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Abstract 
 

Protein synthesis is an essential process that allows the nucleic acid code to be translated in 

the cell. For protein translation to occur, the ribosome must be supplied with tRNA 

molecules charged with amino acids. The enzymes responsible for ligating tRNA and amino 

acids are the aminoacyl-tRNA synthetases (ARS), encoded by a family of 37 genes. Variants 

in all 37 ARS genes can cause dominant and/or recessive human genetic diseases. The 

recessive diseases are severe, multi-system disorders that primarily affect the central nervous 

system, as well as the muscles, lung, and liver. The dominant diseases are axonal peripheral 

neuropathies commonly classified as Charcot-Marie-Tooth disease. The full clinical and 

genetic spectrum for both dominant and recessive ARS-related disease has yet to be 

determined. Additionally, the mechanism of these diseases is poorly understood. This 

dissertation seeks to expand the locus, allelic, and phenotypic heterogeneity of ARS-

mediated diseases, and to define the mechanism of ARS-mediated disease, through 1) 

characterizing newly identified patient alleles; 2) developing a pipeline of model organisms 

to predict novel ARS disease candidates and define their associated dominant and recessive 

phenotypes, and 3) testing pathogenic alanyl-tRNA synthetase (AARS1) alleles for a 

dominant-negative effect in a yeast model. 

 

Here, we characterized 15 variants across glycyl-(GARS1), histidyl-(HARS1), methionyl-

(MARS1), asparginyl-(NARS1), and threonyl-tRNA synthetase (TARS1) identified in patients 

with dominant peripheral neuropathy or multisystem recessive diseases. Through 

synthesizing genetic and functional evidence, we expanded the allelic spectrum of GARS1- 

and HARS1- mediated dominant neuropathy, and the allelic and phenotypic spectrum of 

MARS1- and TARS1-mediated recessive disease. We also identified NARS1 as a candidate 

gene for dominant peripheral neuropathy. To complement these efforts, we developed a 

predictive pipeline using the defined phenotypes of pathogenic ARS alleles in yeast, C. 

elegans, and mouse. We used this pipeline to design deleterious mutations in TARS1 and 



 xvi 

assess them for a dominant peripheral neuropathy or multi-system recessive phenotypes. 

Through studies in yeast and worm, we identified a hypomorphic TARS1 allele, R433H. 

When tested in mouse, in trans with a null TARS1 allele, R433H causes a recessive 

phenotype of lung failure, growth restriction, and hair defects. This model will be an asset to 

determine how reduced TARS1 function differentially impacts mammalian tissues, and can 

inform clinical efforts to identify and treat patients with bi-allelic TARS1 mutations. 

 

Finally, we directly tested the hypothesis that dominant ARS variants are dominant-negative 

alleles. We focused on two variants in alanyl-tRNA synthetase (AARS1) with strong genetic 

evidence for pathogenicity, R329H and G102R AARS1. These variants reduce gene function 

in a yeast complementation assay, indicating that they are loss-of-function alleles. However, 

they repress yeast growth when co-expressed with wild-type AARS1, indicating that they are 

also dominantly toxic. To determine if this dominant toxicity was due to dimerization with 

wild-type AARS1, we designed a dimer domain mutation that impaired dimerization, and 

placed it in cis with R329H and G102R. This double-mutant rescued yeast growth, showing 

that dimerization is required for toxicity and that R329H and G102R are dominant-negative 

alleles. We also assessed three additional AARS1 variants, and found that they also are 

dominant-negative alleles in this assay. 

 

In sum, this work significantly contributes to defining the known genetic and phenotypic 

spectrum of ARS-mediated diseases, to expanding the role of model organisms in identifying 

candidate pathogenic ARS variants, and to defining the mechanism of dominant ARS-

mediated peripheral neuropathy. 
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Chapter 1  
Aminoacyl-tRNA Synthetases in Genetic Disease 

 
1.1 Protein Translation and Disease 
 

A cell’s ability to divide, function, and differentiate depends on the flow of information from the 

nucleotide code into proteins that perform tasks required to sustain life and confer cellular 

identity. Gene sequences are transcribed from deoxyribonucleic acid (DNA) into pre-messenger 

ribonucleic acid (pre-mRNA), which is then processed into messenger RNA (mRNA) with a 5’ 

cap and a 3’ polyA tail, and shuttled out of the nucleus to the ribosome.1 When the ribosome has 

assembled on the mRNA, transfer RNAs (tRNAs) charged with amino acids arrive to pair with 

their cognate sequences in the mRNA and donate their amino acid to a growing polypeptide 

chain.1 The peptide chain is then ultimately released from the ribosome and folds to become a 

protein.1 This process depends on the availability of tRNAs that are charged with the appropriate 

amino acid. The ligation of tRNA and amino acid is catalyzed by a family of enzymes, the 

aminoacyl-tRNA synthetases (ARSs). ARS enzymes, and the genetic disorders caused by ARS 

mutations, are the subject of this dissertation. 

 

Rebecca Meyer-Schuman is the sole contributor to this chapter. This chapter is adapted from 

“Emerging mechanisms of aminoacyl-tRNA synthetase mutations in recessive and dominant 

human disease,” published in Human Molecular Genetics (Volume 26, Issue R2, pages R114-

R127, October 1 2017, License number 5114320712101) and “Evidence for a dominant-negative 

mechanism in HARS1-mediated peripheral neuropathy,” published in The FEBS Journal 

(Volume 288, Issue 1, pages 91-94, September 17 2020, License number 5114321014941). Part 

of Figure 1.1 is published in The Journal of Clinical Investigation (Volume 129, Issue 12, pages 

5568-5583, December 2 2019, License number 1135456-2).  
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1.1.1 Key stages in protein translation 

Eukaryotic protein translation is initiated by the GTP-bound form of eukaryotic initiation factor 

2 (eIF2) bringing the methionine-charged initiator tRNAMet to the 40S ribosomal subunit.2 This 

complex then binds the 5’ cap of mRNA and, assisted by helicases that unwind the mRNA’s 

secondary structure, scans in the 3’ direction until it finds an AUG codon.2 When the AUG is 

located, the eIF2-GTP is hydrolyzed to eIF2-GDP and is released for recycling.3 Then, the 60S 

ribosomal subunit joins the initiation complex to form the 80S subunit, with the charged initiator 

tRNAMet already positioned in the peptidyl site (P site) of the ribosome.4 To begin the process of 

elongation, the elongation factor eEF1A, bound to GTP, brings a tRNA molecule charged with 

an amino acid to the acceptor site (A site) of the ribosome.5 The anticodon of the tRNA 

recognizes the corresponding mRNA codon, and eEF1A-GTP hydrolysis enables the tRNA to 

properly fit into the ribosome.5 Then, the ribosome catalyzes the formation of a peptide bond 

between the new amino acid and the methionine in the P site.5 This triggers the transfer of the 

deacylated tRNAMet to the exit site (E site), and the transfer of the new tRNA into the P site. The 

process repeats with a new charged tRNA molecule moving into the A site. As the next tRNA in 

the P site moves into the E site, the tRNAMet in the E site is released.5 This process continues 

until the ribosome reaches one of three termination codons: UAA, UAG, or UGA. Then, 

termination factors bind to the ribosome and promote the hydrolysis of the peptidyl-tRNA. 

