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Abstract

The nature of the ocean is chaotic and, as a result, marine structures face extreme,

non-linear load effects. It follows that the prediction of these rare events is a chal-

lenge. Attempts to predict extreme loads on offshore structures are generally prob-

abilistic in nature. These purely probabilistic approaches involve a considerable

amount of conjecture when enforcing distributions to the process and deciding which

single probability of exceedance is suitable. In an attempt to remove these conjec-

tures, a method is developed and proposed in this thesis. Employing the known

extreme Gaussian behavior as a foundation, non-Gaussian processes with Gaussian

input are transformed into the Gaussian space where extreme characteristics and re-

alizations of extreme events of the transformed non-Gaussian process are produced.

This thinking is first applied in the Stochastic Gaussianization Iteration Method

(SGIM) where a Gaussian transform is applied to the non-linear process of inter-

est to use Gaussian extreme event prediction tools. The progress and development

of this method is discussed and applications in predicting extreme accelerations in

hull slamming and estimating extreme tower base bending moments in offshore wind

turbines will be shown.

The SGIM provided the platform for the key method developed in this disserta-

tion: the Matched Upcrossing Equivalent Linear System (MUELS) method. In the

MUELS method, the Design Loads Generator (DLG) runs through linear systems

that share a mean-upcrossing period with the non-linear system of interest. The

DLG provides an ensemble of input time series realizations that lead to extremes of

said linear systems, which can then be used as input into the non-linear system of

interest. The development of the MUELS method with subsequent applications fol-

low in this dissertation. It is shown that the MUELS method can estimate extreme

characteristics, most notably extreme time series realizations, of most non-linear

processes tested in this dissertation. The MUELS method also shows the capabil-

ity of discovering previously unknown dynamics of a stochastically forced Duffing

xiii



oscillator.
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Chapter 1

Introduction

1.1 Estimation of Extreme Ocean Events

The stochastic nature of the ocean environment leads to rare events that are un-

predictable in both timing and magnitude. It follows that improving models and

methods to aid in the prediction of extreme event characteristics is a wide and ac-

tive area of research. Over the years, many different methods and techniques have

been developed which approach these problems in a variety of ways. Of course, it

is impossible to perfectly model anything, and these approaches must always make

assumptions to reduce the problem into a more manageable one. As these methods

are further developed, the assumptions are becoming less and less restrictive.

In the marine environment, it is commonly assumed the elevation of the 1-D

ocean surface can be reasonably modeled as a Gaussian process. In this dissertation,

and in the other methods discussed throughout, that assumption will be kept. With

the assumption of a Gaussian wave elevation, many powerful and widely accepted

results can be used. In Lindgren (1972), it was found that the ensemble average of

realizations containing a maximum value at time t0 approximates the scaled auto-

correlation function of the process centered at time t0. The assumption of a Gaussian

sea surface means this result can be applied to find the expected extreme wave profile

for a certain exposure time. To characterize these maxima and determine the rarity,

another powerful result can be taken from Rice (1944) and Leadbetter (1966). In

these papers, the upcrossing rate of different levels for Gaussian processes is derived.

The upcrossing rate can be used to describe how rare or extreme different levels are.

It is clear that extreme events in Gaussian processes are well studied, but what about

non-Gaussian processes?

Systems that operate in the marine space respond in different ways to the as-

1



sumed Gaussian waves. These responses, however, are not always linear and therefore

may not be represented by a Gaussian distribution. How, then, can the extreme and

rare events be determined? The first instinct to estimate extreme responses of ocean

structures may be to apply the corresponding extreme wave in the specified time pe-

riod. Often times this does not produce the corresponding extreme response due to

the complexity of the structure and how it responds to different excitation frequen-

cies. The complexity is sometimes simplified by entering the probability domain and

estimating extreme loads using Extreme Value Theory. For non-Gaussian, and often

times not closed form, probability distributions, it follows that for extreme loads, the

tail of the distribution must be known. When probability distribution functions are

generated from collected data, probabilities of extreme events are often unknown.

Hence, tail extrapolation is often used where a curve is fit to the pdf or cdf near

large values so that the large, extreme values have an estimated probability associ-

ated with them. The fitted tail has no real physical basis and is purely mathematical

so it is difficult to say which fit curve or line best represents the real system.

1.2 Objective of Current Research

The objective of this research is to provide a tool to aid in the estimation of extreme

characteristics of non-linear systems through a physics-based model approach. In

particular, the research in this thesis is meant to rapidly produce ensembles of short

time series realizations of extreme values as well as the inputs that led to those

extremes using the Design Loads Generator (Alford, 2008, Kim, 2012). These inputs

are extremely valuable for investigating the behavior of an entire system when a

particular degree of freedom is undergoing an extreme event. While the Design

Loads Generator (DLG) was developed for linear system with Gaussian input, non-

linear applications of the DLG have been researched and developed in Kim (2012),

Seyffert (2018). In both of these approaches, a linear related process was used as

a sort of surrogate for the non-linear process of interest e.g., relative velocity used

for hull slamming. In Seyffert (2018), the surrogate process is further developed to

investigate combined loading based on the combination property of these (possibly

independent) Gaussian surrogate processes.

The research presented in this thesis continues the development of the DLG,

specifically for non-linear processes. It has been shown in Kim (2012), Seyffert (2018)
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that the surrogate approach is effective and powerful. That being said, what if

knowledge of non-linear process of interest is incomplete? In this dissertation, a

surrogate searching tool called the Matched Upcrossing Equivalent Linear System

(MUELS) method using the DLG is developed and applied.

While a Monte Carlo approach remains a valid technique for studying non-linear

systems, the computational cost for extremely rare events is usually prohibitive.

With the MUELS method, a large quantity of conditional extreme time series real-

izations of shorter length i.e., 100 seconds or less, can be produced and used to study

the response of a system during an extreme event. The rapidity and flexibility of this

method are huge advantages and allow for interesting studies from both academic

and design standpoints. The MUELS method has the capability to estimate extreme

inputs to various non-linear systems, including “black box” systems where the model

may be unknown.

1.3 Literature Review

1.3.1 NewWave

NewWave theory was introduced in Tromans et al. (1991) as an approach to generate

extreme responses using the most probable wave profile surrounding an extreme crest.

The wave profile is described as in Equation 1.1:

η∗ = αρ(τ) + g(τ) (1.1)

where α is the crest height, ρ(τ) is the auto-correlation function of the wave elevation,

and g(τ) is a Gaussian process with zero mean and standard deviation that changes

from zero at the extreme crest to the standard deviation of the wave field at a certain

distance away from the extreme crest.

NewWave was developed into Constrained NewWave in Taylor et al. (1997). In

Constrained NewWave, the essential idea is inserting the NewWave profile into a

random realization of the wave elevation so that the system has a load history before

interacting with the extreme wave train. The addition of the profile generally doesn’t

affect the underlying statistics of the wave elevation given the localization of the

extreme crest, but could with certain conditions. Using the Constrained NewWave

method, the authors found good agreement with the extreme response of a simplified

jack-up platform as derived by convolving the conditional distribution of extreme
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response on wave crest height and the distribution of wave crest height.

Many applications involving Constrained NewWave are from experimental set-

ups due to the short wave elevation time series formed (Göteman et al., 2015, Hann

et al., 2018, Santo et al., 2017). These experiments generally found success in esti-

mating extreme responses using NewWave approaches. NewWave, or at least extreme

response applications, is largely based on the belief that large waves lead to large

responses. The search for extreme responses shouldn’t necessarily be limited to these

extreme waves but rather sets of waves that lead to extreme responses. The max-

imum wave amplitude in this set of rare waves is generally less than the extreme

wave amplitude for the same exposure period. The inputs that lead to extreme re-

sponses are useful to have for study into other degrees of freedom. While there are

applications that could find success with the NewWave methods, the approach for

estimating these extreme responses could be viewed from the opposite perspective.

Instead, the search for an ensemble of input wave profiles that lead to extreme re-

sponses could be searched for. With this approach, the statistics of other degrees of

freedom during an extreme event of a particular degree of freedom could be estimated

and more informed design choices could be made.

1.3.2 Linearization Techniques

The basic idea of linearization is to find a linear surrogate for a non-linear process

so that linear analysis can be used. The simplest method to linearize a non-linear

system1 is shown in Equation 1.2.

min
a,b

ε = g(x)− ax0 − b (1.2)

Here, the sum ax0 +b represents the candidate equivalent linear system involving

the mean-removed system input x(t) and g(x) is the non-linear system of interest.

The sum ax0+b is considered an equivalent linear system given that ε is appropriately

minimized (Roberts and Spanos, 1990). Of course, additional criteria to minimize

have been discussed and studied to obtain better equivalent linear systems such

as minimizing ε2 or to match the root mean square between the equivalent linear

system and the non-linear system of interest (Roberts and Spanos, 1990). An even

more robust equivalent linear system is shown in Equation 1.3 (Roberts and Spanos,

1Without hysteresis effects.
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1990).

min
h(u)

ε = g(x)−
∫ t

−∞
h(t− u)x(u) du+ b (1.3)

Here, the impulse response function, h(u) that minimizes the difference between the

equivalent linear system and non-linear system of interest is selected.

In Ismaili and Bernard (1997), these methods were applied to a two-wells Duffing

oscillator under white noise forcing. The two-wells Duffing oscillator is represented

by Equation 1.4.

ẍt + cẋt + k(−xt + λx3t ) = σẆt (1.4)

Here, c is the linear damping coefficient, k is the linear stiffness, λ is the cubic

stiffness parameter, σ is the forcing coefficient, and Ẇt is the white noise. To obtain

the minimum ε, a system of equations was solved to generate the equivalent linear

system of the Duffing oscillator presented in Roberts and Spanos (1990), which is

shown in Equation 1.5.

ẍt + cẋt + keq(xt −m) = σẆt (1.5)

Here, keq and m are the linearization parameters. In the application presented,

the authors extended the linearization principle to account for the two domains of

attraction present in the two-wells system. For a weakly forced system, the “locally”

linearized method was able to recover the bimodal pdf to a good degree of accuracy.

The authors also reiterated the flaws in basic linearization, namely in that linearizing

a non-Gaussian, non-linear system that is forced by a Gaussian process will result

in a Gaussian response. While this is addressed in Roberts and Spanos (1990) with

the idea of Gaussian closure, the authors took a different approach that was more

specific to the system.

Many different linearization techniques have been developed and applied over the

years. The approaches to the main linearization process of non-linearly stiff systems

are reviewed and discussed in Elishakoff and Crandall (2017). The authors reduce

the approaches into two main camps reliant on approximations made, as shown in

Equations 1.6-1.7.
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dE

dkeq
= −2

∫ ∞
−∞

[f(x)− keqx]xψ(x, keq) dx+

∫ ∞
−∞

[f(x)− keq]2
dψ

dkeq
dx = 0 (1.6)

dE

dkeq
= 2

∫ ∞
−∞

[f(x)− keqx]xφ(x) dx = 0 (1.7)

In both of these methods, the idea is to minimize the mean square error between

the equivalent linear stiffness, keq and the non-linear stiffness, f(x). As such, the

expected value of the squared difference requires the pdf of the displacement, φ(x). It

is here that the two methods diverge. In many situations, access to this pdf is limited.

In cases where estimations to the pdf is unreliable or impossible, as in Equation 1.6,

the pdf of the linearized system, ψ(x, keq), which also depends on the equivalent

stiffness, is used. Of course, the results using Equation 1.6 are less accurate due to

this but are of course easier to obtain.

In Zhang and Spanos (2020), multiple non-linear systems were linearized using a

novel approach involving harmonic averaging and statistical linearization for a sys-

tem that is both deterministically and stochastically forced. The authors were able to

recover the magnitude of the response spectra quite well as well as the average mean

square value. However, insights into the transfer function phase relationships as well

as time series comparisons would be helpful for any extreme value analysis. This pa-

per provides a solid resource for linearization, but it would be of academic and design

interest to compare time series of the responses as well as extreme characteristics.

In Fujimura and Kiureghian (2007), the linearization scheme is focused on the

tail of distribution of the non-linear system stochastically forced by a Gaussian pro-

cess. The combinations of Gaussian random variables that define a certain response

level are linearized at the most probable combination. The linearization defines the

tail equivalent linear system (TELS) and can yield the response characteristics of the

non-linear system through an iteration scheme using different, specified threshold lev-

els. The tail-equivalent linearization method was also extended for multi-component

systems in Broccardo and Kiureghian (2016). While this method has been shown

to provide good results in predicting rare events when compared to Monte Carlo

simulations, the user still must have enough knowledge of the system to choose the

design points, or at least the domain of the design points.
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1.3.3 FORM and SORM

First and Second Order Reliability Methods (FORM and SORM) are two techniques

that can be used to estimate extreme responses. When considering Gaussian pro-

cesses, the system, R(t) is decomposed as:

R(t) = µ(t) +
n∑
i=1

uist(t) (1.8)

where µ(t) is a time varying mean function, ui is a standard Gaussian random vari-

able, s(t) = [s1(t)...sn(t)] is a vector of deterministic basis functions that depend

on the process, and n is the effective resolution of the decomposition (Kiureghian,

2000).

In the non-Gaussian case, additional steps must be taken. For a non-Gaussian

process excited by a Gaussian process, one possible method to determine the non-

Gaussian extreme realization is to first decompose the input process as in Equation

1.8 (Grigoriu, 1995). To generate a solution, a design point, r, must first be specified.

Then, the optimization problem shown in Equation 1.9 generates the most probable

input that leads to an extreme output of level r.

minimize 1
2
||u||2 (1.9)

subject to g0(u) = r −R(u, t0) = 0

Here, u is the vector of standard normal random variables, g0 is the limit state

surface, and t0 is the time at which the design event will occur.

Within this optimization is where FORM and SORM diverge. In FORM, the

limit state surface, g0, is linearized at the design point u∗(r, t0). The optimized

response at this design point is an equivalent Gaussian response with a probability

of exceedance of:

P (R(t0) ≥ r) = Φ(−β(r, t0)) (1.10)

β(r, t0) = ||u∗(r, t0)|| (1.11)
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where β is the distance from the origin to the hyperplane created by the linearization

and also known as the reliability index. It should be reiterated that the linearization

of the limit-state surface results in the set of input components that lead to an

extreme event for an equivalent Gaussian response. Of course, the response that is

used is the result of inputting the optimized components, u∗, into the non-Gaussian

model, resulting in an “extreme” non-Gaussian event. The equivalent Gaussian

response may be an acceptable approximation for the non-Gaussian response, such

that the optimized input components lead to a non-Gaussian extreme of the desired

level, but it really depends on how non-Gaussian the output is.

In SORM, a parabolic surface is fit to the limit state at u∗. The optimized

response here is not an equivalent Gaussian response, but can be represented by a

2nd order polynomial of Gaussian processes.

For both FORM and SORM, it should be noted that the solution provided is

the most probable one. That is to say, both FORM and SORM result in a single

realization containing the most probable extreme event at the given design level.

Given the ability of FORM and SORM to produce extreme realizations of non-

Gaussian processes with Gaussian input, there is a clear potential for use in the

marine field. Jensen (2009) applied FORM to produce realizations of extreme mid-

ship longitudinal bending moments on a container ship. The wave elevation, H(x, t)

was a Gaussian process and was broken down in the following form:

H(x, t) =
n∑
i=1

(uici(x, t) + ūic̄i(x, t)) (1.12)

where ui, ūi were uncorrelated standard Gaussian random variables and ci, c̄i were

orthogonal sinusoids with coefficients proportional to the square root of the input

spectrum at the corresponding frequency.

For the sake of computational efficiency when performing optimizations, the num-

ber of frequency components, n, is generally limited. A structural/hydrodynamic

model was built and represented by R(t|u1, ū1, u2, ū2, . . . , un, ūn). The limit surface,

G, was defined as in Equation 1.13 and the reliability index, β, associated with the

design level of interest, r, is given in Equation 1.14.
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G(u1, ū1, u2, ū2, . . . , un, ūn) ≡ r −R(t0|u1, ū1, u2, ū2, . . . , un, ūn) = 0 (1.13)

β =

√√√√ n∑
i=1

(u∗2i + ū∗2i ) (1.14)

It should be noted that the threshold, r, can be arbitrarily chosen, but generally

methods to select values of r can be employed. The underlying distribution is not

always straight forward, however, and using FORM and the associated exceedance

levels from different values of r to potentially develop this would be tedious. In Jensen

et al. (2014), the suggestion of using FORM results and Monte Carlo simulations to

inform a fit to a Gumbel distribution is made. In this case, the use of a Poisson model

or order statistics is necessary which implies conditions on R. These assumptions

help break down the model and allow for the use of powerful results, but ultimately

limit the versatility.

As noted before, with the limited amount of frequencies, the amount of time

needed to remove memory effects, t0, must be balanced by the time it takes for a

limited amount of frequency components to repeat themselves in the time domain.

The limited amount of components also lead to a wave profile that is somewhat

restricted in terms of expressiveness. Within the bounds of repetition, however, the

solutions to Equation 1.13, u∗i , provide a single wave profile that can be used as input

into R to produce a conditional, non-Gaussian response at the specified design level.

While the single, most probable maximum response is useful, there are many

applications that require a large number of realizations at a certain design level or

exposure time without making any assumptions on an extreme distribution to draw

the threshold point from.

In applications of FORM by Jensen et al. (2014), the most probable wave set that

leads to a predetermined extreme response, such as bending moment, is produced.

While certainly useful, FORM is limited in the specification of the design level.

If the distribution of the system is not well defined, the extreme value or design

level cannot be found without assuming an extreme distribution. There is also the

issue of having only a single realization. If multiple realizations are sought, different
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predetermined values must be generated and FORM must be applied again for each

value. In design, knowledge of the system’s behavior in different conditions over

various time horizons is necessary. To determine multiple realizations of extreme

responses of a system with an unknown, non-Gaussian distribution, and therefore

unknown extreme distribution, a new approach must be taken. As mentioned before,

the extreme events in the Gaussian space are well-studied and mostly agreed upon.

If one were to use these Gaussian-derived methods for a non-Gaussian process, the

results would be unreliable. But if a rational transformation was applied to this

non-Gaussian process, the results in the Gaussian space could potentially be taken

advantage of.

