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ABSTRACT

Randomized experiments are increasingly prevalent across a variety of fields, particularly

in the social sciences and medicine. This is due in part to their reputation as the “gold

standard” for establishing causal relationships. The proliferation of randomized experiments

has resulted in a variety of challenges in a time where large data sets are becoming more

common. For some experiments, a large number of pretreatment covariates are available for

each participant. It is common to make adjustments for small imbalances in these baseline

covariates when analyzing the results of a randomized experiment. Traditional covariate

adjustment methods such as linear regression can perform poorly or fail entirely when the

number of covariates is large. This can be solved by first performing model selection, which

may lead to concerns about data snooping and the validity of post-selection inferences. Sev-

eral authors have suggested specifying the statistical analysis in advance to address this issue.

However, it may not be clear ahead of time which covariates to use for making adjustments,

or if covariate adjustment will even be helpful. To address this concern, we propose a flexible

covariate adjustment method, the LOOP (“Leave-One-Out Potential outcomes”) estimator.

This method allows for automatic variable selection, so that we do not need to know ahead

of time which variables to use. In addition, the method is unbiased under the Neyman-Rubin

model and generally performs at least as well as the unadjusted estimator. This alleviates

concerns that the adjustment could harm the performance of the treatment effect estimate.

Covariate imbalance can also be addressed using study design. In paired experiments,

participants are grouped into pairs with similar characteristics, and one observation from

each pair is randomly assigned to treatment. While this study design is often successful in

balancing the treatment and control groups, it may still be possible to improve precision

ix



using covariate adjustment. We build on the LOOP estimator and propose a design-based

covariate adjustment method for paired experiments. This method addresses a unique trade-

off that exists for paired experiments, where it can be unclear the extent to which account for

the paired structure. By addressing this trade-off, the method has the potential to improve

over existing methods.

Modern randomized experiments may be accompanied by a large amount of auxiliary

data, such as related observational data. Sample sizes of randomized experiments are often

limited due to practical constraints. However, sample sizes for the auxiliary data can be

large. We propose a covariate adjustment method that allows us to use observational data

sets to make adjustments to the experimental data without bias from confounding variables

leaking into our analysis. Our method also adjusts for the covariates within the randomized

experiment itself, and automatically interpolates between the adjustment made using the

experimental covariates and the observational data set.

Finally, we propose a method for high-dimensional classification. In this method, we

have the predictors in a data set compete in a “tournament” until they have been combined

into single predictor. From a computation perspective, this method is a natural fit to be

used within the LOOP estimator when the outcome is binary; however, it can also be used

more generally. The method shares several of the features used within the covariate adjust-

ment methods, such as the use of a leave-one-out procedure to improve performance and

interpolation between competing predictors.
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CHAPTER I

Introduction

Randomized experiments are an increasingly common tool used in many fields. Random-

ized controlled trials have long been a fixture in biomedical and pharmaceutical research, and

are frequently employed across a variety of social sciences. Large technology companies, such

as Microsoft, Amazon, and Facebook, perform tens of thousands randomized experiments

each day.

Throughout this dissertation, we consider several examples of recent randomized ex-

periments and the challenges associated with the analysis of these experiments. We then

develop methods to address these challenges. In Chapter II, we discuss an example studying

the effects of certain interventions on reducing the amount of time in juvenile detention for

at-risk youth, and another where researchers study the effects of cash transfer programs on

education outcomes for students in Bogota, Colombia. In Chapters III and IV, we discuss

examples from the field of education, including both an impact study involving schools in

Texas and an example involving educational technology.

Many of these experiments are characterized by small sample sizes and a large number of

pre-treatment covariates. For example, consider the ASSISTments TestBed (see Heffernan

and Heffernan (2014) and Ostrow et al. (2016)), which we discuss in Chapter IV. ASSIST-

ments is a computer-based learning platform used by over 50,000 students throughout the

United States each year, and the TestBed is a program designed for conducting randomized

1



experiments within ASSISTments. Researchers can propose experiments to be run within the

TestBed, and students working on a specific assignment are individually randomly assigned

to treatments in the proposed experiment. For a specific experiment in the TestBed, the

sample size is limited to the students working on the given assignment while the experiment

is being run. Despite the small sample size of an individual experiment, the ASSISTments

TestBed provides rich data sets and unique challenges. Not only are there many covariates

available for each student (such as performance on all prior assignments), there is also a large

amount of auxiliary data. This includes randomized experiments run on similar assignments,

as well student performance data for the same assignment outside of the experiment itself.

One reason for the increased prevalence of randomized experiments is that they are

often considered the “gold standard” for establishing causal relationships between variables.

Because participants are randomly assigned to treatment and control, we would generally

expect that the only difference between the two groups are the treatment itself. As a result,

randomized experiments are free from bias due to confounding variables, and it can be

reasonably inferred that an observed difference between the two groups is attributable to the

treatment.

Randomized experiments also allow for design-based inference; that is, the act of ran-

domization largely justifies the statistical assumptions made (for a discussion, see Imai et al.

(2009) and Imbens (2010)). Fisher (1935) proposed the use of permutation inference for test-

ing the sharp null hypothesis (i.e., that the effect of treatment is zero for all participants),

showing that exact inferences can be made with no assumptions beyond randomization it-

self. It is possible to invert tests of the sharp null hypothesis to obtain an estimate for the

treatment effect (e.g., Rosenbaum (2002)); however, an analyst may instead wish to estimate

the effect of treatment directly.

In this dissertation, we focus on design-based methods for estimating treatment ef-

fects. In particular, we work under a potential outcomes framework often referred to as

the Neyman-Rubin model, a non-parametric model which was first introduced by Neyman

2



(Splawa-Neyman et al. (1990); translation of the original 1923 paper) and further developed

by Rubin (1974). Under this model, each participant is assumed to have two potential out-

comes: these represent the outcomes that the participant would experience if assigned to

treatment and control. Each participant is randomly assigned to either treatment or con-

trol, and we observe one of the two potential outcomes based on the treatment assignment.

One advantage of this potential outcomes framework is that it provides a clear definition of

the treatment effect. Individual treatment effects are defined as the difference between the

potential outcomes for each participant, and the average treatment effect is the mean of the

individual treatment effects.

While it is impossible to observe both potential outcomes for every participant, random-

ization allows us to obtain an unbiased estimate for the average treatment effect. As noted

above, we can simply compare the observed outcomes for the treated and control units,

and attribute any differences to the treatment. For example, Neyman shows that taking a

difference between the means of the outcomes for the treated and control groups results in

unbiased estimate for the average treatment effect. While this simple difference in means is

unbiased, it does not account for information from pretreatment covariates (variables that

were measured prior to treatment assignment). By randomizing the participants, we would

expect the covariates to be balanced between the treatment groups. However, small imbal-

ances will still occur. For example, a researcher may observe after randomization that the

treatment group is older on average than the control group. It may be possible improve the

performance of the treatment effect estimate by adjusting for these imbalances.

Modern experiments often have a large number of covariates to choose from. This pro-

vides the potential for a substantial improvement in precision by using covariate adjustment,

but also presents new challenges. In Chapter II, we present a flexible covariate adjustment

method, the LOOP (“Leave-One-Out Potential outcomes”) estimator, to address these con-

cerns. Specifically, it can be unclear which covariates to use, and an overly aggressive adjust-

ment may actually harm the performance relative to the unadjusted estimator. When the

3



number of covariates exceeds the sample size, commonly used covariate adjustment methods

like linear regression may fail. An analyst looking to use such methods would be required to

perform variable selection first, leading to concerns of data snooping or about the validity of

post-selection inferences. In some cases, such as in medical trials, the analysis protocol must

be pre-specified to avoid data snooping. We discuss another example where the analyses

were required to be specified in advance in Chapter II. In these cases, the researchers need

to either choose specific variables ahead of time or to use a covariate adjustment method

that allows for automatic variable selection.

Our proposed method is design-based, yet still allows for the use of models to improve

precision. We leave out each observation and impute its potential outcomes using the re-

maining observations. This imputation can be done via any prediction algorithm, such as

random forests or linear regression. Importantly, the prediction algorithm chosen does not

need to be “correct.” So long as the prediction method improves over mean imputation,

the LOOP estimator will improve performance over the unadjusted estimator. In addition,

model selection occurs in a “black box,” so any post-selection inference remains valid. In

particular, the method allows for automatic variable selection, so one need not know which

covariates to use ahead of time. The method is also unbiased, and it generally performs

no worse than the simple difference-in-means estimator, but can often substantially improve

performance.

In Chapter III, we propose a covariate adjustment method for paired experiments. While

covariate adjustment is one approach for addressing covariate imbalance, researchers may

also choose to use study design. In paired experiments, participants are organized into pairs

prior to treatment assignment, and then one participant in each pair is randomly assigned

to treatment. Ideally, the two participants in each pair would be as similar as possible.

However, even if the paired design is effective at balancing covariates between the treatment

and control groups, it may be helpful to make adjustments for any remaining imbalances.

The LOOP estimator assumes that the treatment assignments of the participants are

4



independent (i.e., Bernoulli randomization). We propose extensions to the standard LOOP

estimator for completely randomized and block randomized experiments. This approach

also works for paired experiments; however, it does not fully take advantage of the paired

structure. We therefore propose another method specifically for covariate adjustment in

paired experiments. Like the LOOP estimator, this method uses sample splitting; we leave

each pair out and impute its potential outcomes using the remaining pairs. This method

retains the advantage of the LOOP estimator, while also addressing an issue specific to paired

experiments. More specifically, it can be unclear the extent to which we should factor in

the paired structure when making adjustments. We address this issue by imputing two sets

of potential outcomes, one set that accounts for the pair assignments for the left out pairs

and one that does not. We then interpolate between these two sets of potential outcomes to

obtain a final estimate.

Another feature of modern randomized experiments is that they can be accompanied

by a large amount of auxiliary data. For example, medical trials may be supplemented by

health care data for other patients, and experiments within the ASSISTments TestBed are

supplemented by data from the remainder of the ASSISTments platform. While randomized

experiments are often limited in sample size due to practical constraints, these auxiliary data

sets can be quite large. However, unlike randomized experiments, observational data suffer

from confounding bias. In Chapter IV, we propose a design-based method that builds on the

LOOP estimator for making adjustments to a randomized experiment using an external data

set. The goal of this method is to take advantage of the larger sample size of the external data

to improve precision, while ensuring that confounding bias from the observational data does

not leak into the treatment effect estimate for the randomized experiment. However, it may

not be clear whether the external adjustment would improve precision over an adjustment

using only the covariates within the experiment. To address this concern, we take a similar

approach to the method for pairs. We impute a set of potential outcomes using the external

data set and another using the experimental covariates, and interpolate between the two sets

5



of imputed outcomes.

In Chapter V, we introduce a flexible algorithm for high-dimensional classification, the

tournament classifier. This method is only tangentially related to the methods introduced in

the rest of the dissertation. However, it does share some similarities with the other methods,

such as the use of sample splitting to improve performance and a similar interpolation method

to the one used in Chapters III and IV. We build a classifier by having the predictors within

a data set compete. In each round of the tournament, we form groups of predictors then

combine the predictors within each group into a single predictor. This process continues

until all of the predictors have been combined into a single predictor. We suggest a specific

approach for the tournament in this dissertation that is particularly suited for sparse high-

dimensional data. Finally, while the method can be used as a general classification method, it

is also well suited for use within the LOOP estimator computationally. As we will discuss in

Chapter II, random forests are a natural fit for the LOOP estimator due to both performance

and computational efficiency. Rather than fitting a separate random forest for each left out

observation, we can use the out-of-bag predictions instead. The tournament classifier can be

modified to take a similar approach without sacrificing computational efficiency.
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CHAPTER II

The LOOP Estimator: Adjusting for Covariates in

Randomized Experiments

2.1 Introduction

It is common when analyzing randomized controlled trials to adjust for small imbalances

in baseline covariates in order to improve the precision of the treatment effect estimate.1

To avoid the possibility of data snooping, and to ensure the validity of statistical inference,

several authors have advocated that the statistical methods be fully specified in advance and

reported in the trial protocol (e.g., Begg et al. (1996) and Schulz et al. (2010)).2 However,

in cases where the analysis methods must be pre-specified, it can be unclear which covari-

ates should be used and if covariate adjustment will even be helpful. An overly aggressive

adjustment that adjusts for too many covariates can hurt precision more than it helps (e.g.,

Freedman (2008) and Miratrix et al. (2013)).

1Depending on the statistical model being used, these adjustments may also be viewed as adjusting for
conditional bias (i.e., bias due to the realized allocation of treatment and resulting covariate imbalance).
However, in the model we will consider, the treatment assignment vector T is the only source of randomness.
The experimental units, their covariates, and their potential outcomes are all modeled as fixed. Conditioning
on T therefore removes all randomness and fixes the treatment effect estimate. For this reason, although
the covariate adjustment method we present may be viewed in spirit as adjusting for conditional bias, our
discussion will be in terms of improved precision.

2Other authors have suggested different ways to ensure valid post-selection inferences; for example, Berk
et al. (2013a) introduce a method for valid post-selection confidence intervals and Lee et al. (2016) propose a
general framework for valid inference after model selection. For a further discussion on data snooping when
analyzing experimental data, see Mutz et al. (2018).
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A second concern when adjusting for baseline covariates is bias. Statisticians often allow

for biased estimates in order to reduce the overall mean squared error, and many common

methods for covariate adjustment do introduce a small amount of bias. However, in some

cases practitioners may find exact unbiasedness inherently desirable for various reasons. We

discuss one such example in Section 3.4.1. Spiess (2018) presents another argument for

unbiasedness when analyzing randomized experiments.

In this chapter, we propose a covariate adjustment method, the LOOP (“Leave-One-

Out Potential outcomes”) estimator, to simultaneously address both the concerns discussed

above. The method is unbiased and model selection occurs in a “black box,” so any post-

selection inference remains valid. In particular, the method allows for automatic variable

selection, so one need not know which covariates to use ahead of time. This method is

also design-based, meaning that the experimental randomization largely justifies the statis-

tical assumptions, and it generally performs no worse than the simple difference-in-means

estimator, but can often substantially improve performance.

The chapter is organized as follows. Section 2.2 reviews the covariate adjustment litera-

ture and relates our method to other estimators. Section 2.3 discusses the randomized trial

that motivates our work; in this example, both model selection and bias were concerns. Sec-

tion 2.4 introduces notation and assumptions and discusses the simple difference-in-means

and LOOP estimators. Section 2.5 relates the LOOP estimator to post-stratification and the

simple difference-in-means estimator. In Section 2.6, we provide an estimate of the variance.

Section 2.7 discusses how to modify the procedures to account for different experimental

designs such as block designs. In Section 2.8, we apply the LOOP estimator to examples

using simulated data and real experimental data. Section 2.9 concludes.

2.2 Relation to Prior Literature

One of the virtues of randomized experiments is that the physical act of randomization

largely justifies the statistical assumptions of the Neyman-Rubin model, a non-parametric
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model which was first introduced by Neyman (Splawa-Neyman et al. (1990); translation of

the original 1923 paper) and further developed by Rubin (1974). Covariate adjustment is

often done through linear regression; however, the standard OLS model is quite different

from the Neyman-Rubin model and randomization fails to justify the standard assumptions

of OLS. In fact, the OLS estimate is biased under the Neyman-Rubin model; see Freedman

(2008) and Lin (2013) for further discussion on OLS adjustments. Other types of regression

adjustments can be used: Berk et al. (2013b) build on the work of Freedman (2008) and

Lin (2013), while Bloniarz et al. (2016) propose the use of lasso adjustments when the

number of covariates is large, especially when the number of covariates exceeds the number

of experimental units. In addition, regression adjustments can be used to analyze randomized

experiments besides treatment-control studies (e.g., Lu (2016)).

Various other covariate adjustment methods have been proposed, including several that

are explicitly design-based. For example, post-stratification (Holt and Smith, 1979) is an

adjustment made by stratifying on a pretreatment variable, estimating the treatment effect

within each stratum, and taking the weighted average over all strata. Miratrix et al. (2013)

explore the properties of the post-stratified estimator under the Neyman-Rubin model. Koch

et al. (1982, 1998) propose a method that tests Fisher’s sharp null hypothesis (i.e., that all

individual treatment effects are zero). They compute the covariance matrix of the treatment

and covariates under the sharp null and note that a quadratic form involving this covariance

matrix has an approximate χ2 distribution, which they use to obtain a p-value. Rosenbaum

(2002) introduces a similar covariate adjustment method that involves inverting hypothesis

tests of the sharp null to obtain an estimate of the treatment effect. Rosenbaum’s method

is quite flexible and allows for automatic variable selection; however, it assumes a constant

treatment effect across units. In this chapter, we propose the LOOP estimator, which is

also design-based and allows for automatic variable selection. Unlike Rosenbaum, we do not

assume a constant treatment effect.

Aronow and Middleton (2013) introduce another design-based estimator, which is re-
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lated to the Horvitz-Thompson estimator (Horvitz and Thompson, 1952). This estimator

involves the estimation of a function of the covariates such that the function is predictive

of the outcome, resulting in a reduction in variance. In addition, so long as this function is

independent of the treatment assignment, the resulting estimate of the average treatment

effect will be unbiased. Following a result from Williams (1961), Aronow and Middleton

(2013) suggest sample splitting to ensure independence when estimating the function of the

covariates. However, many of their calculations assume that the function is a constant fixed

in advance and not estimated using a sample splitting procedure. In this chapter, we propose

a special case of Aronow and Middleton’s estimator with a sample splitting approach. We

successively leave out each observation and then impute that observation’s treatment and

control potential outcomes using a prediction algorithm, such as a random forest (Breiman,

2001).

Our work is similar to that of Wager et al. (2016), who also propose a set of estimators

that build on the work of Aronow and Middleton. Wager et al. propose the use of sample

splitting and machine learning methods to impute potential outcomes. They also provide

a variance estimate, but work under a model in which they assume that the experimental

units are drawn from a superpopulation and focus primarily on the population average

treatment effect. In this chapter, we assume that the potential outcomes and the covariates

are fixed and that the only source of randomness is in the treatment assignment. While the

point estimate for the average treatment effect need not change under this model, variance

estimation is different, and we derive an estimate for the variance of the LOOP estimator

under this framework. Note that we focus specifically on the case where the sample splitting

is a leave-one-out procedure. As we will show later, this allows for direct comparison to

traditional estimators such as a simple difference-in-means and post-stratification.

Our method is also related to the augmented inverse probability weighted (“AIPW”)

estimator, which was proposed and developed in Robins et al. (1994), Robins (2000), and in

Scharfstein et al. (1999) to estimate treatment effects in observational studies with missing
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data. Like the estimator proposed by Aronow and Middleton (2013), AIPW can be con-

sidered an extension of the Horvitz-Thompson estimator: it involves a difference in means

(inversely weighted by the propensity score) and a regression adjustment based on the ex-

pectation of the outcome conditional on the covariates and treatment assignment. See also

Chernozhukov et al. (2018) for a related estimator, which employs both sample splitting and

machine learning methods to estimate the treatment effect in a high-dimensional setting.

Several other methods use an AIPW-like estimator specifically in randomized experiments

(for example, Tsiatis et al. (2008), Spiess (2018), and Rothe (2018)). Tsiatis et al. separate

the modeling of covariate-outcome relationships and the evaluation of the treatment effect in

order to ensure valid inference after variable selection. Other methods have been proposed

to ensure valid post-selection inferences. For example, Moore and van der Laan (2009) use

targeted maximum likelihood estimation to make covariate adjustments when the outcome

is binary. This method involves modeling the probability that the outcome will be 0 or 1

conditional upon the covariates and the treatment assignment. One can use any procedure to

model these conditional probabilities, including methods with automatic variable selection.

Steingrimsson et al. (2017) give recommendations for the use of targeted maximum likelihood

estimation in practice.

2.3 Motivation

Our work is motivated by a so-called “pay for success” program in the state of Illinois.

In brief, a pay for success program is one in which a government contracts an outside or-

ganization to provide needed services, but only pays the organization if the services are

shown to be effective, typically in a randomized controlled experiment. In our example, the

contracted organization is to provide special social services to at-risk youth, and one metric

for success (among others) is a reduction in the number of days spent in juvenile detention.

Success of the program will be evaluated according to the results of a six year experiment in

which eligible youth are randomly selected to receive either the special services or ordinary
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care. The evaluation will be conducted by researchers in the School of Social Work at the

University of Michigan, and we assisted the evaluators in planning the design and analysis

of the experiment.

Several hundred youth are expected to take part in the program. Eligible participants

are independently randomized to treatment or control, each with probability 1/2. More

elaborate designs were considered, but were too logistically challenging. A key difficulty

is the fact that the participants enter into the experiment continually over time, making

designs such as blocking infeasible.

Several baseline covariates will be available, at least some of which (e.g., age) are known

to be highly predictive of outcome. The interested parties (the state, the outside organization

providing the services, and the evaluators) agreed that some form of adjustment for these

covariates would be desirable. However, there was initially no clear consensus on which

adjustment procedure to use.

One concern was bias. Unbiasedness was felt to be desirable, perhaps more so in this

example than in many others, because the state’s payment rate will be directly proportional

to the estimated size of the treatment effect. Any bias in the estimator therefore effectively

results in a bias in the payment. Indeed, one high ranking state official was opposed to any

amount of bias, even if it might reduce the mean squared error. To paraphrase, the magnitude

of the error was not so much a concern, as long as it was a fair bet. Other officials were

open to using a biased estimator, so long as the bias was negligible. Critically, however, it

was felt that the bias should still be quantified, and in the case of biased estimators, it was

unclear how to produce a concrete number for the bias. For this reason as well, an unbiased

estimator was preferred. Ultimately, it was decided to use post-stratification.

A second concern was which covariates to adjust for. It was required to fully specify

the analysis protocol in advance. Many potential covariates were available; however, ad-

justing for too many covariates could result in overadjustment, leading to inflated variance.

Post-stratification is especially sensitive to overadjustment and considerable discussion was
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required to come to a consensus on both the number of covariates and which specific covari-

ates to be used.

The challenges outlined above motivate our work: we wish to produce a method that

provides automatic variable selection in order to eliminate the guesswork in deciding which

covariates to use, while remaining exactly unbiased under the Neyman-Rubin model.

2.4 The LOOP Estimator

In this section, we introduce the LOOP (“Leave-One-Out Potential outcomes”) estimator,

which we can use to obtain an unbiased estimate of the average treatment effect while

adjusting for covariates.

2.4.1 Model and Notation

Consider a randomized controlled experiment in which there are N participants, indexed

by i = 1, 2, ..., N . Each participant is randomly assigned to either treatment or control,

and we let Ti denote the i-th participant’s treatment assignment, such that Ti = 1 if the

i-th participant is assigned to treatment and Ti = 0 if the i-th participant is assigned to

control. For each participant, we observe (in addition to the treatment assignment Ti)

a response variable Yi and a q-dimensional vector of baseline covariates Zi. We assume

Bernoulli treatment assignments, i.e.,

Ti |= Tj

for i 6= j. We let pi denote the i-th participant’s probability of being assigned to treatment,

i.e.,

pi = P (Ti = 1)

and assume 0 < pi < 1. In some parts of this chapter, we assume for simplicity (and without

much loss of generality) that pi = p for all i and for some fixed constant p, but for now we
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explicitly let pi vary from subject to subject.

Associated with each of the N participants are two fixed (non-random) potential out-

comes, ti and ci. We assume that we observe ti if participant i is assigned to treatment and

ci if participant i is assigned to control. That is, the observed outcome Yi for participant i

is

Yi = Titi + (1− Ti)ci.

We define the individual treatment effect τi as

τi = ti − ci

and the average treatment effect τ̄ as

τ̄ =
1

N

N∑
i=1

τi (2.1)

which is our primary parameter of interest.

Lastly, some additional notation. Let T = {i : Ti = 1} and C = {i : Ti = 0}. Let n be the

(random) number of participants assigned to treatment and N − n be the number assigned

to control. For each participant, we define the important quantity mi as

mi = (1− pi)ti + pici.

Note that when pi = 1
2
, this is simply the mean of ti and ci. We will use the notation m̂i to

denote an estimate of mi. Finally, we define the (signed) inverse probability weights Ui as

Ui =

 1/pi, Ti = 1

−1/(1− pi), Ti = 0

and note that Ui has expectation 0.
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2.4.2 Average and Individual Treatment Effects

It is not possible to observe any single participant’s treatment effect τi, because for each

participant we are only able to observe the treatment response ti or the control response

ci. However, it is well known that the average treatment effect τ̄ can be estimated. We

define the simple difference estimator τ̂sd to be the difference of the average of the observed

treatment responses and the average of the observed control responses:

τ̂sd =
1

n

∑
i∈T

Yi −
1

N − n
∑
i∈C

Yi. (2.2)

This provides an unbiased estimate of the average treatment effect (conditional on 0 < n <

N).

It is also possible to provide an unbiased estimate of an individual participant’s treatment

effect τi. For example, YiUi is one such estimator:

YiUi =

 ti/pi, Ti = 1

−ci/(1− pi), Ti = 0

and thus

E(YiUi) =
ti
pi
P (Ti = 1) +

−ci
1− pi

P (Ti = 0)

= ti − ci.

Although this is an unbiased estimator of τi, it generally has very high variance and is

therefore not useful for practical purposes. Suppose, for example, that pi = 1/2. Then if

participant i is assigned to treatment we would estimate his treatment effect as 2Yi, and if

he was assigned to control we would estimate his treatment effect as −2Yi.
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As an alternative estimator of τi, consider

τ̂i = (Yi − m̂i)Ui. (2.3)

If m̂i is independent of Ui — that is, if m̂i is independent of the i-th participant’s treatment

assignment — then τ̂i is an unbiased estimator of τi:

E(τ̂i) = E [(Yi − m̂i)Ui]

= E(YiUi)− E(m̂i)E(Ui)

= τi

where in the last line we use the fact that E(Ui) = 0. The advantage of this estimator is that

it will have a low variance as long as m̂i ≈ mi. To see why, suppose that m̂i = mi exactly.

Then

(Yi −mi)Ui =

 (ti −mi)/pi, Ti = 1

(−ci +mi)/(1− pi), Ti = 0

but both (ti−mi)/pi and (−ci+mi)/(1−pi) work out to be τi, and thus τ̂i is not only unbiased

but also has zero variance. When m̂i only approximately equals mi, then the variance of τ̂i

is no longer zero but is small. More precisely, in Section 2.6 we show that

Var(τ̂i) =
1

pi(1− pi)
E
[
(m̂i −mi)

2
]
.

To summarize, τ̂i will be unbiased and have low variance as long as: (a) m̂i is independent

of Ti; and (b) m̂i is a good estimator of mi.

Finally, note that m̂i in equation (2.3) plays the same role as the “augmented” portion

of the AIPW estimator as described by Lunceford and Davidian (2004) and the function of

the covariates in the estimator of Aronow and Middleton (2013).
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2.4.3 Leave-One-Out Imputation

We now define the LOOP estimator of the average treatment effect τ̄ as:

τ̂ =
1

N

N∑
i=1

τ̂i (2.4)

where τ̂i is defined as in (2.3) and where m̂i is obtained as follows. For each i, we drop

observation i and use the remaining N−1 observations to impute ti and ci, using any method

of our choosing (e.g., linear regression, random forests, etc.). Having obtained estimates t̂i

and ĉi, we then set

m̂i = (1− pi)t̂i + piĉi. (2.5)

As an example, suppose we wish to estimate m̂i using linear regression. For each i, we

would drop observation i and then regress Y on T and Z using only the remaining N − 1

observations. We would then calculate t̂i and ĉi using the fitted model, plugging in Zi for

the covariates, and compute m̂i as in (2.5).

Because we leave out the i-th observation when we compute m̂i, it follows that Ti and m̂i

are independent and thus that τ̂i is unbiased. It immediately follows that τ̂ is also unbiased.

This will be true no matter how we estimate ti and ci, as long as we leave out observation

i so that t̂i and ĉi are independent of Ti. Importantly, note that we impute both ti and ci,

even though one of them is actually observed and therefore known. If we were to use the

true observed value, then m̂i would no longer be independent of Ti.

It is worth noting that although we use the individual treatment effect estimates τ̂i in this

chapter simply as an intermediate step in the estimation of the average treatment effect τ̄ ,

these individual treatment effect estimates may be useful for other purposes as well, such as

in estimating treatment effect heterogeneity. Athey and Imbens (2016) and Nie and Wager

(2017) use similar formulations for estimating heterogeneous treatment effects. With this in

mind, we summarize below three useful facts about τ̂i, the latter two of which we show in
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Section 2.6:

E(τ̂i) = τi

Var(τ̂i) =
1

pi(1− pi)
E
[
(m̂i −mi)

2
]

Cov(τ̂i, τ̂j) = Cov(m̂iUi, m̂jUj). (2.6)

The covariance term Cov(m̂iUi, m̂jUj) is usually negligible and can be ignored in most ap-

plications (note that Ui and Uj are independent).

2.5 Imputing the Potential Outcomes

In the subsequent sections, we propose several methods for imputing the potential out-

comes in order to estimate mi. First, we impute the potential outcomes without making use

of covariates, simply taking the mean of the observed outcomes in each treatment group.

When we do this, we see that the LOOP estimator is exactly equal to the simple difference

estimator. We also impute the potential outcomes using decision trees and discuss the con-

nection between post-stratification and the LOOP estimator. Finally, we propose the use of

random forests, which may provide an improvement over post-stratification and allow us to

take advantage of automatic variable selection.