Ribosomes are then recycled for future iterations of protein translation.5 

 

1.1.2 Translation regulation 

Protein translation is a dynamic process that is responsive to environmental cues and changes in 

intracellular metabolites.6 For example, the cell can sense limited amino acid availability, which 

triggers a repression of global protein translation and upregulation of amino acid biosynthetic 

pathways to restore cellular homeostasis. This process starts with the kinase GCN2, which has a 

tRNA binding domain derived from histidyl-tRNA synthetase that recognizes accumulating 

uncharged tRNA in the cell.3 When GCN2 binds uncharged tRNA, this triggers the kinase 

domain of GCN2 to phosphorylate the α subunit of eIF2.3 eIF2α phosphorylation prevents eIF2B 

from recycling the GDP bound to eIF2 into GTP.3 This prevents eIF2 delivering charged initiator 

tRNAMet to the ribosome, inhibiting translation initiation. However, although the dearth of GTP-
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bound eIF2 represses translation globally, it increases specific translation of ATF4 by allowing 

the ribosome to bypass an inhibitory upstream open reading frame (ORF) and translate the ATF4 

coding sequence.7 ATF4 then localizes to the nucleus where it increases the transcription of 

genes that help the cell respond to stress,3 including genes involved in amino acid biosynthesis or 

transport.8  

 

1.1.3 Genetic defects in protein translation cause disease 

Mutations in genes that encode components of the translation machinery can cause a variety of 

genetic diseases. Defects in ribosomal proteins cause Diamond Blackfan anemia, which 

manifests as anemia, skeletal abnormalities, short stature, and cardiac and genitourinary 

malformations.9 Mutations can also arise in the factors that process ribosomal RNA, causing 

bone marrow failure, cirrhosis, microcephaly, and leukoencephalopathy.9 Defects in translation 

initiation or elongation factors cause similar central nervous system defects; mutations in the 

eEF1 complex, which delivers charged tRNA to the ribosome, cause microcephaly, epilepsy, 

autism, and intellectual disability.10 Defects in the eIF2B complex (which normally helps recycle 

eIF2 to re-initiate protein translation) causes Vanishing White Matter disease, a 

leukoencephalopathy that can include ovarian failure in women.11 Protein translation diseases 

can also be caused by mutations in tRNAs, or the enzymes that modify them.12 Defects in 

proteins that process cytoplasmic tRNA can cause intellectual disability, developmental delay, 

and microcephaly, while defects in proteins that process mitochondrial tRNA cause anemia, 

encephalopathy, cardiomyopathies, and lactic acidosis.12 Overall, the phenotypes caused by 

mutations in the protein translation machinery indicate that the central nervous system, the liver, 

the heart, and the hematopoietic system are particularly sensitive to disrupted cytoplasmic or 

mitochondrial protein translation. 

 

The subject of this dissertation is another component of the protein translation machinery, the 

aminoacyl-tRNA synthetase (ARS) enzymes. This chapter will discuss the basic biology of ARS 

enzymes, as well as the dominant and recessive diseases caused by defects in ARS genes. It will 

also summarize the outstanding questions in the field pertaining to disease heterogeneity and 

disease mechanism. This thesis aims to address these questions.  



 4 

 

1.1.4 An introduction to aminoacyl-tRNA synthetases 

In order for the genetic code to be faithfully executed, each tRNA that recognizes a mRNA 

codon must be charged with the appropriate amino acid. The aminoacyl-tRNA synthetase (ARS) 

enzymes are responsible for charging these tRNAs with the required amino acids. They perform 

this pairing in a two-step reaction: first, the ARS enzyme binds the amino acid and ATP, then 

hydrolyzes the ATP to form an aminoacyl-adenylate, releasing a pyrophosphate molecule.13 

Then, the ARS anticodon binding domain recognizes and binds the appropriate tRNA, and the 

amino acid is transferred to the 5’ end of the tRNA, releasing the charged tRNA and AMP.13   

 

ARS enzymes must perform this reaction for each of the 20 amino acids that comprise the 

building blocks of proteins. Additionally, this reaction must occur both in the cytoplasm and the 

mitochondria to meet the needs of protein translation in both compartments. To fulfill these 

requirements, there are 37 members of the ARS family, enough to service each amino acid in 

each cellular compartment. Each ARS can charge one of the twenty amino acids, with two major 

exceptions: 1) there are two ARS proteins, FARSA and FARSB, that come together in a multi-

unit structure to charge tRNA with phenylalanine, and 2) a single cytoplasmic ARS enzyme, 

EPRS1, charges both glutamic acid and proline.13 All ARS genes are encoded in the nuclear 

genome, but upon translation, 17 ARS proteins localize to the mitochondria and 18 localize to 

cytoplasm.  Two ARS can function in both compartments: lysyl-tRNA synthetase (KARS1), 

which undergoes alternative splicing to include or exclude the mitochondrial targeting sequence 

(MTS)14; and glycyl-tRNA synthetase (GARS1), which encodes a single mRNA with an 

upstream translation start site that includes the MTS in the open reading frame, and a 

downstream translation start site that excludes the MTS.15  There is no glutaminyl-tRNA 

synthetase for mitochondria; instead, EARS2 improperly recognizes tRNAGln, charging it with 

glutamic acid.16 Then, the glutamic acid is trans-aminated by glutamyl-tRNA amidotransferase 

into glutamine.16 

 

The nomenclature for the human ARS family dictates that the gene or enzyme name begin with 

the one letter code of the amino acid substrate followed by “ARS”. This is then followed by a 
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“1” if the enzyme functions in the cytoplasm or a “2” if it functions in the mitochondria. For 

example, the gene encoding the cytoplasmic threonyl-tRNA synthetase is TARS1, and the gene 

encoding the mitochondrial threonyl-tRNA synthetase is TARS2. 

 

Each of the 37 ARS enzymes can be grouped into one of two classes, distinguished by their 

approach to binding tRNA (Table 1.1). Class I enzymes utilize a Rossmann nucleotide binding 

fold, which binds the minor groove side of the tRNA acceptor stem and ligates the amino acid to 

the 2’ hydroxyl group on the terminal tRNA adenosine.17,18 Class II enzymes utilize a core of 

anti-parallel β sheets, which binds the major groove side of the tRNA acceptor stem and ligates 

the amino acid to the 3’ hydroxyl group on the terminal adenosine.17,18 Class II enzymes 

primarily function as multimers, whereas Class I enzymes are usually, but not exclusively, 

monomers19 (Table 1.1).  

 

Interestingly, nine of the cytoplasmic ARS are known to congregate in a larger multi-synthetase 

complex (MSC) (Table 1.1), along with three non-ARS scaffolding proteins (AIMPs) that 

stabilize the complex and promote tRNA binding.20 Although the function of the MSC is poorly 

understood, association with the MSC is thought to be required for the tRNA charging function 

of its members.21 One hypothesis proposes that the MSC functions as a docking system for its 

ARS members; while localized to the MSC, they perform canonical tRNA charging, but upon 

dissociation they pursue non-canonical roles in signaling pathways22 (for example, LARS1 can 

act as a leucine sensor in the mTORC1 pathway23). The MSC may also coordinate other aspects 

of protein translation: one of the scaffolding proteins (AIMP3) has been shown to be critical for 

delivery of charged initiator tRNAMet to eIF2 for translation initiation.24  

 
In addition to LARS1, several other cytoplasmic ARS enzymes contribute to cellular pathways 

unrelated to tRNA charging. Some of these non-canonical functions employ the full-length ARS 

protein, but others involve isoforms that arise from alternative splicing or proteolytic 

fragmentation.25,26 There is substantial evidence that ARS proteins and their fragments play a 

role in immune responses. Anti-synthetase Syndrome, an autoimmune disease marked by 

interstitial lung disease, arthritis, myositis, fever, and decreased blood flow to fingers is  
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Table 1.1. ARS localization and structural groups. 

Gene name Gene 
Symbol 

Enzyme 
Cellular 

Compartment 

Enzyme 
Class28 Monomer or Dimer 

Participant in the 
multisynthetase 

complex (MSC)29 

alanyl-tRNA synthetase 1 AARS1 Cytoplasm II Dimer30 No 

alanyl-tRNA synthetase 2 AARS2 Mitochondria II Dimer31 No 

cysteinyl-tRNA synthetase 1 CARS1 Cytoplasm I Dimer32,33 No 

cysteinyl-tRNA synthetase 2 CARS2 Mitochondria I ND; monomer in E. 
coli34 No 

aspartyl-tRNA synthetase 1 DARS1 Cytoplasm II Dimer35 Yes 

aspartyl-tRNA synthetase 2 DARS2 Mitochondria II Dimer36 No 

glutamyl-prolyl-tRNA synthetase EPRS Cytoplasm I/II37 Dimer29 Yes 

glutamyl-tRNA synthetase 2 EARS2 Mitochondria I Monomer38 No 

phenylalanyl-tRNA synthetase alpha 
subunit FARSA Cytoplasm II Tetramer39 No 

phenylalanyl-tRNA synthetase beta 
subunit FARSB Cytoplasm II Tetramer39 No 

phenylalanyl-tRNA synthetase 2 FARS2 Mitochondria II Monomer38 No 

glycyl-tRNA synthetase 1 GARS1 Cytoplasm and 
mitochondria II Dimer40 No 

histidyl-tRNA synthtetase 1 HARS1 Cytoplasm II Dimer41 No 

histidyl-tRNA synthetase 2 HARS2 Mitochondria II Dimer42 No 

isoleucyl-tRNA synthetase 1 IARS1 Cytoplasm I Monomer29 Yes 

isoleucyl-tRNA synthetase 2 IARS2 Mitochondria I ND; monomer in T. 
thermophiles43 No 