1.4 Overview of Thesis

The research proposed in this dissertation involves using Gaussian extreme value

theory and applying it to a surrogate for a non-Gaussian process with Gaussian

input. First, the Stochastic Gaussianization Iteration Method (SGIM) which involves

the transformation of a non-Gaussian process into the Gaussian space through the

normal score transformation (Deutch and Journel, 1998, Johnson, 1987) is introduced

and developed. Realizations of extreme events of the transformed non-Gaussian

process are determined using the Design Loads Generator (Kim, 2012), along with

the Gaussian input that leads to those extremes. The Gaussian input that led to

the extreme transformed non-Gaussian events can then be used as input into the

non-Gaussian process. The SGIM is developed and applied to estimate extreme

characteristics of an impact oscillator as well as the bending moment of an offshore

wind turbine. Limitations of the SGIM are also identified and discussed. Second, the

Matched Upcrossing Equivalent Linear System (MUELS) method, which builds off of

the SGIM, is introduced and developed. The MUELS method generates a set of two-

parameter linear systems with the same upcrossing rate as the non-linear system of

interest for a given input spectrum. These linear systems are entered into the Design

Loads Generator where inputs that lead to extreme linear events are generated.

These inputs from all of the candidate linear systems are then used to force the

non-linear system of interest to search for an equivalent linear system best matching

the extreme behavior of the non-linear system. The use of these linear systems

is a different approach to linearization and is also a systematic surrogate search

method. It should also be noted that the non-linear extreme behavior identified is

10



conditioned on the zero-upcrossing period estimated from the non-linear process as

well as the input into the two-parameter surrogate process giving the largest most

probable non-Gaussian maximum. Systems with unknown dynamics, like some non-

stationary systems, could be investigated with this method as presented without

knowledge of a surrogate that could represent the system of interest. The MUELS

method is developed and applied to Duffing oscillators and the same impact oscillator

as the SGIM. The objective of this research is to develop a process in which results for

prediction of extreme Gaussian events can be applied to a transformed non-Gaussian

process in order to identify the conditional extreme behavior of the non-Gaussian

process.
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Chapter 2

Background

2.1 Introduction

Methods to estimate extreme values, specifically in the marine environment, have

been developed and used as the basis for new methods throughout the years. In

this section, a theoretical and mathematical background is presented to better un-

derstand the advances and disadvantages of existing methods and techniques. The

approaches presented below range from complete probabilistic approaches to pro-

cesses that determine the most likely sea surfaces at the time of extremes.

2.2 (Gaussian) Extreme Value Theory

The behavior of any system can in part be described in a probabilistic sense through

its probability distribution function (pdf) and consequently its cumulative distribu-

tion function (cdf). Furthermore, if multiple trials of this system in a certain state

can be assumed to be independent and identically distributed (i.i.d.), the extreme

value pdf or cdf for the system’s behavior during said state can be described. The

extreme value cdf describes the distribution of largest values out of a specified num-

ber of trials. If N trials have been observed, then the extreme value cdf, Fe(x), of a

process with a cdf F (x) can be described as:

Fe(x) = F (x)N (2.1)

It follows that, through the chain rule, the extreme pdf is:

fe(x) = Nf(x)F (x)(N−1) (2.2)

While important, these equations alone do not inform a design. From here,
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assumptions and decisions must be made in terms of safety factors or how to include

the chosen response level into the design with other competing factors. With the

selection of a single number, the system’s behavior near the extreme is missed and,

if the original cdf is lacking information that was not observed, can be erroneous.

There is also the issue of combining that single number with other numbers, say

multiple loads, to estimate a failure event. Lastly, coming up with the exact N can

be a challenge.

In Ochi (1990a), this basic theory was incorporated into estimating extreme wave

amplitudes. It should be noted that it is generally considered that the instantaneous

elevation of the 1-D ocean surface is narrow banded and can be defined by a Gaussian

random variable and the distribution of the positive maxima of the ocean surface

(e.g. the wave amplitudes,) can be described by a Rayleigh distribution with a

parameter equal to the root mean square of the wave elevation. Ochi describes the

pdf of maxima of the wave amplitudes in a given, not necessarily narrow banded, sea

state using the following expressions:

fX(x) =
2

1 +
√

1− ε2

[
ε√
2π
e−x

2/(2ε2) +
√

1− ε2 x e−x2/2 Φ

(√
1− ε2
ε

x

)]
(2.3)

ε =

√
1− m2

2

m0m4

(2.4)

mk =

∫ ∞
−∞

ωkS(ω) dω (2.5)

where S(ω) is the spectral density function of the given sea state, Φ(·) is the cdf of

the Gaussian distribution, and ε is the bandwidth parameter of the sea state.

From there, using Equations 2.2 & 2.3, he found that the maximum wave am-

plitude corresponding with the peak value of the extreme pdf, x̂, in m cycles is the

solution of:

1

m
≈ 1− FX(x̂) as m approaches ∞ (2.6)

Equation 2.6 describes the most probable maximum of the 1-D ocean surface in
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m cycles. Note that this m characterizes the number of independent waves observed.

If one were to instead begin with describing the instantaneous elevation of the ocean

surface instead of the positive maxima, a different number of cycles would be used

to find an equivalent most probable maximum.

It should also be noted that strictly speaking, extreme characteristics of ocean

processes viewed as time series cannot be done using extreme value theory due to

dependence between peaks. As such, Leadbetter and Rootzen (1988) discusses ex-

treme value theory as related to stochastic processes taking into account dependence

between peaks and changes in parameters over time.

2.3 (Non-Gaussian) Extreme Value Prediction Techniques

When a process is not so easily described by a closed form or well-known pdf, al-

ternative methods using General Extreme Value Theory can be used. In General

Extreme Value Theory, it is can be approximated that any set of random variables

that are independent and identically distributed will eventually converge to one of

three extreme value distributions: the Gumbel distribution, the Fréchet distribution,

or the Weibull distribution.1 From here, different methods can be used to estimate

the shape parameters of one of the aforementioned distributions, as done in Razola

et al. (2016). Razola et al. fit a Weibull distribution to acceleration peaks of a high

speed craft model. The Weibull distribution is described by two shape parameters,

a and b, and is defined as follows:

F (x) = 1− e−(x/a)b (2.7)

To determine the shape parameters for the acceleration peak process, they took

samples of acceleration peaks and performed an optimization problem on the R2

statistic. Performing the same exercise in Equation 2.6, the most probable maximum

acceleration, x̂e, in the expected amount of cycles in a given number of cycles, n,

was estimated to be:

x̂e = a[log(n)]1/b (2.8)

1Assuming that the distribution function of the random variables is max stable (Leadbetter
et al., 1983).
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Another fitting method for an arbitrary process is to estimate the distribution

of the “tail” of the process. The positive tail of a process describes the values in

the upper limit of process’ distribution. Properly estimating the tail of a process is

of interest because the extreme value sought is in the tail somewhere. One method

to estimate the tail distribution and the most probable maximum is the Peaks Over

Threshold approach. In this method, a threshold, u, is selected and the parameters

of the Generalized Pareto distribution, σ and ξ, are fit to the tail through maxi-

mum likelihood estimation. It can be shown (Coles, 2001) that the cdf of the peak

distribution, Fpeaks(x) and the most probable maximum in m observations, x̂m are:

Fpeaks(x) = 1− (ξu(1− F (x)POT )) (2.9)

x̂m =

u+ σ
ξ
[(mξu)

ξ − 1] if ξ 6= 0

u+ σlog(mξu) if ξ = 0
(2.10)

where FPOT (x) is the distribution of peaks over the threshold, u, and ξu is the

probability that any global peak exceeds u. In Michelen and Coe (2015), POT is

compared with other methods, including tail fitting, in estimating the short-term

extreme force on the power conversion chain of a wave energy converter. However,

in the marine environment, it is often difficult to accurately estimate the tail of a

distribution due to the rarity of events and changing conditions, making it difficult

to justify the use of POT in conjunction with a GPD (Pipiras, 2020). Still, efforts

made to describe the tail of the distribution, even in a marine environment, are

made. In Belenky et al. (2019), the extreme response of a piece-wise linear oscillator,

which has ship stability applicability, was investigated. The behavior of the tail was

found to be dependent on various factors but was more or less defined under the

set of circumstances examined in this paper. While this paper provides an excellent

derivation and study, it is limited in that the solution is specific to the model and

the results are not necessarily usable outside of a piece-wise linear oscillator.

While specifically estimating the tail structure can be useful, it does not give

a complete picture of the system when it is experiencing an extreme event. To

properly consider the failure modes of the system, the response of all (or at least

related) degrees of freedom must be considered when experiencing an extreme event.
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The consideration of multiple, possibly correlated, loads and responses increases the

complexity even more. To simplify the issue, there are guidelines and rules that

apply constant factors to loads when one specific load is considered extreme (Lloyd’s

Register, 2020), but even these were shown to not be reliable, mostly due to the fact

that the load combination factors are static, when in reality it is more likely that

they would follow a distribution (Seyffert, 2018).

The problem is that, generally, there is not enough information on the model to

build out a full statistical or practical estimate of the different degrees of freedom

and how they all relate. There are certainly ways to accomplish this, as in Naess

(1994), but many idealizations must be made or conditions must be met, namely

belonging to a certain set of oscillators and having white noise forcing. For the

most part, we cannot say for certain how one degree of freedom will react when

another is experiencing an extreme response. Of course, Monte Carlo simulations

(MCS) can be performed to study the extreme responses. While MCS can reveal a

lot about a system, they are generally time consuming. Even so, they are popular

and methods to improve efficiency have been implemented. In Chai et al. (2016), an

efficient MCS system was developed by understanding that the mean upcrossing rate

of the system when it is in the tail of the distribution (i.e., experiencing an extreme

event) is generally regular, and by fitting parameters to the equation that describes

this upcrossing rate, an extrapolation on the extreme response can be performed.

Techniques like this can be highly useful but are limited in that they are generally

specific to the problem at hand.

In Echard et al. (2011), the Kriging method (Matheron, 1973) was combined with

Monte Carlo simulations to estimate probability of failure. By using the interpolation

characteristics of the Kriging method, a population of Monte Carlo points, say nMC ,

can be classified by calling the true performance function of the system an amount

of times less than nMC . The iterative nature of this method involves active learning

where the design of experiments, or the sampled input from the initial population

of Monte Carlo simulations, is updated and improved through the Kriging method.

Using this method, the authors were able to accurately estimate the probability of

failure for a spring-mass-dashpot system with parameters characterized by random

variables using significantly less calls to the performance function. While the initial

population of Monte Carlo simulations can be updated if the probability of failure
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is not sufficient, the estimation and probability of failure is still limited to what lies

in that population. Any unknown or rare behavior not represented in this sampling

space could be ignored leading to poor estimations.

A slightly different approach to the extreme value estimation problem is the idea

of critical wave groups. In Anastopoulos and Spyrou (2019), the authors use the

critical wave group approach to estimate the probability that the roll angle of a ship

a greater than some critical value. Essentially, a law of total probability set up is

assumed where the probability of extreme roll angles given the presence of mutually

exclusive wave groups and certain initial conditions is used in conjunction with the

probability that those wave groups and initial conditions actually occur. Another

point of interest is the use of Markov chains to construct realistic wave groups. The

Markov chain approach generates the expected wave groups with periods that exist

in a range of critical periods given a sea state. The method is applied to a small ocean

surveillance ship to estimate the probability of exceedance for a number of roll angle

thresholds. Monte Carlo simulations were used to estimate the moderate thresholds

i.e., in the linear regime, and were not used for comparison in the larger critical roll

thresholds where roll is expected to be more nonlinear. In the irregular wave setup,

results for the critical wave method using mean-stationary initial conditions were

shown along with two other rare solution types with initial conditions. While the

solutions with initial conditions appear contiguous with the Monte Carlo probability

of exceedance curve, it is difficult to assess the accuracy without Monte Carlo results

in the nonlinear regime.

Another method that involves special attention to the tail of the distribution

is the sequential sampling strategy developed in Mohamad and Sapsis (2018). In

Mohamad and Sapsis (2018), the authors use observations of the randomness and

uncertainty within the model e.g., stochastic forcing or system parameters, along

with observations of a response interest, which may be a mapping function based off

of the randomness and uncertainty, to learn the pdf of the observation of interest.

The learned pdf then uses an optimal set of inputs, or the uncertainty and random-

ness in the system, to minimize the difference between the learned pdf and actual

pdf of the response of interest. This approach naturally provides special interest to

the tails of the distribution. The method also uses a surrogate of the mapping func-

tion to reduce complexity and also does not require the actual pdf of the quantity
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of interest. Instead of using the actual pdf, upper and lower confidence intervals of

the surrogate mapping function are used to calculate distance from the learned pdf.

Sequential samples in this fashion are used to learn more about the tail statistics

of the response of interest. The method was applied to estimating the pdf of forces

and moments acting on an offshore platform. After 15 iterations, the authors found

good agreement between the actual and learned forcing pdfs. That being said, the

least “confident” area of the learned pdf i.e., the area where there was the widest

band of confidence interval, was near the tail. Again, while the hydrodynamic forcing

application is a complex one, the uncertainty regarding the tail area could lead to

poor estimation of extremes. In Gong et al. (2020), the sequential sampling strategy

was again used to estimate extremes in a hydrodynamic context. The authors used

a different objective function more focused on extreme responses as opposed to re-

sponses with low probability. The method provided an estimated extreme pdf that

closely approximated the true extreme pdf.

Unlike Gaussian processes, it should also be noted that non-Gaussian processes

are not stationary by default. Without the guarantee of the system of interest be-

ing stationary, prediction of extreme events and characteristics becomes much more

difficult. Referring back to Leadbetter and Rootzen (1988), the main focus is on

stationary processes so while it provides a good starting point, derivations made and

theories stated are not directly applicable to non-stationary processes. Investigat-

ing non-stationary extremes is important to ensure safety and proper design of any

structure. That being said, there may not be knowledge that the system can exhibit

this type of behavior due to limited data or modeling simplifications.

In the techniques described above, a considerable amount of data and knowledge

is needed to ensure good and reliable fits. While they are more flexible compared to

set and assumed extreme value distributions, the computational expense may hinder

design processes, especially when considering different operating conditions or cases

with multiple loads that lead to failure. Furthermore, specific care and finesse must

be taken to account for potential non-stationary behavior.

2.4 The Design Loads Generator

It was mentioned in Section 2.3 that the general extreme value distributions were

limits and there is a possibility that either the wrong extreme distribution is chosen
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or the process that is being dealt with may not even converge to one of the three

types. So in lies the question: how can ensembles of extreme realizations of processes

with unknown extreme distributions be generated? A major building block towards

developing a technique to answer the question at the end of the previous section lies

in the Design Loads Generator (DLG) ((Alford, 2008, Kim, 2012). The DLG is a

tool that generates extreme realizations of a Gaussian process with a Gaussian input

at the Target Extreme Value (TEV) of interest. The TEV is simply an indicator of

how the magnitude of the expected maximum increases with the number of observed

trials, n, is of the form:

TEV =
√

2log(n) (2.11)

It can be noted that for a Gaussian process, the most probable maximum value

is n cycles is the product of the TEV and the rms of the process, which is also

the standard deviation, σ, in Gaussian processes. As such, in this thesis, the rarity

of events will be classified according to the TEV, in the fashion of the number of

standard deviations, e.g. 3σ. A 3σ event indicates a TEV of 3, which suggests an

extreme event with a most probable maximum that is 3 standard deviations above

the mean.

The DLG works by using creating a response spectrum2 of the Gaussian process

from an input spectrum and transfer function, and then randomly sampling phases

from optimized, modified Gaussian distributions which lead to extreme values at

t = 0 via the following equation:

x0 =
N∑
j=1

ajcos(εj) (2.12)

where x0 is an extreme response, aj are Fourier amplitudes of the response of interest,

and εj are phases that are randomly sampled from optimized phase pdfs.

It should be noted that the modified Gaussian distribution for each phase εj used

by Alford was:

2Note that for each frequency component, the response spectrum SR(ωij =
a2j
2dω . The vector

a = [a1, . . . , aN ] populates the same coefficients in Equation 2.12.
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where each λj was a variable to be solved for. Here, the distributions of the phases

were said to be independent but not identically distributed due to the λj parameter.

To find the parameters of the modified Gaussian distribution, λj, Alford equated

the pdf of the random variable shown in Equation 2.12, which is a summation of

modified Gaussian pdfs with different parameters λj, to that of the extreme Gaussian

distribution. In the pdf space, however, this is a daunting task. Instead, Alford

moved into the characteristic function space where she was left with the following

equation to be solved:

∞∫
−∞

m
σ
√
2π
eisxe−x

2/2σ2
(Φ(x

σ
))m−1 dx =

N∏
j=1

∫ 1

−1 e
iajsy

√
2πe
−(arccos y)2/2λ2j−λjerf( π

λj
√
2
)+λj

πλj
√

1−y2
dy

where m is the number of cycles in the specified time period and σ is the standard

deviation of the process.

Still left with N unknowns, a subplex optimization was introduced with the cost

function, f , chosen as:

f =
Ns∑
k=1

|ψxm(sk)−
N∏
j=1

ψYj(sk)| (2.14)

where ψP (sk) is the characteristic function of pdf, P = theoretical extreme Gaussian

(xm) or modified Gaussian (Yj), at sk and Ns is the number of discrete values of s

that were used.

After the optimization, the phase pdfs Alford came up with did not quite line

up with those of the theoretical extreme Gaussian distribution. In Kim (2012), Kim

introduced a standard Monte Carlo rejection sampling scheme of the phase modified

Gaussian distribution, which he called the Acceptance-Rejection Algorithm. The

algorithm improved upon the discrepancy between the theoretical extreme Gaussian

distribution and the extreme distribution from the optimization of phase sets.
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To increase the DLG’s versatility in predicting extreme responses, in Seyffert

(2018), the idea of surrogate processes was introduced. As mentioned before, the

DLG provides ensembles of realizations of extreme Gaussian processes. The entire

solution structure of the DLG is geared towards Gaussian processes and so it cannot

reliably produce extreme realizations of extreme non-Gaussian processes. However,

there are Gaussian processes that can be considered “indicators” for extreme non-

Gaussian processes. Seyffert considered a failure surface which is a function multiple

non-linear processes, which are transformations of a linear, Gaussian input. The “in-

dicator” linear functions, which are also Gaussian and linear functions of the input,

that best define each of the non-linear processes can be considered in a weighted sum

and a new linear process is formed. The weighted sum can be used to explore the

failure space, determine different maxima clustering configurations, and how it all

impacts system failure.

To continue the expansion of the DLG into the non-Gaussian, non-linear do-

main, the idea of moving those non-Gaussian, non-linear processes into the Gaussian

domain is explored.
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Chapter 3

Building Blocks

3.1 Introduction

In this section, the development of the Stochastic Gaussianization Iteration Method

(SGIM) is discussed along with applications. The SGIM is a major building block

in developing the method detailed later in this thesis. It is important to detail

the structure and application methods of the SGIM to provide a foundation for the

method discussed later.

