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Abstract 

Carboxylesterase 1 (CES1) is a major phase I drug-metabolizing enzyme, 

responsible for 80-95% of total hydrolytic activity in human livers. CES1 plays a crucial 

role in the metabolism of a wide range of drugs, pesticides, environmental pollutants, 

and endogenous compounds. The clinical relevance of CES1 has been well 

demonstrated in various clinical trials with methylphenidate, oseltamivir, and clopidogrel. 

Expression and activity of CES1 vary markedly among individuals, which is a major 

contributing factor to interindividual variability in the pharmacokinetics (PK) and 

pharmacodynamics (PD) of drugs metabolized by CES1. The loss-of-function SNP 

G143E (rs71647871) is the only clinically significant CES1 variant identified to date.  

A multi-dose, prospective pharmacogenetics, pharmacokinetics-

pharmacodynamics (PGx-PK/PD) clinical trial was conducted in healthy volunteers 

(n=21) to examine the impact of G143E on the PK and PD of a CES1 substrate, 

enalapril.  Enalapril 10mg was given once daily for seven consecutive days to the 

G143E carriers (n=6) and the G143E non-carriers (n=15) prior to a 72h PK/PD study. 

The study found the CES1 G143E carriers had 30.9% lower enalaprilat Cmax (P = 0.03), 

27.5% lower enalaprilat AUC0-∞ (P = 0.02), and 32.3% lower enalaprilat-to-enalapril 

AUC0-∞ ratio (P = 0.003) compared to the non-carriers. The average maximum reduction 

of systolic blood pressure (SBP) was used as the PD surrogate marker. The non-carrier 

group had 12.4% lower SBP at the end of the study compared to the baseline (P = 

0.001), while no statistically significant SBP reduction was observed in the G143E 
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carriers. The study confirmed the CES1 G143E variant significantly impacted the PK 

and PD of enalapril.  

G143E, however, can only explain a small portion of the interindividual variability 

in the CES1 function. A better understanding of the regulation of CES1 expression and 

activity could lead to the development of a precision pharmacotherapy strategy to 

improve the efficacy and safety of many CES1 substrate drugs. Here, we developed a 

novel allele-specific protein expression (ASPE) assay to identify genetic variants 

regulating CES1 protein expression in human livers. The ASPE method adopted a 

custom-designed heavy stable isotope-labeled QconCAT internal standard and utilized 

a nonsynonymous variant, S75N (rs2307240), as the marker to determine the allelic 

expression of CES1. Two cis-acting regulatory variants (rs6499788, rs35918553) were 

found to be associated with CES1 ASPE and protein expression in human liver 

microsome (HLM) samples (P < 0.05). The effects of the two variants were further 

validated by the CES1 protein expression and activity studies in human liver S9 

fractions (HLS9) (P < 0.05). We expect that combining all identified functional CES1 

variants (e.g., G143E, rs6499788, and rs35918553) will provide a more holistic view of 

CES1 pharmacogenetics and allow us to better predict the PK and PD of medications 

metabolized by CES1.  
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Chapter 1: Background and Literature Review1 

 Importance of CES1 in Drug Metabolism 

Carboxylesterase 1 (CES1) is a phase I drug-metabolizing enzyme (DME) 

responsible for 80-95% of total hydrolytic activity in the liver 2; it metabolizes a wide 

range of drugs, pesticides, environmental pollutants, and endogenous compounds, 

including lipid esters (Table 1-1). CES1-mediated metabolism can lead to the 

biotransformation of a pharmacologically active drug into its inactive metabolite, as 

exemplified by methylphenidate hydrolysis in the liver. CES1 also plays an important 

role in activating prodrugs since most ester-containing prodrugs are exclusively 

dependent on CES1 for their activation. The clinical relevance of CES1 has been well 

demonstrated in various clinical trials with oseltamivir, methylphenidate, and clopidogrel 

3-6. Recent studies have also revealed that CES1 acts as a cholesteryl ester hydrolase 

in lipid metabolism in human macrophages and hepatocytes and suggest CES1 as a 

potential drug target for the treatment of metabolic diseases, such as diabetes and 

atherosclerosis 7-11. 

CES1 plays an important role in metabolizing many clinically significant 

medications, especially the ester-prodrugs (Table 1-1). A prodrug refers to an inactive 

drug molecule that needs to be enzymatically biotransformed in vivo to its active 

metabolite to produce its intended pharmacological effect 12. Prodrug design offers an 

attractive method to overcome the issue of low bioavailability for Biopharmaceutics 
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Classifications System (BCS) class III drug molecules. Drug molecules can be 

categorized into four BCS classes based on permeability and solubility, and a BCS 

class III substance is a hydrophilic compound with low permeability and high solubility 

13. In particular, hydrophilic compounds with –OH or –COOH functional groups usually 

have difficulty being absorbed into the body, and drug developers often mask these 

functional groups using an ester-prodrug design. The prodrug market has been growing: 

20% of drugs approved in 2015 were prodrugs, compared to ~6% of all currently 

approved drugs 14. 

Table 1-1 List of CES1 Substrates.  

ACE Inhibitors CNS Agents 
Antihyperlidpidemia 
Agents 

Enalapril* Methylphenidate Simvastatin* 

Imidapril* Cocaine Lovastatin* 

Benzapril* Heroin Clofibrate 

Quinapril* Mepridine Fenofibrate 

Ramipril* Flumazenil   

Trandolapril* Rufinamide   

Antiviral Agents Anticancer Agnet 
Chemical Warfare 
Agents 

Oseltamivir* Capecitabine* Sarin 

Sofosbuvir* Irinotecan Soman 

Tenofovir alafenamide* Telotristat etiprate* Tabun 
Endogenous 
Compounds Antiplatlets/Anticoagulants Pesticides 

Cholesterol Clopidogrel trans-permethrin 

Fatty acid ethyl esters Dabigatran* Para-nitrophenyl valerate 

ARNi  
Immunosuppressive 
Agents Others 

sacubitril* Mycophenolate mofetil* Dimethyl fumarate* 

  Ciclesonide Oxybutynin 
*Prodrugs that need CES1 activation 

Two major assumptions behind the ester-prodrug design are that prodrugs are 

rapidly activated via unspecific esterases in the body, and that the interindividual 
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variability in activating a prodrug is clinically insignificant. These incorrect assumptions 

may have stemmed from the fact that many hydrolytic enzymes exist in the body, such 

as CES1, CES2, acetylcholinesterase, butyrylcholinesterase, paraoxonases, and 

arylesterase. However, these hydrolases differ in their tissue-specific expression, 

cellular localization, and most importantly, substrate selectivity 15. In humans, CES1 is 

highly abundant in the liver and expressed to a less extent in the lung and brain; CES1 

expression is considered negligible in the human intestine, kidney, and plasma. CES1 is 

substrate-selective towards carboxyl esters with a large ethyl group and a small alcohol 

group. In comparison, CES2, another major carboxylesterase in humans, is highly 

expressed in the intestine, kidney, and liver, and is more efficient at metabolizing 

compounds with a small ethyl group and a large alcohol group 16. Numerous in vivo and 

in vitro studies have demonstrated the specificity of CES1, and many CES1 substrates 

cannot be metabolized by other esterases. 

CES1 expression and activity vary significantly among individuals 17; this 

variability could result in treatment failure and unexpected adverse effects of CES1 

substrate drugs. A better understanding of the genetic and non-genetic factors 

contributing to CES1 variability will improve the design and clinical use of many drugs 

that are metabolized (deactivated/activated) by CES1. 

 Pharmacogenetics of Drug-Metabolizing Enzymes 

 Traditionally, fixed-dose regimens have been used for most medications. 

However, different individuals taking the same dose of medication do not necessarily 

achieve the same drug exposure and hence drug response. More individualized, 
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patient-centered dosing regimens have been developed based on a patient’s 

characteristics, such as renal clearance, liver function, body weight, and surface area 18. 

In addition, genetic polymorphisms of DMEs have been found to play an important role 

in response to pharmacotherapy, and pharmacogenomics has been increasingly utilized 

in the clinic to improve the efficacy and safety of drug treatment. DMEs serve to 

primarily detoxify digested xenobiotics through four general mechanisms: hydrolysis 

(e.g., carboxylesterase), reduction (e.g., carbonyl reductase), oxidation (e.g., 

cytochrome P450), and conjugation (e.g., UDP-glucuronosyltransferase) 19. The 

expression and activity of DMEs vary significantly among individuals, and studying 

pharmacogenomics of DMEs is one means of better understanding interindividual 

variability in the PK and PD of a drug. For example, the active metabolite of irinotecan, 

SN-38, is primarily metabolized by the enzyme UDP glucuronosyltransferase family 1 

member A1 (UGT1A1 enzyme) 20. If a patient carries the common UGT1A1*28 

polymorphism, the decrease it causes in UGT1A1 enzymatic activity would impede the 

metabolism of SN-38, leading towards the accrual of toxic concentrations. Accordingly, 

the Food and Drug Administration (FDA) recommended that patients with 

UGT1A1*28/*28 start irinotecan at a lower dose 21. However, given that both genetic 

and environmental factors contribute to DME function, we should also pay close 

attention to non-genetic contributors when studying the variability of DMEs. 

 CES1 Pharmacogenetics 

Although CES1 plays a critical role in the metabolism of many clinically important 

medications, CES1 pharmacogenetics is understudied relative to other major DMEs 

(e.g., CYP450s). CES1 is encoded by the CES1 gene, consisting of 14 exons located 
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on chromosome 16q13-q22.1.  CES1 VAR is a variation of the CES1 gene that differs in 

exon 1 DNA sequences and has an average minor allele frequency (MAF) of 17%. 

Although one study claimed that CES1 VAR mRNA was undetectable 22, an in vitro 

human liver study showed that the protein expressions of CES1 and CES1 VAR were 

not statistically different 17. CES1P1 is a pseudogene due to a premature stop codon in 

exon 4 and lies tail-to-tail with CES1 (Figure 1-1) 17. Interestingly, a CES1P1 variant 

named CES1P1 VAR is a functional coding gene with a DNA sequence identical to 

CES1 VAR. However, the transcription efficiency of CES1P1 VAR is only 2% of that of 

CES1, due to the transcription factor Sp1, and the enhancer-binding protein C/EBPα 

preferring to bind to the CES1 promoter over the CES1P1 VAR promoter 23,24. Due to 

the existence of the CES1 VAR and CES1P1 VAR variants, four CES1/CES1P1 

haplotypes can be formed (Figure 1-1). In addition to these structural variations, there 

are over 7000 CES1 SNPs registered in the NCBI SNP database, and approximately 

300 of them have MAFs over 1%. These common CES1 variants (MAF > 1%) are 

distributed in various regions of the gene, including 13 in 5’-UTR and 3’-UTRs, 14 in 

exons, and 308 in introns. Of the exonic SNPs, 12 are non-synonymous SNPs and two 

are synonymous SNPs. In the following section, we discuss the clinical findings and 

mechanistic bases of functional CES1 variants identified to date. 
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Figure 1-1 CES1 gene structure and haplotypes. CES1 gene consists of 14 exons 
located on chromosome 16q13-q22.1, and CES1P1 is a pseudogene, lying tail-to-tail with 
CES1. CES1, CES1P1 and their variants CES1 VAR and CES1P1 VAR form four major 

haplotypes. Red represents where the stop codon is located at. The transcription 
efficiency of CES1P1 VAR is approximately 2% of CES1. 

 

 The Loss-of-Function CES1 Variant G143E (rs71647871) 

In SNP notation, G143E indicates an amino acid change from glycine to 

glutamic acid at amino acid position 143. G143E is also termed 428G>A, indicating that 

the nucleotide guanine is changed to adenine at position 428 of the CES1 mRNA 18. 

The MAF of G143E is 3.7%, 4.3%, and 2%, in White, Hispanic, and African American 

populations, respectively, while the SNP is extremely rare in Asian populations 5,25.  

G143E is a non-conservative amino acid substitution located near the active-

site triad residues of CES1 (serine 221, glutamic acid 354, and histidine 468). Serine 
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hydrolases share a similar catalytic mechanism involving (1) nucleophilic attack from 

oxygen in the serine residue on a substrate ester bond, (2) formation of a tetrahedral 

intermediate where the deprotonated oxygen is stabilized via an oxyanion hole, (3) 

formation of an acyl-enzyme intermediate, and (4) water-catalyzed hydrolysis 26. For 

CES1 to maintain its enzymatic function, the catalytic triad and oxyanion hole need to 

be conserved 5,27. The change from glycine (hydrophobic residue) to glutamic acid 

(electrostatic residue) at codon 143 disrupts the hydrophobicity needed for the oxyanion 

hole (Gly 141-131), resulting in a complete loss of function of CES1. The G143E is the 

only CES1 SNP that has been subjected to in vitro kinetics studies, in which the variant 

exhibited null catalytic activity on all tested CES1 substrates except for oseltamivir 

(Table 1-2). The Vmax of G143E on oseltamivir hydrolysis was 37 nmol/min/mg with 

catalytic efficiency of 17.2 μl/min/mg protein — this was approximately 16% of wild type 

CES1 catalytic efficiency 28. 
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Table 1-2 In vitro kinetics of wild type CES1 in human liver S9 fractions (HLS9). 

CES1 Substrates 

HLS9 

Reference 
Vmax 

(pmol/min/m
g protein) 

Km (μM) 
Catalytic Efficiency 

(Vmax/Km, μl/min/mg 
protein) 

Clopidogrel 3558.6 62.7 56.8 

 
Zhu29 

2-oxoclopidogrel 
(clopidogrel 

intermediate) 
158.1 2.4 65.9 

Enalapril 67.5 60.1 1.1 

Wang17 

Ramipril 18100 690.4 26.2 

Perindopril 18100 1767 23.3 

Moexipril 4400 1457 12.7 

Fosinopril 1400 471.3 3.0 

l-methylphenidate 1701 775.7 2.2 
Zhu5 

d-methylphenidate 177.2 663.5 0.3 

Oseltamivir 145000 1380 105.1 Zhu28 

Trandolapril 103600 639.9 161.9 Zhu30 

Dabigatran 1174 33.5 35.0 Laizure31 

 

 Clinical Impact of CES1 Variant G143E 

1.5.1 Discovery of G143E and its Impacts on Methylphenidate PK and PD 

G143E is the first loss-of-function (LOF) variant known for CES1 and was 

originally discovered in a methylphenidate (Ritalin®) PK study in healthy volunteers. 

Methylphenidate is a central nervous system stimulant, the most commonly prescribed 

medication for ADHD treatment and has high abuse potential when used with alcohol 32. 

Its drug product comes as a racemic mixture of d- and l-methylphenidate hydrochloride; 

d-methylphenidate is approximately 10 times more pharmacologically potent than l-

methylphenidate 33.  
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Methylphenidate is metabolized by de-esterification via CES1 to ritalinic acid, an 

inactive metabolite which accounts for approximately 80% of the recovered dose in 

human urine (Figure 1-2) 32,34. In 2007, a prospective single-dose (0.3 mg/kg) PK study 

was conducted in twenty healthy volunteers to examine the DDI between 

methylphenidate and alcohol 35. During this study, the researchers unexpectedly found 

a participant that showed significantly elevated pharmacokinetic parameters (e.g., AUC, 

Cmax) of methylphenidate. Specifically, dl-methylphenidate Cmax was seven times higher, 

and l-methylphenidate Cmax was 100-fold higher in this poor metabolizer compared to 

the rest participants. Later analysis found that this poor metabolizer carried the G143E 

polymorphism in CES1 and the D260fs polymorphism in CES1P1 5. This study also 

concluded that while CES1 metabolism is substantially stereoselective towards l-

methylphenidate, d-methylphenidate metabolism is also significantly impacted by CES1 

dysfunction. 

Figure 1-2 D-methylphenidate comes as a single active ingredient (Focalin®) or 
in combination with l-methylphenidate (racemic mixture) (Ritalin®). D-methylphenidate 
is approximately 10 times more pharmacologically potent than l-methylphenidate, while 
l-methylphenidate is a better CES1 substrate. Ethylphenidate can be formed via 
transesterification with ethanol. 
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Following the discovery of the G143E variant, a retrospective study was 

conducted to examine the methylphenidate response in Hungarian ADHD patients with 

G143E (n=7) and non-carrier patients (n=115). Even though the CES1 genotype could 

not explain the entire interindividual variability between responders (n=90) and non-

responders (n=32), the study demonstrated an association between G143E 

polymorphism and methylphenidate dose reduction: five responders who had the 

G143E polymorphism required lower doses of methylphenidate for symptom reduction 

(0.410 vs 0.572 mg/kg, P=0.022) 36. In 2017, a healthy volunteer study confirmed the 

significance of G143E in the PK of methylphenidate. In this open-label, prospective 

clinical trial (n=22), study participants carrying the G143E SNP (n=6) had approximately 

152.4% higher median AUC of d-methylphenidate (53.3ng×ml-1×h-1) than the non-carrier 

group (21.4 ng×ml-1×h-1) (P<0.0001) 37. 

