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ABSTRACT

Most models for natural language processing learn words merely from texts. However, humans
learn language by referring to real-world experience and knowledge. My research aims to ground
language learning in visual perception, taking one step closer to making machines learn language
like humans. To achieve this goal, I have designed a two-stream model with deep neural net-
works. One stream extracts image features. The other stream extracts language features. The two
streams merge to connect image and language features in a joint representation space. By con-
trastive learning, I have first trained the model to align images with their captions, and then refined
the model to retrieve visual objects with language queries and infer their visual relations. After
training, the model’s language stream is a stand-alone system capable of embedding words in a
visually grounded semantic space. This space manifests principal dimensions explainable with hu-
man intuition and neurobiological knowledge. The visually grounded language model also enables
compositional language understanding based on visual knowledge and multimodal image search
with queries based on image-text combination. This model can also explain human brain activity
observed with functional magnetic resonance imaging during natural language comprehension. It
sheds new light on how the brain stores concepts and organizes concepts by their semantic relations
and attributes.
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CHAPTER 1

Introduction

Language learning is a demanding function for both human and machine intelligence. Humans
use language to record and express their experiences and knowledge. Language is also the key
to establishing communication between one and another. Psycholinguists have been studying
the mechanisms as to how humans acquire, store, and process language information in the brain
[159, 16]. Researchers in artificial intelligence have also been building computational models to
teach machines to understand natural language [183, 35, 39].

To date, most machine learning models designed for natural language processing [123, 162,
35, 21] are based on the distributional hypothesis [67, 42]. That is, words that occur in similar
contexts carry similar meanings. These models, namely the distributional semantic models, show
the most advanced performance on natural language understanding tasks [170] and support the
basic learning principles behind this concise and elegant assumption. One of the most compelling
and influential machine learning techniques inspired by this notion is word embedding [123, 137].
By characterizing the distributional characteristics (e.g., co-occurrence) of words or phrases in a
large corpus, this technique represents each word as a vector in a continuous vector space with a
dimension much lower than the total number of words. Since the representation is learned entirely
from contextual relations, the words clustered in this space often exhibit similar syntactic functions
and semantic meanings [149]. In addition, in some word embedding models, vector arithmetic
captures semantic and syntactic relations and supports the simple composition of meanings [124].
For example, in word2vec space, man - woman + queen results in a vector close to the word
king. For these properties, word embeddings have been widely used as input for more complicated
language models and tasks. This technique has also been successfully applied to other sequential
data that emphasize the co-occurrence of nearby elements, such as genes and proteins [5].

However, the distributional hypothesis is an imperfect principle for language learning. A brilliant
thought experiment by Steven Harnad [66], which was originated from the famous “Chinese

Room Argument”[152], demonstrated that humans could not learn a language only from textual
information. In contrast, humans learn words by relating the meaning of the words to the referent
and experience in the physical world. Suppose you have to learn Chinese as a second language,
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and only a Chinese-Chinese dictionary is provided. Outstanding cryptographers may accomplish
this mission by linking Chinese to another language that has already been grounded in real-world
experience, just like the way they decipher ancient languages. However, learning Chinese as the
first language with only a Chinese-Chinese dictionary seems to be an impossible task, because there
is hardly any way to learn a language, which is a symbol system, if it is not explained by anything
in the physical world but with merely meaningless symbols. [66].

In this sense, the predominant language models are all ungrounded since they learn words merely
based on textual information. Arguably, these models cannot capture the semantics of words or
concepts because they only learned “distributional properties” between words. This discrepancy
retrospectively poses a question to researchers who develop brain-like computing models: As a
more complex and intelligent computing machine, how does the human brain associate words with
specific types of perceived objects or executable actions [139]?

The semantic grounding hypothesis from cognitive neuroscience assumes that concepts are
grounded in action, perception, and emotion systems rather than represented by an isolated system
that is detached from sensory and motor processes [8, 119]. This refers to the grounded cognition
theory. It is supported by the notion that the brain is profoundly multimodal. Human sensory
systems can educate each other without an external teacher [159]. The semantic memory is
established by the bottom-up process from the low-level sensory system to the association areas
and it is further retrieved by the top-down activation in the reverse direction as a simulation process
[9]. Grounded cognition theory advocates that we learn words and concepts by grounding their
meanings in perceptual systems [58, 2, 8, 15, 139, 119]. Consider how children learn the concept
of apple - they first figure out that an apple is a round object, usually red or green, and can be held
with one hand. It feels smooth to the touch, has a fruity taste, and is sweet and sour. Whenever their
sensory systems catch such visual and gustatory features, they will recognize it as an apple In other
words, the concept of apple in their mind is also intrinsically associated with those sensory features.

Inspired by the grounded cognitive theory, my research aims to establish a language learning
model grounded in perceptual systems (e.g., visual perception) to bridge this fundamental gap
between how humans and machines learn language. Briefly, the distributional semantic models only
use textual contexts of a word to learn its vector representation. However, language models can learn
concepts from text paired with sensory data, such as images. This concept of joint vision-language
learning has been explored to perform cross-modal tasks, such as image captioning [106], visual
qeustion answering [163], visual reasoning [28], and scene graph generation [164]. In line with
these studies, we have developed a computational model with deep neural networks to ground
language learning in vision. Specifically, we designed a two-stream model with a visual stream and
a language stream connected at the top for multimodal learning. We first built a two-stream model
to jointly learn visual and language representation from image-caption pairs. We then finetuned the
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learned model by adding a cross-modal attention layer [114, 163] and bilinear operators [182] that
were used to extract representations of the relations between visual objects. Both stages of learning
utilized contrastive loss [68, 79].

After training, the visual and language streams can be separable and computable as stand-alone
systems. We then extracted word representations from the language model and systematically
evaluated the semantic space grounded in vision vs. the ungrounded semantic space learned only
from the text. Our results suggest that after visual grounding, embeddings of concepts can be better
organized and clustered by visual attributes, tend to be more predictive of human-defined norms of
semantic features, and are useful for compositional language understanding and cross-modal image
search.

To apply the word representation learned from the machine learning models to brain research,
we further built a linear encoding model to predict functional magnetic resonance imaging (fMRI)
responses and electrocorticography (ECoG) data collected from human subjects listening to stories.
The encoding results indicate that the human semantic system involves a wide range of bilateral
brain regions. We then used the trained encoding model as a “digital mirror” of the brain in terms of
semantic processing and tested its utility for mapping the cortical representations of word categories,
word relations, and principal axes of the grounded semantics. Our results collectively revealed the
organization of conceptual and semantic features in the human brain. This is a potentially effective
strategy that uses the computational language model as a tool for understanding the fundamental
mechanisms of language processing and embodied cognition.

Chapter 2 defines the research problem and the specific research objectives. Chapter 3 introduces
the background and related works in machine learning and neuroscience. Chapter 4 describes the
detailed methods and results for visually grounded language learning. Chapter 5 elaborates how we
evaluate and interpret the word embeddings learned from the language stream with human intuition
and neurobiological knowledge. Chapter 6 explains the details about our experiments, methods,
and findings by using the computational language model to explain brain data. Chapter 7 discusses
some general future directions toward filling the gaps between how humans and machines learn
language.
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CHAPTER 2

Research Objectives

Computer vision (CV) and natural language processing (NLP) have become popular fields of
artificial intelligence (AI) because of their wide applications. So far, machines have been trained to
outperform humans on many visual tasks (such as image recognition [72]). Nevertheless, it is still
challenging for a machine to learn, understand, and produce natural language in ways comparable
to humans. The development of recent machine learning techniques, e.g., recurrent connection
[122], word embedding [123], sequence to sequence learning [162], and attention mechanism [167],
has significantly improved the performance on various NLP tasks. Besides, recent computational
neuroscience studies suggest that such models are also helpful in studying language representation
and semantic processing in the brain. [86, 77, 191]. However, even the most advanced NLP models
are far from defeating humans on tasks such as question answering and text summarization [183].
In addition, the fundamental mechanisms underlying natural language processing in the human
semantic system remain relatively unexplained by the current computational language models.

One of the main gaps between how machines and humans learn language is that the predominant
language models are solely based on the distributional hypothesis [67], without grounding semantics
in real-world experience. Such language models are different from the semantic system in our
brain because humans learn language and concepts from multisensory and multimodal contexts.
Distributional semantic models only access the word occurrence information in textual contexts
during the learning process. No perceptual experience or knowledge is used to form the conceptual
representation in such models. Given word co-occurrence, one might be able to guess that the
words monkey and banana are closely related. It is still rather difficult to use word co-occurrence to
infer the similarity in visual appearance between monkey and other primates or to know the visual
features such as shape, color, or taste of a banana in its word embedding.

The discrepancy described above has motivated us to design a computational model that links
language learning with physical experience. Inspired by the grounded cognition theory, we assume
that humans learn, store, process, and produce language with a semantic system that is not isolated
but grounded in action and perception systems [9, 8, 139, 119]. A semantic grounding scheme is
needed to enhance the existing language learning models. Specifically, this study aims to establish a
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brain-inspired model to ground language learning in visual perception. This model is expected to
obtain more comprehensive concept representations through cross-modal contrastive learning with
paired visual-language input. After training the language model with not only the textual context
but also the visual context, we expect that the visually grounded word representation can be better
interpreted according to human intuitions and can be further used to study semantic processing in
the brain.

Towards these research objectives, this dissertation was based on the following three specific
aims.

Aim 1: Develop a two-stream deep neural network for visually grounded language learning
We aim to develop a two-stream deep neural network for visually grounded language learning.

One stream extracts hierarchical visual features from natural images, namely the visual stream.
The other stream extracts contextual embeddings from natural language descriptions, namely the
language stream. The two streams are connected and constrained by a cross-modal module to match
the features of paired visual and language input at the top of both streams. During training, this
model can simultaneously transfer the visual information to the language domain and vice versa
and jointly learn multimodal representation of concepts. After training, each stream is reshaped
by the cross-modal information and can be detached from one another to function as a stand-alone
visual or language systems. To gradually ground language learning in vision, we break down the
model training into three stages: the unimodal pretraining, visual grounding of natural language,
and visual grounding of object relations.

Aim 2: Evaluate the word embedding space grounded in vision
We expect the language model can obtain more comprehensive and interpretable conceptual

representations after being grounded with rich visual experience. To verify this hypothesis, we
apply systematic intrinsic evaluations to the word embedding space from the language models.
Specifically, we decompose the semantic space into orthogonal principal components and investigate
the word distributions along the principal dimensions. We further assess word similarity, word
categorization, and predictability of semantic feature norms with existing quantitative datasets
based on human ratings. We also test the conceptual compositionality from visual reasoning and
multimodal image search with a combination of image-text queries. The aim is to understand how
visual grounding affects the language model in its learned semantic representations, by comparing
the language models that share the same computational architecture but are trained with different
contexts - unimodal context (distributional semantic models) or multimodal context (semantic
grounding models).

Aim 3: Apply learned semantic representation to explain information processing in the brain
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After training (Aim 1) and evaluation (Aim 2), we further apply the semantic representation
from machine learning models to explain semantic processing in the brain. For this purpose, we first
collect brain responses from human subjects under naturalistic paradigms, e.g., listening to stories,
imagining a music piece with visual cues. We then build a linear voxel-wise encoding model to
predict brain responses from vectorized word features, by delivering the same naturalistic stimuli to
machines and human subjects. After that, the trained encoding model becomes a fully-computable
model of the human brain in terms of natural language comprehension, which allows us to do
high-throughput computational experiments for mapping a wide range of conceptual and semantic
items to cortical representations, e.g., word categories, word relations, and principal axes in the
visually grounded word embedding space. This approach and its resulting findings shed light on the
cortical organization of high-dimensional semantic information.
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CHAPTER 3

Background and Related Work

3.1 Language learning in machines

3.1.1 Learning principles

Distributional hypothesis. The learning principle in standard NLP models is mostly based on the
distributional hypothesis [67, 14]. By characterizing the distributional properties of words or phrases
in textual contexts, the word embedding technique represents each word as a point in a vector space,
which has a much lower dimension than the total number of words [123, 137]. This vector space
is capable of capturing some level of linguistic properties, such as word similarity (e.g., words
with similar meanings tend to be clustered together) and word relationships (e.g., word pairs with
the same relationship can be inferred by vector arithmetic) [124]. However, different from image
features learned from convolutional neural networks [186], the vector representations of words
are much harder to visualize, explain, and understand [149, 153]. The limitations and trade-offs
between the explainability and learnability of the distributional semantic models have been recently
discussed and highlighted [39, 95].

Symbol grounding hypothesis. As mentioned in the introduction, there is a fundamental gap in
language learning between machines and humans. That is, the predominant NLP models remain
ungrounded [55, 166, 17]. The process of connecting a word to its meaning by relating the word
to its referent in the physical world is called grounding [168] (See illustration in Fig. 3.1). Early
studies used binary perceptual features (e.g., “have 4 legs”) labeled by human participants or
image-based contexts as auxiliary information to build grounded semantic models by using similar
techniques as used for learning word embeddings from textual contexts alone [156, 143, 23, 73, 185].
Findings from these studies demonstrate that perceptual features provide complementary semantic
information to outperform word representations learned purely from texts. These studies also offer
clues to implement the symbol grounding hypothesis as a language learning principal in deep
learning models. However, it remains relatively unexplored how to ground different modalities into
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the state-of-the-art contextual embedding models, e.g., Bert [35], and how grounding affects the
word embedding space.

Figure 3.1: Conceptual difference between distributional semantic models and semantic
grounding models. The distributional semantic models (left) are unable to connect the concept of
a word with its real-world references.

3.1.2 Grounding language learning with multimodal data

The idea of grounding language learning in physical experience follows the distributional hypothesis,
but extends the textual context to multimodal context [98]. For example, visual experience includes
rich perceptual features (e.g., color, shape, texture, environment) of the words that describe various
objects or scenes. Suppose an image and its caption are presented to the model simultaneously
during training. The visual features will play an important role in altering the semantic features in
the language learning model [7].

The computational structure for grounding language learning with multimodal processing can be
summarized into three general methods: multimodal fusion, multimodal mapping, and multimodal
alignment [11]. Multimodal fusion combines several unimodal representations into a single repre-
sentation by concatenation or addition [22]. Multimodal mapping projects representations from one
modality to another with simple computations, e.g., a linear mapping [43]. The approach of jointly
learning for multimodal alignment first separates unimodal representation learning into independent
streams and then optimizes the unimodal representations and cross-modal alignment simultaneously
[68, 79].

Several prior works have been trying to integrate visual information into distributional semantic
models to facilitate visually grounded language learning [89, 81]. Besides, some other modalities
have also been investigated for language grounding, including auditory perception [88], olfactory
perception [87], action [184, 25, 135, 115], and emotion [145].
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3.2 Language learning in humans

3.2.1 Grounded cognition theory

How concepts are constructed and organized in the human brain remains an open question in
cognitive science. Traditional theories assume that there exists an isolated semantic system detached
from other modalities to represent and process concepts. However, the grounded cognition theory
rejects this assumption and hypothesizes that human cognition (e.g., language processing, reasoning)
is grounded in bodily, affective, perceptual, and motor processes [2, 8, 15, 139, 119].

For example, a classic model for grounded cognition is the Perceptual Symbol System proposed
by Barsalou et al. [9]. This model hypothesizes that the perceptual experience activates the bottom-
up process from sensorimotor areas to semantic integration and abstraction in the association areas.
For the top-down semantic retrieval, the association areas reactivate the low-level sensorimotor
areas to simulate the perceptual experience. The abstract representation of perceptual components
(e.g., the semantic feature of red) are stored, processed, and retrieved by semantic memory. By
simulating these perceptual components with attention-controlled top-down processing, concepts
are connected back to the physical experience. This scheme establishes a fully functional conceptual
system without the need for an amodal semantic system and proposes a plausible flow of neural
information processing for grounded cognition [8].

3.2.2 Neuroimaging and behavioral evidence

Although it remains a theoretical hypothesis, the notion of grounded cognition theory is supported
by neuroimaging studies, showing that both concrete concepts (e.g., tools [37]) and abstract concepts
(e.g., emotion [38], numbers [101]) involve neural processing in sensorimotor areas. Specifically,
recent lesion studies have shown that the sensorimotor cortex plays a more important role in the
semantic processing of action-related words than regions (e.g., the frontoparietal cortex) in the
language system defined by prior research [37].

Besides, behavioral studies on how humans learn novel concepts also advocate the theory that
cognitive processing is grounded in perception and action systems [54, 61]. For example, mythical
concepts (such as Atlantis) that cannot be directly grounded in perceptual experience are likely
learned by connecting to descriptions with already grounded concrete concepts [61]. However, there
is still a lack of a canonical basis in terms of computational modeling and systematic evaluations of
brain data to establish that human cognition is inherently embodied and grounded [138].
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3.3 Background and related works in machine learning.

3.3.1 Multimodal learning

Many research problems in machine learning and artificial intelligence are multimodal, such as
image captioning [108], speech recognition[65], audio-visual alignment [68, 132], and visual
question answering [75]. Besides, even for unimodal tasks, the performance could be improved
by integrating information from another modality [43]. Among all multimodal learning problems,
visual-language representation learning is especially of interest for its broad applications.

Most of the multimodal learning strategies directly or implicitly construct a shared embedding
space for different modalities, either by concatenating or adding unimodal representations [22],
or by using bilinear pooling with attention mechanism [44, 90], or by training a shared latent
representation space through an encoder-decoder structure with paired image-text input [157], or by
projecting and aligning representations from unimodal streams to a shared space for jointly learning
the shared features [79]. These strategies are used to solve different types of multimodal tasks.
The information fusion between the two modalities can happen at different levels in the model
architecture. Using an early-stage fusion could potentially suppress within-modal interaction and
make the processing of unimodal information less effective. Using a late-stage fusion would likely
reduce cross-modal interaction that supports tasks requiring extensive information exchange across
modalities, such as visual question answering [187].

3.3.2 Transformer encoder

The transformer encoder was first introduced in 2017 by Vaswani et al.[167]. The critical component
in the transformer encoder is the multi-head self-attention mechanism. In each head, its output
is a combination of features weighted by attention scores, which could be viewed as some sort
of “pairwise relationship” between different feature locations (e.g., different words in natural
language models [35] or different image patches in computer vision models [134]). Different heads
are interpreted as capturing distinct features and relations [169]. Language models based on the
transformer encoders pretrained for masked token prediction have shown outstanding performance
in a range of natural language understanding tasks [35, 21].

The breakthrough success of the transformer encoder [167] in language learning has also inspired
several works exploring multimodal representation learning by using self-attention to aggregate
both within- and cross-modal information [163, 114, 161, 28]. Following Bert [35], these models
are pre-trained for masked input prediction, where masking can be applied to either a word in the
language input or an object in the image, showing supreme performance on cross-modal tasks such
as visual question answering, text-image retrieval, and visual reasoning after transfer learning. But
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since these models usually combine representations in language and visual domains at a very early
stage and use the multimodal information throughout the processing hierarchy, it is not possible to
separate the model into a stand-alone language model that could be used to evaluate the effect of
visual grounding on the semantic representation of textual symbols [78].

3.3.3 Contrastive representation learning

The emergence of contrastive learning can be traced back to the early 1990s [10, 20]. The following
intuition may help explain the idea. In the learning process, the model updates its parameters to drag
similar representations (e.g., data from the same class) closer and push dissimilar representations
(e.g., data from different classes) further away from each other. Commonly used contrastive learning
losses include triplet loss [150], N-pair loss [160], and noise contrastive estimation (NCE) loss
[62, 131].

The flexibility of contrastive learning makes it applicable to many circumstances where only
weak supervision is needed, both for unimodal [26, 111] and multimodal [68, 79] representation
learning. But it still suffers from the requirement of a larger dataset, a longer training period, and
hard negative samplings [142]. The general framework and remaining challenges of contrastive
representation learning has been discussed by a recent review paper [99].