lysyl-tRNA synthetase 1 KARS1 Cytoplasm and 
mitochondria II44 Dimer/Tetramer45 Yes 

leucyl-tRNA synthetase 1 LARS1 Cytoplasm I Monomer29 Yes 

leucyl-tRNA synthetase 2 LARS2 Mitochondria I ND; monomer in T. 
thermophilus46 No 

methionyl-tRNA synthetase 1 MARS1 Cytoplasm I Monomer47 Yes 
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methionyl-tRNA synthetase 2 MARS2 Mitochondria I ND; monomer in E. 
coli48 No 

asparaginyl-tRNA synthetase 1 NARS1 Cytoplasm II Dimer49 No 

asparaginyl-tRNA synthetase 2 NARS2 Mitochondria II Dimer50 No 

prolyl-tRNA synthetase 2 PARS2 Mitochondria II Dimer51 No 

glutaminyl-tRNA synthetase 1 QARS1 Cytoplasm I Monomer52 Yes 

arginyl-tRNA synthetase 1 RARS1 Cytoplasm I Monomer53 Yes 

arginyl-tRNA synthetase 2 RARS2 Mitochondria I Monomer38 No 

seryl-tRNA synthetase 1 SARS1 Cytoplasm II Dimer54 No 

seryl-tRNA synthetase 2 SARS2 Mitochondria II Dimer55 No 

threonyl-tRNA synthetase 1 TARS1 Cytoplasm II Dimer56 No 

threonyl-tRNA synthetase 2 TARS2 Mitochondria II Dimer57 No 

valyl-tRNA synthetase 1 VARS1 Cytoplasm I Monomer58 No 

valyl-tRNA synthetase 2 VARS2 Mitochondria I ND; monomer in T. 
Thermophilus59 No 

tryptophanyl-tRNA synthetase 1 WARS1 Cytoplasm I Dimer60 No 

tryptophanyl-tRNA synthetase 2 WARS2 Mitochondria I ND; dimer in B. 
stearothermophilus61 No 

tyrosyl-tRNA synthetase 1 YARS1 Cytoplasm I Dimer62 No 

tyrosyl-tRNA synthetase 2 YARS2 Mitochondria I Dimer36 No 

 
ND: “No Data” 
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characterized by the presence of autoantibodies against ARS enzymes.27 These antibodies most 

commonly recognize HARS1, but have also been observed to recognize TARS1, AARS1,  

IARS1, GARS1, NARS1, FARS1, KARS1, QARS1, and YARS1.27 Additionally, multiple ARS 

proteins respond to cytokine signaling. For instance, the cytokine IFNg triggers the alternative  

splicing of WARS1 into a truncated “mini-WARS” protein that is secreted to the extracellular 

space and acts as an anti-angiogenic factor.63,26 IFNg also triggers the secretion of full-length 

WARS1 to the extracellular space, where it binds the macrophage receptor TLR4 and 

participates in innate immunity against infection.64 Similarly, under apoptotic conditions65 or 

upon treatment with the cytokine tumor necrosis factor alpha (TNF-alpha)63 YARS1 is secreted 

into the extracellular space where it is cleaved into two fragments.65 The N-terminal fragment, 

termed “mini-YARS,” can bind to vascular endothelial cells and trigger angiogenic signaling 

pathways.63 The C-terminal fragment has cytokine properties, and triggers the release of TNF-

alpha from macrophages.65,66 Finally, in myeloid cells, IFNg triggers the release of EPRS from 

the multi-synthetase complex.67 EPRS then participates in another multi-protein complex known 

as the GAIT complex, which binds to the 3’ UTR of inflammatory mRNAs and suppresses their 

translation.67 Overall, these studies implicate aminoacyl tRNA synthetase enzymes in a complex 

network of immune system regulation.  

 

1.2 ARS mutations in disease 
 

It is unsurprising that ARS enzymes are ubiquitously expressed and essential to cellular life, 

given the critical role that they perform in protein translation. Although complete loss of any 

ARS enzyme is incompatible with life, bi-allelic variants that severely impair ARS function can 

cause a spectrum of recessive disorders, many of which have phenotypic overlap with other 

translation-related diseases discussed above in Section 1.1.3. Additionally, mono-allelic variants 

in 5 of the 37 ARS genes have been implicated in a tissue-restricted phenotype, dominant axonal 

peripheral neuropathy. This section will provide an overview of both recessive and dominant 

ARS-mediated disease. 

 

1.2.1 Recessive ARS-mediated disease genotypes 
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All recessive ARS-mediated disorders are, by definition, caused by bi-allelic mutations. 

Typically, patients with these diseases are homozygous for missense mutations, compound 

heterozygous for missense mutations, or compound heterozygous for one missense mutation and 

one null allele.68 Homozygosity or compound heterozygosity for ARS null alleles is lethal due to 

the essential nature of ARS enzymes; this has been experimentally demonstrated with a gene trap 

insertion in Gars1 that ablates Gars1 mRNA expression and is homozygous lethal.69 The 

genotypes identified in patients with recessive ARS-related disease strongly suggest a loss-of-

function mechanism for disease pathogenesis.  

 

1.2.2 Clinical heterogeneity in ARS-mediated recessive phenotypes 

Recessive ARS-mediated disease comprises a wide range of clinical manifestations (Table 1.2). 

Pathogenic variants in ARS genes encoding a mitochondrial enzyme tend to cause phenotypes in 

tissues with a high metabolic demand, particularly in the central nervous system. 

Leukoencephalopathies,70-76 myopathies,77-81 and liver disease82,83 are all common features of 

mitochondrial ARS disease phenotypes. Additionally, lactic acidosis,75,77,84-88 

epilepsy,70,71,74,82,86,89,90 developmental delay and intellectual disability,73,89,91-93 ovarian 

failure,42,70,94-96 and sensorineural hearing loss72,91,94,97-101 are frequently observed in patients with 

mitochondrial ARS mutations. Variants in some mitochondrial ARS can cause a range of diverse 

phenotypes, possibly related to the degree of enzyme impairment. For example, variants in 

AARS2 can cause both fatal infantile cardiomyopathy and adult onset leukodystrophy, with or 

without ovarian failure (Table 1.2). Through structural modeling, Euro et al. found that patients 

diagnosed with cardiomyopathy had two alleles that were predicted to severely reduce function, 

whereas leukodystrophy patients had one allele predicted to severely reduce function and one 

predicted to only moderately reduce function.31 Even in cases where individuals have identical 

genotypes, the severity of protein translation defects can determine the severity of the phenotype. 

In the case of siblings with identical pathogenic RARS2 mutations, the sibling with the greater 

reduction in mitochondrial OXPHOS protein complex levels presented with lactic acidosis and 

neurological symptoms, whereas the sibling with a milder OXPHOS reduction had lactic 

acidosis but no neurological symptoms.86  
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Table 1.2. Phenotypes associated with ARS variants. 

