surprising factors is the variance

in pre-contest activity levels. Results show that the standard deviation of a driver’s

daily revenue in the 30-day period before the contest has a positive correlation to

the treatment effect (p < .01) from Figure 5.4c. Similar effects are observed when

productivity is measured by work time or number of orders. When a driver’s work

habits are irregular, inner-team coordination may drag their behavior towards the

social norm. Drivers of a high variation are also likely to be working part-time, and

they have more room to improve through the contest.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.4: Relationships between features and ITE

5.6.1.4 Team Properties

Team structures and interrelations between members are also predictive. In social

network and organization literature, there are theoretical and empirical discussions

about how structural properties affect the functionality of a team or community (e.g.,

[44, 24]). Our analysis provides empirical evidence (in the context of the sharing

economy) to these theories while also reveals novel findings.

Homophily. From Figure 5.3b, we observe that homophily (similarity of team

members) by region of activities is a strong predictor of the treatment effect. This
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effect is positive and almost linear (see Figure 5.4d). Previous literature suggests that

physical distance (the inverse of homophily) negatively influences the performance of

virtual work teams as it reduces shared contextual knowledge, emotional attachment,

and non-verbal cues in collaborations among team members [89]. Our result extends

previous work by finding that physical distance is harmful (p < .01) even when it

requires little coordination and communication to complete the team tasks.

System-formed Teams. The method of team formation is an important predic-

tor in both models. Teams filled by the system on average yield a smaller treatment

effect than teams fully formed by drivers (p < .01). We note an apparent confound

that drivers who form teams without the help of the platform already knew each

other: they may be acquaintances in real life (related to homophily) or they may

have been teammates in previous contests.

Role of captain. We find that team captains generally have higher ITE than

other team members during contests (p < .01, see Figure 5.3b). This is intuitive,

as drivers who volunteer to be captains are likely to be more dedicated. Another

possible explanation is that the captains are “leading by example” [76].

Social influence. A rather intriguing finding by the GBRT is that social in-

fluence, rather than individual behaviors, is a strong predictor of ITE. As shown by

Figure 5.3a, the top feature measures the difference between the pre-contest produc-

tivity of a driver and the average pre-contest productivity of the team. The lower a

driver’s pre-contest productivity is than the team average, the higher their produc-

tivity increases through the team contest (p < .01). This desirable outcome may be

attributed to how a team functions, as social influence drags the inactive or inexpe-

rienced drivers towards the norm [48]. Note that for drivers who were already sig-

nificantly more productive than their team average, the team may have also dragged

them backwards towards the norm. Do these drivers constitute a large proportion

in each team? By calculating the difference between the pre-contest productivity of
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individual drivers and the most productive team member instead of the team average

(Figure 5.4e), we see that most drivers receive a positive social influence, unless they

are (or are close to) the most productive ones in their teams (with this difference

close to zero).

In contrast, drivers are more motivated when the pre-contest productivity of their

team is closer to that of their competitors. As shown in Figure 5.4f, ITE is higher

when the pre-contest productivity of a team is closer to that of the winning team in

its contest group.

These findings provide novel insights for both team formation and contest de-

sign: it is desirable to mix drivers with different activity levels, so that the more

productive/experienced drivers may help the others and improve team performance.

However, such a service role may hinder the motivation of the top drivers and slow

down their own productivity, so it is important to provide additional incentives to

the helpers. It is also important to match the competitors so that all the teams are

competitive in the group.

5.6.1.5 Contest Design

More is Less! Contrary to common sense, our results show that providing

more bonuses does not necessarily lead to a better outcome. Specifically, the Lasso

model suggests that while in general drivers work harder for high financial rewards,

an ill-designed extra bonus could inhibit the treatment effect. For example, when

the 5th-performing team (the bottom team in most contests) in a contest group

is rewarded, drivers become less motivated as everyone is guaranteed some reward

(p < .01). In addition, if team captains receive an extra bonus, drivers in general

become less productive (p < .01). The inequality between captains and members

might have shifted the team goal from fighting for team identity to fighting for the

captain, reducing the motivation of others.
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Inner-team Competition. Adding enforced within-team competition might

hurt the treatment effect: drivers are less productive if the revenue of the worst-

performing driver is excluded from calculating team performance and bonus allocation

(p < .01). Note that without this arbitrary mechanism, there is also implicit, natural

competition among team members, as in most contests, the rewards are allocated

based on the contributions of members.