2.5.1 Imputing Potential Outcomes Ignoring Covariates: LOOP equals the Sim-

ple Difference Estimator

In this section, we impute the potential outcomes without making use of covariates. We

simply take the mean of the observed outcomes in the treatment group (excluding observation

i) to estimate ti and the mean of the observed outcomes in the control group (excluding
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observation i) to estimate ci. That is, we estimate ti and ci as:

t̂i =

∑
k∈T \i Yk

n− Ti
(2.7)

ĉi =

∑
k∈C\i Yk

(N − n)− (1− Ti)
. (2.8)

If the assignment probabilities are all equal, i.e., if pi = p for all i and for some fixed p, then

the LOOP estimator is exactly equivalent to the simple difference estimator, as we show in

Appendix A. As a result of this equivalence, we conclude that in practice the LOOP estimator

will typically perform no worse, or at least not that much worse, than the simple difference

estimator. More precisely, in Section 2.6 we show that the variance of the LOOP estimator

is directly related to the mean squared error of the m̂i terms. Thus the LOOP estimator

will outperform the simple difference estimator as long as we improve the imputation of

the potential outcomes beyond this baseline approach (mean imputation). In addition, the

equivalence between the LOOP estimator and the simple difference estimator provides us

with some reassurance that the leave-one-out procedure does not inherently introduce extra

variance.

2.5.2 Imputing Potential Outcomes using Decision Trees: LOOP equals Post-

stratification

In this section, we discuss the connection between the LOOP estimator and post-stratification.

Post-stratification is a covariate adjustment method made by stratifying on pretreatment

variables, estimating the treatment effect within each stratum by taking a simple difference

in means, and then taking the weighted average over all strata (Holt and Smith, 1979). We

argue that when we impute potential outcomes using a decision tree (see James et al. (2013)

for a summary of decision trees), the LOOP estimator is equivalent to post-stratification.

Given a single decision tree (fixed in advance), we impute the potential outcomes as

follows. First, we assign each observation i to a group; this is done by applying the decision
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tree to observation i’s covariates. (This group may be viewed as a “leaf” or a “stratum.”)

For each i, we then impute ti using the average observed outcome of the treated units within

the same group (excluding observation i itself). We impute ci similarly. Thus, using the same

argument given above in Section 2.5.1, it is simple to show that the average of the τ̂i within

a group is equal to the simple difference within that group. Thus, the average of all the τ̂i

is a weighted average of the within-group simple differences, i.e., it is a post-stratification

estimator.

2.5.3 Imputing Potential Outcomes using Random Forests

In their analysis of post-stratification, Miratrix et al. (2013) show that post-stratification

is nearly as efficient as blocking. However, one disadvantage of post-stratification is that

we must be parsimonious in the number of variables selected. If we include too many

covariates, we end up partitioning our data too finely. We can overcome this limitation and

also improve on the post-stratified estimate using the LOOP estimator. One advantage of

the LOOP estimator is that estimation of mi is very flexible. One can impute the potential

outcomes using any method, so long as m̂i and Ti are independent. In particular, we can

use ensemble methods such as boosting or bagging to improve our estimates over a single

decision tree.

One such method is the random forest algorithm, and random forests will be our method

of choice for imputing the potential outcomes for the remainder of the chapter. For a

description of tree-based methods, including random forests, see James et al. (2013). In order

to impute the potential outcomes using random forests, we could first omit observation i,

and then create a random forest using the remaining N −1 observations, which we could use

to impute ti and ci. However, doing this for each i would be computationally demanding.

Fortunately, it is also unnecessary. Because we are using a leave-one-out procedure, and

because out-of-bag predictions are essentially leave-one-out predictions, we can simply make

use of the out-of-bag predictions. To clarify, random forests are an ensemble of many decision
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trees, each of which is constructed using a bootstrap sample. In fitting any given tree, some

number of observations will be left out. The out-of-bag prediction for the i-th observation

is the prediction made using the trees that do not include observation i and is effectively a

leave-one-out prediction. We can therefore fit just two random forests (one on the treatment

units and one on the control units) and impute the potential outcomes using the out-of-bag

predictions. By contrast, when imputing the potential outcomes using many other methods,

such as OLS, we do need to create a separate model for each i. As a result, imputing the

potential outcomes with random forests can be relatively computationally efficient.

Because random forests are typically an improvement over individual decision trees, they

allow us to obtain a more precise estimate of the average treatment effect τ̄ . By using

random forests to effectively improve upon post-stratification, we might even hope to obtain

an estimate of τ̄ that works as well as or better than if we had used a blocked experimental

design. Moreover, random forests essentially provide automatic variable selection, making it

unnecessary to decide in advance which covariates should be used. Biau (2012) shows that

the rate of convergence of the random forest algorithm depends on the number of important

variables present, rather than how many noise variables there are. Given these properties

and the computational efficiency of random forests, we see that random forests are naturally

suited for the LOOP estimator.

2.6 Variance Estimation

Aronow and Middleton (2013) give a conservative estimate of the variance of the Horvitz-

Thompson estimator. They also provide an estimate for the variance of their own estimator;

however, this estimate is derived under the assumption that the function of the covariates

(i.e., our m̂i) is a constant fixed in advance, not computed from the data. Wager et al.

(2016) provide a variance estimate for their method, but assume that the experimental units

are drawn from a superpopulation. Under a superpopulation model, an estimate for the

sample average treatment effect is used to estimate the population average treatment effect,
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and there are two sources of variation: the random treatment assignment and the random

sampling of the experimental units from the superpopulation. The target variance in this

case is the unconditional variance for the treatment effect estimate. Wager et al. (2016) use

a jackknife approach to estimate the variance in this setting.

In this section, we derive an estimate for the variance of the LOOP estimator working

under a finite population model and assuming that the treatment assignment is the only

source of randomness. In this case, we estimate the variance for the treatment effect estimate

conditional on the specific experimental sample. That is, the variance does not include a

component for the random sampling of units from a superpopulation. In addition, consistent

estimation of the variance of the treatment effect estimate is not generally possible due to

the non-identifiability of the covariance of the potential outcomes (for example, see Splawa-

Neyman et al. (1990) and Aronow et al. (2014)). We instead focus on obtaining a conservative

estimate for the variance. Because it estimates an additional source of variation, the jackknife

approach used by Wager et al. (2016) will be excessively conservative in some cases (for

example, in the presence of treatment effect heterogeneity). Here we provide a different

estimate for the variance of our estimator. In Section 2.6.1 we calculate the true variance of

τ̂ , and then in Section 2.6.2, we produce an estimate.

2.6.1 Variance of τ̂

In Appendix B.1, we show that:

Var(τ̂i) =
1

pi(1− pi)
MSE(m̂i) (2.9)

and that

γij = Cov(τ̂i, τ̂j) = ρij

√
Var(m̂i)Var(m̂j)

pipj(1− pi)(1− pj)
(2.10)
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where

ρij = Corr(m̂iUi, m̂jUj).

Combining (2.9) and (2.10) yields:

Var(τ̂) =
1

N2

[
N∑
i=1

1

pi(1− pi)
MSE(m̂i) +

∑
i 6=j

γij

]
. (2.11)

Limiting our attention to the special case that pi = p for all i,

Var(τ̂) =
MSE

Np(1− p)
+

∑
i 6=j γij

N2
(2.12)

=
MSE

Np(1− p)
+

(N − 1)γ̄

N

where

MSE =
1

N

N∑
i=1

MSE(m̂i)

and

γ̄ =
1

N(N − 1)

∑
i 6=j

γij.

2.6.2 Estimating the Variance

In Appendix B.2, we show that when pi = p for all i,

MSE

Np(1− p)
≤ 1

N

[
1− p
p

Mt +
p

1− p
Mc + 2

√
MtMc

]
(2.13)

where

Mt =
1

N

N∑
i=1

MSE(t̂i)
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and

Mc =
1

N

N∑
i=1

MSE(ĉi).

We estimate Mt and Mc by leave-one-out cross validation:

M̂t =
1

Np

∑
i∈T

(t̂i − ti)2 (2.14)

M̂c =
1

N(1− p)
∑
i∈C

(ĉi − ci)2. (2.15)

In Appendix B.3, we show that these estimates are unbiased. We plug (2.14) and (2.15) into

the bound (2.13) to obtain an estimate for the first term in (2.12):

1

N

[
1− p
p

M̂t +
p

1− p
M̂c + 2

√
M̂tM̂c

]
. (2.16)

Next, we provide an unbiased estimator of γij (and thus, γ̄) in Appendix B.4. Specifically,

we have:

γ̂ij =



(1−p)2
p2

(t̂+ji − t̂
−j
i )(t̂+ij − t̂−ij ), Ti = Tj = 1

(t̂+ji − t̂
−j
i )(ĉ−ij − ĉ+ij ), Ti = 0, Tj = 1

(ĉ−ji − ĉ
+j
i )(t̂+ij − t̂−ij ), Ti = 1, Tj = 0

p2

(1−p)2 (ĉ−ji − ĉ
+j
i )(ĉ−ij − ĉ+ij ), Ti = Tj = 0

(2.17)

where t̂−ji is an estimate of ti excluding the j-th observation (in addition to the i-th obser-

vation). We let t̂+ji denote an estimate of ti including the j-th observation and assuming

Tj = 1. Note that this is only calculable when Tj = 1, in which case t̂+ji = t̂i. We define ĉ−ji

and ĉ+ji similarly. We plug this estimate, γ̂ij, into the second term of (2.12) and add to the
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plug-in estimator (2.16) for the bound (2.13) to obtain an estimate of the variance of τ̂ :

V̂ar(τ̂) =
1

N

[
1− p
p

M̂t +
p

1− p
M̂c + 2

√
M̂tM̂c

]
+

1

N2

∑
i 6=j

γ̂ij (2.18)

2.6.3 Estimating the Variance in Practice

In practice, we recommend making two modifications when estimating the variance. First,

we recommend estimating Mt and Mc as

M̃t =
1

n

∑
i∈T

(t̂i − ti)2

and

M̃c =
1

N − n
∑
i∈C

(ĉi − ci)2,

particularly when N is small. Note that these approximations require that 0 < n < N .

Second, we recommend omitting the second term in (2.18) for computational efficiency.

While we estimate mi using a leave-one-out procedure, γij is estimated using a leave-two-out

procedure. As a result, estimating γij requires us to increase the number of models fit by a

factor of N . In addition, the γij terms are often negligible, in the sense that MSE/N goes to

zero at a rate 1/N , while γ̄ goes to zero at a faster rate. In Section 4.4, we provide conditions

under which the LOOP estimator is asymptotically normally distributed. By applying an

argument used for paired experiments in Section 3.3.2, these conditions also imply that

∑
i 6=j γij∑N

i=1 MSE(m̂i)
−→ 0,

and thus that γ̄ is asymptotically negligible.

For example, suppose that under suitable regularity conditions Var(m̂i) and Var(m̂j) go

to zero at rate 1/N . Then if ρij goes to zero (at any rate), γij will go to zero faster than 1/N .

Appendix C gives a more formal argument. We also provide simulation results in Section
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2.8.3 to demonstrate empirically that Nγ̄ goes to 0 as N increases.

To see why we might expect ρij (and likewise ρ̄) to go to zero, recall that Ui and Uj are

independent. Thus, even if m̂i and m̂j are correlated (which they typically will be), ρij may

still be negligible. Indeed, if m̂i and m̂j are perfectly correlated, then ρij = 0. The only

reason for m̂iUi and m̂jUj to be correlated would be through the dependence of m̂i on Uj,

and of m̂j on Ui. These dependencies will typically decay as N grows. As an illustrative

example, suppose that for all i, m̂i is a linear estimator, i.e., for some constants ai.k

m̂i = ai.0 +
∑
k 6=i

ai.kUk.

In this case, it can be shown (see Appendix C.1) that ρ̄ goes to 0 at rate 1/N ; more specifi-

cally, we show ρ̄ ≤ 1/(N − 1). Indeed, we further show that if m̂i is a polynomial function

of degree D for all i, then ρ̄ ≤ D/(N − 1). Note that there do exist certain pathological

cases where ρ̄ can be large. For example, suppose that for all i, m̂i =
∏

k 6=i Uk. Then

m̂iUi =
∏N

k=1 Uk for all i, so the correlation between m̂iUi and m̂jUj is exactly 1.

The two modifications discussed in this section yield the following estimate for the vari-

ance of τ̂ :

Ṽar(τ̂) =
1

N

[
1− p
p

M̃t +
p

1− p
M̃c + 2

√
M̃tM̃c

]
. (2.19)

If there is concern that in a particular application γ̄ is not negligible — either due to concern

that γ̄ may not go to zero faster than 1/N or simply due to concern that N is not large

enough — we can instead use (2.18) to estimate the variance of τ̂ .
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2.6.4 Relationship between Ṽar(τ̂) and the Sample Variance

We show in Appendix D that when we impute potential outcomes ignoring covariates

(i.e., we calculate ĉi and t̂i as in (2.7) and (2.8)),

M̃t =
n

n− 1
s2t (2.20)

and

M̃c =
N − n

N − n− 1
s2c (2.21)

where s2t and s2c are the standard sample variances (of the treated and control units). We show

in Appendix D that plugging (2.20) and (2.21) into (2.19) yields the following inequality:

Ṽar(τ̂) ≤
(
n

Np

)
s2t

n− 1
+

(
N − n
N(1− p)

)
s2c

N − n− 1
(2.22)

≈ s2t
n− 1

+
s2c

N − n− 1

with equality in (2.22) when M̃t and M̃c are equal. Thus, our variance estimate provides a

result roughly equal to or slightly better than if we had performed a t-test. For a related

discussion, see Aronow et al. (2014).

2.6.5 Inference for the Average Treatment Effect

In this section, we have focused primarily on estimating the variance for the LOOP

estimator. Ultimately, we wish to use the variance estimate to conduct inference. In this

dissertation, we generally rely on normal approximations to obtain p-values and construct

confidence intervals. In Section 4.4, we provide conditions that ensure the LOOP estimator

will be asymptotically normally distributed. Generally speaking, these conditions state that

both the data and the imputation method are sufficiently well-behaved. We demonstrate
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that the conditions hold for the case of imputation using simple linear regression in Section

4.4. However, it may be difficult to verify these conditions in other cases (e.g., for random

forest imputation).

Another approach would be to do a permutation test on τ̂ , which would allow us to obtain

exact p-values under Fisher’s sharp null hypothesis without any additional assumptions.

This approach would be computationally intensive. In addition, we may instead wish to

construct confidence intervals for τ̄ . In this case, we could use resampling methods, such

as the bootstrap (Efron, 1979) or subsampling (Politis et al., 1999). These approaches

often assume that the observations are independent and identically distributed, along with

some form of convergence for the distribution of the estimator. Subsampling also imposes

conditions on the size of the subsamples. Subsampling has several properties that could make

it suitable for constructing confidence intervals for the average treatment effect. It requires a

weaker form of convergence than bootstrap, and does not require the variance estimate for τ̂

to be consistent. Subsampling can be used to construct confidence intervals while requiring

minimal assumptions; however, one downside is that like in the case of permutation inference,

resampling methods are computationally intensive. In addition, when using subsampling for

inference, the issue of whether we are performing inference conditional on the experimental

sample (i.e., targeting the sample or population average treatment effect) again becomes

relevant.

2.7 Dependent Treatment Assignments

In the preceding sections, we assumed that the treatment assignments are independent

of each other. In this section, we consider study designs in which the treatment assignments

are not independent. For example, it is common for researchers to randomly assign a fixed

number n of participants to treatment and leave the remaining N −n as controls (i.e., com-

plete randomization). In such cases, treatment assignments are not independent. However,

we can ensure the independence of Ti and m̂i as follows: if the i-th observation is assigned
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to treatment, we randomly pick one of the control observations and drop that observation as

well as observation i when fitting our imputation model. Conversely, if the i-th observation

is control, we randomly drop one of the treatment observations. Thus, regardless of whether

Ti is equal to 0 or 1, when we estimate m̂i, we use N−2 of the remaining N−1 observations.

Of these N − 2 observations, n− 1 will be assigned to treatment, N −n− 1 will be assigned

to control, and the specific allocation will be independent of Ti.

We give a numerical example to illustrate this “random drop” procedure in Appendix

E.1. More specifically, we consider an example with N = 5, where n = 2 participants are

to be assigned to treatment and the remaining 3 to control. For a given observation i, the

random drop procedure will result in 1 treated observation and 2 control observations being

selected from the remaining observations to calculate m̂i. We show that for an arbitrary set

of 1 treated and 2 control observations, the probability the set is selected to calculate m̂i is

the same regardless of the treatment assignment for observation i. Thus the random drop

procedure ensures that Ti is independent of m̂i.

We can generalize this argument to show why the random drop procedure ensures the

independence of Ti and m̂i for arbitrary values of N and n. Let Ti and Ci denote the indices

of the treated and control observations that are used to calculate m̂i. We show that

Pr
(
Ti = T̃ , Ci = C̃|Ti = 1

)
= Pr

(
Ti = T̃ , Ci = C̃|Ti = 0

)

for any disjoint subsets T̃ and C̃ (of size n − 1 and N − n − 1) of {1, . . . , N}\i. Consider

the case where Ti = 1. There are
(
N−1
n−1

)
ways to select the specific set T̃ from {1, . . . , N}\i.

Thus

Pr
(
Ti = T̃ |Ti = 1

)
=

1(
N−1
n−1

) .
Conditional on Ti = 1 and having selected T̃ , the probability of selecting the set C̃ is
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1/(N − n), as we randomly choose one of the control observations to drop. That is,

Pr
(
Ci = C̃|Ti = T̃ , Ti = 1

)
=

1

N − n
.

We then have

Pr
(
Ti = T̃ , Ci = C̃|Ti = 1

)
= Pr

(
Ti = T̃ |Ti = 1

)
× Pr

(
Ci = C̃|Ti = T̃ , Ti = 1

)
=

1(
N−1
n−1

) 1

N − n

=
(n− 1)!(N − n)!

(N − 1)!(N − n)
=

(n− 1)!(N − n− 1)!

(N − 1)!
.

A similar argument can be used to show that

Pr
(
Ti = T̃ , Ci = C̃|Ti = 0

)
= Pr

(
Ci = C̃|Ti = 0

)
× Pr

(
Ti = T̃ |Ci = C̃, Ti = 0

)
=

1(
N−1

N−n−1

) 1

n

=
(N − n− 1)!(n− 1)!

(N − 1)!
.

Thus

Pr
(
Ti = T̃ , Ci = C̃|Ti = 1

)
= Pr

(
Ti = T̃ , Ci = C̃|Ti = 0

)
as desired. It follows that m̂i is independent of Ti, as the value of m̂i is determined by the

indices in Ti and Ci.

Because this procedure ensures that m̂i and Ti are independent, τ̂i will remain unbiased.

By dropping an extra observation we are losing some information. However, we could repeat

this entire procedure many times, producing an unbiased estimate of τ̂i each time, which

we could then average. In the aggregate, we would then make use of all remaining N − 1

observations. Note that in practice, the use of the random drop procedure would not change

our estimates much. For example, if we use the random drop procedure with a decision tree,

30



we would still obtain the post-stratified estimate. (See Appendix E.2 for further discussion.)

Note that a similar procedure could be used in a block-randomized experiment, in which

a fixed number of participants within each block are assigned to treatment, and the rest to

control. In this case, when computing m̂i, we would need to drop an observation that is in

the same block as i. This procedure could even be extended to paired designs. In a paired

design, both observation i and observation i’s pair would need to be dropped. However, all

of the remaining observations from the experiment could still be used to produce an estimate

of mi.

Finally, we note that the independence of m̂i and Ti implies that (2.9) continues to hold.

However, (2.10) is no longer valid, due to the dependence of Ui and Uj. Variance estimation

in this context may therefore require a modified approach.

2.8 Results

Below, we apply the LOOP estimator (with random forests) to both simulated and actual

data. In our first simulation, we compare methods when the treatment effects are either

homogeneous or heterogeneous, and also demonstrate the bias of the point estimate and

standard error for the OLS estimator. Next, we consider a simulation in which we examine

the performance of the LOOP estimator when many of the covariates are not predictive.

In our third simulation, we empirically demonstrate that the covariance terms discussed

in Section 2.6 are negligible. Finally, we apply the LOOP estimator to the experiment

conducted by Barrera-Osorio et al. (2011) on the effects of various cash transfer programs

on educational outcomes in Colombia.

2.8.1 Simulation 1: Heterogeneous and Homogeneous Treatment Effects

Consider a randomized experiment in which there are N subjects and there is a single co-

variate, Z, with three possible values: 0, 1, and 2. For each value of Z, there are N/3 subjects

and each subject has potential outcomes that are generated from a normal distribution with
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means given in Table 2.1 and standard deviation 0.1. We consider two scenarios, one where

the treatment effects are heterogeneous and the other with homogeneous treatment effects.

We consider four cases: (a) N = 30 and heterogeneous treatment effects; (b) N = 100 and

heterogeneous treatment effects; (c) N = 30 and homogeneous treatment effects; (d) and

N = 100 and homogeneous treatment effects.

Table 2.1: Simulation 1: Potential Outcome Values

Treatment Effects Z Value Mean ci Mean ti

Heterogeneous
0 0 1
1 1 1
2 1 2

Homogeneous
0 0 1
1 1 2
2 1 2

For each of the four cases we do the following. We generate a single set of treatment and

control potential outcomes for the N subjects. We then create 100,000 random assignment

vectors (T ), where the treatment assignments are independent Bernoulli random variables

with probability 1/2. For each of these 100,000 treatment assignment vectors, we compute

the observed outcomes (Y ) and estimate the average treatment effect and nominal standard

error.

We compare the results using OLS, the LOOP estimator with random forests, LOOP

with OLS imputation, and cross estimation with random forests (Wager et al., 2016). Note

that for cross estimation, we use the code provided on GitHub; however, we remove the

specified node size parameter. This modification improves performance in the context of

this simulation. The bias is estimated as the mean point estimate minus the true ATE. We

also show the mean nominal standard error and estimate the true standard error using the

standard deviation of the 100,000 point estimates. Similarly, we estimate the mean squared

error as the mean squared error (relative to the true average treatment effect) of the 100,000

point estimates. The nominal standard errors for the LOOP estimator are calculated using
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Table 2.2: Simulation 1 Results

Method Bias Est. Nominal SE True SE MSE Coverage

(a) N = 30, Heterogeneous Treatment Effects
LOOP (RF) -0.00004 0.043 0.035 0.00183 99.13%
LOOP (OLS) 0.00000 0.100 0.041 0.01000 99.59%
Cross Estimation 0.00050 0.095 0.034 0.00903 99.70%
OLS -0.01240 0.095 0.035 0.00919 99.94%

(b) N = 100, Heterogeneous Treatment Effects
LOOP (RF) 0.00002 0.021 0.015 0.00021 99.42%
LOOP (OLS) 0.00001 0.054 0.016 0.00026 100.00%
Cross Estimation 0.00002 0.053 0.015 0.00021 100.00%
OLS -0.00353 0.053 0.016 0.00027 100.00%

(c) N = 30, Homogeneous Treatment Effects
LOOP (RF) -0.00003 0.045 0.040 0.0016 98.53%
LOOP (OLS) -0.00040 0.090 0.083 0.0070 96.22%
Cross Estimation 0.00007 0.045 0.039 0.0015 98.43%
OLS -0.00152 0.086 0.083 0.0069 95.72%

(d) N = 100, Homogeneous Treatment Effects
LOOP (RF) -0.00001 0.021 0.014 0.00021 99.43%
LOOP (OLS) 0.00036 0.051 0.048 0.00023 96.07%
Cross Estimation -0.00001 0.021 0.014 0.00021 99.43%
OLS 0.00026 0.051 0.048 0.00023 95.95%

the method of Section 2.6.3, while the nominal standard errors for cross estimation are

calculated using the estimator provided by Wager et al. (2016). For OLS, the point estimate

is obtained by regressing Y on T and Z (without any interaction terms), while the nominal

standard errors are calculated using the usual formulas (not robust standard errors). Z is

treated as a continuous variable in the regression (not as a factor). We also compute the

coverage probabilities at a confidence level of 95%. We show the results in Table 2.2. Finally,

note that in Table 2.2, the nominal standard error refers to the mean nominal standard error

over the 100,000 trials, while the true standard error refers the estimate for the true standard

error described above. We continue this practice throughout the remainder of the chapter.

We can see that LOOP and cross estimation are unbiased, while the OLS estimate is

biased. This bias is smaller for homogeneous treatment effects and when N is larger. LOOP
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(with OLS) performs very similarly to the standard OLS estimator. Although the OLS

estimator is slightly biased, it tends to have slightly lower standard errors in these examples,

so the mean squared error for the two methods are very similar. However, it is not always

the case that LOOP simply shifts the error from bias to standard error. In the case of

heterogeneous treatment effects with N = 30, we see that the standard OLS estimator has a

smaller MSE than LOOP with OLS. We can also see that the true standard errors are similar

for LOOP (with random forests) and cross estimation. However, in the case of heterogeneous

treatment effects, the nominal standard error of cross estimation is quite conservative, even

when N increases. The nominal standard error for LOOP (with random forests) is also

conservative, but less so. In the case of cross estimation, this conservative bias is partially

because Wager et al. assume that the experimental units are drawn from a superpopulation

and must account for this additional uncertainty. For LOOP, the conservative bias is related

to the inequality (2.13). For a discussion on a related inequality for the simple difference

estimator, see Aronow et al. (2014).

Technical note: cross estimation is slightly biased as implemented. This is due to the

difference between the out-of-bag and the leave-one-out estimates of the potential outcomes.

This issue can easily be fixed by reducing (by one) the size of the bootstrap sample used in

the random forest when making out-of-bag predictions of the potential outcomes.

2.8.2 Simulation 2: Estimating the Treatment Effect for a Binary Response

In our second simulation, we consider a randomized experiment in which the response

is either zero or one. Each of the N subjects has one of three sets of potential outcomes:

(a) zero regardless of treatment assignment, (b) zero if control and one if treatment, and (c)

one regardless of treatment assignment. Like in Section 2.8.1, the treatment assignments are

independent Bernoulli random variables with probability 1/2. We also have one covariate

(Z1) that is predictive of the outcome. Higher values of this covariate indicate that the

participant is more likely to be in groups (b) or (c) than group (a). Finally, we assume there

34



are k noise covariates (Zk).

We generate Z1 from a standard normal distribution. For each subject i, the probabilities

that the subject ends up in each group is determined as follows: we calculate wi1 = 1,

wi2 = exp(0.5c×Zi1), and wi3 = exp(c×Zi1), where c is a positive constant. The probability

that observation i is assigned to group j is pij = wij/(wi1 + wi2 + wi3). Thus, higher values

of c indicate Z1 is more predictive of outcome. In addition, observation i is most likely to

be in the third group (and least likely to be in the first group) if Zi1 is positive.

Under this framework, we consider three sets of simulations. First, we assume that both

the number of subjects (N = 200) and the predictive power of Z1 (c = 3) are constant, and

vary the number of noise covariates (from k = 5 to k = 100 in increments of 5). Next, we

fix the predictive power of Z1 (c = 3) and the number of noise covariates (k = 50), and vary

the number of subjects from 100 to 1000 in increments of 50. Finally, we fix the number of

subjects (N = 200) and noise covariates (k = 50), and vary the predictive power of Z1 (from

c = 0 to c = 5.5 in increments of 0.5). We run 10,000 trials for each simulation. For each

set of simulations, we index the results to the true standard error for the simple difference

estimator. We show the results in Figure 2.1.

We observe that while the performance of OLS declines as the number of noise covariates

increases, the performance of LOOP remains constant relative to the simple difference esti-

mator. Similarly, OLS performs worse than the simple difference estimator when the number

of subjects is small, while the LOOP estimator outperforms the simple difference estimator

for all sample sizes. Finally, it is important to note that covariate adjustment does not help

when the covariates are not useful for predicting the outcomes. When Z1 is predictive of

the outcome, LOOP outperforms the simple difference estimator. However, we note that

even when Z1 is not predictive of outcome, the performance of the LOOP estimator is still

comparable to that of the simple difference estimator. We discuss this further in Section

2.8.4, where we apply the LOOP estimator to actual experimental data.

Technical note: we slightly modify the procedure described in Section 2.8.1. This is
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Figure 2.1: Comparison of standard errors for Simulation 2. All standard errors are relative. That
is, each value has been divided by the standard error for the simple difference estimator. We use
solid lines to denote the the true standard error and dotted lines to denote the nominal standard
error. Method used is shown by the color and width of the lines: (a) simple difference estimator,
black lines; (b) OLS, thin gray lines; and (c) LOOP, bold light gray lines.

because we compare different simulations in each chart with varying parameter values, and

we wish to avoid the variability associated with using a single set of potential outcomes for

each simulation. For each of the 10,000 trials, we generate new covariates and potential

outcomes and obtain a point estimate and a nominal standard error. We then calculate the

nominal standard error as the average of the 10,000 nominal standard errors, and the true
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standard error by taking the standard deviation of the 10,000 differences between each point

estimate and the true τ̄ for that trial (i.e., the standard deviation of the 10,000 values for

τ̂ − τ̄).

2.8.3 Simulation 3: Negligibility of γ̄

In Section 2.6.3, we argue that γ̄ is typically negligible and can often be ignored when

estimating the variance of τ̂ . To support this argument, we show via simulation that Nγ̄

goes to zero as N increases. For this simulation, we generate a single set of N = 100 subjects

using the setup of Simulation 1 (with heterogeneous treatment effects) in Section 2.8.1 for

the covariates and potential outcomes. We then estimate

γ̄ =

∑
i 6=j γij

N(N − 1)

for each of the first N = 10, 20, ..., 100 observations. For each N , we generate 100,000

treatment assignment vectors, calculate the τ̂i’s for each treatment assignment vector, and

use the results to obtain a simulation estimate γ̃ of γ̄, along with a standard error for this

estimate. In Figure 2.2, we plot |Nγ̃| on a log scale. We can see that the value of |Nγ̃|

declines as N increases. For a table of the values and standard errors of γ̃, see Appendix

F.1.
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Figure 2.2: Estimate of |Nγ̄| for different values of N ; values are plotted on a log scale. Note that
the estimates begin to taper at around N = 70. This is due to the standard error of our estimate
γ̃ of γ̄. See Appendix F.1 for more details.