Gene Locus 
Location of 

Protein 
Function 

Mode of 
Inheritance Disease Phenotype(s) 

AARS1 16q22 Cytoplasm 

Autosomal 
Recessive 

Early-onset epileptic encephalopathy with myelination defect102 

Microcephaly with hypomyelination, epileptic encephalopathy, 
and spasticity103 

Microcephaly, developmental delay, acute liver failure104 

Trichothiodystrophy including neurodevelopmental delay and 
microcephaly105 

Autosomal 
Dominant 

Charcot-Marie-Tooth disease type 2N106-111 

Distal hereditary motor neuropathy112 

AARS2 6p21.1 Mitochondria Autosomal 
Recessive 

Leukoencephalopathy with or without ovarian failure70,94,95,113-120 

Cardiomyopathy78,121 

Optic atrophy and retinopathy122 
Ataxia, vision loss, and cognitive impairment without 

leukodystropy123 
Ovarian failure with no reported neurological symptoms124 

Primary pulmonary hypoplasia without evidence of 
cardiomyopathy125 

CARS1 11p15.4 Cytoplasm Autosomal 
Recessive Microcephaly, developmental delay, brittle hair and nails126 

CARS2 13q34 Mitochondria Autosomal 
Recessive 

Epileptic encephalopathy71,127 

Progressive myoclonic epilepsy90 

DARS1 2q21.3 Cytoplasm Autosomal 
Recessive 

Hypomyelination with brain stem and spinal cord involvement 
and leg spasticity128-130 

DARS2 1q25.1 Mitochondria Autosomal 
Recessive 

Leukoencephalopathy with brain stem and spinal cord 
involvement and lactate elevation75,76,131-137 

EPRS 1q41 Cytoplasm Autosomal 
Recessive Hypomyelinating leukodystrophy138 
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EARS2 16p12.2 Mitochondria Autosomal 
Recessive 

Leukoencephalopathy with thalamus and brainstem involvement 
and high lactate 76,139-141 

Neonatal lactic acidosis, recurrent hypoglycemia, agenesis of 
corpus callosum84 

Multiple respiratory chain complex defects121 

Seizures, liver dysfunction (no thalamus or brain stem 
involvement)142 

Late onset leukoencephalopathy143 

FARSA 19p13.13 Cytoplasm Autosomal 
Recessive 

Multisystem disease including growth delay, hypotonia, brain 
calcifications, liver dysfunction144 

FARSB 2q36.1 Cytoplasm Autosomal 
Recessive 

Multisystem disease including growth restriction, failure to thrive, 
developmental delay, interstitial pulmonary disease, cirrhosis and 

portal hypertension, brain calcifications145-147 

FARS2 6p25.1 Mitochondria Autosomal 
Recessive 

Early onset epileptic encephalopathy with lactic acidosis, liver 
dysfunction, developmental delay, and premature death74,148-150 

Juvenile onset epilepsy83,151,152 

Spastic paraplegia153-155 
Spastic tetraparesis, developmental delay, and 11onoclinic 

epilepsy156 

GARS1 7p15 
Mitochondria 

and 
Cytoplasm 

Autosomal 
Recessive 

Systemic mitochondrial disease157,158 

Cardiomyopathy121 

Severe multisystem disorder159 

Autosomal 
Dominant 

Dominant peripheral neuropathy with or without sensory 
involvement (CMT disease type 2D, dSMA-v, dHMN)160-171 

HARS1 5q31.3 Cytoplasm 

Autosomal 
Recessive 

Multisystem ataxic syndrome172 

Usher syndrome173 

Autosomal 
Dominant 

Dominant peripheral neuropathy with or without sensory 
involvement (CMT, dHMN)174-176 

HARS2 5q31.3 Mitochondria Autosomal 
Recessive Perrault syndrome42,177-180 

IARS1 9q22.31 Cytoplasm Autosomal 
Recessive 

Growth restriction, neonatal cholestasis, muscular hypotonia, 
intellectual disability, infantile hepatopathy181-184 

IARS2 1q41 Mitochondria Autosomal 
Recessive 

Cataracts, growth hormone deficiency, sensory neuropathy, 
sensorineural hearing loss, skeletal dysplasia syndrome; Leigh 

syndrome97-99,185 
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KARS1 16q23.1 
Mitochondria 

and 
Cytoplasm 

Autosomal 
Recessive 

Neurological disorder including leukodystrophy, sensorineural 
hearing loss, microcephaly, cerebral calcifications, epilepsy, 

vision loss nystagmus72,100,186-194 

Recessive intermediate Charcot-Marie-Tooth disease type B, 
dysmorphic features, developmental delay, self-abusive behavior, 

vestibular Schwannoma195 

Hypertrophic cardiomyopathy and combined mitochondrial 
respiratory chain defect81 

LARS1 5q32 Cytoplasm Autosomal 
Recessive 

Infantile liver failure, intrauterine growth restriction, 
neurodevelopmental delay, microcytic anemia, recurrent 

infections, hypotonia, hypoalbuminemia196–201 

LARS2 3p21.31 Mitochondria Autosomal 
Recessive 

Perrault syndrome96,202-209 

Hydrops, lactic acidosis, sideroblastic anemia (HLASA)85 
HLASA with sensorineural hearing loss and developmental 

delay101 
Reversible myopathy, lactic acidosis, and developmental delay101 

MARS1 12q13.3 Cytoplasm 

Autosomal 
Recessive 

Multisystem disease including interstitial lung and liver disease, 
pulmonary alveolar proteinosis, anemia, failure to thrive, 

developmental delay 210–215 

Trichothiodystrophy including ataxia, dysmorphic features, 
follicular keratosis, ichthyosis, and intellectual disability (no 

reported lung or liver involvement)105 

Autosomal 
Dominant 

Peripheral neuropathy (Charcot-Marie-Tooth disease type 2U)216–

219 

MARS2 2q33.1 Cytoplasm Autosomal 
Recessive 

Developmental delay, sensorineural hearing loss91 

Autosomal recessive spastic ataxia with leukoencephalopathy220 

NARS1 18q21.31 Cytoplasm 

Autosomal 
Recessive 

Microcephaly, psychomotor developmental delay, seizures, 
dysmorphisms, ataxia, peripheral neuropathy221,222 

Autosomal 
Dominant 

Severe global developmental delay, intellectual disabilities, 
dysmorphia, seizures, spasticity, peripheral neuropathy, ataxia222 

NARS2 11q14.1 Mitochondria Autosomal 
Recessive 

Alpers syndrome223,224 
Developmental delay, intellectual disability, epilepsy, 

myopathy89,92 
Nonsyndromic deafness50 

Reversible COX deficiency225 

Lethal epileptic encephalopathy with global brain atrophy226 

Leigh syndrome50,227 

PARS2 3p21.31 Mitochondria Autosomal 
Recessive 

Alpers syndrome223 
Infantile-onset developmental delay, epilepsy, hypotonia, 

ataxia89,228,229 
Infantile spasms, microcephaly, facial dysmorphy, 

cardiomyopathy and multiorgan failure51 
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QARS1 3p21.31 
Cytoplasm 

and 
Mitochondria 

Autosomal 
Recessive 

Intractable seizures, progressive microcephaly, cerebral-cerebellar 
atrophy, hypomyelination, developmental delay230–232 

Severe linear growth retardation, poor weight gain, microcephaly, 
cutaneous syndactyly of the toes, intellectual disability, and 

characteristic facial features233 

RARS1 5q34 Cytoplasm Autosomal 
Recessive 

Hypomyelination, motor delay, ataxia, spasticity, intellectual 
disability with a broad range of severity234–237 

RARS2 6q16.1 Mitochondria Autosomal 
Recessive 

Pontocerebellar hypoplasia238–244 

Early onset epileptic encephalopathy245,246 

Lactic acidosis with or without neurological symptoms 
(microcephaly, seizures, developmental delay)86  

Dysmorphic features, epileptic spasms, optic atrophy, severe 
hypotonia247 

Intellectual disability93 

SARS1 1p13.3 Cytoplasm Autosomal 
Recessive 

Intellectual disability, ataxia, microcephaly, speech impairment, 
aggressive behavior248 

SARS2 19q13.2 Mitochondria Autosomal 
Recessive 

Hyperuricemia, pulmonary hypertension, renal failure, and 
alkalosis249–251 

Spastic paresis252 

TARS1 5p13.3 Cytoplasm Autosomal 
Recessive 

Trichothiodystrophy including ichthyosis, recurrent respiratory 
infection, developmental delay, and follicular keratosis253 

TARS2 1q21.2 Mitochondria Autosomal 
Recessive Hypotonia, severe developmental delay, epilepsy254,255 