In general, the above findings are directly actionable by contest organizers, to

improve the outcomes of team contests by simply altering a few design options, at an

even lower cost. We will show the potential of these opportunities with more details

in Section 5.7.1.

5.6.2 Which Cases are Harder to Predict?

While the the best-performing models have already improved the baseline by 24%

and generated lots of insights, the accuracy numbers do not look perfect. Indeed,

individual treatment effect is perhaps one of the hardest targets for a prediction task

[60]. We conduct an error analysis of the best-performing GBRT model, trying to

obtain insights into what have been the harder/easier cases.

We calculate both the prediction error (∆R̂ITE
Ck,j
−∆RITE

Ck,j
) and its absolute value

for each driver in the test set and examine their correlations with the features, using

Pearson’s correlation coefficient r for continuous and Student’s t-test score for dummy

features.

We find that the GBRT is less accurate when drivers have a high variance in pre-

contest revenue, (r = 0.41, p < .01). This is intuitive: when the activities of a driver

are irregular, their future activities are also hard to predict. This again highlights

that predicting individual treatment effect is intrinsically challenging, especially in

our context due to the huge heterogeneity of drivers. It is harder to predict for team

captains than for team members (t = 12.74, p < .01), and for drivers in self-formed

139



teams than for those in system-formed teams (t = 23.07, p < .01). Our model also

tends to underestimate the ITEs when the average hometown distance between a

driver and their teammates is larger (r = −0.02, p < .01).

In addition, the absolute prediction error is significantly higher when there are

more teams in one contest group (t = 18.93, p < .01 comparing groups of 3 vs. 5

teams) and when drivers’ average hourly income of the city is higher (r = 0.23 and

p < .01).

Overall, these factors that correlate with prediction errors are not hard to under-

stand. Although we did not observe concerning biases, it is important to consider

these patterns when applying the prediction models to different driver groups and

new contexts.

5.7 Design Implications

We have obtained promising and actionable implications for the future design of

team contests, which could affect the current practice of two aspects: contest design

and team recommender systems.

5.7.1 Contest Design

Many findings about better contest design are immediately actionable. They are

mostly about how to design incentives to balance the intensity and fairness of inter-

and intra-team competitions. For example, (1) providing an extra bonus for the

captain of the top team creates an inequality between captains and team members,

which has a negative impact on the individual treatment effect; (2) excluding the

lowest-performing driver from bonus allocation also results in unfair treatment within

the team, which hurts the team performance in general. In a contest group, however,

it is important to make sure that all teams have comparable levels of performance, so

that no one loses the motivation to win. (3), it is also harmful to give awards to every
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Table 5.4: Performance of three prototype contests under the original design and
simulated new designs

Period C1 C2 C3 Design
True
ROI

Best-design ROI
(with 95% C.I.)

Worst-design ROI
(with 95% C.I.)

A Train Y Y Y Worst 2.86 4.43 (4.09, 4.76) 2.86 (2.58, 3.13)
B Test Y N Y Bad 10.61 13.50 (12.68, 14.30) 10.50 (9.61, 11.34)
C Train N N N Best 2.58 2.58 (2.21, 2.94) 0.71 (0.40, 0.99)
C1: Has captain bonus for top team; C2: Has team bonus for 5th team in group;

C3: Worst individual score included in team performance and bonus allocation.

team, as free lunch hinders the motivation of active competitors. These design options

can all be easily reversed in future contest. To demonstrate the potential benefit of

such changes, we conduct a simple counter-factual analysis through simulation.

First, we select three real contests with different choices on the three dimensions

above. We hypothetically vary these design choices with everything else kept the

same (such as participants, team structures, etc.), and we simulate the “expected”

outcome through predicting the ITE of every driver in the three contests under each

new design. The benefit of changing a design option can be measured by the difference

between the simulated outcome under the new contest design and the outcome of the

true design. Table 5.4 lists the original design choices of the selected contests.