3.3.4 Relational reasoning

Cognitive tasks involving relational reasoning, such as visual question answering, visual reasoning,
and scene graph generation, are extremely difficult for machine learning. They require the model
to infer generalizable and abstract knowledge embedded in images or sentences. Previous studies
have attempted to model relations with multilayer perceptrons [113, 147] or graph neural networks
[27, 104, 103]. Inspired by the vector arithmetic property in word2vec [124], another widely-used
approach to model entities and relations in a large-scale knowledge base is to view relation em-
bedding as a linear operator (e.g., translation [18, 173]) or bilinear operator [182, 128] over the
low-dimensional embeddings of entities, which have shown promising progress on compositional
reasoning [63]. Relational thinking is vital for human cognition and language learning because
humans develop an understanding of a new concept by relating it to known concepts [36]. Further-
more, the relational reasoning task has led researchers to rethink how to reconcile symbolic AI with
deep learning [13, 118], such that the advantage of data efficiency, generalizability, interpretability,
and compositionality (or other formal logical processes) in symbolic AI could be accomplished in
the deep learning framework to make up for the drawbacks of the latter one [47].
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3.4 Bridging neural networks and biological brains

3.4.1 Brain signals

Functional MRI. Functional magnetic resonance imaging (fMRI) measures brain activity by de-
tecting changes associated with blood flow. The blood flow and neuronal activation in the brain
are coupled - when a brain region is activated, the blood flow to that region will also increase
[112]. Although fMRI measures the BOLD (blood-oxygen-level dependent) signal instead of
neural activity directly, it is widely used in brain mapping studies since it provides a non-invasive
whole-brain measurement with relatively high spatial resolution compared to other brain signals
[76]. But fMRI data has relatively low time resolution due to the sluggishness of neurovascular
coupling, which delays and slows down the hemodynamic response.

Electrocorticography. Intracranial electroencephalography (iEEG), such as electrocorticography
(ECoG), is a type of electrophysiological measurement that directly record electrical activity by
placing electrodes on the exposed surface of the brain. Since a surgery is required to implant the
electrode grid onto the cortical surface, ECoG is mostly applied to patients for clinically justifiable
reasons. ECoG has relatively low spatial resolution due to the usually large spacing between
electrodes and has relatively limited coverage because the electrode grid only covers a limited
region on the cortex. Nevertheless, ECoG records neural signals with a superior signal-to-noise
ratio and millisecond-level precision.

3.4.2 Naturalistic paradigm

The naturalistic paradigm uses diverse and dynamic stimuli similar to what we may encounter in the
real world (such as movies, speeches, or music). Such stimuli are ecologically relevant to human
perceptual, cognitive, and emotional experiences [192], in contrast to traditional paradigms that use
artificial and controlled stimuli with strict experimental reductionism. Naturalistic stimuli tend to
evoke consistent and reliable brain responses within and across subjects [70]. Thus, data collected
from different sessions or different subjects under the same naturalistic stimuli can be directly
integrated for group-level analysis given its high reproducibility [192]. The complex, dynamic, and
multimodal naturalistic paradigm may involve widely distributed brain regions, providing unique
opportunities to investigate the functional networks under real-life experience [102].

3.4.3 Neural encoding and decoding

Neural encoding and decoding involve a set of approaches that relate external stimuli to brain
responses. Neural encoding predicts brain signals based on stimuli, while neural decoding predicts
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the stimuli based on brain signals.
We usually use the input space, feature space, and activity space to describe various components

in an encoding model. Input space stands for the space of stimuli. Feature space stands for the
space of features encoded by the brain, which are related to specific inputs. Activity space stands
for the space of brain activity. A widely accepted assumption is that the mapping between the input
space and the feature space is nonlinear, since human brains process information in a complicated
and non-linear fashion. While the mapping between the feature space and the activity space is linear
since the relationship between the activation and the feature represented in the brain should be
relatively simple and straightforward [127]. Thus, two steps are needed to build a neural encoding
model. The first step is to find the non-linear mapping that extracts stimulus features from the input.
The second step is to fit the stimulus features and brain activities with a linear regression model.

Linear encoding models for fMRI data have helped us understand the relationship between
stimuli and brain responses in several prior studies with simple or human-defined features [126, 127].
Recent progress from deep representation learning has significantly increased the potential to extract
a more high-dimensional and brain-like feature space for both visual [175, 129, 60, 155, 64] and
language [77, 33, 191] systems. The reliability of using naturalistic stimuli [70] for neural encoding
further allows the trained encoding models generalizable to different brains [174]. On the other
hand, decoding with ECoG data on sensorimotor processing also provides a unique opportunity for
developing groundbreaking brain-computer interfaces [3, 178].
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CHAPTER 4

Grounding Language Learning to Vision

4.1 Rationale and Overview
1 Grounding language in visual perception requires not only a textual context but also a visual context
to be involved in the learning process [23]. Inspired by the strategy of extending the distributional
semantic models to the multimodal context described in previous studies [156, 143, 23, 73, 185],
we leverage the notion of visual grounding by using the state-of-the-art language learning models
[35].

We first build a two-stream (i.e., visual and language streams) model to jointly learn visual and
language representation from image-text pairs (Fig. 4.1). One stream takes the natural image as
input and serves as a visual encoder to extract hierarchical visual features. The other stream takes
the natural language description as input and serves as a language encoder to extract contextual
embeddings of words. Finally, the two streams are connected at the top layer for image and language
features to be projected into a shared representation space, constrained and trained with cross-modal
contrastive learning.

We then finetune the learned model by using a multi-head cross-modal attention layer to extract
visually grounded object representations and using bilinear operators to represent the relationships
between visual objects. To learn visual relations between objects, we also apply contrastive learning
with the similarity score defined by the learnable representations of subject-predicate-object triplets
to learn visual relations between objects.

After training, the visual and language streams are separable and computable as stand-alone
systems after training. Thus, unlike prior works for multimodal representation learning [68, 114,
163, 79], this study focuses on the language model learned with visual data and characterizes the
learned language model as a stand-alone system to extract visually grounded language representation
as well as a system for performing cognitively demanding cross-modal tasks.

1This chapter is based on a conference paper [190] (under review).

14



Figure 4.1: The two-stream model for grounding natural language in vision. The visual and
language streams take an image and its caption as input respectively. The match-map is the inner-
product between the visual feature maps and contextual word embeddings, forming a 3D tensor
that highlights the matched visual and language content. The similarity score calculated from the
match-map (Eq. 4.14) is used for cross-modal contrastive learning. See details in the following
sections.
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4.2 Approach

4.2.1 Visual stream

The visual stream (Fig. 4.1 bottom left) consists of a convolutional neural network, a linear
transformation as an embedder layer to match the feature dimension with the language stream,
and a multi-head spatial self-attention layer. The following sections describe these computational
modules in detail.

4.2.1.1 Convolutional neural network as hierachical feature extractor

Convolutional neural network (CNN), initially inspired by the human visual system [74, 45, 141,
110], has shown a great success on various visual tasks, including image recognition [158], image
segmentation [144], image denoising [188], image style transfer [85], and video prediction[130],
etc. It applies translation-invariant filters to an input image by weight sharing of convolutional
kernels. A typical CNN model learns features progressively emerging from simple edges, textures,
and shapes, to complex and abstract semantics [100]. Such computational flow is similar to the
feedforward processing in the brain’s visual system [129, 175].

Figure 4.2: An illustration of the VGG16 model structure. Figure adapted from previous publi-
cations [158]. The number indicates the feature map size (width × height × channel).

In this study, we use a pre-established deep CNN structure - VGG16 [158], as the convolutional
feature extractor in the visual stream [158]. VGG16 consists of sequential computational blocks.
Each has stacked convolutional layers with nonlinear activation function (ReLU) followed by a max-
pooling layer (Fig. 4.2). In VGG16, convolutions are all performed by 3 by 3 filters and max-pooling
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is always over a 2 by 2 window with a stride equals to 2. Kernel size 3 by 3 is the smallest one that
can aggregate neighbor information from surrounding pixels. Stacking convolutional layers with
small kernels can reach a similar size for the effective receptive window but requiring significantly
fewer parameters than a shallow convolutional layer with large kernels. The base CNN model can
extract hierarchically organized spatial features by stacking sufficiently deep convolutional layers
[158].

4.2.1.2 Multi-head spatial self-attention

In our design, the visual stream needs to perform multi-scale recognition to enable the language
stream to match the detailed semantic knowledge of visual objects. Simonyan and colleagues [158]
have shown that the performance of VGG models can be significantly improved by resizing the
input images to multiple scales. This suggests that even deep CNN models may still focus too much
on local details instead of aggregating enough global information [48, 12].

Inspired by the concept of self-attention for modeling long-term dependency in natural language
[167, 35], we add a similar module (namely the multi-head spatial self-attention) into the visual
stream. Integrating the attention mechanism into visual model may be a simple and efficient way to
learn long-range association in the input image [172, 134].

Figure 4.3: A conceptual illustration
of the spatial self-attention. The red
pixel is the query pixel, blue pixels refer
to key pixels, and green arrows indicate
the dynamic weights determined by the
attention mechanism.

The computations in spatial self-attention is conceptu-
ally similar to the transformer encoder [167], except that
all the input features are from a 2D image instead of a 1D
word sequence (Fig. 4.3).

Suppose I is the input feature map. Here, I = IE+PE,
where IE is the image embedding from the embedder
layer, PE is the location-wise positional encoding, "+"
refers to the element-wise addition. The first step in spa-
tial self-attention is converting the image feature into three
sets queries, keys, and values though linear transforma-
tions WQi

,WKi
, and W Vi in the i-th attention head,

respectively:

Qi = IWQi
, Ki = IWKi

, V i = IW Vi . (4.1)

After this step, queries Qi, keys Ki, and values V i

are all 2D image feature maps with a feature dimension
d lower than the input feature dimension in I . The attention score is then calculated based on the
inner-product between queries and keys, normalized by the square root of d,
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oi = softmax(
QiK

T
i√

d
) · V i, (4.2)

y = [o1,o2, · · · ,oh]W o. (4.3)

Lastly, the output of this attention layer is the concatenation of outputs from all attention heads
followed by a linear transformation with weight W o (Eq. 4.3). More intuitive explanation about the
multi-head self-attention mechanism is elaborated in Section 4.2.2.2: Transformer-based language
modeling.

Besides, we also need to extend the positional encoding PE from 1D version in the original
transformer model to the 2D case. Prior works used either pre-defined positional encoding [134]
or treat it as learnable parameters with a location-specific embedding layer. In this study, I also
developed two options for positional encoding:

i. Pre-defined 2D positional encoding
In transformer [167], the 1D positional encoding is defined as a function of the position x ∈ Z:

PE2i
1D(x, d) = sin (x · C−

2i
d ), (4.4)

PE2i+1
1D (x, d) = cos (x · C−

2i
d ), (4.5)

where d is the dimension of this positional encoding PE1D(x), which is the same as the dimension
of 1D word embedding. The superscript refers to the 2i-th or (2i + 1)-th element in PE1D(x),
i ∈ {0, 1, . . . , d/2− 1}. C is a pre-defined large constant (by default C = 10, 000 in [167]).

This positional encoding has the following property,

PE1D(x+ k) = AkPE1D(x), (4.6)

where Ak is a matrix parameterized by k. This property is interpreted as the fact that if two pairs of
positions have the same offset, they are related by the same linear transformation.

To generalize a similar idea from 1D to 2D, a simple way is to define PE2D as a function of the
2D location (x, y) ∈ Z2 by concatenating 1D positional encodings of x and y,

PE2D((x, y), d) = concat[PE1D(x, d/2),PE1D(y, d/2)]. (4.7)

Here, d is the dimension of PE2D, which is the same as the feature dimension of the 2D image
such that the positional encoding and the image feature can be added to form the attention input I .
Similar to the property of the 1D positional encoding, the 2D positional encoding defined in this
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Figure 4.4: The inner-product of positional encoding across location pairs. Left: 1D positional
encoding. Right: 2D positional encoding.

way has the following property,

PE2D(x+ k, y + l) = Ak,lPE2D(x, y). (4.8)

Besides, the “inner-product” based similarity between a pair of positional encoding decreases as
their L1 distance increases (Fig. 4.4). This property adds a built-in spatial bias such that the model
tends to attend to nearby image patches.

ii. Learnable 2D positional encoding
In the original transformer paper [167], the authors have claimed that the model performance is

nearly identical if the positional encoding is either pre-defined or learned. Thus, in this study, we
also keep an option of using a learnable 2D positional encoding:

PE2D(x, y) = eTNx+yW PE, (4.9)

where W PE is a N2 × d embedding matrix. N is the width and height of feature map, d is the size
of feature dimension. eNx+y is a unit vector with the (Nx+ y)-th element equals to 1 and all other
elements equal to 0. W PE is a set of learnable parameters.

4.2.2 Language stream

4.2.2.1 Word embedding

Word embedding refers to a process of mapping a large vocabulary to a dimension-reduced repre-
sentational space. This mapping is usually first implemented by a linear layer with weight W emb

and then followed by non-linear transformations. Here, W emb is a Nvoc×Nemb matrix, where Nvoc

is the total number of words in the vocabulary, Nemb is the feature dimension of the representational
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space, and Nemb � Nvoc. Each row in the W emb is a vector representation of a word in the
vocabulary. Learning word embedding with a neural network has shown advantages in performing
downstream natural language tasks [96, 84].

One of the most widely-used word embedding model is word2vec from Google [123]. It is
trained with a shallow, two-layer neural network to reconstruct the local context of a given word.
The word2vec preserves the semantic similarity of words in the low dimensional space as the cosine
similarity between the corresponding vectors. It also preserves the semantic relations between
words by vector arithmetic [124]. However, the drawbacks of word2vec (and other similar models
of word embedding) are: 1) the learned word embedding does not change in different contexts, thus
they are unable to account for the different meanings of the same word in different contexts (e.g.,
word bank in phrases bank clerk and river bank has entirely different meanings); 2) it only learns
from texts and is not grounded in the physical world (e.g., visual experience).

4.2.2.2 Transformer-based language modeling

To mitigate the first drawback of word2vec, the language models based on bidirectional recurrent
processing or transformer encoders aggregate contextual information into word representations
[162, 167]. For instance, stacking self-attention layers in transformer encoders is able to capture
long-range dependency between words in a sequence at a lower computational cost than recurrent
neural networks.

In our model, the language stream is designed as a variation of Bert (i.e., Bidirectional Encoder
Representations from Transformers) [35]. The language input (in most cases, a phrase or a sentence)
is structured as a sequence of tokens (i.e., words or word pieces) [179]. The tokens are individually
transformed to corresponding vector representations with a linear embedding layer. Each of the
subsequent layers in the language stream consists of two sub-layers: one multi-head self-attention
layer and one fully-connected layer.

In a multi-head self-attention layer, the input is first linearly transformed into three separate
spaces with different functional roles: the query space, key space, and value space (Eq. 4.10).
The inner-product between the query of a specific word and the keys of all words in the input
sentence provides a set of attention scores, which is further divided by the square root of query-key

feature dimension d for normalization (Eq. 4.11). Each attention score quantifies the association
between a key word and a query word. After going through a soft-max function, the attention
scores are converted to a probability distribution and are used as the weights for summing up the
corresponding value vectors (Eq. 4.12). The attention-weighted sum of value vectors forms the
output of the attention layer at the position of the given query word. This step aggregates the
contextual information from every word in the input sequence according to its pair-wise relations
with other words in the same sequence.

20



Such a process is repeated for each attention head. Different heads use different linear trans-
formations for query, key, and value. As a result, different heads define different ways to evaluate
the attention and generate different attention-weighted outputs. The output of the multi-head
self-attention layer results from concatenating the output from every head, followed by a linear
transformation (Eq. 4.13). The computational process in the multi-head self-attention layer is
summarized as the following equations:

Qi = xWQi
, Ki = xWKi

, V i = xW Vi , (4.10)

Ai =
QiK

T
i√

dk
, (4.11)

oi = softmax(Ai) · V i, (4.12)

y = [o1,o2, · · · ,oh]W o, (4.13)

where x is the input with dimension n× de, de is the embedding dimension and n is the number of
input tokens. WQi

and WKi
with dimension de×dk, W Vi with dimension de×dv, are the weights

that define the linear transformation from the input space to the query, key, and value spaces
for the i-th head, respectively. [o1,o2, · · · ,oh] is the concatenation of the output from h heads
with dimension n× hdv. W o is a matrix that defines the last linear transformation with dimension
hdv × de. The motivation of using multiple attention heads is to allow the model to capture different
types of syntactic and semantic relations between words (or tokens).

Following the above computational process, a fully-connected layer, which includes two linear
transformations with a ReLU in between, is further applied. The dimensions of the input and the
output are the same as the embedding dimension. The dimension of the hidden layer is denoted as
dh, which equals 4de in the default setting.

4.2.3 Cross-modal contrastive learning

We then connect the visual stream and the language stream at their top layers and train the two-
stream model with cross-modal contrastive learning as illustrated in Fig. 4.1. First, the output
features from both streams are projected to a common representational space through separate
linear transformation heads [26]. In this common space, the inner-product between the visual
representation V at every location and the language representation L of every word gives rise to a
3D match-map (Eq. 4.14), where each element indicates how a word in the text matches each region

21



in the image (See illustrations in Fig. 4.1). The similarity score S(V ,L) between a pair of visual
and language input is calculated by first taking the maximum value Sk = maxi,j M k(i, j) over the
2D match-map M k of the k-th word, and then averaging the results across all words (Eq. 4.14):

Mk(i, j) = V i,j ·LTk , S(V ,L) =
1

K

K∑
k=1

max
i,j

Mk(i, j), (4.14)

here i, j indicate the location in the 2D image feature map V , and k indicates the k-th word in L.

4.2.3.1 Triplet loss

Inspired by a prior work that uses a similar two-stream model for joint audio-visual learning [68],
we construct a contrastive learning scheme by evaluating two triplet losses (Eq. 4.15). The triplet
sample includes an anchor sample a, a positive sample p, and a negative sample n. The objective
is to learn a representation with the distance d(a, n) between the anchor sample and the negative
sample larger than the distance d(a, p) between the anchor sample and the positive sample with
a constant margin m [176]. Here the anchor sample is defined as the representation of the input
from one modality (e.g., vision). The positive sample and the negative sample are defined as
the representation of the corresponding input and a random input from the other modality (e.g.,
language), respectively. The similarity metric between an anchor sample and a positive or negative
sample is defined in Eq. 4.14, and the loss function is defined as

Losstriplet = −
1

B

( B∑
i=1

max(0, S(V i, L̃i)− S(V i,Li) +m) + max(0, S(Ṽ i,Li)− S(V i,Li) +m)
)
,

(4.15)

where B is the batch size. For each sample in the batch, the triplet loss consists of two terms. The
first one takes V i as the anchor sample and the second one takes Li as the anchor sample. Ṽ i = V j

and L̃i = Lk are negative samples randomly selected from the batch (1 ≤ j, k ≤ B, j 6= i, k 6= i).
m ∈ R+ is the margin hyperparameter (by default m = 1).

4.2.3.2 NT-Xent loss

Another type of contrastive loss is based on noise contrastive estimation [62]. Inspired by prior
studies that use the unimodal normalized temperature-scaled cross-entropy (NT-Xent) loss [131, 26,
79], we construct the cross-modal contrastive loss using the anchor sample from one modality and
the positive sample and negative samples from the other modality. Similar to the triplet loss, we
define two loss functions with the anchor sample from either images or texts and positive/negative
samples from either texts or images, respectively:
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Lossl = −
1

B

B∑
i=1

log
exp(S(V i,Li)/τ)∑B
j=1 exp(S(V i,Lj)/τ)

, (4.16)

Lossv = −
1

B

B∑
i=1

log
exp(S(V i,Li)/τ)∑B
j=1 exp(S(V j ,Li)/τ)

. (4.17)

For Lossl in Eq. 4.16, the anchor sample V i is an input image and the positive sample Li is the
corresponding image caption, whereas the negative samples Lj are unmatched textual descriptions
included in the same batch (B is the batch size). Similarly, Lossv in Eq. 4.17 is defined to contrast the
positive and negative image samples against an anchor textual sample. For training the two-stream
model with image-text pairs, we use the learning objective as the sum of Lossl and Lossv.