 The above studies suggest that G143E carriers may be at high risk of being 

exposed to a toxic methylphenidate concentration. This result is clinically impactful 

because methylphenidate is considered the first-line pharmacotherapy for ADHD, with 

approximately 40 million prescriptions dispensed every year 38. This result could 

potentially explain why many patients have an unsatisfactory response to the treatment. 

Further clinical studies in ADHD patients with larger sample sizes are needed to fully 

understand the effect of CES1 variants on the efficacy and toxicity of methylphenidate, 

and how methylphenidate doses should be adjusted based on a patient’s CES1 

genotypes.   
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1.5.2 G143E and Clopidogrel (Plavix®) 

Clopidogrel is a P2Y12 inhibitor and has several clinical indications, including 

myocardial infarction prophylaxis, cerebrovascular accident prophylaxis, and peripheral 

arterial occlusive disease prophylaxis. Clopidogrel is usually considered the first-line 

antiplatelet agent due to its proven efficacy and cost-effectiveness 39-41. Clopidogrel is a 

non-ester-prodrug that needs to be activated by two oxidation reactions via several 

CYPs (Figure 1-3). CYP2C19 pharmacogenetics and its impact on clopidogrel activation 

have been extensively studied. The Clinical Pharmacogenetics Implementation 

Consortium (CPIC) guideline and the FDA both recommend intermediate and poor 

metabolizers of CYP2C19 to use an alternative antiplatelet agent, such as ticagrelor or 

prasugrel 42. Clopidogrel, its intermediate, and active metabolites are all CES1 

substrates and metabolized by CES1 to inactive hydrolytic metabolites (Figure 1-3). 

Approximately, 85% of clopidogrel is hydrolyzed by CES1, and only 15% of clopidogrel 

enters the CYPs-mediated activation pathway 29. Thus, patients with CES1 dysfunction 

would have a higher concentration of clopidogrel active metabolite compared to normal 

CES1 metabolizers when taking the same dose. However, the impact of CES1 on the 

PK and PD of clopidogrel is less studied than the impacts of CYPs.  
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Figure 1-3 Clopidogrel metabolic pathway. Clopidogrel is a non-ester-prodrug 
that needs to be activated by two oxidation reactions via CYPs. Clopidogrel and its 
intermediate and active metabolites are all metabolized (deactivated) by CES1. 

Two clinical trials support that CES1 G143E carriers have significantly higher 

plasma concentrations of clopidogrel active metabolite compared to non-carriers. A 

retrospective sub-analysis was performed on participants of the Pharmacogenomics of 

Antiplatelet Intervention (PAPI) Study (n=506) and on clopidogrel-treated patients at 

Sinai Hospital (n=350) to examine the effect of CES1 G143E on clopidogrel metabolism. 

Study participants received a 300mg loading dose of clopidogrel followed by a 75mg 

maintenance dose for six days, and platelet aggregation was measured as a PD 

marker. A 50% higher active metabolite concentration was observed in G143E carriers 
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(n=7, 30.3 ng/ml) compared to non-carriers (n=499, 19.0 ng/mL) (P=0.001). In addition, 

the inhibition of adenosine diphosphate (ADP)-induced platelet aggregation was 24% 

higher in G143E carriers (reduced to 71% from baseline) relative to non-carriers 

(reduced to 57% from baseline) (P=0.003) 3,4,43. Another prospective, single-dose, 

healthy volunteer (n=22) clinical study was conducted by Tarkiainen et al. to determine 

the effect of CES1 G143E on clopidogrel metabolism. The authors found that the AUC0–

∞ ratio of clopidogrel carboxylic acid (inactive metabolite (1) in Figure 1-3) to clopidogrel 

was 53% less in G143E carriers (n=10) than non-carriers (n=12) (P=0.009). The G143E 

carriers also exhibited significantly higher plasma concentrations of the parent 

compound clopidogrel (P = 0.004) and its active metabolite (P = 0.009) compared to 

non-carriers. In agreement with the PK findings, the average inhibition of P2Y12-

mediated platelet aggregation in the carriers was 19 percentage points higher than in 

non-carriers (P = 0.036) 29,44. The findings of the above two studies are especially 

important for patients on triple antithrombotic therapy with a high bleeding risk 45-47. 

Clopidogrel dose adjustment may be necessary to prevent potential toxicity (i.e., 

bleeding) in patients with CES1 dysfunction. 

1.5.3 G143E and Angiotensin-Converting Enzyme Inhibitors (ACEIs) 

Angiotensin-converting enzyme inhibitors (ACEIs) are generally considered to be 

the first-line therapy for heart failure and hypertension, and approximately 150 million 

ACEI prescriptions are filled in the US annually 48. Currently, eight out of ten FDA-

approved ACEIs are ester-containing prodrugs, and all ACEI prodrugs need to be 

activated by CES1 in order to exert their intended therapeutic effects 49,50. The 

activation is essential for the pharmacological effects as the active metabolites are 10-
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1,000 times more potent than their prodrug forms 51. Therefore, patients with CES1 

dysfunction would have a lower concentration of the ACEI active metabolite relative to 

normal CES1 metabolizers (Figure 1-4). 

 

 

 

 

 

 

 

 

 

 

Figure 1-4 ACE inhibitors (enalapril and trandolapril) metabolism. Enalapril and 
trandolapril are ester-prodrugs that need to be activated by CES1. 

A prospective, single-dose pharmacokinetic clinical study was conducted in 

healthy volunteers to examine the effect of the G143E variant on the activation of the 

ACEI prodrugs enalapril and quinapril. The AUC0–∞ of the enalapril active metabolite 

enalaprilat was found to be 20% lower in the G143E carriers (n=10) than in non-carriers 

(n=12) (P=0.049) 52. This finding is consistent with an in vitro study that showed that 

enalapril activation was impaired in liver samples carrying the G143E variant 17. 

However, the AUCs0-∞ of the quinapril and its active metabolite (quinaprilat) were not 

significantly different between carriers and non-carriers (P=0.114). A prospective, 

single-dose pharmacokinetic clinical trial with trandolapril also reported no statistically 

significant differences in PK parameters between the CES1 G143E carriers and the 
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non-carrier group 53. Further investigations are warranted to fully understand the effect 

of CES1 variants on the PK and PD of ACEI prodrugs. 

1.5.4 G143E and Oseltamivir (Tamiflu®) 

Oseltamivir is an antiviral drug that has an FDA indication for influenza types A 

and B infections. Even though oseltamivir is rarely effective due to its specific 

administration requirement (i.e., this medication should be taken within 2 days of onset 

of symptoms in order to reduce flu duration by approximately one day), oseltamivir 

remains one of the most prescribed drug products due to flu epidemics 54,55. As an 

ester-prodrug, oseltamivir needs to be activated by CES1 into its active metabolite, 

oseltamivir carboxylate 56. An in vitro study based on cell lines stably transfected with 

CES1 variants suggested the G143E SNP markedly impaired CES1 activity in 

oseltamivir activation 28. 
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To examine the effect of G143E on oseltamivir PK and activation, a prospective, 

single-dose pharmacokinetic clinical study was conducted in healthy volunteers 

consisting of nine G143E heterozygotes, one G143E homozygote, and 12 non-carriers. 

The AUC0–∞ ratio of oseltamivir carboxylate (active metabolite) to oseltamivir (parent 

molecule) was 23% lower in G143E heterozygotes compared to non-carriers (P = 

0.006). The one G143E homozygous individual had an AUC0–∞ of oseltamivir that was 

approximately 360% greater than the non-carriers, indicating that loss of CES1 activity 

could profoundly impair oseltamivir activation 6.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1-5 Dabigatran metabolic pathway. Dabigatran is a prodrug that activated 
by both CES1 and CES2.  
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1.5.5 G143E and Dabigatran and Aacubitril  

Dabigatran and sacubitril are both prodrugs that need to be activated by CES1 in 

the liver (Figure 1-5). In vitro studies showed that the formation rates of the active 

metabolites of dabigatran and sacubitril were significantly lower in human livers carrying 

the G143E variant than in non-carrier samples 57,58. However, it remains undetermined 

whether the variant can affect the activation and therapeutic response of these two 

drugs in patients. 

 Pharmacogenetics of Other CES1 Genetic Variants 

In addition to G143E, many other CES1 variants have been studied for their 

effects on the PK and PD of CES1 substrate drugs. However, the results were generally 

inconclusive, and further studies are needed to determine the clinical significance of 

these variants. 

1.6.1 E220G (rs200707504)  

A nonsynonymous variant E220G, commonly referred to as c.662A>G, was 

suggested to decrease CES1 enzymatic activity in an in silico analysis 59. In agreement 

with that prediction, an in vitro study on transfected cell lines found E220G markedly 

decreased CES1 activity and the metabolisms of several CES1 substrates, including 

enalapril, clopidogrel, and sacubitril 60. Notably, E220G has a MAF of 0.55% in East 

Asians but is rare in other populations. To determine the clinical impact of E220G on the 

PK of a CES1 substrate, a single-dose oseltamivir (75mg) PK study was conducted in 

20 healthy Korean volunteers. In this study, the variant was observed to have a 

marginal effect on the PK of oseltamivir and its active metabolite (oseltamivir 
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carboxylate); however, the differences were statistically insignificant. In the E220G 

carriers (n=8), the AUC0-48h of oseltamivir was increased by 10% (P = 0.334), and the 

AUC0-48h of oseltamivir carboxylate was decreased by 5% (P = 0.513) relative to the 

non-carriers (n=12) 59. 

1.6.2 S75N (rs2307240) 

S75N is one of the most common CES1 nonsynonymous SNP with MAFs 

ranging from 2% to 7% in different populations. A retrospective pharmacodynamics 

analysis was conducted to examine the effect of CES1 S75N on the outcome of 

clopidogrel therapy in patients with the coronary syndrome (n=851). The result showed 

that CES1 S75N carriers (n=372) had higher incidence of cerebrovascular events (P < 

0.001), acute myocardial infarction (P < 0.001), and unstable angina (P < 0.001) 

compared to non-carriers. The study also found that the S75N polymorphism was more 

frequent in acute coronary syndrome patients (MAF 22%) than in the general population 

(MAF 5%). The authors concluded that there was a significant association between the 

S75N polymorphism and the outcome of clopidogrel therapy 61. However, this result 

conflicts with another study that found the S75N variant to be not associated with the 

outcomes of ADHD patients treated with methylphenidate 62. Furthermore, an in vitro 

study showed the S75N variant did not significantly alter the expression and activity of 

CES1 in transfected cells and human livers 60. 

1.6.3 -816A>C (rs3785161) 

The -816A>C polymorphism is located in the promoter region of CES1P1 VAR 

and has been suggested as a potential up-regulator of CES1P1 VAR expression 24. A 
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prospective clinical study was conducted to examine the impact of -816A>C on the 

outcome of the ACEI prodrug (imidapril) therapy in hypertensive patients (n=105). The 

study found that after eight weeks of imidapril therapy, -816A>C homozygotes and 

heterozygotes (n=47) had greater systolic blood pressure reduction (24.1 mmHg) 

compared to non-carriers (17.6 mmHg) (P = 0.0184), indicating increased CES1 

functionality in the carriers. The follow-up in vitro study claimed that the -816A>C SNP 

might have enhanced transcription of the CES1P1 VAR gene 63. The -816A>C SNP was 

also evaluated for its impact on the outcomes of dual antiplatelet therapy (i.e., aspirin 

and clopidogrel) in patients with coronary heart diseases (n=162). The -816A>C carriers 

(n=75) had decreased vasodilator stimulated phosphoprotein-platelet reactivity index 

(VASP-PRI) (P=0.014), indicating increased CES1 function in the carriers 64. 

However, conflicting findings were reported by other studies. A study involving 

the outcome of clopidogrel treatment in patients undergoing percutaneous coronary 

intervention, -816A>C carriers showed a lower ADP-induced maximum platelet 

aggregation (21.5%, n=125) compared to non-carriers (31.7%, n=124) (P=0.001), 

indicating decreased CES1 function 65. Zhu et al. also performed a retrospective 

pharmacogenetic analysis of the INternational VErapamil SR Trandolapril (INVEST) 

study (n=486) and did not find an association between -816A>C and the blood 

pressure-lowering effect of trandolapril. The follow-up in vitro study also showed -

816A>C genotype was not significantly associated with CES1 protein expression and 

trandolapril activation in human liver samples (n=100) 66. Other researchers also noted 

that the CES1P1 VAR gene, which contains -816A>C, is considered functionally 

insignificant due to its low transcription efficiency 23,67. 
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1.6.4 -75G>T (rs3815583) 

The -75G>T SNP is located in the promoter region of CES1 and was suspected 

to alter CES1 expression in the liver; however, the findings are conflicted. A study was 

performed to determine the association between the variant and appetite reduction (a 

side effect of methylphenidate) in children with ADHD (n=213). Appetite reduction was 

measured by the Barkley Stimulant Side Effect Rating Scale, and methylphenidate dose 

was titrated up for three months as tolerable. The carrier group (n=129) had worse 

appetite reduction compared to non-carriers (n=76) (41% vs. 77%, P=0.01), indicating 

that the variant was associated with decreased CES1 function 68. A study in patients 

treated with irinotecan, however, showed a contrary finding, suggesting that the -75G>T 

variant confers greater CES1 function 69. CES1 is involved in the conversion of the 

prodrug irinotecan to its active metabolite, SN-38, and then further metabolized by 

UGT1As to inactive SN-38G. Following irinotecan treatment, patients who carried the T 

allele of this variant had higher plasma (SN-38 + SN-38G)/irinotecan AUC ratios relative 

to non-carriers (P=0.027) following irinotecan treatment 69.  

Other CES1 substrates, isoniazid, and ACEI prodrugs were also studied in the 

context of -75G>T; however, no significant relationships were found between the variant 

and the medication responses. In one such study, the variant was evaluated for its 

effect on the outcomes of ACEI prodrugs in congestive heart failure patients (n=200) 

that underwent ACEI prodrug dose titrations. The study reported -75G>T did not 

significantly impact plasma ATII/ATI ratios; furthermore, the -75G>T variant was not 

significantly associated with fatal outcomes (i.e. cardiovascular death and all-cause 
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death) 70. The study with isoniazid had similar results showing no significant association 

between the variant and isoniazid-induced hepatotoxicity (n=170) 71. 

1.6.5 1168-33C>A (rs2244613) 

Dabigatran (Pradaxa®) is a prodrug that needs to be activated by both CES1 and 

CES2 to exert its anticoagulant effect (Figure 1-5). Paré and associates conducted a 

genome-wide association study of dabigatran in participants (n=2944) of the 

Randomized Evaluation of Long-term Anticoagulation Therapy (RE-LY) clinical trial. The 

researchers concluded the CES1 intronic variant 1168-33C>A (rs2244613) is 

associated with lower trough concentrations of the active metabolite (15% decrease per 

allele; 95% CI 10-19%) and a lower risk of any bleeding (odds ratio, 0.67; 95% CI 0.55-

0.82) compared to non-carriers 72. However, an in vitro study did not find the variant to 

be associated with CES1 protein expression and dabigatran metabolism in human livers 

73. A prospective study also examined the impact of 1168-33C>A in ADHD patients 

treated with methylphenidate, and found the variant to be associated with the 

occurrence of sadness, a side effect of short-acting methylphenidate. However, 

researchers concluded this might be due to linkage disequilibrium with two SNPs of the 

noradrenaline transporter gene 62. 

1.6.6 Copy Number Variation (i.e., CES1P1/CES1P1 VAR) 

Many researchers have studied the impact of CNVs on CES1 functionality; 

however, the results are conflicted. Stage et al. found that participants with four 

functional copies of CES1 (n=5) had an increased AUC of d‐methylphenidate relative to 

the control group with two functional copies of CES1 (n=17) (61% increase, P = 0.011); 
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participants with three copies of CES1 (n=2) had 45% increased AUC compared to the 

control group (P = 0.028) 37. Stage et al. conducted a similar study with enalapril (n=43), 

however, they could not find a statistically significant correlation between CNV and 

enalapril PK 74. When Sai et al. examined the effect of CNV on irinotecan exposure, 

they found patients with multiple CES1 copies (i.e., three or four) to have 1.24 fold 

higher irinotecan AUC relative to patients with two copies of CES1 (P = 0.0134) 69. 

Many researchers, however, did not find the relationship between CNVs and CES1 

function. Suzaki et al. evaluated the relationship between CNVs of CES1 and 

oseltamivir PK parameters but did not find any correlation 75. Nelveg-Kristensen et al. 

studied the relationship between CNV and ACEI prodrugs, and again, no association 

was found 70. Moreover, an in vitro study showed CES1 protein expression levels to be 

comparable among human livers with different copy numbers of functional CES1 gene 

17. 