Through simulations using the trained Lasso model, we can compare the expected

outcome of the best and the worst possible configurations and the configuration in

reality. Because the trained predictor is not perfect, we further adjust the prediction

results by adding Gaussian noise following (1) the prediction error distribution of the

training period or the test period (depending on which period the simulated contest

fell into) and (2) the prediction error distribution of the original contest (with the

unchanged design). Intuitively, because all other factors are controlled, we anticipate

that the expected prediction error for the simulated contest shouldn’t diverge much

from that of the original contest.

For each simulated contest, we bootstrap 1,000 times by sampling the number
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     (a) Contest A     (b) Contest B     (c) Contest C

Figure 5.5: Simulated ATE of three prototype contests under the best design and the
worst design

of treated drivers in the contest with replacement. Bootstrapping helps us estimate

the confidence intervals of the expected average treatment effect. In Figure 5.5, we

report the bootstrapped average treatment effect of different simulated designs for

the 3 prototype contests, including the best, the worst, and the original designs. We

report the simulated ATE with prediction error uncorrected, corrected using period-

level distribution, and corrected using contest-level distribution. Clearly, there is

a significant difference in average treatment effect between the best and the worst

design choices (26%, 39%, and 191% improvement over the worst design respectively

for contest A, B, and C). In contest A and B, the expected ATE (prediction error

corrected at the contest-level) of the optimal design significantly outperforms the ATE

of the original contest (using the actual design), with an improvement of as much as

26 percent. The expected ATE does not outperform the true ATE in contest C, as

the original design is already the best. Moreover, the design choices may also affect

the ROI (Revenue-over-Investment) of the contests. As shown in Table 5.4, the ROI

can increase by as much as 55% from the original to the best design in simulation.

The results above are promising. They demonstrate that by simply varying a few

design options, both the drivers and the platform can benefit significantly. Many other

design options could be improved based on the analysis in Section 5.6.1.5, although

it’s harder to demonstrate them through a simple counter-factual simulation.
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5.7.2 Team Recommendation

Our findings also shed light on how to better design team recommender systems.

For example, it is better to first team up friends and former teammates, and then

introduce new drivers to the team. It is beneficial to combine low-performing and

newer drivers with high-performing and experienced drivers in one team. Teaming

people who are from the same hometown and who work in similar areas can also

boost performance.

5.8 Limitations and Future Opportunities

First, this study focuses on exploring predictive factors that explain the variance

of ITE across individuals, teams, contests, and cities. Although the estimation of

the ITE follows the standard practice of causal inference, the prediction model does

not guarantee that relations discovered between the features and the ITE are causal.

Future studies are needed to establish causal relationships between the predictors

identified and the ITEs.

Second, the benefit of optimized contest-design options is estimated based on

simulations. While the three design options are carefully selected to be independent

as possible from other factors (so we can control the confounds), it is not impossible

that changing these options would result in a change in others. For example, there is a

probability that dropping the bonus for the 5th team might result in less participation.

As in the literature [94], we note that a field A/B testing is highly suggested to

examine the effectiveness of the counterfactual model in the wild.

In addition, all analyses and findings are based on field experiments and data

collected from one ride-sharing platform in one country. Our conclusions may be

generalized to other platforms, countries, and domains with caution.

Finally, we acknowledge that future research should analyze bias and fairness
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across drivers and understand the effects on other outcomes besides revenue. Biases

can appear in any phases of data collection, model development, and results imple-

mentation. A bias and fairness analysis should ideally be performed before widely

applying these results. In addition, while this paper focuses on promoting driver

revenue, note that the design of contests and recommender system may lead to other

results beyond increasing driver revenue. For example, would drivers on average be

less happy or more happy if the last individual performance were invalid for team

performance? As another example, would removing the bonus for the top-performing

captain affect the captain hierarchy design and career path development? More re-

search is expected to examine the effect of team contests beyond driver revenue.