First, the methodology behind the SGIM is described. Second, a study testing the

limits of the SGIM is performed using a Duffing oscillator to toggle the non-linearity

(and non-Gaussianity) of the system. Third, two applications of the SGIM will be

presented in which differing levels of non-Gaussianity are displayed: determining

extreme acceleration characteristics near hull slams; and developing wind and wave

environments that lead to extreme tower base bending moments in an offshore wind

turbine. The results in the hull slamming application have been published and

presented in the Practical Design of Ships and Other Floating Bodies (Edwards et al.,

2019b) and the results in the offshore wind turbine tower base bending moment have

been published and presented in OCEANS (Edwards et al., 2019a).

3.2 The Stochastic Gaussianization Iteration Method

In the marine environment, different reactions and relationships between forces or

degrees of freedom may lead to responses that are highly non-Gaussian and/or non-

linear. Many analyses rely on a linear transfer function between the (assumed)

Gaussian wave elevation and the resulting Gaussian output. While these assump-

tions may be valid for some cases, they simply cannot provide meaningful results

when discussing these highly non-Gaussian, non-linear (NGNL) responses. This is
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unfortunate, as the methods developed to estimate extreme responses of Gaussian

processes with Gaussian input have proven to be powerful. As mentioned in Section

2.4, the use of surrogate processes may be a solution. But, when there is not a clear

and/or highly correlated “indicator” function, an alternative method must be taken

to estimate realizations of non-Gaussian extreme events. To take advantage of the

proven Gaussian process extreme response prediction methods in the NGNL domain,

the Stochastic Gaussianization Iteration Method (SGIM) was developed.

The SGIM is an iterative process which relies on the normal score transformation

and the Design Loads Generator (DLG). The normal score transformation is a one-

to-one mapping of the non-Gaussian random variable to a Gaussian random variable

in the probability space. In the normal score transformation, the cdf of a random

variable is used to transform said random variable into a Gaussian random variable

as shown below:

Y : = FX(x)→

FY (y) = P (Y ≤ y) = P (FX(x) ≤ y) =

P (X ≤ F−1X (y)) = FX(F−1X (y)) = y →

FZ(z) = FY (y) = y

z = F−1Z (y)

z = µ+
√

2σerf(2 ∗ y − 1)

where X is the random variable of interest, Y is a uniform random variable, and Z is

a Gaussian random variable with mean, µ and standard deviation σ. In the following

studies and applications, the standard Gaussian random variable (µ = 0, σ = 1) was

used. The intermediate step of transforming X into a uniform random variable, Y ,

is shown to better illustrate how the normal score transformation can be repurposed

as a simple inversion sampling scheme with an initial transformation.

This technique can be used as a sampling scheme to transform a non-Gaussian

random process into a pseudo-Gaussian process. The “pseudo” tag is used here be-

cause while the transformed process has a Gaussian distribution, it is not necessarily

a true Gaussian process. It is difficult to say if the transformed process is a Gaussian

process due to the implicit nature of the transformation and the fact that the cdf of
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the non-Gaussian process is a spline generated using a computer. The spline is a fit to

the distribution of the non-Gaussian process and therefore once the gaussianization

is applied, the estimation involved in the distribution fitting leads to a realization

of a process that is not purely Gaussian, but reasonably close enough to call it a

pseudo-gaussian process. Going forward, however, the transformed pseudo-gaussian

process will be treated as a Gaussian process for use in the DLG.

As mentioned in Section 2, the DLG is a tool that generates an ensemble of

extreme realizations of a Gaussian process. For use in the SGIM, the DLG pro-

vides extreme realizations of the pseudo-gaussian process as well as the input that

leads to each extreme realization. These inputs are valid realizations of the in-

put spectrum and can be used as input into the non-Gaussian model. The re-

sulting non-Gaussian outputs are conditioned on the previous pseudo-gaussian pro-

cess being extreme. These conditioned non-Gaussian outputs belong to the set

Ω = {ω : X ′(ω)i+1,NG|X(ω)i,G ≥ X̂i,G} where the subscript NG identifies X as a

non-Gaussian time series, the subscript G identifies a Gaussian time series, and X̂i,G

is some minimum threshold for the TEV of iteration i. The non-Gaussian time se-

ries of iteration i+ 1 are conditioned on the Gaussian time series of iteration i being

extreme realizations at iteration i. The inputs that lead to the extreme pseudo-

gaussian events are simply a function of said pseudo-gaussian events, and the set Ω

can be alternatively represented as Ω = {ω : X ′(ω)i+1,NG|zi,G(t) ∈ Zi,G} where zi,G(t)

is a realization of the input that leads to an extreme value in the Gaussian space

on iteration i and Zi,G is the set containing all such realizations. By gaussianizing

the non-Gaussian outputs again, transfer functions between the now Gaussianized

outputs and the inputs that led to the previous pseudo-gaussian extremes can be

generated, averaged over the ensemble, and put into the DLG, forming an iteration

scheme. It is possible that the continued iterations will result in overlap between

realizations in the set Zi,G and the set ZNG, which contains all realizations of input

that lead to extreme non-Gaussian events in the given exposure period. The itera-

tions continue until a level of convergence is reached, either with a known extreme

non-Gaussian cdf or when the extreme cdf between iterations does not change. The

process is further outlined in the flowchart shown in Figure 4.2.

The idea here is that by continuing to effectively condition the current non-

Gaussian simulation on the previous pseudo-gaussian simulation being extreme, the
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Figure 3.1: The Stochastic Gaussianization Iteration Method (SGIM) flowchart
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non-Gaussian extreme cdf will be recovered. Since there is a one-to-one probability

mapping between the non-Gaussian process and the Gaussianized process, there is

potential for the conditional non-Gaussian process to converge with the extreme non-

Gaussian process. Of course, since the model and the Gaussianized transfer function

have different phase relationships with the input, there is no guarantee that the

convergence will occur. There is also the fact that when the transformation occurs,

it is unknown how the time scales change. When entering the DLG, a target extreme

value (TEV) is required. The TEV, in the Gaussian space, is entirely dependent on

the amount of cycles expected in the exposure time (Equation 2.11). It is not clear

how the exposure time changes when moving from the non-Gaussian space to the

Gaussianized space. As a result, there is additional uncertainty added each iteration.

There are alternative ways to recover a non-Gaussian extreme cdf, but in this

method, an unlimited amount of realizations of the non-Gaussian extreme cdf will

be accessible without making assumptions about the time between peaks or the

behavior of the process leading up to and following the extreme response. For use in

applications that require additional information about the process near the extreme,

this is clearly important. While the information near extremes could be collected in

Monte Carlo simulations, the SGIM has the potential to reduce run time and change

exposure time on the fly.

3.3 The Duffing Oscillator: A Variable Non-Linear Test for the SGIM

Given the analytical nature of the SGIM, the allowable non-linearity/non-Gaussianity

in which the SGIM will eventually recover the extreme cdf is unknown. To begin

to explore this limit, a well studied non-linear model with the ability to toggle the

amount of non-linearity in the system was required. The Duffing oscillator, which is

represented by Equation 3.1, was chosen as it is a well studied problem with marine

applications (Naess (1994)) and the non-linearity in the system can be easily changed

by altering the value of the β parameter.

ẍ+ δẋ+ αx+ βx3 = gE(t) (3.1)

where δ is the effective linear damping constant, α is the effective linear stiffness

constant, β is the cubic stiffness constant, g is a scaling factor to match the rms of

the excitation to that of a unit amplitude sine wave, and E(t) is the excitation time
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series and is drawn directly from an ITTC wave spectrum (ITTC, 2002).

In the study, Duffing oscillators with various β values underwent waves from an

ITTC spectrum. Note that realizations of the ITTC spectrum are Gaussian and

since any linear combination of Gaussian processes is Gaussian, the input E(t) is

a Gaussian process. Table 3.1 lists the parameters of the system and the input

spectrum.

Parameter Value
δ 0.1
α 1

g
√

2
Hs 3
Tm

4π
3

Table 3.1: Parameters used for the Duffing oscillator SGIM study along with the parameters used
for the ITTC spectrum. Note that all parameters are dimensionless for simplicity.

The β values selected for these analyses were 0.00, 0.01, 0.04, and 0.08. The β

value of 0.00 results in a linear, Gaussian Duffing oscillator and served as a control

for the study. It also served as an “identity test” for the SGIM as a process; that

is to say, given the ability of the DLG to provide extreme realizations of Gaussian

processes, a Duffing oscillator with β = 0.00 in the SGIM should provide convergence,

as it would without the use of SGIM, due to the DLG.

To test the limits of the SGIM, the extreme value cdf from the method was

compared with that of 500, 7000 s Monte Carlo simulations for each β case. In

the SGIM, 500, 500 s realizations of extreme pseudo-gaussian events were produced

each iteration and 50 of those realizations were used to generate a new transfer

function for the following iteration. To decompose the Gaussianized response and

the associated input time series, a combination of MATLAB ’s Welch’s (Welch (1967))

power spectral density estimate function, pwelch, and the Fast Fourier Transform

function, fft, was used with default parameters. The relationship, described by

Equation 3.2, between the response spectrum, input spectrum, and transfer function

was used to estimate the transfer function for use in the DLG.

Sout(ω) = |H(ω)|2Sin(ω) (3.2)

Here, Sout(ω) is the response spectrum as a function of radial frequency, ω, H(ω) is

the transfer function, and Sin(ω) is the input spectrum. The SGIM was continued
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Figure 3.2: The Monte Carlo and SGIM extreme value cdfs in the Duffing oscillator with a
non-linearity constant of 0.00.

until a visual convergence was reached; either with the Monte Carlo extreme cdf or

between the extreme cdfs of multiple concurrent iterations.

For each case, the rms of the process will be used to normalize the response of

interest: the acceleration. The rarity of these events is indicated by the number of

standard deviations above the mean, as discussed in Section 2.4. Also, note that for

a zero-mean process, the standard deviation and the rms are equivalent.

As shown in Figure 3.2, the SGIM on a Duffing oscillator with β = 0.00 was

able to closely reproduce the extreme value cdf from the Monte Carlo simulations

in terms of median. The variance in the SGIM extreme cdfs is relatively large (2.5x

larger) compared to that of the Monte Carlo extreme cdf.

In Figure 3.3, in the extreme cdf recovered by the SGIM for a Duffing oscillator

with β = 0.01, convergence was reached slightly faster than in the Duffing oscillator

with β = 0.00. That being said, the median value of the visually converged SGIM

extreme cdf was about 8% lower than that of the Monte Carlo simulations. The

SGIM extreme cdf retained the relatively large variance as well.

In Figure 3.4, for β = 0.04, the convergence of the SGIM extreme cdfs between

concurrent iterations took longer than in the previous two cases, but the median value

of the final SGIM iteration extreme cdf was closer to the Monte Carlo simulation
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Figure 3.3: The Monte Carlo and SGIM extreme value cdfs in the Duffing oscillator with a
non-linearity constant of 0.01.
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Figure 3.4: The Monte Carlo and SGIM extreme value cdfs in the Duffing oscillator with a
non-linearity constant of 0.04.

extreme cdf (3.5% higher). Also, the relative variance difference between the final

SGIM iteration extreme cdf compared to the Monte Carlo extreme cdf decreased to

a factor of 2.
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Figure 3.5: The Monte Carlo and SGIM extreme value cdfs in the Duffing oscillator with a
non-linearity constant of 0.08.

In Figure 3.5, the SGIM extreme cdfs for β = 0.08 move toward and eventually

surpass by the Monte Carlo extreme cdf by iteration but after iteration 15, the SGIM

extreme cdfs regress until eventually re-converging with SGIM iteration 1.

After performing this study, the main takeaway is that the SGIM, in the more

linear cases, could generally recover the median of the extremes. However, there

was a source of variance that was introduced that resulted in different shaped cdfs

compared to the Monte Carlo simulations.

In terms of non-linear limits, it can be seen that as the value of β increases, the

ability of the SGIM to recover the extreme cdf remains somewhat constant until

β = 0.08.

At β = 0.08, an odd phenomenon occurred where it appeared that the SGIM

was going to converge to a reasonable level near the Monte Carlo extreme cdf. After

the 15th iteration, however, the cdf slipped back until eventually converging on the

initial iteration. While this is not necessarily indicative of the SGIM’s non-linear

limitations, it does provide a starting point to defining the limits. That being said,

there are facets within the SGIM iterations that could be modified, such as the DLG

time series length or the value of the standard deviation used in the gaussianization,

to account for more non-linear problems, as well as the issue concerning how time
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evolves when the gaussianization occurs.

With this study in mind, the following applications of the SGIM are presented:

hull slamming and the tower base bending moment of an offshore wind turbine.

3.4 Extreme Acceleration during Hull Slams

In this section, the SGIM was applied on a hull slamming model to estimate the

extreme cdf for acceleration magnitude as in Edwards et al. (2019b). To study if

the SGIM preserved other characteristics, the peak width of the most extreme value

from each simulation was also recorded. The peak width is defined as the effective

duration of a slamming event and was determined using an algorithm defined in

Razola et al. (2016). It can be noted that the magnitude of acceleration and the

associated peak width are drivers in human injury aboard ships when faced with a

slam as seen in Griffin (1996).

The extreme acceleration cdfs that the SGIM produced was compared with that

of 500, 10,800 s Monte Carlo simulations. In the iterations, the DLG produced 500,

2000 s realizations of the extreme pseudo-gaussian process during each iteration.

Longer DLG time series were used here to ensure that the transfer functions were

more developed each iteration. The model used to simulate heave acceleration with

sporadic slams is shown in Equation 3.3 and a visual representation is shown in

Figure 3.6.

mẍ+ cẋ+ k(t)x = Fζ(t) (3.3)

where

k(t) =

k + kse
−(1/τ)t if RV > RVthresh and RP < 0

k otherwise

Here, m represents the mass of the system, c represents linear damping, F is

a linear forcing coefficient applied on the time dependent wave elevation ζ(t), k is

the hydrostatic stiffness, ks is the additional instantaneous stiffness added when a

slam occurs, τ is the stiffness decay term associated with a slam, and RV is the

relative velocity and RP is the relative position between the mass and the ocean

surface. The method by which a slam occurs is consistent with Ochi (1964), but the

criteria (notably the threshold relative velocity required for a slam, RVthresh,) were
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Figure 3.6: A reduced order model of a high speed planing craft, with slamming being modeled
by an exponential spring, k(t).

not specifically matched.

The slams were represented by a decaying exponential to emulate the immediate

additional stiffness the water surface provides, followed by the water traversing up

the hull until the stiffness of the water returns to purely hydrostatic. The system

parameters, shown in Table 3.2, were chosen to provide a frequency of slams and

magnitude of acceleration during slams comparable to accessible data in a sea state

described by an ITTC spectrum with Hs = 6m and Tm = 12 s.

Parameter Value
k [N/m] 588.06
m [kg] 600.00
RVthresh [m/s] 5.00
c [Nsm ] 415.80
F [N/m] 1500.00
τ [s] 133.33
ks [N/m] 4750.60

Table 3.2: Parameters used for the hull slamming application.

It should be noted that this model is highly non-linear and also non-Gaussian.

Therefore, it is expected that the level and speed of convergence may be comparable

to one of the Duffing oscillators in Section 3.3 if it can be assumed that the level of

non-linearity/non-Gaussianity is the only factor in the success of the SGIM. Figure

3.7 shows a sample pdf of the acceleration to demonstrate the non-Gaussianity of

the system. The kurtosis and skewness of the acceleration are certainly indicative of

the non-Gaussianity of the system, but the non-Gaussian nature of the model can

also be noticed in the minor peak on the positive tail of the pdf.

Figure 3.8 shows the extreme cdfs for the Monte Carlo simulations and the SGIM

iterations.

After five iterations, the extreme acceleration cdf of the SGIM appears to have

32



Figure 3.7: Sample pdf of the model’s acceleration. Note the minor peak in the positive tail,
indicative of the non-Gaussianity.

2 4 6 8 10 12 14

Acceleration [g's]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
D

F
 [

 ]

Monte Carlo

GIM Iteration 1

GIM Iteration 2

GIM Iteration 3

GIM Iteration 4

GIM Iteration 5

Figure 3.8: The extreme value cdfs for the Monte Carlo simulations and five (S)GIM iterations.

converged with that of the Monte Carlo simulations. It should be noted, however,

that the creation of the extreme SGIM cdfs was taken blindly. That is to say, the

location of the extreme value was not initially noted. In the DLG, phases are selected

such that an extreme occurs at t = 0. It follows that the extreme value in the SGIM

realizations should also lie around t = 0 due to the expected convergence of the sets

Zi,G and ZNG This was not the case, however. The extremes in the fifth and final
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Figure 3.9: The cdf of the locations of the extreme values in 500 simulations of the fifth SGIM
iteration. Note that the expected time of the extreme value is at tex = 1000s with very little
deviation.

iteration of the SGIM were actually nearly uniformly distributed across the 2000 s

time series, as shown in Figure 3.9.

When inspecting Figure 3.9, it appears that, like any ordinary set of simulations,

it is equally probable that the largest value appears anywhere in the sequence. From

here, it is logical to say that the DLG time series were too long and led to a sort

of forced, artificial convergence. However, the fact that each DLG time series is less

than 1/5 the length of each Monte Carlo simulation says otherwise. That still leaves

the question: what caused the convergence of the SGIM extreme cdf and the Monte

Carlo extreme cdf? This is among the questions that must be answered for the SGIM

to be considered legitimate.

Another facet of this application was the study of the duration of the largest

acceleration peak and if the SGIM preserves the behavior. The duration of accel-

eration, or peak width, was determined using the algorithm used in Razola et al.

(2016).

The peak width of the largest acceleration peak in each Monte Carlo and SGIM

simulation was recorded. The peak width and associated acceleration magnitude were

plotted against each other to compare the SGIM with Monte Carlo simulations. Also
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Figure 3.10: Extreme acceleration magnitude and peak width pairs for the Monte Carlo simula-
tions and SGIM iterations 1 and 5.

included is a line from Griffin (1996) which, if crossed by a peak width-magnitude

pair, indicates that a standing human would likely be injured. The probability of

injury during the largest acceleration, or number of cases for which the peak width-

magnitude pair crossed the Griffin line out of the total number of cases, was also

recorded. Figure 3.10 shows the peak width-magnitude pairs for each Monte Carlo

simulation and of selected SGIM iterations.