4.2.4 Relational grounding with cross attention and bilinear operator

After visually grounding the language model with image-text pairs (Section 4.2.3), we further
finetune the model for visual relation prediction as illustrated in Fig. 4.5. In this stage, we remove
the linear transformation heads in Fig. 4.1 and add a multi-head cross-modal attention module
[114, 163]. Different from self-attention, this cross-attention module uses a query based on the
embedding of an object description from the language stream (QueryL) and uses keys (KeyV ) and
values (ValueV ) from local image features in the visual stream,

KeyiV = V W i
K , ValueiV = V W i

V , QueryiL = LW i
Q. (4.18)

The attention score AL→V is the inner-product between QueryL and KeyV ,

Ai
L→V = softmax{QueryiL(KeyiV )

T /
√
d}, (4.19)

The attention-weighted sum of the ValueV from the visual stream is concatenated across attention
heads to generate a visually grounded object representation,

O = concat{A1
L→V Value1V , · · · ,Ah

L→V ValuehV } (4.20)

where i in Eq. 4.18 and Eq. 4.19 refers to the i-th attention head. d in Eq. 4.19 refers to the query/key
feature dimension in each attention head. h in Eq. 4.20 refers to the total number of attention heads
in the cross-attention module (by default h = 8).

A bilinear operator is then applied to the grounded object representation in Eq. 4.20 for predicting
the visual relation between two objects (linguistically a subject and an object). For both the subject
and the object, their grounded representations are linearly transformed to a subspace D = Rd (by
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Figure 4.5: Model architecture for visual grounding of object relations. The language stream
uses an object description as input (e.g., large black elephant; we only show the object name
"elephant" in this illustration for simplicity). The multi-head cross-attention module outputs a
set of visually grounded object representations (See detailed methods in Appendix A.3). The
bilinear relation module (bottom left) further generates a relation score given representations of a
(subject,predicate,object) triplet (e.g., (elephant,in,water pond)) for contrastive learning.
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default d = 32), denoted as rs and ro, respectively. A predicate p is represented as a learnable
bilinear operator Fp :< D,D >→ R, which represents the relation embedding Rp. Applying this
bilinear operator to the subject vs. object representations measures their relation score S specific to
the given predicate [182] expressed as

S(rs, ro;Rp) = Fp(rs, ro) = rsRpr
T
o . (4.21)

Since the bilinear operation can be rewritten as the inner-product between the vectorization of R
and the vectorization of the outer-product of r1 and r2,

S(r1, r2;R) = r1RrT2 = 〈vec(rT1 r2), vec(R)〉, (4.22)

we further add the Frobenius norm constraint ‖R‖F = 1 to each relational embedding matrix. Thus,
theoretically, the optimal relation between a given object pairs r1 and r2 has an embedding matrix
R∗(r1,r2)

with the following form

R∗(r1,r2)
= argmax
‖R‖F=1

S(r1, r2;R) =
rT1 r2

‖r1‖2‖r2‖2
, (4.23)

which implies that relation modeled in this way follows a compositional property achieved by matrix
multiplication

R∗(r1,r3)
= R∗(r1,r2)

R∗(r2,r3)
. (4.24)

In algebraic logic [82, 148], this is known as the “composition of relations” 2: for example,
suppose we have three “objects” r1, r2, r3, which are members of a family. Then the relation “is

an uncle of” between r3 and r1 is the composition of relations r3 is a brother of r2 and r2 is a

parent of r1 .
For training the proposed model for visual relation prediction, we also use contrastive learning

with two loss functions by taking either relation embedding or subject/object representations as
positive or negative samples,

Lossrel = −
1

|B|
∑

(rs,ro;Rp)∈B

log
exp(S(rs, ro;Rp)/τ)∑

k∈Krel
exp
(
S(rs, ro;R

k
p)/τ

) , (4.25)

Lossobj = −
1

|B|
∑

(rs,ro;Rp)∈B

log
exp(S(rs, ro;Rp)/τ)∑

k∈Kobj
exp(S(rks , r

k
o ;Rp)/τ)

. (4.26)

In Lossrel, Krel is the set that contains all relations available. The anchor sample is a pair of

2Wikipedia: Composition of relations
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subject and object in an image. The positive sample is the embedding of the ground-truth relation.
The negative samples are the embeddings of all other relations. In Lossobj, the anchor sample is a
given relation. The positive sample is a subject-object pair that holds this relation. The negative
samples are other subject-object pairs in a different relation. For both loss functions, the positive
and negative samples are drawn from the same batch B.

In addition, we also add a classification head (two fully connected layers with ReLU in between)
and apply it to the grounded object representation O in Eq. 4.20. We use this object classification
as an auxiliary objective (with a cross-entropy loss in Eq. 4.27) to constrain the grounded object
representation captures visual and semantic information sufficient for separating different object
classes:

auxiliary loss(x, l) = − log
exp

(
x[l]
)∑N

i=1 exp
(
x[i]
) (4.27)

where x is the output vector from the classifier with dimension N . N is the number of object classes.
l ∈ {1, . . . N} is the index of the ground-truth object class.

4.2.5 Training and testing

We progressively train the proposed model in three stages. In the first stage (Section 4.2.5.1),
we pretrain each single stream with a large set of images or language corpus for training good
unimodal encoders. For the language stream, we directly download the pretrained Bert3 (embedding
dimension= 768; query/key dimension= 64; number of self-attention layers= 12; number of
attention heads= 12; trained on lower-cased English text) as our baseline model. For the visual
stream, we pretrain the VGG16 with one self-attention layer on ImageNet for object classification.
In the second stage (Section 4.2.5.2), we train the two-stream model as illustrated in Fig. 4.1 with
the MS COCO dataset [108] which consists of image-caption pairs. In this stage, we freeze the
CNN and the lower layers of Bert, and only allow the visual self-attention layer and the top k layers
in Bert to be trainable (by default k = 8). In the third stage (Section 4.2.5.3), we transfer the
model to perform visual relation prediction by adding one cross-modal attention layer and a bilinear
relation module as illustrated in Fig. 4.5. We only finetune the visual self-attention layer and the
higher l layers in Bert (by default l = 2). We train the model on the Visual Genome dataset [94],
which contains images paired with scene graphs that are densely annotated with objects, attributes,
and relationships. We clean the dataset and keep 114 relation labels and 55 object classes to balance
training samples.

3bert-base-uncased
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4.2.5.1 Unimodal pretraining

For training a deep convolutional neural network to perform visual tasks, a well-established strategy
is to first pretrain the model using a large dataset for the object recognition task (e.g., ImageNet [32])
to learn a universal visual representation, and then to finetune the model with a specific downstream
task which usually has fewer training data. This strategy has advantages of faster convergence and
reasonable generalizability [51, 71].

In our model, we pretrain the visual stream on ImageNet for object classification and evaluate
whether adding a self-attention layer can help learn a better representation of the image by efficiently
aggregating the global information. The linear embedder transforms the image feature from 512

channels to 768 channels to match the word embedding dimensions in the Bert model. The visual
self-attention layer has 12 heads. For the attention to account for spatial information, we use by
default a learnable 2D positional encoding PE2D(x, y) as described in Section 4.2.1.2 and Eq. 4.9.
We use the same hyper-parameter setting for training VGG16 and attention-enhanced visual model
(batch size= 200, optimizer=SGD, learning rate= 0.01, momentum= 0.9, weight decay= 1e−4;
learning rate decay by half for every 20 epochs).

4.2.5.2 Visual grounding of natural language

Then, we train the two-stream model as illustrated in Fig. 4.1 on the MS COCO dataset [108]
with NT-Xent loss functions as defined in Eq. 4.16 and Eq. 4.17. The training data consists of
118287 images, each of them has 5 captions. For each iteration, we randomly choose 1 out of the 5
captions. We train the model with Adam optimizer (learning rate= 5e−5, weight decay= 5e−7,
β = (0.95, 0.999); dropout= 0.3; learning rate decay by half after every 15 epochs; batch size=180;
total training epochs=100). The temperature parameter in the contrastive loss is always set as 0.1.

During training, we freeze the CNN and the lower layers of Bert and only allow the visual
self-attention layer and the top k layers in Bert to be trainable (by default k = 8). we also freeze the
query and key weights (both are linear transformation layers) in all Bert self-attention layers. This
training constraint is given two considerations. First, we want to control the number of learnable
parameters to avoid overfitting. Second, we want to separate the functional roles of query (Q),
key (K), and value (V ) in the self-attention mechanisms, such that Qs and Ks are trained to
learn syntactic relation and contextual information between words in textual contexts, which have
been optimized in the unimodal pretraining stage, whereas V s are trained to learn an informative
conceptual representation space being optimized with both textual contexts and multimodal contexts.
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4.2.5.3 Visual grounding of visual object relation

In this training stage, instead of utilizing region annotations or a prior object detection module
as in previous studies [163, 114], our model jointly learns the object representation and relation
representation from raw image input to make the framework more flexible and generalizable [80].
Since the relation labels are relatively imbalanced in the original Visual Genome dataset [94], we
filter the data to create a cleaner training and testing set for fine-tuning our model on the visual
relation prediction task (as described in Section 4.2.4). To create object labels, we first extract the
WordNet synset [125] of each object in the Visual Genome data annotation. We then investigate the
distribution of the hypernyms of all object synsets and summarize them into 55 classes as shown in
Table 4.1. To create relation labels, we first extract the “predicate” term from the data annotation and
only preserve the ones with more than 250 instances in the training dataset (which remains 292 out
of 37342 unique labels). We then manually merge equivalent predicates into a single relation label.
For instance, we merge near, next to, on side of, beside, standing next to, next, standing near, to

right of, near a, close to, on side to “near”. After this, we end up having 114 unique relation labels
as shown in Table 4.2. We further filter out image samples with fewer than 5 subject-predicate-
object triplets (results in 98512 images). We then randomly split this cleaned dataset into training
(93512 samples) and testing (5000 samples) set. At this training stage, we also freeze the CNN
(VGG16 encoder) in the visual stream and lower layers in Bert. For each self-attention layer in the
language stream, we freeze the weight in query and key transformation. We train the model with
Adam optimizer (learning rate= 1e−5, weight decay= 5e−7, β = (0.95, 0.999); dropout= 0.1;
learning rate decay by half after every 15 epochs; batch size=180; total training epochs=150). The
temperature parameter in the contrastive loss is always set as 1.0.
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Table 4.1: Object classes defined from WordNet synsets for visual grounding of object relations.

feline.n.0 equine.n.01 mammal.n.01
bird.n.01 animal.n.01 body_part.n.01
bread.n.01 vegetable.n.01 fruit.n.01
meat.n.01 beverage.n.01 food.n.01
tree.n.01 herb.n.01 vessel.n.02
wheeled_vehicle.n.01 aircraft.n.01 vehicle.n.01
road.n.01 clothing.n.01 furniture.n.01
tableware.n.01 home_appliance.n.01 stairs.n.01
building_material.n.01 decoration.n.01 room.n.01
building.n.01 container.n.01 surface.n.01
machine.n.01 measuring_instrument.n.01 instrument.n.01
tool.n.01 device.n.01 paper.n.01
man.n.01 woman.n.01 person.n.01
equipment.n.01 sport.n.01 activity.n.01
symbol.n.01 sign.n.02 number.n.02
writing.n.02 body_of_water.n.01 facility.n.01
geological_formation.n.01 location.n.01 atmospheric_phenomenon.n.01
phenomenon.n.01 communication.n.02 structure.n.01
artifact.n.01

Table 4.2: Relation labels after merging synonymous predicates for visual grounding of object
relations.

on have in of wear
with behind hold near under
by above sit in front of to
at over for around ride
stand hang carry eat walk
cover play lay along among
and watch belong to painted against
from parked made of say covered
mounted across fly lying grow
use outside cross worn printed
full of filled with swing built pull
touch adorn a hit support
written lean drive rest on held
connected to cut throw line through
float show face graze cast
stick out of catch drink reflected in be
beyond lead read swim white
off seen push shining on ski
wait surf down make feed
run take enjoy that at end of
stuck reflect stacked black plugged
overlook form without do kick
visible on brush blue work on

29



4.3 Results

4.3.1 Image classification with occlusion experiments

We compared the model performance on ImageNet [146] classification between VGG16 and
its variation with spatial attention enhancement. See results in Table 4.3. By adding a single
self-attention layer to enforce global information aggregation for large objects and long-range
dependency between distant objects, the top-1 accuracy on the ImageNet validation dataset has been
improved from 71.6% to 74.3%.

Table 4.3: Object classification accuracy on ImageNet validation dataset.

Object classification accuracy (%)

Model Top-1 Top-5 Top-10

VGG16 71.6 90.4 94.0
VGG16+attention 74.3 91.8 95.1

To evaluate how self-attention changes the feature representation, we have further performed
an occlusion experiment [186]. For each image in a small validation dataset, a fixed-sized window
(32× 32) centered at a specific location is occluded with a grey square. The center of this occlusion
is iterated throughout the whole image (stride = 8) for individual trials of the occlusion experiment.
Each trial of occlusion outputs a probability of the correct class. It is expected that after occluding
different portions of the input image, the model prediction (i.e., the probability of classifying
the occluded input as the correct label) may result in different confidence levels. If the occluded
region includes a key feature of the correct class, the probability may drop significantly. The effect
of occlusion is evaluated and visualized as a heat-map, which shows the probability of correct
classification as a function of the center of occlusion. For example, (see Fig. 4.6), VGG16 fails to
classify the image of jay (a bird) as the correct label when any part of the bird is occluded. After
adding the self-attention layer, the classification is compromised only when a very small part of
the image is occluded. Similarly, in an image with a bridegroom, the classification performance
drops only when a key feature (the Boutonnière) is occluded, whereas the performance of VGG16
is sensitive to occlusions at multiple regions. In another example image (Newfoundland dog), the
attention-enhanced model is insensitive to the occlusion placed anywhere. In rarer cases, attention
makes the model more sensitive to occlusion. See the last row of Fig. 4.6. Such cases usually
involve a large-sized object in the image and the object identity is mostly defined by the local texture
(e.g., the dishcloth). Overall, adding the self-attention helps aggregate information across the image
and makes the model much less sensitive to image occlusion.
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Figure 4.6: Example results for occlusion experiment. Each example contains three images
(from left to right): the input image, the heatmap showing VGG16 prediction accuracy on occluded
images, and the heatmap showing attention-enhanced VGG16 prediction accuracy on occluded
images. The ImageNet class label is shown on the left. The first three rows show examples of when
attention makes the model’s performance less sensitive to occlusion. The last row shows examples
of the opposite.

Figure 4.7: Quantitative results for occlusion experiments. The y axis shows the percentage of
occlusion experiment trials. The x axis shows the absolute difference of the classification accuracy
between the model w/wo attention.
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Quantitatively, after adding a visual self-attention layer, the averaged top-1 classification accuracy
on occluded images improved from 61.9± 5.1% to 66.6± 5.6%. The standard deviation is taken
from the 24 by 24 occluded trials in each image, and is then averaged across all validation samples.
We further compare the probability of correct classification between VGG16 and its variation with
attention for each trial of occlusion. We count the number of trials that the attention mechanism
increases (or decreases) the probability of correct classification relative to VGG16, and evaluate the
histogram by the size of increase (or decrease). As shown in Fig. 4.7, visual attention improves
the classification of occluded images in many more trials than its baseline VGG16. Overall, the
self-attention layer makes the model more robust against occlusion.

4.3.2 Visualizing the match-maps

To understand and validate how two streams are aligned in the joint metric space, we visualize
the match-map given a pair of image and its caption, which follows the definition in Eq. 4.14 and
the illustration in Fig. 4.1. We first threshold each match-map by zero to only preserve positive
values, and then linearly scale it to a range from 0 to 1. For the visualization results as shown in
the following figures, we overlay the match-map with its corresponding original image input after
converting it into a mask by first taking square of the match-map values (still ranges 0 to 1) and
then resizing the match-map to the input image size.

In a preliminary study, we have trained the two-stream model with triplet loss (See detailes
in Section 4.2.3.1) and we visually inspect the effect of how the existence and different types of
positional encoding changes the cross-modal alignment in the proposed model (Fig. 4.8). The
results suggest that without attention the match-map learned from the two-stream model is unable
to correctly match the whole object especially when the object size is relatively large (the first row).
By adding an self-attention layer without positional encoding as a spatial constraint, the match-map
becomes too inclusive, highlighting not only the object itself but also some background regions (the
second row). The match-map appears the most reasonable only when the visual stream is enhanced
by a self-attention layer with positional encoding (the last two rows), whereas the pre-defined and
learnable PE do not show any significant difference.

After the two-stream model illustrated in Fig. 4.1 is trained on MS COCO dataset with NT-Xent
loss as described in Section 4.2.5.2, we also visualize the match-map to ensure that the two stream
alignment is correctly captured by the similarity score defined in Eq. 4.14. In the testing dataset, we
first evaluate the examples with a bird object that occurs in both the image and its caption (Fig. 4.9).
For the visualization purpose, we overlap each 2D math-map with the input image such that only the
highlighted pixels are visible while other locations are masked out. In this specific example, we find
that the 2D match-maps for word bird always catch the location of a bird in its corresponding image,
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Figure 4.8: Match-map visualization for different visual models.
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no matter the size of bird is small (upper rows) or large (lower rows). However, the match-map
tends to be a bit over inclusive in some examples (the right column).

We further visualize how the match-map changes for different words in the same image caption
(Fig. 4.10). The results in this example shows that the match-map highlights different parts of the
image when the semantic content changes in the language input (e.g., "a bird" highlight the bird,
"on a parking meter" highlight the parking meter, "several parked cars" highlight the cars, "in the
street" highlight the road and trees). These visualization also implicitly validate the notion that the
contextual embeddings of word from transformer encoders are grouped into meaningful segments.

4.3.3 Cross-modal retrieval

Fig. 4.11 shows the image-to-text and text-to-image retrieval performance on the validation set
of MS COCO which contains 5000 images. The results suggest that allowing more layers in Bert
learnable (i.e., earlier stages of visual grounding) results in better cross-modal retrieval accuracies,
while freezing weights on query and key transformations (blue dots) reduces the number of learnable
parameters without compromising the performance.

Besides, we have also done a separate experiment by always using one fixed caption for each
image during training. The result suggests that although model architectures and learning objectives
are the same, utilizing multiple synonymous sentences at different iterations instead of using a fixed
sentence for all iterations significantly improves the accuracy for both image-to-text retrieval (top-1
accuracy: from 18.24% to 25.30%) and text-to-image retrieval (top-1 accuracy: from 17.22% to
23.90%).

4.3.4 Visual relation prediction

4.3.4.1 Performance with the testing dataset given different training settings

After further training the model as illustrated in Fig. 4.5 with our cleaned Visual Genome dataset,
we test the model’s performance on object classification and visual relation prediction with different
hyper-parameter settings in the language stream (Fig. 4.12). The result suggests that the trained
model can better classify objects from visually grounded representations (Fig. 4.12 left) when
the query and key weights are learnable (orange dots) or when more layers in bert are learnable
(star markers). But different levels of visual grounding on image captions as in the MS COCO
pretraining stage (indicated by the x axis labels) has a minor effect on grounded object classification
performance. In contrast, applying visual grounding to earlier stages of natural language processing
by Bert results in better performance for relation prediction (Fig. 4.12 right). However, all these
differences were relatively minor (Fig. 4.12).
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Figure 4.9: Match-map visualization for examples in the testing dataset that include bird objects.
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Figure 4.10: Match-map visualization for all words in an example caption.