1.6.7 Other CES1 SNPs  

In addition to the polymorphisms discussed above, sporadic reports have stated 

several CES1 SNPs to be associated with the outcomes of CES1 substrate 

medications. For example, the SNP 1315 + 2025A>C (rs8192950) was associated with 

a decreased risk of ischemic events in patients (n=64) having symptomatic extracranial 

or intracranial stenosis and receiving dual antiplatelet therapy with clopidogrel for a 

minimum of five days 76. Another retrospective sub-analysis of a capecitabine clinical 

study identified associations of 1168-41C>T (rs2244614), 690 + 129del (rs3217164), 

95346T>C (rs7187684), -1232A>G (rs1186118) with severe early-onset of 
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capecitabine-induced toxicity 77. None of these findings has been validated 

independently. 

A rare LOF variant, D260fs (c.70DelT), was reported in a clinical study 5. D260fs 

causes a deletion in exon 6, resulting in a frameshift and premature truncation. 

Moreover, an in vitro study with CES1 variants transfected cell lines examined the SNPs 

proximate to the CES1 active site, and identified four LOF nonsynonymous SNPs: 

G142E, G147C, Y170D, and R171C. However, these variants appear to be clinically 

insignificant due to their low MAFs (< 0.4%) 78. 

The above-mentioned CES1 SNPs and their impacts on the PK and PD of CES1 

substrate medications are summarized in Table 1-3. 
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Table 1-3 CES1 SNPs and their impacts on the PK and PD of CES1 substrate medications 
AA/Nucleot
ide Change 
(db SNP ID) 

Treatment Population Design/Outcome Result Conclusion 

G143E 
(rs7164787
1) 
 
 
 
  

Methylpheni
date 
 
Single dose 
of 0.3mg/kg 

n=20 (with 1 
carrier) 
 
Healthy 
volunteers 

Prospective  
study  
 
Aim: To examine 
the interaction 
between 
methylphenidate 
and alcohol 

The study unexpectedly found 
one volunteer with elevated PK 
parameters of methylphenidate; 
Cmax of l-methylphenidate was 
100 fold higher (62 ng/mL) 
compared to the rest of 
participants 

The later analysis found 
this volunteer had G143E 
and D260fs SNPs, which 
resulted in elevated 
plasma concentration of 
methylphenidate 

 
Methylpheni
date  
 
Dose 
adjusted 
based on 
symptom 
reduction x 
1 month 

n=122 (with 7 
carriers) 
 
Hungarian 
ADHD patients 

Retrospective 
study 
 
Outcome: 
methylphenidate 
dose reduction 

G143E carriers needed lower 
doses of methylphenidate for 
symptom reduction compared to 
non-carriers (0.410 vs 0.572 
mg/kg , p=0.022) 

G143E impaired 
methylphenidate 
metabolism in vivo 

 
Methylpheni
date 
 
Single dose 
10mg 

n=22 (with 6 
carriers) 
 
Healthy Danish 
Volunteers 

Open labeled, 
prospective, PK 
study 

G143E carriers showed 152.4% 
higher AUC (53.3ng×ml-1×h-1) 
compared to the non-carrier 
group (21.4 ng×ml-1×h-1) 
(P<0.0001) 

G143E carriers had higher 
exposure to 
methylphenidate 
compared to non-carriers 

 
Clopidogrel 
 
(1) PAPI 
patients 
received 
300mg LD 
with 75mg 
MD 

n=506 (with 7 
carriers) 
 
 
 
n=350 (with 6 
carriers) 
 

Retrospective 
subanalysis of 
two clinical 
studies: 
(1) 
Pharmacogenomi
cs of Antiplatelet 
Intervention 

(1) A 50% higher active 
metabolite concentration was 
observed in G143E carriers 
(n=7, 30.3 ng/ml) compared to 
non-carriers (n=499, 19.0 
ng/mL) (P=0.001) 
 

G143E carriers had 
higher plasma 
concentrations of 
clopidogrel active 
metabolites, and 
consequently had a 
higher antiplatelet effect 
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(2) Patients 
from Sinai 
Hospital 
received 
either 300 
or 600 mg 
LD (n= 204) 
with MD, or 
just 
received 
75mg MD 

Patient going 
through PCI 

(PAPI) Study 
(2)Clopidogrel-
treated patients at 
Sinai Hospital 
 
Outcome:  
(1) PK parameter: 
Clopidogrel and 
its active 
metabolite 
concentration 
(2)PD parameter: 
ADP-stimulated 
platelet 
aggregation 

(2) The inhibition of ADP-
induced platelet aggregation 
effect was 24% higher in G143E 
carriers (reduced to 71% from 
baseline) compared to non-
carriers (reduced to 57% from 
baseline) (P=0.003) 

 
Clopidogrel 
 
Single-dose 
600 mg 

n=22 (with 10 
carriers) 
 
Healthy 
volunteers  

Prospective, 
PK/PD study 
 
PD outcome:  
Inhibition of 
P2Y12-mediated 
platelet 
aggregation 

(1) AUC0–∞ ratios of the 
clopidogrel carboxylic acid  to 
clopidogrel was 53% less in 
G143E carriers (P=0.009) 
(2) Average inhibition of P2Y12-
mediated platelet aggregation in 
the carriers was 19 percentage 
points higher in non-carriers 
(P = 0.036) 

G143E carriers had 
higher exposure to 
clopidogrel active 
metabolite, and 
consequently had a 
higher antiplatelet 
aggregation effect 

 
Enalapril, 
Quinapril 
 
Single Dose 
10 mg 
Enalapril or 
Quinapril 

n=22 (with 10 
carriers) 
 
Healthy 
volunteers  

Prospective PK 
study 

(1) AUC0–∞ of the enalapril 
active metabolite enalaprilat was 
20% lower in the G143E carriers 
(n=10) compared to non-carriers 
(n=12) (P=0.049) 
(2) AUCs0-∞ of the quinapril and 
its active metabolite (i.e., 
quinaprilat) were not significantly 
different between the non-
carriers and carriers (P=0.114) 

G143E carriers had a 
lower enalaprilat exposure 
compared to non-carriers 
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Oseltamivir 
 
Single Dose 
75mg  

n=22 (with 9 
G143E 
heterozygotes, 1 
G143E 
homozygote ) 
 
Healthy 
volunteers  

Prospective PK 
Study 

(1) The AUC0–∞ ratio of 
oseltamivir carboxylate (active 
metabolite) to oseltamivir (parent 
molecule) was 23% lower in 
G143E heterozygotes compared 
to non-carriers (P = 0.006) 
(2) The one G143E homozygous 
individual had an AUC0–∞ of 
oseltamivir that was 
approximately 360% greater 
than the non-carriers 

G143E carriers had less 
exposure to oseltamivir 
active metabolite 
compared to non-carriers 

 
Dabigatran n=102 human 

liver samples 
In vitro study with 
human liver 
samples 

The activation rates of DABE, 
M1 and M2 in G143E carriers 
were 53% (P = 0.018), 43% (P = 
0.004), and 37% (P = 0.001) of 
normal carriers (after normalized 
by CES1 expression) 

G143E carriers had a 
lower dabigatran 
activation rate, potentially 
resulting in a lower 
dabigatran active 
metabolite concentration 
in the carriers  

Sacubitril n= 53 (with 5 
carrier) human 
liver samples 

In vitro study with 
human liver 
samples 

The activation rates of sacubitril 
were lower in the carriers 
compared to the non-carriers 
(4.2  vs. 7.2 nmol/mg 
protein/min, P = 0.025) 

G143E carriers  had a 
lower sacubitril activation 
rate, potentially resulting 
in a lower sacubitril active 
metabolite plasma 
concentration in the 
carriers 

E220G 
(rs2007075
04) 

Oseltamivir 
 
75mg single 
dose 

n=20 (with 8 
carriers) 

Prospective, PK 
study 

AUC0-48h of oseltamivir was 
increased by 10% (P = 0.334) 
and AUC0-48h of oseltamivir 
carboxylate was decreased by 
5% (P = 0.513) in carriers 

E220G appears to have 
no significant impact on 
oseltamivir activation in 
humans 

S75N 
(rs2307240) 

Clopidogrel 
 
75mg x 1 
year 

n=851 (with 372 
carriers) 

Retrospective PD 
analysis 
 
Outcome: 
Cerebrovascular 

CES1 S75N carriers (n=372) 
had more cerebrovascular 
events (P<0.001), acute 
myocardial infarction (P<0.001), 

S75N appears to increase 
the function of CES1, 
resulting in the decreased 
efficacy of clopidogrel 
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events, acute 
myocardial 
infarction, and 
unstable angina  

and unstable angina (P<0.001) 
compared to non-carriers 

 
Methylpheni
date 
 
Weight 
based 
dosing x 6 
weeks 

n=44 (with 2 
carriers) 
 
Children with 
ADHD 

Naturalistic, 
prospective study 
 
Outcome:  Side 
effect reported via 
behavioral 
questionnaires 

No significant differences in 
methylphenidate side effect 
were found between carriers 
and non-carriers (p = 1)  

S75N does not appear to 
affect the function of 
CES1 

 
Enalapril  n= 36 (with 3 

carriers) 
In vitro study with 
human liver 
samples 

No statistical difference in 
enalapril activation rate or CES1 
protein expression level 
between carriers and no carriers  

S75N does not appear to 
affect the function of 
CES1 

 -816A>C 
(rs3785161) 

imidapril 
 
5-10 mg x 8 
weeks 

n=105 (with 47 
carriers) 
 
Patients with 
hypertension 

Prospective 
clinical study 

Greater systolic blood pressure 
reduction (24.1 mmHg) was 
observed compared to non-
carriers (17.6 mmHg) after 8 
weeks of imidapril therapy (P = 
0.0184) 

 -816A>C appears to up-
regulate the CES1P1 
VAR expression 

 
Clopidogrel 
 
300 or 600 
mg (LD) or 
75 mg (MD) 
for minimum 
5 days 

n=162 (with 75 
carriers) 
 
Patient on dual 
antiplatelet 
therapy (i.e., 
aspirin and 
clopidogrel) with 
coronary heart 
diseases 

Retrospective PD 
analysis 
 
Outcome: 
Vasodilator 
Stimulated 
Phosphoprotein-
Platelet Reactivity 
Index (VASP-
PRI) to measure 
platelet reactivity 

The carriers had decreased 
Vasodilator Stimulated 
Phosphoprotein-Platelet 
Reactivity Index (VASP-PRI) 
(45.93 vs 53.18%) (P=0.014) 

 -816A>C appears to up-
regulate the CES1P1 
VAR expression 
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Clopidogrel 
 
300mg LD + 
75mg MD x 
3 days 

n=249 (with 108 
heterozygous 
carrier, 17 
homozygous 
carrier) 
 
Patient going 
throught PCI 

Retrospective PD 
analysis 
 
Outcome: 
maximum platelet 
aggregation 
(MPA) 

A lower ADP-induced maximum 
platelet aggregation (21.5%, 
n=125) was observed compared 
to non-carriers (31.7%, n=124) 
(P=0.001) 

 -816A>C appears to 
down-regulate the 
CES1P1 VAR expression 

 
Trandolapril  
 
2-4mg x 104 
weeks 

(1) n=486 (with 
109 
heterozygous 
carriers, 10 
homozygous 
carriers)  
(2) n=100 (in 
vitro study) (26 
heterozygous 
carriers, 3 
homozygous 
carriers) 

(1) Retrospective 
analysis of the 
INternational 
VErapamil SR 
Trandolapril 
Study  
 
(2) In vitro study 
with human liver 
samples  
 
Outcome: Blood 
Pressure  

(1) No association between the -
816A>C and the blood pressure 
lowering effect of trandolapril 
(2) Not associated with CES1 
protein expression and 
trandolapril activation in human 
liver samples 

 -816A>C does not 
appears to be associated 
with overall CES1 function 

  -75G>T 
(rs3815583) 

Methylpheni
date 
 
Dose 
titrated up x 
3 months as 
tolerable 

n=205 (with 129 
carriers) 

Retrospective PD 
analysis 
 
Outcome: 
appetite reduction 
- the side effect of 
methylphenidate 

The carriers had worse appetite 
reduction compared to non-
carriers (41% vs 77%, P=0.01) 

 -75G>T appears to be 
associated with 
decreased CES1 function 

 
Irinotecan 
 
100 mg 
m−2 weekly 
or 150 mg 
m−2 
biweekly 

n=177 
 
177 Japanese 
cancer patients 

Retrospective PK 
analysis  

The carriers had higher plasma 
(SN-38 + SN-38G)/irinotecan 
AUC ratios relative to non-
carriers (P=0.027)  

 -75G>T appears to be 
associated with higher 
CES1 function 
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ACEI n=200 

 
Congestive heart 
failure patients 

Retrospective PD 
analysis 

The -75G>T genotypes did not 
significantly impact the plasma 
ATII/ATI ratios in the study 
subjects or fatal outcomes (i.e. 
cardiovascular death and all-
cause death)   

 -75G>T was not 
associated with CES1 
function 

1168-
33C>A 
(rs2244613)  

Dabigatran 
 
110 or 150 
mg twice 
daily 

n=2944 (with 
587 carriers) 
 
Patients with 
atrial fibrillation 
(within 6 
months) and 
additional risk 
factors for stroke 

Retrospective 
GWAS of 
Randomized 
Evaluation of 
Long-term 
Anticoagulation 
Therapy (RE-LY) 
clinical trial 
 
Outcome: Trough 
concentrations of 
dabigatran, 
bleeding risk 

The carriers had lower trough 
concentrations of the active 
metabolite (15% decrease per 
allele; P=1.2×10-8) and a lower 
risk of any bleeding (odds ratio, 
0.67; P=7×10-5) compared to 
non-carriers 

1168-33C>A appears to 
be associated with lower 
CES1 function 

 
Dabigatran n=102 (with 29 

heterozygous 
carriers and 5 
homozygous 
carriers)  

In vitro study with 
human liver 
samples 

No association between 1168-
33C>A and dabigatran activation 

1168-33C>A appears to 
be not associated with 
CES1 function 
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 Non-Genetic Factors Affecting CES1 Expression and Activity 

1.7.1 Developmental Expression of CES1 

The developmental expression patterns of CES1 in human and mouse livers 

were similar, and many in vitro studies have suggested that hepatic CES1 protein 

expression increases with age 79-81.  An in vitro study with human liver samples (n=104) 

demonstrated the adult group (≥ 18 years of age) to have had higher CES1 expression 

than children (0 days–10 years); meanwhile, child group had higher CES1 expression 

than fetuses (82–224 gestation days). A follow-up study with liver microsomes showed 

that, in parallel with expression level, CES1 activity on hydrolyzing its substrate 

oseltamivir was also positively correlated with age 82. The same group did a similar in 

vitro human liver study with a slightly different age bracket, in which the liver samples 

were divided into five age groups: 1–31 days old (group 1), 35–70 days old (group 2), 

89–119 days old (group 3), 123–198 days old (group 4), and over 18 years old (group 

5). Neonates (group 1) had 10% of the CES1 expression and hydrolysis levels 

compared to the adult group (group 5); pediatric groups (Group 2-4) had approximately 

50% of the CES1 expression and hydrolysis levels compared to an adult 83. Lastly, a 

similar in vitro study quantified CES1 protein levels in human liver samples of various 

ages (n=165). CES1 expression levels were 4.76 pmol/mg from birth to three weeks 

(n=36); 15.8 pmol/mg for those aged three weeks to six years (n=90); and 16.6 pmol/mg 

for ages six years to 18 years (n=36). The study team concluded that the median CES1 

expression level is directly correlated with age (P < 0.001) 80. Overall, CES1 expression 

and activity levels are lower in neonates and pediatric patients; further studies are 
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warranted to investigate the potential effect of CES1 maturation on the treatment 

outcome of CES1 substrate medications in patients in the early stages of development. 

1.7.2 Sex Difference of CES1 Expression  

Both in vitro and clinical studies have suggested that CES1 expression is higher 

in females than in males 35,57,79. A PK study on healthy volunteers revealed that males 

had significantly higher exposure to d-methylphenidate than females 35. Nonetheless, 

females experienced a more pronounced stimulant effect, despite their lower exposure.  

Shi et al. observed significantly higher CES1 activity in female human liver samples (n = 

56) compared to male samples (n = 46). A follow-up in vitro study with dabigatran 

suggested CES1 activity was higher in females than males 57. However, such difference 

was not observed in another in vitro study using human liver samples (n=32) and mouse 

liver samples (n=9) 79. Further study is needed to examine the impact of sex on the 

CES1 expression level and the PK and PD of CES1 substrates. 