5.9 Conclusion and Take Away

This is the first predictive analysis of individual treatment effects of team contests

in DiDi, a leading platform of the ride-sharing economy. The analysis investigates

hundreds of large-scale team contests in 143 cities, involving half a million drivers, tens

of millions of rides, and a comprehensive set of features of the drivers, teams, contest

design, and experimental conditions. Through linear and nonlinear machine learning

algorithms, these features demonstrate decent predictive power of individual outcomes

in team contests. Our findings present many new insights and useful implications

for the research and business practices of team contest, the sharing economy, and

online field experiments in general. Some of the findings are immediately actionable

in optimizing the design of upcoming team contests. Future directions of the work

include testing these insights with field experiments, investigating the causal links

between the heterogeneous factors and the ITE, and generalizing the procedure to

other sharing economy platforms.

Connecting to the human-centered data science framework (see Figure 5.4), we

show that counterfactual machine learning helps to analyze experimental data and
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that theory can inform feature generation to enhance the predictive power of machine

learning models. These results also suggest that counterfactual machine learning is

able to uncover data-driven insights to optimize interventions.
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CHAPTER VI

Conclusion

This dissertation proposes a framework of human-centered data science combining

data science techniques and social science theories to investigate worker performance.

In this chapter, we summarize the dissertation and conclude with a discussion of

future directions.

6.1 Summary

The development of information technologies is reshaping the work of the labor

force. These technologies foster millions of jobs in the novel contexts of gig economies

and provide new tools to support work in traditional sectors. The recent outbreak

of COVID-19 has added to the changes by greatly shifting work towards the virtual

end of the spectrum, bringing tremendous challenges for workers across the world.

All these new work contexts and work-support tools bring into question our existing

knowledge and methods toward improving worker performance, prompting a need to

study worker performance in the modern era.

To approach this problem, online platforms, the big data documentation describ-

ing workers, organizations, and societal contexts, as well as data science techniques,

have provided unprecedented opportunities: online platforms allow fast, precise, and

large-scale interventions in the wild, big data contains rich information, and data
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science techniques provide advanced tools to discover data-driven insights. These

large-scale field interventions and advanced data analytics complement our exist-

ing knowledge about human behavior that is commonly embedded in social science

theories. Therefore, in this dissertation, we propose a human-centered data science

framework that synthesizes the strengths of machine learning, field experiments, and

social science theories to promote worker performance.

While each of machine learning, field experiments, and social science theories have

each been separately examined to study worker performance, traditional monomethod

approaches cannot tackle the challenges rendered by large and complex data in the

modern era: they either cannot handle complex relationships among human and con-

textual factors, or cannot fully incorporate existing knowledge, or lack the scalability

to deal with high-dimensional large-scale data. These challenges call for interdisci-

plinary solutions leveraging both the advanced analytic skills of data science and the

deep insights of social science.

To approach this question, our human-centered data science framework comple-

mentarily connects machine learning, field experiments, and social science theories

to study human behavior. This framework is rooted in our recognition of the ad-

vantages of each component – machine learning is featured by an ability to handle

large and complex data to predict human behavior; field experiments perform precise

interventions and establish the causality by real-world observations; and social sci-

ence theories present rich existing insights in describing, predicting, and explaining

human behavior. As such, this framework emphasizes the strengthened power of in-

teractions among these components. To empower (counterfactual) machine learning,

we would like to leverage existing insights from social theories by informing feature

construction, model architecture, and model explanation and deploy field experiments

to help evaluate the effectiveness of these models in real-world practices. Moreover,

to discover nuanced data-driven insights from field experiments, we incorporate ma-
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chine learning to conduct more sophisticated analyses of experimental data by reveal-

ing heterogeneous effects at a finer granularity, such as individual treatment effects.

These data-driven discoveries complement theory-based insights to inspire better ex-

perimental designs. In addition, causal insights derived from field experiments and

counterfactual machine learning models could support the testing of existing theories

and the development of new theories that better reflect reality.

How can we apply this framework in real-world work practices? In this disserta-

tion, we present three studies in both traditional jobs and the modern workforce to

exemplify the flexibility and effectiveness of applying the framework.