Figure 4.11: Cross-modal retrieval performance on MS COCO. The x axis shows the number
of learnable parameters at the 2nd training stage (i.e., visual grounding of natural language). The
y axis shows the top-1 recall accuracy. The label under each black box in the figure corresponds
to a different setting of the learnable transformer layers in the language stream. Bert: the whole
language stream is frozen. Grounded-k: the top k layers in Bert is learnable.
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Figure 4.12: Model performance on object classification and visual relation prediction with
different pretrained models and training settings. Grounded-k: the top k layers in Bert are
learnable in the MS COCO pretraining stage. l in the figure legend refers the number of learnable
layers in Bert at the stage for grounding visual object relations with Visual Genome dataset.

4.3.4.2 Ablation study for different training losses

Since the training objective is constructed with three different loss functions (Lossrel,Lossobj, the
auxiliary object classification loss), we also check how each loss function contributes to the model
performance, by excluding individual loss in a set of ablation experiments. The results suggest
that the model shows the best performance on relation prediction by combining all three losses
(Table 4.14, Fig. 4.13). If either the auxiliary object recognition loss or the contrastive loss Lossobj

is excluded, the model still tends to have comparable performance. But if Lossrel is excluded, the
model shows worse performance, which suggests Lossrel is the key component that allows the model
to learn visual relation. We also find that Lossobj and Lossrel are somewhat entangled during training
(i.e., minimizing one loss would also decrease the other loss, see Fig. 4.14). The model converges
faster (Fig. 4.13) when we combine both two contrastive losses.

Table 4.4: Effects of different loss functions evaluated with ablation experiments.

Model
Object Clas-

sification

Relation Predic-

tion (Top-1)

Relation Predic-

tion (Top-10)

Combined loss 97.71 64.26 95.21
No auxiliary loss 0.60 64.19 94.99

No Lossrel 97.95 29.97 68.78

No Lossobj 98.39 64.14 95.14
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Figure 4.13: Learning curve in terms of the accuracy of visual relation prediction with the
testing dataset for the first 30 training epochs. The blue curve shows the performance when the
model is trained with the default loss that combines Lossrel,Lossobj, and the auxiliary loss for object
classification. The other three curves show the performance when the model is trained when one of
the three losses is excluded.

Figure 4.14: Learning curve of the contrastive loss functions. The total loss in the first figure
refers to the summation Lossrel + Lossobj.
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4.3.4.3 Visualizing test examples

Figure 4.15: Test examples of visual relation prediction from the testing dataset. Top: For
visual grounding of object relations, the visual input is a natural image and the language input is a
set of object descriptions. The bar charts show the examples of top-5 predicted visual relations for
pairs of objects (e.g., donut and table). The directed graph shows top-1 predicted visual relations on
all object pairs in the given example. Each arrow points from a subject to its corresponding object.
Along each arrow, the relation marked in blue indicates that the top-1 model prediction is the same
as the ground truth. The relation marked in red indicates the top-1 model prediction is wrong, and
the ground truth label below is marked in green. Bottom: Other examples.
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4.4 Summary and Discussion

To summarize this chapter, we have built a two-stream deep neural network for visually grounded
language learning. The visual stream and the language stream are independent feature extractors
pretrained with a large unimodal dataset. Then the two streams are associated by grounding
based on natural images paired with textual descriptions (Section 4.2.5.2) and object relations
(Section 4.2.5.3). The model shows good performance on cross-modal alignment (Section 4.3.2),
image-text retrieval (Section 4.3.3), and visual relation prediction (Section 4.3.4).

Prior work uses a triplet loss with paired visual-audio input to jointly learn cross-modal alignment
and representations from two modalities [68]. We use normalized the temperature-scaled cross
entropy (NT-Xent) loss [26]. The triplet loss contrasts the similarity between an anchor sample and
a positive sample vs. the similarity between the anchor example and a negative sample. In contrast,
the NT-Xent loss contrasts one positive sample with a noise distribution generated from many
negative samples. The latter one tends to force the model to learn a better-structured representational
space by leveraging contrastive learning with more negative samples.

Our model is different from recent works that use transformer encoders with multiple layers
of cross-modal attention for visual-language learning [163, 114, 161, 28]. We intentionally delay
the stage of multimodal fusion and keep the same architecture as Bert [35] in the language model.
The language stream is a stand-alone system that can be detached from the visual stream after
visual grounding. Although early fusion of multimodal information can support better performance
in cross-modal tasks, it also loses the possibility to obtain a separable language system that may
support the representational learning of grounded semantics. Since this work focuses on how
the joint learning of multimodal information reshapes the language model, we are particularly
interested in evaluating the intrinsic properties of the grounded word embedding space (See details
in Chapter 5) and applying the grounded semantic representation to explain brain data (See details
in Chapter 6).

Note that our model only requires paired visual-language input without further annotations (e.g.,
the object bounding box). Therefore, it can be easily generalized to large-scale data for multimodal
representation pretraining, as explored in a recent study [79]. Our study utilizes two types of
datasets: images with captions and images with scene graphs describing visual objects and their
relations. The image captioning data is used to “pretrain” the two-stream model to align the visual
output and the language output in a shared representational space. Images with scene graphs are
used to model visual object relations, by adding two additional modules to the pretrained two-stream
model - a cross-attention module to extract visually grounded object representations and a bilinear
operator to encode relational embeddings. In future, we can use a similar strategy to finetune our
model on other tasks and datasets, such as visual reasoning and visual question answering, to further
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ground language representations to more demanding cognitive experience.
Again, the primary focus of this work is to fuse multimodal information for refining unimodal

feature extractors by cross-modal learning. Especially we want to merge visual knowledge into the
language stream to understand the effect of perceptual grounding on language learning inspired
by the grounded cognition theory [8]. Such an architecture should be generalizable to multiple
modalities (including but beyond vision) by including other independent streams (See detailed
discussions about grounding language in other modalities in Section 7.1). Another standard
visual-language learning model follows an encoder-decoder framework inspired by the language
translation models [162], focusing on learning a joint latent representation space for generative
purposes, such as generating image captions [181]. An ability to generate data is critical to machine
and human intelligence, as explained by this famous quote from Richard Feynman: "What I cannot

create, I do not understand." I would like to highlight that the two-stream (or dual-encoder) and
encoder-decoder structures are not incompatible. Instead, after learning a more informative semantic
representational space grounded in different modalities, we will be able to further train a decoder for
performing generative tasks. Considering how humans learn to understand and produce language,
these two abilities may be gradually and collaboratively acquired during the early stage of language
development. Thus, it is worth exploring for future studies to add a generative component that
mimics language production with the grounded language model.
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CHAPTER 5

Visually Grounded Semantic Space

5.1 Rationale and Overview
1 In Chapter 4, we have developed an approach to ground language learning in vision by training
a two-stream model with three progressive stages - the unimodal pretraining, grounding natural
language, and grounding visual object relations. To understand and assess how visual grounding
affects the learned distribution of semantic representations, in this Chapter we systematically
evaluate the semantic space grounded in vision vs. the ungrounded semantic space learned from
pure texts.

After training the two-stream model, we treat its language stream as a stand-alone language
model. We first extract the word embeddings of a large vocabulary set [153], which consists of
9, 197 commonly used English words. These words are further segregated into 100 word categories.
We apply principal component analysis to the representations of all words in this vocabulary set to
linearly decompose the semantic space into orthogonal bases. We then examine the principal axes of
the semantic space, which are the top principal components that carry the largest variance in word
representations. In addition, we evaluate whether the semantic norms of concepts defined by human
understandings [34] are predictable by the word representations through logistic regression. We also
assess word similarity [41] and word clustering [153] before and after visual grounding. We further
test whether the visually grounded language model enables compositional language understanding
based on visual knowledge and multimodal image search with queries based on images, texts, or
their combinations.

5.2 Approach

We first extract the word embeddings from the language models studied herein, which share a
Bert-based structure but has been trained with different levels of visual grounding (Bert: no

1This chapter is based on a conference paper [190] (under review).
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visual grounding; Grounded: visual grounding of natural language (Section 4.2.5.2); Relational
Grounded: visual grounding of object relations (Section 4.2.5.3)). To do this, we input every
single word (or phrase) preceded with a special token [CLS] and followed by a special token
[SEP] (according to the original Bert [35] paper) into the language stream, and extract the average
pooled output at the last hidden layer as the output embedding of a given word or phrase. Since
some feature channels have much greater values than other channels, we further use the mean and
standard deviation of the output embeddings from the 30, 522-token vocabulary [179] to standardize
the representation in each channel. The same process has been applied to both the Bert model and
the visually grounded language models.

For each input word (or phrase), its output representation is a d-dimensional vector (d = 768).
All embeddings of commonly used English words from the vocabulary set S [153] form a set of
vector representations (as denoted by a 2D matrix X ∈ R|S|×d in the following sections) in this
high-dimensional semantic space (as denoted by V in the following sections), where each row in X

is the vector representation of a single word w ∈ S.

5.2.1 Principal component analysis of word representations

Applying principal component analysis (PCA) to X defines a new coordinate system that spans
the semantic space. This coordinate system uses orthogonal bases ordered by the corresponding
portion by which each basis explains the variance of all word representations in X . We then project
X onto these orthogonal bases, where the top few dimensions, i.e., the top principal components
from the principal component analysis, are viewed as the “principal axes” in the semantic space. By
visual inspection of the word distribution projected onto each principal axis, we further evaluate the
interpretability of each principal axis against human intuitions and neurobiological knowledge for
the grounded vs. ungrounded models.

For PCA, we first apply the singular value decomposition (SVD) to X (Eq. 5.1) and then project
X onto the orthogonal space spanned by the columns of W ∈ Rd×d (Eq. 5.2):

X = UΣW T , (5.1)

T = XW , (5.2)

where T ∈ R|S|×d is the score matrix. Each row in T represents a word w ∈ S in the new coordinate
system defined by the columns in W , which are the principal axes derived from X .
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5.2.2 Relating semantic representations to human understandings

After applying PCA, we calculate the Pearson’s correlation between word representations projected
onto the first principal axis (i.e., the first column in T ) and the human rating of word concreteness
collected from a prior study [24], and compare the results across the Bert language model, the
Grounded language model, and the Relational Grounded language model. The aim is to test
whether the visually grounded language model is more capable of capturing the fundamental
semantic features (specifically, the concrete-abstract attribute) without explicitly trained to do so.

We further investigate whether the visually grounded word embeddings are capable of predicting
semantic features defined by humans, according to the standard evaluation methods established in
prior studies [105, 185]. For this purpose, we adopt the concept property norm dataset collected
from the Centre for Speech, Language and the Brain (CSLB) [34]. This dataset includes binary
semantic features (e.g., has_wheels) labeled for 638 concepts by 123 human participants. We
hypothesize that the word embeddings can be read out through a linear and sparse projection to
readily support binary classification attainable by humans, especially after visual grounding. To test
this hypothesis, we train a logistic regression model with L1 regularization to predict each binary
semantic feature from the corresponding word representation, and repeat the same process for the
Bert, the Grounded, and the Relational Grounded language models for comparison.

Since many binary semantic norms contain only a few positive samples in the CSLB dataset
[34], we first filter out the feature norms with less than 5 positive samples and retain 390 out of
2725 feature norms that are assigned to 5 feature types according to the CSLB dataset: 156 “visual
perceptual” features (e.g., has_wheels); 29 “other perceptual” features (e.g., has_flavors);
94 “functional” features (e.g., does_cut); 65 “encyclopaedic” features (e.g., is_dangerous);
46 “taxonomic” features (e.g., is_clothing).

For the i-th semantic norm, we build a binary classifier with a logistic regression model pi as:

pi(yij = 1|xj) = σ(wi
Txj), (5.3)

here xj is the word representation of the j-th word xj in the CSLB dataset after transforming the
representation to the orthogonal bases obtained with PCA. wi is a linear weight specific to the i-th
semantic norm. yij ∈ {0, 1} is the binary label indicating whether the xj holds the i-th semantic
norm. We add an L1-norm of wi to the loss function, as the sparsity constraint, to avoid overfitting
when training the logistic regression model.

wi
∗ = argmin

wi

(
−
∑
j

[
yij log

(
σ(wi

Txj)
)
+ (1− yij) log

(
1− σ(wi

Txj)
)]

+ λi‖wi‖1
)
, (5.4)
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where λi ∈ R+ is the regularization parameter, which is determined by a leave-one-out cross
validation to minimize the following objective function

Li(λi) =
∑
j

Lij(λi). (5.5)

Suppose Pi = {k|yik = 1} and Ni = {k|yik = 0} are the sets of positive and negative word
samples for the i-th semantic feature, respectively (|Pi ∪Ni| = 638, i.e., the total number of words
in the CSLB dataset). Then Lij(λi) is defined as

Lij(λi) =
1

|Pi|
∑

k∈Pi,k 6=j
(log piλi,j(yik = 1|xk)) +

1

|Ni|
∑

k∈Ni,k 6=j
(log piλi,j(yik = 0|xk)), (5.6)

here j indicates the left-out word sample, and piλi,j is the corresponding regression model trained
with regularization parameter λi. After λi is determined by minimizing Eq. 5.5, we train the
L1-norm regularized logistic regression model pi with all word samples and calculate the F1-score
for positive labels

F1 =
tp

tp+ 1
2
(fp+ fn)

, (5.7)

where tp is the number of true positive cases, fp is the number of false positive cases, fn is
the number of false negative cases. For each of the five semantic norms, we then compare the
F1-score obtained with different language models and assess their pairwise differences for statistical
significance with one-sided Wilcoxon Signed Rank Test [177].

5.2.3 Assessing word similarity

We also test whether visual grounding reshapes the semantic space to drag words with similar
conceptual meanings and semantic features closer to each other. For different language models, we
evaluate the similarity between word pairs. The evaluation is based on the WordSim-353 dataset
[41], which contains 353 pairs of nouns with the similarity score rated by human judges in a numeric
scale from 0 to 10. Unless stated otherwise, all similarity between a pair of word representation xi

and xj is evaluated by the pair-wise cosine similarity:

Similarity(xi,xj) = cos (xi,xj). (5.8)

For simplicity, we directly assess the Pearson’s correlation between the similarity metric captured
by the language model (Eq. 5.8) and the human rated similarity score. The results are compared
across different language models. We also calculate the similarity between all pairs of words in the
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vocabulary set S [153] as a baseline distribution separately evaluated for Bert, the Grounded, and
the Relational Grounded language models.

5.2.4 Clustering by word categories

After visual grounding, we hypothesize that the semantic representations group themselves based on
perceptual similarity. To test this, we use the SemCat dataset (9, 197 English words from N = 100

categories) [153] and calculate the Silhouette coefficient (ranges from−1 to 1) to measure the degree
by which these words are clustered in the space into human-defined word categories. The distance
metric d between word embeddings is measured as the cosine distance: d(xi,xj) = 1−cos(xi,xj).
Let us denote N as the number of word categories, xi as the embedding of word wi which is
assigned to the category Ci in the SemCat dataset, the degree to which word wi falls in affinity with
other words assigned to the same category is measured by the modified Silhouette coefficient s(i)
defined as

a(i) =
1

|Ci| − 1

∑
j∈Ci,j 6=i

d(xi,xj), (5.9)

b(i) =
1

N − 1

∑
k 6=i

1

|Ck|
∑
j∈Ck

d(xi,xj), (5.10)

s(i) =
b(i)− a(i)

max (a(i), b(i))
, (5.11)

here we use the average instead of the minimum when calculating b(i) in Eq. 5.10 since the 100

categories in the SemCat dataset are not mutually exclusive (e.g., in the SemCat dataset, category
mammal, category bird, and category fish have overlapping word samples with category
animal).

To assess a group-level metric for categorization, we simply average the Silhouette coefficient
for words in each category Ci and obtain N = 100 values from −1 to 1. We then compare these
category-level clustering metrics between different language models and evaluate their pairwise
differences for statistical significance with one-sided Wilcoxon Signed Rank Test [177].

5.2.5 Semantic compositionality based on visual knowledge

As mentioned in the introduction, the ungrounded semantic distributional models have a critical
drawback that the learned language model is unable to know the perceptual knowledge about a
concept, thus lacking the ability to make visually informed compositional reasoning, e.g., zebra is

a horse with black and white stripes. Such knowledge is rarely or never exposed to the language
model during training with natural language corpa alone [66]. Since the visual implication about a
concept of zebra is too obvious by human experiences for anyone to explicitly describe a zebra like
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this in language. Similarly, we don’t say yellow banana since yellow is an intrinsic feature for a
banana.

However, it is more plausible for the grounded language models to capture conceptual compo-
sition from visual information, since the model has been already trained with paired image-text
and thus the language model has been exposed to the visual perceptual features when learning the
semantic representation of concepts. To test this hypothesis, we use a few example words of which
the meanings can be inferred by a combination of concepts based on human intuition, especially
based on visual perception. We examine how the embedding of a composed query phrase q (e.g.,
striped horse) matches with the common English words in S by measuring their cosine similarity in
the semantic space Sq(k) = Similarity(q,xk). We rank all words in the vocabulary by their
similarity to the query phrase,

Ranking(q) = sort[Sq(k)] = sort[cos (q,xk)]. (5.12)

We compare the so ranked words against human intuition when the word representations are
based on the Bert, the Grounded, or the Relational Grounded language models.

5.2.6 Multimodal image search in the joint representational space

After the two-stream model is established and trained with visual grounding of natural language and
object relations (See section 4.2.5.3), the cross-attention module establishes a joint representational
space for both visual and textual data. We further explore whether this joint space can support
cross-modal tasks, e.g., image search based on image, text, or their combinations [79]. For this
specific task, two additional heads FV and FL are added to the model. Each head includes two
linear layers with ReLU in between followed by average pooling:

QI = FV (KeyV ) =
1

HW

∑
i,j

((
ReLU(KeyV [i, j, :]W

1
V + b1V )

)
W 2

V + b2V

)
, (5.13)

QW = FL(QueryL) =
1

K

∑
k

((
ReLU(QueryL[k, :]W

1
L + b1L)

)
W 2

L + b2L

)
, (5.14)

where KeyV or QueryL are from the cross-attention module described in Fig. 4.5 and Eq. 4.18,
after being concatenated across all attention heads along the feature dimension. W s and bs are the
weights and biases of the linear transformations in these two head functions, with size d× d and
d× 1 (d = 768). H and W are the height and width of the image feature output (H = W = 14). K
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is the number of words in an image caption, which varies for different language inputs. FV and FL
are applied to visual and textual representations (KeyV or QueryL) in the joint space respectively,
and result in a single vector representation for either an image (denoted as QI ∈ Rd) or a text
(denoted as QW ∈ Rd).

In this step of transfer learning, the trained model described in Section 4.2.5.3 is frozen. The two
additional heads are trained with contrastive loss to match the average-pooled representations of
paired images and texts in terms of their cosine similarity using the MS COCO dataset, similar to
the method described in Section 4.2.3. The loss function is similar to the one describe in Eq. 4.16
and Eq. 4.17, except the similarity score becomes S(I,W ) = cos (QI ,QW ).

To use the model for multimodal image search, we apply a weighted sum to the normalized
representations (Eq. 5.15) of a query image and a query text. The linear weighting α (for text) and
(1− α) (for image) range from 0 to 1,

QI ←
QI

‖QI‖2
, QW ←

QW

‖QW‖2
, (5.15)

Qsearch = (1− α)QI + αQW . (5.16)

we then use the multimodal query defined in Eq. 5.16 to search a held-out database2 for the matched
images ranked in terms of cosine similarity.

As mentioned above, α controls the weighting between the textual and visual queries. We test
how the image search returns different results as α increases from 0 (image only) to 1 (text only).

5.3 Results

5.3.1 Principal axes capture explainable semantic attributes

Interestingly, the first principal dimension in the visually grounded semantic space is readily
interpretable as an abstract-to-concrete axis (Fig. 5.1). For example, words that end up with
the highest values when they are projected on this axis are ostrich, seagull, albatross, blender,

pelican, broccoli, parakeet, lettuce, sailboat, vegetables, whereas words with the lowest values are
displeasure, liking, to, outgoing, present, experienced, profitable, faithful, meaningful, multitude.
The representations of words along this axis is significantly correlated with human rating of their
concreteness (ranging from 1 to 5) from a prior study [24] (Fig. 5.1). For the Grounded model,
the Pearson correlation coefficient reaches 0.8749 or 0.6615 across word categories or words,
respectively. For the Relational Grounded model, the Pearson correlation coefficient reaches

241, 600 images from the validation dataset of Open Images Dataset V 6.
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0.8001 for word categories and 0.6948 for words.