 Drug-Drug Interactions 

1.8.1 CES1 Inhibitor - Alcohol 

To date, ethanol is the only known CES1 inhibitor that has been confirmed in multiple 

in vivo and in vitro studies. The impact of ethanol on the metabolism of the CES1 substrate, 

methylphenidate, was tested in healthy volunteers (n=14) 84. D-methylphenidate comes as 

a single active ingredient (Focalin®) or in combination with l-methylphenidate (racemic 

mixture, Ritalin®). D-methylphenidate is approximately ten times more 

pharmacologically potent than l-methylphenidate, while l-methylphenidate is a more 

efficient CES1 substrate (Figure 1-2). This clinical study used a pulsatile dosing regimen 

with methylphenidate (dl-methylphenidate 40 mg or d-methylphenidate 20 mg) and 
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ethanol (0.6 g/kg, four hours after methylphenidate dose) to eliminate any potential 

confounding effect of ethanol on methylphenidate absorption, as the methylphenidate 

drug products (i.e., Ritalin® and Focalin®) might undergo faster gastric dissolution in 

the stomach if administered with alcohol. When alcohol and d-methylphenidate 

(Focalin®) were co-administered, the Cmax of d-methylphenidate was elevated by 27% 

(P = 0.001) and the AUC4→8h was elevated by 20% (P < 0.01); when alcohol and dl-

methylphenidate (Ritalin®) were co-administered, the Cmax of d-methylphenidate was 

elevated by 35% (P < 0.01) and the AUC4→8h was elevated by 25% (P < 0.05) 84. These 

results are consistent with the previous clinical trial by Patrick et al. In that study, when 

alcohol and d-methylphenidate (Focalin®) were co-administered, the d-methylphenidate 

AUC was increased by 14%; when alcohol and dl-methylphenidate (Ritalin®) were co-

administered, the d-methylphenidate AUC was increased by 21% 85. Patrick and 

colleagues also showed that the co-administration of alcohol 30 min before or 30 min 

after methylphenidate had a similar impact on methylphenidate exposure 35. Both 

authors concluded that alcohol is a strong inhibitor of CES1, and the impact of CES1 

inhibition is greater for dl-methylphenidate (Ritalin®) than for d-methylphenidate 

(Focalin®). Additionally, the DDI between methylphenidate and ethanol produced the 

transesterification metabolites d-ethylphenidate and l-ethylphenidate, and the plasma 

concentrations of l-ethylphenidate were much higher than d-ethylphenidate due to l-

ethylphehidate being a more efficient CES1 substrate 84,86. Other in vivo studies with 

mice demonstrated similar results 87-89. 

The impact of alcohol on the CES1 function was also examined in the context of a 

different CES1 substrate, oseltamivir. A prospective health volunteer PK study (n=18) 
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examined the interaction between oseltamivir 150mg (a recommended daily dose for the 

treatment of influenza) and alcohol. Alcohol increased the oseltamivir AUC0-6h by 27% 

(P=0.011) and decreased the AUC0-6h ratio of the active metabolite oseltamivir carboxylate to 

the parent compound oseltamivir by 34% (p<0.001) 90. However, co-administration of alcohol 

did not significantly affect the AUC0-24h of oseltamivir carboxylate. These results are 

consistent with in silico analysis of the DDI between alcohol and oseltamivir 91. 

1.8.2 Other CES1 Inhibitors: Cannabis, Protease Inhibitors, Aripiprazole, 

Isradipine, Tacrolimus, Valproate 

Besides alcohol, many drug products on the market have been suggested to be 

potent inhibitors of CES1 mainly by in vitro investigations (Table 1-4). A further clinical 

study with a validated CES1 substrate is needed to determine the clinical significance of 

these CES1 inhibitors. 

An in vitro study with CES1 transfected cells suggested that cannabis (i.e., THC, 

CBD, and CBN) can act as a potential CES1 inhibitor. The inhibition constant (Ki) 

values for THC, CBD and CBN were 0.541, 0.974, and 0.263 µM (0.170, 0.306, and 

0.0817 µg/ml), respectively 92. This result could be clinically impactful as the use of 

cannabis is expected to increase in the next few years 93.  

Several protease inhibitors (i.e., nelfinavir, amprenavir, atazanavir, ritonavir, and 

saquinavir) were identified as CES1 inhibitors by an in silico analysis and later 

confirmed by an in vitro incubation study. Among those, nelfinavir had a significantly 

higher inhibitory effect than the other agents. The relative CES1 activity towards PNPA 

(a CES1 substrate) was 5.2%, 74.2%, 51.7%, 76.9%, and 67.8% of the control after 
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incubation with nelfinavir, ritonavir, amprenavir, saquinavir, and atazanavir, respectively 

94. 

An in vitro study suggested aripiprazole, perphenazine, thioridazine, and 

fluoxetine to be potent inhibitors of CES1, and a complementary animal study (n=10) 

with FVB mice demonstrated that co-administration of aripiprazole and methylphenidate 

(CES1 substrate) significantly increased the plasma concentrations of dl-

methylphenidate (P < 0.01) 95. 

Moreover, a total of 27 cardiovascular, antiplatelet, anticoagulant and 

immunosuppressant drugs have been tested for CES1 inhibition using human liver 

microsomes and recombinant CES1. The results suggested isradipine (a 

dihydropyridine calcium antagonist, DHP) and tacrolimus (an immunosuppressive 

agent) to be potent CES1 inhibitors. CES1 activity towards PNPA was decreased to 

17.6% with isradipine, and 28.4% with tacrolimus 96. 

An In vitro study suggested valproate could inhibit CES1 function and affect 

rufinamide metabolism in both microsomes and cytosol. This result could be clinically 

significant as the two antiepileptic medications are often prescribed together when 

monotherapy is ineffective 97. 

A combined ensemble docking and machine learning approach was utilized to 

identify potential CES1 inhibitors from 1114 FDA-approved drugs. Among the identified 

inhibitor candidates, four drugs, including diltiazem, benztropine, iloprost, and 

treprostinil, were found to inhibit CES1 activity in vitro with IC50 values ranging from 13.9 

µM to 391.6 µM 98. 
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Lastly, an in vitro study suggested that some naturally occurring oxysterols and 

fatty acids might significantly inhibit CES1 activity with IC50 values within the micromolar 

range 99. These compounds could potentially affect CES1-mediated detoxification and 

drug metabolism in vivo.  

1.8.3 CES1 Inducers  

Overall, CES1 inducers are understudied relative to its inhibitors. Evidence 

suggests that various nuclear receptors might be involved in the regulation of CES1 

expression 100. For example, several agonists of peroxisome proliferator-activated 

receptors (PPARs) induced the mRNA expressions of several CES1 isoforms in mouse 

livers 101. A moderate increase of CES1 expression was observed in human 

hepatocytes treated with rifampicin, a prototypical human PXR-activating agent 102. An 

in vivo study with mice suggested that glucose could induce hepatic CES1 expression 

by stimulating CES1 promoter activity and increasing acetylation of histone 3 and 

histone 4 in the CES1 chromatin, indicating a potential role of CES1 in glucose 

homeostasis 103. Moreover, phenobarbital induced CES1 expression in mouse livers, 

and the inducibility was more prominent in neonatal mice relative to adult mice 104. 

Again, a further clinical investigation is needed to determine the impacts of CES1 

inducers on the PK and PD of CES1 substrate medications. 

1.8.4 Drug-Drug Interactions between CES1 Substrates 

In addition to CES1 inhibitors and inducers, concomitant use of multiple CES1 

substrate drugs can theoretically impact the substrate metabolism by competitively 

inhibiting the CES1. This hypothesis has been tested in several studies. An in vitro 
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study suggested trandolapril and enalapril might increase clopidogrel activation 105. 

Consistent with the in vitro study, a follow-up retrospective clinical study reported the 

concomitant use of ACEI prodrugs and clopidogrel increases the risk of clinically 

important bleeding in patients with myocardial infarction (n=70,934) (P=0.002). The 

clinical significance of this finding is, however, debatable as the hazard ratio of clinically 

significant bleeding for patients on concomitant therapy was 1.10 (95% CI 0.97-1.25) 

105. Another clinical study with the similar design did not report a significant association 

between the composite cardiovascular outcome and the concomitant use of ACEI 

prodrugs and clopidogrel in patients with myocardial infarction (n=45,918). The adjusted 

odds ratio (aOR) for the perindopril was 0.94 (95% CI 0.76-1.16), and for ramipril was 

0.97 (95% CI 0.80-1.18), relative to lisinopril, an ACEI not metabolized by CES1 106. 

 Disease States Related to CES1 

A prospective clinical study was conducted in monozygotic and dizygotic twin 

subjects (62–83 years) with (n = 48) or without (n = 247) type 2 diabetes mellitus (T2DM) 

to examine the association of CES1 with adiposity and metabolic function. CES1 mRNA 

expression level in adipose tissue was positively associated with body-mass index 

(P<0.001), fasting glucose level (P = 0.002), insulin (P = 0.006), and triglycerides 

(P = 0.003) 107. Recent studies have also found that CES1 function was positively 

correlated with increased liver lipid storage and plasma lipid concentrations, indicating 

that CES1 might be heavily involved in lipid metabolism and is a potential drug target for 

the treatment of human metabolic disorders 11,108,109. 

 

 



 
 

37 

Table 1-4 Drug-Drug Interaction Summary 

CES1 inhibitors CES1 Substrates Interaction Summary  

Alcohol Methylphenidate Many in vitro and in vivo studies 
confirmed alcohol inhibits CES1 and 
mediates biotransformation of 
methylphenidate to ethylphenidate; 
methylphenidate plasma concentrations 
were increased when patients took 
methylphenidate with alcohol 84-90,110. 

Alcohol Oseltamivir When alcohol was administered with 
oseltamivir in humans, the AUC of 
oseltamivir increased by 37% 91. 

Cannabis Oseltamivir In vitro study with CES1-transfected cells 
suggested THC, CBD and CBN to be the 
potent CES1 inhibitors. The inhibition 
constant (Ki) values for THC, CBD and 
CBN were 0.541, 0.974, and 0.263 µM 
(0.170, 0.306, and 0.0817 µg/ml) 92. 

Protease 
Inhibitors 

Methylphenidate. p-
nitrophenyl acetate 
(PNPA) and p-
nitrophenol (PNP) 

In vitro study showed that protease 
inhibitors (i.e., nelfinavir, amprenavir, 
atazanavir, ritonavir, and saquinavir) 
inhibited the catalytic activity of CES1 (p 
<0.01). Among protease inhibitors, 
nelfinavir had a significantly higher 
inhibitory effect compared to other agents 
94. 

Aripiprazole Methylphenidate, p-
nitrophenyl acetate 
(PNPA) 

In vitro study suggested aripiprazole, 
perphenazine, thioridazine, and 
fluoxetine to be potent inhibitors of CES1. 
Among the medications tested, 
aripiprazole was the most potent inhibitor 
of CES1, and an in vivo study with FVB 
mouse confirmed this result 95. 

Isradipine 
/Tacrolimus 

PNPA, Trandolapril  In vitro study with human liver 
microsomes suggested isradipine 
(dihydropyridine calcium antagonist, 
DHP) and tacrolimus 
(immunosuppressive agent) to be potent 
CES1 inhibitors 96. 

Valproate Rufinamide In vitro study suggested valproate could 
inhibit CES1 function and affect 
rufinamide metabolism 97.  

ACEI Clopidogrel ACEIs and clopidogrel are often 
administered together as both of them 
are cardiovascular medications; both 
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ACEIs and clopidogrel are suggested to 
be inhibitors of CES1. A clinical study 
with myocardial infarction patients 
(n=70,934) demonstrated concomitant 
use of ACEIs increased the rate of 
clinically significant bleeding compared to 
the clopidogrel monotherapy (P=0.002) 
105. Another clinical study with myocardial 
infarction patients (n=45,918) with 
clopidogrel showed that concomitant use 
of clopidogrel and ACEI (perindopril and 
ramipril) was not associated with the re-
infarction, heart failure or death 106. 

 

*This chapter was used with permission from 1. 
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Chapter 2: Effect of CES1 Genetic Variation on Enalapril Steady-State 

Pharmacokinetics and Pharmacodynamics in Healthy Subjects111 

 Abstract 

Background and Objective: Enalapril is a prodrug and needs to be activated by CES1. 

A previous in vitro study demonstrated the CES1 genetic variant, G143E (rs71647871), 

significantly impaired enalapril activation. Two previous clinical studies examined the 

impact of G143E on single-dose enalapril PK (10 mg); however, the results were 

inconclusive. A prospective, multi-dose, pharmacokinetics, and pharmacodynamics 

(PK/PD) study was conducted to determine the impact of the CES1 G143E variant on 

enalapril steady-state PK and PD in healthy volunteers. 

Methods: Study participants were stratified to G143E non-carriers (n=15) and G143E 

carriers (n=6). All the carriers were G143E heterozygotes. Study subjects received 

enalapril 10 mg daily for seven consecutive days prior to a 72h PK/PD study. Plasma 

concentrations of enalapril and its active metabolite enalaprilat were quantified by an 

established LC-MS/MS method. 

Results: The CES1 G143E carriers had 30.9% lower enalaprilat Cmax (P = 0.03) 

compared to the non-carriers (38.01 vs. 55.01 ng/mL). The carrier group had 27.5% 

lower AUC0-∞ (P = 0.02) of plasma enalaprilat compared to the non-carriers (374.29 vs. 

515.91 ng*hr/mL). The carriers also had a 32.3% lower enalaprilat-to-enalapril AUC0-∞ 

ratio (P = 0.003) relative to the non-carriers. The average maximum reduction of systolic 
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blood pressure in the non-carrier group was approximately 12.4% at the end of the 

study compared to the baseline (P = 0.001). No statistically significant blood pressure 

reduction was observed in the G143E carriers. 

Conclusions: The CES1 loss-of-function G143E variant significantly impaired enalapril 

activation and its systolic blood pressure-lowering effect in healthy volunteers. 

 Introduction 

Enalapril is an angiotensin-converting enzyme inhibitor (ACEI), and ACEI is 

considered to be the first-line therapy for hypertension, heart failure, and chronic kidney 

disease (CKD) 112-114. More than 5 million enalapril prescriptions were dispensed in the 

US in 2018 115. Enalapril is a prodrug and needs to be enzymatically biotransformed in 

vivo to its active metabolite enalaprilat to produce its intended pharmacological effect 1. 

Prodrugs (e.g., enalapril) are often designed to overcome the low bioavailability 

associated with the low cellular permeability of these hydrophilic compounds. In the 

case of enalapril, the carboxylic acid functional group was masked using an ester-

prodrug design, and the ester bond needs to be cleaved by the hepatic hydrolase 

carboxylesterase 1 (CES1) to release its active metabolite enalaprilat (Figure 2-1) 

17,30,116. Currently, 8 out of 10 FDA approved ACEIs are ester prodrugs, and these 

prodrugs are all activated by CES1 1. Two widely perceived assumptions behind the 

ester-prodrug design are (1) prodrugs are activated via unspecific esterases in the 

body, and (2) the interindividual variability in activating a prodrug is clinically 

insignificant. However, a previous study showed that enalapril can only be efficiently 

activated CES1, but not other hydrolases 17. In addition, significant interindividual 

variability in the activation of enalapril and other ester prodrugs has been consistently 
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observed in the clinic117,118, suggesting that genetic variants of prodrug activating-

enzymes (e.g., CES1) could be a critical factor contributing to the variability in the 

pharmacokinetics (PK) and pharmacodynamics (PD) of many prodrugs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-1 CES1-mediated enalapril activation 

Previous studies have suggested enalapril monotherapy often resulted in 

inadequate response in patients with hypertension 119. The interindividual variability in 

response to enalapril therapy is particularly concerning when treating heart failure or 

renal disease because there are no biomarkers such as blood pressure for monitoring 

the efficacy of enalapril in these patient populations. An in vitro study demonstrated that 

the catalytic activity of CES1 G143E on enalapril activation was completely lost in cells 

transfected with the variant, suggesting G143E might be associated with the 

interindividual variability in response to enalapril treatment 17,120. Two previous clinical 
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studies examined the impact of G143E on enalapril PK in healthy volunteers treated 

with a single dose of enalapril (10 mg); however, the results were inconclusive 121,122. 

One study with Danish healthy volunteers (6 carriers and 16 non-carriers) showed no 

significant differences in enalaprilat PK between the carriers and the non-carriers (P > 

0.05) 121. The other study in Finnish subjects showed a 20% decrease for the enalaprilat 

AUC0-∞ (P = 0.049) in G143E carriers (n = 10) compared to non-carriers (n = 12) 122. It is 

worth noting that long-term enalapril treatment is required in clinical practice, and it 

remains unexplored whether CES1 genetic variants could affect the steady-state PK 

and PD of enalapril. Several studies showed that steady-state PK parameters could be 

different from single-dose PK parameters 123,124. In the present study, we conducted a 

multiple-dose PK study in healthy subjects to determine the impact of the G143E variant 

on enalapril steady-state PK and its blood pressure-lowering effect. 

2.2.1 Pharmacokinetics Property of Enalapril 

Previous studies reported that enalapril has a bioavailability of 60% and a Tmax 

of 1 hour; enalapril tablets have not been shown to have food effects, while enalapril 

suspensions did 125,126. Enalapril has a protein binding of 50-60% 127. Enalapril is 

extensively metabolized by liver CES1 and is excreted renally. The reported elimination 

half-life of enalapril is 1.3 hours.  