First, we show that the predictions generated by machine learning models could

help the tenant support specialists with more informed and effective decisions, in-

creasing work performance. To help detect landlord harassment and provide follow-up

assistance, New York City’s government has established a Public Engagement Unit

(PEU). The PEU’s outreach specialists go across the city and knock door-by-door

with little idea of whether there will be a harassment case behind a door, which

significantly limits the number of harassment cases they are able to identify. By

analyzing their historical canvassing records and contextual data about local areas,

we are able to use machine learning to help predict the harassment risk level associ-

ated with every residential building in the city. Our best-performing model has the

potential to increase their work performance by 59%.

While these results are promising, they are based on historical data. Would the

new outreach strategy proposed by our model be effective in reality? Or, more gener-

ally speaking, would a new algorithm or intervention strategy have effects in real-world

practices? A gold standard to address this question is to conduct field experiment,

which we illustrate in our second study.

In the second application, we design a new intervention and demonstrate its effec-

tiveness in improving worker performance with a large-scale field experiment. Specif-
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ically, in collaboration with DiDi, a ride-sharing economy platform, we leverage social

science theories and propose a team-based solution by first organizing workers into

virtual teams and then engaging teams into team contests. The results of the field

experiment show that virtual teams and team contests significantly increase worker

performance (reflected by revenue) even when there is no financial incentive during

the contest. The treated drivers continue to work longer on the platform even three

months after the end of the experiment.

The virtual team solution accomplishes great success in general. Yet, we observe

a huge variation of the treatment effect across individuals, teams, and cities. Can

human-centered data science help us to understand which drivers and teams benefit

more from team contests, which contest design generates the highest effect for a given

sample, and why a contest design works for one city but not another? We deploy the

next study to address these questions.

In the third study, we deploy counterfactual machine learning models to pre-

dict the individual treatment effects of more than 500 large-scale field experiments.

Leveraging features inspired by social science theories, our models make more precise

predictions than the baseline. By interpreting the model, we are able to identify

insights that are directly actionable to customize contest design and team formation.

Further counterfactual analysis illustrates the potential effectiveness of the new ex-

perimental designs in increasing the treatment effects. This study presents the power

of integrating counterfactual machine learning, field experiments, and social science

theories in enhancing work practices.

Taken together, these three studies effectively apply the framework of human-

centered data science in improving worker performance. They together show the

flexibility and power of integrating machine learning, field experiment, and social

science theories in addressing practical behavioral problems in various work contexts.
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6.2 Discussion and Implications

Overall, we believe this framework of human-centered data science speaks to a

diverse audience. For machine learning researchers, this framework highlights the

great potential of applying machine learning to approach causal questions and social

science problems, such as improving worker performance. For social scientists, we

point out the possibilities of incorporating advanced data analytics in causal research,

as well as the informative power of theoretical insights on data science techniques. In

addition, this framework presents an organic integration of data science techniques

and social science theories to industry and domain experts, who can benefit from

flexible and effective applications combining machine learning, field experiments, and

theories.

The empirical studies in this dissertation present promising results in improving

worker performance; yet, we acknowledge potential ethical concerns especially when

the results of machine learning models are directly and widely applied without field

trials and bias/fairness analysis. First, biases in data collection may lead to biases

in prediction results, raising ethical concerns. For example, in Chapter III, since our

models are trained only on the data of buildings canvassed by TSU, and there is

some bias in how TSU selects buildings to canvass, the accuracy of predictions might

be higher on similar buildings than unlike ones, resulting in inequality in assisting

tenants. Second, machine learning models may prioritize certain subgroups, leading

to unfair prediction-based interventions across the population. The original problem

formulation in Chapter III shows an example: the model prioritizes the outreach to

large buildings because of the flawed problem formulation, reducing the probability of

being assisted for tenants living in small buildings. Moreover, one should pay special

attention to model fairness when demographic factors are included in features, such as

gender and race. Third, the data-driven interventions suggested by machine learning

predictions may lead to unwanted effects on the aspects outside the scope of machine
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learning features and outcomes. Taken the study in Chapter V as an example, it is

unknown whether the contest designs proposed by the machine learning models have

additional effects on driver happiness and driver health beyond their outcome variable

— driver performance. Machine learning models typically consider only a few, if not

one, outcome variables in the optimization objective. However, real-world problems

related to human behavior are commonly much more complicated. We suggest that

human-centered applications of machine learning models should consider the effects of

model implementation on other factors besides the outcome variable(s) of the models.