The fifth SGIM iteration, which showed convergence with the Monte Carlo simu-

lations in purely magnitude, had a similar probability of human injury to the Monte

Carlo simulations. However, the SGIM did not share dual grouping phenomenon of

the Monte Carlo simulations. It is unclear if the two clusters of peak width and peak

magnitude pairs present in the Monte Carlo simulations is an artifact of the model

used or the result of some sort of relationship with the input spectrum. Still, the

SGIM provided results that more or less encapsulated the domain and range of the

Monte Carlo simulations peak width and peak magnitude pairs.

While the SGIM extreme acceleration cdf converged with that of the Monte Carlo

simulations, there are still unexpected consequences that must be understood: the

uniformly distributed acceleration extremes across the span of the DLG time series

and the change in peak width distribution compared to the Monte Carlo simulations.
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There is also the overarching problem with the change in time scales when performing

a gaussianization on a time series.

3.5 Extreme Tower Base Bending Moments of Offshore Wind Turbines

In this section, the SGIM was used to determine wave sets that, in conjunction

with wind that was random and unconditioned on the waves, led to extreme tower

base bending moments in an offshore wind turbine as in Edwards et al. (2019a). To

do so, the multi degree of freedom wind turbine simulator OpenFAST (Jonkman

and Sprague (2017)) was used with the DTU 10 MW Reference Wind Turbine (Bak

et al. (2013)). Even with second order effects from the waves, the tower base bending

moment produced by OpenFAST was nearly Gaussian. That being said, as seen in

Section 3.3, the near Gaussianity may not result in perfect convergence between

SGIM and the “truth”. Again, the SGIM was stacked up against Monte Carlo

simulations. In the Monte Carlo simulations, a JONSWAP wave spectrum with

Hs = 6m and Tm = 12s was used in conjunction with a Kaimal wind spectrum

(Kaimal et al. (1972)) with a mean wind speed of 12 m/s and a turbulence intensity

of 0.25. Due to the more complex solver used in OpenFAST, only twenty 40-minute

simulations were run for comparison. For the SGIM, four 15-minute simulations were

run with solely realizations of waves from the aforementioned JONSWAP spectrum.

After five iterations of the SGIM, an ensemble of 200 s wave sets that led to 40-

minute extreme wave bending moments was produced. For comparison with the

Monte Carlo simulations, the extreme wave sets were input into OpenFAST along

with unconditioned realizations of the Kaimal spectrum. The comparison between

the Monte Carlo extremes and the extremes produced by the SGIM are shown in

Figure 3.11. Also shown are the TEV of interest and the cdf of the instantaneous

bending moment.

It should initially be noted that the SGIM extreme bending moment cdf with

solely waves overshot the Monte Carlo extreme cdf in both median and variance.

However, the addition of unconditioned wind actually lowered both the median value

and the variance to a point more in line with the Monte Carlo extreme cdf. Theoreti-

cally, in a linear system, the addition of wind would add a mean bending moment and

increase the extreme values by at least that mean value. It could be possible that the

mean wind speed here increased the tension on the mooring lines thereby increasing
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Figure 3.12: The ensemble average of the waves that lead to extreme bending moments after five
SGIM iterations.

the stiffness in the system. By increasing the stiffness in the system, the natural

frequency increases. By looking at Figure 3.12, it can be reasoned that the waves

may have zoned in on the bending moment natural frequency, therefore providing

responses much larger than expected from the Monte Carlo simulations.

By increasing the stiffness, the mean wind speed may have detuned the system,

resulting in lower extreme values. Still, while the addition of wind brought the

SGIM extreme cdf closer to the Monte Carlo extreme cdf, there is still a consider-
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able difference between the two. One possible solution may be to perform the SGIM

with multiple inputs, being wind and wave. In the multiple input SGIM, there is a

challenge in generating two transfer functions from wind and wave to the bending

moment for input into the DLG. A technique like Independent Component Analysis

(ICA) may be useful in this situation if a machine learning code could be trained

to identify what frequency content and other characteristics of the bending moment

response come from wind and what comes from wave. There is also an analytical

technique in which the frequency content of the wind and wave spectra are alterna-

tively discretized so that when the Gaussianized bending moment response is brought

into the frequency domain, the frequencies associated with wind and wave could be

picked out.

3.6 Conclusions

In this chapter, the development and progress of a new method called the Stochastic

Gaussianization Iteration Method was presented. A systematic approach to defining

the non-linear capabilities of the SGIM was attempted with a Duffing oscillator.

Various values of the non-linear parameter were used and the extreme cdfs produced

by the SGIM were compared with Monte Carlo simulations. While the SGIM was

mostly successful in estimating the extreme median, the estimated variance was at

least twice as large as compared to the Monte Carlo simulations. Further studies

into the parameters within the SGIM such as DLG record length and the standard

deviation used in the gaussianization may shed a light on this increased variance.

The SGIM was then applied to find the extreme cdf of acceleration in a hull slam-

ming model. In this application, the SGIM extreme cdf converged with the Monte

Carlo extreme cdf after five iterations. Upon closer inspection, however, the location

of the extrema were far different than expected. Learning more about how time

is affected when a process is “Gaussianized” may be of use when investigating this

phenomenon. Also, the effect of the SGIM on other characteristics during extreme

events was studied by looking at the duration of each extreme acceleration. Within

the criteria of human injury, the SGIM reproduced the results from the Monte Carlo

simulations, but provided acceleration peak durations that were more sporadic than

the Monte Carlo simulations.

The more Gaussian application of offshore wind turbine base bending moment

38



was the next application of the SGIM. That being said, the SGIM did not perform as

well in it did in the hull slamming application. After studying the waves that led to

extreme bending moments produced by the SGIM, it is possible that resonance might

have been tripped. The fact that the addition of wind actually lowered the extreme

responses further supports this theory, as the wind would have detuned the system.

While the SGIM did not necessarily “work”, this application provided insight into

situations where the SGIM may struggle.

One takeaway from the SGIM is that for a zero-mean and non-skewed process,

the original process and the Gaussian transformed version have the same amount

of upcrossings in a given return period. It is this insight that inspired the decision

to discontinue development on the SGIM and to take a different approach. In the

following chapters, this key property of the SGIM method is taken and developed

into the Matched Upcrossing Equivalent Linear System (MUELS) method.
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Chapter 4

The Matched Upcrossing Equivalent Linear System Method

4.1 Introduction

Understanding the intricacies of multi-degree of freedom non-linear systems requires

extensive knowledge or assumptions to be made. It is important from a design per-

spective to understand the dynamics of other degrees of freedom during an extreme

event in a particular degree of freedom so that any structural responses that are af-

fected by said degrees of freedom e.g., bending moment or slamming, can be designed

for. It is unrealistic to expect to have a full statistical model for joint interaction

between all of the degrees of freedom but it is also risky to apply “load combination

factors” (Lloyd’s Register, 2020). One method that lands somewhere in between is a

time series analysis using the DLG in which an ensemble of input wave realizations

that lead to an extreme in one degree of freedom are applied to other degrees of

freedom to generate conditional distribution histograms. This method was applied

in Seyffert (2018) to investigate the failure probability of stiffened panels undergoing

both bending and slamming pressures. In Seyffert (2018), surrogate processes that

were linear and correlated with bending moment and slamming were run through the

DLG to generate extreme time series realizations which could then be used to un-

derstand the simultaneous response in other degrees of freedom. While the method

presented is a powerful application of the DLG, it still requires advanced knowl-

edge of the system in having to select the surrogate processes. In this chapter, an

alternative method to selecting a surrogate is introduced in the MUELS method.

4.2 Methodology

To identify extreme behavior while also retaining the ability to investigate other

responses in the same conditions, the proposed method uses a combination of a to-be
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found Equivalent Linear System (ELS) and the Design Loads Generator (DLG). The

DLG can produce an ensemble of inputs that lead to extremes for the linear systems,

which can in turn be used as input for the non-linear original process. Whether or

not these inputs will result in extreme behavior in the non-linear system is related

to the method of determining the equivalent linear systems. Often times, at least

in linear systems, the level of rarity in the response will be directly related to the

number of times the response oscillates past the mean of the process. The question

then becomes, for ergodic non-linear systems, is it possible to use extreme behavior

information from these linear systems’ upcrossing rates to estimate non-linear system

maxima? In this method, the mean-upcrossing rate (MUR) is measured from training

data for a given input spectrum. After estimating the MUR, linear systems subjected

to the same input spectrum with the same MUR can be identified. By using a

linear oscillator with two parameters, damping ratio and natural frequency, a contour

relating these parameters can be generated such that the linear system has the same

upcrossing rate as the training data of the non-linear process. Equation 4.1 shows

the differential equation that represents the ELS.

ẍ+ 2ωnζẋ+ ω2
nx = F̂ (t) (4.1)

Here, ωn is the natural frequency, ζ is the damping ratio, and F̂ (t) is the forcing

normalized by the unspecified mass of the system. In Ochi (1990b), it was shown that

for linear systems like the one in Equation 4.1, the MUR can be described using the

moments of the system. Equation 4.2 shows the equation for the mean-upcrossing

rate for linear systems forced by a linear zero-mean input spectrum.

ωz =
√
m2/m0 (4.2)

where ωz is the mean-upcrossing frequency, m2 is the second moment, and m0 is

the zero-th moment. It should be noted that if the system is non-stationary, the

MUR shares uncertain correlation with extreme values. The MUELS method does

not apply to non-stationary systems in the format described here. Chapter 6 will

include discussion of an application of the MUELS method in which non-stationarity

is not a limiting factor.

To generate the contours, a set of systems with varying damping ratios and
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natural frequencies are swept. For each of the systems, the zero-th and second

moments are calculated and the mean-upcrossing frequencies are determined using

the following equation.

mk =

∫ ∞
0

ωk|H(ω;ωn, ζ)|2Sin(ω) dω (4.3)

where mk is the k-th moment, ω is radial frequency, H(ω;ωn, ζ) is the transfer func-

tion of the linear system represented by ωn and ζ, and Sin(ω) is the input spectrum.

The MUR is estimated as a function of the natural frequency and damping ratio

and the MATLAB function contour() builds a contour. The resulting contour is a

function of natural frequency and damping ratio at the specified mean-upcrossing

frequency of interest. It should be noted that the contour is estimated using an

interpolation method. Sufficient accuracy was achieved using around 30 different

damping ratios and natural frequencies generate a discrete representation of the zero-

upcrossing frequency as a function of the damping ratio and natural frequency. The

contour() function takes this discrete representation and generates a set of damping

ratios and natural frequencies (that may not have been in the original parameter

sets) at the MUR of interest. The number of systems along the contour depends on

the relationship between the MUR found from the training data and the character-

istic frequency in the input spectrum. If the difference between the MUR and input

characteristic frequency is significant enough, there may not be any ELS that can

represent the non-linear system. That being said, more parameters could be added

into the ELS such that systems with the same MUR as the NL system of interest

can be discovered. Figure 4.1 shows an example of what one of these contours looks

like.

All of the linear systems along the contour have approximately the same MUR

as the non-linear process. This is the basis for the Matched Upcrossing Equivalent

Linear System (MUELS) method. By matching the MUR, the number of mean-

crossing maxima can be expected to be the same, in the mean. Therefore, while

there may be some variation in the time series, it is hypothesized here that there

is a conditional relationship between the extreme values of the non-linear process

and the equivalent linear systems. To classify the rarity, the Target Extreme Value

(TEV) (Ochi, 1990b) based off of the linear systems is defined as follows:
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Figure 4.1: An example of a contour for a given mean-upcrossing frequency (0.7854 rad/s).

TEV =
√

2ln(n) (4.4)

where n is the number of cycles in a given exposure period.

While the TEV does not have strict meaning to a non-linear process, it is a

starting point and more flexible than attempting to estimate a more correct metric

for each different non-linear system. By using the TEV as a metric along with a

series of linear systems subjected to a specified input spectrum, the DLG can be

used to produce extreme realizations of the linear systems at the level specified by

the TEV as well as the inputs that lead to those extreme realizations. It should also

be noted that the use of the TEV in this case does not assume narrow-bandedness.

The gathering of the number of cycles is done empirically, which means all of the

moments of the response spectrum are included.

The DLG samples phases from a distribution that is directly influenced by the

extreme value distribution of a Gaussian process (Kim, 2012). Since the ELS are

linear and are forced by a Gaussian process, they too will be Gaussian. The selected

phases for a given realization can be inverted through the transfer function to gen-

erate phases for the input realization. The input can then be used as conditional

input for the non-linear process of interest.
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The DLG generated input realization is firstly a valid realization of the original

input spectrum but secondly contains phase and frequency content that excites a

system with the same MUR as the non-linear process. This action, while not guar-

anteeing an extreme non-linear event on the order of the exposure period of interest,

can aid in understanding the general behavior of the non-linear system in a rare

scenario. In this vein, the complexity within non-linear transfer functions can result

in a shift in time for the conditional extreme. In the DLG realizations, the extreme

value occurs at a specific time t0, where t0 can be set to 0 without loss of generality.

When applying these inputs to the non-linear transfer function, the interaction be-

tween the DLG phase sets and the non-linear transfer function can result in a shift

of the conditional extreme’s location away from t0. As such, when running through

the MUELS method, the limits of searching for the largest zero-upcrossing value in

a single realization is expanded by one cycle centered at t0 to account for phase dif-

ferences between the ELS and non-linear system. That is to say, the search is done

for each realization as follows:

x̂i = max
t
xt(t0 − T0 : t0 + T0) (4.5)

where i ∈ [1, N ] is the realization number, N is the total number of realizations, x̂

is the maximum value, and T0 is the mean period of the response. At this point,

the time series can then be “corrected” by shifting the conditional extremes to t0 if

desired. To summarize the MUELS process, Figure 4.2 shows a flowchart outlining

the steps in the MUELS method.

The MUELS method is based on the assumption that the conditional extreme

maxima of the nonlinear system (i.e., conditional on occurring in the neighborhood

of the ELS) is an approximation to the true nonlinear extreme. Along with this

aspect, the MUELS method makes no assumption on tail behavior, like what was

needed for the SGIM Gaussianization process, and also requires less explicit discrete

function manipulation.

In the following chapters, the MUELS method is applied to three distinct systems:

a sub-harmonically forced Duffing oscillator, a super-harmonically forced Duffing os-

cillator, and an impact oscillator. Each of the three systems have marine applications

and will test the limits and capabilities of the MUELS method.
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ẍ+ dẋ+ ax+ βx3 = gηDLG(t)

Correct the
conditional

extreme
time

series if
necessary

Figure 4.2: The Matched Upcrossing Equivalent Linear System (MUELS) method flowchart45



Chapter 5

MUELS Application with a Sub-harmonically Forced Oscillator

5.1 Introduction

While the surrogate process approach proved to be an effective method, experience

is needed to select a process that is correlated with the response of interest. Still, it

leads one to believe that the DLG can be used in a systematic fashion to estimate

extremes of non-linear systems. Here, a methodology is proposed that allows a linear

surrogate process to be found from the non-linear process alone. This chapter applies

a method based off of this belief: The Matched Upcrossing Equivalent Linear System

(MUELS) method.

This chapter is organized as follows: First, the method is applied to a stiffening

Duffing Oscillator. A single exposure period run is presented and compared to Monte

Carlo simulations to demonstrate the process and outputs of the MUELS method

at three different cubic stiffness levels. Then, estimations of the most probable

maximum at each of the three different cubic stiffness levels at a wide array of

exposure periods are generated using the MUELS method and are compared with

MCS and GEVD extrapolations. The recreation of extreme time series using the

MUELS method is also shown and compared with extreme Monte Carlo realizations.

5.2 Methodology

In this section, the methodology developed in Edwards et al. (2021) is discussed.

5.2.1 GEVD Extrapolation

By using methods discussed in the Introduction, it is possible to extrapolate the

parameters of a GEVD for a given exposure period to those of a different exposure

period. The extrapolated GEVD will provide a comparison for the MUELS method

at exposure periods without MCS. To do so, the parameters of interest should be
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introduced. Equation 5.1 shows the general form of a GEVD cdf (Coles, 2001).

F (s; ξ) =



exp(−exp(s)) for ξ = 0

exp(−(1 + ξs)−1/ξ) for ξ 6= 0 and ξs > −1

0 for ξ > 0 and ξs ≤ −1

1 for ξ < 0 and ξs ≤ −1

(5.1)

Here, ξ represents the shape parameter and s = (x−µ)/σ, which non-dimensionalizes

the variable of interest, x, with the location parameter, µ, and the scale parameter,

σ. The shape parameter dictates which type of extreme distribution a given process

follows and does not change with exposure period. That being said, estimations of

the shape parameter can vary from exposure period due to the fact that it has not

converged. In this dissertation, however, the shape parameter from the training data

is used and taken as a constant.

To extrapolate the GEVD parameters from exposure periods of n cycles to m

cycles, the following relationships can be derived from the assumption that the shape

parameter remains constant:

σm = σn(m/n)ξ (5.2)

µm = µn + (σn/ξ)[(m/n)ξ − 1] (5.3)

where subscripts m and n refer to the parameter’s value with respect to m and n

cycles, respectively.

Of course, Equations 5.2-5.3 assume ergodicity and it is entirely possible to er-

roneously extrapolate parameters for a non-ergodic system if rare behavior does not

show up in the training data. In this chapter, the MUELS method will not be tested

with a non-ergodic system, which is suggested by the fact that all pdfs of the oscilla-

tor response are uni-modal i.e., not containing multiple attractors. The extrapolated

GEVD parameters will be assumed sufficient and confirmed with Monte Carlo Sim-

ulations of length equal to the exposure period of interest. Later in the chapter,

the EVD extrapolations are used outside of the computational practicality of Monte

Carlo simulations as comparison points with the MUELS method.
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5.3 Sub-harmonically Forced Oscillator

In this section, the sub-harmonically forced Duffing Oscillator is introduced and

pertinent characteristics including qualitative measures of non-linearity are shown,

as in Edwards et al. (2021). It should be noted that the “sub-harmonically forced”

signifies a forcing by a spectrum with a peak forcing frequency less than the linear

natural frequency of the non-linear system. The basis for comparison and the set up

for the Monte Carlo simulations are discussed as well.

5.3.1 The Duffing Oscillator

The Duffing Oscillator is a well-studied non-linear model (Miwadinou et al., 2016,

Naess, 1994, Sterk, 2016) with marine applications such as roll. However, the extreme

behavior of the Duffing Oscillator forced by a typical sea spectrum is less studied.