2.8.4 Cash Transfer Programs and Enrollment

In their experiment in 2005, Barrera-Osorio et al. studied the effects of several conditional

cash transfer programs on educational outcomes for students in Bogota, Colombia. They

conducted experiments in two localities of Bogota, San Cristobal and Suba. For our analysis,

we focus on the San Cristobal experiment. The San Cristobal experiment involved 10,907

students from grades 6 to 11. These students were selected by lottery to be assigned to

one of two treatments or to control: 3,427 students were assigned to the “basic” treatment,

3,424 to the “savings” treatment, and the remaining 4,056 were assigned to control. In the

basic treatment, each student received a bi-monthly payment of roughly 15 USD so long

as the student attended school at least 80% of days that month. In the savings treatment,

each student received a bi-monthly payment of roughly 10 USD so long as they met the
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attendance threshold. The remaining third was held in a bank account and paid to the

students’ families when it was time to re-enroll for the subsequent year. Barrera-Osorio et

al. use the following covariates. For each student, they use age, age squared, gender, grade,

years behind (or ahead) relative to their grade, and indicator for whether the student is over

age for their grade. They also record the marital status, age, and years of education for the

head of household, as well as several household characteristics: whether or not the residence

is rented or owned, income, total number of people, number of children, and an indicator

for single parent household. Finally, they include household values for indices that relate to

access to utilities, possession of durable goods, the physical infrastructure of the house, and

poverty.

In their experiment, Barrera-Osorio et al. collected re-enrollment status from adminis-

trative records. However, they were unable to obtain re-enrollment status for approximately

10% of the observations. In our analysis, we consider both re-enrollment status itself and

whether the re-enrollment status is missing as outcome variables. For each outcome variable,

we estimate the average treatment effect for the basic treatment compared to the savings

treatment, the basic treatment compared to control, and the savings treatment compared to

control. We use the same covariates and restrict our analysis to students in grades 6 through

10 as in Barrera-Osorio et al. (2011). We compare the standard errors using LOOP (with

random forests), the simple difference estimator, OLS, and cross estimation (with random

forests) in Table 2.3. See Appendix F.2 for the full results, including additional methods

(LOOP with OLS and OLS with interaction terms) and the point estimates for the treatment

effect.

As we can see, OLS, cross estimation, and LOOP provide improvement over the simple

difference estimator when missing status is the outcome variable of interest. We can also see

that even in this traditional setting (i.e., a large sample size with relatively few covariates),

LOOP performs at least as well as OLS. Finally, covariate adjustment does not help when

re-enrollment status is the outcome variable, as the covariates are less predictive of outcome.
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Table 2.3: Comparison of Standard Errors with Missing and Re-enrollment Status as Outcomes

Treatments Method Missing Status Re-enrollment Status
(×10−3) (×10−3)

Basic vs. Savings

LOOP 6.0 11.8
Simple Difference 7.4 11.8
OLS 6.3 11.6
Cross Estimation 6.0 11.6

Basic vs. Control

LOOP 5.8 11.6
Simple Difference 7.1 11.6
OLS 6.1 11.5
Cross Estimation 5.7 11.5

Saving vs. Control

LOOP 5.7 11.3
Simple Difference 7.0 11.4
OLS 6.1 11.2
Cross Estimation 5.7 11.2

2.9 Discussion

While methods of covariate adjustment can improve the precision of the estimate of the

average treatment effect, they often require the researchers to perform variable selection. For

example, when using post-stratification, we must be careful not to use too many covariates

otherwise we partition the data set too finely. Over-adjustment can result in poorer perfor-

mance with linear regression as well: OLS performs poorly when the sample size is small

relative to the number of covariates or as the number of noise covariates increases.

The LOOP estimator is an unbiased estimate of the average treatment effect and ran-

domization justifies the assumptions made. One advantage of the LOOP estimator is that

estimation of mi is very flexible. One can impute the potential outcomes using any method,

so long as m̂i and Ti are independent. One baseline approach is to estimate mi without mak-

ing use of covariates, simply taking the mean of the observed outcomes in each treatment

group. In this case, the LOOP estimator is exactly equal to the simple difference estima-

tor. This suggests that the LOOP estimator will generally outperform the simple difference

estimator, so long as we use a sensible method for imputing the potential outcomes. It is
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possible to harm precision in certain cases: we might have a small number of observations

and an overly flexible imputation method, which could result in overfitting. However, if we

were to use a sufficiently regularized imputation method, we would generally expect that

the LOOP estimator would perform at least as well as, or at least not much worse than, the

simple difference estimator. For example, we might use an ensemble method that includes

mean imputation within the ensemble. While we have not explored such an imputation

method in this chapter, we expect that it would likely help guard against overfitting.

In this chapter, we suggest the use of random forests to impute the potential outcomes,

as they are computationally efficient relative to other methods, likely improve performance

over a post-stratified estimate, and allow for automatic variable selection. Because of the

automatic variable selection, we can adjust for covariates without knowing ahead of time

which covariates we wish to use, and any post-selection inference is still valid. Finally, as

with any covariate adjustment method, the LOOP estimator only improves precision over the

unadjusted estimator if the covariates are predictive of outcome. However, we see that even

when the covariates are not predictive of outcome, the LOOP estimator generally performs

as well as the simple difference estimator.
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CHAPTER III

Design-Based Covariate Adjustments in Paired

Experiments

3.1 Introduction

In randomized controlled trials, we expect the pretreatment covariates of the treatment

and control groups to be similar except for the treatment itself. However, there will often

be small imbalances in baseline covariates due to chance variation in treatment assignment,

which can be addressed in multiple ways. One way to improve the precision of the treatment

effect estimate would be to adjust for these imbalances during the analysis. Alternatively, it

might be possible to balance covariates through the design of the experiment. For example,

in paired experiments, participants are organized into pairs prior to treatment assignment,

and then one participant in each pair is randomly assigned to treatment. Ideally, the two

participants in each pair would be as similar as possible.

Paired designs are commonly used when the sample size is small. For example, Pane

et al. (2014) discuss a randomized trial involving schools in Texas testing the effectiveness of

a computer program, the Cognitive Tutor Algebra 1 curriculum. In this trial, schools were

organized into 22 pairs and then pair randomized.

While a paired design is often effective at balancing covariates between the treatment

and control groups, it may still be helpful to make adjustments for remaining covariate
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imbalances. Similar situations can occur with other study designs; for example, covariate

adjustments may be helpful in rerandomized trials (see Li and Ding (2020)). Perhaps in part

because covariate balance is addressed through experimental design, covariate adjustment

methods in paired experiments are relatively understudied. Covariate adjustment methods

can be model-based or design-based (for a discussion, see Imai et al. (2009) and Imbens

(2010)). Model-based estimators have the potential to improve efficiency; however, incorrect

modeling assumptions can result in bias and increased mean squared error. Design-based

estimators rely only on randomization as the basis for inference, diminishing the concern of

model misspecification. Hierarchical linear models (see Raudenbush and Bryk (2002) and

Woltman et al. (2012)) are an example of a model-based approach for blocked experiments,

including paired experiments. Pinheiro and Bates (2000) and Dixon (2016) note that hier-

archical linear models are a common way to analyze blocked experiments. However, the use

of such models requires one to make various modeling decisions, potentially raising concerns

about model misspecification. For example, Dixon (2016) notes that there is some debate

as to whether block effects should be modeled as fixed or random.

As noted above, covariate adjustments in paired experiments are relatively understudied,

and design-based methods are even more so. Imbens and Rubin (2015) and Fogarty (2018)

discuss regression-based adjustments. Imbens and Rubin work under a superpopulation

model, assuming that the pairs within the experiment are drawn at random from an infinite

population, and focus on the population average treatment effect. Fogarty examines the use

of regression adjustments in paired experiments under a design-based framework, building

on the work of Freedman (2008) and Lin (2013), who discuss regression adjustments in

completely randomized experiments. More recently, covariate adjustment methods have been

proposed for completely randomized and Bernoulli randomized experiments that involve the

use of sample splitting and machine learning methods to impute potential outcomes. These

include Aronow and Middleton (2013), Wager et al. (2016), Chernozhukov et al. (2018),

Spiess (2018), and Rothe (2018), as well as the work of Chapter II. Some of these methods can
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be used in more general designs including blocked experiments, e.g., Aronow and Middleton

(2013). However, unlike the case of regression adjustments, there is not currently an analogue

to these methods that is specifically for paired experiments.

In this chapter, we present an analogous approach to these machine learning methods

for paired experiments. The method is design-based; however, it also allows for the use of

models to improve performance. We leave out each pair and impute the potential outcomes

using information from the remaining observations. This imputation can be done with any

prediction method, such as linear regression or random forests. Regardless of the imputation

method, the resulting treatment effect estimate is unbiased and randomization is the basis

for inference. This flexibility has several advantages. For example, one issue when making

covariate adjustments is choosing which and how many covariates to use. We can address

this issue by choosing an imputation method that allows for automatic variable selection.

An alternative approach is to use targeted maximum likelihood estimation, which Moore

and van der Laan (2009) note allows for automatic variable selection when making covariate

adjustments. Balzer et al. (2016b) and Balzer et al. (2016a) propose the use of targeted

maximum likelihood estimation in paired experiments.

Our method also addresses an issue that is specific to paired experiments, which we

will call the pair inclusion trade-off. In paired experiments, the performance of a covariate

adjustment method can suffer if it fails to properly account for the pair assignments. If

the relationship between the covariates and outcome within pairs is the opposite of the

relationship overall, i.e., a Simpson’s paradox occurs, then omitting the pair assignments

will hurt precision relative to the unadjusted estimator. However, in cases where the pair

assignments are not predictive of the outcome, it is better to ignore the pairing. Both

Aronow and Middleton (2013) and Wu and Gagnon-Bartsch (2018) present versions of their

methods that allow for block randomizations; however, neither of these methods directly

address the pair inclusion trade-off. We discuss the pair inclusion trade-off further in Section

3.4. The framework we present allows us to address the trade-off. We impute two sets of
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potential outcomes, one in which we account for and the other where we ignore the pair

assignments. Having two sets of imputed potential outcomes, we then interpolate between

them by minimizing the cross validated mean squared error. By addressing this trade-off, we

protect against the Simpson’s paradox, but retain the potential for improvements in precision

if the pairing is not informative.

Covariate adjustment methods have also been proposed for matched-pair cluster ran-

domized trials. For example, Small et al. (2008) propose a design-based estimator, while Wu

et al. (2014) propose a method that assumes a superpopulation.

This chapter is organized as follows. In Section 3.2, we discuss the model and introduce

notation. In Section 3.3, we present the estimator and derive a variance estimate. We discuss

the pair inclusion trade-off further and present an imputation method to address it in Section

3.4. In Section 3.5, we apply the estimator to simulated data. In Section 3.6, we use the

method to estimate the effect of the Cognitive Tutor Algebra 1 curriculum mentioned above.

Section 3.7 concludes.

3.2 Background and Notation

3.2.1 Estimating the Average Treatment Effect

In this chapter, we once again work under the Neyman-Rubin model. Our notation

largely follows that of Chapter II. In particular, consider a randomized experiment in which

there are 2N individuals, indexed by i = 1, 2, ..., 2N . We let Ti = 1 if the participant is

assigned to treatment and Ti = 0 if control. Each of the 2N participants has two fixed

(non-random) potential outcomes, ti and ci. We observe ti if participant i is assigned to

treatment and ci otherwise. That is, the observed outcome Yi for participant i is

Yi = Titi + (1− Ti)ci.
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We define the individual treatment effect for each participant as ti − ci, and the average

treatment effect as

τ̄ =
1

2N

2N∑
i=1

(ti − ci).

We first consider a case where the treatment assignments are not pair randomized. Suppose

the Ti are independent Bernoulli random variables with probability p = 0.5, and that we wish

to estimate the average treatment effect. One estimate is obtained by taking the average

observed outcome of the treatment group and subtracting the average observed outcome of

the control group (the “simple difference estimator”). This estimator is unbiased, conditional

on both the treatment and control groups containing at least one participant. However, for

each participant, suppose we observe a q-dimensional vector of baseline covariates Zi prior

to treatment assignment. It may be possible to use these covariates to improve the precision

of the estimate over the simple difference estimator. For example, we could estimate the

average treatment effect as

1

2N

2N∑
i=1

{2(Yi − m̂i)Ti − 2(Yi − m̂i)(1− Ti)}, (3.1)

where m̂i is a function of Zi. Several authors have noted an estimator of this form can be

used to incorporate covariate information (for example, see Robins et al. (1994), Scharfstein

et al. (1999), Robins (2000), and Tsiatis et al. (2008)). Aronow and Middleton (2013) use

this estimator in a design-based framework, and note that if m̂i is predictive of the observed

outcome Yi, then the resulting estimate will improve over the unadjusted estimator. In

Chapter II, we build on this work and suggest estimating the quantity mi = (ti + ci)/2. In

addition, Aronow and Middleton (2013) note that this estimate is unbiased if Ti and m̂i are

independent. One way to ensure this independence is by obtaining m̂i through a sample

splitting procedure. For example, one could leave out the i-th observation and calculate

m̂i using the remaining observations. As noted by Aronow and Middleton (2013), sample

splitting is especially natural in the case of block randomized experiments, where treatment
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assignments in one block are independent of treatment assignments in the remaining blocks.

See Wager et al. (2016), Chernozhukov et al. (2018), Spiess (2018), and Rothe (2018) for

similar estimators.

3.2.2 Notation for Paired Experiments

We now consider the case where the participants are pair randomized. Suppose that

the 2N participants are organized into N pairs. We index the pairs by i = 1, 2, ..., N , each

with two participants indexed by j = 1, 2, and the quantities defined in Section 3.2.1 are re-

indexed by i and j. For example, for participant j in pair i, we denote the potential outcomes

as tij and cij, and define the observed outcome, treatment indicator, and covariates as Yij,

Tij, and Zij, respectively.

For each pair, one of the two participants is randomly chosen to be assigned to treatment

and the other is assigned to control. That is, Ti1 ∼ Bern(0.5), and Ti2 = 1 − Ti1. The Tij’s

are not mutually independent because exactly one participant in each pair must be assigned

to treatment. However, we assume the Ti1’s are mutually independent. We can therefore

essentially convert our paired experiment to a Bernoulli randomized experiment by treating

each pair as an experimental unit, as we describe next.

When treating each pair as a unit, we can draw direct analogues between the notation of

paired and Bernoulli randomized experiments. We denote each pair’s treatment assignment

by Ti, where Ti = Ti1. For each pair, we also observe a response variable Wi defined below

and a 2q-dimensional vector of baseline covariates (Zi1, Zi2). As with a Bernoulli randomized

experiment, each pair has two “potential outcomes”: we observe ai = ti1 − ci2 if Ti = 1

and bi = ti2 − ci1 if Ti = 0. To differentiate these outcomes from those of the individual

participants, we will refer to ai and bi as “potential differences.” We define the observed

difference Wi as:

Wi = Tiai + (1− Ti)bi.
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We define the pair-level treatment effect τi as

τi =
(ti1 − ci1) + (ti2 − ci2)

2
=

1

2
(ai + bi)

and the average treatment effect τ̄ as

τ̄ =
1

N

N∑
i=1

τi

which is our primary parameter of interest.

We can obtain an unbiased estimate for the average treatment effect in paired experiments

by averaging the observed differences

τ̂sd =
1

N

N∑
i=1

Wi.

We will refer to this estimator as the simple difference estimator for paired experiments,

as it is exactly equal to the difference in means between the treatment and control groups.

However, the variance estimation of the simple difference estimator will be different under a

paired design than it is in completely or Bernoulli randomized experiments. For more details,

see Imai (2008), who analyzes τ̂sd under the Neyman-Rubin model in a paired design.

As in the case of completely or Bernoulli randomized experiments, it may be possible to

use covariates to improve precision over the simple difference estimator. We propose such a

covariate adjustment method for paired experiments in the next section.

48



3.3 A Design-Based Covariate Adjustment Procedure

3.3.1 Estimating the Average Treatment Effect

We now present an estimator that is analogous to the estimator given in (3.1), but for

paired experiments. Define the quantity

di = mi1 −mi2

=
1

2
(ai − bi)

where mij = (tij + cij)/2, and let

τ̂i =
(
Wi − d̂i

)
Ti +

(
Wi + d̂i

)
(1− Ti)

where d̂i is an estimate for di. This estimator differs from (3.1) as di involves a difference of

potential differences, while mi in (3.1) involves a sum of potential outcomes.

Recall that for Bernoulli randomized experiments, (3.1) is an unbiased estimate of the

average treatment effect if m̂i and Ti are independent. An identical argument can be used

for paired experiments to show that τ̂i will be unbiased if d̂i and Ti are independent.

We define an estimate of the average treatment effect as

τ̂ =
1

N

N∑
i=1

τ̂i

=
1

N

N∑
i=1

{(
Wi − d̂i

)
Ti +

(
Wi + d̂i

)
(1− Ti)

}
(3.2)

in which we estimate di by using a leave-one-out procedure. We will refer to this sample

splitting estimator as the P-LOOP (paired leave-one-out potential outcomes) estimator. For

each pair i, we drop both observations and use the remaining N−1 pairs to impute ai and bi

using any method (such as a random forest or linear regression). We then set d̂i = 1
2
(âi− b̂i)
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and repeat this procedure for all N pairs to obtain τ̂ . This leave-one-out procedure ensures

that the estimate will be unbiased, as d̂i and Ti are independent.

To see why this estimator is generally an improvement over the simple difference estima-

tor, we consider the baseline approach where we set d̂i = 0 for all i. In this case, (3.2) will

exactly equal the simple difference estimator. As we will show in Section 3.3.3, the variance

of (3.2) depends directly on how well one estimates di. So long as one estimates the values

di better than setting d̂i = 0, the estimator will perform better than the simple difference

estimator.

3.3.2 Asymptotic Normality

In this section, we demonstrate that (3.2) is asymptotically normally distributed under

certain regularity conditions. Consider an infinite sequence of pairs i = 1, 2, 3, . . . . As before,

the potential outcomes and covariates for all pairs are fixed quantities. For a given sample

size N , we observe the first N pairs in the sequence, and we will consider the behavior of

(3.2) as N increases.

We first define some additional notation. Let Ui = 2Ti − 1 (i.e., Ui = 1 if Ti = 1 and

−1 if Ti = 0) and note that Ui has expectation 0. For a given sample size N , let d̂
(N)
i be

the estimate for di as calculated using the remaining N − 1 observations in the sample and

define the quantities d
(N)
0i = E(d̂

(N)
i ) and d̃

(N)
i = d̂

(N)
i − d(N)

0i . For simplicity, we will often

suppress the superscript (N) within an equation.

For some intuition as to why (3.2) converges to a normal distribution, consider the fol-

lowing decomposition:

τ̂ =
1

N

N∑
i=1

(
Wi − d̂iUi

)
=

1

N

N∑
i=1

(Wi − d0iUi)−
1

N

N∑
i=1

d̃iUi

We generally expect d̃i to shrink to zero as the sample size increases, while the Ui are either
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−1 or 1. We might therefore expect the average of the “remainder terms” d̃iUi to converge

to zero. In fact, we later show that

1

N

N∑
i=1

d̃iUi

converges in probability to zero. The Wi − d0iUi terms are independent random variables

and are generally of order 1 (i.e., they will not shrink to zero as N increases). So long as

none of the variances of the Wi − d0iUi dominate the variances of the remaining terms, we

would expect the appropriately centered and scaled mean of these terms to converge to a

normal distribution. If the first term converges in distribution to a normal distribution and

the second terms converges in probability to zero, it would follow that τ̂ is asymptotically

normally distributed.

In order for this intuition to hold, the data and the imputation method used must be suf-

ficiently well-behaved. We next present general assumptions regarding their behavior. Note

that we do not necessarily prove that these assumptions hold for any specific prediction algo-

rithm. However, we do show that the conditions hold for the case of simple linear regression

imputation in Bernoulli randomized experiments in Section 4.4. In some cases, verifying the

conditions may be difficult. For example, the mathematical properties of random forests are

difficult to study, and analyzing the method often requires a simplification of the algorithm

(for a further discussion, see Scornet et al. (2015)).

Assumption 1. There exists some 0 < C <∞ and q > 0 such that for all i,

Var(d̃i) = Var(d̂i) ≤ C/N q

That is, as we observe more units, the variation of d̂i across randomizations will shrink to

zero. For example, suppose we were imputing the potential outcomes using OLS. Under

the regularity conditions of Freedman (2008) combined with an assumption of bounded

covariates, we would have that Var(d̂i) goes to zero at a rate C/N for all i. Note that

it should be possible to relax this condition and allow C to vary across pairs (see Wu
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and Gagnon-Bartsch (2018) for an analogous condition), but we assume a fixed C here for

simplicity.

Assumption 2. Let ρij be the correlation of d̃iUi and d̃jUj, and ρ̄ =
∑

i 6=j ρij

N(N−1) . We assume

that

N1−qρ̄ −→ 0

In the case where q = 1, the average correlation would only need to go to zero at any rate for

assumption 2 to hold. We would expect the correlation between d̃iUi and d̃jUj to be weak,

as the only dependence between these terms comes from the inclusion of Ui in d̃j (and Uj in

d̃i). That is, if Ui and d̃j were independent, then we would have

Cov(d̃iUi, d̃jUj) = E(d̃iUid̃jUj)

= E(d̃id̃jUj)E(Ui) = 0.

Moreover, the influence of pair j on d̃i (and hence the correlation) should decrease as the

number of pairs increases. Even if d̃i and d̃j are themselves highly correlated, we would

expect the correlation between d̃iUi and d̃jUj to be weak. As an extreme example, suppose

d̃i = d̃j exactly. Then

Cov(d̃iUi, d̃jUj) = E(d̃iUid̃jUj)

= E(d̃2iUiUj)

= E(d̃2iUi)E(Uj) = 0.

Assumption 3. Recall that d
(N)
0i = E(d̂

(N)
i ) for some fixed N . For each pair i, we assume

that the limit of d
(N)
0i exists and denote the limit as d∞i. We also assume

1

N

N∑
i=1

(
d
(N)
0i − d∞i

)2
−→ 0.
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In other words, the expected value of the d̂i converges pointwise to some limit and the mean

square of the d0i converge as well. This does not necessarily mean that d0i will converge to

the true value of di. In most cases, we would expect that the imputation method will not

be able to perfectly estimate di on average and we characterize this in the next assumption.

Assumption 4. Let VN =
∑N

i=1(di − d∞i)2. There exists 0 < K <∞ such that

VN
N
−→ K,

and

max
i=1,...,N

(di − d∞i)2

VN
−→ 0.

That is, the mean squared error of the imputation method converges to a value K. In

addition, no single term of the mean squared error dominates the remaining terms.

When assumptions 1 through 4 holdN(τ̂−τ)/
√
VN converges in distribution to a standard

normal random variable. For a proof, see Appendix G.

3.3.3 Variance

We now estimate the variance of (3.2). Let Ŵi = âiTi + b̂i(1− Ti), and define the mean

squared errors of d̂i and Ŵi as MSE(d̂i) = E{(di− d̂i)2} and MSE(Ŵi) = E{(Wi− Ŵi)
2}. In

Appendix H, we show

Var(τ̂i) = MSE(d̂i)

and thus that the variance is

Var(τ̂) =
1

N2

{
N∑
i=1

MSE(d̂i) +
∑
i 6=j

γij

}
(3.3)
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where γij = Cov(τ̂i, τ̂j). In Appendix I, we show that

∑
i 6=j γij∑N

i=1 MSE(d̂i)
−→ 0

under the conditions outlined in Section 3.3.2. Because
∑

i 6=j γij is negligible relative to∑N
i=1 MSE(d̂i), we suggest that the variance be estimated without the covariance terms in

practice. For this reason, we focus on estimating MSE(d̂i).

In Appendix J, we show that the mean squared error of d̂i is less than the mean squared

error of Ŵi and thus that

1

N2

N∑
i=1

MSE(d̂i) ≤
1

N2

N∑
i=1

MSE(Ŵi)

We can obtain an unbiased estimate for this upper bound, which we use to estimate the

variance of τ̂ :

V̂ar(τ̂) =
1

N2

N∑
i=1

(Wi − Ŵi)
2. (3.4)

To compare this variance estimator to the variance estimator for the simple difference

estimator, consider a special case where we estimate the average treatment effect without

using covariates. In absence of any covariate information, it would be logical to set âi = b̂i =

W̄ (−i) where W̄ (−i) =
∑

j 6=iWj/(N − 1). In this baseline approach, the P-LOOP estimator

would exactly equal the simple difference estimator, as d̂i = 0.5(W̄ (−i)− W̄ (−i)) = 0 for all i.

In addition, we show in Appendix K that the variance estimate for the P-LOOP estimator

would equal

1

(N − 1)2

N∑
i=1

(Wi − τ̂sd)2,

which is equal to N/(N − 1) times the standard variance estimate in a paired t-test (for
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example, see Imai (2008)).

Importantly, because Var(τ̂i) = MSE(d̂i), the performance of the estimator depends

directly on how well we estimate di. If we improve the estimate of di over setting âi =

b̂i = W̄ (−i), we will be able to improve precision relative to the simple difference estimator.

However, improving the estimate of di is not necessarily trivial. Because we are interested

in estimating the difference between mi1 and mi2, it does not suffice to reduce the mean

squared error for the imputed potential outcomes as in the estimator of Wu and Gagnon-

Bartsch (2018). For example, it is possible to obtain estimates of the potential outcomes (the

t’s and c’s) that are reasonably close to the true values while having d̂i of the incorrect sign.

On the other hand, we could have estimates for the potential outcomes that are far from the

true values that result in d̂i being close to the true di. We discuss imputation methods to

address this concern in the next section.

3.4 Imputation Methods of Potential Differences in Paired Exper-

iments

3.4.1 The Pair Inclusion Trade-Off

We next present an imputation method to address the pair inclusion trade-off discussed in

Section 3.1. We first discuss this trade-off further and then propose a method for addressing

the trade-off within the P-LOOP estimator. The pair inclusion trade-off is perhaps easiest to

understand in the context of a linear model, rather than the Neyman-Rubin model. Consider

the following standard linear regression model

Y = α + Tτ + Pβ + Zγ + ε

where Y is the observed outcome, T is the treatment assignment vector, Z is a covariate,

and P is a 2N × (N − 1) matrix of indicator variables that encodes the pair assignments.

55



Suppose that there are pair effects (that is, β 6= 0), and that Z is correlated with both P

and T . If we were to omit P and regress Y onto T and Z, then we would bias the estimate

of τ . On the other hand, suppose that the pairing is not informative (β = 0). In this case,

including P in the regression would inflate the variance for τ̂ , and it would be preferable to

omit P from the regression.

Several authors have compared the variance of the simple difference estimator for com-

pletely and pair randomized designs under the Neyman-Rubin model (for example, see Imai

(2008) and Pashley and Miratrix (2017)). The difference in variance under these designs

can be either positive or negative. Similarly, it may be possible to reduce the variance of

our estimate when making covariate adjustments by ignoring the pair assignments. How-

ever, Imai (2008) cautions against analyzing paired experiments as if they were completely

randomized, noting that this can result in biased confidence intervals and hypothesis tests.

Fortunately, this is not an issue with the P-LOOP estimator, as we always account for the

paired design. We always drop both observations in each pair when estimating di, and the

decision to ignore or include the paired structure for the remaining observations only affects

the adjustment term d̂i.

When we discuss the inclusion or exclusion of the paired structure when imputing po-

tential outcomes, we refer specifically to how we treat the remaining pairs when building a

prediction model. If we ignore the paired structure when imputing potential outcomes, this

means we fit a model to the remaining observations as individual units. If we include the

paired structure when imputing potential outcomes, this means we fit a model to the remain-

ing observations, treating each pair as a unit. Regardless of which approach we choose, the

estimator remains design-based. For a given pair i, we always leave out both observations,

and we wish to use the remaining observations such that we obtain the best estimate for di.

Suppose we ignore the paired structure of the data when we train our imputation model

for the potential outcomes. In this case, we model the relationship between the covariates and

the outcome overall, rather than the relationship within pairs. However, if the relationship
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between the covariates and outcome within pairs is sufficiently different from the relationship

overall, we could obtain a d̂i that is far from the truth. One situation where this could happen

is when a Simpson’s paradox occurs, and the relationship between the covariates and outcome

within pairs is the opposite of the overall relationship.

Consider a hypothetical experiment in which a blood pressure medication is being tested

on pairs of twins, and each pair belongs to either ethnicity A or ethnicity B. For each partic-

ipant, we record a single covariate, an indicator for the presence of a genetic mutation. On

average, participants with this mutation have blood pressure that is 5 units lower. Suppose

this mutation is common in ethnicity A and rare in ethnicity B. However, for reasons unre-

lated to the mutation, ethnicity A has a baseline blood pressure that is on average 10 units

higher than the baseline for ethnicity B. In this case, the presence of the mutation would

be associated with higher blood pressure as ethnicity A is more likely to have the mutation

and also has a higher baseline blood pressure. However, within pairs, the presence of the

mutation will be associated with lower blood pressure. If we ignore pair assignments when

estimating di, we would infer that the presence of the mutation is associated with a higher

value of blood pressure. For a given pair, we would want the presence of the mutation to

predict lower blood pressure. Thus, the prediction of the difference di = mi1−mi2 would be

of the wrong sign, resulting in poorer performance relative to the simple difference estimator.