VARS1 6p21.33 Cytoplasm Autosomal 
Recessive 

Severe developmental delay, microcephaly, seizures, cerebellar 
atrophy256–259 

VARS2 6p21.33 Mitochondria Autosomal 
Recessive 

Multisystem disorder including microcephaly, epilepsy, ataxia, 
lactic acidosis, failure to thrive, with or without cardiomyopathy 

or pulmonary hypertension80,254,260-263 

Multiple respiratory chain complex defects121 
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WARS1 14q32.2 Cytoplasm Autosomal 
Dominant Distal hereditary motor neuropathy264,265 

WARS2 1p12 Mitochondria Autosomal 
Recessive 

Intellectual disability, ataxia, Parkinsonism, microcephaly, lactic 
acidosis, cerebral atrophy, developmental delay, intellectual 

disability, and/or epilepsy73,87,248,266-270 

YARS1 1p35.1 Cytoplasm 

Autosomal 
Recessive 

Severe multisystem disorder including failure to thrive, 
sensorineural hearing loss, brain dysmyelination, nystagmus, liver 

disease, pulmonary disease, anemia, hypotonia, and/or 
developmental delay271–274 

Autosomal 
Dominant Dominant intermediate Charcot-Marie-Tooth disease type C275,276 

YARS2 12p11.21 Mitochondria Autosomal 
Recessive 

Myopathy, lactic acidosis, sideroblastic anemia, cardiomyopathy, 
respiratory insufficiency77,79,88,277–281 

Multiple respiratory chain complex defects121 
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A similar dynamic may explain the extreme clinical heterogeneity of SARS2-mediated disease, 

although the relationship between genotype and phenotype is less clear. Homozygosity or 

compound heterozygosity for missense mutations that decrease the levels of aminoacylated 

mitochondrial tRNASer
AGY cause hyperuricemia, pulmonary hypertension, infantile renal failure, 

and alkalosis (termed HUPRA syndrome).249,251 However, homozygosity for a splice site 

mutation that significantly reduces SARS2 levels and decreases the levels of aminoacylated 

mitochondrial tRNASer
AGY causes childhood-onset spastic paresis, with no apparent kidney 

dysfunction, uricemia, or alkalosis.252 A side-by-side comparison of HUPRA variants with the 

spastic paresis splice variant will be required to understand the relationship between genotype 

and phenotype, and determine whether there is differential SARS2 impairment and/or differential 

defects in mitochondrial protein translation.  

 

Mutations in ARS genes encoding cytoplasmic enzymes also cause a spectrum of recessive 

disorders, which can affect a wider array of tissues but also typically includes a neurological 

component. The recessive neurological phenotypes associated with cytoplasmic ARSs include 

hypomyelination,128,130,138,234 microcephaly,103,126,186,230,231,248,256 seizures,102,103,230,231,256 

sensorineural hearing loss,100,173,194,273 and developmental delay.181,195,210,231,256,271 Mutations in 

cytoplasmic ARS genes also frequently affect the lung or liver (Table 1.2). Interestingly, 

mutations in some ARS cause a uniquely severe phenotype in a commonly affected tissue. For 

example, although mutations in FARSA,144 FARSB,145,147 IARS1,181 MARS1,210 and YARS1272 all 

cause liver dysfunction as one component of a multisystem disease, mutations in LARS1 cause a 

severe, acute form of infantile liver failure.196–199 Similarly, pulmonary disease is particularly 

pronounced in individuals with bi-allelic FARSB145–147 and MARS1 mutations210,213, including a 

MARS1-specific form of pulmonary alveolar proteinosis.211 

 

This relationship between a particular ARS gene and its tissue-predominant pathology is poorly 

understood. It is possible that these tissues produce critical proteins that have a high requirement 

for a specific amino acid; for example, the liver may require certain proteins with a high leucine 

content. Here, if defects in LARS1 reduce the availability of charged tRNALeu, this may 

preferentially affect the synthesis of leucine-abundant proteins that are critical for proper liver 

function, such as proteins in the lipid biosynthesis.196 (Consistent with this hypothesis, liver 
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biopsies from patients with LARS1-mediated liver disease show large fat deposits.196)  In this 

model, the degree to which synthesis of these leucine-rich proteins would be impaired would 

depend on multiple factors: 1) the expression profile of the required tRNALeu, which may vary 

between tissues282 and modify the tRNA charging defect; 2) the availability of leucine based on 

nutrient intake, amino acid transportation, and the requirement for that amino acid in other 

cellular metabolic pathways; and 3) the cumulative need for charged tRNALeu across the other 

polysomes in the cell. Significant work is required to evaluate this hypothesis and determine 

whether it contributes to the phenotypic heterogeneity of ARS-mediated recessive disease. 

 

1.2.3 Dominant ARS-mediated disease genotypes 

Variants in five ARS genes have been confidently implicated in dominant human disease, which 

manifests as dominant axonal peripheral neuropathy (discussed in Section 1.2.4). These are: 

glycyl-(GARS1),160 tyrosyl-(YARS1),275 alanyl-(AARS1),106 histidyl-(HARS1),174 and 

tryptophanyl-tRNA synthetase (WARS1).264 In addition, a small number of variants in methionyl-

tRNA synthetase (MARS1) have been reported in patients with dominant peripheral 

neuropathy.216–219 However, there is currently insufficient genetic evidence to conclude that 

mutations in MARS1 cause dominant peripheral neuropathy, as none of the reported variants 

segregate with disease in a large, multi-generational family. In general, the allelic spectrum of 

dominant pathogenic variants comprises missense mutations, with the exception of two in-frame 

deletions, one in GARS1170 and one in YARS1.275  

 

It is striking that only five ARS genes have been confidently implicated in dominant peripheral 

neuropathy to date, whereas nearly all have been implicated in recessive disorders. This may 

indicate that there is something unique about these five ARS genes that makes neurons 

susceptible to mutations in them. Alternately, if variants in additional ARS genes continue to be 

identified in patients with dominant peripheral neuropathy, this will more convincingly point to a 

generalizable defect in tRNA charging. Identifying patients with dominant peripheral neuropathy 

harboring variants in other ARS genes (and characterizing these variants to define their role in 

disease) will provide additional support for the hypothesis that defects in tRNA charging are a 

common mechanism of disease. These goals are discussed further in Chapter 3.   
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It is worth noting that patients with recessive GARS1-, YARS1-, HARS1-, or AARS1- mediated 

disease are frequently compound heterozygous or homozygous for missense alleles, but no 

parents carrying these missense alleles have been reported to have a peripheral neuropathy. This 

may indicate a separation of function between dominant missense alleles and recessive missense 

alleles, or a differential effect on protein stability. However, this interpretation is complicated by 

the fact that most parents of children with recessive ARS-mediated disease are not carefully 

evaluated by a neurologist. Additionally, dominant ARS-mediated peripheral neuropathy can be 

mild, late-onset, or incompletely penetrant163, which might make it difficult to detect a 

phenotype. The studies presented in Chapter 4 of this dissertation provide a platform to begin 

distinguishing recessive missense alleles from dominant missense alleles. These topics are also 

discussed further in Chapter 5.  

 

1.2.4 Dominant ARS variants cause axonal peripheral neuropathies 

Dominant ARS variants cause dominant axonal peripheral neuropathies, frequently classified as 

Charcot-Marie-Tooth (CMT) disease Type 2. CMT disease is a genetically and clinically diverse 

group of peripheral neuropathies that is estimated to affect between 1 in 1,200 and 1 in 2,500 

individuals.283,284 CMT disease is characterized by decreased sensory and/or motor nerve 

function in the distal extremities.285 This leads to sensory loss and muscle atrophy, which often 

begins in the feet and peroneal musculature. Later, this atrophy may reach the calves and hands, 

and even later, the forearms.285 One unique aspect of GARS1-mediated CMT disease is that it 

presents as an upper-limb predominant phenotype, beginning with weakness and muscle atrophy 

in the hands.286 Only about half of affected individuals develop lower limb symptoms, which can 

vary in severity.286 The reasons for this upper limb predominance are poorly understood. One 

consideration is that GARS1 is the only CMT-associated ARS enzyme that functions in both the 

cytoplasm and mitochondria13; it is possible that its role in mitochondrial protein translation 

contributes to the severity of the upper limb phenotype. 