 Materials and Methods 

2.3.1 Materials 

Enalapril, enalapril-d5, and enalaprilat were purchased from Cayman Chemical 

(Ann Arbor, Michigan, USA), and enalaprilat-d5 was purchased from Toronto Research 

Chemicals (Toronto, Canada). Blank human plasma was obtained from Innovative 
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Research (Novi, Michigan, USA). Taq polymerase was obtained from New England 

Biolabs (Ipswich, MA, USA). All other chemicals and agents were of the highest 

analytical grade commercially available. Enalapril tablets (Vasotec®) from Merck with 

the same lot number were given to all participants to minimize the source of variability. 

2.3.2 Study Design 

A multi-dose enalapril PK and PD study was conducted at Michigan Clinical 

Research Unit, Ann Arbor, MI. All participants signed a University of Michigan 

Institutional Review Board (IRB) approved informed consent prior to participation 

(NCT03051282). Two arms in the study were the G143E carrier group and the non-

carrier group based on their CES1 genotype. Participants took enalapril 10mg with 

240mL room-temperature water for 7 consecutive days, and participants were instructed 

to fast 1 hour before and after the drug administrations to avoid potential food effects on 

drug absorption. Participants fasted starting 10 PM the night before the PK study, and a 

72-hour PK study was initiated on the 7th day at 8 AM. Ten mL of blood was collected at 

the baseline (Day 1), immediately prior to the 7th dose of enalapril (Day 7, 0 hour), and 

0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 5, 6, 8, 10, 12, 24, 48, and 72 hours post-dosing (Figure 2-
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2). Blood samples were centrifuged at 2,000 × g for 10 min at 4 ºC, and the plasma 

samples were collected, labeled, and stored at -80 ºC until analysis. 

Figure 2-2 Study Design. 635 subjects were initially screened but only 275 of 
them met the inclusion/exclusion criteria. 275 subjects were invited to the screening visit 
#1 to sign the informed consent form and to provide the saliva sample for the CES1 
genetic testing. Based on their CES1 G143E genotypes, subjects were stratified into the 
G143E carrier group (n=6) and the G143E non-carrier group (n=15). All participants in 
both groups completed the physical assessment and routine laboratory test to ensure 
their kidney and liver functions are normal. All participants took 10 mg of enalapril for 7 
consecutive days, and a 72-hour PK study was conducted on the 7th day. 

For the PD markers, resting systolic blood pressure (SBP), diastolic blood 

pressure (DBP), and heart rate were measured at the baseline (Day 1, prior to taking 
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the first dose of medication) and during the PK study (Day7); the PD markers were 

measured immediately prior to blood draws during the PK study. The average maximum 

BP reduction was calculated by subtracting the lowest BP measured from Day 7 from 

the baseline BP (Day 1).  

2.3.3 Study Participants 

The major inclusion criteria were healthy volunteers between 18 and 55 years 

old. The major exclusion criteria were volunteers with any pre-existing condition, 

concurrent medication (including prescription and over-the-counter medications, 

herbal/vitamin supplement, and oral contraceptives), tobacco use, and excessive 

alcohol consumption. The detailed inclusion and exclusion criteria are listed in Table 2-

1. All participants completed the physical assessment and routine laboratory tests 

(complete blood count with differential and comprehensive metabolic panel). The urine 

pregnancy test was done on all female participants. Baseline characteristics were 

matched between the G143E carrier (n=6) and the non-carrier groups (n=15) (Table 2-

2). The sample size of 21 (6 carriers and 15 non-carriers) would provide approximately 

80% power to detect the clinically meaningful AUC difference (30%) between G143E 

carriers and non-carriers at a 0.05 significance level when a standard deviation of 25% 

is assumed for each group6,121,122,128.  
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Table 2-1 Inclusion and exclusion criteria of the study 

Inclusion Criteria 

• Healthy volunteers between the ages of 18-55 years old 

• Normal clinical laboratory values during the screening medical 
history 

Exclusion Criteria 

• Volunteers with any pre-existing medication condition (including 
pregnancy) were excluded as it might interfere with drug 
absorption, distribution, metabolism, or excretion.  

• Volunteers with any concurrent medication (including 
prescription and over the counter medications, birth control, 
herbal/vitamin supplement, and oral contraceptives), tobacco 
smokers, and excessive alcohol (>3 drink/day) users were 
excluded to avoid drug-drug interaction 

• No subjects weighing under 50 kg were selected 

• Subjects expressing inability to conform to dietary restrictions 
required for the study. Dietary restrictions were (1) abstaining 
from alcohol and grapefruit containing product starting one 
week prior to the study till the end, (2) fasting 1 hour before 
and after medication administration, and (3) fasting overnight a 
day before the 72-hour PK study 

• Asian descents were excluded as MAF of CES1 G143E is 
approximately 0% in the Asian population  

 

2.3.4 Genotyping Procedure 

275 healthy volunteers provided saliva samples for genotyping. Pure Link 

Genomic DNA Mini Kits (Life Technology, Austin, TX, USA) were used to extract DNA 

from saliva samples. The extracted DNA was genotyped using the genotyping method 

we published previously 17. All participants in the G143E Carrier group (n=6) had a 

143G/E genotype (i.e., G143E heterozygous carrier), and all participants in the non-

carrier group (n=15) had 143G/G genotype (i.e., wild type) (Supplemental Figure 1-1). 



 
 

47 

 

 

 

 

 

 

 

 

 

 

Supplemental Figure 1-1. Sanger sequencing result. All participants in the 
G143E Carrier group (n=6) had a 143G/E genotype (i.e., G143E heterozygous carrier). 
Both G and A alleles (G428G>A) were shown in the Sanger sequencing result (left 
panel). All participants in the non-carrier group (n=15) had 143G/G genotype (i.e., wild 
type) (right panel). 

Enalapril and enalaprilat plasma concentrations were determined using an 

established LC-MS/MS method (Chapter 3). Briefly, 150 µL of plasma were prepared by 

mixing 30 µL trichloroacetic acid (TCA) 30% (w/v) containing the internal standards 

enalapril-d5 and enalaprilat-d5. The mixture was vortexed for 5 min and centrifuged for 

10 minutes, and the supernatant was injected into an LC-MS/MS for the enalapril and 

enalaprilat quantification. The lower limit of quantification was 0.5 ng/mL for both 

enalapril and enalaprilat.  Accuracy and precision results met the requirements in the 

FDA bioanalytical method validation guidance ranging from  2.1% to 9.6% for precision 

and from 96.9% to 114.2% for accuracy129. A parallel reaction-monitoring method was 

utilized to acquire the product ions of all four target precursors at m/z of 377.2 

(enalapril), 349.2 (enalaprilat), 382.2 (enalapril-d5), and 354.2 (enalaprilat-d5). The 
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assay was validated in accordance with the FDA Bioanalytical Method Validation 

Guidance for Industry 130. 

2.3.5 Data Analysis 

LC-MS/MS data were analyzed using the Skyline software (version 20.1.0.76, 

University of Washington, Seattle, WA). The time-plasma concentration profiles of 

enalapril and enalaprilat were plotted using ggplot2 (R package) (Figure 2-3); enalaprilat 

concentrations vs. time were plotted on a semi-log scale (Figure 2-4). The PK 

parameters of enalapril and enalaprilat, including peak concentration (Cmax), the area 

under the plasma concentration-time curve from 0 h to ∞ h (AUC0-∞), half-life (t1/2), and 

clearance (CL) were estimated by non-compartmental analysis (NCA) using the R 

package PKNCA version 0.9.2. Statistical differences of PK and PD parameters 

between CES1 G143E genotypes were evaluated using the one-tail student t-test. A P 

value less than 0.05 was considered statistically significant. 

 Results 

Baseline characteristics were matched between the G143E carrier (n=6) and the 

non-carrier groups (n=15) to avoid potential confounding factors (e.g., age, sex, race, 

renal and liver functions)131 (Table 2-2). Previous studies have suggested that CES1 

expression is higher in females than in males73, and African Americans tend to respond 

less to ACE-inhibitors due to the downregulated renin-angiotensin-aldosterone system 

(RAAS) pathway132. To avoid those potential confounding factors, age, sex, race, and 

renal functions were matched between the two study arms. 
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Table 2-2 Baseline characteristics of study participants 

  Carriers (n=6) Non-Carriers (n=15) P-value 

Age (Year) 23.1 ± 2.7 25.0 ± 3.5 0.2 

Sex (F/M)  1/5   2/13  1.0 

BMI 25.1 ± 4.0 23.0 ± 2.8 0.2 

CrCl (mL/min) 111.6 ± 13.8 122.7 ± 24.2 0.3 

Race or Ethnic Group 
     

  

White   6     15   1.0 

• F in Sex indicates female; M indicates male 

• BMI, body mass index is calculated as the body mass divided by the square of body 
height 

• CrCL, creatinine clearance is calculated using Cockcroft-Gault formula with participant’s 
actual body weight 

• Statistical differences in baseline characteristics between the carrier and the non-carrier 
group were evaluated using the two-tail student t-test  

 

Compared to the previously reported MAF (3.7%) for the White population133, our 

study showed approximately 2% MAF. The genotypes did not deviate from the Hardy-

Weinberg Equilibrium. Again, all our study participants were Caucasian due to the 

geographical position. We have identified nine G143E heterozygotes from initial 

screening (n=275). Two participants declined to continue the study, and one participant 

was excluded due to the age limit (the participant turned 56 before proceeding to the 

Screening Visit #2) (Figure 2-2). 
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Figure 2-3 The profiles of the time-plasma concentrations of enalapril (left) and 
enalaprilat (right). Left panel shows enalapril concentrations (ng/mL) over time (hour), 
and right panel shows enalaprilat (active metabolite) concentrations (ng/mL) over time 
(hour). G143E carriers (i.e., CES1 slow metabolizers) are represented as a blue color, 
and G143E non-carriers (i.e., CES1 normal metabolizers) are represented as a gray 
color. Enalapril concentrations were slightly higher in the carrier group compared with 
the non-carrier group. Enalaprilat concentrations were significantly lower in the carrier 
group compared to the non-carrier group) 

 

Figure 2-4 Enalaprilat concentrations (ng/mL) vs time (hour) were plotted on a 
semi-log scale (left panel). Red represents the average enalaprilat concentrations in the 
G143E carrier group (i.e., CES1 slow metabolizers), and blue represents the averages 
in the G143E 
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2.4.1 Effect of CES1 G143E on Enalapril Pharmacokinetics 

The CES1 G143E carrier group had 30.9% lower enalaprilat Cmax (P = 0.03) and 

27.5% lower AUC0-∞ (P = 0.027) compared to the non-carrier group (Figure 2-5). The 

carrier group also had 30.7% higher Tmax (P = 0.01) of enalaprilat compared to the non-

carrier group (Table 2-3). Even though statistically insignificant, the carrier group had 

2.2% higher enalapril Cmax and 9.1% higher AUC0-∞ compared to the non-carrier group. 

The elimination half-life and Tmax of enalapril did not significantly differ between the two 

genotype groups. 

Overall, the carrier group had a 32.3% lower enalaprilat-to-enalapril AUC0-∞ ratio 

(P = 0.003) compared to the non-carrier group (Figure 2-5). Noticeable interindividual 

variability in PK parameters was observed in both carrier and non-carrier groups. In 

non-carriers, the coefficient of variance (CV%) of the AUC0-∞ was 31.1% for enalapril 

and 29.1% for enalaprilat. In carriers, the CV% of the AUC0-∞ was 32.0% for enalapril 

and 28.0% for enalaprilat. 

Figure 2-5 Major PK parameters comparison between the CES1 G143E carrier 
and non-carrier groups. The CES1 G143E carrier group (red) had 27.5% lower AUC0-∞ 
(P = 0.027) and 30.9% lower enalaprilat Cmax (P = 0.03) compared to the non-carrier 
group (blue). The carrier group (red) also had a 32.3% lower enalaprilat-to-enalapril 
AUC0-∞ ratio (P = 0.003) compared to the non-carrier group (blue). 



 
 

52 

2.4.2 Effect of CES1 G143E on Enalapril Pharmacodynamics 

To minimize the potential confounding effects caused by the baseline variability in BP 

and heart rate among the individuals, the post-treatment BP and heart rate were 

normalized to the corresponding baseline values. The average maximum reduction of 

SBP in the non-carrier group was approximately 12.4% at the end of the study 

compared to the baseline (P = 0.001). There was no statistically significant SBP 

reduction observed in the G143E carriers (P > 0.05) (Figure 2-6). There was a 

statistically significant difference in the average maximum reduction of SBP between the 

non-carrier and the carrier groups (P = 0.016, Non-carriers: 14.6 ± 13.13 mmHg vs. 

carriers: -1.0 ± 10.68 mmHg). DBP and heart rate did not differ significantly from the 

baseline in both groups (P > 0.05). Overall, mean SBP reductions were found to be 

correlated with enalaprilat plasma concentrations. 

Figure 2-6 The paired sample t-test was performed to examine the difference between 
the baseline SBP and the SBP at the end of the study on each study arm. Blood 
pressure-lowering effect of enalapril in the CES1 G143E carriers and non-carriers. The 
non-carrier group had approximately 12.4% lower SBP at the end of the study 
compared to the baseline (P = 0.001). There was no statistically significant blood 
pressure reduction observed in the G143E carriers.
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Table 2-3 Summary of PK parameter 

  Non-Carriers Carriers 

Average 

Comparison 

(Carrier/Non-

Carrier) 

90% CI of 

Average 

Comparison 

P-Value 

Enalapril Average  Sd CV (%) Average  Sd CV (%)     

AUC 0-72h (ng*hr/mL) 106.5 ± 33.1 31.1 115.8 ± 36.2 31.3 1.09 0.85-1.42 0.29 

AUC 0-inf (ng*hr/mL) 108.0 ± 33.6 31.1 117.8 ± 37.7 32.0 1.09 0.84-1.43 0.28 

Cmax (ng/mL) 68.0 ± 22.2 32.7 69.5 ± 20.0 28.7 1.02 0.80-1.34 0.44 

Tmax (hr), median (range) 1.0 (0.5-1.5) 22.3 1.0 (1.0-1.0) 0.00 0.99 0.89-1.11 0.36 

T1/2 (hr) 1.3 ± 1.4 105.7 2.1 ± 2.1 101.5 1.35 0.62-2.93 0.18 

Enalaprilat             

AUC 0-72h (ng*hr/mL) 502.0 ± 151.3 30.1 363.2 ± 104.6 28.8 0.72 0.58-0.92 0.03* 

AUC 0-inf (ng*hr/mL)  515.9 ± 150.0 29.1 374.3 ± 104.7 28.0 0.73 0.58-0.92 0.02* 

Cmax (ng/mL) 55.0 ± 18.6 33.7 38.0 ± 14.5 38.2 0.69 0.49-0.96 0.03* 

Tmax (hr), median (range) 2.9 (1.5-4.0) 23.3 3.8 (3.0-5.0) 1.3 1.32 1.10-1.59 0.01* 

T1/2 (hr) 16.5 ± 6.3 38.1 10.9 ± 4.9 44.9 0.66 0.46-0.95 0.03* 

AUC /AUC 0-72h 

(Enalaprilat/Enalapril) 
4.9 ± 1.1 21.6 3.3 ± 1.0 29.4 0.67 0.52-0.85 0.002* 

AUC/AUC 0-inf 

(Enalaprilat/Enalapril) 
4.9 ± 1.1 21.9 3.3 ± 1.1 32.0 0.68 0.51-0.87 0.003* 

 
* indicates the statistically significant difference between the G143E non-carrier (i.e., CES1 normal metabolizers) and the G143E 
carrier group (i.e., CES1 slow metabolizers). 
- Statistical differences of PK and PD parameters between CES1 G143E genotypes were evaluated using the one-tail student t-test; 
geometric Mean and 90% CIs were included  
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 Discussion 

Numerous CES1 genetic polymorphisms have been investigated for their 

potential impact on CES1 function, and the G143E variant is the only one that has been 

consistently shown to significantly affect both PK and PD of CES1 substrate drugs 1. A 

previous in vitro study showed enalapril is selectively activated by hepatic CES1, and 

CES1 G143E genetic variant completely impairs enalapril activation 17. In this multi-

dose healthy volunteer enalapril PK study, we demonstrated that CES1 G143E carriers 

had significantly lower enalaprilat exposure compared to the non-carriers. We also 

observed an appropriate trend of an increased plasma concentration of the prodrug 

enalapril in the carriers, although the differences did not reach the level of statistical 

significance. In addition, the blood pressure-lowering effect was only observed in the 

non-carrier group, which is consistent with the higher plasma concentrations of 

enalaprilat observed in the non-carrier group. Previous literature reported healthy 

volunteers responded less to the blood pressure-lowering medication (e.g., enalapril) 

compared to patients with hypertension due to the downregulated renin-angiotensin-

aldosterone system (RAAS) pathway 134,135. In clinical practice, the impact of G143E on 

the therapeutic effect of enalapril could be more pronounced in a patient population. 