On the other hand, if the paired structure is not predictive of the outcome, then it would be

better to omit the pair assignments when imputing the potential differences.

It can be unclear whether we should account for the pair assignments when imputing

the potential differences. To avoid data snooping, we propose an imputation method in the

rest of this section that automatically addresses the trade-off. We first propose methods for

calculating âi and b̂i that do and do not account for the pair assignments in the prediction

model, producing two sets of potential differences. Having produced two estimates for each

ai and bi, we propose a method to automatically interpolate between them.
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3.4.2 Estimating di when Pairs are not Predictive:

Impute Potential Outcomes Separately

We first estimate di without accounting for the pair assignments for the observations

outside of pair i. To do this, we drop both observations in pair i, then fit a model on

the individual observations for the remaining pairs and separately impute all four potential

outcomes (i.e., ti1, ci1, ti2, and ci2) for pair i. Although we ignore pair assignments for the

observations outside of pair i, we must drop both observations in the pair when estimating

di to ensure that the treatment effect estimate is unbiased.

More specifically, for each pair i, we drop both observations in the pair. We then fit

a prediction algorithm on the remaining observations, ignoring the pair assignments and

treating each individual as a unit. For example, we could regress Ykj onto Tkj and Zkj for

k 6= i. We then use this model to impute ti1, ci1, ti2, and ci2. To obtain t̂i1, we would plug

in the covariates for the first observation in pair i and a treatment indicator of 1. We would

obtain estimates for the remaining potential outcomes similarly and set

d̂i =
1

2
(t̂i1 + ĉi1)−

1

2
(t̂i2 + ĉi2).

3.4.3 Estimating di when Pairs are Predictive:

Impute Potential Differences Directly

Next, we propose a method that accounts for pair assignments when estimating di. Rather

than imputing the potential outcomes (ti1, ci1, ti2, and ci2), we impute ai and bi directly,

treating each pair as an observational unit. Recall from Section 3.3 that ai and bi are

analogous to the potential outcomes in an experiment with Bernoulli randomization. We

can therefore apply a procedure to the paired units that is similar to the leave-one-out

procedure described earlier for estimating mi in equation (3.1). For Bernoulli experiments,

we would only use the control units when imputing ci and the treatment units when imputing

ti. However, for paired experiments ai and bi are determined by which unit is arbitrarily
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labeled j = 1 and are therefore effectively interchangeable. As an example, for the i-th pair,

we have ai = ti1 − ci2. However, if we had instead recorded the second unit in the pair

first, then the values of ai and bi would be switched and ai would be ti2 − ci1. We can take

advantage of this fact to use all observations (except those in pair i) when imputing each

potential difference.

When treating the pairs as units, we have 2q covariates rather than q covariates for each

unit. We start by leaving out pair i. We then wish to impute ai and bi using the 2q covariates

for the remaining pairs. One way to do this would be to simply concatenate the covariate

vectors for the two observations in each pair. In this case, we define Za
i as the vector of

covariates where the covariates for the treated units come first. That is, Za
i = (Zi1, Zi2) if

Ti = 1, and Za
i = (Zi2, Zi1) if Ti = 0. For example, suppose Zi1 = (1, 2) and Zi2 = (3, 4).

Then Za
i would be (3, 4, 1, 2) if Ti = 0, and (1, 2, 3, 4) if Ti = 1. In other words, Zi is

the concatenated vector of covariates as it is ordered in the original data, while Za
i is the

concatenated vector where the covariates for the treated unit come first.

Alternatively, we may wish to transform the covariates in some way; for example, we

could take the means and differences of the covariates. This is similar to the approaches

used by Imbens and Rubin (2015) and Fogarty (2018). In this case, define Zi as

(
Zi1 + Zi2

2
, Zi1 − Zi2

)
.

That is, Zi is the vector where the first q entries are the averages of each covariate for the

pair, and the second q entries are the differences (observation 1 minus observation 2). In

analogy to the concatenation example, we define Za
i to be the means and the treatment

minus control differences.

We can now estimate di using these combined covariates and the observed differences.

After leaving out pair i, we impute ai by creating a model using the observed outcomes Wk

(for k 6= i) as our response variable and the covariates Za
k as our predictors. This model
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incorporates all of the remaining N − 1 pairs and predicts the value of a for a given set of

covariates. We plug the covariates Zi into this model to obtain âi. The same model can be

used to impute bi. If we had labeled the second participant in the pair as the first participant,

then ai and bi would be reversed. We therefore use the same model to impute bi, but reverse

the order of the covariates for pair i. In the concatenation example, we would plug (Zi2, Zi1)

into the model instead of (Zi1, Zi2). In the transformation example, we would plug

(
Zi1 + Zi2

2
, Zi2 − Zi1

)

into the model. Having obtained estimates âi and b̂i, we set

d̂i =
1

2
(âi − b̂i).

3.4.4 Interpolating between Imputation Methods

We have proposed two methods for imputing potential outcomes. However, we often

do not know ahead of time which method will perform better. We therefore adaptively

interpolate between the two methods.

For each pair i, we have two estimates of ai obtained using the two imputation methods

described above. We refer to these estimates as â
(1)
i and â

(2)
i . We wish to obtain the value

αi that minimizes the distance between ai and the interpolation âi = αiâ
(1)
i + (1 − αi)â(2)i .

However, we want âi to be independent of Ti. We therefore use a leave-one-out procedure

to calculate αi. For each i, we leave out pair i and set αi to the value that minimizes the

mean squared error for the remaining observations. In other words, we have

αi = argmin
x∈[0,1]

∑
k∈A\i

{
ak −

(
xâ

(1)
k + (1− x)â

(2)
k

)}2

.
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Taking the derivative with respect to x and setting equal to 0, we have

αi =

∑
k∈A\i(ak − â

(2)
k )(â

(1)
k − â

(2)
k )∑

k∈A\i(â
(1)
k − â

(2)
k )2

.

which we then restrict to be in the interval [0, 1]. We then set our final estimate of ai to be

âi = αiâ
(1)
i + (1− αi)â(2)i . We use a similar procedure for b̂i.

3.5 Simulation Results

We present two simulations in the next two subsections. The first simulation illustrates

the pair inclusion trade-off, while the second considers a scenario with a non-linear rela-

tionship between the covariate and potential outcomes. In both cases, we compare the

performance of P-LOOP with the simple difference estimator and the estimators discussed

in Fogarty (2018), which we will refer to as Regression 1 and Regression 2. Regression 1

involves the treatment minus control outcomes regressed onto the treatment minus control

covariates, while Regression 2 is the same regression with the addition of the mean of the

covariates in each pair. For P-LOOP, recall from earlier that we are excluding the pair as-

signments in our imputation method if we impute the potential outcomes (ti1, ci1, ti2, and ci2)

separately, while we are including the pair assignments if we impute the potential differences

(ai and bi) directly. We show results using each of these imputation strategies as well as the

interpolation method. We use both random forests and ordinary least squares as prediction

methods.

For each of the scenarios described below, we generate a single set of potential outcomes.

Next, we generate 10,000 treatment assignment vectors. For each of these, we obtain a

treatment effect estimate and the nominal variance (i.e., the estimated variance) using each

estimator. This results in 10,000 point estimates and 10,000 variance estimates for each

method, which we can use to estimate the true variance and the expectation of nominal

variance for that method. We estimate the true variance as the variance of the 10,000 point
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estimates, and the expectation of the nominal variance as the mean of the 10,000 nominal

variances.

3.5.1 The Pair Inclusion Trade-Off

We consider a hypothetical experiment based off the scenario described in Section 3.4.1,

where we are interested in the effect of a blood pressure medication. We generate N = 50

pairs of twins, half of which are of ethnicity Ei = 0 and the other half Ei = 1. We randomly

assign one participant in each pair to treatment and assign the other to control. That is,

Ti1 ∼ Bern(0.5) and Ti2 = 1 − Ti1. Next, suppose there exists a genetic mutation Zij. For

each participant, we set Zij ∼ Bernoulli(pk) for Ei = k. We set p1 = 0.9 and p0 = 0.5. That

is, participants of ethnicity Ei = 1 are more likely to have the mutation. We assume that

only the observed outcome Yij, as well as Tij and Zij, are recorded. Suppose that ethnicity 1

has a higher baseline blood pressure than ethnicity 0 (for reasons unrelated to the mutation),

but that the presence of the mutation is causally associated with lower blood pressure. We

generate the outcome as:

Yij = 80− 10Tij − 5Zij + 10Ei + εij

where εij are independent N(0, 4) random variables. Because participants for ethnicity Ei = 1

have higher baseline blood pressure, Zij is positively correlated with blood pressure across all

participants. Thus a Simpson’s paradox occurs: overall, Zij has a positive association with

blood pressure, while within pairs, Zij has a negative association with blood pressure. We

summarize the results of this simulation in Table 3.1 under the column Simpson’s paradox.

We also generate a set of potential outcomes in which the pairs contain no additional

information (beyond its association with covariate Zij). We generate the observed outcome
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Table 3.1: Simulation Results

Simpson’s paradox Uninformative pairs

Method True var E(Nom) Cov pr True var E(Nom) Cov pr

Simple Difference 0.343 0.342 0.943 0.361 0.365 0.947

P-LOOP RF (differences) 0.154 0.167 0.951 0.151 0.168 0.952

P-LOOP RF (outcomes) 0.440 0.462 0.952 0.146 0.154 0.949

P-LOOP RF (interpolated) 0.152 0.170 0.953 0.148 0.156 0.948

P-LOOP OLS (differences) 0.152 0.160 0.950 0.148 0.160 0.950

P-LOOP OLS (outcomes) 0.442 0.462 0.953 0.146 0.154 0.949

P-LOOP OLS (interpolated) 0.152 0.164 0.952 0.148 0.156 0.949

Regression 1 0.151 0.150 0.943 0.148 0.149 0.944

Regression 2 0.153 0.148 0.942 0.149 0.148 0.940

Note. True var is the estimate for the true variance. E(Nom) refers to the estimate for the expected value

of the nominal variance. For P-LOOP, these are estimates for expression (3.3) and for the expected value

of (3.4) respectively. Cov pr is the estimated coverage proportion. We provide further details on how we

obtain these estimates in Appendix L.1. The Monte Carlo estimates of the true variances have standard

errors ranging from 0.002 to 0.007, while the Monte Carlo estimates for the expected values of the nominal

variances all have standard errors below 0.0002. We provide these standard errors in Appendix L.1.

as:

Yij = 80− 10Tij + 5Zij + εij

where εij are independent N(0, 4) random variables. In this case, Ei is associated with

outcome because it is associated with Zij, but otherwise has no effect on outcome. We

summarize the results of this simulation in Table 3.1 under the column Uninformative pairs.

We see that in the Simpson’s paradox case, imputing the potential outcomes separately

(not accounting for pairs when estimating ai and bi) causes inflated variance relative to
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the simple difference estimator, while imputing potential differences directly (accounting for

pairs) results in improved performance. However, in the case where the pair assignments are

uninformative, it is better to impute the potential outcomes separately. The gains in this

example are relatively minor; however, we show in the later sections that the improvements

can be more substantial.

3.5.2 A Non-Linear Scenario

In the previous example, the potential outcomes were generated from a linear model

with independent, normally distributed noise. We examine a more complex scenario in this

section. Consider a hypothetical experiment in which we are testing the effect of a drug on

recovery time for an illness. We generate N = 50 pairs. For each participant, we observe a

single covariate, Z, corresponding to the baseline health score for that participant. To obtain

this health score, we generate Z0i ∼ Unif(0, 10) for each pair i. We then set Zij = Z0i + εij,

where εij are independent N(0, 1) random variables. The outcome in this example will be

time to recovery.

The mean recovery time under treatment and control will be determined by the following

logistic functions:

µc(Zij) = 3 +
10

1 + exp (2Zij + 12)

and

µt(Zij) = 3 +
10

1 + exp (2Zij + 8)
.

We then generate the control potential outcomes using gamma random variables with shape

parameter 30 and rate parameter 30/µc(Zij). We generate the treatment potential outcomes

analogously. A higher health score is associated with quicker recovery under both treatment

and control; however, this recovery is expected to occur more quickly for treated units. We

show the results of this simulation in Table 3.2. P-LOOP with random forests outperforms

the other methods. This is not surprising, as the potential outcomes are obtained using a
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Table 3.2: Simulation Results

Method True var E(Nom var) Cov pr

Simple Difference 0.094 0.373 1

P-LOOP RF (differences) 0.069 0.160 0.996

P-LOOP RF (outcomes) 0.046 0.097 0.991

P-LOOP RF (interpolated) 0.046 0.097 0.992

P-LOOP OLS (differences) 0.068 0.371 1

P-LOOP OLS (outcomes) 0.062 0.364 1

P-LOOP OLS (interpolated) 0.065 0.363 1

Regression 1 0.066 0.351 1

Regression 2 0.066 0.358 1

Note. True var is the estimate for the true variance. E(Nom var) refers to the estimate for the expected

value of the nominal variance. For P-LOOP, these are estimates for expression (3.3) and for the expected

value of (3.4) respectively. Cov pr is the estimated coverage proportion. We provide further details on how

we obtain these estimates in Appendix L.1. The Monte Carlo estimates of the true variances have standard

errors ranging from 0.0006 to 0.0013, while the Monte Carlo estimates for the expected values of the

nominal variances all have standard errors below 0.0004. We provide these standard errors in Appendix L.1.

non-linear data generating process. In addition, all of the methods are conservative, although

P-LOOP with random forests is much less conservative than the other methods. We also

observe that there is considerable benefit from excluding the pair assignments when imputing

potential outcomes when using random forests as the imputation method.

3.5.3 Remainder Terms

In this subsection, we investigate the quantity

1

N
E


(

N∑
i=1

d̃iUi

)2
 (3.5)
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for each of the data generating procedures used in the simulations discussed above. This

quantity is of interest for several reasons. The convergence of (3.5) to zero plays an important

role in proving the central limit theorem discussed in Section 3.3.2. This convergence also

implies that
∑

i 6=j γij is negligible relative to
∑N

i=1 MSE(d̂i), as discussed in Section 3.3.3. In

Appendix L.2, we show that

∣∣∣∣∣ 1

N

∑
i 6=j

γij

∣∣∣∣∣ ≤ 1

N
E


(

N∑
i=1

d̃iUi

)2
.

It follows that the convergence of (3.5) to zero implies the convergence of
∑

i 6=j γij/N to zero.

For each of the three data generating processes discussed in Sections 3.5.1 and 3.5.2, we

generate potential outcomes and covariates for 1000 pairs. We then consider each of the first

N = 50, 100, . . . , 1000 of these pairs. For a given N , we generate 1000 treatment assignment

vectors, which we use to estimate (3.5) for both random forest and OLS imputation. For

more details on the simulation procedure, see Appendix L.2.

In Figure 3.1, we plot the estimated values of (3.5) against the sample size N (both on

a log base 10 scale). For each of the data generating procedures (and for both imputation

methods), we can see that the estimated values of (3.5) shrink to zero as N increases.

For the non-linear data generating process, this decrease occurs more slowly when using

random forest imputation. Note that (3.5) contains terms relating to both the variances

and covariances of the d̃iUi. With this particular data generating process, the variance of d̃i

shrinks more slowly with random forest imputation. For a further discussion, see Appendix

6.
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Figure 3.1: We plot the estimated values of quantity (3.5) (i.e., E{(
∑N

i=1 d̃iUi)
2}/N) against the

sample size N . Both values are plotted on a log base 10 scale. The top two charts show the
estimates of (3.5) corresponding to the data generating procedures in Section 3.5.1. The bottom
chart shows the estimates corresponding to Section 3.5.2. The values of (3.5) are estimated for
both random forest imputation (solid line) and OLS imputation (dashed line).
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3.6 Cognitive Tutor Impact Study

We apply our method to estimate the effect of an intervention in a randomized trial

involving schools in Texas. This trial (discussed in Pane et al. (2014)) tested the effectiveness

of a computer program, the Cognitive Tutor Algebra 1 curriculum, and included 22 pairs of

schools. The outcome of interest is the passing rate of the schools on the math section of the

Texas Assessment of Knowledge and Skills (TAKS) in 2008. Available covariates included

the school type (middle or high school) and a pretest score, the passing rate from 2007. We

estimate the average treatment effect using either just the pretest score or both the pretest

score and school type as covariates. In Table 3.3, we compare the performance of P-LOOP

with the simple difference estimator and the estimators discussed in Fogarty (2018). We use

random forests and linear regression as imputation methods in the P-LOOP estimator. As

in the case of the simulations, we show the results imputing potential differences (accounting

for pairs), imputing potential outcomes separately (ignoring the pair assignments), and the

interpolation between the two. Note that P-LOOP imputing potential differences with OLS

most closely matches the Regression 2 method, as both methods account for pairing and use

the differences and averages of the covariates for making adjustments.

Both P-LOOP and the methods of Fogarty (2018) have smaller nominal variance than

the unadjusted estimator. Regression 1 has lower variance than Regression 2 when the

pretest score is the only covariate, but Regression 2 has lower variance when the school type

is included. Both regression methods always account for the pair assignments. For the P-

LOOP estimator, we see that it is better to impute the potential outcomes separately, and

that the interpolation method imputes values closer to the potential outcomes imputation.

With the interpolation method, we do not lose out on the precision gains from ignoring the

pairs in our imputation, but we are still protected against a potential Simpson’s paradox.
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Table 3.3: Comparison of Methods

Pretest Pretest and school type

Method Point est Nominal var Point est Nominal var

Simple Difference -6.82 9.82 -6.82 9.82

P-LOOP RF (differences) -4.41 7.06 -5.62 7.86

P-LOOP RF (outcomes) -2.82 5.72 -4.94 5.60

P-LOOP RF (interpolated) -3.53 6.39 -5.10 5.75

P-LOOP OLS (differences) -2.79 6.56 -2.17 4.38

P-LOOP OLS (outcomes) -2.04 5.66 -1.81 4.13

P-LOOP OLS (interpolated) -2.08 5.85 -2.06 4.00

Regression 1 -2.61 6.18 -2.61 6.18

Regression 2 -2.60 6.56 -2.27 4.57

Note. Point est and nominal var refer to the point estimates and nominal variances for each method.

3.7 Discussion

In paired experiments, the design of the experiment helps to enforce covariate balance

between the treatment and control groups. While this design is often effective, it can be

useful to make covariate adjustments to further improve precision. Covariate adjustments

in paired experiments share many of the issues in completely randomized experiments; for

example, it can be unclear ahead of time which covariates to use. A unique issue to paired

experiments is the pair inclusion trade-off, so we must take particular care when making

adjustments in paired experiments. Failing to account for the pair assignments can harm

performance (for example, when a Simpson’s paradox occurs), while including the paired

structure when the pair assignments are not predictive can needlessly inflate variance.

We present a design-based method for paired experiments, the P-LOOP estimator. This

estimator is guaranteed to be unbiased by design. Nonetheless, the pair-inclusion trade-off is
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still relevant because it affects the variance of the estimator. To the best of our knowledge,

this method is the first to directly address the pair inclusion trade-off. Generally, other meth-

ods account for the pairing, which protects against Simpson’s paradox and other situations

where the within pair trends differ from the overall trend. However, our method imputes

two sets of potential outcomes, one excluding and one including the pair assignments, and

automatically interpolates between the two. As we see in the Texas Schools data, this al-

lows for improved precision. The P-LOOP estimator is also the first method specifically for

paired experiments that involves sample splitting and the use of machine learning methods

to impute potential outcomes, building on the flexible approaches used in completely ran-

domized experiments. This flexibility can be beneficial in several ways, such as allowing

for automatic variable selection or high dimensional covariates. However, the leave-one-out

approach can also be computationally intensive. If computation time is an issue, one can

modify the procedure to leave out multiple pairs instead of single pairs at a time.

70



CHAPTER IV

Integrating Experimental and Observational Data

4.1 Introduction

A well known advantage of randomized experiments is that they do not suffer from

confounding bias. They also allow for design-based inference; that is, the act of randomiza-

tion largely justifies the statistical assumptions made. Design-based estimators are typically

unbiased and their associated inference (e.g., their standard errors) come with guarantees

regarding accuracy, while relying only on randomization as the basis for inference. Exam-

ples of design-based methods include Schochet (2015) and Rosenbaum (2002), as well as

the estimator introduced in Chapter II. However, sample sizes in randomized experiments

may be limited by practical considerations and are often small, which can limit precision

of treatment effect estimates. Conversely, observational studies typically offer much larger

sample sizes at lower costs, but without the statistical guarantees from randomization. For

example, the analysis of observational data often requires untestable assumptions, such as

the assumption of no unmeasured confounding variables.

Prior literature has explored the possibility of improving precision in randomized experi-

ment by pooling the controls from the experiment with historical controls from observational

data sets or from similar experiments. This literature dates back to at least Pocock (1976);

see Viele et al. (2014) and Lim et al. (2018) for more recent discussions. While much of this

work uses a Bayesian framework, frequentist approaches exist as well (Yuan et al., 2019).
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To the best of our knowledge, none of these methods are design-based or unbiased, and in

many cases, the bias can be arbitrary large depending on the choice of historical controls.

There have also been attempts to use observational data to improve the generalization of

a randomized experiment to a larger population when estimating the population average

treatment effect (for example, see Hartman et al. (2015), Kallus et al. (2018), and Rosenman

et al. (2018)).

In this chapter, we again focus on estimating the average treatment effect within the

experimental sample. However, our goal now is to use external data sets to improve precision

of the treatment effect estimate within a target randomized experiment. We introduce a

flexible method that allows researchers to employ machine learning algorithms to learn from

the observational data, and use the resulting models to improve precision in randomized

experiments. Importantly, there is no requirement that the machine learning models are

“correct” in any sense. The final experimental results rely only on randomization as the

basis for inference and are guaranteed to be exactly unbiased. Thus, there is no danger of

confounding biases in the observational data leaking over into the experiment.

This chapter is organized as follows. In Section 4.2 we review notation and present

background for covariate adjustment using external data sets. Section 4.3 presents the

method. In Section 4.4, we discuss the asymptotic behavior of the estimator. In Section 4.5,

we apply the method to simulated data. Section 4.6 concludes.

4.2 Background and Notation

In this chapter, we adopt the notation and setting of Chapter II. Consider a randomized

experiment with N participants, indexed by i = 1, . . . , N . Associated with each participant

are two potential outcomes ti and ci, which are the outcomes we would observe for each

observation if they were assigned to treatment and control respectively. Each participant is

randomly and independently assigned to treatment with probability pi, and we observe each

participant’s outcome Yi, their treatment assignment indicator Ti, and set of covariates Zi.
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Let T and C be the sets of indices for the treated and control units respectively, and let n

be the number of treated observations. Our primary parameter of interest is the average

treatment effect

τ =
1

N

N∑
i=1

(ti − ci).

4.2.1 Randomized Controlled Trials and the Remnant

Our goal is to use an external data set to improve precision within a randomized ex-

periment. We will refer to two different data sets: a randomized controlled trial (RCT)

and the “remnant.” The RCT (or randomized experiment) will be the primary data set of

interest. We are interested in estimating the average treatment effect (sometimes referred

to as the “sample average treatment effect” or SATE in other literature) within the RCT.

The remnant (or external data) will refer to any data outside of the RCT that we will use

to make adjustments to the treatment effect estimate within the RCT.

As an example, consider the ASSISTments TestBed (see Heffernan and Heffernan (2014)

and Ostrow et al. (2016)). ASSISTments is a computer-based learning platform used by

over 50,000 students throughout the United States each year. The TestBed is a program

designed for conducting randomized experiments within ASSISTments, and has been made

accessible to third-party researchers. These researchers can propose experiments to be run;

for example, a researcher may wish to compare video- and text-based instructional feedback.

Students working on a specific assignment are individually randomized between the two

conditions, and the researcher can then compare the impact of the two conditions on an

outcome variable of interest such as homework completion. In this case, the trial of interest

will be the RCT. However, a given RCT is like to involve relatively few students. By contrast,

the ASSISTments database includes data for hundreds of thousands of users who were not

involved in the target RCT. Many of these users may have completed similar assignments

(or the same homework assignment at a time period prior to when the RCT was run). These

students who were not participants in the target RCT constitute the remnant for the RCT.
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4.2.2 Design-Based Covariate Adjustment Using the Remnant

Although we may wish to use the remnant to improve precision when estimating the

average treatment effect in the RCT, care must be taken to avoid invalidating the benefits of

randomization. For example, simply pooling the data from the remnant and the RCT would

undermine the randomization. However, it is possible to make adjustments using the remnant

while remaining design-based. One approach is to use “remnant-based residualization” or

rebar, which was first developed for matching-based observational studies (Sales et al., 2018b)

and then applied to randomized experiments with auxiliary observational data (Sales et al.,

2018a).

Using the remnant, one could construct a model fext to predict outcomes from covariates,

which could be applied to the experimental data set to get externally imputed predictions

Zr
i = fext(Zi). So long as these predictions are constructed without using the treatment

assignment, Zr
i will function as a pretreatment covariate (i.e., its value does not depend on

the treatment assignment). Next define residuals Ri = Yi − Zr
i . Each observation has two

residualized potential outcomes, ti − Zr
i and ci − Zr

i , and a residualized observed outcome

Ri. The externally imputed outcome Zr
i is independent of the treatment assignment and

the difference between the residualized potential outcomes is still the individual treatment

effect ti − ci. We can therefore replace Yi with Ri in any unbiased estimate for the average

treatment effect and still obtain an unbiased estimate. For example, one might estimate the

ATE as the simple difference between the treatment groups

τ̂Rebar =
1

n

∑
i∈T

Ri −
1

N − n
∑
i∈C

Ri.

This is an unbiased estimate of the average treatment effect. In addition, if the model fext

predicts the outcomes within the randomized experiment well, then the rebar estimator will

improve precision over the simple difference estimator. However, if the remnant generalizes

poorly to the randomized experiment and fext performs poorly in the RCT, then rebar could
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hurt performance.

4.3 Method

In this section, we present a method that allows us to make covariate adjustments using

the remnant while remaining design-based and also solving the primary issue with rebar

(i.e., that it can hurt precision). We first present an approach that only uses the remnant

to make adjustments, then discuss ways to augment this method with information from the

within RCT covariates.

Recall from Chapter II the following estimate for the average treatment effect:

τ̂ =
1

N

N∑
i=1

{
1

pi
(Y − m̂i)Ti −

1

1− pi
(Y − m̂i)(1− Ti)

}
, (4.1)

where m̂i is an estimate for the quantity mi = (1− pi)ti + pici.

So long as m̂i is independent of Ti, τ̂ will be unbiased. We define the LOOP estimator as

τ̂ , where m̂i is calculated using a leave-one-out procedure. This procedure ensures that m̂i

and Ti are independent. For each observation i, we omit that observation and fit a prediction

algorithm to the remaining observations. We then impute ti and ci by plugging Zi into the

fitted model. For example, we could fit a random forest to the observations in T \i, then

plug Zi into the fitted model to get t̂i, and use a similar procedure to calculate ĉi. We then

set m̂i = (1− pi)t̂i + piĉi and plug into equation (4.1). We can use any prediction algorithm

to impute the potential outcomes for observation i so long as we exclude that observation

when fitting the model.

4.3.1 Design-Based Adjustments Using the Remnant

One way to incorporate the external predictions Zr
i is to run the LOOP estimator on

the RCT data using only Zr
i as a covariate and using linear regression as the imputation
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method. More specifically, we have

t̂i = α̂ti + β̂tiZ
r
i

where the regression coefficients are obtained by the OLS regression of Y onto Z for the

observations in T \i. Similarly define

ĉi = α̂ci + β̂ciZ
r
i .

We refer to this approach as ReLOOP or “remnant-based LOOP.”

One advantage of ReLOOP over rebar is that for each observation i, we can use the

remaining N − 1 observations to help determine the best use of Zr
i for calculating m̂i. For

example, if the external predictions are highly accurate imputations of control outcome

within the RCT, we might expect that α̂ci ≈ 0 and β̂ci ≈ 1, and thus ĉi ≈ Zr
i . However,

in the case where the external predictions are noise, then we would expect α̂ci ≈ Ȳ c
−i and

β̂ci ≈ 0, where Ȳ c
−i is the average of outcome of the observations in C\i. Then we would have

ĉi ≈ Ȳ c
−i (i.e., mean imputation), and the LOOP estimator would be approximately equal

to the simple difference estimator. In other words, when the external predictions are not

predictive of outcome, the LOOP procedure reverts to mean imputation and performance

is not harmed relative to the simple difference estimator. In fact, if we constrained β̂ci and

β̂ti to be 0, then ReLOOP would be equivalent to the simple difference estimator. If we

instead constrained β̂ci and β̂ti to be 1, then ReLOOP would be equal to rebar. In ReLOOP,

we use the RCT data to estimate the coefficients, and therefore are typically able to make

more effective use of the external predictions. Because the fitted coefficients can still be

approximately equal to 0 or 1, we would also generally expect ReLOOP to perform no worse

than the simple difference estimator or rebar.

Another advantage of ReLOOP is that the external predictions do necessarily need to

accurately impute the potential outcomes. Because the external predictions are used as a
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covariate within LOOP, it suffices for Zr to predictive of the outcome within the RCT. Even

if the RCT is systematically different from the remnant (for example, if the outcomes in the

RCT differ in scale from those in the remnant), the external predictions will still be useful

if they are correlated with the experimental outcomes. As an extreme example, if Zr is

anticorrelated with the experimental outcomes, then ReLOOP will improve precision over

the simple difference estimator.