The model for a Duffing Oscillator can be described as shown in Equation 3.1. In

this chapter, an input spectrum and a forcing coefficient will be used. The forcing

coefficient, g, scales the excitation such that the excitation rms matches the rms for

a unit amplitude harmonic sine forcing. Equation 5.4 relates g to the forcing factor

Fs and the significant wave height Hs. It can be shown through the rescaling of

Equation 3.1 that changing the forcing factor, g, is equivalent to changing the cubic

non-linearity coefficient, β.

g =
2
√

2Fs
Hs

(5.4)

The updated Duffing Equation becomes:

ẍ+ dẋ+ ax+ βx3 = gη(t) (5.5)

where η(t) is a realization of the input spectrum.

In this chapter, an ITTC spectrum will be used with a significant wave height of

3.0m and a modal period of 14 s. The ITTC spectrum is defined as follows

S(ω) =
5π4H2

s

T 4
mw

5
exp(
−20π4

T 4
mw

4
) (5.6)

where Hs is significant wave height and Tm is the modal period.

To affect the non-linearity, the forcing constant Fs will be varied. The rest of the
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Figure 5.1: Qualitative magnification curves for Fs = 0.001. Dashed lines represent an unstable
response.
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Figure 5.2: Qualitative magnification curves for Fs = 1. Dashed lines represent an unstable
response.

coefficients will remain constant, with d = 0.02, a = 1, and β = 0.04. Figure 5.1-5.3

show relative magnification curves for the different Fs values that are used in this

chapter. Note the difference in frequency scales between the figures.
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Figure 5.3: Qualitative magnification curves for Fs = 10. Dashed lines represent an unstable
response.

Since the input spectrum has a predominantly lower frequency (ωm = 0.45 rad/s),

varying Fs introduces non-linearities more efficiently than varying the cubic stiffness

parameter, β. In magnification curves with respect to various β parameters, the

response near ω = 0.45 rad/s is generally pretty constant and does not have multiple

attractors. The three Fs values are selected such that three types of behavior are

seen: mostly linear, slightly non-linear, and severely non-linear. These three types of

behavior can more easily be noticed by inspecting the probability density functions

(pdfs) of the response corresponding to each Fs value. Since the forcing is Gaussian, a

linear process would result in a Gaussian output. Figures 5.4 - 5.6 show the estimated

distributions of the three considered Duffing Oscillators non-dimensionalized by the

respective rms compared to Standard Normal distributions. Table 5.1 compares

the important parameters that distinguish the different Duffing Oscillators from a

Gaussian Process. Most notably, the kurtosis of a Standard Normal is always 3.00

and the change in the kurtosis as Fs increases indicates the increase in non-linearity

of the system.
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Figure 5.4: The pdf of the non-dimensionalized Duffing Oscillator with Fs = 0.001 versus a
Standard Normal distribution.

Figure 5.5: The pdf of the Duffing Oscillator with Fs = 1 versus a Normal distribution with mean
and standard deviation equal to that of the Duffing Oscillator.
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Figure 5.6: The pdf of the Duffing Oscillator with Fs = 10 versus a Normal distribution with
mean and standard deviation equal to that of the Duffing Oscillator.

Table 5.1: Comparison of non-dimensionalized Duffing Oscillator parameters with the Standard
Normal parameters including the mean (µ), standard deviation (σ), skewness (κ3), and the kurtosis
(κ4).

Parameter Standard Normal Duffing Fs = 0.001 Duffing Fs = 1 Duffing Fs = 10
µ 0.00 0.00 0.00 0.00
σ 1.00 1.00 1.00 1.00
κ3 0.00 -0.01 -0.06 -0.01
κ4 3.00 3.02 2.50 2.18

It is clear that the low forcing value of Fs = 0.001 is very close to linear, as

evidenced by the near perfect fit of the Normal distribution. As the forcing increases,

the positive cubic non-linearity acts as a stiffening spring and causes a widening effect

of the pdf.

One important factor that is of note in the MUELS process is the relationship

between the frequency distribution in the response and the input. The engine that

drives the MUELS method is the DLG. As mentioned before, the DLG, on a surface

level, produces ensembles of extreme realizations of a linear process. A limitation

of linear processes is that the relationship between input frequency and output fre-

quency is also linear. That is to say, frequency content in the output must also be

contained in the input. In non-linear systems, this is not necessarily the case. Since

52



Figure 5.7: A comparison of the local mean-upcrossing frequencies of the Duffing Oscillator with
Fs = 0.001 and the input spectrum. The average mean-upcrossing frequency is ωz = 0.949 rad/s.

Figure 5.8: A comparison of the local mean-upcrossing frequencies of the Duffing Oscillator with
Fs = 1 and the input spectrum. The average mean-upcrossing frequency is ωz = 1.024 rad/s.

the transfer function of the Duffing Oscillator is not easily obtainable, to demonstrate

this, Figure 5.7 - 5.9 show the input spectrum versus the local mean-upcrossing fre-

quencies from sets of Monte Carlo simulations.
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Figure 5.9: A comparison of the local mean-upcrossing frequencies of the Duffing Oscillator with
Fs = 10 and the input spectrum. The average mean-upcrossing frequency is ωz = 1.275 rad/s.

The takeaway from Figures 5.7 - 5.9 is the distribution of frequencies near the

linear natural frequency (ωn = 1.00 rad/s). As the forcing factor increases, the

effective transfer function changes as well. In the Fs = 0.001 case, there are spikes

near the peak of the input spectrum and near the linear natural frequency which is as

expected in a lightly damped linear system. The Fs = 1 case is less in line with the

expected linear solution, with a large peak shifted from the linear nation frequency.

However, the response frequencies do lie within reasonable levels of input energy. In

the Fs = 10 case, more response is much more elicited in the area where there is very

little to no input energy. It is likely that the cubic non-linearity is being manifested

in some way here due to the spike in the local zero-upcrossing frequencies near three

times the peak input frequency. Herein lies the challenge the MUELS method faces:

predicting which distribution of frequencies and phases generate extremes in the

linear and non-linear space.

5.3.2 Monte Carlo Simulations

To generate training data for the MUELS method and to have data to compare

against, a series of Monte Carlo simulations (MCS) were performed. One of the main

benefits of the MUELS method is that it cuts down on computational expense and

is meant to work with a limited amount of initial training data. In this application,
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the MUELS method will take training data of a given exposure period and estimate

extremes at a larger exposure period. As such, two sets of Monte Carlo simulations

were run for each Fs value. The timestep used in the MCS was dt = 0.05, For the

training data, 10,000 runs of 218 points (3.64 hr) were generated with a runtime

of about 1 hr on eight processors. For the Monte Carlo simulations at the desired

exposure period, 10,000 runs of 222 points (58.25 hr) were generated with a runtime

of about 19.5 hr on eight processors.

5.4 Results

In the following section, the results of the MUELS method shown in Edwards et al.

(2021) are compared with Monte Carlo simulations. For a simple yet robust com-

parison between the MUELS method and MCS, the most probable maximum from

each series of results is used.

5.4.1 MUELS Results for a Single TEV

In Figures 5.10-5.12 the MUELS ELS with the largest most probable maximum are

compared with the 58 hr Monte Carlo runs as well as an extrapolated GEVD formed

from the 3.6 hr Monte Carlo runs for each Fs value. The pdf indicated by the dotted

line illustrates the ELS marked by the asterisk on the left-hand side of the graph.

Note that the response, X, is non-dimensionalized by the root mean square of the

underlying process, σ. It should also be noted that the frequency ratio indicated in

the contour plots are linear natural frequencies, ωn, non-dimensionalized by the peak

forcing frequency.

While the fit of the “best” MUELS pdf to the MCS pdfs may worsen as Fs

increases, the MPM of the “best” MUELS pdf is a decent estimator of the true MPM.

Figures 5.13-5.15 track the MPM of the different MUELS systems as a function of

the damping ratio versus the Monte Carlo MPM.

Table 5.2 lists the corresponding TEV and “best” parameters for each forcing

factor, Fs. It is interesting to note that the ELS natural frequency for Fs = 0.001

and Fs = 1 both align with the frequency peaks in Figures 5.7-5.8. For Fs =

10, however, the relative lack of change in response as damping ratio and natural

frequency changed provided a less meaningful result.
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Figure 5.10: The ELS contour and MUELS pdf compared with Monte Carlo methods for Fs =
0.001.
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Figure 5.11: The ELS contour and MUELS pdf compared with Monte Carlo methods for Fs = 1.
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Figure 5.12: The ELS contour and MUELS pdf compared with Monte Carlo methods for Fs = 10.
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Figure 5.13: The most probable maxima of the MUELS pdfs as a function of the damping ratio,
ζ, versus the most probable maximum normalized by the rms of the Monte Carlo Simulations for
Fs = 0.001

5.4.2 MUELS Performance for Various TEVS

Running Monte Carlo simulations can be a computationally expensive method to

estimating extremes for large exposure periods. The computational expense of the
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Figure 5.14: The most probable maxima of the MUELS pdfs as a function of the damping ratio,
ζ, versus the most probable maximum normalized by the rms of the Monte Carlo Simulations for
Fs = 1
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Figure 5.15: The most probable maxima of the MUELS pdfs as a function of the damping ratio,
ζ, versus the most probable maximum normalized by the rms of the Monte Carlo Simulations for
Fs = 10

MUELS method, however, is unaffected by the size of the TEV and therefore length

of the exposure period. The following figures show the performance of the MUELS
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Table 5.2: The natural frequency and damping ratio of the ELS that provided the largest most
probable maximum for each Fs.

Fs TEV ωn [rad/s] ζ [ ]
10−3 4.554 1.028 0.018
100 4.573 1.231 0.020
101 4.621 7.933 0.005

method compared to Monte Carlo simulations of various exposure periods. Addi-

tionally, MUELS MPM estimates for TEV = 6 and TEV = 7 are shown without

comparison directly to Monte Carlo simulations, but to GEVD extrapolations based

off of the Monte Carlo data from the TEV = 5.45 simulations. Monte Carlo simu-

lations were not run for TEV = 6 and TEV = 7 due to computational limitations.

For reference, a TEV of 7 represents around 4.3∗1010 zero-upcrossings, or about 108

hours. The practicality of an event horizon of that scale may not be of particular

interest in the marine industry, but the ability to access it without much issue is an

option with the MUELS method.

Figures 5.16-5.18 display the performance of the MUELS method for each forc-

ing factor versus Monte Carlo simulations and GEVD extrapolations. Due to the

stochastic nature of the DLG results, ten MPMs were gathered for each set of pa-

rameters at the respective TEV and forcing factor, Fs.

It should initially be noted that the DLG is based off of an extrapolation of the

Gaussian EVD. That being said, it has been noted that the extreme values provided

by the DLG are a lower bound to the true EVD of interest. The general “overshoot”

of the MCS MPM at lower TEVs is most likely linked to the Gaussian extrapolation

of the DLG.

At larger TEVs, the results from the MUELS method are a lower bound to the

MCS MPMs. Here, where the extrapolation made from the DLG is more accurate,

the MUELS method follows the basic trend of the DLG. That is not to say that the

MUELS method is simply applying Gaussian assumptions or tools to estimate the

extremes, but it rather finds a linear system that has a similar return period on the

exposure time of interest that can be used as a surrogate to extract input information

that leads to extremes in both the linear and non-linear system.

To more rigorously investigate the performance of the MUELS method at the

various TEV and forcing factor levels, the Table 5.3 displays the relative percent
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Figure 5.16: Most Probable Maxima collected from exposure periods of different lengths for
Fs = 0.001 and GEVD extrapolations compared to a collection of the MUELS results. Also shown
are the mean values for the MCS and MUELS method.
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Figure 5.17: Most Probable Maxima collected from exposure periods of different lengths for
Fs = 1 and GEVD extrapolations compared to a collection of the MUELS results. Also shown are
the mean values for the MCS and MUELS method.

error for the MUELS results against the MCS. The error is defined in Equation 5.7.
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Figure 5.18: Most Probable Maxima collected from exposure periods of different lengths for
Fs = 10 and GEVD extrapolations compared to a collection of the MUELS results. Also shown are
the mean values for the MCS and MUELS method.

ε =
x̄MUELS − x̄BL

x̄BL
(5.7)

Here, x̄MUELS is the mean of the MUELS MPMs and x̄BL is the mean of the

MCS MPM for TEVs below 6.0 and the most probable maximum of the GEVD ex-

trapolation for TEVs above 6.0. It should be noted that since the zero-upcrossing

period becomes amplitude dependent as the forcing factor increases, the correspond-

ing number of peaks per simulation changes. The TEVs listed in the table are those

from the Fs = 1 set of simulations. While the true TEVs for Fs = 0.001 and Fs = 10

are not shown in the table, the relative exposure times are unaffected for use of com-

parison. It should also be noted that the comparisons at the TEVs of 6 and 7 are

made between the MUELS method and GEVD extrapolation results.

Table 5.3: The mean error between the MUELS method results and the Monte Carlo simulations
at different forcing factors and TEVs.

TEV
Fs 3.00 4.00 4.92 5.22 5.36 5.43 5.49 6.00 7.00
10−3 0.114 -0.058 -0.049 -0.038 -0.049 -0.049 -0.061 -0.022 0.115
100 0.165 0.057 -0.012 -0.028 -0.038 -0.042 -0.038 -0.052 -0.060
101 0.023 -0.070 -0.100 -0.104 -0.092 -0.11 -0.094 -0.079 -0.087
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5.5 Discussion

In general, as discussed in Edwards et al. (2021), the MUELS method provided a

lower bound to the Monte Carlo and General Extreme Value Distribution extrapo-

lations. The MUELS method did seem to overshoot the lower TEV results, but this

may be the result of essentially changing the experiment at that exposure period.

When gathering maxima from the MUELS simulations, the largest point within two

cycles of time t = 0 is considered the maximum for that particular simulation. The

maxima window allows for any leading or lagging in the response of the non-linear

differential equation when subjected to the DLG input. For an exposure period on

the order of TEV = 3, there are around 90 cycles. Given that there are essentially

five peaks to choose from in the MUELS simulation, the MUELS results spread to

the upper tail of the TEV = 3 distribution.

It should also be noted how important and sensitive parameter selection is. If

the theory that each non-linear system has a linear system that it shares extreme

value inputs with is true, then it can be said that the selection of the linear system’s

parameters must be precise. Viewing Figure 5.13, the spike at a damping ratio of

ζ = 0.018 could have easily been missed with a larger discretization. That being said,

there could be a point on the contour between the tested parameters that results in

a better system. When looking at Figure 5.15, there is not a distinct peak. However,

there could easily be a point in between the tested parameters that could have led

to a peak. That being said, in the Fs = 10 case, the contour began to “disappear”

and only provided 21 parameter sets to work with. Since the zero-upcrossing period

increased with increasing Fs, there were less and less sets of ωn and ζ that resulted in

a linear system with the same zero-upcrossing period as the non-linear system. Due

to the disappearing effect, one wonders if the best linear system for this particular

case is a conventional two-parameter system. The MUELS method can easily be

expanded to multiple parameters to generate multi-dimensional contours from which

to test linear systems. While the approximation for the Fs = 10 case is good,

improvements can certainly be made.

Another major component of the MUELS method is the ability to generate real-

izations of the extreme events at the exposure period of interest. To investigate the

performance of the MUELS method, Figures 5.19-5.21 show the ensemble average of
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Figure 5.19: The ensemble average of the MUELS results versus the Auto-correlation function
and ensemble average of Monte Carlo simulations near extrema for Fs = 0.001 .

the MUELS results compared with slices of Monte Carlo simulations near extreme

values and the scaled Auto-correlation function for TEVs around 4.60.1 Lindgren

(1972) showed the scaled Auto-correlation function (ACF) for a given Gaussian sys-

tem approximates the shape of the ensemble average of the extreme realizations. The

auto-correlation function is scaled by TEV/σ and is shown here to demonstrate the

deviation from linearity and Gaussianity.

The goal of the MUELS method is to close the gap on the following expression:

E[Y (τ − φ/ωz)|Z(t) ∈ Ẑ(t)] ≈ E[X̂(t)] (5.8)

where Y (t) represents the Duffing Oscillator process when introduced to input from

the DLG, τ is the location of the extrema in process Y (t), φ is the phase shift of

t = τ from t = 0, with respect to the zero-upcrossing frequency ωz, Z(t) is the

selected equivalent linear system, Ẑ(t) is the set of extreme linear realizations from

the DLG run at the TEV of interest, and X̂(t) is the set of non-linear Duffing

Oscillator extremes corresponding the exposure period of concern. If Equation 5.8

is an equality, there is no difference between the time series produced by MUELS

1Due to the amplitude dependent zero-upcrossing period, the number of cycles in the given
exposure period varied with Fs.
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Figure 5.20: The ensemble average of the MUELS results versus the Auto-correlation function
and ensemble average of Monte Carlo simulations near extrema for Fs = 1 .
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Figure 5.21: The ensemble average of the MUELS results versus the Auto-correlation function
and ensemble average of Monte Carlo simulations near extrema for Fs = 10 .

and the extreme time series from Monte Carlo simulations. As more non-linearities

are introduced, the likelihood of reaching the equality decreases, due to increased

complexity of non-linear transfer functions and the interaction with the phases that
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the DLG produces. The explored forcing factors had various levels of success with

reaching equality in Equation 5.8. It follows that the MUELS method could be

applied to other oscillators that are defined by differential equations with success

dependent on the severity of non-linearity.

In Figure 5.19, the MUELS method generally follows the shape of the Monte

Carlo simulations and Auto-correlation function. Since the forcing factor is relatively

small and the exposure period is moderate, the Duffing Oscillator with the given

parameters is nearly Gaussian. As such, the DLG performs well and the MUELS

method almost acts as an identity matrix in the transform from input to extreme

realizations. The MUELS method does show some asymmetric behavior, however,

which may point to some level of dependence on initial conditions. It should be noted

that the initial conditions for all MUELS runs are from a stationary, mean position

or [0; 0] and the MUELS records were run from t = [−200, 200]s, with the expected

extrema near t = 0s.

The asymmetry is more distinct in the Fs = 1 case in Figure 5.20. While the

MUELS method reproduced extrema on the order of the MCS, it appears that the

exact reproduction was lost due to phase differences in the input. Figure 5.20 is also

demonstrates the non-linearity added by increasing the forcing factor. If the Duffing

Oscillator was still a linear operator, the resulting output should have been Gaussian

since the input was Gaussian. Since the MCS for Fs = 1 vary from the ACF, the

ensemble average of the Duffing Oscillator near extrema contradict Lindgren’s results

and are clearly non-linear and non-Gaussian. However, the MUELS method, while

using the Gaussian principles in the DLG, was able to nearly reproduce the extreme

behavior seen in the MCS.