  

CMT is divided into two groups. CMT Type 1 is a demyelinating form of peripheral neuropathy; 

it is caused by a primary defect in the Schwann cells that form the myelin sheath around 
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peripheral neurons.287 These defects lead to decreased nerve conduction velocities.287 Mutations 

that cause CMT Type 1 are frequently found in genes involved in myelin production, such as 

PMP22 or MPZ.287 CMT Type 2 is caused by a primary defect in the axon, and is identified by 

decreased amplitudes of compound muscle action potentials or sensory nerve action potentials, 

rather than decreased velocities.288 Mutations that cause CMT Type 2 can affect genes 

particularly important for neuronal function, such as ion channels and axonal transport factors, 

but can also affect housekeeping genes, such as MFN2.287,289 MFN2 is a ubiquitously expressed, 

essential gene that encodes a protein with a role in mitochondrial fusion.290 CMT-associated 

alleles in MFN2 have been shown to decrease mitochondrial fusion (classified as loss-of-function 

alleles) or induce mitochondrial aggregation (classified as gain-of-function alleles).290 Although 

MFN2 is ubiquitously expressed, neurons are thought to be particularly sensitive to defects in 

MFN2, as mitochondrial must localize across the axon to provide ATP production to dendrites 

and synapses.290  

 

Similarly, dominant mutations in the ubiquitously expressed RAB7 gene have been implicated in 

CMT Type 2.291 RAB7 is a GTP-ase that regulates the dynamics of late endosomes and 

phagosomes, including their fusion with lysosomes291; CMT-associated mutations are thought to 

partially reduce RAB7 function.292 Although RAB7 is ubiquitously expressed, peripheral neurons 

may be particularly sensitive to partial loss of RAB7 function, since endosomes are required to 

carry neuronal signaling molecules across long axons.293 Interestingly, a recent study by Cioni et 

al. demonstrated that ribosomes, mRNAs, RNA-binding proteins, and mitochondria frequently 

associate with endosomes in the axons of Xenopus retinal ganglia cells.294 The authors also found 

that 35% of RAB7-marked endosomes were adjacent to mitochondria. Of these mitochondria-

adjacent endosomes, 80% were associated with RNA granules, and 76% were associated with de 

novo protein translation, as measured by puromycin incorporation.294 The authors demonstrated 

that two proteins important for mitochondrial function—Lamin B2 (which is required for 

mitochondrial integrity and axonal survival) and VDAC2 (which exchanges solutes across the 

outer mitochondrial membrane)—were translated at these late endosomes, indicating that these 

endosomes serve as a platform for the local translation of mitochondrial proteins.294 Expression 

of CMT-associated RAB7 mutations lead to decreased local translation of both Lamin B2 and 

VDAC, correlating with disrupted mitochondrial morphology and trafficking.294 This study 
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highlights the interrelatedness of axonal trafficking, mitochondrial integrity, and local protein 

translation, as well as their importance for axonal health. 

 

In addition to CMT Type 2, dominant ARS variants cause a closely related form of peripheral 

neuropathy, distal hereditary motor neuropathy (dHMN). dHMN results in a similar lower limb 

weakness and atrophy of the peroneal musculature, but primarily affects the motor neurons, 

compared to both sensory and motor neurons in CMT disease.295 Similar to CMT disease, 

mutations that cause dHMN can affect genes specific to neuronal function, such as ion channels 

and axonal transporters, but also genes involved in basic cellular function such as RNA 

metabolism and DNA integrity.295 In the case of GARS1, this motor neuron-predominant 

neuropathy is termed distal spinal muscular atrophy type V (dSMA-V), and, like GARS1-

mediated CMT, predominantly affects the upper limbs. 

 

Some ARS mutations, such as E71G and D500N GARS1, can cause both dSMA-V and CMT 

within the same family.160,164,296 Considering that all affected family members carry the same 

genetic variant, it is unknown what dictates the degree of sensory neuron involvement that leads 

to the two distinct classifications. De novo GARS1 variants can also cause a severe, infantile-

onset form of dSMA-V. Individuals who are heterozygous for these GARS1 variants have 

delayed or regressing motor milestones, severe muscle wasting, respiratory distress, and poor 

feeding abilities.162,165,170,171 It is unclear what distinguishes these variants from the GARS1 

variants that cause a later onset, milder phenotype. One potential explanation is that these 

variants cause a unique neomorphic interaction that is toxic to motor neurons. These hypotheses 

are considered further in Section 1.4.4.  

 

1.3 The molecular mechanisms of ARS-related genetic disease 
 

1.3.1 Assays to evaluate impaired ARS function 

One approach to defining pathogenic ARS alleles for both dominant and recessive disease is to 

determine if the variant impacts protein function. For variants with strong genetic evidence 

supporting their pathogenicity, these studies provide insight into the mechanism of disease. As 

the mechanism of disease is further defined, these approaches can also be used to build a case for 
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or against the pathogenicity of a newly characterized variant of uncertain significance. There are 

three commonly used assays for determining whether a variant impairs ARS function: 1) in vitro 

aminoacylation assays with recombinant proteins, 2) in vitro aminoacylation assays with patient 

cell lysates, and 3) in vivo yeast complementation assays. 

 

Human ARS proteins can be expressed in bacteria, purified, and tested in an in vitro 

aminoacylation assay that measures its steady-state enzymatic activity.297 Aminoacyl-tRNA 

synthetases charge tRNA with amino acids in a two-step reaction: in the first step, the enzyme 

binds ATP and the amino acid, resulting in the release of pyrophosphate. This step can be 

measured by treating the reaction with a colorimetric reagent that can quantify the amount of free 

phosphates released.298 Then, the enzyme binds to the appropriate tRNA, ligating it to the amino 

acid and releasing AMP. The efficacy of the entire reaction can be assessed by incubating 

purified ARS enzyme with tRNA, ATP, and radiolabeled amino acid.297 Aliquots of the mixture 

are then spotted on filter paper across time points. The tRNA is precipitated from the filter paper 

and washed to remove any unincorporated amino acid. Then, radioactivity of the amino acid that 

remains ligated to the tRNA is measured as the output of the reaction.297   

 

Interpreting data from these kinetic assays can be challenging for partial loss-of-function 

variants. If these assays are performed with an excess of substrate (ATP, tRNA, and/or amino 

acid), this can mask the reduced function of a hypomorphic ARS. For example, the P234KY 

GARS1 protein was initially reported as fully functional allele when tested with saturating 

concentrations of glycine and tRNA.69 When re-analyzed under Michaelis-Menten conditions, 

the mutation was found to significantly decrease enzymatic activity.170 Furthermore, it is difficult 

to know what substrate concentrations best reflect substrate availability in vivo, or what degree 

of impaired function is required to have a downstream effect in the relevant tissue. 

 

One way to assess ARS function in the context of an affected cell is a steady-state 

aminoacylation assay performed with patient cell lysates. In these assays, whole cell lysate is 

incubated in a reaction buffer that contains additional ATP, yeast total tRNA, and stable-isotope 

amino acid. The tRNA is then precipitated and washed before ammonia is added to release the 

stable-isotope amino acids from the tRNAs, which are then quantified with LC-MS/MS. This 
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assay has successfully been used to identify tRNA charging defects in patients cells with bi-

allelic CARS1126, AARS1,105 MARS1,105 VARS1,257 EPRS,138 and NARS1221,222 variants. However, 

because this data reflects the total tRNA charging defect in the cell, it is not informative about 

the degree to which each of the two alleles contribute to the loss-of-function effect. Additionally, 

these reactions are performed with fibroblasts or lymphoblast cells that do not have a detectable 

phenotype, and so may not reflect the defective charging in the affected patient tissues. This 

assay has not been employed for cells from patients with dominant peripheral neuropathy, and is 

less likely to detect a significant defect in these cells, due to the later-onset and tissue-specific 

nature of ARS-mediated dominant neuropathy.  