Two previous clinical studies examined the impact of G143E on single-dose 

enalapril PK, and the results were inconclusive 121,122. One study reported that the mean 

enalaprilat AUC0-∞ in the carriers (n=6) was 6% lower than that in the non-carriers (n = 

16) after study subjects were orally administered a single dose of 10 mg enalapril, 

however, the difference was statistically insignificant. It is worth noting that, in addition 

to G143E (6 variant carriers), several other CES1 variations were included in the 
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analysis (e.g., 15 individuals with different gene copy variations and 16 controls) 121. 

Another single dose (10 mg enalapril) PK study in Finnish subjects (10 G143E carriers 

and 12 non-carriers) showed a modest 20% decrease for the enalaprilat AUC0-∞ in the 

G143E carriers compared to the non-carriers with a borderline significance (P = 0.049) 

122. As a comparison, in the present multi-dose enalapril PK/PD study, despite the 

smaller sample size (n=6 G143E carriers), a 27.5% reduction in enalaprilat AUC0-∞ was 

observed in the G143E carriers (Figure 2-5). The underlying mechanism of the greater 

effect of G143E in this multiple-dose study relative to the previous single-dose trials 

remains elusive. We speculate that the impact of G143E on reducing enalaprilat 

formation may have accumulated following each dose, and the maximum effect was 

achieved after the PK reached a steady-state. Overall, this finding indicates that the 

CES1 G143E variant may have a more significant impact on the steady-state PK; our 

results (steady-state PK) are more indicative of the effects of this variant on real-world 

patient populations. However, it should be noted that, given the small sample size and 

large inter-individual PK variabilities in both the present investigation and the two 

previous single-dose studies, the observed differences might not be statistically 

significant. 

In line with previous reports, significant intragroup variability of enalapril PK was 

observed. Even though CES1 genetic polymorphisms are an important factor 

contributing to CES1 variability, it is worth noting that all CES1 genetic variants 

identified to date can only explain a small portion of interindividual variability of the 

CES1 function 1. Considering the low CES1 G143E MAF (0 to 4%), it can be therefore 

assumed that CES1 G143E variation can only explain a limited portion of enalapril 
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response variation in clinical practice. Previous in vitro studies observed a marked 

variability of CES1 protein expression in human liver samples 17,136. Considering G143E 

only affects the catalytic efficiency of CES1 without altering its expression 73,133,137, the 

main source of interindividual variability in the current study may have resulted from the 

different expression levels of CES1 in individual participants. Therefore, reliable CES1 

biomarkers capable of predicting hepatic CES1 expression could be used to further 

improve the therapeutic outcomes of enalapril and other CES1 substrate drugs. As an 

excretory protein, CES1 can be released into the blood from tissues with high levels of 

CES1 expression (i.e., the liver). Indeed, we recently detected CES1 protein in human 

plasma using a highly sensitive LC-MS/MS proteomics assay 138. Although plasma 

CES1 is insignificant for drug metabolism due to its extremely low plasma 

concentration, there is potential for plasma CES1 protein to be served as a biomarker to 

predict the PK and PD of enalapril and other CES1 substrate drugs. Alternatively, 

plasma exosomes are extracellular vesicles and contain functional proteins and nucleic 

acids derived from cells of different origins. A recent study showed high correlations 

between exosomal mRNA expressions and hepatic protein levels for several hepatic 

drug-metabolizing enzymes 139, but CES1 was not included in the study. It is plausible 

that CES1 genetic variants and plasma and exosomal CES1 could be used as 

complemental biomarkers allowing for the prediction of a large portion of CES1 

variability and the development of an individualized pharmacotherapy strategy to 

improve the effectiveness and safety of drugs metabolized by CES1. 

The main limitation of this study is its small sample size, which was mainly due to 

the low MAF of the G143E variant. In particular, given this small sample size and that 
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the study was done in healthy volunteers, the blood pressure-lowering effect needs to 

be further evaluated to better understand the true effect especially in a patient 

population. Importantly, we were not able to evaluate the effect of homozygous G143E 

on enalapril activation as all participants in the carrier group were G143E 

heterozygotes.  It can be hypothesized that the magnitude of difference in PK and PD 

parameters between non-carries and homozygous G143E carriers may even be greater 

than what was observed with the G143E heterozygotes group.  

This multi-dose enalapril healthy volunteer PK study demonstrated that the CES1 

G143E variant significantly reduced enalapril activation and its blood pressure-lowering 

effect in healthy volunteers. Assuming enalapril follows linear kinetics140-142, a 27.5% 

reduction in enalapril AUC might require a 38.3% increase in enalapril dose in G143E 

carriers. This is especially important for the treatment of heart failure or CKD as there is 

no biomarker (such as blood pressure) to adjust the dose or to switch the medication. 

Future studies are warranted to investigate the effects of the G143E variant on the 

activation and clinical outcomes of enalapril and other ACEI prodrugs in patients with 

hypertension, heart failure, and CKD.  

 

*This chapter was used with permission from 111 
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Chapter 3: A Liquid Chromatography - Parallel Reaction Monitoring Mass 

Spectrometry Method for the Quantification of Enalapril and its Active Metabolite 

Enalaprilat in Human Plasma143 

 

 Abstract 

A simple, sensitive, and robust liquid chromatography-parallel-reaction 

monitoring (PRM) mass spectrometry method was developed and validated to quantify 

enalapril and enalaprilat in human plasma. This assay utilized trichloroacetic acid for 

plasma protein precipitation and stable isotope-labeled analytes (enalapril-d5 and 

enalaprilat-d5) as internal standards (IS), enabling precise and accurate quantification 

of enalapril and enalaprilat. The analytes were separated on a Waters Acquity UPLC 

C18 column using a five-minute gradient. The product ions from the precursors of 

enalapril (m/z 377.21), enalaprilat (m/z 349.18), enalapril-d5 (m/z 382.24, IS for 

enalapril), and enalaprilat-d5 (m/z 354.21, IS for enalaprilat) were detected in the 

positive ion mode using a PRM data acquisition method on a Sciex TripleTOF 5600+ 

LC-MS/MS system. The lower limit of quantification (LLOQ) was 0.5 ng/mL for both 

enalapril and enalaprilat, and the linear range was validated over 0.5 ng/mL to 200 

ng/mL. The intra-batch and inter-batch variability, matrix effect, and stability were 

evaluated. This assay was successfully applied to an enalapril pharmacokinetics study 

in humans. 
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 Introduction 

Several liquid chromatograph-tandem mass spectrometry (LC-MS/MS) methods 

have been published for enalapril and enalaprilat quantification in human plasma144-147. 

These previously published assays met used the multiple-reaction monitoring methods 

on triple quadrupole mass spectrometers. Parallel-reaction monitoring (PRM) is a new 

data acquisition method originally developed for targeted proteomics analyses on a 

high-resolution and accurate mass (HRAM) mass spectrometer (e.g., Quadruple Time-

of-Flight (Q-TOF) and Q-Orbitrap) 148. Similar to MRM assays, PRM methods exhibit 

excellent sensitivity, dynamic range, and reproducibility for peptide and protein 

quantification. Moreover, PRM has two major advantages over MRM 149, including that 

1) PRM is more specific because the MS/MS data is acquired in a high-resolution mode 

on an HRAM mass analyzer; 2) unlike MRM methods, PRM does not require a priori 

selection of product ions, thus, simplifying the assay development. In this study, we 

developed and validated a PRM method for quantifying plasma concentrations of 

enalapril and enalaprilat and successfully applied the method to an enalapril 

pharmacokinetics (PK) study in human subjects. 

3.2.1 Physicochemical Property of Enalapril  

Enalapril maleate is a Biopharmaceutics Classification System class III 

substance 150. It has a human intestinal permeability of 1.57 × 10−4 cm/s 151, solubilities 

of 25 mg/mL (at pH 3.5) and 200 mg/mL (at pH 7.0) 152 and a partition coefficient (the 

log P, octanol/water) value of 2.45 153. The key pKa of enalapril subgroups are at 2.97 

(carboxylic acid group) and 5.35 (amine group) at 25°C 154,155. 
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 Materials and Methods 

3.3.1 Reagents 

Enalapril, enalapril-d5, and enalaprilat were purchased from Cayman Chemical 

(Ann Arbor, Michigan, USA), and enalaprilat-d5 was purchased from Toronto Research 

Chemicals (Toronto, Canada). Blank human plasma was obtained from Innovative 

Research (Novi, Michigan, USA). All other chemicals and agents were of the highest 

analytical grade commercially available. 

3.3.2 Solution Preparation 

All stock solutions were prepared in methanol. The working solution containing 

both enalapril and enalaprilat was prepared by diluting enalapril and enalaprilat stock 

solution at the following concentrations: 10, 20, 50, 100, 200, 500, 1000, 2000, 4000 

ng/mL. To prepare calibrator samples, 142.5 uL of blank plasma was mixed with 7.5 uL 

of working solution (total of 150uL), and the final concentrations of calibration standards 

were 0.5, 1, 2.5, 5, 10, 25, 50, 100, and 200 ng/mL. Quality control (QC) samples’ 

concentrations for both analytes were 1 ng/mL (low), 25 ng/mL (medium), and 200 

ng/mL (high). 

3.3.3 Human PK Study  

A multiple-dose enalapril PK study was performed in humans. Briefly, study 

subjects received enalapril tablet 10 mg daily for seven consecutive days prior to a 72 h 

PK study. Ten mL of blood was collected at the baseline (Day 1), immediately prior to 

the 7th dose of enalapril (Day 7, 0 hour), and 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 5, 6, 8, 10, 12, 
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24, 48, and 72 hours post-dosing. Blood samples were centrifuged at 2,000 × g for 10 

min at 4 ºC, and the plasma samples were collected, labeled, and stored at -80 ºC until 

analysis. 

3.3.4 Plasma Sample Preparation 

150 µL of plasma sample was mixed with 30 µL trichloroacetic acid (TCA) 

solution (30%, w/v) containing the internal standards (IS) enalapril-d5 (20 ng/mL) and 

enalaprilat-d5 (100 ng/mL) for the quantification of enalapril and enalaprilat, 

respectively. The mixture was vortexed at 1,500 rpm for 5 min, followed by 

centrifugation at 21,000 × g for 10 min at 4 ºC. Fifteen µL of the supernatant were 

injected into an LC-MS/MS system for the determination of enalapril and enalaprilat 

concentrations. 

3.3.5 LC-MS/MS Conditions 

The LC-MS/MS system consisted of a Sciex TripleTOF 5600+ mass 

spectrometer (Sciex, Framingham, MA) coupled with a Shimadzu LC system 

(Shimadzu, Tokyo, Japan). Analytes were separated on an analytical column 

(ACQUITY UPLC BEH C18-CL, 130 Å, 50 × 2.1 mm, 1.7 µm, Waters, Milford, MA). 

Mobile phase A was water with 0.1% formic acid, and mobile phase B was acetonitrile 

with 0.1% formic acid. The mobile phase was delivered at a flow rate of 0.22 mL/min for 

5 min, and the gradient is described in Supplemental Table 3-1. The mass spectrometer 

was operated in a positive ion mode with an ion spray voltage floating at 5,500 V, ion 

source gas one at 30 psi, ion source gas two at 40 psi, curtain gas at 25 psi, and source 
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temperature at 550 ºC. The PRM acquisition consisted of a 200 ms TOF-MS scan from 

300-400 Da and subsequent 120 ms product ions scans from 50 Da to 400 Da for each 

target precursors at m/z of 377.21 (enalapril), 349.18 (enalaprilat), 382.24 (enalapril-d5), 

and 354.21 (enalaprilat-d5). The MS parameters were set the same for all four 

compounds with declustering potential at 50 v, collision energy at 30 v and collision 

energy spread at 5 v. 

Supplemental Table 3-1 The LC gradient conditions for enalapril and enalaprilat 
LC-MS/MS analysis 

Time (min) B (%) A (%) 

0 3 97 

2.5 20 80 

2.8 90 10 

3.4 90 10 

3.8 3 97 

5 Stop 
 

Mobile phase: 
A: water containing 0.1% formic acid 
B: acetonitrile containing 0.1% formic acid 

 

3.3.6 Data Analysis 

LC-MS/MS data were analyzed using the Skyline software (version 20.1.0.76, 

University of Washington, Seattle, WA). The peak area sum of the top 3 product ions for 

each analyte was used for quantification. Specifically, the product ions of 303.1703, 

234.1498, and 160.1121 were used for enalapril; 303.1703, 206.1176, and 160.1121 

were used for enalaprilat; 308.2040, 239.1816, and 165.1447 were used for enalapril-

d5; 308.2049, 211.1503, and 165.1552 were used for enalaprilat-d5 (Figure 3-1). The 

enalapril/enalapril-d5 and enalaprilat/enalaprilat-d5 peak ratios were calculated for 
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quantifying enalapril and enalaprilat plasma concentrations. The R package ggplot2 was 

used to draw a plasma concentration-time profile for the preliminary PK study. 

Figure 3-1 Mass spectra showing both the precursor and product ions of enalapril (A), 
enalaprilat (B), and their isotope-labeled internal standard enalapril-d5 (C) and 
enalaprilat-d5 (D). 
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 Results 

3.4.1 Method Validation 

The bioanalytical method for enalapril and enalaprilat was validated for 

specificity, linearity, precision, accuracy, and stability based on the FDA Bioanalytical 

Method Validation Guidance for Industry. 

3.4.2 Selectivity 

Selectivity was evaluated by analyzing blank plasma samples and blank plasma 

spiked with enalapril and enalaprilat at the lower limit of quantification (LLOQ) (0.5 

ng/mL). The blank human plasma samples were obtained from six different sources. No 

significant interference peaks were observed in any blank samples (Figure 3-2). The 

heights of background peaks were less than 10% of enalapril and enalaprilat at the 

LLOQ. 
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Figure 3-2 Representative LC-MS/MS chromatograms of blank plasma, plasma 
at the lower limit of quantifications (LLOQ, 0.5ng/mL) and plasma samples from an 
enalapril PK study in humans (2-hour post-dosing of 10mg enalapril). Enalapril-d5 and 
Enalaprilat-d5 chromatograms are also included. 
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3.4.3 Linearity and LLOQ 

The assay showed excellent linearity (R2 > 0.99) over the concentration range of 

0.5-200 ng/mL for both enalapril and enalaprilat (Figure 3-3). The LLOQ was 0.5 ng/mL 

for both enalapril and enalaprilat in plasma at a signal-to-noise ratio >10. The evaluation 

results of accuracy and precision at the LLOQ were provided in the section below. 

 

Figure 3-3 Calibration curves for enalapril and enalaprilat with the concentrations 
ranging from 0.5 ng/mL to 200 ng/mL in human plasma. 
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3.4.4 Accuracy and Precision 

Intra-batch and inter-batch accuracy and precision for enalapril and enalaprilat 

were evaluated by analyzing three QC samples (Table 3-1) with three replicates for 

each sample. The concentrations of the QC samples were 1 (Low-QC), 25 (Mid-QC), 

200 (High-QC) ng/mL. Accuracy and precision were also determined at the LLOQ for 

both analytes. Accuracy and precision results met the requirements in the FDA 

bioanalytical method validation guidance with the range of 0.01-9.62% (precision) and 

96.89-114.80% (accuracy)129. 

Table 3-1 Summary of intra-day and inter-day accuracy and precision of LC-
MS/MS assay for the determination of enalapril and enalaprilat in human plasma (n=3). 

Concentration 
Inter-batch Intra-batch 

Accuracy (%) Precision (%) Accuracy (%) Precision (%) 

Enalapril     
LLOQ 111.18 4.72 101.21 9.62 

Low-QC 100.22 3.43 106.76 1.87 

Mid-QC 107.56 2.07 114.80 3.30 

High-QC 107.57 6.35 103.11 7.99 

Enalaprilat     
LLOQ 109.87 8.68 114.15 1.30 

Low-QC 99.50 2.80 97.06 0.01 

Mid-QC 106.10 4.25 110.56 6.04 

High-QC 105.27 7.96 96.89 2.22 

 

3.4.5 Matrix Effects 

Six blank human plasma samples from different sources were used to assess the 

matrix effects. Two sets of QC samples were prepared. Set A: QC samples (1, 200 

ng/mL) prepared with blank human plasma (n=6). Set B: QC samples (1, 200ng/mL) 

prepared with water (n=3). The percentage of the matrix effect was calculated by 

dividing the peak area obtained from Set A by Set B. As shown in Table 3-2, the mean 
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matrix effect for both analytes ranged from 37.47% to 74.00% with CV ranged from 

1.36% to 12%. 

Table 3-2 Matrix effect of enalapril and enalaprilat in human plasma (n=3 with 
water, n=6 with plasma). 

Analytes and 
Matrix 

Concentration 
(nM) 

Matrix effect     
(%, Mean ± S.D.) CV (%) 

enalapril 0.5 58.37 ± 7.00 12.00 
  200 74.00 ± 2.40 3.24 
enalaprilat 0.5 37.47 ± 5.10 1.36 
  200 41.70 ± 1.82 4.37 

 

3.4.6 Stability 

The stability of enalapril and enalaprilat in human plasma was tested under 

different conditions, including benchtop, autosampler, and long-term (-80 ºC) stability; 

three replicates were prepared for each condition. Freeze-thaw stability was not 

evaluated given that freeze-thaw stability has been studied in previous investigations 

and is independent of analytical assays144,145,147. Benchtop stability was tested after 

exposing the QC samples at room temperature for 12 hours. The autosampler stability 

was tested after storing the processed QC samples in autosampler (4 ºC) for 7 days. 