In the Fs = 10 case, there is a distinct difference between the three time series.

The ACF does little aside from displaying the increased degree of non-linearity.

The difference in the MCS and MUELS results, however, are more notable. The

ensemble average of the MUELS method not only under-predicts the MCS, but also

is composed of much lower frequency content. In this case, the extrema produced by

the MUELS method were spread around t = 0 in a nearly symmetric fashion. Figure

5.22 shows the extrema phase shift distribution for the Fs = 10 MUELS realizations.

The distribution of phases in Figure 5.22 appears to be predominantly leading

or lagging around ±60◦. The reasoning behind this distribution is an active area of
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Figure 5.22: The phase distribution for Fs = 10 MUELS extrema with respect to t = 0 s and
ωz = 1.301 rad/s.

research. To help correct for the phase difference in producing the MUELS realiza-

tions, a time shift was made. By moving the global location of each extrema, t = τ ,

to line up with the global time t = 0, the asymmetry effect was removed and the gap

in Equation 5.8 was reduced. Figure 5.23 shows the MCS extreme ensemble average,

and the centered ensemble average of the MUELS method for Fs = 10.

In Figure 5.23, it appears that the higher frequency content is similar to that of

the MCS but the phase difference resulted in the appearance of a lower frequency

and lower peak value in Figure 5.21. It is likely that this phase difference is more

random throughout the different realizations of the MUELS method and result in

the shape of the ensemble average in Figure 5.21.

The existence of the low frequency content is also of interest. It appears that there

is some level of low frequency content in the ACF and MCS, as evidenced around

t = ±25 s where the higher frequency oscillations move with some low frequency

mean. To look further into the frequency content, Figure 5.24 shows an FFT of the

MUELS method data and the MCS for Fs = 10.

In Figure 5.24, it can be seen that the MUELS and MCS frequency decomposi-

tions share common frequency groups but differ on which group is the dominant one.

The issue with frequency discretization in the contour shows here since the best lin-
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Figure 5.23: The centered ensemble average of the MUELS results versus the Auto-correlation
function and ensemble average of Monte Carlo simulations near extrema for Fs = 10 .

ear system for Fs = 10 had a natural frequency of around 8.0 rad/s. Since the wave

spectrum is close to narrow banded, the meaningful forcing frequencies range from

about 0.2−2.0 rad/s. With essentially a unit response at the meaningful frequencies,

the resulting forcing is set up to produce a response at the peak forcing frequency of

0.45 rad/s, which matches that of the MUELS method. Again, the need for a more

finely discretized contour and/or a higher dimensional contour from which to select

parameters is suggested.

Table 5.4 tabulates the key features of the MUELS method results and MCS

results. It should be noted the Fs = 10 stats are from the time shifted ensemble

average and the zero-upcrossing frequency was calculated using all of the MUELS

realizations rather than the ensemble average.

Table 5.4: The mean error between the MUELS method results and the Monte Carlo simulations
at different forcing factors and TEVs.

Fs TEV ωn [rad/s] ζ ωp [rad/s] ωz,MCS [rad/s] ωz,MUELS [rad/s] max(MUELS)
max(MCS)

10−3 4.55 1.03 0.02 0.45 1.01 1.01 1.11
100 4.57 1.23 0.02 0.45 1.60 1.54 0.93
101 4.62 7.93 0.01 0.45 2.62 2.10 0.86
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Figure 5.24: A Fast Fourier Transform of the ensemble average of the MUELS results and Monte
Carlo simulations for Fs = 10.

5.6 Conclusion

In this chapter, the MUELS method was demonstrated using the Duffing Oscillator

at various levels of non-linearity, as in Edwards et al. (2021). The single TEV test

showed that the MUELS method produced pdfs that had various levels of overlap

with the MCS extreme pdfs and could predict the most probable maximum within

10% in the most non-linear case (Fs = 10). In the multiple TEV test, the MUELS

method produced results that were generally a lower bound within 11% of the Monte

Carlo and GEVD extrapolated results, performing better in the more linear cases

(Fs = 0.001, Fs = 1) than the more non-linear case (Fs = 10). It should be noted

that this margin is sufficient for some applications. When looking at the time se-

ries comparisons, the MUELS method was able to nearly reproduce the ensemble

average maximum and zero-upcrossing frequency when compared to Monte Carlo

simulations. Most of the realizations for the Fs = 0.001 and Fs = 1 case could be

considered candidates for extreme realizations of the Duffing Oscillator at the given

parameters. While the Fs = 10 case required a time shift correction and the ensem-

ble average was still visibly different from the Monte Carlo time series, a number

of the individual time series could be considered extreme realizations of the Duffing
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Oscillator at the given TEV.

That being said, a method to identify MUELS realizations that belong to the

set of extreme realizations of the non-linear system is currently being studied. By

using an Acceptance-Rejection (A-R) method, unlimited realization from MUELS

could be produced and run through a A-R method to obtain the desired number of

realizations that can be considered extreme realizations of the non-linear system.

Another matter to consider is uncertainty of the results. There exists an intrinsic

“uncertainty” within the randomness of the DLG phase selection but there is also

statistical uncertainty as well. While Figures 5.13-5.15 include results from multiple

samples, more could be done to reduce uncertainty. The GEVD parameters used for

comparison will include confidence bounds in future work and more samples of the

MUELS results will be include to reduce bias and other uncertainty.

Overall, in this chapter, it was shown that the MUELS method was able to es-

timate extreme characteristics of a sub-harmonically forced Duffing Oscillator with

varying levels of non-linearity with a sufficient level of accuracy. Further improve-

ments and limitations of the MUELS method are studied further in this dissertation

to understand the potential of this novel technique.

The next chapter details applying the MUELS method to a super-harmonically

forced system. In certain conditions, a super-harmonically forced Duffing oscillator

could display stochastic bifurcations which involve “jumping” between two oscilla-

tory domains of attraction. The non-linear dynamics displayed in a system with

a stochastic bifurcation not only provide another non-linear limitation test for the

MUELS method but also show that the MUELS method is an effective tool for rare

behavior identification.
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Chapter 6

Super-harmonically Forced Duffing Oscillator

6.1 Introduction

In this chapter, a Duffing oscillator under higher peak frequency forcing is investi-

gated with the MUELS method. Not only does the super-harmonically forced Duffing

oscillator display interesting dynamics, but it also provides another test to explore

the non-linear limits of the MUELS method. Furthermore, the stochastic bifurca-

tion property of the Duffing oscillators used in this chapter provides a basis for the

system identification ability of the MUELS method. The methodology of the super-

harmonically forced Duffing oscillator study, including a novel stationarity test, is

presented. Then, probability density function and time series behavior near extremes

comparisons are made between the MUELS method and Monte Carlo simulations.

6.2 Methodology

In this section, the problem is set up and the methods used for analysis are introduced

and explained. First, the Duffing oscillator is reintroduced and the specific interesting

characteristics are discussed. Second, a stationarity test designed to estimate the

relative stationarity of three Duffing oscillator configurations is developed. Third, the

selected system parameters are detailed and the set up of the Monte Carlo simulations

is discussed.

6.2.1 Problem Statement

To demonstrate the capability of the MUELS method to identify extreme charac-

teristics in non-stationary systems, Duffing oscillators with fixed system parameters

excited by a sea spectrum and variable forcing factor were used. The Duffing os-

cillator can be representative of roll motion in ships due to the cubic stiffness term

representing the non-linear restoring force. Identifying extreme characteristics of
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roll motions is of utmost importance due to potential capsize or damage to crew,

machinery, or cargo. With the right set of parameters and forcing factor, the Duff-

ing oscillator can exhibit stochastic bifurcations (Namachchivaya, 1990). Thus, the

Duffing oscillator is a practical and relevant model to investigate. The equation of

motion for the Duffing oscillator is as follows:

ẍ+ dẋ+ αx+ βx3 = Fsη(t) (6.1)

where x is displacement, a dot represents a derivative with respect to time, d is linear

damping, α is linear stiffness, β is cubic stiffness, Fs is the forcing factor, and η(t)

is a stochastic time series drawn from an ocean-wave spectrum. In this chapter, an

ITTC spectrum (ITTC, 2002) was used with a significant wave height of 3.0 and a

modal period of 2.1 s. The forcing factor, Fs is the key parameter in determining the

level of non-stationarity

The stochastic bifurcations present with the certain parameters generate statistics

that change with time, resulting in non-stationary processes. In this chapter, these

bifurcations are used as a measure of stationarity as well as a characteristic that may

or may not be known about the system.

6.2.2 Stationarity Tests

In this application, the weak-sense definition of stationarity the primary focus. A

weak-sense stationary process essentially has a mean that is constant in time i.e., no

trends, as well as a variance that does not change with time. The non-stationary

systems investigated in this chapter had a bifurcation into two distinct domains

of attraction with differing rms values. As such, the stationarity tests performed

were done by calculating a moving root mean square (rms) of each time series. By

calculating the moving rms, any excursions into the other domain of attraction were

detected by counting the number of threshold upcrossings of the moving rms. The

moving rms is a system function in MATLAB that calculates the rms of overlapping,

variable length windows centered about a given point (Matlab, 2016). Since all of the

processes in this chapter are zero-mean, the rms is a measure of the moving standard

deviation and therefore variance. The key parameter in the moving rms metric is

the window size, or the number of points that are included in each calculation of

the rms. For this chapter, a window size of 10,000 points was selected such that
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extremes from a given basin did not influence the moving rms enough to provide

any misidentified excursions into the large attractor while ensuring that individual

exceedances could be separated from each other. Of course, there are uncertainties

or expected fluctuations with estimating moving mean and variance. To account for

these uncertainties, probability distributions of the moving rms were estimated using

a kernel density estimator (kde) and the x-value at the largest magnitude peak of

said distribution was considered a principal value. Using the x-value of the largest

magnitude peak as the principal value is essentially taking the most probable rms of

the most represented attractor as the basis for potential stationarity. Given the fact

that the moving rms is essentially a filter and it “smooths” out exceedances with

window size selection, the rarity of threshold exceedances is increased even more.

Therefore, a measure of Gaussian rareness was applied to set the threshold and

account for any natural variations. The rareness of an event in a Gaussian process

is typically normalized by the standard deviation of the process, like mentioned in

Section 6.1. In this chapter, the threshold was set at 10 standard deviations of the

moving rms above the mean rms for the entire time series. The moving rms pdfs

were not necessarily Gaussian but by using a larger number of standard deviations,

the probability of non-exceedance does increase and is sufficient for this application.

To determine the standard deviation of the moving rms, the variance of a truncated

pdf of the moving rms was calculated. The truncation point of the moving rms pdf

was determined by cutting the pdf off at a point that the principal attractor was no

longer represented. An example pdf of the moving rms along with the truncation

point are shown in Figure 6.1.

It can be said with reasonable confidence that excursions above this threshold

likely are a result of the rms, and therefore variance, changing with time rather

than statistical uncertainty. It should be noted at this point that exceedances are

defined in this chapter to be the amount of upcrossings of the moving rms above the

threshold. An example graph of one of these tests can be seen in Figure 6.2.

Note that in this case, a moving rms window of 10,000 points was used and that

there are four exceedances above the threshold.

6.2.3 System Parameters

System parameter selection was done such that there were interesting dynamics and

three systems of varying non-stationarity. Table 6.1 lists the fixed system parameters
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Figure 6.1: An example pdf showing where the truncation point was placed for estimated statistics
for the dominant attractor.
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Figure 6.2: The moving rms of an example Duffing oscillator shown versus the threshold and the
average rms of the dominant attractor.

including the modal period, Tm and the significant wave height, Hs, of the ITTC

spectrum.

The forcing factors were selected such that there was a system that was station-
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Table 6.1: Values for the system parameters.

Parameter Value
d 0.02
α 1.00
β 0.04
Tm 2.10
Hs 3.00

ary i.e., zero excursions in the stationarity test, a system with some non-stationarity

i.e., one or two excursions per time series, and a system with major non-stationarity

i.e., several excursions per time series. It follows that the systems with the non-

stationarity feature “jump” to a larger domain of attraction. These interesting dy-

namics are a result of the system parameter selection, namely Fs and Tm. The tests

discussed in Section 6.2.2 were used to modulate the degrees of non-stationarity.

Each test was run for 10 time series of length 222 points and a dt = 0.05 s and

the number of excursions for each time series and forcing factor were recorded and

averaged. The forcing factors, threshold information, and average number of excur-

sions are shown in Table 6.2 and Figures 6.3-6.5 show characteristic graphs of the

stationarity tests.

Table 6.2: Forcing factors selected for analysis, the standard deviation of the dominant attractor,
σDA, the threshold for counting excursions and the average number of threshold exceedances for
an exposure period of 58.3 hr. Note that fewer excursions indicate more stationary processes.
Stationary processes have a very high probability of having zero excursions.

Fs σDA Threshold Nexc
10.0 0.85 1.06 0.0
14.7 1.36 2.58 0.8
17.0 1.78 6.41 18.2

In Figures 6.3-6.5, the excursions above the given threshold increase as the forcing

factor increases. It should be noted that the number of excursions for the Fs = 14.7

case ranged from zero to two excursions in a given time series. In the Fs = 14.7 and

Fs = 17.0 cases, it is clear that the variance change with time and the processes are

not stationary.

To provide a more intuitive measure of the non-stationarity, magnification curves

for each system are shown in Figures 6.6-6.8 and extreme pdfs for 58-hour exposure

periods are in Figure 6.9.

Note that at the peak forcing frequency of 3.0 rad/s, which corresponds to the

modal period of 2.1 s, there are two stable responses for each forcing factor. These
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Figure 6.3: An example stationarity test for Fs = 10.0. Note that there are no excursions in this
example.
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Figure 6.4: An example stationarity test for Fs = 14.7. Note that there is a single excursion in
this example.

stable responses act as domains of attraction for the oscillator. The magnitude of

the larger stable response decreases with an increasing forcing factor which explains

the increase in frequency of excursions into the larger domain. The upper branch
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Figure 6.5: An example stationarity test for Fs = 17.0. Note that are 19 discrete excursions in
this example.
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Figure 6.6: Magnification curve for Fs = 10.0 along with the peak forcing frequency. Note that
the dotted line is an unstable branch.

is generally not sustained for extended periods of time, but larger forcing factors

can result in a longer duration of upper branch oscillations. Simply put, weak sense

stationarity dictates that both the mean and variance remain constant in time. While
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Figure 6.7: Magnification curve for Fs = 14.7 along with the peak forcing frequency. Note that
the dotted line is an unstable branch.
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Figure 6.8: Magnification curve for Fs = 17.0 along with the peak forcing frequency. Note that
the dotted line is an unstable branch.

the mean of each time series remains constant, it is clear that the variance would

change due to the excursions into the larger domain.

The three extreme pdfs for the different forcing factors give an idea of how often
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Figure 6.9: Kernel density estimated probability density functions for the largest value in a 58-
hour long time series for each forcing factor.

exceedances occur. Note that these are drawn from the maximum value in each of

4,000 Monte Carlo simulations of length N = 222 points. In the Fs = 10.0 case,

the extreme pdf is almost entirely limited to lower domain of attraction while the

Fs = 14.7 case is split between the two domains of attraction. The Fs = 10.0 case did

have 5 total excursions in the entire set of 4,000 Monte Carlo simulations of length

N = 222. Each time series in the Fs = 17.0 case had an exceedance, and the extreme

pdf reflects that.

6.2.4 Matched Upcrossing Equivalent Linear System (MUELS) Method

To generate extreme realizations of a non-linear system such as the Duffing oscillator,

the MUELS method, developed in Edwards et al. (2021), was used. It should be

noted that the MUELS method uses the Target Extreme Value (TEV), as discussed

in Section 6.1, as a metric for the return period. The TEV measures rareness of

Gaussian processes and does not necessary share a correlation with rareness of non-

Gaussian or non-stationary processes.

It should also be noted that in this chapter, the DLG is set up to produce 1,000

realizations of 100 seconds for each MUELS run. Furthermore, 2,048 frequency

components were used to ensure fine enough discretization for the various linear

natural frequencies and resulting transfer functions. The current method to select
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parameters is to choose the set that results in the extreme pdf whose peak has the

largest x-value. This method is used due to the lower bound property inherent to

the DLG (Kim, 2012).

6.2.5 Monte Carlo Simulations

For sake of comparison, Monte Carlo simulations (MCS) were also performed. For

each system, 4,000 runs of 222 points with a dt of 0.05 s, or 58.3 hours, were generated.

The time frame of 58.3 hours corresponds to a TEV of about 4.80 in each forcing

factor case, with slight variations following the change in upcrossing period. The

MUELS method was trained with time series of length 218, or 3.6 hours, and the

DLG return period was selected to match the length of the Monte Carlo simulations.

It should be noted that for the Fs = 14.7 case, the excursion into the more extreme

domain, around 14,000 seconds in Figure 6.4 does not always appear in the 58-

hour time series. In fact, in the 4,000 simulations, an excursion into the larger

domain occurred in 57% of the simulations. This irregularity was intentional to be

representative of systems for which there is a limited amount of data and that may

have unknown dynamics.

The comparison of the MCS and the MUELS method was done using a practi-

cal approach. The computational expense for the MCS and MUELS method were

compared. It should be noted that the desired exposure period of 58.3 hours plays a

role in the computational expense and the comparison would differ with a different

exposure period. The extreme pdf of a non-linear process for a given exposure is

useful in design but not always easy to generate. So, the extreme pdfs generated

from MCS results were compared to extreme pdfs generated from MUELS method

results using selected ELS parameters. While the actual magnitude of the extreme

values is useful to have, the time series are also vital so that the response of other

degrees of freedom during an extreme event can be observed. As such, the time series

structure of the MCS and MUELS method results near extremes was also compared.

Lastly, the effect of TEV selection for the MUELS method was also investigated to

see if there is a relationship between the TEV selected for the MUELS method and

the true extreme characteristics for the return period of interest.

6.3 Results and Discussion

In this section, the results of the different studies are presented and discussed.
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Figure 6.10: The equivalent linear system contour for Fs = 10.0 along with the zero-upcrossing
frequency of 2.8458 rad/s. Note that ωo is the peak frequency of the input spectrum and ωn is the
linear natural frequency.