4.3.2 Design-Based Adjustments Using the Remnant and RCT Covariates

ReLOOP generally accomplishes our goals: it uses the remnant to make covariate adjust-

ments, while remaining design-based and protecting against harm. However, it fails to make

full use of the covariates within the RCT itself. The covariates Zi are only used to impute

potential outcomes to the extent to which they are included in Zr
i = fext(Zi). However, if

the remnant generalizes poorly to the RCT, then Zr
i may not be predictive of the outcome

in the RCT even if the covariates themselves are. Even if Zr
i improves precision in the RCT,

we may be able to further improve performance by adjusting for the RCT covariates as well.

In this section, we consider strategies for incorporating the RCT covariates into ReLOOP.

We first augment Zi with Zr
i , i.e.,

Z̃i = (Zi1, . . . , Zip, Z
r
i ),

and consider strategies to use Z̃i. One simple approach is to run LOOP on the RCT data,

and replacing Zi with Z̃i. We refer to this approach as “ReLOOP+.” The hope would be

that the prediction algorithm chosen could make use of Zr
i , while also performing covariate

adjustment within the RCT itself. Recall that we can use any prediction algorithm for

imputing the potential outcomes. We use random forests as suggested in Chapter [LOOP],

and will refer to ReLOOP+ with random forest imputations as “ReLOOP+RF.”

ReLOOP+ makes use of both the within RCT covariates and the external predictions.
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While Zr
i is a function of Zi, the external prediction model fext is fit on the remnant rather

than on the remaining RCT observations. If the remnant extrapolates poorly to the RCT,

then Zr may not be predictive of the outcome. If the external predictions are complete

noise, we would generally expect ReLOOP+ to perform similarly to the standard LOOP

estimator, as augmenting Zi with Zr
i only removes one degree of freedom. However, because

the remnant is often much larger than the RCT, it may be possible that fext provides a more

accurate imputation than a model fit to the RCT covariates alone. In such cases, including

the external predictions could improve precision.

In cases where Zr is a strong predictor of the outcome, we may wish to essentially pass

through the external predictions directly to equation (4.1), as is done in ReLOOP. Using Zr

in a nonparametric method such as a random forest may be inefficient relative to OLS. Even

if we were to use OLS as the imputation method in ReLOOP+, the inclusion of the within

RCT covariates could harm performance.

It may not always be clear ahead of time whether ReLOOP or ReLOOP+ will perform

better; it depends on how predictive the covariates are within the RCT and the extent to

which the remnant generalizes to the RCT. To address this issue, we use an ensemble of the

two methods in a manner similar to Chapter [P-LOOP]. We impute two sets of potential

outcomes: we obtain ĉLSi and t̂LSi using the ReLOOP approach, and ĉRF
i and t̂RF

i using

ReLOOP+RF. We then interpolate between the two sets of potential outcomes. For each i,

define

ĉENi = γci ĉ
LS
i + (1− γci )ĉRF

i ,

where γci is obtained by minimizing the mean squared error between the observed outcomes

and the interpolated potential outcomes for the set C\i. That is, we have

γci = argmin
x∈[0,1]

∑
k∈C\i

{
Yk −

(
xĉLSi + (1− x)ĉRF

i

)}2
.

We define γti and t̂ENi analogously. We refer to this ensemble approach as “ReLOOP+EN.”
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ReLOOP+EN allows us to combine the strengths of both ReLOOP and ReLOOP+RF. As

we will see in Section 4.5, ReLOOP+EN effectively tracks the better performing method

of ReLOOP and ReLOOP+RF. The result is a design-based covariate adjustment method

that makes adjustments for both the external predictions and the RCT covariates, while

protecting against harm relative to the unadjusted estimator.

4.4 Asymptotic Normality of ReLOOP

In Chapter II, we provide both a point estimate and a standard error estimate for the

LOOP estimator. However, researchers may often be interested in constructing confidence

intervals for the average treatment effect. In this section, we show that the LOOP estimator

is asymptotically normally distributed under certain regularity conditions. It follows that

we can construct approximate confidence intervals for the average treatment effect using a

normal approximation. We first discuss the asymptotic normality of the LOOP estimator

generally by adapting the proof given for paired experiments in Chapter III. We then show

that LOOP with simple linear regression (and therefore ReLOOP) converges to a normal

distribution.

Let {(ci, ti, Zi), i = 1, 2, . . . } be an infinite sequence of experimental observations. As

before, the potential outcomes and covariates for all pairs are fixed quantities. We observe

the first N units in the sequence, and we will consider the behavior of (4.1) as N increases.

For a given sample size N , let m̂
(N)
i be the estimate for mi as calculated using the remaining

N − 1 observations in the sample and define the quantities m
(N)
0i = E(m̂

(N)
i ) and m̃

(N)
i =

m̂
(N)
i −m(N)

0i . For simplicity, we will often suppress the superscript (N) within an equation.

In order for the LOOP estimator to converge to a normal distribution, we need the data

and the imputation method to be sufficient well-behaved. In Chapter III, we present con-

ditions (along with the intuition and reasoning for these conditions) that are sufficient for

the estimator to be asymptotically normally distributed in paired experiments. The same

reasoning holds for the LOOP estimator. In short, these assumptions say that our impu-
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tations converge as the sample size increases and that no single observation dominates the

remaining observations asymptotically. More specifically, suppose the following conditions

hold:

1. There exists some 0 < C <∞ and q > 0 such that for all i,

Var(m̃i) = Var(m̂i) ≤ C/N q.

2. Let ρij be the correlation of m̃iUi and m̃jUj, and ρ̄ =
∑

i 6=j ρij

N(N−1) . We assume that

N1−qρ̄ −→ 0.

3. For each observation i, we assume that the limit of m
(N)
0i exists and denote the limit

as m∞i. We also assume

1

N

N∑
i=1

(
m

(N)
0i −m∞i

)2
−→ 0.

4. There exists 0 < K <∞ such that

∑N
i=1(mi −m∞i)2

N
−→ K,

and

max
i=1,...,N

(mi −m∞i)2∑N
k=1(mk −m∞k)2

−→ 0.

These conditions are sufficient for the LOOP estimator to be asymptotically normally dis-

tributed.

Proposition 1. Let VN =
∑N

i=1
(mi−m∞i)

2

pi(1−pi) . Assume conditions (1) through (4) hold. In

addition, suppose there exists 0 < ε < 0.5 such that ε < pi < 1 − ε for all i. Then the

quantity N(τ̂ − τ)/
√
VN converges in distribution to a standard normal random variable.
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See Appendix M for a proof.

Assumptions (1) through (4) describe the behavior of the imputation method and data.

We generally do not prove that they hold for a specific imputation method; however, we

do prove that the assumptions hold in the case of simple linear regression. Consider the

case where t̂i,slr is obtained by regressing the outcomes Y onto a single covariate Z for the

observations in T \i. Similarly, ĉi,slr is obtained using leave-one-out regression for the control

units. Define m̂i,slr = (1− pi)t̂i,slr + piĉi,slr.

Proposition 2. Let ρt be the limiting correlation between t and Z, and ρc be the limiting

correlation between c and Z. Suppose the following conditions hold:

1. pi = p for all i

2. ti, ci, and Zi are bounded

3. The quantities 1
N

∑N
i=1 ci,

1
N

∑N
i=1 c

2
i ,

1
N

∑N
i=1 ti,

1
N

∑N
i=1 t

2
i ,

1
N

∑N
i=1 Zi, and 1

N

∑N
i=1 Z

2
i

converge

4. −1 < ρt < 1 and −1 < ρc < 1

Then conditions (1) through (4) hold for m̂i,slr.

See Appendix N for a proof. Because ReLOOP is LOOP with a single covariate Zr
i , it

follows that ReLOOP is also asymptotically normally distributed.

4.5 Simulations

We examine the performance of ReLOOP and ReLOOP+ using various sets of simu-

lations. We first investigate the effects of varying sample size, the predictive power of the

covariates Z, and the predictive power of the remnant-based predictions Zr. We also consider

a simulation in which we vary the extent to which the remnant extrapolates to a randomized

experiment.
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4.5.1 Simulation 1

We generate our data using a model that is parameterized in such a way that we are

able to independently vary these three quantities (sample size, the predictive power of the

covariates, and the the predictive power of the remnant predictions).

We simulate a randomized experiment in which there are N subjects. For each subject i

there are two covariates, Zi1 and Zi2, which are independent and Unif(0, 10). The potential

outcomes are generated from the following linear model:

ai = 2Zi1 + Zi2 + δi

ci =
ai
σa

ti = ci + 3

where δi ∼ N(0, σ2) and σ2
a ≡ Var(ai) = 500

12
+ σ2. By generating our potential outcomes

as above, we have defined our generative model so that the potential outcomes have unit

pooled variance. We can alternatively write the observed outcome as:

Yi = 3Ti +
2

σa
Zi,1 +

1

σa
Zi,2 + εi

where εi ∼ N(0, σ2/σ2
a).

For each observation, we also simulate remnant predictions Zr
i by taking the true ci and

adding a normally distributed noise term with mean 0 and variance σ2
rem.

Again, our goal is to investigate variations in sample size, the predictive power of the

covariates, and the predictive power of the remnant predictions. Sample size is directly

indexed by N . We can index the predictive power of the covariates with

R2
cov = 1− σ2

σ2
a

.
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Similarly, the predictive power of the remnant prediction Zr
i is

R2
rem = 1− σ2

rem

Var(Zr
i )

= 1− σ2
rem

1 + σ2
rem

.

Thus, given a desired R2
cov and R2

rem, the corresponding values of σ2 and σ2
rem are:

σ2 =
1−R2

cov

R2
cov

× 500

12

σ2
rem =

1−R2
rem

R2
rem

.

We perform three sets of simulations. In each, we vary one of the quantities N , R2
cov, or

R2
rem while holding the other two fixed. For each set of simulations, we compare the following

methods:

1. Simple difference estimator

2. LOOP: Includes only the covariates Z1 and Z2. Uses a random forest as the imputation

method.

3. ReLOOP: Uses only the remnant predictions Zr. Uses OLS as the imputation method.

4. ReLOOP+RF: Uses Z1 and Z2 and the remnant predictions Zr as covariates. Uses a

random forest as the imputation method.

5. ReLOOP+EN: Interpolates between the previous two methods.

We use the following simulation procedure. For a given set of N , R2
cov, and R2

rem, we perform

k = 1000 trials. For each trial, we generate a set of covariates, potential outcomes, a

treatment assignment vector, and remnant predictions as described above. We then produce

an estimate of the variance of each method. Next, we average the estimated variance across

the k trials. Finally, we plot the average variance for each of the adjustment methods relative

to the variance of the simple difference estimator. That is, for each method (2) – (5) we plot

(average variance of method) / (average variance of simple difference estimator).
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Varying Sample Size For these simulations, we hold the predictive power of the covariates

and remnant predictions constant and vary the sample size. We consider four scenarios: (1)

R2
rem = 0.25, R2

cov = 0.25; (2) R2
rem = 0.75, R2

cov = 0.25; (3) R2
rem = 0.25, R2

cov = 0.75;

and (4) R2
rem = 0.75, R2

cov = 0.75. In each scenario the sample sizes considered are N =

30, 40, 50, 75, 100, 150, 200. Results are in Figure 4.1.

We first note that all methods perform better than the simple difference estimator (the

relative variances are all less than 1), suggesting that adjustment is typically helpful. In

addition, we observe that both variants of ReLOOP+ typically outperform ordinary LOOP,

indicating that incorporating the remnant predictions is typically beneficial. The exception

is when the covariates are highly informative but the remnant predictions are not (R2
rem =

0.25, R2
cov = 0.75, lower left panel) and the sample size is small, in which case ReLOOP+RF

performs slightly worse than ordinary LOOP.

We also observe that ReLOOP+EN does well at tracking its better performing component

(ReLOOP or LOOP+RF). It performs reasonably well at small sample sizes, and quickly

converges to near optimal at larger sample sizes. In some cases ReLOOP+EN performs

better than either component individually.

Varying Predictive Power of Remnant Prediction In these simulations, we hold the

predictive power of the covariates and sample size constant and vary R2
rem. We again consider

four scenarios, with N fixed at either 30 or 60, and R2
cov fixed at either 0.25 or 0.75. The

values of R2
rem considered are R2

rem = 0.05, 0.15, ..., 0.85, 0.95. Results are in Figure 4.2.

Once again, we observe that ReLOOP+EN tends to perform at least as well as either of its

two components. This is particularly true for N = 60, where ReLOOP+EN closely follows

(or drops below) the lower of the component lines. As expected, the three methods that

incorporate the remnant predictions all improve as R2
rem increases, while the performance of

LOOP stays constant. We see that ReLOOP+EN is notably outperformed by LOOP only

when R2
rem is lower than R2

cov and the sample size is small.
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Figure 4.1: Varying sample size.

Varying Predictive Power of Covariates For this simulation, we hold the predictive

power of the remnant predictions and sample size constant and varyR2
cov = 0.05, 0.15, ..., 0.85, 0.95.

We consider four scenarios: (1) N = 30, R2
rem = 0.25; (2) N = 30, R2

rem = 0.75; (3)

N = 60, R2
rem = 0.25; and (4) N = 60, R2

rem = 0.75. Results are in Figure 4.3.
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Figure 4.2: Varying R2
rem

Here the performance of ReLOOP stays constant, as it makes use only of the remnant

predictions, not the covariates. The remaining methods all improve as R2
cov increases. As

before, we can see that ReLOOP+EN tracks its better performing component reasonably

well, especially when N = 60.
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Figure 4.3: Varying R2
cov

4.5.2 Simulation 2

We next consider an example where we simulate both an RCT and a remnant, while

varying the extent to which the remnant extrapolates to the RCT. We first simulate a ran-

domized experiment with N = 30 observations and p = 10 covariates. For each observation,
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we generate a vector of covariates Zi = (Zi,1, . . . , Zi,10), where Zi,j are independent and

Unif(0, 5). The potential outcomes are generated as

ci = β1Zi,1 + β2Zi,2 + β3Zi,3 + εi

ti = ci + 3

where (β1, β2, β3) = (1.5, 1,−0.5) and εi are independent and normally distributed with mean

0 and standard deviation 3. We also simulate a remnant with N = 500 observations. The

observations in the remnant are generated from the same distribution as the control potential

outcomes in the randomized experiment; however, we also add noise to the coefficients.

That is, we set βj,rem = βj + δj where δj
iid∼ N(0, σ2

coef ) for j = 1, 2, 3. We next generate a

vector of covariates Vi = (Vi,1, . . . , Vi,10) for each observation, where Vi,j are independent and

Unif(0, 5). Then each observation in the remnant is generated as

Ui = β1,remVi,1 + β2,remVi,2 + β3,remVi,3 + εi,rem

where εi,rem are independent and normally distributed with mean 0 and standard deviation

3. To obtain the remnant predictions Zr, we regress U onto V .

We perform a set of simulations in which we vary σcoef = 0.25, 0.5, . . . , 3.75, 4. We use the

same procedure as outlined in Section 4.5.2. For each value of σcoef we perform k = 10, 000

trials, and compare the performance of the simple difference estimator, LOOP, ReLOOP,

ReLOOP+RF, and ReLOOP+EN. We plot the variance of each method relative to the

variance of the simple difference estimator in Figure 4.4.

The ReLOOP methods perform well when the remnant extrapolates well to the random-

ized experiment (i.e., σcoef is low). As σcoef increases, the variance of the ReLOOP methods

increase and ReLOOP is eventually outperformed by LOOP. However, even for σcoef = 4,

ReLOOP+RF and ReLOOP+EN both outperform the standard LOOP estimator, indicating

there is some value gained from incorporating the remnant.
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Figure 4.4: Varying σcoef

4.6 Discussion

In this chapter, we have presented a method that seeks to combine the strengths of ran-

domized experiments and observational studies. Randomized experiments allow for unbiased

estimation of treatment effects with minimal assumptions. However, precision may be lim-

ited due to sample size constraints. On the other hand, observational studies may have large

sample sizes, but suffer from confounding bias and require an analyst to make untestable

modeling assumptions. ReLOOP also allows us to make covariate adjustments to a random-

ized experiment using an observational data set, while remaining design-based. The method

is unbiased and will generally not harm precision relative to the simple difference estimator.

In cases where the observational data set extrapolates well to the randomized experiments,
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we can improve precision considerably.

In some cases, the external data set may not be helpful or may be less helpful than the

RCT covariates alone. We also propose a method, ReLOOP+, that makes adjustments using

both the observational data set and the RCT covariates. However, it is not necessarily clear

ahead of time whether ReLOOP or ReLOOP+ will perform better. We therefore propose

an ensemble method that interpolates between the two methods. In Section 4.5, we observe

that this ensemble method does well at tracking the better performing method. We also see

that both ReLOOP and ReLOOP+ generally perform at least as well as the simple difference

estimator even when the covariates and the external predictions are both noise.
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CHAPTER V

A Tournament Classifier

5.1 Introduction

High-dimensional data sets are increasingly common in many fields; however, the anal-

ysis of these data sets presents unique challenges. For example, many standard statistical

methods assume or require that the sample size n exceeds the number of variables p. The

number of parameters to be estimated within a model generally increases as the dimension

of a data set grows, causing some methods to fail entirely. For example, it is well known

that the ordinary least squares solution is not identifiable when p > n. Similarly, when using

linear discriminant analysis (LDA) with high-dimensional data, new estimation techniques

are required because the sample covariance matrix is non-invertible.

Many solutions have been proposed to address these challenges. Some methods, such as

support vector machines (Hearst et al., 1998), are well suited for high dimensional data. We

can also use dimension reduction or feature selection techniques (e.g., Guyon and Elisseeff

(2003)) to turn a high dimensional problem into a low dimensional one. In other cases, we

may modify existing techniques for low dimensional data, often by putting restrictions on the

fitted model. For example, we can add a penalty term to linear or logistic regression to shrink

coefficients towards zero (see Tibshirani (1996), Zou and Hastie (2005), Hastie et al. (2009)).

Linear discriminant analysis can be modified by adding a penalty (Witten and Tibshirani,

2011) or by putting restrictions on the covariance matrix, such as the “independence” rule
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(e.g., Bickel et al. (2004)).

Even in cases where we can fit a model, there may be issues with performance in high-

dimensional settings due to overfitting. For example, an increasing number of features does

not necessarily translate to an increase in the number of variables with a true relationship

to the outcome. In many high-dimensional data sets, the true signal is sparse, and only

a few of the features have a true relationship with the outcome. However, classifiers may

overfit to chance variation in null features, resulting in worse accuracy when generalizing to

new data. Some of the approaches outlined above either explicitly or implicitly assume that

the signal from the predictors is sparse. For example, the lasso shrinks many coefficients to

zero and is therefore well suited to situations where the signal is sparse. Sparse extensions

also exist for both logistic regression (e.g., Shevade and Keerthi (2003) and Abramovich and

Grinshtein (2018)) and linear discriminant analysis (e.g., Guo et al. (2007), Trendafilov and

Jolliffe (2007), Shao et al. (2011), and Witten and Tibshirani (2011)).

In this chapter, we propose a framework for classification to address these concerns.

We group the predictors and perform a “tournament”: in each round of the tournament,

we combine each group of predictors into a single predictor. We then group the combined

predictors, perform another round of the tournament, and continue until we’ve combined

all of the predictors into a single predictor. This competition results in a sort of variable

selection: strong predictors are more likely to make it through the tournament, and spurious

predictors are more likely to get weeded out. We also propose a specific approach within this

framework. We use leave-one-out LDA models within the tournament, and shrink coefficients

for weakly predictive variables to zero to promote sparsity. Methods that produce sparse

coefficient or discriminant vectors can improve accuracy by reducing the amount of overfitting

to null features. However, it may still be possible to overfit to the remaining predictors, which

we address using the leave-one-out procedure. Our method is most similar to the sparse LDA

methods, as we also use LDA to obtain a sparse classifier in a high-dimensional setting.

One advantage of this method is its flexibility. Although we propose a specific algorithm
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for performing the tournament, the approach for comparing predictors can be readily gener-

alized. Our proposed algorithm constructs a linear classifier, where we shrink coefficients for

weakly predictive variables towards zero. However, we may wish to modify the method to

obtain a non-linear classifier or for data sets where the signal is not sparse. The framework

can also be used to take a feature selection or dimension reduction approach, or to adjust

the dependence structure between variables.

This chapter is organized as follows. In Section 5.2, we provide a motivating example.

Section 5.3 introduces the method. In Section 5.4, we apply the method to high-dimensional

microarray data sets. Section 5.5 concludes.

5.2 Motivation

Consider a data set with p predictors Xj ∈ Rn, j = 1, . . . , p and labels Yi ∈ {−1, 1}

for observations i = 1, . . . , n, and let S be the set of observations with class label 1 (i.e.,

{i : Yi = 1}). In this chapter, we will assume that the classes are balanced, but note that

the method should be easily generalizable to cases where there is class imbalance.

We consider a hypothetical high-dimensional microarray data set. For example, the

measured outcome Y could be positive or negative for breast cancer and the predictors X

the measured gene expression levels. To illustrate suppose the values of the predictors come

from a data generated process

(Xi1, . . . , Xip) = Yiβ + εi,

where β is a fixed p-dimensional vector and εi is a multivariate normal random variable

with mean 0 and covariance matrix Σ. In such data sets, often only a few genes will be

differentially expressed between class labels. That is, relatively few entries of β are non-zero

and are thus predictive of the outcome. In addition, the dependence between predictors

may often be small after appropriate preprocessing. Expression for genes sharing the same
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biological pathway may be highly correlated; however, this dependence would be for a small

number of genes in the same pathway, and we would expect most genes to be uncorrelated

(after appropriate preprocessing).

Classification models in such high-dimensional settings can also be particularly suscepti-

ble to overfitting. Although only a few variables may have a relationship with the outcome,

we would expect some number of predictors to have a spurious relationship with the class

label. That is, within the training set, these variables will be predictive of outcome by ran-

dom chance even if there is no true relation. Often they will only have a weak relationship

compared to predictors that have a true relationship with the outcome. However, in cases

where there are many such spurious variables, the combined effect could attenuate the signal

of the truly predictive variables and lower accuracy.

In this chapter, we propose a general algorithm for high-dimensional classification, which

we call the tournament classifier. We then propose a specific approach to address the issues

described in this section. Ideally the fitted model would ignore these spurious predictors;

however, even if the model discards these predictors, it may still overfit to the signal in the

remaining predictors. To deal with spurious predictors, we have all of the variables compete

within a tournament, with the expectation that stronger predictors will make it through

the tournament. However, spurious predictors may still make it through to the end. We

therefore propose regularization that shrinks coefficients for unimportant predictors towards

zero, resulting in a sparse classifier and helping to reduce overfitting. To address overfitting

to the remaining predictors, we propose the use of sample splitting. We allow for dependence

between the predictors; however, we add constraints to prevent overfitting.

5.3 Tournament Classifier

We form groups of predictors and perform what we call a tournament. In each round

of the tournament, the predictors within each group “compete” against each other, and are

combined into a single predictor. For example, we could pair the predictors, then combine
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each pair by taking a linear combination of the predictors within a pair that minimizes some

loss function. In the next round of the tournament, we form groups from the combined

predictors and combine the predictors within each group into a single predictor. The process

continues until all of the predictors have been combined into a single classifier.

The method used to combine the predictors can vary. We present one potential choice

in this section, in which predictors are grouped into pairs. This method for comparing

predictors can be thought of in two equivalent ways.

Perspective 1 The first way to view the comparison method is as a leave-one-out linear

discriminant analysis. In the first round of the tournament, we combine each pair into a

single predictor, resulting in p/2 predictors. For a pair of predictors X1 and X2, we leave out

the i-th observation and for the remaining observations, fit a bivariate LDA model where

the coefficients are constrained to be positive. This yields a linear classifier into which

we can plug in Xi1 and Xi2 to obtain a value Xi,{1,2}. Repeating this procedure for each

observation results in a combined predictor X{1,2} = (X1,{1,2}, . . . Xn,{1,2}). We perform the

same leave-one-out procedure on the remaining predictors to yield a total of p/2 combined

predictors.

This method can be thought of as a relaxation of the independence rule with LDA.

By fitting bivariate LDA models, we allow for pairwise dependence between variables. In

addition, constraining the coefficients to be positive ensures that we preserve the sign of the

marginal effect for each predictor. Thus we allow for some pairwise dependence, but not so

much that the sign of the effect can be reversed by the model. Finally, we also employ a

leave-one-out approach to help reduce overfitting.

Perspective 2 We can also view this comparison method as minimizing the mean squared

error of a linear combination of the transformed predictors. Again, we leave out the i-th

observation. Then for the remaining observations, we transform each predictor such that

the mean of each transformed predictor will be 1 for the observations in S\i, and −1 for
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observations in Sc\i. In addition, for a predictor that predicts the class label Y well, we

would expect the values of the transformed predictor for observations in S\i to be closely

clustered around 1, and the values for observations in Sc\i to be closely clustered around

−1. For predictors that do not predict the class label well, the transformed predictor will

fluctuate more.

We next compare transformed predictors by interpolating between each pair. For a pair

X1 and X2, we select a weight

wi,{1,2} = argmin
x∈[0,1]

∑
k 6=i

{Yk − (xZk1 + (1− x)Zk2)}2

where Zkj is the transformed value of the k-th observation of predictor j. We then set

Zi,{1,2} = wi,{1,2}Zi1 + (1 − wi,{1,2})Zi2, and Z{1,2} = (Z1,{1,2}, Z2,{1,2}, . . . , Zn,{1,2}). Details

on the transformation and the calculation of the weights are given in Appendix O. We

repeat this procedure for all the pairs of predictors and for all observations, resulting in p/2

combined predictors.

Completing the Tournament After completing the first round of the tournament, we

pair the combined predictors and apply the comparison method to these new pairs, resulting

in p/4 predictors. We then continue the tournament until all of the predictors are combined

into a single predictor Zf = Z{1,...,p}. Because each pair of predictors is combined by taking

n linear combinations (one for each left out observation), each term of the final predictor

can be written as a linear combination

Zf
i =

p∑
k=1

aikZik,

where the aik are determined by the weights calculated throughout the tournament.

The completed tournament yields n different linear classifiers, one corresponding to each
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left out observation. We combine these by taking a simple average. That is, we set

ak =
1

n

n∑
i=1

aik

for k = 1, . . . , p. This yields a classifier f(z) = sign(
∑p

k=1 akzk), where z = (z1, . . . , zp) is a

transformed new observation.

The results of the tournament classifier depends in part on the grouping of the predictors.

If we had paired the variables differently, the results would likely end up being different. To

address this issue, we perform the procedure T times, randomly pairing the variables each

time. For each iteration t, we have a classifier ft(z) = sign(
∑p

k=1 ak,tzk). This results in T

different classifiers, which we can use to make predictions (e.g., by majority vote).

5.3.1 Overfitting

In cases where the signal is sparse (i.e., relatively few variables are predictive of outcome),

the method can still give weights to the noise predictors when combining the predictors.

While these weights will generally be small, the accumulation of small errors due to the

large number of predictors can harm performance. We therefore propose a regularization

parameter r0 to shrink the weights towards zero. The goal of this regularization would be

to obtain a sparse coefficient vector and improve the generalization of the classifier to new

data.

Define a value r ∈ [0, 0.5]. For a particular pair of predictors, we select interpolation

weights wi using the leave one out procedure discussed above. We set w′i = 0 for wi < r,

w′i = 1 for wi > 1− r, and w′i = wi otherwise. For example, if we have r = 0.25, any weights

larger than 0.75 would be set to 1. We then interpolate between the two predictors using

w′i instead of wi. This has the effect of zeroing out weaker predictors, and the value of r

determines how weak a predictor must be to be zeroed out. Higher values of r result in more

regularization. In the case where r = 0.5, only one predictor would be kept. When r = 0,
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the regularization parameter would have no effect on the interpolation.

We vary the value of r as the tournament progresses. For example, we might expect

that predictors that make it further into the tournament are more likely to have a true

relationship with the outcome, and thus wish to taper the amount of regularization as the

tournament proceeds. Let r0 be some value between 0 and 0.5. We then set r = r0 for

the first round of the tournament, r = 0 for the last round of the tournament, and linearly

interpolate between the two values for the rounds in between.

While this regularization parameter shrinks the coefficients for unimportant variables

to zero, it is still possible to overfit to the remaining predictors. As described above, we

address this in part by using sample splitting. We also limit the extent to which we model

dependence between predictors, as modeling the dependence without constraints could result

in overfitting as well. We do this by only modeling pairwise dependence and by constraining

the coefficients to be positive. We can think of the regularization described in this section

as an extension of this constraint, as it further limits the potential values of the coefficients

in the model.

5.3.2 Advantages

Flexibility In this section, we have outlined a specific choice for performing the tour-

nament. However, as we noted earlier, one advantage of the tournament classifier is its

flexibility, and we can modify various aspects of the procedure to suit the specific applica-

tion. For example, we could modify the size of the groups, how we process the data, the

method we use to compare the processed predictors (such as changing the loss function),

or how we combine the various classifiers produced by cross validation or permutation. We

could also change our regularization method. In this section, we suggest choosing an initial

regularization value r0, then linearly tapering the regularization towards zero as we con-

tinue the tournament. However, we could also consider a regularization scheme in which the

tapering is non-linear, or choose an entirely different method for regularization.
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The tournament classifier may also be used as a tool for dimension reduction or variable

selection. In the procedure described, we continue the tournament until all of the predictors

have been combined into a single predictor. However, we may instead choose to stop the

tournament early, such as when we have a certain number of combined predictors left. These

predictors could then be passed onto a low dimensional classification algorithm. In the case

where we set r = 0.5 for all rounds of the tournament, each comparison would necessar-

ily choose only one of the predictors. We can also choose to select covariates by running

the entire tournament for some choice of regularization parameter, and then selecting the

covariates with non zero coefficients.