The long-term stability was tested after the QC samples were stored at -80 ºC for 30 

days. The results were compared with the freshly prepared QC samples. The assay 

was stable in all conditions, and enalapril and enalaprilat concentrations were within 

84.04-111.86% of the freshly prepared QC samples (Table 3-3). 
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Table 3-3 Stability of enalapril and enalaprilat in human plasma under different 
conditions (n=3). 

 Accuracy (%)     

Enalapril 
Bench-Top Stability  

(After 12 Hours) 
AutoSampler  

(4 °C for 7 days) 
30 days at −80 °C 

QC-L 95.35 ± 8.45 94.73 ± 9.61 103.97 ± 2.67 
QC-H 111.86 ± 6.37 103.09 ± 7.02 105.45 ± 4.16 

Enalaprilat           
QC-L 100.75 ± 0.72 101.01 ± 1.63 97.08 ± 11.51 
QC-H 84.04 ± 8.00 93.14 ± 4.24 99.98 ± 9.42 

 

3.4.7 Application in a Human PK Study 

The validated method was successfully applied to a preliminary PK study in 

humans after oral administration of enalapril tablet 10 mg for 7 consecutive days. 

Although limited to one subject (Figure 3-4), the method enabled accurate quantification 

of enalapril and enalaprilat in human plasma for up to 72 hours. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-4 A plasma concentration-time profile of enalapril and enalaprilat in a 
healthy human subject after 10 mg enalapril oral administration for 7 consecutive days 
(a preliminary PK study). 
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3.4.8 Comparison of the Current Method with Previously Published LC-MS/MS 

Methods 

To the best of our knowledge, this is the first PRM assay to quantify enalapril and 

enalaprilat in human plasma, whereas previously published methods used the MRM-

based data acquisition 144-147. PRM was originally developed for targeted proteomics 

analysis and has been increasingly used for small molecule quantification in the past 

decade 148,156. MRM methods are performed on low-resolution triple quadrupole mass 

spectrometers. In contrast, PRM utilizes HRAM instruments, such as Q-TOF and Q-

Orbitrap, enabling higher specificity and selectivity 148. In addition, different from MRM, 

pre-selecting product ions are not required for PRM, which simplifies the assay 

development procedure. The sensitivity of our PRM assay was found to be comparable 

to that reported in previous studies (LLOQ: 0.5 ng/mL vs. 0.638-1 ng/mL), although a 

lower LLOQ can be achieved based on the signal-to-noise ratios observed at the 

current LLOQ (Figure 3-2). Moreover, the IS used in the previous methods were 

compounds with chemical structures similar to enalapril and enalaprilat. As a 

comparison, the IS in our method were stable-isotope labeled analytes (i.e., enalapril-d5 

and enalaprilat-d5), which are more reliable and robust than other types of IS. Finally, a 

TCA protein precipitation method was developed for plasma sample preparation in the 

present study, while the previous studies utilized either acetonitrile protein precipitation 

or solid-phase extraction methods. The TCA method results in less sample dilution (i.e., 

higher sensitivity) compared to acetonitrile protein precipitation methods and is more 

efficient and cost-effective than solid-phase extraction.  
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 Conclusion 

In this present study, we have developed and validated a sensitive and robust PRM LC-

MS/MS method for the analysis of enalapril and enalaprilat in human plasma. The 

unique PRM approach, the TCA protein precipitation method, and the stable-isotope 

labeled IS enabled precise and accurate quantification of enalapril and enalaprilat in 

human plasma with LLOQ at 0.5 ng/mL. A preliminary PK study showed that this assay 

is readily applicable to human enalapril PK study. 
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Chapter 4: Identification of CES1 Regulatory Variants Using an Allele-Specific 

Protein Expression (ASPE) Method 

 

 Abstract 

Identifying genetic variants responsible for regulating the expression of drug-

metabolizing enzymes is important and can lead to the optimization of pharmacotherapy 

of many medications. In the present study, we developed an allele-specific protein 

expression (ASPE) assay using a heavy stable isotope-labeled QconCAT internal 

standard to identify the CES1 regulatory variants. The CES1 nonsynonymous variant 

S75N (rs2307240) was utilized as a marker to differentiate the protein expressions of 

the two CES1 alleles. The method was successfully applied to the determination of the 

ASPE of CES1 in 30 S75N heterozygous liver samples. Two cis-acting regulatory 

variants were found to be significantly associated with CES1 ASPE and protein 

expression in the human liver microsome samples (P < 0.05). The association was 

confirmed by the studies of CES1 expression and catalytic activity on enalapril 

hydrolysis in human liver S9 fraction samples. Compared to conventional gene 

expression-based approaches (e.g., GWAS), ASPE has a better statistical power to 

detect a regulatory variant with a small effect size since non-genetic regulators (e.g., 

inducers) would not alter the allelic expression ratios. Relative to mRNA allele-specific 

expression assays, ASPE also accounts for the genetic variants regulating gene 
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expression at the post-transcriptional level. Thus, the ASPE approach is expected to be 

widely used to identify cis-regulatory variants. 

 Introduction 

The expression of a drug-metabolizing enzyme can vary markedly, which can be 

a major contributing factor to the interindividual variability in pharmacokinetics and 

pharmacodynamics of its substrate medications. The CES1 gene is highly polymorphic 

with numerous genetic variants in both regulatory and coding regions. CES1 

nonsynonymous variants have been extensively studied in the past decade. Among 

those identified CES1 nonsynonymous variants, the loss-of-function variant G143E 

(rs71647871) markedly altered the pharmacokinetics and clinical outcomes of several 

CES1 substrates, such as methylphenidate and clopidogrel 128,133. However, these 

nonsynonymous variants can only explain a small portion of CES1 interindividual 

variability because of their low frequencies and do not account for the expression 

variation. Although much effort has been devoted to identifying CES1 regulatory 

variants 23,24,59-65,67,69,71, none of the studied variants showed consistent effects on CES1 

expression or clinical outcomes across different studies. 

Regulatory genetic variants can be classified into two classes: cis- and trans-

acting variants. A cis-acting regulatory variant is located in the proximity of the gene 

being regulated, such as the promoter of the gene, while a trans-variant and the 

regulated gene are usually located on different chromosomes 157,158. As a consequence, 

cis-variants affect gene expression in an allele-specific manner, whereas trans-variants 

regulate gene expression in both alleles. Trans-variants typically have weaker effects on 

gene expression than cis-variants 158-160. Gene expression can be heavily influenced by 
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non-genetic factors (e.g., disease and age), which can impair the statistical power when 

the gene expression level is used as a phenotype for genetic variant identification. 

Accordingly, measuring gene allele-specific expression (ASE) has been increasingly 

used as a powerful means to identify cis-acting polymorphisms because non-genetic 

regulators do not alter the allelic expression ratios. 

ASE was traditionally studied at the mRNA level. However, recent studies with 

various DMEs, including CES1, showed that mRNA expression was poorly correlated 

with the protein expression and enzymatic activity, whereas the correlations between 

protein levels and the corresponding enzymatic activity were high 161,162. The discordant 

mRNA and protein expression are likely caused by post-transcriptional processes, such 

as protein translation, post-translational modification, and degradation. Genetic variants 

affecting such post-transcriptional processes could not be identified by conventional 

mRNA expression and ASE approaches. Thus, a new strategy is needed to study gene 

expression regulation at the protein level to identify all functional genetic variants, 

including those affecting gene expression at the post-transcriptional level. Accordingly, 

we recently developed a novel targeted proteomics method to precisely quantify the 

allele-specific protein expression (ASPE) of a gene using QconCAT internal standards 

(Figure 4-1) 163. This ASPE approach is superior to the conventional ASE method 

because it has the potential to detect genetic variants that regulate gene expression at 

the post-transcriptional level. The ASPE assay is also advantageous over conventional 

protein expression-based assays because allelic protein expression ratios are not 

affected by non-genetic regulators. In this study, we used this ASPE assay to identify 

cis-acting variants of the CES1 gene and revealed two single nucleotide polymorphisms 
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(SNPs) that were significantly associated with CES1 protein expression and activity in 

human livers.  

 

Figure 4-1 ASPE Concept 

 
 Materials and Methods 

4.3.1 Materials 

Amino acids, acetonitrile, benzonase nuclease, calcium chloride hexahydrate, 

formic acid, glucose, M9 salts, magnesium sulfate, imidazole, isopropyl-D-1-

thiogalactopyranoside disodium phosphate, sodium chloride, thiamine, and 

trifluoroacetic acid were purchased from Sigma-Aldrich (Saint Louis, MO). 13C6 arginine 

and 13C6 and 15N2 lysine were products from Cambridge Isotope Laboratories 

(Tewksbury, MA). Lysyl endopeptidase was purchased from Wako Chemicals 

(Richmond, VA). TPCK-treated trypsin was purchased from Worthington Biochemical 

Corporation (Freehold, NJ). Urea and dithiothreitol were purchased from Fisher 

Scientific Co. (Pittsburgh, PA). Iodoacetamide and ammonium bicarbonate were 
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purchased from Acros Organics (Morris Plains, NJ). Water Oasis HLB columns were 

from Waters Corporation (Milford, MA). Synthetic iRT standards solution was from 

Biognosys AG (Cambridge, MA). Escherichia coli strain BL21(DE3) and BugBuster 

protein extraction reagent were products of EMD Millipore (Burlington, MA). HisTrap HP 

histidine-tagged protein purification columns were from GE Healthcare (Pittsburgh, PA). 

Lysozyme solution (50 mg/mL), slide-A-Lyzer G2 dialysis cassettes (3.5K MWCO), and 

PierceTM BCA protein assay kit were obtained from ThermoFisher Scientific (Waltham, 

MA). 287 normal human liver samples were obtained from XenoTech LLC (Lenexa, KS, 

USA), the University of Minnesota Liver Tissue Cell Distribution System, and the 

Cooperative Human Tissue Network (CHTN) (Supplemental Table 4-1) 13. 

Supplemental Table 4-1 Gender and ethnicity of human liver samples 

Characteristics Number of Samples Percentage (%) 

Gender Male 114 39.7 

Female 156 54.4 

Not available 17 5.9 
Ethnicity Caucasian 172 59.9 

Black 29 10.1 

Other 3 1.1 

Not available 83 28.9 

 

4.3.2  Human Liver Sample Preparation Method 

Human liver microsomes (HLM) and human liver S9 fractions (HLS9) were 

prepared using previously published methods 17,164. Briefly, a 200 mg human liver tissue 

was cut into approximately one by one mm pieces and homogenized in 600 µL PBS 

buffer (pH 7.4) using a tissue grinder. The sample was centrifuged at 10,000 x g for 30 

min, and the supernatant (i.e., HLS9) was collected. To prepare HLM, the supernatant 

was transferred to Beckman ultracentrifuge tubes and centrifuged at 300,000 g for 20 

min. The pellets were resuspended in PBS using a tissue grinder and collected (i.e., 
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HLM). Protein concentrations were determined using a Pierce™ BCA protein assay kit. 

Both HLS9 and HLM samples were stored at −80 °C until use. Of note, the same set of 

liver samples were used for the preparation of the HLM and HLS9 samples; however, 

different proteomics methods were used for CES1 protein quantifications (i.e., heavy 

stable isotype internal standard-based assay for HLM vs. label-free quantification 

method for HLS9) 136. 

4.3.3 QconCAT Internal Standard Preparation 

A QconCAT DNA construct was synthesized de novo to generate the heavy 

isotope-labeled internal standard for the CES1 ASPE analysis 163. The construct 

contains the DNA sequences encoding for both the wild-type CES1 tryptic peptide 

FTPPQPAEPWSFVK and the S75N (rs2307240) variant FTPPQPAEPWNFVK. The 

S75N is a benign nonsynonymous variant without significant effects on CES1 

expression and activity 60,62 and was chosen as a biomarker to differentiate CES1 allelic 

expression. The minor allele frequency (MAF) S75N is around 5% across different 

populations 60. Both peptides are flanked by 15 native amino acids to ensure the same 

trypsin digestion efficiency 163. The DNA construct also includes three CES1 surrogate 

peptides (AISESGVALTSVLVK, TAMSLLWK, and ELIPEATEK) for total CES1 protein 

quantification. 

The QconCAT DNA construct was transformed to Escherichia coli strain BL2L 

and cultured in the medium supplemented with 13C6 arginine, 13C6, and 15N2 lysine. 

QconCAT protein expression was induced via adding 1 mM isopropyl-D-1-

thiogalactopyranoside. After 5 hours of growth at 37°C, the cells were lysed, and 
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QconCAT proteins were extracted using affinity chromatography followed by three 

rounds of dialysis against 50 mM ammonium bicarbonate containing 1 mM dithiothreitol.  

4.3.4 Proteomic Sample Preparation 

HLS9 and HLM samples were prepared for proteomics analysis using the 

method we previously published 165. Briefly, 80 μg HLS9 or HLM protein was mixed with 

0.2 μg bovine serum albumin. For the HLM samples, the QconCAT internal standard 

(172 ng) was also added. One ml of precooled acetone was added, and the mixture was 

briefly vortexed and stored at −20°C for at least 2 hours to precipitate proteins. The 

mixture was then centrifuged at 17,000g for 15 minutes at 4°C, the supernatant was 

removed, and the pellet (i.e., precipitated proteins) was air-dried. The pellet was 

resuspended in 100 μl of 4 mM dithiothreitol/8 M urea solution/100 mM NH4HCO3 

solution for reduction at 37°C for 45 minutes. A 100 μl of 20 mM iodoacetamide/8 M 

urea solution/100 mM NH4HCO3 was added, and the mixture was incubated at room 

temperature in the dark for 30 minutes for alkylation. Following the incubation, 56.6 μl of 

50 mM NH4HCO3 was added to adjust the urea concentration to 6 M. 

A two-step protease digestion protocol was used to digest the proteins. The first 

digestion was with lysyl endopeptidase (protein: lysyl endopeptidase = 100:1) in an 

orbital incubator shaker at 220 rpm and 37°C for 6 hours. Then, 733 μl of 50 mM 

NH4HCO3 was added to further adjust the urea concentration to 1.6 M. The second 

digestion was carried out with tosyl phenylalanyl chloromethyl ketone-treated trypsin 

(protein: trypsin = 50:1) at 220 rpm and 37°C for overnight. One μl trifluoroacetic acid 

was added to terminate the digestion. Waters Oasis HLB columns were utilized to clean 

and extract the digested peptides. The eluted peptides were dried in a SpeedVac 
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SPD1010 vacuum concentrator and resuspended in 3% acetonitrile solution with 0.1% 

formic acid. The eluted peptides were then centrifuged, and half of the supernatant was 

transferred to an autosampler vial and mixed with 1 μl of the synthetic iRT standards 

solution prior to LC-MS/MS analysis. 

4.3.5 LC-MS/MS-Based Proteomics Analysis 

The Proteomic analysis was conducted using the previously published method 

136on a TripleTOF 5600+ mass spectrometer (AB Sciex, Framingham, MA) coupled with 

an Eksigent 2D plus LC system (Eksigent Technologies, Dublin, CA). A trap-elute 

configuration was adopted for the analysis, which included a trapping column (ChromXP 

C18-CL, 120 Å, 5 μm, 0.3 mm cartridge, Eksigent Technologies, Dublin, CA) and an 

analytical column (ChromXP C18-CL, 120 Å, 150 × 0.3 mm, 5 μm, Eksigent 

Technologies, Dublin, CA). Six µg of digested proteins were injected, and peptides were 

trapped and cleaned on the trapping column with the mobile phase A (water with 0.1% 

formic acid) at a flow rate of 10 μl/min for 3 min before being separated on the analytical 

column with gradient elution at a flow rate of 5 μl/min. The gradient time program was 

set as follows for the phase B (acetonitrile containing 0.1% formic acid): 0–68 min: 3%–

30%, 68–73 min: 30%–40%, 73–75 min: 40%–80%, 75–78 min: 80%, 78–79 min: 80%–

3%, and finally 79–90 min at 3% for column equilibration. A blank sample was injected 

between each analysis to prevent carryover. The mass spectrometer was operated in a 

positive ion mode with an ion spray voltage floating at 5500 v, ion source gas one at 28 

psi, ion source gas two at 16 psi, curtain gas at 25 psi, and ion source temperature at 

280 °C. 
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Both HLS9 and HLM samples were analyzed using a DIA method we previously 

reported, which included a 250-ms TOF-MS scan from 400 to 1250 Da and MS/MS 

scans from 100 to 1500 Da 166. The MS/MS scans of all precursors were performed in a 

cyclic manner using a 100-variable isolation window scheme. The accumulation time 

was 25 ms per isolation window, resulting in a total cycle time of 2.8 s.  