6.3.1 MUELS Method Performance at a Fixed TEV

For each forcing factor value, around 20 sets of parameters were input as equivalent

linear systems into the DLG. It should also be noted that while the return period

for each forcing factor was the same, the zero-upcrossing period, and therefore the

TEV, changed. Figures 6.10-6.12 show the contours for each forcing factor.

As seen in Figures 6.10-6.12, increasing forcing factor shifts the contour to the

left. As the Duffing oscillators become more and more non-linear and non-stationary

through increased forcing factor, there are fewer equivalent linear systems available

to represent the Duffing oscillators. As such, the probability that there exists a

linear system that shares inputs that lead to extremes with the non-linear system

of interest decreases. It should be noted that the parameters from these contours

are sampled such that about 20 sets of parameters were selected for input into the

DLG for the purpose of simplicity and speed. Furthermore, the bulk of these sets

of parameters fall near the bend in the contours, at frequency ratio values above

1.0, due to the contour() function in MATLAB. The majority of resulting natural

frequencies fall below 1.0 rad/s which may have an effect on the performance of the

MUELS method due to the distance between the ELS natural frequencies and the
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Figure 6.11: The equivalent linear system contour for Fs = 14.7 along with the zero-upcrossing
frequency of 2.6984 rad/s. Note that ωo is the peak frequency of the input spectrum and ωn is the
linear natural frequency.
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Figure 6.12: The equivalent linear system contour for Fs = 17.0 along with the zero-upcrossing
frequency of 2.5850 rad/s. Note that ωo is the peak frequency of the input spectrum and ωn is the
linear natural frequency.

peak forcing frequency. While it is possible that increasing this discretization i.e.,

using more parameter sets from around the contour, would increase accuracy and
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performance, only around 20 parameter sets from each contour were used for this

application.

Table 6.3 outlines the TEV and selected parameters for each forcing factor. Note

that the parameter selection process is detailed in Section 6.2.4.

Table 6.3: The TEV for the given return period as well as the selected linear natural frequencies,
ωn, and damping ratios, ζ, for each forcing factor.

Fs TEV ωn,sel ζsel
10.0 4.793 0.059 0.006
14.7 4.774 0.196 0.009
17.0 4.761 0.148 0.006

It should be noted that the linear natural frequencies and resulting transfer func-

tions selected have little overlap with the energy from the input spectrum. Further

investigation into the importance of prioritizing systems whose transfer functions

overlap more with the input spectrum will be considered in future work. Still, the

MUELS method showed promise despite the non-ideal frequency overlap.

One of the major benefits of the MUELS method is the increase in computational

efficiency compared to Monte Carlo simulations. In this application, a single MUELS

run for each forcing factor, including gathering training data and producing 1,000

realizations, took 14,705 seconds on a quad-core processor. To produce 4,000 Monte

Carlo simulations for the same return period of 58 hours took 144,840 seconds on

eight cores. While there were more MCS produced, it should be noted that the real-

izations produced by the MUELS method were 100 seconds in length and producing

3,000 simulations more per parameter set would add about 900 seconds per parame-

ter set, or about 18,000 seconds for an entire MUELS run. The current configuration

of MUELS, which takes about 10-15% of the time of Monte Carlo simulations, al-

lows for some increase in detail. One area that could improve the accuracy of the

MUELS method would be, as mentioned earlier, a finer discretization of the contour

to examine more parameter sets.

Figures 6.13-6.15 show the selected MUELS extreme pdf and the extreme Monte

Carlo pdf for each forcing factor. Note that each pdf was generated using a kernel

density estimator.

In the Fs = 10.0 case, the MUELS method extreme pdf predicted the most

probable maximum of the Monte Carlo simulations quite well. The MUELS method

pdf does have a larger standard deviation than the MCS pdf but has a large amount
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Figure 6.13: The extreme value pdf for the Monte Carlo simulations and the selected extreme
value distribution for the MUELS method for Fs = 10.0.
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Figure 6.14: The extreme value pdf for the Monte Carlo simulations and the selected extreme
value distribution for the MUELS method for Fs = 14.7.

of overlap and therefore valid extreme realizations.

The MUELS method was able to recover the two attractors in the Fs = 14.7 case

successfully. The under-prediction here could be the result of the TEV given the
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Figure 6.15: The extreme value pdf for the Monte Carlo simulations and the selected extreme
value distribution for the MUELS method for Fs = 17.0.

levels of non-linearity that have been introduced or since there are now essentially

two return periods to examine: that of the small attractor and that of the large

attractor. While the MUELS method does under-predict the MCS in the most

probable maxima of both attractors, there is still a good amount of overlap that can

provide valid extreme realizations.

In the Fs = 17.0 case, the MUELS method retained some realizations that did

not contain excursions. Furthermore, the amount of overlap between the MUELS

method pdf and the Monte Carlo pdf is reduced even more.

The immediately evident and important characteristic of the Fs = 14.7 pdf is

the bi-modality while the Fs = 10.0 and Fs = 17.0 cases exhibit uni-modality in the

smaller domain of attraction and larger domain of attraction, respectively. The most

obvious comparison we can make between the MCS and MUELS method is the x-

value location of the peaks and the area of each of the peaks. It should be reiterated

that each peak is representative of a different domain of attraction, as indicated in

Section 6.2.2. As such, the area, Ai for i = 1, 2, and the x-value of the maximum of

each peak, Xi for i = 1, 2, were used to compare the MUELS method with the Monte

Carlo simulations. Table 6.4 shows the specified characteristics of the extreme MCS

and MUELS pdfs and the mean absolute percentage error between the two.
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Table 6.4: Comparison of pertinent pdf characteristics between the MUELS method, XMU , and
Monte Carlo simulations, XMCS). Also shown is the mean absolute percentage error (MAPE), ε,
between the MUELS method and MCS. Note that for Fs = 10.0 and Fs = 17.0, there was only one
attractor and therefore only one peak to compare.

Fs = 10.0 Fs = 14.7 Fs = 17.0
Stat. XMU XMCS ε XMU XMCS ε XMU XMCS ε

X̂1 4.55 4.44 0.03 7.62 8.64 0.12 8.71 N/A N/A
A1 1.00 1.00 0.00 0.66 0.57 0.16 0.16 N/A N/A

X̂2 N/A N/A N/A 25.02 28.19 0.11 25.52 31.29 0.18
A2 N/A N/A N/A 0.34 0.43 0.21 0.84 1.00 0.16

It should be noted that there were a limited number of excursions in the Fs = 10.0

Monte Carlo simulations which is not reflected in the significant figures shown. That

being said, the performance of the MUELS method for Fs = 10.0 was good. This

was expected, as the Fs = 10.0 case is nearly linear, which resulted in a closer match

between the ELS and the actual oscillator. While the MUELS pdf had more variance,

as seen in Figure 6.13, it provides a solid foundation to produce an infinite number

of extreme realizations at any return period of interest.

For Fs = 14.7, the MUELS method under-predicts the MCS in both peak x-value

and number of simulations with excursions. The under-prediction could be due to

the MUELS method reaching the non-linearity limits or it could be due to the TEV

selection. For this section, the TEV was determined simply by using the return

period of 58.3 hours and the zero-upcrossing period for each forcing factor. It is

important to reiterate that the TEV becomes less meaningful as more non-linearity

is introduced. The TEV is still a good starting point but cannot be expected to

produce accurate results without any changes made to account for non-linearity.

Further discussion on the TEV choice follows in the Section 6.3.3.

For Fs = 17.0, the MUELS method under-predicted the MCS again. In fact,

there were a number of DLG inputs that did not result in an excursion in the 100-

second realization. The under-prediction here is most likely the result of both TEV

selection and reaching the non-linear limits of the MUELS method. Still, the large

attractor x-value of the peak fell within 20% of the MCS most probable maximum

and there are a number of realizations that overlap with the Monte Carlo extreme

pdf. In practice, the amount of overlap would not be known but schemes are being

developed to form an acceptance-rejection method based off of extreme value theory

and knowledge of the system to be able to estimate the amount of overlap between
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the true extreme value distribution and the extreme pdf from the MUELS method.

6.3.2 Time Series Comparison

One of the major benefits of the MUELS method is the ability to produce any

number of time series realizations that lead to an extreme response. It should be

reiterated that the difference between just running Monte Carlo simulations and the

MUELS method is that the MUELS method uses the DLG to produce multiple sets of

input realizations from different equivalent linear systems of relatively short length.

After the equivalent linear system parameters are selected, the DLG is capable of

producing many realizations for that set of linear parameters that potentially lead

to extremes in the non-linear system of interest. That being said, it is important

to compare the MUELS method time series with Monte Carlo simulations to ensure

that the time series have the similar characteristics near extremes. It should be

noted that the phase sampling procedure in the DLG results in input time series

that lead to linear extremes at t = 0. Inputting the time series into the non-linear

system will not necessarily result in an extreme or potential extreme at t = 0 and

that is reflected in the ensemble average time series. The lag is more noticeable when

compared to the Monte Carlo simulation ensemble average near extremes which was

set to have the extreme at t = 0 so the magnitudes were scaled and normalized to

match the relationship between the peak value of the largest attractor for the Monte

Carlo simulations and the MUELS method. Figures 6.16-6.18 show these normalized

ensemble averages near extremes for the Monte Carlo simulations and the MUELS

method for each forcing factor.

In the Fs = 10.0 case, the MUELS method and Monte Carlo simulations have very

similar mean frequencies near t = 0 as well as the magnitudes of the peaks leading up

to the extreme value. Since the Fs = 10.0 case is the most linear and therefore more

immediately compatible with the DLG, it follows that it would produce time series

that are closer to Monte Carlo simulations. It also seems to capture the dynamics

shown in the Monte Carlo simulations further away from the extreme.

In the Fs = 14.7 case, the MUELS method ensemble average seems to have a lower

characteristic frequency than the Monte Carlo simulations. This may be a result of

the lag mentioned earlier as the zero-upcrossing period should remain constant due

to the fact that the input time series are valid realizations of the input spectrum.

It is also interesting to note that the minimum value of the MUELS method after
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Figure 6.16: Ensemble average of the time series near extremes for Monte Carlo simulations and
the MUELS method for Fs = 10.0. Note that the MUELS method results are not centered.
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Figure 6.17: Ensemble average of the time series near extremes for Monte Carlo simulations and
the MUELS method for Fs = 14.7. Note that the MUELS method results are not centered.

the positive peak follows the behavior of the Monte Carlo simulations while having

larger magnitude than the positive maximum of the MUELS method.

In the Fs = 17.0 case, the MUELS method again has a lower characteristic
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Figure 6.18: Ensemble average of the time series near extremes for Monte Carlo simulations and
the MUELS method for Fs = 17.0. Note that the MUELS method results are not centered.

frequency than the MUELS method. The buildup to the maximum is not as gradual

or symmetric as shown in the Monte Carlo ensemble average but again recentering

the MUELS time series would reduce some of these deviations.

A future comparison between the MUELS method and Monte Carlo simulations

would center the MUELS ensemble average to have a clearer comparison between the

magnitudes of the ensemble average between the MCS and MUELS method. That

being said, while the recentering would improve the MUELS method performance

relative to the Monte Carlo simulations, there may be another point of improvement

in the TEV selection.

6.3.3 Alternate Target Extreme Value Investigation

The MUELS method uses the Target Extreme Value (TEV) as a metric for return

period. Since the TEV is not necessarily indicative of the return period, the re-

lationship between the MUELS method at different TEVs to the return period of

interest is important to develop. As such, the lower attractor area, or the area of the

extreme probability density function for which the Duffing oscillator is in the lower

of the two domains of attraction, was used as a key metric. To reinforce the Monte

Carlo simulation results with a classic extreme value approach, the excursions into

the larger domain of attraction were assumed to be a Poisson process. For a Poisson
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process, the probability that a given time period has zero excursions into the larger

domain is as follows:

P0 = e−rt (6.2)

where r is the rate of excursions per unit time and t is the time period of interest.

The rate, r, was solved for using the number of excursions from a TEV of 4.8 to

reflect the Monte Carlo simulations that a designer may have access to.

Additionally, two methods for determining the MUELS parameter sets are in-

cluded. The first method, method “A”, is as discussed in Section 6.2.4, where the

parameter set that results in the larger attractor peak with the largest x-value is

selected. This method is based on the fact that the DLG is a lower-bound solu-

tion and selecting the largest x-value follows that fact. The second method, method

“B”, attempts to match the lower attractor area with the Poisson approximation

by selecting the parameter set that results in a lower attractor area as close as pos-

sible to the Poisson model results. This method requires the Poisson model to be

fit, which in turn requires Monte Carlo simulations. The Poisson parameters were

solved using the lower attractor area for the TEV around 4.8 since the most amount

of data could be used. It should also be noted that the Monte Carlo results for TEVs

other than around 4.8 were resampled or concatenated from the 4,000 simulations of

length N = 222. For a TEV of 6.0, over 300 of the original time series were concate-

nated, resulting in about 12 time series representing a data point. The recycling of

the excursions here is not ideal but shows the general trend of how the number of

excursions change with exposure period and forcing factor. Figures 6.20 shows the

lower attractor area for the Monte Carlo simulations, the Poisson model, and the

two MUELS parameter selection methods for each forcing factor.

In the Fs = 10.0 case, the fit of the Poisson does not account for any noticeable

excursions in the TEVs shown. There were a few excursions in the set of Monte

Carlo simulations run which may have been noticed, but any attempt to predict

change for longer return periods using a Poisson model may result in under-prediction

of excursions. There were only 12 time series constructed through concatenation

corresponding to a TEV of 6.0 (about 44,000 hours), so it is hard to say whether or

not the shift in lower attractor area from a TEV of 5.5 (about 2,500 hours) is artificial

or not. The MUELS method showed slight movement as the TEV increased, but
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Figure 6.19: Comparison of lower attractor pdf area between the MUELS method, MCS, and a
Poisson approximation for various TEVs with Fs = 10.
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Figure 6.20: Comparison of lower attractor pdf area between the MUELS method, MCS, and a
Poisson approximation for various TEVs with Fs = 14.7.

not much more than a few percent. That being said, the MUELS method could still

provide time series of these excursion events in a much quicker fashion than Monte

Carlo simulations while also signaling that the behavior may be changing as exposure
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Figure 6.21: Comparison of lower attractor pdf area between the MUELS method, MCS, and a
Poisson approximation for various TEVs with Fs = 17.

period increases.

In the Fs = 14.7 case, it is immediately evident that the MUELS method over

predicts excursions for lower TEVs. Since the DLG is based off of the asymptotic

nature of extreme value theory, over-prediction at smaller return periods is not un-

usual. When the TEVs increase, the MUELS method begins to under-predict the

excursions by probabilities ranging from 0.2-0.4, depending on the method. It is clear

that the relationship between the exposure period of interest and the TEV is not

direct nor simple. That being said, the speed and flexibility of the MUELS method

allow for many runs to be completed at various TEVs.

The Fs = 17.0 case had the opposite issue of the Fs = 10.0 case in that the Pois-

son approximation predicted that all TEVs would have at least one excursion. Here,

a different method could have been used to estimate the parameter r such as least

squares or simply selecting a lower TEV to make the fit off of. For sake of continuity,

however, the same method was used. The MUELS method follows the general trend

of the Monte Carlo results with a lag as the TEV increases. The differential between

the lower attractor area in Monte Carlo results and the MUELS methods were gen-

erally smaller than in the Fs = 14.7 case, with a probability differential maximum

around 0.3 at a TEV of 4.5. At this point, it is clear that the difference between
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method “A” and method “B” is small enough to be inconsequential.

The general over-estimation of the lower attractor by the MUELS method is

affected by the use of the TEV as a metric for rarity. As mentioned in Section 6.1

the DLG uses Gaussian extreme value theory for generating extreme events. The

extreme events and therefore input time series scale in return period with Gaussian

extreme value theory and, while still valid inputs into the non-linear system, cannot

be expected to produce non-linear extremes for the return period of interest without

thought. That being said, the “best” TEV for a given return period can be estimated

by using a pdf distance metric between Monte Carlo simulations and MUELS results.

To measure the distance between two pdfs, an adaptation of the match distance was

used. The following equation estimates the distance between two discrete pdfs:

dm(FMCS(x), FMUELS(x) =
N∑
i=1

|FMCS(xi)− FMUELS(xi)| (6.3)

where dm is the match distance, F (x) is the discrete cumulative distribution function

for the given method, and N is the number of points in the cdf. While the magnitude

of the distance is not especially informative, the relative distance among the MUELS

results for each TEV will allow for comparison. Figures 6.22-6.24 show the match

distance for each forcing factor as a function of TEV.

For each forcing factor, the smallest match distance was at a different TEV

from that used in Section 6.3.1. To see how much impact using this alternative

TEV would make, Figures 6.25-6.27 show the MUELS pdfs for the minimum match

distance along with the MUELS method for a TEV of around 4.8 and the Monte

Carlo simulations. Note that given the little difference between method “A” and

method “B”, just method “A” will be shown.

In general, the improvement of the MUELS method, at least visually, seems rela-

tively minor. The TEV is one variable that affects the MUELS method’s performance

with regard to finding a linear system that has similar extreme characteristics to the

non-linear system and return period of interest. Other pieces like the discretization

of the parameter contour and the DLG’s extrapolation methods also contribute to

the performance of the MUELS method and can be tuned along with the TEV to

improve the MUELS method results.

Table 6.5 shows the updated TEV MUELS pdf characteristics and errors as com-
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Figure 6.22: Match distance between the MUELS method at various TEVs and Monte Carlo
simulations for Fs = 10.0.
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Figure 6.23: Match distance between the MUELS method at various TEVs and Monte Carlo
simulations for Fs = 14.7.

pared to Monte Carlo simulations for the return period of interest. The significant

figures were increased to include any outlier behavior e.g., high attractor events in

the Fs = 10.0 systems or time series without excursions in the Fs = 17.0 case.
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Figure 6.24: Match distance between the MUELS method at various TEVs and Monte Carlo
simulations for Fs = 17.0.
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Figure 6.25: Comparison of MUELS method pdfs using a TEV on the order of the return period
(TEV = 4.8) and the MUELS method pdf at the TEV which has the minimum match distance to
the Monte Carlo simulations for Fs = 10.0.

Comparing Table 6.5 and Table 6.4, it seems the match distance favored reducing

difference between the attractor areas of the MCS and MUELS method as opposed

to specific x-values of the peaks. Still, at least visually, both the Fs = 14.7 and
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Figure 6.26: Comparison of MUELS method pdfs using a TEV on the order of the return period
(TEV = 4.8) and the MUELS method pdf at the TEV which has the minimum match distance to
the Monte Carlo simulations for Fs = 14.7.
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Figure 6.27: Comparison of MUELS method pdfs using a TEV on the order of the return period
(TEV = 4.8) and the MUELS method pdf at the TEV which has the minimum match distance to
the Monte Carlo simulations for Fs = 17.0.