Computational Efficiency Another advantage of the tournament classifier is computa-

tional efficiency. Many of the steps in the algorithm are easily parallelizable. We perform

several iterations of the classifier, and randomly group the predictors each time. These

iterations can all be computed separately. For each iteration, we can also compute the com-

parisons for a given round in parallel. Thus, given enough processors, the entire model can

be fit in the same amount of time it takes to do log2 p pairwise comparisons. In addition,

while the comparisons themselves are done using a leave-one-out procedure, both the pro-

cessing step and the calculation of the leave-one-out weights can be done using vectorized

calculations. In combination, these properties suggest that the tournament classifier model

can be fit quickly.

The tournament classifier is also a good computational fit for use as an imputation

method within the LOOP estimator when the outcome is binary. As discussed in Chapter

II, the LOOP estimator can be computationally intensive due to the leave-one-out procedure.

However, by using random forests, we can take advantage of out-of-bag predictions rather

than fitting a separate random forest for each observation. We can use a similar approach

using the tournament classifier. For each iteration, we randomly leave out a subset of

observations rather than using all of the observations. We then fit the tournament classifier
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model to the remaining observations. This results in a set of models (one for each iteration),

and we would expect each observation to be out of bag in a subset of these models. To

impute the potential outcomes for the i-th observation, we use the subset of models where

that observation was left out.

5.4 Results

In this section, we apply the tournament classifier first to simulated data and then to 22

microarray data sets.

5.4.1 Simulation

We consider a hypothetical data set generated under the setting described in Section 5.2.

Recall that we have n observations generated from the model

(Xi1, . . . , Xip) = Yiβ + εi,

where β is a fixed p-dimensional vector and εi is a multivariate normal random variable with

mean 0 and covariance matrix Σ.

We consider several scenarios. We set Σ = Ip, where Ip is the p-dimensional identity

matrix. We then fix the number of observations and non-null features, and vary the num-

ber of null features. In each scenario, we generate 50 training observations and 100 test

observations, and set β = (6, 3, 2, 0, . . . , 0). That is, the first three coefficients are 6, 3, and

2, and the remaining p − 3 coefficients are all 0. We then vary the sample size, setting

p = 24, 25, . . . , 211. We can therefore observe how the performance of various algorithms

change as the dimension increases in a setting where the signal is sparse.

For each set of parameter values, we generate 100 different sets of data and calculate

the training and test set error for each data set using DLDA (i.e., diagonal LDA or LDA

with the independence rule), lasso, and the tournament classifier. We average the prediction

100



accuracies across the 100 different sets of data to obtain a measure for the performance of

each classification algorithm under each scenario. For DLDA, we select the top k = 3 pre-

dictors as ranked by largest absolute value of marginal t-test statistics. For lasso, we use the

scikit-learn implementation in Python where the penalty term λ is automatically selected

within the LassoCV function. For the tournament classifier, we fit the model using regular-

ization parameters r0 = 0 and 0.5, corresponding to no regularization and high amounts of

regularization.

In Table 5.1, we compare the results for each scenario. The performance of all three

methods is similar when the dimension is low. However, as the number of predictors increases,

the performance of both DLDA and the no regularization version of the tournament classifier

degrade more rapidly. In fact, DLDA and no regularization tournament classifier perform

no better than random guessing when p = 211. For both the high regularization tournament

classifier and lasso, the accuracy drops more slowly. In addition, the high regularization

version of the tournament classifier outperforms the other methods for all sample sizes. We

also do not necessarily select an optimal r0, suggesting that we could improve performance

further by doing so (e.g., by cross validation).

Table 5.1: Simulation Results: Test Set Accuracy by Method

Sample Size DLDA Lasso TC – No Reg TC – High Reg

24 0.693 0.700 0.697 0.712
25 0.680 0.698 0.688 0.704
26 0.651 0.673 0.639 0.699
27 0.633 0.663 0.612 0.684
28 0.601 0.662 0.579 0.679
29 0.552 0.642 0.555 0.670
210 0.537 0.629 0.538 0.663
211 0.514 0.622 0.523 0.658
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5.4.2 Microarray Data

These data sets were obtained from the datamicroarray package in R (available on

GitHub at https://github.com/ramhiser/datamicroarray). The data sets are mostly

cancer related, and have sample sizes ranging from 31 to 248 and dimension ranging from

456 to 54,613.

We compare the performance of the tournament classifier to lasso. As in Section 5.4.1,

we use the scikit-learn implementation of lasso in Python where the penalty term λ

is automatically selected within the LassoCV function. For the tournament classifier, we

consider values of the regularization parameter r0 ranging from 0.05 to 0.45 in increments of

0.05. For each data set, we randomly select a quarter of the observations as the training set

and leave the rest as a test set. We then fit tournament classifier models (one for each level

of r0) and lasso to the training set, and calculate the test and training error for each model.

Because the error rates vary depending on which quarter we randomly select, we repeat this

procedure 20 times for each data set and average the resulting error rates.

We present the results in Figure 5.1. For each data set, we give the test set accuracy for

lasso, along with the minimum, median, and maximum value from the various tournament

classifier regularization parameters. In most cases, lasso and tournament classifier perform

comparably.
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Figure 5.1: Comparison of lasso and tournament classifier for the microarray data sets. Blue dots
represents the test accuracy for lasso. Black dots represent the median test accuracy for tournament
classifier, and the brackets represent the minimum and maximum.

We also present more detailed results for a selection of the data sets. In each of the

plots, the dotted line shows the test accuracy for lasso, and each point represents the test

accuracy for the tournament classifier for a given value of r0. As noted above, lasso and the

tournament classifier perform similarly in most cases. On the left side of Figure 5.2, we see

that tournament classifier performs better than lasso for higher r0 (more regularization), and

this performance declines as we use less regularization. In other cases, lower r0 may result

in worse performance. On the right side of Figure 5.2, performance is slightly worse for low

values of r0.
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Figure 5.2: Comparison of lasso and tournament classifier for Chowdary (2006) and Gravier (2010).
Dotted line shows the test set accuracy for lasso. Circles show the test set accuracy for tournament
classifier.

There are also cases where the performance of the two methods differ considerably. We

present two examples in Figure 5.3.
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Figure 5.3: Comparison of lasso and tournament classifier for Alon (1999) and Singh (2002). Dotted
line shows the test set accuracy for lasso. Circles show the test set accuracy for tournament classifier.
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As noted above, the two methods generally perform comparably across the data sets. To

assess why the performance diverges in some cases (e.g., Singh (2002)), we perform a variety

of analyses. This includes looking at the number of nonzero coefficients selected by lasso,

scree plots, and examining the coefficients of the tournament classifier. However, we observe

no discernible patterns to explain the differences in performance. We present the scree plots

and tournament classifier coefficients in Appendix P.

5.5 Discussion

In this chapter, we introduce a novel framework for high dimensional classification. We

present a specific approach that generally performed comparably to existing methods when

applied to the microarray data sets in Section 5.4. However, the general method itself is

modular, and we can choose to substitute various parts of the method to better suit the

specific application. In this chapter, we present a specific approach that yields a sparse

classifier by shrinking coefficients towards zero. On the other hand, as noted by Pan and

Gagnon-Bartsch (2020), some data sets may contain dense signals resulting from the pres-

ence of latent biological factors. Our method does not explicitly attempt to recover dense

latent signals, and modifying the comparison method could improve performance in situ-

ations where these latent signals are prominent. We propose a tournament that involves

pairing the variables, and combining these pairs to yield a linear classifier. Some additional

modifications would include creating non-linear classifiers and using a different group size

within the tournament. Another natural modification would include extending the method

for the case with multiple classes.
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CHAPTER VI

Discussion

This dissertation has presented several methods for addressing the challenges of analyz-

ing randomized experiments. For example, sample sizes may be limited due to practical

constraints, which in turn could limit the precision of the treatment effect estimate. There

may also be a large number of covariates to choose from. In cases where the number of

covariates exceeds the sample size, traditional covariate adjustment methods can perform

poorly or fail entirely. This issue is exacerbated in cases where the statistical analyses must

be specified in advance. Choosing to adjust using the wrong covariates or making an overly

aggressive adjustment could harm performance relative to the unadjusted estimator. Our

methods address these issues, often by integrating modern machine learning techniques into

the traditional analysis performed under the Neyman-Rubin model. In Chapters II and III,

we present flexible methods for making covariate adjustments in Bernoulli and pair ran-

domized experiments. These methods allow for automatic variable selection, eliminating the

need for guesswork when choosing the covariates ahead of time. They are also design-based

and generally outperform the unadjusted estimator, even if the covariates are not predictive

of outcome.

An important feature of these methods are that they reconcile seemingly different ap-

proaches. For example, while these estimators are design-based, they allow for the use of

models to improve performance, and we do not need to assume that these models are cor-
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rectly specified. Model-assisted estimators have been used in survey sampling dating back

to at least Cassel et al. (1976), and more recently for design-based covariate adjustments in

randomized experiments. This includes the estimator of Aronow and Middleton (2013), of

which the LOOP estimator is a special case. We also combine the strengths of randomized

experiments and observational studies in Chapter IV. Randomized experiments are free from

confounding bias and the randomization allows uncertainty to be easily quantified. However,

as noted above, sample sizes (and therefore precision) may be limited. On the other hand,

observational data sets are often large, potentially allowing for improved precision, but are

not free from confounding variables. We present the ReLOOP method to take advantage

of these complementary strengths. Like LOOP, ReLOOP is design-based and will generally

outperform the unadjusted estimator. We also take advantage of an external data set to

improve precision in the randomized experiment without allowing confounding bias to leak

into our analysis.

There are also a number of logical extensions and future work for the methods presented

in this dissertation. In Chapter III, we build on the LOOP estimator, creating a comparable

method for paired experiments that deals with an issue unique to paired experiments, the pair

inclusion trade-off. A similar issue can occur in blocked experiments, where it can be unclear

the extent to which we should account for the block structure while making adjustments.

While we do discuss a modification to the LOOP procedure for blocked experiments in

Chapter II, this modification does not address this issue. Future work for a block randomized

trial would include a covariate adjustment method that deals with this issue while also

allowing for blocks of varying size. Other logical extensions include methods for other study

designs (e.g., cluster randomization) and for studies with multiple treatments.

While ReLOOP works within the LOOP framework to make covariate adjustments using

auxiliary data, further work may also be required to extend ReLOOP to other study designs.

For example, suppose we wish to incorporate external predictions in block or pair randomized

experiments. One potential challenge in such work would be using a remnant which does
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not share the blocked structure of the randomized experiment. There are also other areas

for further exploration for ReLOOP. In Chapter IV, we generally assume that the external

predictions Zr have already been constructed rather than discussing methods for fitting

the external prediction model fext. For example, we can exploit similarities and differences

between the target RCT and the remnant in order to improve the performance of the external

prediction model. Sales et al. (2018a) suggest an approach in rebar where the remnant is

split into a group of participants that is similar to the RCT participants and a group that

is not. We can then use these two groups to gauge the sensitivity of the external prediction

model to extrapolation. Other exploration include tailoring fext for the specific application,

using the observational data set to improve subgroup analyses, and dealing with external

data sets where one or both of the covariates and outcome are not shared with the covariates

and outcome within the randomized experiment. For the last issue, borrowing from the

transfer learning literature may be helpful.
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APPENDIX A

Equivalence between LOOP and the Simple Difference

Estimator

Consider the case where we impute the potential outcomes without making use of covari-

ates. We estimate ti as the mean of the observed outcomes in the treatment group and ci

as the mean of the observed outcomes in the control group (excluding observation i in both

cases):

t̂i =

∑
k∈T \i Yk

n− Ti
(A.1)

ĉi =

∑
k∈C\i Yk

(N − n)− (1− Ti)
. (A.2)

If the assignment probabilities are all equal, i.e., if pi = p for all i and for some fixed p, then
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the LOOP estimator is exactly equivalent to the simple difference estimator:

τ̂ =
1

N

N∑
i=1

(Yi − m̂i)Ui

=
1

N

{
N∑
i=1

1

p
(Yi − m̂i)Ti +

N∑
i=1

1

1− p
(m̂i − Yi) (1− Ti)

}

=
1

N

[
N∑
i=1

1

p

{
Yi −

(∑
k∈T \i(1− p)Yk
n− Ti

+

∑
k∈C\i pYk

(N − n)− (1− Ti)

)}
Ti+

N∑
i=1

1

1− p

{(∑
k∈T \i(1− p)Yk
n− Ti

+

∑
k∈C\i pYk

(N − n)− (1− Ti)

)
− Yi

}
(1− Ti)

]

=
1

N

{∑
i∈T

(
Yi
p
− 1− p

p

∑
k∈T \i Yk

n− 1
−
∑

k∈C Yk

N − n

)
+

∑
i∈C

(∑
k∈T Yk

n
+

p

1− p

∑
k∈C\i Yk

(N − n)− 1
− Yi

1− p

)}

=
1

N

{∑
i∈T

Yi
p
−
∑
i∈C

Yi
1− p

− 1− p
p

(n− 1)
∑

k∈T Yk

n− 1
−
n
∑

k∈C Yk

N − n
+

(N − n)
∑

k∈T Yk

n
+

p

1− p
((N − n)− 1)

∑
k∈C Yk

(N − n)− 1

}
=

1

N

{∑
i∈T

Yi − (1− p)Yi
p

−
∑
i∈C

Yi − pYi
1− p

−
n
∑

k∈C Yk

N − n
+

(N − n)
∑

k∈T Yk

n

}

=
1

N

{∑
i∈T

Yi −
∑
i∈C

Yi −
n
∑

k∈C Yk

N − n
+

(N − n)
∑

k∈T Yk

n

}

=
1

N

{
((N − n) + n)

∑
k∈T Yk

n
−

(n+ (N − n))
∑

k∈C Yk

N − n

}
=

∑
k∈T Yk

n
−
∑

k∈C Yk

N − n

= τ̂sd.

Technical note: One minor difference between the simple difference estimator and the LOOP

estimator in this case is that the simple difference estimator is undefined whenever n is equal

to 0 or N , whereas the LOOP estimator is undefined whenever n is equal to 0, 1, N − 1, or

N .
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APPENDIX B

Variance of the LOOP Estimator

B.1 Variance and Covariance of τ̂i

In this section, we calculate Var(τ̂i) and Cov(τ̂i,τ̂j). We begin with the variance of a

single τ̂i:

Var(τ̂i) = Var [E(τ̂i|m̂i)] + E[Var(τ̂i|m̂i)]

= Var(τi) + E
[
Var

(
1

pi
(Yi − m̂i)Ti +

1

1− pi
(m̂i − Yi)(1− Ti)|m̂i

)]
= 0 + E

[
Var

(
1

pi
(ti − m̂i)Ti +

1

1− pi
(m̂i − ci)(1− Ti)|m̂i

)]
=

1

p2i (1− pi)2
E [Var((1− pi)(ti − m̂i)Ti + pi(m̂i − ci)(1− Ti)|m̂i)]

=
1

p2i (1− pi)2
E[Var[((1− pi)ti + pici − m̂i)Ti + pi(m̂i − ci)|m̂i]]

=
1

p2i (1− pi)2
E[Var[(mi − m̂i)Ti + pi(m̂i − ci)|m̂i]]

=
1

p2i (1− pi)2
E[(mi − m̂i)

2Var(Ti|m̂i)]

=
1

pi(1− pi)
E[(mi − m̂i)

2]

=
1

pi(1− pi)
MSE(m̂i). (B.1)
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We now analyze the covariance term, γij.

γij = Cov[(Yi − m̂i)Ui, (Yj − m̂j)Uj]

= Cov(YiUi, YjUj)− Cov(YiUi, m̂jUj)

− Cov(m̂iUi, YjUj) + Cov(m̂iUi, m̂jUj). (B.2)

The first term is zero, as YiUi and YjUj are independent. The second and third terms are

also zero; for example, in the case of the second term,

Cov(YiUi, m̂jUj) = E(YiUim̂jUj)− E(YiUi)E(m̂jUj)

= E(YiUim̂j)E(Uj)− E(YiUi)E(m̂j)E(Uj)

= 0

and a similar argument applies to the third term. Thus,

γij = Cov(m̂iUi, m̂jUj)

= ρij

√
Var(m̂iUi)Var(m̂jUj)

= ρij

√
Var(m̂i)Var(m̂j)

pipj(1− pi)(1− pj)
(B.3)

where

ρij = Corr(m̂iUi, m̂jUj).
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B.2 Bound for the First Term in the Variance of τ̂

In this section, we provide a bound for the first term in (2.12). Once again, we assume

that pi = p for all i, and we wish to bound the following quantity:

MSE

Np(1− p)
=

1

N

[
1

N

N∑
i=1

1

p(1− p)
MSE(m̂i)

]
. (B.4)

We can bound the MSE of m̂i in terms of the MSEs of t̂i and ĉi:

MSE(m̂i) = [E(m̂i −mi)]
2 + Var(m̂i)

=
[
E[(1− p)t̂i + pĉi − (1− p)ti − pci]

]2
+ Var[(1− p)t̂i + pĉi]

= [E[(1− p)(t̂i − ti)] + E[p(ĉi − ci)]]2 + (1− p)2Var(t̂i) + p2Var(ĉi)

+ 2p(1− p)Cov(t̂i, ĉi)

= [(1− p)Bias(t̂i) + pBias(ĉi)]
2 + (1− p)2Var(t̂i) + p2Var(ĉi)

+ 2p(1− p)Cov(t̂i, ĉi)

= (1− p)2Bias2(t̂i) + p2Bias2(ĉi) + 2p(1− p)Bias(t̂i)Bias(ĉi)

+ (1− p)2Var(t̂i) + p2Var(ĉi) + 2p(1− p)Cov(t̂i, ĉi)]

= (1− p)2MSE(t̂i) + p2MSE(ĉi) + 2p(1− p)
[
Cov(t̂i, ĉi) + Bias(t̂i)Bias(ĉi)

]
≤ (1− p)2MSE(t̂i) + p2MSE(ĉi) + 2p(1− p)

√
MSE(t̂i)MSE(ĉi). (B.5)

To show inequality (B.5), we prove that:

Cov(t̂i, ĉi) + Bias(t̂i)Bias(ĉi) ≤
√

MSE(t̂i)MSE(ĉi).
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The proof is trivial, but is included here for the sake of completeness.

Let Cov(t̂i, ĉi) = C, Bias(t̂i) = Bt, Bias(ĉi) = Bc, Var(t̂i) = Vt, Var(ĉi) = Vc:

C +BtBc ≤
√

MSE(t̂i)MSE(ĉi)

(C +BtBc)
2 ≤ (B2

t + Vt)(B
2
c + Vc)

C2 + 2CBtBc +B2
tB

2
c ≤ VtVc + VtB

2
c + VcB

2
t +B2

tB
2
c

C2 + 2CBtBc ≤ VtVc + VtB
2
c + VcB

2
t .

Cov(t̂i, ĉi) is less than or equal to
√

Var(t̂i)Var(ĉi) so it is sufficient to show:

VtVc + 2
√
VtVcBtBc ≤ VtVc + VtB

2
c + VcB

2
t

2
√
VtVcBtBc ≤ VtB

2
c + VcB

2
t

0 ≤ VtB
2
c − 2

√
VtVcBtBc + VcB

2
t

0 ≤ (
√
VtBc −

√
VcBt)

2.

Finally, we plug (B.5) into (B.4) to obtain the following bound:

1

N

[
1

N

N∑
i=1

1

p(1− p)
MSE(m̂i)

]
≤ 1

N

[
1− p
p

1

N

N∑
i=1

MSE(t̂i) +
p

1− p
1

N

N∑
i=1

MSE(ĉi)+

2
1

N

N∑
i=1

√
MSE(t̂i)MSE(ĉi)

]

≤ 1

N

[
1− p
p

1

N

N∑
i=1

MSE(t̂i) +
p

1− p
1

N

N∑
i=1

MSE(ĉi)+

2

√√√√ 1

N

N∑
i=1

MSE(t̂i)
1

N

N∑
i=1

MSE(ĉi)


=

1

N

[
1− p
p

Mt +
p

1− p
Mc + 2

√
MtMc

]
.
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B.3 M̂t and M̂c are Unbiased

Recall that

Mt =
1

N

N∑
i=1

MSE(t̂i)

Mc =
1

N

N∑
i=1

MSE(ĉi)

and that

M̂t =
1

Np

∑
i∈T

(t̂i − ti)2

M̂c =
1

N(1− p)
∑
i∈C

(ĉi − ci)2.

We will show that M̂t and M̂c are unbiased.

E(M̂t) = E

[
1

Np

∑
i∈T

(t̂i − ti)2
]

= E

[
1

Np

N∑
i=1

Ti(t̂i − ti)2
]

=
1

Np

N∑
i=1

E
[
Ti(t̂i − ti)2

]
=

1

Np

N∑
i=1

E (Ti)E
[
(t̂i − ti)2

]
=

1

Np

N∑
i=1

pE
[
(t̂i − ti)2

]
=

1

N

N∑
i=1

MSE
(
t̂i
)

The argument for M̂c is analogous.
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B.4 Estimating γij

In this section, we provide an estimate for γij. First,

γij = Cov(m̂iUi, m̂jUj) = Cov
[
[(1− pi)t̂i + piĉi]Ui, [(1− pj)t̂j + pj ĉj]Uj

]
= (1− pi)(1− pj)Cov(t̂iUi, t̂jUj) + (1− pi)pjCov(t̂iUi, ĉjUj)

+ pi(1− pj)Cov(ĉiUi, t̂jUj) + pipjCov(ĉiUi, ĉjUj). (B.6)

Now, we let t̂+ji denote the estimate of ti including the j-th observation, where all the

treatment assignments of the other N − 2 observations are kept as is. Similarly, we let t̂−ji

denote the estimate of ti excluding the j-th observation. Then we have

Cov(t̂iUi, t̂jUj|Uk/∈{i,j}) = t̂+ji t̂+ij − t̂
−j
i t̂+ij − t̂

+j
i t̂−ij + t̂−ji t̂−ij

= (t̂+ji − t̂
−j
i )(t̂+ij − t̂−ij )

Cov(t̂iUi, ĉjUj|Uk/∈{i,j}) = t̂+ji ĉ−ij − t̂
−j
i ĉ−ij − t̂

+j
i ĉ+ij + t̂−ji ĉ+ij

=
(
t̂+ji − t̂

−j
i

) (
ĉ−ij − ĉ+ij

)
Cov(ĉiUi, t̂jUj|Uk/∈{i,j}) = ĉ−ji t̂+ij − ĉ

+j
i t̂+ij − ĉ

−j
i t̂−ij + ĉ+ji t̂−ij

=
(
ĉ−ji − ĉ

+j
i

) (
t̂+ij − t̂−ij

)
Cov(ĉiUi, ĉjUj|Uk/∈{i,j}) = ĉ−ji ĉ−ij − ĉ

+j
i ĉ−ij − ĉ

−j
i ĉ+ij + ĉ+ji ĉ+ij

=
(
ĉ−ji − ĉ

+j
i

) (
ĉ−ij − ĉ+ij

)
. (B.7)

Note that t̂+ji is calculable when Tj = 1, but not when Tj = 0, as tj is not observable when

Tj = 0. Similarly, ĉ+ji is calculable when Tj = 0, but not when Tj = 1. Thus, we use
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following estimate of the covariance (where all the terms are estimable):

γ̂ij =



(1−pi)(1−pj)
pipj

(t̂+ji − t̂
−j
i )(t̂+ij − t̂−ij ), Ti = Tj = 1

(t̂+ji − t̂
−j
i )(ĉ−ij − ĉ+ij ), Ti = 0, Tj = 1

(ĉ−ji − ĉ
+j
i )(t̂+ij − t̂−ij ), Ti = 1, Tj = 0

pipj
(1−pi)(1−pj)(ĉ

−j
i − ĉ

+j
i )(ĉ−ij − ĉ+ij ), Ti = Tj = 0

(B.8)

which is an unbiased estimate of the covariance:

E[γ̂ij|Uk/∈{i,j}]

= pipj
(1− pi)(1− pj)

pipj
(t̂+ji − t̂

−j
i )(t̂+ij − t̂−ij ) + (1− pi)pj(t̂+ji − t̂

−j
i )(ĉ−ij − ĉ+ij )

+ pi(1− pj)(ĉ−ji − ĉ
+j
i )(t̂+ij − t̂−ij ) + (1− pi)(1− pj)

pipj
(1− pi)(1− pj)

(ĉ−ji − ĉ
+j
i )(ĉ−ij − ĉ+ij )

= (1− pi)(1− pj)Cov(t̂iUi, t̂jUj|Uk/∈{i,j}) + (1− pi)pjCov(t̂iUi, ĉjUj|Uk/∈{i,j})

+ pi(1− pj)Cov(ĉiUi, t̂jUj|Uk/∈{i,j}) + pipjCov(ĉiUi, ĉjUj|Uk/∈{i,j})

= Cov(m̂iUi, m̂jUj|Uk/∈{i,j}).

We take the expectation across all randomizations to show Ĉov(m̂iUi, m̂jUj) is unbiased.

E[Cov(m̂iUi, m̂jUj|Uk/∈{i,j})] = E[E(m̂iUim̂jUj|Uk/∈{i,j})− E(m̂iUi|Uk/∈{i,j})E(m̂jUj|Uk/∈{i,j})]

= E[E(m̂iUim̂jUj|Uk/∈{i,j})]

= E(m̂iUim̂jUj)]

= Cov(m̂iUi, m̂jUj)

Averaging across all i, j pairs yields an unbiased estimate of γ̄.
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APPENDIX C

Negligibility of γ̄

In this section, we consider the behavior of γ̄ as the sample size N grows large. In our

model, the potential outcomes and the covariates are fixed parameters; they are not drawn

from some probability distribution. Thus, when we speak of a growing sample size, we must

imagine a growing set of parameters. Without any regularity conditions on these parameters,

very little can be said, and thus some regularity conditions are necessary. However, we will

not propose any specific set of regularity conditions per se, but rather we will assume that

under some unspecified conditions that are appropriate for the imputation method under

consideration (e.g., OLS, random forests, etc.), the following two assumptions hold:

Assumption 5. There exists a constant q such that, for every i, there exists a constant αi

where for all N and for all i ≤ N

Var(m̂i) ≤
αi
N q

(C.1)

(note that when i > N observation i is not yet in the model).

Assumption 6. There exist constants C and r such that for all N

max
i≤N
{αi} ≤ CN r. (C.2)
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For example, if we impute the potential outcomes using OLS, then under suitable regularity

conditions, assumption (C.1) might hold with q = 1 (see Freedman (2008)). Moreover, as

long as the variation among the αi is not too extreme, then assumption (C.2) might hold for

some reasonably small value of r. For example, if the αi follow a power law of the form

fraction{αi ≥ x} < Kx−λ

that holds for all N , then assumption (C.2) would be satisfied with C = K1/λ and r = 1/λ.

Alternatively, if the tail of the distribution of the αi decays exponentially, then any r > 0

would suffice, and if the αi are bounded (which might be the case if both the response

variable and the covariates are themselves bounded), then r = 0. In addition to the two

assumptions above, we also assume in this section that pi = p for all i.

Now, combining assumptions 1 and 2 results in

Var(m̂i) ≤
C

N q−r

for all i, N such that i ≤ N . Together with (2.10) from the main text, this implies that

γij ≤
Cρij

p(1− p)N q−r

which further implies that

γ̄ ≤ Cρ̄

p(1− p)N q−r . (C.3)

Thus, we find that γ̄ will go to 0 at a rate faster than 1/N , allowing us to ignore the (N−1)γ̄

term in (2.12), just as long as ρ̄ goes to 0 at a rate faster than 1/N1−q+r. In particular, if

q = 1, then all that is necessary is that ρ̄ goes to zero faster than 1/N r; if in addition r = 0,

then all that is required is that ρ̄ goes to zero.

In Appendix C.1 we show that if m̂i is a polynomial function of degree D (or smaller)

for all i, then ρ̄ ≤ D/(N − 1). Combining this fact with the arguments given above in this
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section, we see that for polynomial m̂i, γ̄ will go to zero at a rate faster than 1/N simply as

long as

max
i≤N

Var(m̂i)→ 0.

C.1 Average correlation of m̂iUi and m̂jUj for polynomial m̂i

First, we define

m̃i = m̂i − E(m̂i)

and note that

Corr(m̂i, m̂j) = Corr(m̃i, m̃j) = ρij.

Now suppose that m̃i is a polynomial function of degree D (or smaller) for all i. That is, for

all i,

m̃i =
D∑
d=1

∑
k1,k2,...,kd

ai.k1k2...kdUk1Uk2 ...Ukd

where the second sum is over all subsets {k1, k2, ..., kd} ⊂ {1, 2, ..., N}\{i}. A few comments:

(a) no constant (intercept) term is needed in the expansion because m̃i has expectation 0,

as do all the Uk1Uk2 ...Ukd terms; (b) no higher powers of the Uk variables are needed (e.g.,

U3
k ), since

U2
k =

1

p(1− p)
+

1− 2p

p(1− p)
Uk

and thus by induction, any higher power of Uk can be reparameterized in terms of Uk itself;

and (c) in our notation for the coefficients ai.k1k2...kd , the ordering of the indices after the

period does not matter. In other words, there is no distinction between a2.358, a2.583, a2.835,

etc. This fact will become important below when we count the number of times a specific

coefficient appears in a sum.
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Note that

Var(m̃i) =
D∑
d=1

∑
k1,k2,...,kd

a2i.k1k2...kd

[
1

p(1− p)

]d
and define

bi.k1k2...kd =
ai.k1k2...kd√

pd(1− p)dVar(m̃i)
.

so that
D∑
d=1

∑
k1,k2,...,kd

b2i.k1k2...kd = 1

and
N∑
i=1

D∑
d=1

∑
k1,k2,...,kd

b2i.k1k2...kd = N (C.4)

which is a fact we will make use of below.