Figure 5.1: The first principal component in the grounded semantic space captures the
concrete-abstract axis of semantics. Left: Each dot represents a word category with the color
indicative of the averaged human-rated concreteness (the y axis) and the size proportional to the
standard deviation. The x axis indicates the corresponding value of the word representations
projected onto the first principal axis. Right: Example words in labeled categories.

Table 5.1: Correlation between the 1st principal component and human rating of word concreteness

Correlation (Pearson’s r)

Group Bert Grounded Relational
Grounded

word-level 0.1040 0.6615 0.6948
category-level 0.3538 0.8749 0.8001

In contrast, the first principal axis of the ungrounded semantic space from the baseline Bert
model is not straightforward to interpret and shows a much weaker correlation with human ratings of
concreteness (r = 0.3538 for categories, r = 0.1040 for words). The comparison between different
language models is further summarized in Table 5.1 and visualized in Fig. 5.2.

Besides the first principal component being interpreted as abstract-concrete axis, other principal
components are also intuitively explainable. For example, PC 2 captures the human vs. non-human
axis, PC 3 captures the object vs. scene axis, PC 4 captures the artificial vs. natural axis, PC 5
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Figure 5.2: The first principal component in the word representation space captures the concrete-
abstract axis only after visual grounding. The color indicates the concreteness rating of a category
(blue: abstract; red: concrete).

captures the outdoor vs. indoor axis, PC 6 highlights words related to food. The distributions of all
word categories after being projected onto the first 6 principal axes are visualized in Fig. 5.3.

5.3.1.1 2D visualization of the first three principal components

To visualize the grounded semantic representation in a subspace spanned by its first three principal
axes, we first color-code each word category by the three dimensional RGB code according to the
following associations: (PC1, red), (PC2, green), (PC3, blue). Only for the sake of visualization,
the coefficient associated with each principal component have been linearly re-scaled into the range
[0, 1]. We then project the three dimensional representations of the 100 word categories onto three
2D subspace, as shown in Fig. 5.4 (PC2 vs. PC3), Fig. 5.5 (PC1 vs. PC2), and Fig. 5.6 (PC1 vs.
PC3).

The results suggest that the first quadrant of the PC2. vs. PC3 plane (as shown in Fig. 5.4)
captures concepts describing natural scenes (e.g., biomes, rocks), the second quadrant captures
concepts related to scenes with human activities (e.g., roadways, rooms), the third quadrant encodes
human related non-scene concepts (e.g., jobs, musical instruments), the fourth quadrant encodes
non-human objects (e.g., animal, foodweb). In addition, the abstract words (e.g., positive words,
negative words, emotions) tend to be squeezed around the origin in this subspace.
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Figure 5.3: Other principal components in the visually grounded word representation space.
Each plot shows a set of cumulative distribution functions (CDFs) for every word categories after
being projected onto a principal axis. The principal dimensions capture the semantic attributes that
can be interpreted by human intuition. PC1: abstract vs. concrete; PC2: human vs. non-human;
PC3: object vs. scene; PC4: artificial vs. natural; PC5: outdoor vs. indoor; PC6: non-food vs. food.
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Figure 5.4: 2D visualization of PC2 and PC3.
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Figure 5.5: 2D visualization of PC1 and PC2.
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Figure 5.6: 2D visualization of PC1 and PC3.

In the subspace of PC1 vs. PC2 (Fig. 5.5) or PC1 and PC3 (Fig. 5.6), we also observe that
although concrete concepts are distributed and scattered widely, abstract concepts are relatively
squeezed around the origin and are not spread out to form separable distributions. This is perhaps
due to the lack of information for the model to separate emotional words, which is not surprising
since we only ground language learning in vision.

5.3.2 Predicting human-defined semantic features

Fig. 5.7 shows the F1 scores indicative of how well word representations can predict human-
defined binary semantic features through the logistic regression for the ungrounded Bert model, the
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Figure 5.7: The F1 score of predicting semantic feature norms from word representations
before and after visual grounding. Each box shows the lower (25%) percentile, the higher (75%)
percentile, and the median of F1 scores within a feature type. Whisker= 1.5. Significant level: n.s.:
not significant; *, p < 0.05; **, p < 0.01; ***, p < 0.001; ****, p < 0.0001.

Grounded model, and the Relational Grounded model.
The result (Fig. 5.7) suggests that the grounded word embeddings are significantly more pre-

dictive of binary features for “visually perceptual” than their ungrounded counterparts obtained by
Bert (Wilcoxon Signed Rank Test; p < 0.0001). To a lesser but still significant level, this difference
also applies to the “functional” features, “encyclopaedic” features, and “taxonomic” features. After
visual grounding of object relations, the word embeddings tends to be more capable of correctly
predicting the semantic norm features. However, the difference between the Grounded model and
the Bert model on capturing “other perceptual” features is not significant, which is unsurprising
since only vision is used to ground language learning.

Since we have added a strong L1-norm regularization term in the logistic regression model
to avoid over-fitting (see Section 5.2.2), the results suggest 230 out of 390 semantic norms are
not predictable by the ungrounded Bert model, while only 143 and 129 semantic norms are not
predictable by the Grounded model and the Relational Grounded model respectively. We list the
top-5 semantic norms that become more predictable after visual grounding based on the ranked
difference in the F1 score before and after visual grounding (Table 5.2).
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Table 5.2: Top-5 semantic norms that are more predictable after visual grounding.

Feature type Grounded Relational Grounded

visual perceptual

has_wheels,
has_a_handle_handles,
has_skin_peel,
has_pages,
has_a_back

has_a_picture_pictures,
has_pages,
has_a_barrel,
has_skin_peel,
has_a_seat_seats

other perceptual

is_heavy, is_warm,
does_smell_good_nice,
is_juicy,
has_flavours

is_warm, is_heavy,
has_flavours,
is_juicy,
does_smell_good_nice

functional

does_fly,
does_contain_hold,
does_store,
does_heat,
is_used_to_see

does_fly,
does_heat, does_cut,
is_used_in_cooking,
does_contain_hold

encyclopaedic

is_dangerous,
is_found_in_seas,
has_information,
is_healthy,
does_grow_on_trees

is_dangerous,
has_information,
does_grow_on_trees,
is_found_in_seas,
is_found_in_kitchens

taxonomic

is_clothing,
is_a_weapon,
is_a_vehicle,
is_a_vegetable,
is_transport

is_clothing,
is_a_vehicle,
is_a_vegetable,
is_medicine,
is_a_container

5.3.3 Visual grounding supports better and finer word categorization

5.3.3.1 Word similarity analysis on Wordsim-353 dataset

We test how well words are clustered by categories in the grounded vs. ungrounded semantic
space, and further assess the Pearson’s correlation between the model captured similarity metric
(i.e., cosine similarity of paired word representations) and the human rated similarity score [41]
(Fig. 5.8).

Table 5.3 shows the word-pair examples from the WordSim-353 dataset [41] with top-10 cosine
similarity in the Bert model, the Grounded model, and the Relational Grounded model. The
results suggest that most word pairs with significantly improved cosine similarity score after visual
grounding have rich visual information in their meanings (e.g., (boy : lad), (car : automobile),
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Figure 5.8: The performance of language models on capturing word similarity. r is the corre-
lation between human-rated word similarity (y axis) and model-captured word similarity (x axis,
measured by cosine similarity between two word embeddings). Each dot represents a word-pair in
the Wordsim-353 dataset.

(furnace : stove), (street : avenue) etc.)
Besides, the averaged cosine similarity on the WordSim-353 dataset significantly increases

(p < 0.0001; two-sided paired t-test after fisher z transformation) after visual grounding (See
Fig. 5.9 and Table 5.4), while the baseline distribution of pairwise word similarity on common-word
vocabulary S shows a similar pattern for all three language models (Fig. 5.10).

Figure 5.9: Distribution of word-pair cosine similarity on WordSim-353 dataset.
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Table 5.3: Top-10 similar word pairs from Wordsim-353 assessed by the ungrounded and visually
grounded language models. Two numbers are shown under each word pair. The first number
indicates the model-captured word similarity (cosine; ranges from −1 to 1). The second number
indicates the human-rated word similarity (ranging from 0 to 10).

Bert Grounded Relational Grounded

Harvard : Yale boy : lad boy : lad
0.78, 8.13 0.92, 8.83 0.91, 8.83

football : soccer tennis : racket car : automobile
0.78, 9.03 0.91, 7.56 0.87, 8.94

physics : chemistry football : soccer football : soccer
0.74, 7.35 0.89, 9.03 0.87, 9.03

football : basketball street : avenue coast : shore
0.72, 6.81 0.88, 8.88 0.86, 9.10

king : queen furnace : stove tiger : jaguar
0.71, 8.58 0.87, 8.79 0.86, 8.00

psychology : psychiatry Harvard : Yale vodka : brandy
0.71, 8.08 0.87, 8.13 0.86, 8.13

midday : noon vodka : brandy street : avenue
0.66, 9.29 0.86, 8.13 0.83, 8.88

vodka : brandy tiger : jaguar Harvard : Yale
0.65, 8.13 0.84, 8.00 0.82, 8.13

computer : keyboard car : automobile doctor : nurse
0.62, 7.62 0.84, 8.94 0.81, 7.00

drink : eat coast : shore lad : brother
0.61, 6.87 0.83, 9.10 0.78, 4.46

Table 5.4: The statistics (mean ± standard deviation) of the cosine similarity for the word pairs in
the wordsim-353 dataset.

Bert Grounded Relational
Grounded

cosine similarity 0.22 ± 0.18 0.29 ± 0.24 0.26 ± 0.22
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Figure 5.10: Distribution of word-pair cosine similarity on SemCat dataset.

5.3.3.2 Word categorization analysis on SemCat dataset

As shown in Fig. 5.11, after visual grounding, the Silhouette coefficients across 100 categories
are significantly higher for the visually grounded semantics than ungrounded ones (Wilcoxon
Signed Rank Test; p < 0.0001) (Fig. 5.11 left). The greatest gain in clustering is noticeable for
categories that include concrete concepts (e.g., car, housing, mammal) with defining visual
attributes (Fig. 5.11 right). For some abstract categories related to human emotion (e.g., happy),
the grounded representations are also better clustered than the ungrounded ones.

Figure 5.11: Left: A boxplot showing silhouette coefficients on word representations before and
after visual grounding (whiskers=1.5). Right: Top-15 word categories that are better clustered after
visual grounding of natural language and object relations.

We have also compared the word categorization performance after visual grounding of natural
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language with different training settings (Fig. 5.12). The results suggest that earlier grounding (i.e.,
more learnable layers in Bert) tends to show better clustering by human-defined word categories.
The models with frozen query and key transformations in Bert self-attention layers (as shown in blue
bars) show similar categorization as the ones with learnable query and key weights for cross-modal
training (as shown in orange bars). Models trained with larger dropout rate (0.3; as shown in opaque
bars) show significantly higher performance on word categorization than its counterpart with smaller
dropout rate (0.1; as shown in transparent bars).

Figure 5.12: Word clustering by category for comparative models with different training
settings. The y axis indicates the Silhouette Coefficient. Each bar shows the category-level
clustering performance averaged across 100 categories. The error bar indicates the standard error.

To validate whether a better clustering performance on word wi results from a higher sampling
rate in the training dataset, we further calculate the correlation between the Silhouette coefficient
s(i) and the training occurrence rate of word wi for all words in the vocabulary S. The result
(Fig. 5.13) rejects this hypothesis by showing a non-positive correlation value between these two
terms with both category-level (r = −0.28) and word-level (r = −0.07) analyses.
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Figure 5.13: Word clustering by category is uncorrelated with its occurrence rate during
training. Each dot represents a category (left figure) or a word (right figure). The y axis indicates the
clustering performance measured by the Silhouette coefficient. The x axis indicates the occurrence
of the corresponding word tokens in the training dataset. r is the Pearson’s correlation between the
clustering performance and training samples of all words or categories in the Semcat dataset.

Some general categories show further fine-grained clusters within themselves in the grounded
semantic space. The following results are examples on word representation visualization for vehicle
(Table 5.5, Fig. 5.14), animal (Table 5.6, Fig. 5.15), food (Table 5.7, Fig. 5.16), and room (Table 5.8,
Fig. 5.17) subcategories. In each example, we first pick up three query words as the prototype
for each subcategory (e.g., boat, car, airplane for vehicle). Then for each language model,
we use the cosine similarity to sort out the top-15 closest words to each of these query words, as
shown in the columns of these tables. We observe that only after visual grounding, the top similar
words are well-aligned with the subcategory defined by the query word. For example, all words
in the column under Grounded or Relational Grounded for the boat query belong to water
transportation, but words skeleton, nation, men, bike found by Bert model are not
water transportation. We further visualize the representation of the words in each subcategories from
the Grounded model, by first calculating its cosine similarity to each of the query word (resulting in
a three-dimensional cosine similarity representations), and then projecting these three-dimensional
representations into the 2D plane spanned by a pair of query word. The visualization results shown
in the following figures suggest that the representational distributions of word subcategories are
separable only after visual grounding.
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Table 5.5: Top-15 words for vehicle subcategories

query Bert Grounded Relational Grounded

boat

canoe, sailboat,

submarine,

skeleton, nation,

sailing, men, bike,

ballast, boating,

raft, motorboat,

paddle, yacht,

kayak

tugboat, yacht,

riverboat, gunboat,

canoe, boating,

barge,dinghy,

raft, sailboat,

ship, steamboat,

steamer, trawler,

watercraft

riverboat, gunboat,

canoe, sailboat,

dinghy, tugboat,

yacht, motorboat,

ship, steamer, barge,

steamboat, submarine,

ferry, steamship

car

vehicle, jeep,

sedan, truck,

jaguar, auto,

driver, motorcycle,

chassis, motor,

bike, boat,

horse, speeding,

automobile

sedan, suv,

vehicle,

automobile, limo,

jeep, limousine,

taxi, drive,

traffic, auto,

pickup, van,

roadster, truck

sedan, limo,

automobile, suv,

jeep, van, limousine,

taxi, truck, buggy,

vehicle, cart,

motorcycle, auto,

convertible

airplane

plane, aircraft,

propeller,

automobile,

airport, bird,

flight, parrot,

turbulence, fly,

kite, butterfly,

rocket, motorcycle,

takeoff

plane, jet, flight,

aircraft, takeoff,

airport, corsair,

pilot, hangar,

undercarriage,

missile, propeller,

nuclear, nautical,

flyby

plane, jet, aircraft,

corsair, flight,

balloon, missile,

takeoff, automobile,

cockpit, hangar,

avian, rocket,

freighter, nuclear

Figure 5.14: Visualization of words related to vehicle subcategories. Each plot shows a 2D
plane expanded by the cosine similarity scores according to a pair of prototype words. Each dot
represents a word color-coded by the prototype word (blue:boat; orange:car; green:airplane).
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Table 5.6: Top-15 words for animal subcategories

query Bert Grounded Relational Grounded

dog

pig, animal,

bike, horse, mule,

donkey, squirrel,

bicycle, goat,

monkey, motorcycle,

moose, cat,

gorilla, mouse

puppy, doge,

terrier, canine,

pug, hound,

beagle, bulldog,

dogwood, pup, mutt,

spaniel, chihuahua,

retriever,

shepherd

puppy, doge, terrier,

pug, canine, bulldog,

beagle, hound, mutt,

greyhound, bobcat,

spaniel, hag, tomcat,

donkey

goose

scare, geese, cow,

calf, neighbor,

puddle, flu,

battleship, hog,

displeasure, plank,

herring, stir,

scrambled, sock

geese, eagle,

rooster, gull,

pigeon, owl, duck,

crow, parrot,

partridge, falcon,

harrier, sparrow,

vulture, warbler

geese, eagle, pigeon,

owl, parrot, duck,

sparrow, rooster,

falcon, crow,

seagull, gull,

warbler, partridge,

harrier

horse

stallion, mule,

dog, bike, trainer,

boat, mare, car,

animal, men,

motorcycle, human,

mountain, athlete,

chestnut

stallion, mule,

mare, donkey,

seahorse, ox,

steer, bull,

unicorn, chestnut,

foal, camel, oxbow,

antelope, cow

stallion, mule, mare,

seahorse, donkey,

camel, bull, cow,

cattle, ox, bison,

deer, lassie, dog,

animal

Figure 5.15: Visualization of words related to animal subcategories.
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Table 5.7: Top-15 words for food subcategories

query Bert Grounded Relational Grounded

drink

eat, feed, swallow,

spend, study,

spill, breathe,

treat, bite, cough,

drop, give, relax,

wash, bleed

beverage, soda,

cola, coke, juice,

rum, bottle,

champagne, drunk,

flask, blender,

mug, cup, blend,

coffee

beverage, soda,

cola, coke, juice,

rum, flask, bottle,

lemonade, coffee,

cup, blend, mug,

blender, brew

fruit

flower, foliage,

citrus, flowers,

plant, orchid,

shrub, poisonous,

inflorescence,

eggs, omnivorous,

seedling, nut,

pineapple, snail

citrus, grape,

strawberry, pear,

pineapple, lemon,

grapefruit, peach,

mango, nuts, seeds,

tomato,beets,

tangerine, apple

citrus, strawberry,

pineapple, grape,

grapefruit, lemon,

mango, peach, pear,

apple, ripe, nuts,

seeds, cherry,

cranberry

vegetable

potato, beans,

vegetables, cheese,

mustard, beef,

boiled, chicken,

tomato, milk, corn,

pig, bread, grape,

grains

vegetables, salad,

greens, botany,

plantain,weeds,

crops, algae, herb,

legumes, perennial,

lettuce, sprouts,

vegetation, sprout

vegetables, botany,

greens, legumes,

salad, herb,

plantain, herbs,

lettuce, celery,

crops, pomegranate,

algae, asparagus,

carrot

Figure 5.16: Visualization of words related to food subcategories.
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Table 5.8: Top-15 words for room subcategories

query Bert Grounded Relational Grounded

bathroom

restroom, bedroom,

bath, kitchen,

toilet, laundry,

refrigerator,

couch, bathtub,

dresser, shower,

hallway, mirror,

towel, backyard

restroom, bath,

shower, bathtub,

toilet, sink,

vanity, wash, tub,

mirror, towel,

soap, hygiene,

hallway, shave

restroom, kitchen,

cafeteria, bedroom,

bath, room, shower,

hospital, office,

gym, classroom,

pantry, hotel,

gymnasium, motel

bedroom

bathroom, bed,

room, dresser,

downstairs,

apartment, kitchen,

condo, couch,

upstairs, backyard,

mattress, hallway,

bath, attic

bed, mattress,

pillow, room,

closet,

condominium, crib,

dresser, apartment,

motel, upstairs,

cot, dorm, blanket,

robe

room, closet, dorm,

hotel, kitchen,

apartment, motel,

bathroom, household,

dormitory, office,

hostel, classroom,

cafeteria, house

kitchen

refrigerator,

bathroom, couch,

fireplace,

backyard, laundry,

barn, furniture,

sofa, basement,

toilet, bedroom,

cupboard, stairs,

driveway

pantry, counter,

cupboard,

household, galley,

stove, cook,

microwave, oven,

refrigerator,

freezer, kettle,

furnace, washer,

chef

pantry, cafeteria,

household, bathroom,

bedroom, restroom,

room, office,

showroom, classroom,

restaurant, garage,

parlor, gym, dugout

Figure 5.17: Visualization of words related to room subcategories.