In addition, several interactions among machine learning, field experiments, and

social science theories in the framework have not been deeply investigated by our

three empirical studies, on which we expect more solid future work. For example,

the framework suggests that counterfactual machine learning can be deployed to

test existing theories or build new theories. While we observe preliminary evidence

from the team-contest studies that drivers in the gig economy might undermine the

common assumption of independent and identical distribution in economics theories,

we suggest more effort in discovering theoretical insights via machine learning.

We also would like to apply this framework in other human behaviors beyond

the two presented work contexts and beyond worker performance. The focus of this

dissertation is to improve worker performance; yet we expect this framework to be

more generalizable to other application domains, such as health, education, and the

pro-social behaviors of the general public.

Third, we hope to strengthen this framework by incorporating more methods.

The current framework focuses on analyzing intervention data, particularly the data

generated by experiments. Therefore, it has limitations in discovering actionable

insights from other types of data, such as observational data. To enrich the data and

problems that the framework is able to handle, future research should bring in more

methods, such as more causal inference methods.
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In all, this dissertation proposes a framework of human-centered data science

to improve worker performance. We suggest more efforts in addressing potential

ethical issues and encourage further research that deploys the framework to more

application domains and that strengthens the framework with additional methods.

Our work opens many research directions for further exploration, and we conclude

the dissertation by outlining a few specific promising opportunities.

6.3 Future Direction

Promoting Worker Performance in Traditional Sectors. First we hope to pro-

vide predictions at a finer granularity to better support decision making. For example,

in the NYC project, we predict whether there will be cases in a given building if the

specialists visit in the next month. However, the outreach outcomes might change

depending on the visit day of the week or time of the day. We would like to adapt the

predicted units and involve more factors to inform more precise interventions, such as

by reformulating the problem to predict whether there will be cases in a given building

if the specialists visit in the morning time during the next month. Second, we would

like to incorporate fairness and bias analysis in the implementation of the model. It

is ethically important to understand the heterogeneous effects of applying the models

for different subgroups before we can deploy the models comfortably and confidently.

This indeed also echoes the special challenge and value of human-centered data sci-

ence. For example, our models prioritize the residential buildings only according to

the predicted risk, which may (or may not) lead to inequity or biases across different

subareas and subgroups. We would like to investigate the actual and perceived fair-

ness/bias of these algorithms and propose methods to balance fairness and efficiency

in the implementation of the models.

Enhancing Worker Performance in the Modern Workforce. In the DiDi
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project, we discover many insights regarding the optimal contest design and team

formation strategy by off-policy evaluation. In addition to the evaluation, we would

like to deploy counterfactual learning to optimize the contest design and team recom-

mender for given participants and contexts. Another natural follow-up of this study is

to examine the effectiveness of these new strategies via randomized field trials, closing

the loop between machine learning and field experiments. Moreover, we would like

to investigate new interventions to strengthen team identity. In the field-experiment

study, we use a rewarded team contest to enhance team identity, which represents

the route of inter-team competition. Next, we would like to explore interventions to

improve team identity by within-team coordination leveraging theoretical insights in

social psychology and behavioral economics.

Comparing Worker Performance in Traditional and Modern Workforces.

In the future, we hope to understand the differences and similarities in applying

advanced technologies in different contexts. For example, we hope to compare the

dynamics of teams and team contests between modern housing agents and the gig-

economy drivers. The work context of modern housing agents is different from that

of the ride-sharing work in several ways. First, housing-agent teams involve both

intensive online and hardcore offline activities, while the driver teams on DiDi are

geographically distributed. Second, drivers in the same city rarely directly compete

with one another in picking up rides, but housing agents are highly competitive in

accessing housing sources and customers. And one customer might have several agents

helping at the same time. Third, housing agent work requires more skills, training,

and collaboration than driving on DiDi. Given such differences, would the same team

contests be equally effective for housing agents and DiDi drivers? Would there be

any novel predictors of treatment effect or any new interventions to facilitate worker

performance among housing agent teams? It would be interesting to compare the
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treatment effects of the same interventions in different contexts and to design novel

interventions for further worker performance improvement.
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