Next observe that

γij = Cov(m̃iUi, m̃jUj)

= E

[(
D∑
d=1

∑
k1,k2,...,kd

ai.k1k2...kdUk1Uk2 ...UkdUi

)

×

(
D∑
d=1

∑
k1,k2,...,kd

aj.k1k2...kdUk1Uk2 ...UkdUj

)]

= E

[
D∑
d=1

D∑
e=1

∑
k1,k2,...,kd

∑
l1,l2,...,le

ai.k1k2...kdUk1Uk2 ...UkdUiaj.l1l2...leUl1Ul2 ...UleUj

]

=
D∑
d=1

D∑
e=1

∑
k1,k2,...,kd

∑
l1,l2,...,le

ai.k1k2...kdaj.l1l2...leE (Uk1Uk2 ...UkdUiUl1Ul2 ...UleUj) (C.5)

where again {k1, k2, ..., kd} ⊂ {1, 2, ..., N} \ {i} and {l1, l2, ..., le} ⊂ {1, 2, ..., N} \ {j}. But

E (Uk1Uk2 ...UkdUiUl1Ul2 ...UleUj) =


1

pd+1(1−p)d+1 {k1, k2, ..., kd, i} = {l1, l2, ..., le, j}

0 otherwise

122



and thus we may simplify (C.5) as

γij =
D∑
d=1

∑
k1,k2,...,kd−1

ai.k1k2...kd−1jaj.k1k2...kd−1i
1

pd+1(1− p)d+1

where now the second sum is over all subsets {k1, k2, ..., kd−1} ⊂ {1, 2, ..., N} \ {i, j}.

Next observe that

ρij =
γij√

Var(m̃i)Var(m̃j) [p(1− p)]−1

=

∑D
d=1

∑
k1,k2,...,kd−1

ai.k1k2...kd−1jaj.k1k2...kd−1i [p(1− p)]
−d√

Var(m̃i)Var(m̃j)

=
D∑
d=1

∑
k1,k2,...,kd−1

bi.k1k2...kd−1jbj.k1k2...kd−1i

and therefore

∑
i 6=j

ρij =
∑
i 6=j

D∑
d=1

∑
k1,k2,...,kd−1

bi.k1k2...kd−1jbj.k1k2...kd−1i. (C.6)

Consider now the following sum of squared coefficients

∑
i 6=j

D∑
d=1

∑
k1,k2,...,kd−1

b2i.k1k2...kd−1j

and observe that no single coefficient shows up in the sum any more than D times. For

example, the coefficient b1.234 will show up 3 times: once when i = 1, j = 2, d = 3, and

{k1, k2} = {3, 4}; once when i = 1, j = 3, d = 3, and {k1, k2} = {2, 4}; and once when i = 1,

j = 4, d = 3, and {k1, k2} = {2, 3}. Thus

∑
i 6=j

D∑
d=1

∑
k1,k2,...,kd−1

b2i.k1k2...kd−1j
≤ D

N∑
i=1

D∑
d=1

∑
k1,k2,...,kd

b2i.k1k2...kd
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where the third sum on the left hand side is over all subsets {k1, k2, ..., kd−1} ⊂ {1, 2, ..., N}\

{i, j} and the third sum on the right hand side is over all subsets {k1, k2, ..., kd} ⊂ {1, 2, ..., N}\

{i}. Applying (C.4), we therefore find that

∑
i 6=j

D∑
d=1

∑
k1,k2,...,kd−1

b2i.k1k2...kd−1j
≤ DN (C.7)

and also similarly ∑
i 6=j

D∑
d=1

∑
k1,k2,...,kd−1

b2j.k1k2...kd−1i
≤ DN. (C.8)

Given (C.7) and (C.8), we may now apply the Cauchy-Schwarz inequality to (C.6) and

conclude

∑
i 6=j

ρij ≤ DN

or

ρ̄ =
1

N(N − 1)

∑
i 6=j

ρij

≤ D

N − 1
(C.9)
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APPENDIX D

The Relationship between Ṽar(τ̂ ) and the Sample

Variance

We first show that

M̃t =
n

n− 1
s2t =

n

n− 1

1

n− 1

∑
i∈T

(ti − t̄)2. (D.1)

Without loss of generality, assume that T = {1, ..., n}:

M̃t =
1

n

n∑
i=1

(t̂i − ti)2

=
1

n

n∑
i=1

(t̂2i − 2t̂iti + t2i ) (D.2)

We deal with the first two terms:
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n∑
i=1

t̂2i − 2
n∑
i=1

t̂iti =
n∑
i=1

(
∑

k 6=i tk)
2

(n− 1)2
− 2

n∑
i=1

∑
k 6=i tk

n− 1
ti

=
n∑
i=1

∑
j,k 6=i tjtk

(n− 1)2
− 2

∑
j 6=k

tjtk
n− 1

=
1

(n− 1)2

[
(n− 1)

n∑
i=1

t2i + (n− 2)
∑
j 6=k

tjtk

]

− 2(n− 1)
∑
j 6=k

tjtk
(n− 1)2

=

∑n
i=1 t

2
i

n− 1
+ (n− 2)

∑
j 6=k

tjtk
(n− 1)2

− 2(n− 1)
∑
j 6=k

tjtk
(n− 1)2

=

∑n
i=1 t

2
i

n− 1
− n

∑
j 6=k

tjtk
(n− 1)2

(D.3)

Plugging (D.3) into (D.2), we can express M̃t as follows:

M̃t =
1

n

[
n∑
i=1

t2i
n− 1

− n
∑
j 6=k

tjtk
(n− 1)2

+
n− 1

n− 1

n∑
i=1

t2i

]

=
1

n− 1

[
n∑
i=1

t2i −
∑
j 6=k

tjtk
n− 1

]

=
1

n− 1

[
n− 1

n− 1

n∑
i=1

t2i −
∑
j 6=k

tjtk
n− 1

]

=
1

n− 1

[
n

n− 1

n∑
i=1

t2i −
∑n

i=1 t
2
i +

∑
j 6=k tjtk

n− 1

n

n

]

=
1

n− 1

n

n− 1

[
n∑
i=1

t2i −
(
∑n

i=1 ti)
2

n

]

=
n

n− 1

1

n− 1

[
n∑
i=1

t2i − nt̄2
]

=
n

n− 1
s2t . (D.4)
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An analogous calculation can be used to demonstrate that

M̃c =
N − n

N − n− 1
s2c . (D.5)

Next, we plug (D.4) and (D.5) into (2.19):

Ṽar(τ̃) =
1

N

[
1− p
p

M̃t +
p

1− p
M̂c + 2

√
M̃tM̃c

]
≤ 1

N

[
1− p
p

M̃t +
p

1− p
M̃c + M̃t + M̃c

]
=

1

N

[
1

p
M̃t +

1

1− p
M̃c

]
=

1

N

[
n

(n− 1)p
s2t +

N − n
(N − n− 1)(1− p)

s2c

]
=

n

Np

s2t
n− 1

+
N − n
N(1− p)

s2c
N − n− 1

≈ s2t
n− 1

+
s2c

N − n− 1
. (D.6)

where (D.6) follows from the fact that n
Np

and N−n
N(1−p) are both approximately equal to 1.
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APPENDIX E

The Random Drop Procedure

E.1 Illustrative Example

Consider an experiment with five participants, in which two participants are to be ran-

domly assigned to treatment and the remaining three to control, and suppose we wish to

estimate m1 using the random drop procedure. If T1 = 1, we randomly pick a control obser-

vation and omit it when calculating m̂1. Similarly, if T1 = 0, we randomly drop a treatment

observation.

On the left side of Table E.1, we show the 10 possible (and equally likely) treatment

assignment vectors. The right side of the table shows the possible treatment assignment

vectors after applying the random drop procedure; a backslash represents the dropped ob-

servation. For example, when the treatment assignment is 5) CTTCC, we could randomly

drop either of the two treatment observations, resulting in either C\TCC or CT\CC.

We can use the above example to illustrate how m̂1 is independent of T1. Regardless of

whether T1 is 0 or 1, we calculate m̂1 using a single treatment observation and two control

observations; moreover, the value of T1 does not tell us anything about which two of the four

possible units will be in control, or which one of the four will be in treatment.
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Table E.1: Illustration of the Random Drop Procedure

# Treatment Assignments Potential Drops

1) T T C C C T T \ C C T T C \ C T T C C \
2) T C T C C T \ T C C T C T \ C T C T C \
3) T C C T C T \ C T C T C \ T C T C C T \
4) T C C C T T \ C C T T C \ C T T C C \ T
5) C T T C C C \ T C C C T \ C C
6) C T C T C C \ C T C C T C \ C
7) C T C C T C \ C C T C T C C \
8) C C T T C C C \ T C C C T \ C
9) C C T C T C C \ C T C C T C \
10) C C C T T C C C \ T C C C T \

For example, consider the arrangement T\CC for the last four observations. We can see

that this arrangement occurs in exactly one in twelve of the combinations where T1 = 1 and

one in twelve of the combinations where T1 = 0. That is,

P(T\CC|T1 = 1) = P(T\CC|T1 = 0) = 1/12.

The same is true of all of the other 11 possible arrangements of the last four observations.

Thus T1 and m̂1 are independent.

E.2 Expectation of the Random Drop Procedure

In this section, we show that τ̂ remains relatively unchanged by the random drop pro-

cedure in the case where we estimate mi without using covariates. To do this, we show

that the expectation (over random drops) of the estimate of the average treatment effect

obtained from the random drop procedure is exactly equal to the estimate had we not used

the random drop procedure at all.

Consider the case where we estimate mi without using covariates. That is, we impute

ti as the average of the treated units and ci as the average of the control units (omitting

observation i each time). If unit i was in the control group, then each time we estimate mi,
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we would drop a random observation in the treatment group before taking the averages of

the observed outcomes. While we could repeat this procedure many times and average the

resulting estimates to get our final estimate of mi, we could instead take the expected value

of the “random drop” estimate over all possible drops. In this case, the value of m̂i is exactly

equal to the estimate had we not dropped any observations in the first place. Without loss

of generality, we assume that observation i is assigned to control. Let m̂i,−k and τ̂i,−k denote

the estimates where we randomly dropped the k-th observation and let m̂i,· and τ̂i,· denote

their expected values over all possible drops.

Ek(m̂i,−k) =
1

n

∑
k∈T

m̂i,−k

=
1

n

∑
k∈T

[∑
j∈T \{i,k} Yj

n− 1
+

∑
j∈C\{i,k} Yj

N − n− 1

]

=
1

n

∑
k∈T

[∑
j∈T \{k} Yj

n− 1

]
+

1

n

∑
k∈T

[∑
j∈C\{i} Yj

N − n− 1

]

=
1

n

[
(n− 1)

∑
j∈T Yj

n− 1

]
+

1

n

[
n
∑

j∈C\{i} Yj

N − n− 1

]

=

∑
j∈T Yj

n
+

∑
j∈C\{i} Yj

N − n− 1
.

This last line is equal to the value of m̂i that we would have gotten had we not dropped any

observations besides i. Our estimate for τi would also be the same as if we had not used the

random drop procedure (i.e., Ek(τ̂i,−k) = τ̂i). A similar argument can be used to show that

if we were to use the random drop procedure when estimating m̂i using a decision tree, the

expected value of τ̂ would still be the post-stratified estimate.
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APPENDIX F

Supplementary Results for Chapter II

F.1 Simulation 3 Results

In Table F.1, we provide the results for Simulation 3. The first column contains the

sample size N , the second column contains the values of γ̃, and the third column contains

the standard error of γ̃.

In Section 2.8.3, we observe that the simulation estimate Nγ̃ for Nγ̄ begins to taper off

at around N = 70 and note that this is due to the standard error of our estimate. While

Nγ̄ may decline as N increases, the standard error of the simulation estimate Nγ̃ does not.

We can see this in Table F.1: the standard error estimate declines much more slowly than

the value of γ̃.
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Table F.1: Simulation 3 Results

N γ̄ Estimate Standard Error

10 1.42×10−2 2.79×10−4

20 2.13×10−3 5.05×10−5

30 3.56×10−4 1.79×10−5

40 5.35×10−5 5.62×10−6

50 1.62×10−5 3.15×10−6

60 3.68×10−6 1.62×10−6

70 2.37×10−6 1.34×10−6

80 2.74×10−6 1.46×10−6

90 1.29×10−6 9.81×10−7

100 -7.68×10−7 9.93×10−7

F.2 Results from Barrera-Osorio et al. (2011)

In Table F.2, we provide the results from Barrera-Osorio et al. (2011) including the point

estimates for each method. We also include two additional methods: OLS with interactions

(as proposed by Lin (2013)) and LOOP in which OLS is used as the imputation method.
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Table F.2: Effect of Treatment on Missing Status and Re-enrollment Status

Missing Status Re-enrollment Status
Treatments Method Est. SE Est. SE

(×10−3) (×10−3) (×10−3) (×10−3)

Basic vs. Savings

LOOP with RF -0.1 6.0 -25.0 11.8
Simple Difference 6.7 7.4 -28.4 11.8
OLS 3.8 6.3 -29.4 11.6
OLS with Interactions 3.9 6.3 -29.5 11.6
LOOP with OLS 3.8 6.3 -29.5 11.6
Cross Estimation -0.9 6.0 -25.4 11.6

Basic vs. Control

LOOP with RF -2.2 5.8 15.9 11.6
Simple Difference 4.1 7.1 16.6 11.6
OLS 1.3 6.1 15.8 11.5
OLS with Interactions 1.3 6.1 15.8 11.5
LOOP with OLS 1.4 6.1 15.9 11.4
Cross Estimation -1.7 5.7 16.4 11.5

Saving vs. Control

LOOP with RF -1.6 5.7 42.5 11.3
Simple Difference -2.5 7.0 45.0 11.4
OLS -2.3 6.1 46.3 11.2
OLS with Interactions -2.3 6.1 46.5 11.2
LOOP with OLS -2.3 6.1 46.4 11.2
Cross Estimation -1.6 5.7 41.7 11.2
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APPENDIX G

Asymptotic Normality of the P-LOOP Estimator

In this section we prove that the P-LOOP estimator is asymptotically normally dis-

tributed under the assumptions outlined in Section 3.3.2. Recall the assumptions:

1. There exists some 0 < C <∞ and q > 0 such that for all i,

Var(d̃i) = Var(d̂i) ≤ C/N q.

2. Let ρij be the correlation of d̃iUi and d̃jUj, and ρ̄ =
∑

i 6=j ρij

N(N−1) . We assume that

N1−qρ̄ −→ 0.

3. Recall that d
(N)
0i = E(d̂

(N)
i ) for some fixed N . For each pair i, we assume that the limit

of d
(N)
0i exists and denote the limit as d∞i. We also assume

1

N

N∑
i=1

(
d
(N)
0i − d∞i

)2
−→ 0.
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4. Let VN =
∑N

i=1(di − d∞i)2. There exists 0 < K <∞ such that

VN
N
−→ K,

and

max
i=1,...,N

(di − d∞i)2

VN
−→ 0.

We now proceed with the proof. First, we write N(τ̂ − τ)/
√
VN as

N(τ̂ − τ)/
√
VN =

1√
VN

N∑
i=1

{(
Wi − d̂i

)
Ti +

(
Wi + d̂i

)
(1− Ti)

}
− Nτ√

VN

=
1√
VN

N∑
i=1

(
Wi − d̂iUi − 0.5(ai + bi)

)
=

1√
VN

N∑
i=1

(Wi − d0iUi − 0.5(ai + bi)) +
1√
VN

N∑
i=1

d̃iUi

=
1√
VN

N∑
i=1

(Wi − (d∞i − d∞i + d0i)Ui − 0.5(ai + bi)) +
1√
VN

N∑
i=1

d̃iUi

=
1√
VN

N∑
i=1

Xi +
1√
VN

N∑
i=1

(d∞i − d0i)Ui +
1√
VN

N∑
i=1

d̃iUi (G.1)

= (A) + (B) + (C)

where we define Xi = Wi − d∞iUi − 0.5(ai + bi). We show that the first term converges

in distribution to a standard normal random variable and the other two terms converge in

probability to zero.

Asymptotic Normality of (A) We show that

1√
VN

N∑
i=1

Xi
d−→ N(0, 1)
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by the Lindeberg-Feller central limit theorem (see for example, Chapter 9.8 of Resnick

(2003)). We note that

Wi − 0.5(ai + bi) = aiTi + bi(1− Ti)− 0.5(ai + bi)

= 0.5(ai − bi)Ti + 0.5(bi − ai)(1− Ti)

= diUi

and therefore Xi = (di−d∞i)Ui. The Xi are independent random variables, as the treatment

assignments Ui are all independent, and di and d∞i are constants. The Xi have expectation

and variance

E ((di − d∞i)Ui) = (di − d∞i)E(Ui)

= 0

and

Var ((di − d∞i)Ui) = E
{

((di − d∞i)Ui)2
}

= (di − d∞i)2E
(
U2
i

)
= (di − d∞i)2.
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Thus VN =
∑N

i=1 Var(Xi). In addition, Xi satisfies the Lindeberg condition. For any t > 0,

we have

1

VN

N∑
i=1

E
(
X2
i 1{|Xi| > t

√
VN}

)
=

1

VN

N∑
i=1

E
(

(di − d∞i)2U2
i 1{|(di − d∞i)Ui| > t

√
VN}

)
=

1

VN

N∑
i=1

(di − d∞i)2E
(
1{|(di − d∞i)Ui| > t

√
VN}

)
=

1

VN

N∑
i=1

(di − d∞i)2E
(
1{(di − d∞i)2U2

i > t2VN}
)

=
1

VN

N∑
i=1

(di − d∞i)21
{

(di − d∞i)2

VN
> t2

}
−→ 0

by assumption 4. Thus, the first term of equation (M.1) converges to a normal distribution

by the Lindeberg-Feller central limit theorem.

(B) Converges in Probability to Zero Next we show that

1√
VN

N∑
i=1

(d∞i − d0i)Ui

converges in L2-norm to zero.

E


(

1√
VN

N∑
i=1

(d∞i − d0i)Ui

)2
 =

1

VN
E

{
N∑
i=1

(d∞i − d0i)2 +
∑
i 6=j

(d∞i − d0i)(d∞j − d0j)UiUj

}

=
1

VN

N∑
i=1

(d∞i − d0i)2

=
N

VN

1

N

N∑
i=1

(d∞i − d0i)2

where E {(d∞i − d0i)(d∞j − d0j)UiUj} = 0 since Ui and Uj have expectation zero and are

independent. The quantity
∑N

i=1(d∞i − d0i)2/N converges to zero by assumption 3, while
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VN/N (and therefore N/VN) converges to a constant by assumption 4. Thus

E


(

1√
VN

N∑
i=1

(d∞i − d0i)Ui

)2
 −→ 0.

Since (B) converges in L2-norm to zero, it also converges in probability to zero.

(C) Converges in Probability to Zero Finally we show that the last term in equation

(M.1) converges in L2-norm to zero:

E


(

1√
VN

N∑
i=1

d̃iUi

)2
 =

1

VN

∑
i,j

E
(
d̃iUid̃jUj

)
=

1

VN

∑
i,j

Cov
(
d̃iUi, d̃jUj

)
=

1

VN

∑
i,j

ρij

√
Var
(
d̃iUi

)
Var
(
d̃jUj

)
=

1

VN

∑
i,j

ρij

√
Var
(
d̃i

)
Var
(
d̃j

)
≤ 1

VN

∑
i,j

Cρij/N
q

=
C

VNN q

∑
i,j

ρij

=
C

VNN q

{
N +

∑
i,j

ρij

}

=
N

VN

C

N q
+
N

VN

C

N q
{(N − 1)ρ̄} .

By assumption 4, N/VN converges to a constant. Due to assumption 2, C
Nq {(N − 1)ρ̄}

converges to zero. It follows that the last term of equation (M.1) converges in L2-norm (and

therefore in probability) to zero.

Combining the results for (A), (B), and (C) implies that equation (M.1) converges in

distribution to a standard normal random variable.
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APPENDIX H

True Variance of the P-LOOP Estimator

First, we calculate the variance of a single τ̂i:

Var(τ̂i) = E
{

Var(τ̂i | d̂i)
}

+ Var
{

E(τ̂i | d̂i)
}

= E
{

Var(τ̂i | d̂i)
}

+ Var(τi)

= E
[
Var

{
(Wi − d̂i)Ti + (Wi + d̂i)(1− Ti) | d̂i

}]
= E

[
Var

{
(ai − d̂i)Ti + (bi + d̂i)(1− Ti) | d̂i

}]
= E

[
Var

{
(ai − bi − 2d̂i)Ti + bi + d̂i | d̂i

}]
= E

{
(2di − 2d̂i)

2Var
(
Ti | d̂i

)}
= E

{
4(di − d̂i)2 × 1/4

}
= E

{
(di − d̂i)2

}
= MSE(d̂i).

Let γij = Cov(τ̂i, τ̂j). Then we have the following expression for the variance of the LOOP
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estimator

Var(τ̂) = Var

(
1

N

N∑
i=1

τ̂i

)

=
1

N2

{
N∑
i=1

Var(τ̂i) +
∑
i 6=j

cov(τ̂i, τ̂j)

}

=
1

N2

{
N∑
i=1

MSE(d̂i) +
∑
i 6=j

γij

}
.
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APPENDIX I

Negligibility of the Covariance Terms

In this section, we show that

∑
i 6=j γij∑N

i=1 MSE(d̂i)
−→ 0

under the assumptions outlined in Section 3.3.2. We show that 1
N

∑
i 6=j γij converges to zero,

while 1
N

∑N
i=1 MSE(d̂i) converges to a constant. Recall that Ui = 2Ti − 1. We can therefore

rewrite τ̂i as Wi − d̂iUi. For any i 6= j, we have the following expression for γij:

γij = Cov(τ̂i, τ̂j)

= Cov(Wi − d̂iUi,Wj − d̂jUj)

= Cov(Wi,Wj)− Cov(Wi, d̂jUj)− Cov(d̂iUi,Wj) + Cov(d̂iUi, d̂jUj).

The first term is zero, as Wi and Wj are independent due to the independence of Ti and Tj.

The second and third terms are also zero. Note that Uj is independent of Wi due to the

independence of Ti and Tj, and recall that d̂j is independent of Tj (and therefore Uj). Then
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we have for the second term

Cov(Wi, d̂jUj) = E(Wid̂jUj)− E(Wi)E(d̂jUj)

= E(Wid̂j)E(Uj)− E(Wi)E(d̂j)E(Uj)

= 0

where the last line follows because E(Uj) = 0. Next, note that Cov(d0iUi, d0jUj) = 0 due to

the independence of Ui and Uj, and that

Var(d̃iUi) = E(d̃2iU
2
i )

= E(d̃2i )

= Var(d̃i).

Then we have

γij = Cov(d̂iUi, d̂jUj)

= Cov(d̃iUi + d0iUi, d̃jUj + d0jUj)

= Cov(d̃iUi, d̃jUj)

= Corr(d̃iUi, d̃jUj)

√
Var(d̃iUi)Var(d̃jUj)

= ρij

√
Var(d̃i)Var(d̃j)

and

1

N

∑
i 6=j

γij =
1

N

∑
i 6=j

ρij

√
Var(d̃i)Var(d̃j)

≤ 1

N

∑
i 6=j

ρijC/N
q

=
C(N − 1)ρ̄

N q
.
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The quantity C(N − 1)ρ̄/N q converges to zero by condition 2 in Section 3.3.2.

Next, we have

1

N

N∑
i=1

MSE(d̂i) =
1

N

N∑
i=1

{[
E(d̂i − di)

]2
+ Var(d̂i)

}

=
1

N

N∑
i=1

{
(d0i − di)2 + Var(d̂i)

}
=

1

N

N∑
i=1

{
[(d0i − d∞i) + (d∞i − di)]2 + Var(d̂i)

}
=

1

N

N∑
i=1

{
(d0i − d∞i)2 + (d∞i − di)2 + 2(d0i − d∞i)(d∞i − di) + Var(d̂i)

}
.

Under the assumptions in Section 3.3.2, 1
N

∑N
i=1(d∞i− di)2 converges to a constant K while

the remaining terms converge to zero.

This implies that ∑
i 6=j γij∑N

i=1 MSE(d̂i)
−→ 0.
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APPENDIX J

Bound on the Mean Squared Error of d̂i

We bound the term
∑N

i=1 MSE(d̂i)/N
2. We can express the mean squared error of d̂i as

MSE(d̂i) = E
{

(di − d̂i)2
}

= E

{(
1

2
(ai − bi)−

1

2
(âi − b̂i)

)2
}

= E

{(
1

2
(ai − âi)−

1

2
(bi − b̂i)

)2
}

=
1

4
E
{

(ai − âi)2 − 2(ai − âi)(bi − b̂i) + (bi − b̂i)2
}

and the mean squared error of Ŵi as

MSE(Ŵi) = E
{

(Wi − Ŵi)
2
}

= E
[
E
{

(Wi − Ŵi)
2|âi, b̂i

}]
=

1

2
E
{

(ai − âi)2 + (bi − b̂i)2
}
.
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Next, we show that MSE(d̂i) ≤ MSE(Ŵi):

MSE(Ŵi)−MSE(d̂i) =
1

2
E
{

(ai − âi)2 + (bi − b̂i)2
}
−

1

4
E
{

(ai − âi)2 − 2(ai − âi)(bi − b̂i) + (bi − b̂i)2
}

= E

{
1

4
(ai − âi)2 +

1

4
(bi − b̂i)2 +

1

2
(ai − âi)(bi − b̂i)

}
= E

[{
1

2
(ai − âi) +

1

2
(bi − b̂i)

}2
]

≥ 0.

We therefore have the bound

1

N2

N∑
i=1

MSE(d̂i) ≤
1

N2

N∑
i=1

MSE(Ŵi).
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APPENDIX K

Equivalence of P-LOOP and the Simple Difference

Estimator

We consider the special case where we set âi = b̂i = W̄ (−i) where W̄ (−i) =
∑

j 6=iWj/(N −

1). In this case we estimate the variance of P-LOOP as:

V̂ar(τ̂) =
1

N2

N∑
i=1

(Wi − Ŵi)
2

=
1

N2

N∑
i=1

{
Wi −

1

N − 1

∑
j 6=i

Wj

}2

=
1

N2

N∑
i=1

{
Wi −

1

N − 1

(
N∑
j=1

Wj −Wi

)}2

=
1

N2

N∑
i=1

{
N − 1

N − 1
Wi +

1

N − 1
Wi −

N

N − 1

1

N

N∑
j=1

Wj

}2

=
1

N2

N∑
i=1

{
N

N − 1
Wi −

N

N − 1
τ̂sd

}2

=
1

(N − 1)2

N∑
i=1

(Wi − τ̂sd)2
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The standard variance estimator for the simple difference estimator in paired experiments is

1

N(N − 1)

N∑
i=1

(Wi − τ̂sd)2 .

For example, see Imai (2008). Thus in this special case, the variance estimate for P-LOOP is

equal to N/(N −1) times the standard variance estimate for the simple difference estimator.
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APPENDIX L

Simulation Procedure for Chapter III

L.1 Simulation Procedure for Sections 3.5.1 and 3.5.2

We describe the simulation procedure used in Section 3.5. For each of the two scenarios

presented in Table 3.1 and for the scenario presented in Table 3.2, we generate a single set of

potential outcomes and covariates. For each method, we obtain Vartrue (an estimate for the

true variance) and E(Varnom) (an estimate for the expected value of the nominal variance)

for the generated potential outcomes and covariates assuming pair randomization. We also

estimate the coverage probability at a 95% confidence level.

To estimate these quantities, we generate 10,000 treatment assignment vectors. For each

treatment assignment vector, we obtain a point estimate and nominal variance using each

estimator. We calculate Vartrue by taking the variance of the 10,000 point estimates. We

calculate E(Varnom) as the average of the 10,000 nominal variance estimates.

To estimate the coverage probability for a given method, we create a confidence interval of

the form (point estimate) ± 1.96 × (nominal standard error) for each treatment assignment

vector. We then estimate the coverage probability for that method as the proportion of time

that the constructed confidence intervals include the average treatment effect.
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Finally, we also estimate the standard errors for the variance estimates, which we will call

SE(Vartrue) and SE(E(Varnom)). To estimate SE(Vartrue), we split the 10,000 point estimates

into 200 sets of 50 estimates. We take the variance of each set of 50 point estimates and take

the standard deviation of these 200 variances, which we divide by the square root of 200 to

obtain an estimate for SE(Vartrue). We take the standard deviation of the 10,000 nominal

variance estimates divided by the square root of 10,000 to estimate SE(E(Varnom)).