5.3.4 Language composition based on visual knowledge

We also test whether the visually grounded semantics can perform compositional reasoning based
on visual knowledge, without being explicitly trained to do so. For this purpose, we choose some
words (Table 5.9) with meanings that can be intuitively inferred from the combination of other
words (especially based on visual perceptual features). For example, we use a phrase "striped horse"
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as a compositional query to search for the matched words ranked in terms of cosine similarity. With
the grounded semantic representation, the phrase striped horse is highly similar to the word zebra

(cosine similarity: 0.63), which is ranked as the 8-th among all common English words. Other
words similar to striped horse all refer to animals within horse familiars (See visualization of the
changes in ranking before and after visual grounding with a slope chart as shown in Fig. 5.18).
In contrast, the ungrounded Bert model is not able to relate striped horse to zebra based on the
similarity of their representations (cosine similarity: 0.12). See other examples in (Table 5.9 and
Fig. 5.19).

Figure 5.18: Language composition based on visual knowledge (striped horse). The left part
shows the cosine similarity and ranking between the listed words and the query phrase (striped horse)
before visual grounding. The right part shows the corresponding results after visual grounding of
natural langauge. Orange curves indicate words with increased ranking after visual grounding (blue
curves for the decreased cases). We highlight the target word "zebra" for this specific example,
which shows a significant increase in cosine similarity value (from 0.12 to 0.60) and ranking (from
2914 to 12 out of 6238 unique words). Besides, the top words similar to "striped horse" are all
horse-like animals after visual grounding, but this is not the case for ungrounded Bert model.
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Table 5.9: Examples of vision based conceptual composition. Each row shows the cosine similarity
and its ranking in the vocabulary (unique words in the Semcat dataset) between a pair of query
phrase and target word. Except (hot weather, summer), all others are concepts supported by
composition of visual knowledge in the query phrase.

Query Phrase Target Word Similarity (cosine | rank)

Bert Grounded Relational
striped horse zebra 0.12 2914 0.60 12 0.63 8
black and white bear panda 0.13 2478 0.69 2 0.81 2
flying car plane 0.36 167 0.66 4 0.61 11
round container bowl 0.25 489 0.56 8 0.67 2
red fruit strawberry 0.39 239 0.75 3 0.85 3
young dog puppy 0.40 94 0.92 2 0.93 2
iced mountain glacier 0.44 20 0.86 1 0.73 5
clear sky sunny 0.27 631 0.31 184 0.34 61
hot weather summer 0.27 903 0.52 14 0.53 6

Figure 5.19: Language composition based on visual knowledge (red fruit).
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5.3.5 A continuous semantic space shared across modalities

Figure 5.20: Cross-modal image search.. Top: Illustration of multimodal image search with a
"zebra" example. The image query QI is the L2-normalized vector representation of a zebra’s skin
pattern. The word query QW is the L2-normalized vector representation of word horse. As the
weight ratio α in the multimodal query Qsearch increases from 0 to 1, the search results show grade
change from zebra-like patterns, to a real zebra, and to a horse image. Bottom: Example multimodal
image search results on image "cat" and word sleep, image "coffee" and word milk, image "car" and
word lego. Increasing α from 0 to 1 gives the image search results from left to right.
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As introduced in Section 5.2.6, we test the trained model for image search based on a multimodal
image-text query, where the weighting between image and test information is controlled by a
parameter α. For example, when we combine a word (horse) and an image (a stripped pattern) into
a query, the multimodal search as described in Section 5.2.6 finds images similar to the zebra’s skin
pattern when α is close to 0, or finds images of typical horses when α is close to 1, but a zebra only
when α is somewhere around 0.5 (Fig. 5.20, top).

This observation is generalizable to other examples (see Fig. 5.20 bottom). When the query
image is a cat face and query word is sleep, the search results gradually change from an awake cat
image, to a cat lying on a cushion, to a sleeping cat, and to sleeping (non-cat) animals when textual
information continuously be added to the image query by increasing the weighting parameter α
from 0 to 1. Similarly, when query image is a cup of coffee and query word is milk, the search
results find coffee images when α is closed to 0 and find milk images when α is closed to 1, while
images showing a cup of latte is found in between. In the last example, query image is a car and
query word is lego, the multimodal search gradually changes its results from a real car to a toy
car as α increased from 0 to 1. These results collectively suggest that the joint semantic space
learned by grounding language in visual contexts is shared between visual and language domains
and continuously captures conceptual representations.

5.4 Summary and Discussion

The current study demonstrates that after grounding language learning with visual experience, the
word representations are reshaped in the semantic space to show interpretable semantic features
more in line with human intuition and neurobiological knowledge. Specifically, the grounded
semantic space can intrinsically capture the concrete-abstract axis in its first principal dimension.
The visually grounded word embeddings can better predict human-defined binary features of
concepts. Words are better clustered by categories and into fine-grained categories after visual
grounding. The composition of concepts can be supported by visual knowledge (e.g., "zebra" =
"striped horse"). Furthermore, the two-stream model can learn a semantic space to continuously
represent concepts conveyed as a text or an image, or their combinations.

Methods of evaluating word embedding models can be summarized as two general schemes:
intrinsic evaluation and extrinsic evaluation [171]. Intrinsic evaluations directly test the property
of word vectors without performing external tasks. Extrinsic evaluations test the performance of
word representations on downstream natural language tasks. The methods and results presented in
this section focus on the intrinsic evaluation. We use data-driven analysis (e.g., PCA) with held-out
datasets with human-defined or human-rated linguistic properties of concepts [153, 24, 34, 41]. The
widely-used intrinsic evaluation methods include testing word similarity, word categorization, and
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word analogy [124]. We focus on intrinsic evaluations in this research because we are interested
in understanding and interpreting the organization of word distribution in the representational
space before and after visual grounding. We conclude that the language model has learned a more
explainable semantic space after learning with both language and visual input. Nevertheless, how
the learned word embeddings can support downstream tasks is also useful and worth exploring in
future studies.

It remains underexplored whether visual grounding should happen at an earlier stage or a later
stage. Being earlier (or later) means more (or fewer) layers in the language model should be made
learnable during cross-modal contrastive learning. Although early grounding seems to reshape
the semantic space based on visual information with a more substantial effect, it may also cause
potential harm to the textual processing capabilities of the language model. This assumption
is supported by the following extrinsic evaluation results on some benchmark natural language
understanding datasets.

Similar to the evaluation in [35], we test the language model before and after visual grounding
on the General Language Understanding Evaluation (GLUE) benchmark [170]. For this purpose,
the Bert encoder in the language models is fixed, while only a pooling layer (which is shared across
all tasks in GLUE) and a linear classification layer (which is task-specific) were trainable. The
testing results are submitted to and evaluated by the GLUE benchmark website 3.

Table 5.10: Model performance on GLUE benchmark.

Model CoLA SST-2 MRPC STS-B QQP
MNLI-

(m/mm)
QNLI RTE Average

Bert 40.7 92.6 87.8 81.8 71 83.3/82 89.4 73.8 78.04

Grounded-4 37.1 91.4 86 83.3 70.8 82.7/81.5 88.9 73 77.19

Grounded-8 38.6 91.5 86.3 83.4 70.8 82/81 87.9 72.2 77.08

Grounded-12 37.2 92.6 86.5 82.3 70.5 82.3/81.7 89.2 72 77.10

Relational-2 38 92.8 84.6 81.8 70.4 83.1/81.8 89.2 71.7 77.04

Table 5.10 summarizes the results. Grounded-k models have k learnable layers in Bert for
visual grounding of natural language with MS COCO dataset. Relational-2 model is trained from
Grounded-8 by finetuning 2 Bert layers for visual grounding of object relations. In general, the
results suggest that the language model has a slightly decreased performance on GLUE after visual
grounding, although the models tested here all share the same architecture as Bert. Allowing more

3https://gluebenchmark.com/
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learnable parameters during visual grounding tends to result in worse performance for natural
language understanding. This observation is unsurprising since we enforce the grounding process
by matching short captions (MS COCO dataset) or phrases (Visual Genome dataset) to visual
contents, which may not require extensive capacity for textual processing. This may be related to
the notorious “catastrophic interference” problem in machine learning - the learning process of
these new tasks in the language stream can interfere with the natural language understanding skills
previously acquired from Bert pretraining. Future work on building grounded language learning
models is needed to reconcile the trade-off between the performance for visual grounding vs. natural
language understanding.

Another limitation in the current study is that we have not evaluated how the cross-modal training
affects the visual stream. It is worth future exploration on whether the visual stream is able to learn
more robust, abstract, and interpretable features by integrating high-level semantic information from
the language model. Although the convolutional neural network (CNN) has reached great success in
computer vision, several fundamental issues remain to be solved. Recent findings suggest that most
CNNs are extremely vulnerable to even tiny perturbations of the input, e.g., adversarial examples
[57]. Besides, all current ImageNet-trained CNNs are found to be severely biased towards local
features, e.g., texture [48]. In addition, there is no well-established approach to easily scale up a
trained model, for example, generalizing an image classification model to new labels [180]. One
potential reason is that it is hard for CNNs to extract robust and abstract high-level features solely
based on image inputs. Therefore, transferring the semantic knowledge from the language domain
to visual models is a reasonable and likely promising solution to these problems [43, 91, 6, 29, 154].
Recent studies have used a similar strategy as in our research, i.e., training a two-stream model
structure with contrastive learning on a large-scale noisy image-text dataset, showing the visual
stream pretrained with matched semantic information can be transferred with a strong performance
on multiple visual classification tasks [79].

Further, we have not thoroughly investigated the relational embeddings learned from the bilinear
operator in the visual grounding stage with object relations. As the bilinear operator is carefully
designed with some extra constraints, we expect the relational embedding matrices should reach
some desired property, e.g., compositionality and transitivity (See details in Section 4.2.4). The
preliminary results show interesting properties in some cases, but they are not significantly captured
for all relational embeddings. For example, the embedding matrix of relation wear tends to be the
transpose of the embedding matrix of relation worn, and the embedding matrix of relation over

tends to be an idempotent matrix, supporting the intuition that (A over B) and (B over C) =⇒
(A over C). However, the current dataset does not contain enough well-defined relation labels, and
it is still relatively imbalanced (top-10 occurred relation labels cover the majority of samples in the
training and testing dataset). Thus, the relational embeddings might have not been fully trained to
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form well-organized representations. And the training hyperparameters, including the number of
heads in the cross-modal attention and the number of dimensions in the bilinear relational operator,
remain to be carefully finetuned and optimized. To sum up, the bilinear operator, as initially inspired
by prior studies on knowledge graph learning [182], shows promising results for modeling object
relations with desired matrix computational properties that are worth in-depth explorations in future
studies.
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CHAPTER 6

Cortical Representations of Semantics

6.1 Rationale and Overview
1 Inspired by biological neural networks, deep artificial neural networks have demonstrated near-
human performance in some visual and language tasks [69]. Comparing artificial neural networks
with biological brains has been increasingly used to investigate neural information processing in the
brain [93]. This chapter summarizes how we applied the learned representations from language
learning models to bridge artificial intelligence and neuroscience through neural encoding [127].

We first collected functional magnetic resonance imaging (fMRI) and electrocorticography
(ECoG) data from humans under naturalistic stimulation [192], e.g., natural vision [175], natural
language comprehension [193, 191], musical perception and musical imagery [189]. We trained
an encoding model to relate the word representations learned from machine learning models to
the cortical representation observed with fMRI or ECoG given the same set of stories delivered to
computational models and human subjects. After establishing the encoding model, we used it as a
high throughput computational analogy of the brain during semantic processing. We mapped word
categories, word relations, and principal axes in the semantic space to their corresponding cortical
representations. The results shed new light onto the cortical organization of not only concepts but
also the relation between concepts, as well as the primary semantic features that define concepts for
language and cognition.

For musical perception and imagery data, we time-locked and controlled the imagery process
by using a visual cue [117] and correlated the brain responses when subjects were listening to
and imagining the same music piece (Fig. 6.1). The corresponding results shed light on the
shared cortical mechanism under high-level cognitive processing of information carried by different
perceptual modalities.

1This chapter is based on the publications [189, 191] and a conference abstract [193].
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6.2 Human Experiments

We collected three sets of data from our previous studies, including natural story comprehension
with healthy subjects [191], natural story comprehension with epilepsy patients [193], and musical
perception and visually-cued musical imagery with musicians [189]. All subjects provided informed
written consent according to approved research protocols.

6.2.1 Natural story comprehension

For natural language comprehension, we collected both ECoG and fMRI data with epilepsy patents
and healthy subjects, respectively [193, 191]. 6 epilepsy patients (3 females, age 38.0± 7.5) and
19 healthy human subjects (11 females, age 24.4± 4.8, all right-handed) participated in this study.
Each subject was listening to several audio stories collected from The Moth Radio Hour 2. ECoG
was recorded at 2000Hz by using a grid of 64 electrodes on one hemisphere in epilepsy patients
for whom the electrodes were implanted for surgical planning. T1 and T2-weighted MRI and
fMRI data were acquired in a 3T MRI system (Siemens, Magnetom Prisma, Germany) with a 64-
channel receive-only phased-array head/neck coil. The fMRI data were acquired with 2mm isotropic
spatial resolution and 0.72s temporal resolution by using a gradient-recalled echo-planar imaging
sequence (multiband= 8, 72 interleaved axial slices, TR= 720ms, TE= 31ms, flip angle= 52◦,
field of view= 21× 21cm2). During fMRI scanning, the stories were presented through binaural
MR-compatible headphones (Silent Scan Audio Systems, Avotec, Stuart, FL). A single story was
presented in each fMRI session (6 mins 48 secs ± 1 min 58 secs). For each story, two repeated
sessions were performed for the same subject.

6.2.2 Musical imagery with visual cue

The fMRI data for musical perception and imagery with visual cue has been collected for this study
[189]. Nine healthy volunteers (Age 19 to 27, 3 females, all right-handed with normal hearing and
on average 10.9 years of musical training) participated in this study. The music stimulus was the first
8-minutes of the first movement of Beethoven’s Symphony 9. This music piece was visualized as a
movie through Stephen Malinowski’s Music Animation Machine [117] (Fig. 6.1). In the musical
perception sessions, each subject was instructed to listen to this music with his or her eyes closed
while no movie was presented. During the musical imagery sessions, each subject was instructed to
imagine the music piece while watching the silent music visualization.

Here, we focused on musicians because the task of imagining a long piece (8 min) of classic
music was rather difficult for non-musicians. Otherwise, inclusion of data from any subjects who

2https://themoth.org/radio-hour
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Figure 6.1: Paradigm for musical perception (left) and imagery (right). The visualized music
shown in is an animation with bars moving from right to left as the music flows. It includes all the
musical information as in a standard music sheet: the length of the bars indicates the note length
(rhythm and duration); the height of the bars indicates the keynote (pitch); the color of the bars
indicates the instrument (timbre).

were unable to perform the musical-imagery task would complicate the study, of which the main
goal was to map cortical activation and networks underlying musical imagery with visual cue.

6.2.3 Data preprocessing

We filtered ECoG data to extract high-gamma (70 to 150 Hz) activity from each channel and
obtained the power envelope of the filtered signal, following the standard preprocessing method as
described in prior studies [31, 19].

We preprocessed the MRI and fMRI data by using the minimal preprocessing pipeline established
for the HCP (using software packages AFNI, FMRIB Software Library, and FreeSurfer pipeline).
After preprocessing, the images from individual subjects were co-registered onto a common cortical
surface template (see details in [53]). Then the fMRI data were spatially smoothed by using a
gaussian surface smoothing kernel with a 2-mm standard deviation.

6.3 Computational Experiments

6.3.1 Correlational analysis

In our research, we use correlational analysis to evaluate 1) the reproducibility between repeated or
related brain measurements; 2) the strength of linear relationship between stimulus features and
brain responses. The former approach was used to map task-evoked cortical patterns within or
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across subjects. We also used this strategy to map multimodal brain regions that were involved in a
pair of related cognitive tasks, such as music perception and music imagery. The latter approach was
used to assess the interpretability of human-defined or data-driven stimulus features for conveying
information in the brain.

In our experiments, each stimulus was presented to the same subject twice in separate sessions.
We calculated the voxel-wise Pearson correlation coefficient ri = corr(x1i (t), x

2
i (t)) in the fMRI

time series (or channel-wise correlation for ECoG data), where xki is the cortical response at location
i for k−th repeated session. The resulting cortical map could highlight brain locations with high
correlation values. Since only the task-driven response would be consistent in the two repeated
sessions, this map was expected to show the pattern of task-evoked cortical activation. Specifically,
we used naturalistic stimuli due to its high reliability within and across subjects [70].

Besides, we also used a similar correlational analysis to evaluate the linear relation between a
stimulus feature and the brain response. Suppose f(t) is a 1D feature times series extracted from
the stimulus. We first convolved f(t) with the canonical hemodynamic response function (HRF)
[109] and then correlated the resulting time series with brain responses at every location to create a
cortical map showing the stimulus-response relation.

6.3.2 Training and testing the voxel-wise encoding model

The brain data collected during natural language comprehension provided a large set of diverse
samples between stimulus and brain response. We applied the neural encoding method to test
whether the word representation extracted from the machine learning models could predict the
brain data through a linear and sparse transformation, as explored in previous studies [77, 127,
175]. Briefly, the machine learning models received the same input (i.e., the same natural stories)
that the human subjects listened to during the fMRI scans (or ECoG recordings). The high
dimensional representation extracted from the models (i.e., the word embeddings) was used as a
set of independent regressors. For each location in the brain, its response was modeled as a linear
combination of these regressors,

xi = ai + biy + εi, (6.1)

where xi is the response at the i-th voxel, y is a column vector, which is the word feature extracted
from the machine learning models. Each element in y corresponds to one axis (or feature) in the
semantic space. bi is a row vector of regression coefficients, ai is the bias term, and εi is the error or
noise.

We separated the collected data into a training dataset and a testing dataset. We used the
(word, data) samples from the training stories to estimate the encoding model. As words occurred
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sequentially in the audio story, each word was given a duration based on when it started and ended in
the audio story. A story was represented by a time series of word embedding sampled every 0.1s. For
each feature in the word embedding, its time-series signal was further convolved with a canonical
hemodynamic response function (HRF) to account for the temporal delay and smoothing due to
neurovascular coupling [109]. The HRF-convolved feature-wise representation was standardized
and down-sampled to match the sampling rate of fMRI. It follows that the response of the i-th voxel
at time t was expressed as

xi(t) = ai + biy(t) + εi(t), (6.2)

where y(t) is the HRF-convolved time series. An illustration of the voxel-wise encoding model
trained with fMRI data and word2vec embedding features is shown in Fig. 6.2.

Figure 6.2: The illustration of voxel-wise encoding model trained with fMRI responses and
word2vec embedding features. The encoding model was trained and tested for predicting the
fMRI responses (top left) from a time series of words in audio-story stimuli (top right). Every word
(as color coded) was converted to a 300-dimensional vector through word2vec. The encoding model
was denoted as a 59, 421-by-300 matrix (B) to predict the voxel response to every word (bottom).

We estimated the coefficients (ai, bi) given time samples of (xi,y) by using least-squares
estimation with L2-norm regularization. That is, to minimize the following loss function defined
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separately for each voxel,

Li =
1

T

T∑
t=1

(xi(t)− ai − biy(t))
2 + λi‖bi‖22, (6.3)

where λi is the regularization parameter for the i−th cortical location, and T is the number of
temporal samples.

We applied generalized cross-validation [56] to determine the regularization parameter λi.
Specifically, the training data were divided evenly into ten subsets, of which nine were used for
model estimation and one was used for model validation. The validation was repeated ten times such
that each subset was used once for validation. In each time, the correlation between the predicted
and measured brain responses was calculated and used to evaluate the validation accuracy. The
averaged validation accuracy across all ten times was considered as the cross-validation accuracy.
We chose the optimal regularization parameter that yields the highest cross-validation accuracy.
Then we used the optimized regularization parameter and all training data for model estimation,
ending up with the finalized model parameters denoted as (âi, b̂i) and the trained encoding model
denoted as ENC.