Fs = 17.0 case noticeably improve with an increased TEV. That being said, other

improvements can be made, most notably in the discretization of the contour by

95



Table 6.5: Comparison of pertinent pdf characteristics between the MUELS method with updated
TEV and Monte Carlo simulations.

Fs = 10.0 Fs = 14.7 Fs = 17.0
Stat. XMU XMCS ε XMU XMCS ε XMU XMCS ε

X̂1 4.898 4.436 0.104 7.917 8.64 0.084 9.455 N/A N/A
A1 0.998 0.999 0.002 0.550 0.57 0.033 0.005 N/A N/A

X̂2 22.906 23.370 0.020 25.247 28.19 0.104 24.881 31.289 0.205
A2 0.002 0.001 2.000 0.450 0.43 0.043 0.995 1.000 0.005

prioritizing linear natural frequencies closer to the peak frequency used.

6.4 Conclusion

In this chapter, the abilities and the limits of the MUELS method were tested.

Three systems of varying non-linearity and non-stationarity were used to compare

the MUELS method with the conventional method of Monte Carlo simulations. The

three particular systems tested the MUELS method’s flexibility in rare behavior

identification, as in the Fs = 10.0 case, and in adjusting for increasing non-linearities.

The key characteristic in each of the systems was the number of excursions into

a domain of attraction with peak magnitudes two to three times larger than the

base domain of attraction’s peaks. In general, the MUELS method under-predicted

extreme characteristics found using Monte Carlo simulations but remained within

about 20%. That being said, the computational expense of the MUELS method was

only 10-15% of the Monte Carlo simulations on a less computationally powerful set

up. The reduced load could allow for a larger number of potential surrogate linear

systems for the MUELS method to test.

One of the major benefits of the MUELS method is the ability to produce time

series realizations of conditional extremes. In comparing the ensemble average of

the MUELS method and Monte Carlo simulations near extremes, it was found that

there was a degradation in accuracy as non-linearity increased. One chief cause of

this is likely due to the fact that while the DLG produces extreme linear time series

with a maximum at t = 0, there is no basis for those inputs to provide a non-linear

realization with a maximum at exactly t = 0. With that said, a centering of the

maximum values before taking the ensemble average would certainly improve both

the ensemble average magnitude and average period when compared to Monte Carlo

simulations.

After changing the TEV to minimize the match distance between the MUELS
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method extreme pdf and Monte Carlo simulations, improvement was made in esti-

mating number of time series with excursions but not so much in terms of peak x-

value. Further studies into a different distance metric that prioritizes peak x-values as

well as into finer discretized parameter contours would improve the MUELS method

performance even more.
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Chapter 7

Slamming Application using the MUELS method

7.1 Introduction

In this chapter, the impact oscillator used as an SGIM application in Chapter 3.4

is revisited. An additional approach to the MUELS method, called the surrogate

MUELS method, is introduced and compared to the traditional MUELS approach

as well as Monte Carlo simulations.

7.2 Methodology

The impact oscillator from Chapter 3.4, repeated in Equation 7.1, imitates expected

accelerations from hull slams and features physics-informed components such as the

relative velocity threshold and exponential decay of the stiffness. As such, it provides

a “real world” application as well as another test of the non-linear limits of the

MUELS method.

mẍ+ cẋ+ k(t)x = Fζ(t) (7.1)

where

k(t) =

k + kse
−(1/τ)t if RV > RVthresh and RP < 0

k otherwise

Here, RV is the relative velocity between the oscillator and the wave surface, RP

is the relative position between the oscillator and wave surface, τ is the exponential

decay constant, and ks is the added slamming coefficient. As in Chapter 3.4, a

threshold relative velocity, RVthresh is used as a trigger for slams as in Ochi (1990a)

and the negative relative position ensures submergence for a slam.

The ITTC sea spectrum and model parameters were kept the same as in the
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SGIM application and are repeated in Table 7.1 for convenience.

Parameter Value
Hs [m] 6
Tm [s] 12
k [N/m] 588.06
m [kg] 600.00
RVthresh [m/s] 5.00
c [Nsm ] 415.80
F [N/m] 1500.00
τ [s] 133.33
ks [N/m] 4750.60

Table 7.1: Parameters used for the hull slamming application using the MUELS method.

One of the major benefits of the MUELS method is the inherent search for “surro-

gate” processes. With that being said, there is still the opportunity to take advantage

of knowledge of the system. The MUELS method will be used in two separate ways

in this chapter.

First, the MUELS method was used as has been shown throughout this disser-

tation: the zero-upcrossing period of the process was estimated and then a series

of linear systems with the same zero-upcrossing period were entered into the DLG

where input realizations were collected and used as input into the non-linear system

of interest. In this application, the zero-upcrossing period of the acceleration of the

impact oscillator was estimated and the acceleration transfer functions for the lin-

ear systems were used. Equation 7.2 shows the form of the linear systems’ transfer

functions given unit mass.

Haccel(ω) =
−ω2F̃ (ω)

(ω2 + ω2
n,j) + 2iζjωn,jω

= −ω2Hdisp(ω) (7.2)

Here, F̃ (ω) is the complex magnitude of the forcing as a function of frequency,

ω, i signifies imaginary components, ωn,j is the jth system linear natural frequency,

and ζj is the jth system damping ratio. Also note the relationship between the linear

transfer functions of acceleration and displacement.

The second way the MUELS method was used was to take advantage of the

relationship between slamming events and extreme velocities, as in Seyffert (2018).

Here, the zero-upcrossing period of the velocity of the impact oscillator was estimated

and linear systems whose velocities shared the same upcrossing rate for the given
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Figure 7.1: The basic structure of the traditional and surrogate MUELS methods. Note that the
outputs from each method are both conditional extremes of the non-linear process of interest but
provide different results.

input spectrum were entered into the DLG. Equation 7.3 shows the form of these

transfer functions.

Hvelocity(ω) =
iωF̃ (ω)

(ω2 + ω2
n,j) + 2iζjωn,jω

= iωHdisp(ω) (7.3)

Again, note the relationship between the velocity and displacement transfer func-

tions. In this case, the inputs that lead to extreme velocities of the linear systems

are still valid inputs into the non-linear system of interest and can be used to gather

conditional extreme accelerations. It should also be noted that given the introduc-

tion of knowledge about the slamming process into the system, it is expected that

this second method will perform better than the first method mentioned above.

For simplicity and consistency, the first method discussed above will be called

traditional MUELS and the second method will be called surrogate MUELS. Figure

7.1 simplifies and generalizes traditional and surrogate MUELS as discussed above.

In Figure 7.1, the major difference between the traditional and surrogate MUELS

methods lies in the input process: Z(t) in the traditional case and Y (t) in the

surrogate case. Both of these methods result in conditional extremes i.e., ẐTrad

and ẐSurr, for the Z(t) process but are expected to be at least somewhat different,

due to the likely difference in zero-upcrossing period between the Y (t) and Z(t)

processes. As such, Figure 7.1 reflects the similarity and expected improvement in
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the surrogate method in the ensemble of extremes between the traditional method,

ẐTrad, the surrogate method, ẐSurr, and the true extremes of the process for the

given exposure period, Ẑ.

In this chapter, the extreme pdfs represented by ẐTrad, ẐSurr, and Ẑ are compared

qualitatively and through the match distance metric as seen in Chapter 6.3.3. Due

to the time domain solution and slamming threshold sensitivity, the time step was

set to dt = 0.0025 s and the return period was set to 3 hours, or N = 222 points. The

true extremes of the process, Ẑ, were estimated using 2,000 Monte Carlo simulations

of length N = 222 under the parameters specified in Table 7.1. Each MUELS method

was preceded by 1,000 simulations of length N = 218 to obtain an estimate of the zero

upcrossing period for the process of interest i.e., acceleration for traditional MUELS

and velocity for surrogate MUELS. It should also be noted that the DLG was set to

produce 1,000 simulations of length t = 100 s for each linear system. While this study

is meant to be a comparison between the MUELS method and the SGIM for this

particular problem, the MUELS method is more focused on searching many linear

systems and the change from having the DLG produce 100 s realizations as opposed

to the 2, 000 s realizations from the SGIM resulted in a more computationally efficient

approach but less straightforward comparison. Further discussion on this will take

place in the next section.

7.3 Results

One of the key differences between the traditional and surrogate MUELS methods

is the difference in upcrossing rate. The difference in upcrossing rate leads to a

different set of equivalent linear systems to be scanned for each approach. Figures

7.2-7.3 show the system parameter contours for the acceleration and velocity.

The main takeaway from the parameter contours is the relative constant damping

ratio, at least compared to displacement contours e.g., Figure 4.1. The flattening

of the contours is a result of the velocity and acceleration transfer function for the

linear systems and the resulting moment calculation. The change in form of the

moment calculation in the acceleration and velocity, which effectively introduces

additional frequency terms, alters the dependence on the damping ratio. While

the damping ratio is relatively constant, the candidate frequencies had an extensive

range. The wider sampling of linear natural frequencies is important in investigating
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Figure 7.2: Impact oscillator acceleration equivalent linear system parameter contour for a zero-
upcrossing frequency of 0.9899 rad/s.
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Figure 7.3: Impact oscillator velocity equivalent linear system parameter contour for a zero-
upcrossing frequency of 0.7263 rad/s.

the sensitivity of parameter selection on MUELS results. From these contours, 26

sets of parameters were sampled uniformly as potential linearization candidates and

were entered into the DLG.
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Figure 7.4: Comparison of traditional and surrogate MUELS method pdfs using a TEV on the
order of the return period (TEV = 3.85) compared to Monte Carlo simulations.

Figure 7.4 shows the extreme pdfs for both the traditional and surrogate MUELS

method along with the extreme pdf from 2,000 Monte Carlo simulations.

From Figure 7.4, it is clear that the introduction of knowledge into the system

through a surrogate process improved extreme pdf estimation. While both methods

underestimated the Monte Carlo simulation results, the surrogate MUELS method

lowered the match distance to the Monte Carlo extreme pdf by 12% compared to the

traditional MUELS method. Additionally, the surrogate MUELS method appeared

to recover some of the peak realizations from the Monte Carlo simulations, as evi-

denced by the local maximum around 2.1 g′s. The recovery here along with existence

of lower extrema led to investigation into the acceleration extrema being extracted

from the impact oscillator forced by DLG input realizations. As a precursor to a

process that has some similarities to an acceptance-rejection method, a slamming

verification scheme was developed. Using the event function option in MATLAB ’s

ode45, the time stamps from slamming events could be recorded. The DLG continu-

ally produced realizations until there were at least 1,000 realizations with a slamming

time stamp within one velocity zero upcrossing cycle of t = 0 s. The results of this

scheme are shown along with the traditional and surrogate MUELS methods and the

Monte Carlo simulations in Figure 7.5.
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Figure 7.5: Comparison of traditional, surrogate, and surrogate with slamming verification
MUELS method pdfs using a TEV on the order of the return period (TEV = 3.85) compared
to Monte Carlo simulations.

Figure 7.5 again shows improvement of the MUELS method with respect to

the Monte Carlo simulations. The addition of slamming verification provided an

additional reduction of 10% in match distance to the Monte Carlo simulation extreme

pdf. It also appears that the recovery of most probable extreme behavior is slightly

recovered as evidenced by the local maximum around 2.25 g′s.

More importantly, the slamming verification technique opens the door to post

processing the MUELS results. Having established a level of confidence in a GEVD

extrapolation, an acceptance-rejection scheme could be developed such that only real-

izations in line with the GEVD would be accepted. The efficiency of this acceptance-

rejection method would vary from system to system, but would be related to the

amount of overlapping area between the “best” MUELS method and the GEVD.

Since the production of these short, conditionally extreme time series is rapid, this

proposed technique would be more computationally efficient than brute force Monte

Carlo simulations. In the end, a recreated GEVD pdf with realizations of extreme

events, along with the inputs that lead to them, would be available for study.
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Chapter 8

Conclusion

8.1 Summary

Extreme behavior prediction techniques used today often make assumptions and have

subsequent shortcomings. Additionally, in a design context, the extreme response of

a single degree of freedom rarely tells the whole story. Realistically, the effects of

other degrees of freedom during an extreme event for a particular degree of freedom

should be considered. Given the random nature of the ocean environment, it follows

that load factors or singular time series are not sufficient to describe the conditional

behavior of these other degrees of freedom. The development of a tool that could

be used for a complete total system statistical analysis, the Matched Upcrossing

Equivalent Linear System (MUELS) method, was the focus of this dissertation.

The development of the MUELS method began with exploration of the Stochas-

tic Gaussianization Iteration Method (SGIM). The SGIM uses the Design Loads

Generator (DLG) and a transformation of a non-linear process into the Gaussian do-

main to produce a ensemble of input time series realizations that lead to conditional

extremes in the non-linear domain. Applicability to various levels of non-linearity

was shown in applications to an impact oscillator as well as offshore wind turbine

bending moment. Iterative cycling of the updated systems increased the success of

the SGIM but ultimately removed some of the physics and enforced extrapolation

assumptions on rare events. Still, the SGIM brought to light an interesting question:

do there exist linear systems that share input realizations that lead to extremes with

a non-linear system of interest?

That very question gave rise to the MUELS method. The MUELS method works

in conjunction with the DLG to test a series of linear systems that share an average

zero-upcrossing rate with the non-linear system of interest. The DLG provides input
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time series realizations that produce extreme values in each of the linear systems

which can then be used as input into the non-linear system of interest. Having an

ensemble of input time series realizations that lead to an extreme allows for study into

the total response of a system under extreme conditions. Additionally, the MUELS

method reduces the computational expense significantly compared to Monte Carlo

simulations.

The MUELS method addresses shortcomings in current methods through the

following features:

• The method produces an ensemble of critical wave time series realizations

rather than a single, average input that leads to a predetermined response.

• These wave inputs are valid realizations of a sea spectrum and can produce

potential extreme events for a given exposure period as well as the simultaneous

response of other degrees of freedom.

• The contour search technique gives a level of understanding about the non-

linear system of interest and may be sufficient as a search for a surrogate

process.

• The MUELS method can produce an at least the same number of extreme time

series realizations for a given return period significantly faster than Monte Carlo

simulations.

The development of the MUELS method builds off of the work in Alford (2008),

Kim (2012), and Seyffert (2018) by extending the use of the DLG. Steps were taken

in Kim (2012) to apply the DLG to non-linear processes and the introduction of

surrogate processes was made in Seyffert (2018). With the MUELS method, the

user no longer has to specify an explicit surrogate process but can instead search

over a contour of linear systems which can be adapted to any linear differential

equation for maximum flexibility.

8.2 Contributions of Current Work

Steps have been taken to bolster extreme event design techniques in classification

rules, such as the load combination strategies discussed in the DNV-GL high speed
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and light craft rules (DNV-GL, 2020), the load combination cases listed in the tri-

maran rules (Lloyd’s Register, 2020), or the equivalent design wave suggested by

ABS in the SafeHull-Dynamic Loading Approach (ABS, 2018). While each method

considers the response other degrees of freedom during an extreme of a particular de-

gree of freedom, the stochastic nature of the sea is not taken into account. Given the

randomness of the environment, it follows that the responses during these extreme

events will also be random and have distributions. Therefore, it is important to

understand the simultaneous variable effects of the other degrees of freedom during

an extreme of a particular degree of freedom.

The development of the MUELS method in this dissertation is a novel approach

to this problem. The MUELS method is capable of producing an ensemble of input

time series realizations that lead to conditional extreme responses and are also valid

realizations of the input spectrum. With these inputs, the distribution of other

degrees of freedom during an extreme event can be better understood and a more

informed design decision can be made. The MUELS method is especially powerful

when considering that no assumptions need to be made or advanced knowledge of

the system is needed to interface with the DLG.

The study on the extreme characteristics of a stochastically forced Duffing oscil-

lator in this dissertation in Chapters 5-6 is also a new development. The Duffing

oscillator has marine applications with the ability to add a softening spring so it

follows that studying the extreme characteristics is of design and academic inter-

est. Discovering the variable stochastic bifurcations as a function of forcing factor as

well as exploring the non-linear limits of the MUELS method were both significant

contributions as well.

In fact, the application with the non-stationary Duffing oscillator in Chapter 6

showed the ability of the MUELS method to discover potentially unknown dynamics

of a system. In the lowest forcing case (Fs = 10.0), only six of 1000, 58-hour Monte

Carlo simulations had a bifurcation into the more extreme domain. The MUELS

method quickly and efficiently produced time series realizations containing bifurca-

tions, which may have gone undiscovered otherwise. From a practical perspective,

discovering this behavior in an efficient manner would allow for CFD runs to be used

more effectively.
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8.3 Future Work

As discussed throughout the dissertation, one of the main benefits of the MUELS

method is the quick production of input time series realizations that lead to extreme

events. With that comes the ability to simulate responses of other degrees of free-

dom using those same input time series realizations to understand the conditional

distributions at a higher level. The next step for the MUELS method is to examine

such a system and compare the results to guidance set out by one of the classification

societies mentioned in Section 8.2, as in Seyffert (2018).

Where the MUELS method diverges from Seyffert (2018) is in the fact that a

surrogate process does not need to be specified. As degrees of freedom become

more complex, however, more flexibility in the linear systems could be beneficial

to better encapsulate the dynamics. With that, a multi-dimensional contour to

select additional parameters for a more complex linear system would likely improve

the MUELS method’s performance. It is here that additional knowledge into the

dynamics of the system e.g., the order of the linear differential equations, could be

imparted though it would not be necessary.

It would also be beneficial to study the sensitivity of the MUELS contour pa-

rameters in further detail. Given the lower-bound nature of the DLG, it would be

advantageous to explore more systems with linear natural frequencies near a peak

frequency in the response spectrum of interest to produce the largest possible re-

sponses.

Lastly, an application with the Large Amplitude Motion Program (LAMP) (Lin

and Yue, 1991) would further expand the usefulness of the MUELS method as well

as LAMP itself. With LAMP, the extreme, non-linear responses of a computer

model ship could be estimated using ensembles of input time series from the MUELS

method. The level of response provided by the MUELS wave realizations could be

compared to GEVD estimations for a particular degree of freedom like the vertical

bending moment. Since the length of input time series is adjustable, the time con-

straints in using a high-fidelity non-linear time series code such as LAMP would be

manageable.
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