 

An alternate in vivo approach for assessing the impact of an ARS variant on gene function is a 

yeast complementation assay. This is a relatively straightforward, inexpensive, and quick 

approach that is well-suited to testing patient variants of uncertain significance. The assay relies 

on the fact that yeast need ARS function to survive and grow; as such, yeast growth serves as a 

proxy for ARS gene function. In these assays, the endogenous yeast ARS gene is deleted—

temporary viability is maintained with the yeast ARS gene expressed from its endogenous 

promoter, on a URA3-bearing plasmid. The human ARS ortholog, expressed from a strong 

ubiquitous promoter on a high-copy number plasmid, can be transformed into yeast cells, and 

selected for using the LEU2 auxotrophic marker expressed from the plasmid backbone. Then, 

yeast cells are plated on media containing the drug 5-fluoroorotic acid (5-FOA). Ura3 converts 

5-FOA into a toxic compound, causing cells that express URA3 from the maintenance vector to 

die, and selecting for the cells that have spontaneously lost the maintenance vector during cell 

division.299 The only source of ARS in these surviving yeast is the exogenous human ARS, and 

the function of this gene determines whether the yeast will grow or not. In this assay, the growth 

of yeast expressing patient mutations are compared to the growth of yeast expressing wild-type 

ARS. An empty vector serves as a negative control, ensuring that 5-FOA selection is complete.  

 

Yeast complementation assay are an important in vivo counterpart to in vitro aminoacylation 

assays, as they demonstrate the degree of ARS impairment required to impact a living cell. Yeast 

complementation assays almost always correspond to results from in vitro aminoacylation 

assays; variants that significantly impair in vitro aminoacylation also do not support yeast 



 22 

growth. For example, the re-analyzed P234KY GARS1 variant (discussed above) does not 

support yeast growth, consistent with its loss of function in vitro170 (Figure 1.1). Similarly, 

∆ETAQ GARS1, which is severely enzymatically impaired in vitro170 does not support yeast 

growth (Figure 1.1). Occasionally, yeast complementation data is discordant with enzymatic 

assay, specifically when human variants are modeled in the yeast ortholog. For example, G240R 

GARS1 significantly impairs enzyme function in vitro300, but does not reduce yeast growth when 

modeled in GRS1, the yeast ortholog of GARS1.301 However, when G240R is modeled in the 

human GARS1 open reading frame, it significantly impairs yeast growth compared to wild-type 

GARS1 (Figure 1.1), consistent with the in vitro enzymatic data for the human protein. This 

highlights the discrepancies that can arise between functional assays with the yeast gene and 

functional assays with the human gene, and the importance of testing variants in the human ARS 

gene when possible.  

 
One limitation of the yeast complementation assay is the incongruence between a yeast cell and 

the human tissues affected in ARS-related disease, particularly neurons, which are affected in 

nearly all patients with dominant or recessive ARS-related phenotypes. On one hand, mutations 

that may be deleterious in the relevant human context may not affect yeast growth, particularly 

when over-expressed in rapidly dividing cells growing in nutrient-rich media. This is especially 

relevant to mutations that may only moderately reduce enzymatic function; although this 

reduction may be tolerable to yeast, it might be pathogenic in a human patient if it is in trans 

with a null mutation. On the other hand, reduced function of the human gene in a yeast cell may 

not reflect the effect of pathogenic variants in affected human tissues due to differences in the 

human transcriptome and proteome, and the tissue-specific availabilities of ARS substrates. 

 

1.3.2 Reduced enzymatic function causes recessive ARS diseases 

Bi-allelic variants identified in patients with ARS-mediated disease are typically missense 

mutations, splice site mutations, or insertions or deletions that lead to a frameshift and a 

premature stop codon. Premature stop codons generate null alleles, reducing total ARS protein 

levels.145,159,103 Similarly, splice site mutations cause aberrant inclusion of introns242 or exclusion 

of exons, shifting the frame of protein translation and introducing premature stop codons that  
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Figure 1.1. Pathogenic GARS1 variants do not support yeast growth. 
 
Representative images of yeast strains lacking endogenous GRS1, transformed with an empty 
vector (“Empty pyy1”), a vector expressing the wild-type human GARS1 open reading frame, or 
vectors expressing the mutant human GARS1 open reading frame. Two independent colonies 
were tested for each GARS1 mutation (from left to right, ∆ETAQ, P234KY, and G240R). Each 
colony was plated undiluted or in 1:10 serial dilutions on media containing 5-FOA. Yeast were 
grown at 30°C.  
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generate null alleles.147 Recessive missense mutations either impair protein stability, decrease 

enzymatic function, or both. In many cases, the primary defect of the missense mutation appears  

to be through decreased protein levels. This is detected through immunostaining for the affected 

ARS protein in patient cell lines, and comparing protein levels to those of heterozygous parents 

or wild-type controls. For example, two patients who are compound heterozygous for different 

AARS1 missense variants have 15% or 30% of wild-type AARS1 levels.105 Similarly, individuals 

who are homozygous for a missense MARS1 variant, or homozygous for a missense TARS1 

variant have 30% of wild-type MARS1 levels and less than 20% of wild-type TARS1 levels, 

respectively.105,253 Perhaps most dramatically, an individual who is compound heterozygous for a 

missense mutation and a frameshift mutation in FARSB showed an approximate 97% reduction 

in FARSB levels145, indicating that the missense allele produced only a small amount of FARSB 

protein.   

 

In these cases, any existing protein must have some enzymatic function, or the genotype would 

be incompatible with life. To discern how much function is retained, it is necessary to test the 

allele in isolation, either using in vitro aminoacylation assays or in vivo yeast complementation 

assays. These studies can be useful for estimating the total decrease in ARS activity in a patient 

cell, which can inform efforts to understand the relationship between genotype and phenotype. 

For example, two individuals could each have an 80% reduction in ARS protein. However, if one 

individual has almost no functional enzyme in that remaining 20%, their phenotype is likely to 

be more severe than an individual with a fully functional 20%.  

 

In some cases, the primary defect does appear to be in protein abundance, not enzymatic 

function. For example, a recent study evaluated patients with a multi-system ataxic syndrome 

and bi-allelic HARS1 variants. One patient was compound heterozygous for D206Y HARS1 and 

V244Cfs*6 HARS1.172 V244Cfs*6 HARS1 was not expressed at the mRNA level, indicating that 

it was unstable or subjected to nonsense-mediated decay.172 This allele would be expected to 

decrease HARS1 levels by 50%. However, total HARS1 protein levels were significantly below 

50% of wild-type levels, indicating that D206Y also impairs protein production or stability. 

When D206Y was tested in a yeast complementation assay, it did not lead to a decrease in yeast 

growth, indicating that it did not significantly impair gene function when over-expressed in 
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yeast.172 This suggests that in human cells, D206Y is deleterious primarily through decreasing 

protein levels, and not through significantly decreasing protein function.  

 

In other cases, a missense allele can decrease both protein levels and protein function. Here, an 

informative case is found in two siblings presenting with microcephaly, hypomyelination, and 

epileptic encephalopathy, both of whom were compound heterozygous for Y690Lfs*3 AARS1 

and G913D AARS1.103 Immunostaining of patient and parent-derived lymphoblastoid cells 

showed that Y690Lfs*3 decreased AARS1 protein levels by ~50% in a heterozygous parent and 

did not result in a truncated AARS1 band (of note, these studies were performed with an 

antibody to the N terminus that would recognize a truncated protein).103 Compared to wild-type 

controls, the compound heterozygous patient had less than 20% of wild-type AARS1 protein 

levels—50% of this decrease was likely due to Y690Lfs*3, and the other 30% or more due to the 

G931D allele.103 To discern how much activity G931D retained, in vitro aminoacylation assays 

were performed. G931D decreased enzymatic activity by ~70% compared to WT AARS1.103 

This indicates that, in addition to G931D decreasing protein abundance, any remaining G931D 

has decreased enzymatic activity.   

 

Lastly, it is possible that the primary defect of a missense variant is in enzymatic activity, rather 

than decreased protein levels. To date, this has only been effectively demonstrated for one 

variant, R310Q GARS1. This variant was identified in trans with a frameshift variant, G831Ifs*6 

GARS1, in a patient with a severe multisystem disorder.159 Careful analysis of protein levels from 

the patient and from unaffected wild-type controls identified a 50% reduction of GARS1 protein, 

consistent with G831Ifs*6 ablating protein expression and the remaining GARS1 protein 

representing the R310Q allele.159 In vitro measurements of initial charging velocity for R310Q 

GARS1 found that it decreases enzymatic activity by greater than 99% compared to wild-type 

GARS1.159 It is likely that R310Q retains more function in patient tissues, as such a significant 

decrease would be incompatible with life. Regardless, this demonstrates that R310Q primarily 

decreases GARS1 function by impairing enzymatic activity, not by decreasing protein levels.  