For the S75N heterozygous HLM samples, the expression levels of two alleles of 

CES1 (i.e., ASPE) were determined based on the ratios of the light peptides 

FTPPQPAEPWNFVK (S75N mutant peptide) and FTPPQPAEPWSFVK (S75N wild-

type peptide) to the corresponding heavy internal standards. Total CES1 protein 

expression levels in the HLM were determined based on the ratios of the peak areas of 

the CES1 signature peptides AISESGVALTSVLVK, TAMSLLWK, and ELIPEATEK to 

their heavy isotope-labeled internal standard counterparts. The Skyline software 

(University of Washington, Seattle, WA) was used for the HLM proteomics data 

analysis. The HLS9 DIA data were analyzed by the Spectronaut™ Pulsar software 

(version 11.0; Biognosys AG, Schlieren, Switzerland) with default settings (precursor Q 

value < 0.01, protein Q value < 0.01) and its internal reference spectral library “Human - 

Liver (fractionated)”.   

4.3.6 CES1 Activity Measurements  

Enalapril is a selective substrate of CES1, and enalapril hydrolysis was 

determined in the HLS9 samples as a surrogate maker for CES1 activity 17. Briefly, 100 

μl of enalapril solution (0.5mg/mL in PBS) was mixed with 100 μl of 0.2 mg/ml of HLS9. 

After incubation at 37ºC for 10 min, the reactions were terminated by adding a 4-fold 

volume of methanol containing the analytical internal standard 5-hydroxyomeprazole 
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(10 ng/ml). Then, the samples were vortexed and centrifuged at 13,200 rpm at 4ºC for 

20 min to remove the precipitated proteins. The supernatant was collected and 

analyzed for the concentrations of the hydrolytic metabolite enalaprilat utilizing an LC-

MS/MS method 17.  

4.3.7 Data Analysis 

The genotype data of the human liver samples (n=287) were retrieved from a 

study recently published by our group 167, which contained 1,779,819 genetic markers. 

The subsequent quality control analysis was performed to remove SNPs with MAF < 

0.01 or deviating from Hardy-Weinberg equilibrium (p < 0.0001) 167. The genotype data 

were phased during genotype imputation 167 in order to detect the allele-specific effects 

of cis-regulatory variants. Previous literature suggested that cis-acting regulatory 

variants are usually located approximately 5,000 base pairs (bp) upstream and 

downstream of the gene 168,169. Thus, a total of 856 SNPs located 5,000 bp upstream 

and downstream of the CES1 gene were included in this study. SNPs were removed if 

their MAFs were less than 10% in the 30 S75N heterozygous liver samples. Moreover, 

when several SNPs were in complete linkage disequilibrium, only one SNP was used as 

the tag SNP for data analysis to alleviate the multiple testing burden. Overall, 72 SNPs 

were tested in this study. 

The CES1 ASPE ratios of 75S to 75N were log2 transformed to normalize the 

effect size of regulatory SNPs, given that the SNPs can reside on either the S or the N 

allele. For each of the 72 SNPs, two linear models were created to identify CES1 cis-

regulatory variants. The first model used the S75N ASPE ratios as the phenotype to test 
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the associations between the genotypes and the ASPE ratios in the S75N heterozygous 

samples (n=30). The second model used the total CES1 expression (i.e., the CES1 

expression from both alleles) to test the associations between the genotypes and the 

CES1 expression in all 287 liver samples. P-values from the two linear models were 

then combined using a Fisher’s combined probability test, and the Benjamini-Hochberg 

method was used for the multiple testing correction (Table1) 

Table 4-1 Statistical Analysis 

  Test 1 (ASPE) Test 2 (Total Expression) Joint Adjusted 

SNP ASE Beta P-value TE Beta P-value P-Value P-Value 

rs6499788 -0.18 0.0078 -0.31 0.0077 0.00064 0.033* 

rs35918553 -0.18 0.0078 -0.3 0.0114 0.00092 0.033* 

• Linear regression t-test was performed for Test 1 and Test 2. 

• Test 1 and Test 2 were performed independently, and p-values from Test 1 and Test2 
were combined using Fisher’s combined probability test for each SNP (i.e., Joint P-
Value) 

• Joint P-value was corrected using Benjamini-Hochberg method to correct multiple 
testing bias (i.e., adjusted P-value) 

 

The conventional genome-wide association study (GWAS) was performed using 

the previously published method 167. The HLM and HLS9 expression data and genotype 

datasets from the same human liver samples were used. After QC of the genomic data 

170, the GWAS for both S9 and CES1 datasets including gender as a covariate for 

analysis.  

 

 



 
 

83 

 Results 

4.4.1  CES1 ASPE and CES1 Protein Expression in HLM and HLS9 

We measured the CES1 ASPE in 30 S75N heterozygous liver samples using a 

QconCAT internal standard. The ASPE ratios of 75S to 75N ranged from 0.80 to 1.47 

(log2 transformed values: -0.3 to 0.5) (Figure 4-2), indicating the presence of cis-

regulatory genetic variants of the CES1 gene. Total CES1 expressions varied markedly 

in both HLM and HLS9 samples. Neither HLM nor HLS9 CES1 levels were significantly 

correlated with the ASPE ratios in the 30 S75N heterozygous samples. 

 

 

 

 

 

 

 

 

 

Figure 4-2 CES1 Expression 

 

4.4.2 GWAS Result 

Conventional GWAS could not detect any regulatory variant affecting the CES1 

protein expression level in both HLM and HLS9, probably due to the heavy background 

noise (Figure 4-3). 
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Figure 4-3 Conventional GWAS could not detect any CES1 regulatory variant 
affecting the expression level detect, probably due to the heavy background noise. 

 

4.4.3  Identification of Cis-Acting CES1 Regulatory Variants 

The ASPE-based statistical model revealed two CES1 regulatory variants 

(rs6499788, rs35918553) significantly associated with CES1 ASPE in the HLM samples 

(Figure 4-4). Moreover, rs6499788 and rs35918553 were associated with 15.9% (P = 

0.01) and 14.9% (P = 0.01) reductions of total CES1 expressions in HLM, respectively. 

The effect of the two variants on CES1 protein expression was also evaluated in HLS9 

prepared from the same human liver samples. Consistent with the findings from HLM, 

rs6499788 and rs35918553 were associated with 10.3% and 11.8% reductions, 

respectively, in CES1 protein expression in HLS9 (Figure 4-5). The activity study 

confirmed that rs6499788 and rs35918553 reduced CES1 activity on hydrolyzing the 

CES1 selective substrate enalapril by 27.9% (P = 0.04) and 26.6% (P = 0.08), 

respectively, in the HLS9 samples. (Figure 4-5). 
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Figure 4-4 Statistical Analysis; impact of rs6499788 and rs35918553 on CES1 
ASPE and total CES1 protein expression 

Figure 4-5 Validation; impact of rs6499788 and rs35918553 on CES1 protein 
expression and catalytic activity on enalapril hydrolysis. 
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rs6499788 and rs35918553 are located within 5000 bp upstream of the CES1 

gene (Table 4-2). Both SNPs are common variants (MAF: rs6499788: 27.7% and 

rs35918553: 27.2%) and are in high linkage disequilibrium (D = 1, Ensembl genome 

database). The impact of rs6499788 and rs35918553 on CES1 protein expression and 

catalytic activity on enalapril hydrolysis on Table 4-3 and Table 4-4. 

Table 4-2 Summary of the SNP 

SNP Allele Change Position BP from CES1 MAF P-Value 

rs6499788 T>A 16:55871837 4127 0.27 0.033* 

rs35918553 A>G 16:55871135 4829 0.27 0.033* 

 
 

Table 4-3 Impact of rs6499788 on CES1 protein expression and catalytic activity 
on enalapril hydrolysis 

rs6499788 TT TA or AT AA R2 P-Value 

Average relative 
CES1 expression 

in HLM 

4.01 ± 1.34 3.66 ± 1.42 3.37 ± 1.31 0.02 0.01 

Average absolute 
CES1 expression 
in HLS9 (ng/ug 

protein) 

14.99 ± 5.46 14.24 ± 4.89 13.44 ± 4.24 0.01 0.05 

Enalapril 
Hydrolysis Rate 
(pmol/min/mg 

protein) 

69.08 ± 44.70 64.94 ± 50.55 49.77 ± 29.82 0.03 0.04 

• Relative CES1 expression was quantified using QconCAT IS. 

• Absolute CES1 expression was quantified using a label-free quantification method. 136 

• Enalapril hydrolysis rate was used as a surrogate marker for CES1 activity. Enalapril is a 
selective substrate of CES1.17 
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Table 4-4 Impact of rs35918553 on CES1 protein expression and catalytic 
activity on enalapril hydrolysis 

rs35918553 AA AG or GA GG R2 P-Value 

Average relative 
CES1 expression 

in HLM 

3.95 ± 1.31 3.69 ± 1.44 3.37 ± 1.31 0.02 0.01 

Average absolute 
CES1 expression 
in HLS9 (ng/ug 

protein) 

15.23 ± 5.39 14.20 ± 4.93 13.43 ± 4.22 0.01 0.03 

Enalapril 
Hydrolysis Rate 
(pmol/min/mg 

protein) 

69.08 ± 44.70 63.01 ± 49.36 50.68 ± 31.14 0.02 0.08 

• Relative CES1 expression was quantified using QconCAT IS. 

• Absolute CES1 expression was quantified using a label-free quantification method. 136 

• Enalapril hydrolysis rate was used as a surrogate marker for CES1 activity. Enalapril is a 
selective substrate of CES1.17 

 Discussion 

For the first time, a novel ASPE approach was utilized to identify cis-regulatory 

genetic variants, resulting in the identification of two cis-acting CES1 genetic variants 

associated with CES1 ASPE and protein expression in HLM. The findings were further 

validated with the CES1 protein expression and CES1 activity data obtained from HLS9 

samples. This novel ASPE method enabled us to detect regulatory variants with a small 

effect size (Figure 4-4) that the conventional genome-wide association study (GWAS) 

was not able to detect (Figure 4-3), probably due to that GWAS is more prone to the 

influence of the expression variability caused by non-genetic regulators. These small-

effect-size yet common variants (MAF 0.277) could play an important role in building a 

comprehensive model to better predict the PK and PD of CES1 substrate drugs.  
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Importance of studying CES1 regulatory variant 

CES1 is an important drug-metabolizing enzyme responsible for 80-95% of total 

hydrolytic activity in the liver 2. CES1 plays a key role in the first-pass metabolism of 

endogenous compounds, environmental toxins, and numerous therapeutic agents 17,171 

CES1 expression and activity vary significantly among individuals, which is a major 

factor contributing to inter-individual variability in response to medications metabolized 

by CES1. Though considerable efforts have been devoted to the study of functional 

CES1 genetic variants, to date, the nonsynonymous variant G143E (rs71647871) is the 

only clinically significant loss-of-function variant identified for CES1 23,24,59-65,67,69,71. 

However, considering the MAF of G143E is 2–4% (carrier frequency 4-8%),17 G143E 

can only explain a small portion of inter-individual variability of CES1 function.  

While nonsynonymous polymorphisms (nsSNP) can directly affect the catalytic 

function of an enzyme by altering amino acid sequences in regions critical to the protein 

function, regulatory variants can affect the function of an enzyme by regulating the gene 

expression level.172 To the best of our knowledge, the two CES1 regulatory variants 

identified in the present study are the first found to be associated with both CES1 

protein expression level and CES1 activity. Sanford et al. reported a translocation 

variant CES1VAR reduces mRNA expression of CES1 by 30%. However, this 

regulatory variant identified by a conventional ASE method was not associated with 

CES1 protein expression or CES1 activity 173.  
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Novelty and significance of the ASPE assay 

The main advantage of this assay is an improved statistical power to detect even 

a small effect size variant by filtering out non-genetic regulators (e.g., diseases and 

inducers). In addition, the ASPE method accounts for the genetic variants regulating 

gene expression at the post-transcription level. To date, the most common method to 

identify functional regulatory genetic variants involves the association study between the 

mRNA expression level and genetic variations. Unfortunately, drug-metabolizing 

enzymes in particular have a poor correlation between mRNA and protein expression 

levels as various regulatory elements can affect post-transcriptional processing of 

mRNA (RNA silencing and sequestration, for instance), resulting in high false positive or 

false negative rates.78,173-175 Recently, protein expression level has been increasingly 

used as the phenotype to identify regulatory genetic variants,175,176 however, the power 

of this approach is compromised by the fact that protein expression may also be 

influenced by non-genetic factors in addition to genetic variants.  

Instead of measuring total protein expression from both alleles of a gene, ASPE 

enables accurate quantification of protein expression from each allele of the gene. 

Since cis-regulatory variants influence gene expression in an allele-specific manner 

while trans-acting regulatory elements and environmental factors affect gene expression 

on both alleles, the observation of an allelic expression imbalance would suggest the 

existence of cis-acting regulatory elements. Thus, ASPE is more accurate, sensitive, 

and robust than conventional approaches (e.g., GWAS), given that the expression of 

each of the two alleles is measured simultaneously in the same individual under the 

same experimental conditions, and each allele can serve as a control for the other. 



 
 

90 

Although the present study focused on CES1 genetic variants, this ASPE assay could 

potentially be widely used to identify regulatory variants of other genes.  

Some limitations of the study involve a small sample size of the S75N 

heterozygous HLM samples (n=30) and a lack of true biological replicates for the 

validation study. Future studies are warranted to examine the effect of rs6499788 and 

rs35918553 on the PK and PD of drugs metabolized by CES1. In addition, future 

investigations involving more S75N heterozygous liver samples method might allow 

researchers to detect more cis-acting CES1 regulatory variants. 
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Chapter 5: Conclusions and Future Directions 

 

The work presented in this thesis focuses on CES1 pharmacogenetics and 

precision medicine. We have examined and confirmed the impact of a loss-of-function 

G143E variant on CES1 catalytic efficiency on CES1 substrate, enalapril, in healthy 

volunteers. We have also identified two regulatory variants that impacted the CES1 

protein expression and activity in human livers. 

In the near future, the CES1 pharmacogenetics testing will likely be implemented 

in the clinic prior to prescribing a CES1 substrate medication. Considering the signficant 

impact of G143E on the PK of CES1 substrates and the low cost of genetic testing177, it 

is cost-effective to check the CES1 genetic variants before prescribing CES1 substrate 

medication. The prospective PGx-PK/PD clinical study reported the CES1 G143E 

genetic variant significantly impacted the enalapril PK in healthy volunteers. To translate 

this information into clinical practice, a more defined and structured dose adjustment 

suggestion is needed. A future clinical study with the patient population can give us the 

information necessary on how we should adjust the dose of enalapril (and other CES1 

substrates).  

The previously reported PGx research tended to focus on one genetic variant 

with a noticeable effect size. However, common variants with a small effect size can 

work together to create a clinically significant impact. The ASPE assay has identified 

two CES1 regulatory variants with a small effect size (R2 range 0.01-0.03) with MAF 
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over 27%. CES1 nonsynonymous variants (e.g., G143E) combined with common 

regulatory variants (i.e., rs6499788, rs35918553) will give us a more holistic picture and 

accurate prediction of the PK and PD of CES1 substrates. 

All CES1 genetic variants identified to date can only explain a small portion of 

interindividual variability of the CES1 function 1. The CES1 G143E variation can only 

explain a limited portion of enalapril response variation in clinical practice (MAF 0-4%); 

two regulatory variants identified had a very small effect size. Previous in vitro studies 

observed a marked variability of CES1 protein expression in human liver samples 17,136. 

Given the G143E only affects the catalytic efficiency of CES1 without altering its 

expression 73,133,137, the main source of interindividual variability in the current study 

may have resulted from the different expression levels of CES1 in individual 

participants. Reliable CES1 biomarkers capable of predicting hepatic CES1 expression 

could be used to further improve the therapeutic outcomes of enalapril and other CES1 

substrate drugs. As an excretory protein, CES1 can be released into the blood from 

tissues with high levels of CES1 expression (i.e., the liver). Our lab recently detected 

CES1 protein in human plasma using a highly sensitive LC-MS/MS proteomics assay 

138. Although plasma CES1 is insignificant for drug metabolism due to its extremely low 

plasma concentration, there is potential for plasma CES1 protein to be served as a 

biomarker to predict the PK and PD of enalapril and other CES1 substrate drugs. 

Alternatively, plasma exosomes are extracellular vesicles and contain functional 

proteins and nucleic acids derived from cells of different origins. A recent study showed 

high correlations between exosomal mRNA expressions and hepatic protein levels for 

several hepatic drug-metabolizing enzymes 139, but CES1 was not included in the study. 
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It is plausible that CES1 genetic variants and plasma and exosomal CES1 could be 

used as complemental biomarkers allowing for the prediction of a large portion of CES1 

variability and the development of an individualized pharmacotherapy strategy to 

improve the effectiveness and safety of drugs metabolized by CES1. 
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