We also tested how well the encoding model could be generalized to new data. For this purpose,
the encoding model was applied to the testing dataset, generating a voxel-wise model prediction of
the fMRI response to the testing story,

x̂i(t) = âi + b̂iy(t), (6.4)

where y(t) is the HRF-convolved time series of word embedding extracted from the testing story.
To evaluate the encoding performance, we calculated the correlation between the predicted brain
response x̂i and the actually measured brain response xi. To evaluate the statistical significance,
we used a block-wise permutation test [1] (20-s window size; 100, 000 permutations) with FDR
q < 0.05.

In this research, we trained and tested two encoders: ENCword2vec was based on the existing
word2vec model established by Google [123]. ENCgrounded was based on our visually grounded
language model established in Chapter 4, with its word embeddings evaluated in Chapter 5.

6.3.3 Mapping cortical representation through the encoding model

Through the encoding models, we synthesized cortical activation from a large datasets of words
with high-throughput to map brain regions associated with different semantic properties, including
categories of concepts, relationships between concepts, and semantic attributes of concepts.
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6.3.3.1 Mapping word categories

In a prior study [191], we trained an encoding model with word2vec embedding and applied the
encoding model to a large vocabulary set including about 40, 000 words [24]. We focused on the
model prediction from nine categories: tool, human, plant, animal, place, communication, emotion,
change, quantity (Table 6.1). For each word, we extracted its vector representation from the machine
learning model, and then used the voxel-wise encoding model to map its cortical representation.

Semantic
category

Wordnet synsets Semantic definition # word
samples

Example words

tool ‘tool.n.01’ an implement used in the
practice of a vocation

200 axe, drill, fork, saw,
wrench

animal ‘animal.n.01’ a living organism charac-
terized by voluntary move-
ment

734 ant, cat, dog, fox,
hen, owl

plant ‘plant.n.02’ a living organism lacking
the power of locomotion

387 aloe, beet, corn, lo-
tus, rosewood

human ‘adult.n.01’;
‘worker.n.01’

a fully developed person;
a person who works at a
specific occupation

808 barber, clerk, groom,
hunter, man

communi-
cation

‘communication.n.02’ something that is commu-
nicated by or to or be-
tween people or groups

2,027 chat, discussion, gos-
sip, idea, speaking

place ‘location.n.01’; ‘build-
ing.n.01’

a point or extent in space;
a structure that has a roof
and walls and stands more
or less permanently in one
place

814 arena, city, grave, in-
side, terminal

quantity ‘definite_quantity.n.01’;
‘measure.n.02’

a specific measure of
amount; how much/many
of something that you can
quantify

958 billion, decade,
single, gallon,
megabyte

change ‘change.v.01’;
‘change.v.02’

cause to change, make dif-
ference; undergo a change

3,417 abort, fall, heal, re-
duce, thicken

emotion ‘feeling.n.01’ the experiencing of affec-
tive and emotional states

504 anxiety, concern,
daze, dream, mood

Table 6.1: Details of each semantic category.

As words were grouped by categories, we investigated the common cortical representation shared
by those in the same category. For this purpose, we averaged the cortical representation of every
word in each category, and threshold the average representation based on its statistical significance
(one-sample t-test, FDR q < 0.01). We evaluated whether a given category was differentially
represented by the left vs. right hemisphere. We also evaluated the semantic selectivity of each
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voxel, i.e., how the voxel was more selective to one category than the others. For a coarse measure
of categorical selectivity, we identified, separately for each voxel of significance, a single category
that resulted in the strongest voxel response among all nine categories and associated that voxel
with the identified category (or by “winners take all”).

6.3.3.2 Mapping word relations

Semantic relation # paired
samples

Example word pairs

whole-part 178 hand-finger, zoo-animal, hour-second
class-inclusion 113 color-green, weapon-spear, tree-oak
object-attribute 63 fire-hot, child-innocent, heart-beat
case relations 106 coach-player, writer-story, barber-scissors
space-associated 58 library-book, mine-coal, mall-shopping
time-associated 44 morning-sunrise, winter-snow, christmas-presents
similar 160 house-home, kid-child, teach-instruct
contrast 162 hot-cold, rich-poor, top-bottom
object-nonattribute 69 fire-cold, slavery-freedom, optimist-despair
cause-effect 107 loss-grief, heat-sweat, study-learn

Table 6.2: Details of each semantic relation.

In word2vec embedding space, word relation is preserved as the differential vector of a word
pair [123, 124]. Thus, applying the encoding model to the differential vector of a word pair could
effectively generate the cortical representation of the corresponding word relation. With this notion,
we used the encoding model to predict the cortical representations of semantic relations. Samples
of word pairs were defined in the SemEval-2012 Task [83] dataset (Table 6.2). For each class
of semantic relation, we calculated the relation vector of every word pair in that class, projected
the relation vector onto the cortex using the encoding model, and averaged the projected patterns
across word-pair samples in the class. For the averaged cortical projection, we tested the statistical
significance for every voxel based on a paired permutation test. In this test, we flipped every word
pair at random for 100, 000 trials. For every trial, we calculated the model-projected cortical pattern
averaged across the randomly flipped word pairs, yielding a null distribution per voxel. Against
this voxel-wised null distribution, we compared the average voxel value projected from non-flipped
word pairs and calculated the two-sided p value with the significance level at FDR q < 0.05. The
resulting pattern of significant voxels was expected to report the primary cortical representation of
each semantic relation of interest.
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6.3.3.3 Mapping principal axes in the grounded semantic space

In Chapter 5, we have found that the principal axes obtained by the singular value decomposition on
visually grounded word representations manifest a set of explainable semantic attributes in line with
human intuition. We further aim to understand how these principal axes of the visually grounded
semantic space are represented by the human cortex. For this purpose, we trained a new voxel-wise
encoding model ENCgrounded for the visually grounded language model established in this study. We
extracted the word embeddings from the Grounded-4 model, which had the top 4 layers learnable
in Bert and was trained with cross-modal contrastive learning on the MS COCO dataset for visual
grounding of natural language, as illustrated in Fig. 4.1 and Section 4.2.5.2.

We decomposed this grounded semantic space into a set of orthogonal principal components
(See detailed methods in Section 5.2.1). Each principal component defines an axis in the semantic
space. The varying value on this axis quantified the representation of a specific semantic feature,
such as abstract vs. concrete in PC 1, non-human vs. human in PC 2, and object vs. scene
in PC 3. We then mapped each principle component, which also possessing a vector form in the
semantic space, through the trained encoding model. We scaled each principal component with
the corresponding singular value. Through the encoding model, we projected the scaled principal
component in its positive and negative directions onto their corresponding cortical patterns. Their
difference was interpreted as the cortical representation of the given principal dimension of the
grounded semantic space,

Patterni = ENCgrounded(Σi,iW ·,i)− ENCgrounded(−Σi,iW ·,i), (6.5)

where W ·,i is the i-th column of W in the Eq. 5.1, which refers to the i-th principal component in the
word embedding space. Patterni is the resulting brain pattern of the i-th principal component mapped
through the trained encoding model ENCgrounded. The cortical patterns of the first three principal
components was expected to collectively revealed the cortical organization of the corresponding
principal semantic components.
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6.4 Results

All subsequent sections were based on ENCword2vec from our prior study using word2vec word
embeddings [193, 191], except the results in Section 6.4.4, which was based on the encoding model
ENCgrounded trained from the visually grounded word embeddings.

6.4.1 Prediction accuracy for encoding models

We trained and examined the encoding model for natural language comprehension with both fMRI
data and ECoG data. fMRI signal has a relatively higher spatial resolution but changes slow in
time. In contrast, ECoG signal captures fast temporal dynamics of neural activity, but has limited
spatial coverage. Combining results from these two types of brain signals would leverage their
complementary advantages.

6.4.1.1 Encoding model trained with fMRI data for natural story comprehension

Figure 6.3: A map of the semantic system obtained by 10-fold cross-validation of the encoding
model. The map is displayed on the flattened cortical surfaces for the left and right hemispheres.
The color indiciates the FDR (or q value) in a logarithmic scale.

To estimate the voxel-wise encoding model, we acquired whole-brain fMRI data from 19 native
English speakers listening to different audio stories. We used different stories for different subjects
to sample more words collectively. In total, the story stimuli combined across subjects lasted 11h
and included 47, 356 words (or 5, 228 words if duplicates were excluded).
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Figure 6.4: Measured vs. model-predicted fMRI responses to a new (untrained) testing story.
(a). The voxel-wise correlation between fMRI responses and model predictions for the testing story.
(b) Predefined ROIs (shown in different colors) are displayed on the cortical surfaces. (c) Response
time series as measured (blue) or model-predicted (red) for each ROI, by averaging the time series
across voxels within each ROI.
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The voxel-wise encoding model was estimated based on the fMRI data concatenated across all
stories and subjects. By 10-fold cross-validation[56], the model-predicted response was significantly
correlated with the measured fMRI response (block-wise permutation test, false discovery rate or
FDR q < 0.05) for voxels broadly distributed on the cortex (Fig. 6.3). This map, hereafter referred
to as the semantic system, was widespread across regions from both hemispheres, as opposed to
only the left hemisphere, which has conventionally been thought to dominate language processing
and comprehension [92].

We also tested how well the trained encoding model could be generalized to a new story never
used for model training and whether it could be used to account for the differential responses at
individual regions. For this purpose, we acquired the voxel response to an independent testing story
(6m 53s, 368 unique words) for every subject and averaged the response across subjects.

Color in Fig. 6.4(a) indicates the correlation coefficient between measured and model-predicted
fMRI responses. The color-highlighted areas include the voxels of statistical significance (block-
wise permutation test, one-sided, FDR q < 0.05). As shown in Fig. 6.4(a), we found that the
encoding model was able to reliably predict the evoked responses in the inferior frontal sulcus (IFS),
supramarginal gyrus (SMG), angular gyrus (AG), superior temporal gyrus (STG), middle temporal
visual area (MT), left fusiform gyrus (FuG), left parahippocampal gyrus (PhG), and posterior
cingulate cortex (PCC). These regions of interest (ROIs), as predefined in the human brainnetome
atlas [40] (Fig. 6.4(b)), showed different response dynamics given the same story, suggesting their
highly distinctive roles in semantic processing (Fig. 6.4(c)). Despite such differences across regions,
the encoding model was found to successfully predict the response time series averaged within
every ROI except the right FuG, suggesting its ability to explain the differential semantic coding
(i.e., stimulus–response relationship) at different regions.

6.4.1.2 Encoding model trained with ECoG data for natural story comprehension

To estimate the encoding model with ECoG data, we used ECoG data from one epilepsy patient
for whom the electrodes were implanted on left temporal and frontal cortices for surgical planning.
During ECoG recording, the patient listened to 2h 19min of different audio stories.

The channel-wise encoding model was trained and tested by using leave-one-out cross-validation,
while the encoding performance was evaluated as the correlation between the predicted and measured
high-gamma activity. Fig. 6.5 shows the prediction accuracy of all channels in the ECoG data
averaged across sessions. This result suggests the high-gamma power of ECoG in STG could be
predicted by vectorized word representation during natural speech processing. To a lesser degree,
somatosensory cortex and subtemporal area were also significantly predictable. The predicted
high-gamma activity was a linear combination of the 300 elements in word2vec embedding space,
showing similar temporal variation as the real high gamma activity (Fig. 6.6).
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Figure 6.5: Prediction accuracy of all channels in the ECoG data averaged across sessions.
The prediction accuracy was measured by channel-wise correlation between real and predicted high-
gamma activity using leave-one-out cross-validation. 18 channels (inside black borders) showed
significant positive correlation (FDR-corrected q-value< 0.01).

Figure 6.6: Measured vs. model-predicted high gamma activity. Examples of measured (blue)
and predicted (red) high-gamma activity from one session in channel 55 (located in the STG;
correlation coefficient r = 0.51. See Fig. 6.5 for reference.). Words aligned with high-gamma
activity were demonstrated at the bottom.
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6.4.2 Semantic categorization

Since the encoding model was generalizable to new words and sentences, we further used it to
predict cortical responses to > 9, 000 words from nine categories: tool, human, plant, animal,
place, communication, emotion, change, quantity (Table 6.1), as defined in WordNet[125] and are
representative of different conceptual domains. We confined the model prediction to the voxels in
the semantic system for which the model fit was significant during cross-validation (Fig. 6.3).

Within each category, we averaged the model-predicted responses given every word and mapped
the statistically significant voxels (Fig. 6.7; one sample t-test, FDR q < 0.01). This map represented
each category being projected from the semantic space to the cortex, and thus was interpreted as the
model-predicted cortical representation of each category. To each voxel in the semantic system, we
assigned a single category that gave rise to the strongest voxel response, thus dividing the semantic
system into category-labeled parcels (Fig. 6.8(a)). The resulting parcellation revealed how every
category of interest was represented by a different set of regions, as opposed to any single region.
In addition, the distinction in left/right lateralization was noticeable and likely attributable to the
varying degree of concreteness for the words from individual categories. The concepts lateralized to
the left hemisphere appeared relatively more concrete or exteroceptive, whereas those lateralized to
the right hemisphere were more abstract or interoceptive (Fig. 6.8(b)). This intuitive interpretation
was supported by human rating of concreteness (from 1 to 5) for every word in each category
[24]. The maximum value of the concreteness rating is 5.00 and the minima value is 1.25. In the
box plot Fig. 6.8(c), the central mark indicates the median, and the box edges indicate the 25th
and 75th percentiles respectively. The concreteness rating was high (between 4 and 5) for the
categories lateralized to the left hemisphere, whereas it tended to be lower yet more variable for
those categories dominated by the right hemisphere (Fig. 6.8(c)).

6.4.3 Cortical representations of semantic relations

Through the word2vec model, we could also represent semantic relations as vectors in the semantic
space [124]. Specifically, we represented the relationship between any pair of words based on their
difference vector in word embedding.

For a given word-pair, their relation vector could be further projected onto the cortex through
the encoding model. For an initial exploration, we applied this analysis to 178 word-pairs that all
shared a same whole-part relationship. For example, in four word-pairs, (hand, finger), (zoo,
animal), (hour, second), and (bouquet, flower), finger is part of hand; animal is
part of zoo; second is part of hour; flower is part of bouquet. Individually, the words from
different pairs had different meanings and belonged to different semantic categories, as finger,
animal, second, and flower were semantically irrelevant to one another. Nevertheless, their
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Figure 6.7: Cortical representation of 9 word categories.
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Figure 6.8: Cortical organization of semantic category. (a) Category-labeled parcellation based
on voxel-wise selectivity using a “winners-take-all” strategy. (b) Cortical lateralization of categorical
representations. For each category, the percentage value was calculated by counting the number
of voxels on each hemisphere that represented the given category. (c) The concreteness rating of
words in each category.
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Figure 6.9: Mapping cortical representation of the whole-part relation. (a) The illustration of
mapping the whole-part relation from the semantic space to the human brain through the voxel-wise
encoding model. We viewed the whole-part relation as a vector field over the semantic space. This
relation field was sampled by the difference vector of each word pair that held such a relation (left).
The cortical representation of this difference vector was predicted by the voxel-wise encoding model.
Cortical representation of the whole-part relation was then obtained by averaging representations
of all word pairs (right). (b) Cortical representation of the whole-part relation. The statistical
significance was assessed by a paired permutation test (178 word pairs, two-sided, FDR q<0.05).
(c) The co-occurring activation of DMN and deactivation of FPN encodes the whole-part relation or
the conceptual progression from part to whole.
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pairwise relations all entailed the whole-part relation, as illustrated in Fig. 6.9(a). By using the
encoding model, we mapped the pairwise word relationship onto voxels in the semantic system
(as shown in Fig. 6.3), averaged the results across pairs, and highlighted the significant voxels
(paired permutation test, FDR q < 0.05). The resulting cortical map represented each semantic
relation being projected from the semantic space to the cortex, reporting the model-predicted cortical
representation of the relation. We found that the whole-part relation was represented by a cortical
pattern that manifested itself as the co-occurring activation of the default mode networks [140]
(DMN, including AG, MTG, and PCC) and deactivation of the frontoparietal network [30, 151]
(FPN, including LPFC, IPC and pMTG) (Fig. 6.9(b)). This cortical pattern encoded the whole-part
relation independent of the cortical representations of the individual words in this relation. The
co-activation and deactivation pattern indicated that conceptual progression from part to whole
manifested itself as increasing deactivation of FPN alongside increasing activation of DMN, whereas
progression from whole to part was shown as the reverse cortical pattern varying in the opposite
direction, as illustrated in Fig. 6.9(c).

Similarly, we also mapped the cortical representations of several other semantic relations. Each
relation was projected to a distinct cortical pattern (Fig. 6.10). For each of the ten relations in
this figure, the number of significant voxels (paired permutation test, two-sided, FDR q < 0.05) is
10,607 (whole-part), 10,768 (class-inclusion), 9,037 (object-attribute), 9,550 (case relations), 11,496
(space-associated), 6,129 (time-associated), 0 (similar), 0 (contrast), 1,124 (object-nonattribute),
244 (cause-effect). Specifically, the class-inclusion relation, e.g., (color, green) where color
includes green, was represented by the activation of AG and MTG and the deactivation of IFG
and STG (Fig. 6.10(b)). The object-attribute relation, e.g., (fire, hot) where fire is hot, was
represented by an asymmetric cortical pattern including activation primarily in the left hemisphere
and deactivation primarily in the right hemisphere (Fig. 6.10(c)). The case relations, e.g., (coach,
player) where a coach teaches a player, was represented by a cortical pattern similar to that
of the whole-part relation (Fig. 6.10(d)), despite a lack of intuitive connection between the two
relations. The space-associated relation, e.g., (library, book) where book is an associated item
in a library, was represented by activation of AG and PCC and deactivation of STG (Fig. 6.10(e)).
Lastly, the time-associated relation, e.g., (morning, sunrise) where sunrise is a phenomenon
associated with morning, was also represented by a bilaterally asymmetric pattern (Fig. 6.10(f)).
However, several nominal (human-defined) relations, e.g., similar, contrast, object-nonattribute and
cause-effect, were projected onto either no or fewer voxels.
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Figure 6.10: Cortical representations of semantic relations. The cortical pattern associated with
each relation shows the average cortical projection of every word-pair sample in that relation
and highlights only the voxels of statistical significance (paired permutation test, two-sided, FDR
q < 0.05) based on voxel-wise univariate analysis.
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6.4.4 Cortical organization of principal axes in the grounded semantic space

Results described in this section were based on the encoder ENCgrounded trained with the visually
grounded word embeddings. Since the visually grounded semantic space captured explainable
principal axes (See details in Section 5.3.1), we mapped those principal axes onto the cortex through
the encoding model with the method described in Section 6.3.3.3. The goal was to investigate the
cortical organization of principal semantic attributes learned jointly from language and vision.

The results for all three principal components are shown in Fig. 6.11, Fig. 6.12, and Fig. 6.13.
To visualize each map, we divided its positive and negative portions by the corresponding absolute
maximum, resulting in a normalized cortical pattern with intensities ranging from −1 to 1. The
collective findings from all three principal components were also summarized in a single RGB
color-coded map to illustrate how the three principal semantic attributes were encoded by distributed
networks in the human semantic system, as shown in Fig. 6.14.

Specifically, as shown in Fig. 6.11, the positive direction in PC1 reflected the concrete features.
The word categories that show a pronounced representation in the positive direction of PC1 cooking

tools, mammal, ocean, fruit, reptiles, vegetables, desserts, animal etc.). The cortical representation
of this concrete semantics was almost exclusively lateralized to the left hemisphere. The most
relevant areas included the left inferior frontal sulcus (IFS), left Brodmann area 44 (A44), left
intraparietal sulcus (IPS), and left lateral temporal cortex (LTC).