In Table L.1, we show the results from Section 3.5.1 with additional columns for the

values of SE(Vartrue) and SE(E(Varnom)). We show the results from Section 3.5.2 in Table

L.2. In both tables, we refer to the differences, outcomes, and interpolation imputation

approaches for P-LOOP using “(D)”, “(O)”, and “(I)” respectively.
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Table L.1: Simulation Results for Section 3.5.1

Simpson’s paradox

Method Vartrue SE(Vartrue) E(Varnom) SE(E(Varnom)) Cov Prob

Simple Difference 0.343 0.0045 0.342 0.000064 0.943

P-LOOP RF (D) 0.154 0.0022 0.167 0.000064 0.951

P-LOOP RF (O) 0.440 0.0065 0.462 0.000225 0.952

P-LOOP RF (I) 0.152 0.0022 0.170 0.000063 0.953

P-LOOP OLS (D) 0.152 0.0022 0.160 0.000043 0.950

P-LOOP OLS (O) 0.442 0.0066 0.462 0.000227 0.953

P-LOOP OLS (I) 0.152 0.0022 0.164 0.000048 0.952

Regression 1 0.151 0.0022 0.150 0.000019 0.943

Regression 2 0.153 0.0022 0.148 0.000027 0.942

Uninformative pairs

Method Vartrue SE(Vartrue) E(Varnom) SE(E(Varnom)) Cov Prob

Simple Difference 0.361 0.0049 0.365 0.000071 0.947

P-LOOP RF (D) 0.151 0.0023 0.168 0.000063 0.952

P-LOOP RF (O) 0.146 0.0022 0.154 0.000029 0.949

P-LOOP RF (I) 0.148 0.0023 0.156 0.000038 0.948

P-LOOP OLS (D) 0.148 0.0023 0.160 0.000042 0.950

P-LOOP OLS (O) 0.146 0.0022 0.154 0.000029 0.949

P-LOOP OLS (I) 0.148 0.0023 0.156 0.000033 0.949

Regression 1 0.148 0.0023 0.149 0.000018 0.944

Regression 2 0.149 0.0023 0.148 0.000026 0.940
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Table L.2: Simulation Results for Section 3.5.2

Method Vartrue SE(Vartrue) E(Varnom) SE(E(Varnom)) Cov Prob

Simple Difference 0.094 0.00131 0.373 0.000375 1

P-LOOP RF (D) 0.069 0.00102 0.160 0.000109 0.996

P-LOOP RF (O) 0.046 0.00064 0.097 0.000047 0.991

P-LOOP RF (I) 0.046 0.00062 0.097 0.000048 0.992

P-LOOP OLS (D) 0.068 0.00101 0.371 0.000423 1

P-LOOP OLS (O) 0.062 0.00091 0.364 0.000401 1

P-LOOP OLS (I) 0.065 0.00097 0.363 0.000392 1

Regression 1 0.066 0.00097 0.351 0.000363 1

Regression 2 0.066 0.00097 0.358 0.000380 1

L.2 Simulating the Remainder Terms

As noted in Appendix I, γij = Cov
(
d̂iUi, d̂jUj

)
= Cov

(
d̃iUi, d̃jUj

)
. Then we have

1

N

∑
i 6=j

γij =
1

N

∑
i 6=j

Cov
(
d̃iUi, d̃jUj

)
≤ 1

N

∑
i,j

Cov
(
d̃iUi, d̃jUj

)
=

1

N

∑
i,j

E
(
d̃iUid̃jUj

)

=
1

N
E


(

N∑
i=1

d̃iUi

)2
.

Similarly, we can show

1

N

∑
i 6=j

γij ≥ −
1

N
E


(

N∑
i=1

d̃iUi

)2
.

We now describe the simulation procedure in more detail. For each of the three data
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generation processes used in Sections 3.5.1 and 3.5.2, we generate potential outcomes and

covariates for 1000 pairs. We then estimate the quantity (3.5) for each of the first N =

50, 100, . . . , 1000 of these pairs. For a given N , we generate treatment assignment vectors

U (t) = (U1,t, . . . , UN,t) for t = 1, . . . , 1000. For each treatment assignment vector U (t), we

calculate d̂i,t for each pair i, resulting in 1000 estimates for di. Although d0i is not known,

we can estimate it using the quantity
∑1000

k=1 d̂i,k/1000. We then obtain simulation estimates

for d̃i by centering the values of d̂i,t:

d̃∗i,t = d̂i,t −
1

1000

1000∑
k=1

d̂i,k.

Finally, we estimate (3.5) as

1

N

 1

1000

1000∑
t=1

(
N∑
i=1

d̃∗i,tUi,t

)2
 .

We repeat this procedure for each sample size N = 50, 100, . . . , 1000 and for both random

forest and OLS imputation.

As noted in Section 3.5.3, the estimate for (3.5) shrinks more slowly when using random

forest in the non-linear data generating process. We argue that this is due to the variance of

the imputation method. Like many machine learning methods, random forests experience a

bias-variance trade-off. One parameter of the random forest is the maximum number of nodes

for each decision tree. If the number of nodes in a tree is large, this could result in overfitting

and higher variance (for example, see James et al. (2013)). As the number of nodes increases,

each node will have correspondingly fewer observations, and the predicted outcomes will be

highly variable. This could be especially true if the amount of nodes increases with the

number of observations. To illustrate, we perform the non-linear simulation again, but limit

the number of nodes in each random forest to 10, reducing the variance of the imputed

potential outcomes. We present the results in Figure L.1. When we limit the number of
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Figure L.1: We plot the estimated values of quantity (3.5) (i.e., E{(
∑N

i=1 d̃iUi)
2}/N) against the

sample size N . Both values are plotted on a log base 10 scale. The left chart shows The values
of (3.5) are estimated for both random forest imputation (solid line) and OLS imputation (dashed
line).

nodes, the estimate of (3.5) for random forest imputation shrinks more quickly.
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APPENDIX M

Asymptotic Normality of the LOOP Estimator

In this section we prove that the LOOP estimator is asymptotically normally distributed

under the assumptions outlined in Section 4.4. Recall the assumptions:

1. There exists some 0 < C <∞ and q > 0 such that for all i,

Var(m̃i) = Var(m̂i) ≤ C/N q.

2. Let ρij be the correlation of m̃iUi and m̃jUj, and ρ̄ =
∑

i 6=j ρij

N(N−1) . We assume that

N1−qρ̄ −→ 0.

3. Recall that m
(N)
0i = E(m̂

(N)
i ) for some fixed N . For each observation i, we assume that

the limit of m
(N)
0i exists and denote the limit as m∞i. We also assume

1

N

N∑
i=1

(
m

(N)
0i −m∞i

)2
−→ 0.

4. There exists 0 < K <∞ such that

∑N
i=1(mi −m∞i)2

N
−→ K,
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and

max
i=1,...,N

(mi −m∞i)2∑N
k=1(mk −m∞k)2

−→ 0.

5. There exists 0 < ε < 0.5 such that ε < pi < 1− ε for all i.

We now proceed with the proof. First, let VN =
∑N

i=1
(mi−m∞i)

2

pi(1−pi) . We write N(τ̂ − τ)/
√
VN

as

N(τ̂ − τ)/
√
VN =

1√
VN

N∑
i=1

(τ̂i − τi)

=
1√
VN

N∑
i=1

{(Yi − m̂i)Ui − τi}

=
1√
VN

N∑
i=1

{(Yi − (m̃i +m0i))Ui − τi}

=
1√
VN

N∑
i=1

{(Yi −m0i)Ui − τi} −
1√
VN

N∑
i=1

m̃iUi

=
1√
VN

N∑
i=1

{(Yi −m∞i +m∞i −m0i)Ui − τi} −
1√
VN

N∑
i=1

m̃iUi

=
1√
VN

N∑
i=1

{(Yi −m∞i)Ui − τi}+
1√
VN

N∑
i=1

(m∞i −m0i)Ui −
1√
VN

N∑
i=1

m̃iUi

=
1√
VN

N∑
i=1

Xi +
1√
VN

N∑
i=1

(m∞i −m0i)Ui −
1√
VN

N∑
i=1

m̃iUi (M.1)

= (A) + (B)− (C)

where we define Xi = (Yi−m∞i)Ui−τi. We show that the first term converges in distribution

to a standard normal random variable and the other two terms converge in probability to

zero.

Asymptotic Normality of (A) We show that

1√
VN

N∑
i=1

Xi
d−→ N(0, 1)
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by the Lindeberg-Feller central limit theorem (see for example, Chapter 9.8 of Resnick

(2003)). We note that

YiUi − τi =
ti
pi
Ti −

ci
1− pi

(1− Ti)− (ti − ci)

=
ti − pi(ti − ci)

pi
Ti −

ci − (1− pi)(ti − ci)
1− pi

(1− Ti)

=
(1− pi)ti − pici

pi
Ti −

(1− pi)ti − pici
1− pi

(1− Ti)

=
mi

pi
Ti −

mi

1− pi
(1− Ti)

= miUi

and therefore Xi = (mi −m∞i)Ui. The Xi are independent random variables, as the Ui are

all independent, and mi and m∞i are constants. The Xi have expectation and variance

E ((mi −m∞i)Ui) = (mi −m∞i)E(Ui)

= 0

and

Var ((mi −m∞i)Ui) = E
{

((mi −m∞i)Ui)2
}

= (mi −m∞i)2E
(
U2
i

)
= (di − d∞i)2

1

pi(1− pi)
.
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Thus VN =
∑N

i=1 Var(Xi). In addition, Xi satisfies the Lindeberg condition. For any t > 0,

we have

1

VN

N∑
i=1

E
(
X2
i 1{|Xi| > t

√
VN}

)
=

1

VN

N∑
i=1

E
(

(mi −m∞i)2U2
i 1{|(mi −m∞i)Ui| > t

√
VN}

)
=

1

VN

N∑
i=1

(mi −m∞i)2E
(
U2
i 1{|(mi −m∞i)Ui| > t

√
VN}

)
=

1

VN

N∑
i=1

(mi −m∞i)2E
(
U2
i 1{(mi −m∞i)2U2

i > t2VN}
)
.

Next, note that U2
i can take the value 1/p2i or 1/(1− pi)2. By assumption 5, it follows that

U2
i < 1/ε2 and 1{(mi −m∞i)2U2

i > t2VN} ≤ 1{(mi −m∞i)2/ε2 > t2VN}. In addition, we

have VN =
∑N

i=1
(mi−m∞i)

2

pi(1−pi) ≥ 4
∑N

i=1(mi − m∞i)
2, as 1

pi(1−pi) ≥ 4 for any pi ∈ [0, 1]. We

therefore have:

1

VN

N∑
i=1

(mi −m∞i)2E
(
U2
i 1{(mi −m∞i)2U2

i > t2VN}
)

≤ 1

VN

N∑
i=1

(mi −m∞i)2

ε2
1{(mi −m∞i)2/ε2 > t2VN}

=
1

VN

N∑
i=1

(mi −m∞i)2

ε2
1{(mi −m∞i)2/VN > t2ε2}

≤ 1

VN

N∑
i=1

(mi −m∞i)2

ε2
1

{
(mi −m∞i)2∑N
i=1(mi −m∞i)2

> 4t2ε2

}
−→ 0

by assumption 4. It follows that 1
VN

∑N
i=1 E

(
X2
i 1{|Xi| > t

√
VN}

)
−→ 0 for any t > 0,

satisfying the Lindeberg condition. Thus, the first term of equation (M.1) converges to a

normal distribution by the Lindeberg-Feller central limit theorem.

(B) Converges in Probability to Zero Next we show that

1√
VN

N∑
i=1

(m∞i −m0i)Ui
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converges in L2-norm to zero.

E


(

1√
VN

N∑
i=1

(m∞i −m0i)Ui

)2
 =

1

VN
E

{
N∑
i=1

(m∞i −m0i)
2U2

i +

∑
i 6=j

(m∞i −m0i)(m∞j −m0j)UiUj

}

=
1

VN

N∑
i=1

(m∞i −m0i)
2U2

i

=
N

VN

1

N

N∑
i=1

(m∞i −m0i)
2U2

i

≤ N

VNε2
1

N

N∑
i=1

(m∞i −m0i)
2

≤ N

4ε2
∑N

i=1(mi −m∞i)2
1

N

N∑
i=1

(m∞i −m0i)
2

where E {(m∞i −m0i)(m∞j −m0j)UiUj} = 0 since Ui and Uj have expectation zero and

are independent. The quantity
∑N

i=1(m∞i − m0i)
2/N converges to zero by assumption 3,

while
∑N

i=1(mi −m∞i)2/N (and therefore N/
∑N

i=1(mi −m∞i)2) converges to a constant by

assumption 4. Thus

E


(

1√
VN

N∑
i=1

(d∞i − d0i)Ui

)2
 −→ 0.

Since (B) converges in L2-norm to zero, it also converges in probability to zero.
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(C) Converges in Probability to Zero Finally we show that the last term in equation

(M.1) converges in L2-norm to zero:

E


(

1√
VN

N∑
i=1

m̃iUi

)2
 =

1

VN

∑
i,j

E(m̃iUim̃jUj)

=
1

VN

∑
i,j

Cov(m̃iUi, m̃jUj)

=
1

VN

∑
i,j

ρij

√
Var(m̃iUi)Var(m̃jUj)

≤ 1

VN

∑
i,j

ρij

√
1

ε2
Var(m̃i)

1

ε2
Var(m̃j)

≤ 1

VN

∑
i,j

Cρij
N qε2

=
C

VNN qε2

∑
i,j

ρij

=
C

VNN qε2

{
N +

∑
i 6=j

ρij

}

=
N

VNε2
C

N q
+

N

VNε2
C

N q
{(N − 1)ρ̄}

≤ N

4ε2
∑N

i=1(mi −m∞i)2
C

N q
+

N

4ε2
∑N

i=1(mi −m∞i)2
C

N q
{(N − 1)ρ̄} .

As noted above, N

4ε2
∑N

i=1(mi−m∞i)2
converges to a constant. Due to assumption 2, C

Nq {(N − 1)ρ̄}

converges to zero. It follows that the last term of equation (M.1) converges in L2-norm (and

therefore in probability) to zero.

Combining the results for (A), (B), and (C) implies that equation (M.1) converges in

distribution to a standard normal random variable.

159



APPENDIX N

Asymptotic Normality when Imputing Potential

Outcomes Using Simple Linear Regression

Let {(ci, ti, Zi), i = 1, 2, . . . } be an infinite sequence of experimental observations such

that ci, ti, and Zi are all bounded. We assume that each observation is assigned to treat-

ment with probability p. We also assume that 1
N

∑N
i=1 ci,

1
N

∑N
i=1 c

2
i ,

1
N

∑N
i=1 ti,

1
N

∑N
i=1 t

2
i ,

1
N

∑N
i=1 Zi, and 1

N

∑N
i=1 Z

2
i all converge, and denote these limits c̄, c2,t̄, t2,Z̄, and Z2. Fi-

nally, let ρt be the limiting correlation between the treatment outcomes and covariates, and

ρc be the limiting correlation between the control outcomes and covariates. We assume

−1 < ρt < 1 and −1 < ρc < 1. Under these conditions, we demonstrate that the LOOP

estimator is asymptotically normally distributed when imputing potential outcomes using a

linear regression with the single covariate Z. We do this by showing that the assumptions

outlined in Appendix M are met.

For a given N , let T (N) and C(N) denote the indices of observations in the treated and

control groups, and let n
(N)
t and n

(N)
c be the size of these sets. Let Ȳ

(t,N)
−i and Z̄

(t,N)
−i be the

averages of the Y and Z values in T (N)\i, and Ȳ
(c,N)
−i , and Z̄

(c,N)
−i be the averages for C(N)\i.

These values all depend on N ; however, for the remainder of this section we will generally

suppress the N superscript.
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For each i, we obtain t̂i and ĉi by regressing Y onto Z for the observations in T \i and

C\i respectively. For example, we have

t̂i = α̂ti + β̂tiZi

where

α̂ti = Ȳ t − β̂ti Z̄t

and

β̂ti =

∑
k∈T \i(Zk − Z̄t

−i)(Yk − Ȳ t
−i)∑

k∈T \i(Zk − Z̄t
−i)

2
.

The terms ĉi, α̂
c
i , and β̂ti are defined similarly.

Assumption (1): There exists some 0 < C <∞ and q > 0 such that for all i,

Var(m̃i) = Var(m̂i) ≤ C/N q.

Our assumptions imply those of Freedman (2008), who shows that regression coefficients

go to zero at a rate 1/N . In addition, because the covariates and outcomes are bounded, a

uniform bound on the variances for the m̃i follows. Thus assumption 1 holds with q = 1.

Assumption (2): Let ρij be the correlation of m̃iUi and m̃jUj, and ρ̄ =
∑

i 6=j ρij

N(N−1) . We

assume that

N1−qρ̄ −→ 0.
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Because q = 1, we need to show that ρ̄ converges to zero. We have

ρ̄ =

∑
i 6=j ρij

N(N − 1)

=
1

N(N − 1)

∑
i 6=j

Cov(m̃iUi, m̃jUj)√
Var(m̃iUi)Var(m̃jUj)

=
p(1− p)
N(N − 1)

∑
i 6=j

Cov(m̃iUi, m̃jUj)√
Var(m̃i)Var(m̃j)

.

Because Var(m̃i) and Var(m̃j) go to zero at a rate 1/N , we need

1

N

∑
i 6=j

Cov(m̃iUi, m̃jUj)

to go to zero in order for ρ̄ to go to zero.

We first consider the covariance for a fixed pair i and j:

Cov(m̃iUi, m̃jUj) = Cov(m̂iUi, m̂jUj)

= E(m̂im̂jUiUj)

= E
{[

(1− p)2(α̂ti + β̂tiZi)(α̂
t
j + β̂tjZj)

+ p(1− p)(α̂ti + β̂tiZi)(α̂
c
j + β̂cjZj)

+ p(1− p)(α̂ci + β̂ciZi)(α̂
t
j + β̂tjZj)

+p2(α̂ci + β̂ciZi)(α̂
c
j + β̂cjZj)

]
UiUj

}
.

We will show that the values of E(β̂ti β̂
t
jUiUj) go to zero at a rate 1/N2 for all combinations

of t, c, α, and β. To do this we condition on the treatment assignments for the remaining

observations. Let α̂t,−ji be the value of α̂ti calculated without observation j (i.e., when

Tj = 0), and α̂t,+ji be the value calculated with observation j (Tj = 1). Define β̂c,−ij and β̂c,+ij

similarly. Then we have
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E(α̂tiβ̂
c
jUiUj|Uk, k /∈ {i, j}) = α̂t,−ji β̂c,+ij − α̂t,+ji β̂c,+ij − α̂t,−ji β̂c,−ij + α̂t,+ji β̂c,−ij

= (α̂t,−ji − α̂t,+ji )(β̂c,+ij − β̂c,−ij ).

To see why this quantity is on the order of 1/N2, consider the simple linear regression of

an outcome yi onto a predictor xi for i = 1, . . . , n, and let α̂ and β̂ be the fitted slope and

intercept. Suppose we calculate wish to estimate the coefficients without observation j. It

can be shown the corresponding coefficients are given by

α̂−j = α̂− Sx − nx̄(xj − x̄)

(n− 1)Sx − n(xj − x̄)2
× (yj − ŷj) (N.1)

and

β̂−j = β̂ − n(xj − x̄)

(n− 1)Sx − n(xj − x̄)2
× (yj − ŷj) (N.2)

where ŷj is the fitted value from the regression with all of the observations, x̄ is the average

of all the xi, and Sx =
∑n

i=1(xi− x̄)2. We can use these formulas to compare α̂t,−ji and α̂t,+ji ,

and β̂c,+ij and β̂c,−ij . For example,

β̂c,+ij − β̂c,−ij =
nc′(Zi − Z̄c

−j)

(nc′ − 1)
∑

k∈C\j(Zk − Z̄c
−j)

2 − nc′(Zi − Z̄c
−j)

2
× (Yj − ĉj)

where nc′ is the number of observations in C\j. As we will show for assumption 3, the

value
∑

k∈C\j(Zk − Z̄c
−j)

2/n′c converges to a constant. In addition, the values of Zi− Z̄c
−j are

bounded. Thus, β̂c,+ij − β̂c,−ij is on the order of 1/nc ≈ 1/N(1−p). A similar argument can be

used to show that α̂t,−ji − α̂t,+ji is also on the order of 1/N , and therefore E(α̂tiβ̂
c
jUiUj|Uk, k /∈

{i, j}) is on the order of 1/N2. However, this same argument holds across randomizations,

so we have E(α̂tiβ̂
c
jUiUj) = E(E(α̂tiβ̂

c
jUiUj|Uk, k /∈ {i, j})) is on the order of 1/N2. This same
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argument can be repeated for the remaining combination of coefficients, which implies that

Cov(m̃iUi, m̃jUj) is on the order of 1/N2.

Finally, we can repeat the same argument for any i and j. It follows that

1

N

∑
i 6=j

Cov(m̃iUi, m̃jUj)

converges to zero, as desired.

Assumption (3): Recall that m
(N)
0i = E(m̂

(N)
i ) for some fixed N . For each observation i,

we assume that the limit of m
(N)
0i exists and denote the limit as m∞i. We also assume

1

N

N∑
i=1

(
m

(N)
0i −m∞i

)2
−→ 0.

We first show that m∞i = lim m
(N)
0i exists. For a given observation i, we have

β̂ti =

∑
k∈T \i(Zk − Z̄t

−i)(Yk − Ȳ t
−i)∑

k∈T \i(Zk − Z̄t
−i)

2

=
1

nt−1
∑

k∈T \i(Zk − Z̄t
−i)(Yk − Ȳ t

−i)
1

nt−1
∑

k∈T \i(Zk − Z̄t
−i)

2
.

We show that both the numerator and denominator converge. Note that Yk = tk for all

k ∈ T . In addition, we can treat the observations in set T as a random sample drawn from

the population of observations {(ci, ti, Zi), i = 1, 2, . . . }. It follows that 1
nt

∑
k∈T Zk converges

in probability to the population mean Z̄ by the weak law of large numbers. Because Zi/nt

converges to zero, 1
nt−1

∑
k∈T \i Zk also converges in probability to Z̄. We can use identical

arguments to show that
∑

k∈T \i Yk/(nt−1) converges in probability to t̄,
∑

k∈T \i Z
2
k/(nt−1)

to Z2, and
∑

k∈T \i Y
2
k /(nt − 1) to t2.
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We can write the denominator as

 1

nt − 1

∑
k∈T \i

Z2
k

−
 1

nt − 1

∑
k∈T \i

Zk

2

p−→ Z2 − Z̄2

For the numerator, let tZ be the limit of
∑N

i=1 tiZi/N . We can apply the Cauchy-

Schwarz inequality to show this limit exists. Using the same argument as above, we have∑
k∈T \i ZkYk/(nt − 1) converges in probability to tZ. We therefore have the numerator

 1

nt − 1

∑
k∈T \i

ZkYk

−
 1

nt − 1

∑
k∈T \i

Zk

 1

nt − 1

∑
k∈T \i

Yk

 p−→ tZ − Z̄t̄.

Thus for any observation i, β̂ti converges with probability 1, and we denote the limit βt. It

follows that α̂ti converges, and we denote the limit αt.

We can use an identical argument to show that β̂ci and α̂ci converge. We then have

m̂i = (1− p)t̂i + pĉi

= (1− p)
(
α̂ti + β̂tiZi

)
+ p

(
α̂ci + β̂ciZi

)
p−→ (1− p)

(
αt + βtZi

)
+ p (αc + βcZi)

Due to assumption 1, the family of random variables {m̂(N)
i , N ∈ N} is uniformly integrable

by the crystal ball condition (for example, see Chapter 6.5.1 of Resnick (2003)). We therefore

have

E(m̂i) −→ E
{

(1− p)
(
αt + βtZi

)
+ p

(
αc + β̂cZi

)}
= (1− p)

(
αt + βtZi

)
+ p (αc + βcZi) .
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Next, we consider

1

N

N∑
i=1

(
m

(N)
0i −m∞i

)2
=

1

N

N∑
i=1

(
(1− p)

{
(α̂ti − αt) + (β̂ti − βt)Zi

}
+ p

{
(α̂ci − αc) + (β̂ci − βc)Zi

})2
(N.3)

After expanding the square, we can show that average of each term converges to zero. For

example, let α̂t be the fitted intercept from regressing Y onto Z for all of the treated units,

and β̂c be the fitted slope from regressing Y onto Z for all of the control units. Let Rt,α
i be

the adjustment term such that α̂t−i = α̂t−Rt,α
i , as calculated using equation (N.1). Similarly

use equation (N.2) to calculate Rc,β
i . Fix 0 < M <∞ such that M ≥ |Zi| for all i. Then we

have

1

N

N∑
i=1

p(1− p)(α̂ti − αt)(β̂ci − βc)Zi

≤Mp(1− p) 1

N

N∑
i=1

(α̂ti − αt)(β̂ci − βc)

= Mp(1− p) 1

N

{∑
i∈T

(α̂t −Rt,α
i − αt)(β̂c − βc) +

∑
i∈C

(α̂t − αt)(β̂c −Rc,β
i − βc)

}

= Mp(1− p) 1

N

{
N∑
i=1

(α̂t − αt)(β̂c − βc)−
∑
i∈T

Rt,α
i −

∑
i∈C

Rc,β
i

}

= Mp(1− p)(α̂t − αt)(β̂c − βc)−Mp(1− p) 1

N

∑
i∈T

Rt,α
i −Mp(1− p) 1

N

∑
i∈C

Rc,β
i .

The first term converges to zero as α̂t −→ αt and β̂c −→ βc. As noted earlier, the adjustment

terms Rt,α
i and Rc,β

i are on the order of 1/nt and 1/nc. It follows that the second and third

terms also converge to zero. Thus 1
N

∑N
i=1 p(1 − p)(α̂ti − αt)(β̂ci − βc)Zi converges to zero.

Similar arguments can be used to show that the remaining terms of equation (N.3) go to

zero as well.
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Assumption (4): There exists 0 < K <∞ such that

∑N
i=1(mi −m∞i)2

N
−→ K,

and

max
i=1,...,N

(mi −m∞i)2∑N
k=1(mi −m∞i)2

−→ 0.

Let Ai = (1− p)(ti − (αt + βtZi)) and Bi = p(ci − (αc + βcZi)). We have

∑N
i=1(mi −m∞i)2

N
=

∑N
i=1(Ai +Bi)

2

N

≤
∑N

i=1(A
2
i +B2

i )

N
+

2

N

√√√√ N∑
i=1

A2
i

N∑
i=1

B2
i

=

∑N
i=1(A

2
i +B2

i )

N
+ 2

√√√√ 1

N

N∑
i=1

A2
i

1

N

N∑
i=1

B2
i .

The term
∑N

i=1A
2
i /N converges:

N∑
i=1

A2
i /N =

1

N

N∑
i=1

t2i −
1

N

N∑
i=1

2ti(α
t + βtZi) +

1

N

N∑
i=1

(αt + βtZi)
2

These three values converge due to the convergence of
∑N

i=1 ti/N ,
∑N

i=1 Zi/N ,
∑N

i=1 t
2
i /N ,∑N

i=1 Z
2
i /N , and

∑N
i=1 tiZi/N . In addition, the limit of

∑N
i=1A

2
i /N is zero only if ti and Zi

are perfectly correlated. We can use a similar argument to show that
∑N

i=1B
2
i /N converges.

It follows there exists some 0 < K <∞ such that

∑N
i=1(mi −m∞i)2

N
−→ K.

Next, we have

max
i=1,...,N

(mi −m∞i)2∑N
k=1(mi −m∞i)2

=

1
N

max
i=1,...,N

(mi −m∞i)2∑N
k=1(mi −m∞i)2/N

.
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The denominator converges to K. The quantity (mi−m∞i)2 is bounded as ti, ci, and Zi are

bounded. It follows that the numerator converges to zero and so

max
i=1,...,N

(mi −m∞i)2∑N
k=1(mk −m∞k)2

−→ 0.

Assumption (5): There exists 0 < ε < 0.5 such that ε < pi < 1− ε for all i.

This assumption is met due to the constant treatment assignment probability.
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APPENDIX O

Comparison Procedure for the Tournament Classifier

In this section, we provide details for the comparison method introduced in Section 5.3.

Transformation Recall that after we leave out the i-th observation, we transform each

predictor for the remaning observations such that the mean of each transformed predictor will

be 1 for the observations in S\i, and −1 for observations in Sc\i. In addition, for a predictor

that predicts the class label Y well, we would expect the values of the transformed predictor

for observations in S\i to be closely clustered around 1, and the values for observations in

Sc\i to be closely clustered around −1. For predictors that do not predict the class label

well, the transformed predictor will fluctuate more.

For a predictor Xj, we leave out the i-th observation and then we use the following

procedure:

1. Let m
(1)
ij be the mean of Xj for the observations in the set S\i and m

(−1)
ij be the mean

of Xj for the observations in class Sc\i

2. Set cij = 0.5× (m
(1)
ij +m

(−1)
ij )

3. Define X
(i)
kj = Xkj − cij for k 6= i

4. Let sij = 1
|S\i|

∑
k∈S\iX

(i)
kj
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5. Set Zij =
Xij−cij
sij

We repeat this procedure for all i to obtain the transformed predictor Zj = (Z1, . . . , Zn).

Comparing the Transformed predictors We interpolate between each pair of trans-

formed predictors to form a single predictor. For a pair Z1 and Z2, we wish to obtain

weights wi,{1,2} that minimize the distance between Yi and the interpolation Zi,{1,2} =

wiZi1 + (1− wi)Zi2 for i = 1, . . . , n. To do this we set

wi,{1,2} = argmin
x∈[0,1]

∑
k 6=i

{Yk − (xZk1 + (1− x)Zk2)}2 .

Taking the derivative with respect to x and setting equal to 0, we have

wi =

∑
k 6=i(Yk − Zk2)(Zk1 − Zk2)∑

k 6=i(Zk1 − Zk2)2
,

which we then restrict to be in the interval [0, 1].
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APPENDIX P

Diagnostic Plots for Section 5.4.2

We display diagnostic plots related to our analysis of the microarray data sets. In Figure

P.1, we show scree plots (for each data set) of the proportion of variance explained by

each of the first 10 principal components. In Figure P.2, we show the values of the top 10

coefficients for the fitted tournament classifier model. We observe no discernible patterns to

explain performance discrepancies between lasso and tournament classifier.
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Figure P.1: Scree plots for the microarray data sets. In each plot, we plot the variance explained
by each of the first 10 principal components for a given data set.
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Figure P.2: Values of the top 10 tournament classifier coefficients for the microarray data sets. In
each plot, we plot the top 10 coefficient values for a given data set.
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