To the opposite, the negative direction in PC1 reflected the abstract feature. The most pro-
nounced examples were such word categories as positive words, happiness, happy, adjectives for

people, big, emotions, virtues, math. The cortical representation of the abstract semantics involved
both hemispheres. Despite an overall symmetry, the right hemisphere appeared to be more relevant
to the abstract semantics than the left hemisphere. The most pronounced representations were found
in the dorsomeidal parieto-occipital sulcus (dmPOS), and to a lesser degree in the superior temporal
sulcus (STS) and right inferior parietal cortex (IPC). The differential degree of lateralization for
the concrete and abstract attributes echoed the previous findings in word category representations
(Section 6.4.2).

Fig. 6.12 suggests that the non-human feature (i.e., the positive direction in PC2: fruit, flowers,

reptiles, insect etc.) was encoded by the left inferior frontal sulcus (IFS), left Brodmann area 44
(A44), left Brodmann area 45 (A45), and bilateral superior temporal sulcus (STS). The human
feature (i.e., the negative direction in PC2: rooms, boat, jobs, cooking tools etc.) was slightly
right-lateralized, mostly encoded by inferior parietal cortex (IPC) and posterior cingulate cortex
(PCC).

As shown in Fig. 6.13, the representation of the scene feature (i.e., the positive direction in
PC3: water, biomes, land forms, bathroom etc.) did not highlight a specific large region. Besides
bilateral dorsomeidal parietooccipital sulcus (dmPOS), it was also coded by area PGs and area
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PFm in the inferior parietal cortex (IPC) [52], right dorsolateral prefrontal cortex (dlPFC), and right
anterior cingular cortex (ACC). In contrast, the representation of object feature (i.e., the negative
direction in PC3: jobs, mammal, musical instruments, birds etc.) was coded mainly by the bilateral
frontotemporal network.
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Figure 6.11: The cortical mapping and representative word categories for the first principal axis. The
colorbar ranges from −1 to 1 after normalizing the resulting map. Blue: Abstract. Red: Concrete.
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Figure 6.12: The cortical mapping and representative word categories for the second principal
axis. The colorbar ranges from −1 to 1 after normalizing the resulting map. Blue: Human. Red:
Non-human.
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Figure 6.13: The cortical mapping and representative word categories for the third principal axis.
The colorbar ranges from −1 to 1 after normalizing the resulting map. Blue: Object. Red: Scene.
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Figure 6.14: Cortical representation of the first three principal axes in the grounded semantic
space. This map summarizes the cortical organization of all three principal components by color-
coding each voxel with an RGB code, where reddish color towards concrete, greenish color towards
non-human, bluish color towards scene.
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6.4.5 Multimodal representation in the brain

In our prior study [189], we designed a fMRI experiment for musical imagery with visual cue to
explore how visual and auditory information carrying the same (music) content are processed in the
brain.

When a subject with musical training listened to an 8-min music piece eight times during the
fMRI acquisition, activated cortical areas were mapped by identifying the voxels with reproducible
fMRI signals across repetitions. Activated voxels were mostly confined to the auditory cortex,
including the core and belt regions along the ventral auditory pathway, and Wernicke’s area
(Fig. 6.15(a)); the activations were slightly stronger in the right hemisphere than the left hemisphere.

In the second set of experiment, we visualized the music as a silent movie (Fig. 6.1, right). This
movie provided real-time visual cues to inform subjects of the content of musical imagery and
assisted in controlling the timing of the imagery process during the 8-min session. By watching this
movie, each subject could consistently imagine the music piece for 12 repeated sessions of fMRI
scans (All subjects reported experiencing vivid musical imagery during experiments, and could
imagine the music with accurate tempo and pitch in mind). Similar to the activation analysis for
musical perception, the cortical activation during the visually-cued musical imagery was mapped
by assessing the intra-subject reproducibility of fMRI signals at the voxel level. The activated
areas covered a large part of the cortex, including the primary visual cortex, dorsal visual areas,
the parietal association cortex, the anterolateral belt, Wernicke’s area, the frontal eye fields, the
supplemental motor area and the premotor cortex (Fig. 6.15(b)). The responses at these areas could
be attributable to either visual stimuli or musical imagery, since the task required the subject to
process the visual cues as well as to imagine the music accordingly.

We further compared the task-evoked responses between the visually-cued musical imagery and
musical perception conditions. This allowed us to localize the responses to musical imagery as
opposed to the visual stimuli because no visual stimuli were given during the perception condition.
We investigated the shared cortical substrates for both musical perception and imagery by assessing
the fMRI signal correlation between each musical-imagery session and each music-perception
session at each voxel. This analysis revealed the areas that showed consistent responses to both
tasks (Fig. 6.15(c)). Such areas included Wernicke’s area on the left hemisphere and its homologous
area on the right hemisphere (herein we refer to them as the bilateral Wernicke’s areas), and to a
lesser degree the anterolateral belt, the supplementary motor areas, and the premotor cortex. Note
that the perception task involved only auditory input but not visual input, whereas the imagery task
involved only visual input but not auditory input. The voxel-wise correlation across these two task
conditions was only attributable to the high-level music content in both conditions, regardless of
its sensory modality. By visual inspection of the averaged fMRI signals, we found that both the
imagery and perception tasks evoked complex but similar responses bilaterally in Wernicke’s areas,
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Figure 6.15: Distinct and common cortical activations with musical perception and visually-
cued imagery. (a). Cortical activations for musical perception (two-tailed significance level p <
0.01). (b). Cortical activations for musical imagery (two-tailed significance level p < 0.005). (c).
Shared cortical substrates between musical perception and musical imagery (two-tailed significance
level p < 0.01). The time series was extracted from the fMRI signal averaged across the perception
or imagery sessions from the labelled locations.
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supplementary motor areas, and premotor cortex, over the entire duration of the music stimulus
(Fig. 6.15(c))).

Figure 6.16: Distinct and common cortical activations with musical perception and imagery
from group-level analysis. Each chart reflects the averaged correlation (r value) among all subjects
in different regions of interest (ROI) compared across three conditions: reproducibility between
musical perception sessions (light gray); reproducibility between musical imagery sessions (black);
correlation between a musical perception session and a musical imagery session (dark gray).

Fig. 6.16 provided the results of group level analysis for distinct and common cortical activations
with musical perception and imagery. The left two charts show the results for ROIs in the left
hemisphere and the right two charts show the results for ROIs in the right hemisphere. The
mark ∗ over a bar indicates that the specific ROI is consistently significantly activated by the
musical perception or imagery task, or co-activated by both tasks among all subjects (two-tailed
significance level p < 0.05). (A1: Primary auditory cortex; ALB: Auditory anterolateral belt;
SMA: Supplementary motor area; PMC: Premotor cortex; FEF: Frontal eye field; IPS: Intraparietal
sulcus).

We also explored how sound features were correlated with the cortical activity during musical
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Figure 6.17: Responses at Wernicke’s areas coded musical features during imagery. (a) The
auditory spectral flux was extracted from the stimulus spectrogram as a feature showing how quickly
the power spectrum of a sound wave changes over time. (b) Spectral flux was highly correlated
with the fMRI signals (averaged across all subjects) in the common cortical regions shared between
musical perception and imagery (corrected at false discovery rate (FDR) q < 0.05)

perception and musical imagery. As illustrated in Fig. 6.17(a), spectral flux, which measures the
change in the power spectrum of a signal, was extracted by the MIRtoolbox in Matlab [97]. It is
calculated as the 2-norm between the normalized spectra from adjacent frames [50]. Spectral flux is
a sound feature related to music timbre. Fig. 6.17(b) shows that this feature was highly correlated
with the fMRI signals (averaged across all subjects) in the common cortical regions shared between
musical perception and imagery (corrected at false discovery rate (FDR) q < 0.05), especially in
ventral visual areas and bilaterally in Wernicke’s areas (as circled on the maps).
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6.5 Summary and Discussion

With the existing word2vec embeddings, we built a neural encoding model for cortical response
evoked by language comprehension using fMRI or ECoG signals from subjects listening to nat-
ural story stimuli. The encoding model could predict brain signals with high accuracy in widely
distributed brain regions. We also mapped the cortical representation of semantic categories and
semantic relations through the encoding model. After developing and evaluating a visually grounded
language model, we further mapped the cortical organization of principal axes in the grounded
semantic space by training a novel encoding model with the grounded word embeddings learned
from Section 4.2.5.2. The results collectively suggest that the human semantic system represents
conceptual features by distributed and overlapping cortical regions, including some multimodal
association areas, supporting the grounded cognition theory. In another study, our preliminary
results from the musical imagery experiments suggest that the representation of high-level multi-
modal information of the stimulus has invariant activities in some brain regions regardless of its
input sensory modality, which sheds light on the cognitive processing mechanism of multimodal
information in the brain.

Specifically, we found that semantic categories are represented not by segregated cortical regions,
but by distributed and overlapping cortical patterns. Although the cortical representations of words
collectively constitute a bilateral semantic system, the left hemisphere tends to be more selective
to concrete concepts. More importantly, semantic relations reflecting conceptual progression
from concreteness (i.e., part) to abstractness (i.e., whole) are represented by the co-occurrence
of activation in the default-mode network and deactivation in the attention network. But not all
differential vectors between word pairs with the same semantic relations were aligned well in the
word2vec embedding space, especially for the relations that could not be consistently mapped to the
brain with the current method (see details in Supplementary Information of [191]).

After grounding language in vision, the semantic space can be decomposed into a set of ex-
plainable principal axes (Section 5.3.1). These principal semantic axes are mapped onto distinctive
patterns that involve highly selective cortical regions. It suggests that the principal semantic di-
mensions are encoded by different sub-systems in the human semantic system. Furthermore, we
found early grounding (8 learnable layers in Bert; see results in Section 5.3.1) or late grounding (4
learnable layers in Bert; see results in Section 6.4.4) showed consistent semantic attributes for the
first three principal axes in their semantic space, respectively: the 1st principal component always
capture the contrast between abstract and concrete concepts, while the 2nd and the 2rd principal
components always capture the semantic feature explaining concepts for non-human vs. human,
and object vs. scene. This finding implies that these semantic attributes inherently and robustly
span the dominant components in the grounded semantic space regardless of the different training
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settings.
Overall, the results from the neural encoding models amount to a coherent conclusion that the

human brain represents a continuous semantic space. Specifically, our findings go one step further
than previous studies by showing the brain uses distributed cortical networks to encode not only
concepts, but also the relationships between concepts and the semantic attributes of concepts
to support conceptual inference and reasoning.

To assess the hierarchy of language processing system, we also did a latency analysis to estimate
the delay of cortical activation responding to the natural story stimuli given the high temporal
resolution in ECoG signals [193]. The latency analysis was explored separately for each channel,
by allowing high gamma ECoG to lag behind speech stimuli by a variable delay (from 0 to 1500ms
with 100ms increments) before calculating the correlation. The results suggest different ECoG
channels had a varying latency for words encoded by the recorded high-gamma activity (Fig. 6.18).
After subtracting the onset delay, the estimated latency in STG varied from 0 to 300ms, showing
longer delays in higher cognitive regions. Future work connecting different layers in the grounded
language model to the brain’s hierarchical language processing is worth exploring with the ECoG
data.

Figure 6.18: Variant latency at different ECoG channels revealed by the encoding model (a)
The estimated latency in 18 significant channels. (b) Different brain regions have relatively different
encoding latency for word-level information.
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CHAPTER 7

Future Directions

This study is motivated by developing brain-inspired computational models to bridge fundamental
gaps between how humans and machines learn language. On one hand, I hope we can incorpo-
rate the inspiration from human intelligence into machine learning to better support natural language
processing. On the other hand, I hope a brain-like and interpretable language learning model can be
used to help study the biological neural network to advance progress in neuroscience.

However, I have to admit that both deep learning models and human brains are like a “black box”
system to some extent, which requires further explanation and understanding of their underlying
computational mechanisms. Although studying language learning in either machines or humans
remains a challenging problem, I believe that filling in the known gaps and constructing brain-like
computational models is the right research direction, which can promote synergistic progress in
both AI and neuroscience.

Specifically, I would like to discuss the potential future directions to further expand the current
work. I emphasize two perspectives: 1. ground language learning in multiple modalities; 2. develop
more biologically plausible learning schemes for language grounding models.

7.1 Grounding language learning in multiple modalities

Vision is just one of the neural systems for human perception. We not only perceive the world
through our eyes but also through our ears (auditory), nose (olfactory), mouth (gustatory), and hands
(tactile sensation). We also interact with real-world objects and environments through executable
actions (sensorimotor). As human beings, emotions and feelings emerge in our minds through
perception and interactions with the physical world. These experiences collectively embody our
cognition. In this section, I will discuss the next steps toward developing grounded language learning
in perception, action, and emotion. The ultimate goal is to build a comprehensive computational
model to explain the grounded cognition theory.
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7.1.1 Perception

Our brain is profoundly a multimodal system. The different sensory systems can educate each other
without an external teacher [159]. Therefore, it is ideal for developing a unified multi-stream model
with each stream as an analogy to the different sensory systems in the brain to ground language
learning in various modalities. The cross-modal learning strategy demonstrated in this study can be
naturally extended to include multiple modalities. For example, we can train a three-stream model
given an audio-visual movie dataset, by inputting synchronized video frames, audio tracks, and
text scripts (like descriptions of the movie contents). There are some handy datasets to train such
models, such as documentary movies with narrations and movies with audio descriptions (e.g., The
Audio Description Project).

Visual features and auditory features are relatively easy to model as real-valued tensor represen-
tations through convolution or spectral decomposition since the input data of these two modalities
are already in well-structured digital forms. However, it is more difficult to model and extract
data and features as computable items from olfactory, gustatory, and tactile systems. An indirect
way to ground language learning in olfactory and gustatory systems is to use the information from
chemical compounds of individual objects to build a representation of perceptual features based
on the so-called “bag of chemical compounds” model [87]. How to computationally model smell,
taste, or touch remains an open question, because even the most advanced electrochemical sensors
cannot imitate and simulate these human sensations. Recent works using biological signals collected
from receptors implanted on animals (e.g., bees) to build neuromorphic computing models of the
olfaction system have shown promising progress in understanding the underlying computational
mechanism [136]. In general, extending the current work to ground concept representations in
multiple perceptual domains is worthy of future exploration.

7.1.2 Action

Grounding language learning in action is naturally related to training agents or robots in an
environment with natural language instructions or communication [184, 25, 135, 115]. Action is an
essential component for building semantic representations of verbs and prepositions. If a language
model is only grounded in vision, concepts related to predicate words will be hard to learn since they
require further information, such as spatial locations, spatial relations, the executable actions (e.g.,
we can eat or cut apples but not drink apples), and results of an action (e.g., we feel full by eating
apples). Similarly, it may be necessary to pretrain a language model with a large textual corpus
first and then transfer it for actional grounding. Because the sampling of words for instructions and
communications with an robot agent in a virtual environment can hardly cover the semantic space
without bias.
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An intuitive way to ground language learning in action with a similar scheme as in the current
study is to add an individual actional encoder to the visual-language two-stream model. The visual
stream takes what the agent sees as input and output the visual embedding of the environment. The
language stream takes what the agent hears (e.g., a natural language instruction “find an apple”)
as input and outputs the semantic representation of the target action. While the “action encoder”
takes the state of the environment as input and outputs a feasible action. The whole model can be
trained with reinforcement learning to optimize the reward of performing correct action given an
instruction.

7.1.3 Emotion

Emotions play an essential role in human cognition. To ground word embeddings in emotions,
traditional methods use tasks such as sthe entiment analysis to predict affective labels from text
input [116]. Recent studies have also used text to pair with emojis collected from social media
datasets to learn the affective information in natural language by predicting concurrent emojis
[145]. Most words related to intense emotional characteristics are abstract concepts and cannot be
directly captured by visual perception. Therefore, it is not surprising that in our results, all abstract
concepts, no matter conveying positive or negative sentiment, are clustered together and cannot be
separated into more exemplary sets in the visually grounded semantic space. The key limitation
of emotional modeling or affective computing is the lack of high-dimensional space to represent
emotional features. Although facial expressions, body gestures, and physiological signals (e.g.,
heart rate, body temperature, and galvanic skin response) all reflect rich emotional information,
whether human emotions are collectively represented in a continuous space or as discrete states is
still controversial [120]. Adding an emotional feature extractor in a language grounding model can
not only lead to explainable word representations of abstract concepts but also shed light on the
organization of emotional feature space.

7.2 Developing biologically plausible learning paradigms

Besides being “ungrounded” in multimodal contexts, current natural language learning models
differ from human learners in many ways. Specifically, instead of passively perceiving multimodal
information to learn concepts, humans are actively involved in interacting with the surrounding
environment to learn concepts. In addition, our brain can quickly adapt to new knowledge in just
a few attempts without forgetting previously learned skills. However, machine learning models
usually require hundreds of repeated iterations to train on a single task. Furthermore, it is difficult
for these models to maintain the performance of old tasks after retraining and finetuning on new
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ones. Two brain-inspired learning schemes are likely helpful to bridge these gaps: interactive
reinforcement learning and continual lifelong learning.

7.2.1 Interactive reinforcement learning

To imitate the way humans learn languages, it is desirable to place an autonomous agent in a virtual
environment that exhibits rich multimodal information and allows executable operations with a high
degree of freedom, such that the agent can learn concepts grounded in real-world experience. This
objective fits well with the reinforcement learning scheme by treating an autonomous agent as an
analogy of “language learner”. Language learning is a demanding cognitive task that requires a large
amount of data to learn from scratch. Thus, strategies like knowledge distillation and interactive
learning that engage a more powerful “teacher” or “oracle” can likely boost the learning process.
Specifically, interactive reinforcement learning involves a human-in-the-loop to provide feedback
from external evaluations to tailor specific elements (e.g., policy reward function) in the algorithm
modeling agent behaviors. Such a strategy shows a faster convergence rate and better performance
by integrating prior knowledge from humans [4]. In addition, introducing multiple agents into the
environment to promote interaction between subjects will further inject a social component into
the computational modeling of grounded cognition. These ideas could be integrated into language
grounding with an autonomous agent and a multimodal environment, as discussed in the Section 7.1.

7.2.2 Continual lifelong learning

One obvious limitation of machine learning models is that they are subject to catastrophic interfer-
ence. That is, novel information interferes with the consolidated knowledge migrating a trained
model for a new task [133]. This is also known as the stability-plasticity dilemma [121]. However,
it is not a problem for humans to continuously and effectively acquire new skills and transfer knowl-
edge across modalities while retaining what they have learned in their lifespan. Our brain’s ability
to simultaneously learning and protecting knowledge is achievable due to several key characteristics
of the biological neural network. The neurosynaptic plasticity for developmental stages allows
the flexibility to learn for new knowledge. At the same time, neurogenesis for memory formation
enables the brain to remember previously learned skills, as suggested by cognitive science theories
and neurophysiological studies [46].

Such biological foundations inspire some learning strategies toward continual lifelong learning
in artificial intelligence models. For example, we can add a memory module to a computational
system for storing learned information or allocating additional neural resources (e.g., more artificial
neurons) to learn new tasks. However, these methods are not scalable to lifetime learning of an
unlimited amount of tasks. According to how humans experience the world, another way is to
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train the computational model with interleaved stimuli from different tasks instead of training it
with sequential tasks. But this also suffers from generalizability on unpredefined tasks. Recently
researchers have developed other strategies, including dual-memory learning systems to simultane-
ously reconcile short- and long-term memory [49], retraining neural networks with regularization
on model plasticity [107], reusing and transferring information between tasks [165]. Inspired by
the critical learning periods in humans and animals, using curriculum learning to incrementally
start with simple tasks and gradually move onto more difficult tasks has also been explored for
continual lifelong learning [59]. Conceptually, the three-stage training strategy (from unimodal to
multimodal; from image-caption mapping to object-relations inference) in our approach follows the
same intuition.

The continual lifelong learning paradigm can incorporate many intuitive learning principles
imitating human learning behaviors, such as few-shot learning, unsupervised learning, and learning
from intrinsic motivation (or curiosity). Thus, the long-term goal of bridging language learning in
machines and humans is to understand and implement the brain’s computational mechanism that
makes us adaptive, efficient, robust, and lifelong learners.
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