 

From these studies and others, it is clear that recessive ARS-mediated disease is due to a loss-of-

function mechanism. This is also supported by work on IARS,182 QARS,230 and KARS1,194 in 
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zebrafish, and models of HARS242 and LARS296 in C. elegans demonstrating that knocking down 

the ARS gene recapitulates key elements of the recessive disorder. However, there is still work 

to be done to define the downstream molecular consequences of reduced ARS activity. On this 

front, studies of mutations in mitochondrial ARS genes lead the way.  

 

Investigations of recessive mitochondrial ARS disorders have demonstrated a relationship 

between decreased mitochondrial ARS activity, reduced protein translation, and impaired 

mitochondrial function. Studies of bi-allelic partial-loss-of-function variants in VARS2,254 

TARS2,254 and NARS250 have examined corresponding changes in aminoacylated tRNA levels. 

Total RNA was extracted from patient cells under acidic condition to preserve the ester bond 

between tRNA and amino acid, separated on a urea polyacrylamide gel, transferred to a 

membrane, and hybridized with radiolabeled probes against the respective tRNAs.50,254 Then, the 

amount of high molecular weight aminoacylated tRNA was compared to the amount of low 

molecular weight uncharged tRNA. Defects in VARS2 and TARS2 corresponded to a 50% and 

60% reduction in aminoacylated tRNAVal or tRNAThr, respectively;254 defects in NARS2 

corresponded to a similar depletion of aminoacylated tRNAAsn.50 To investigate how decreased 

abundance of charged tRNA corresponded to the function of the mitochondrial respiratory chain 

(MRC) complexes, each member of the MRC complexes was analyzed using spectrophotometric 

assays that analyze the appearance or disappearance of MRC substrates and products.50,254 

Muscle samples from all patients demonstrated reduced function of at least one Complex, with 

the exception of Complex II, which is the only complex comprising proteins translated in the 

cytoplasm.50,254 All samples also showed a decrease in oxygen consumption, consistent with 

mitochondrial defects.50,254 Similar studies performed for other mitochondrial ARS variants show 

either decreased abundance of MRC complex proteins (for patients with variants in FARS2,82 

LARS2,85 or AARS2302), decreased activity of MRC complexes (for patients with variants in 

EARS2141 or RARS2244), or both (for patients with variants in YARS2303 and MARS291). 

Comprehensively, these studies demonstrate that reduced mitochondrial ARS function leads to 

reduced levels of aminoacylated tRNA, reduced abundance and/or activity of mitochondrial ARS 

proteins, and impaired mitochondrial function.  
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In sum, these studies provide evidence that recessive ARS alleles cause a partial reduction of 

ARS activity. This could ultimately result in impaired protein translation by one of two 

mechanisms (Figure 1.2). First, impaired translation could be a direct result of uncharged tRNA 

binding to GCN2 through its tRNA recognition domain, which subsequently triggers GCN2 to 

phosphorylate eIF2α.3 Phosphorylated eIF2α then blocks the recycling of GDP-eIF2 to GTP-

eIF2, preventing it from delivering initiator tRNAMet to the ribosome and causing global shut-

down in protein synthesis.3 Second, a dearth of charged tRNAs for a given amino acid could 

cause the ribosome to stall at these amino acid codons, reducing protein expression from the 

transcript.304 Interestingly, ribosome stalling has also been shown to activate GCN2;305 this 

suggests that both mechanisms of decreased protein synthesis may co-exist in cells with reduced 

ARS activity.  

 

1.3.3 Proposed mechanisms of dominant ARS disease 

In contrast to the recessive phenotypes, the molecular mechanism of ARS-related dominant 

axonal neuropathy is less clear. The fact that mutations in five genes encoding an aminoacyl-

tRNA synthetases (GARS1, YARS1, AARS1, HARS1, and WARS1) cause a similar dominant 

phenotype points to a common disease mechanism. In support of this, over-expression of 

neuropathy-associated GARS1 and YARS1 mutants in a Drosophila model cause a strikingly 

similar phenotype.306 Although there is a growing body of work defining various non-canonical 

functions for the above five ARS enzymes (Table 1.3), none are common to all five enzymes, 

nor do they relate to neuron (or axon) function. Thus, it is currently challenging to investigate if 

a loss of some non-canonical function is responsible for ARS-related neuropathy. Also, 

considering that most neuropathy-associated ARS mutations impair rather than enhance enzyme 

function,307 it is unlikely that a gain of canonical function is responsible for disease. As a result, 

there are currently two mechanisms being explored: impaired ARS activity and toxic gain-of-

function effects (Figure 1.3). It should be emphasized that these pathogenic mechanisms may not 

be mutually exclusive—for example, impaired tRNA charging may be a prerequisite for a gain-

of-function effect, or the two molecular consequences may work in concert to modulate 

phenotypic severity. 
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Figure 1.2. Potential mechanisms of ARS-related recessive disease. 
 
(A) Two wild-type ARS alleles supply cells with the requisite charged tRNA for protein 
translation. (B) Two loss-of-function ARS alleles severely reduce the amount of charged tRNA 
available for translation, which impairs protein production. Uncharged tRNA is either degraded 
or binds to GCN2, which phosphorylates eIF2α and inhibits global translation. In both panels, 
dimeric enzymes functioning in the cytoplasm are shown for simplicity; however, please note 
that some ARS enzymes act as monomers and that some effects apply to mitochondrial 
translation. 
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Table 1.3. Non-canonical functions of dominant disease-associated ARS proteins. 

ARS Species Non-canonical function 

AARS1 Homo sapiens C-terminal splice variant binds DNA30 

GARS1 

Bos taurus Localizes to the nucleus and activates NFκB1 and mTOR gene 
expression308 

Homo sapiens Secreted in response to damage in mesenchymal stem cells, promotes 
differentiation and migration309 

Homo sapiens Chaperone in neddylation pathway310 

Homo sapiens Tumorigenesis defense311 

Saccharomyces cerevisiae mRNA 3’ end formation312 

HARS1 

Danio rerio Angiogenesis regulation313 

Saccharomyces cerevisiae Autoregulatory repression of HARS mRNA translation in response to 
low tRNA levels314 

Homo sapiens Epitope for autoantibodies in inflammatory myositis315–317 

WARS1 

Homo sapiens In response to IFN-g stimulation, is a cellular entry factor for 
Enterovirus318 

Homo sapiens In response to IFN-g stimulation, increases tryptophan uptake into 
cells319 

Homo sapiens Upon secretion from cells, participates in the antiviral innate immune 
response64,320 

Homo sapiens 
 Mini-WARS1 inhibits angiogenesis65,321–324 

Homo sapiens In response to IFN-g stimulation, facilitates p53 activation325 

YARS1 

Homo sapiens Fragmented YARS1 stimulates megakaryopoiesis and platelet 
production326 

Homo sapiens Locates to the nucleus and protects against DNA damage327–329 

Homo sapiens Mini-YARS1 promotes angiogenesis63,322–324,330 
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Figure 1.3. Potential mechanisms of ARS-related dominant axonal neuropathy. 
 
Neurons are illustrated with the cell body on the left and the axon extending to the right. A wild-
type neuron (A) has functional ARS activity (green dimers) facilitating protein translation. There 
is appropriate NRP1 (orange) and Trk signaling (blue). YARS1 translocates to the nucleus upon 
oxidative stress and binds TRIM28 (blue), changing the regulation of DNA damage response 
genes. HDAC6 (yellow) de-acetylates tubulin under homeostatic conditions. Proposed 
mechanisms of ARS-mediated peripheral neuropathy are represented in (B); neuronal function 
may be compromised by impaired protein translation due to an unknown function of mutant ARS 
(red subunits) and/or a depletion in available charged tRNA from a reduction of aminoacylation 
activity. For peripheral neuropathy related to GARS1, mutant GARS1 may interfere with NRP1 
signaling by preventing VEGFA (magenta) from binding to NRP1. In developing sensory 
neurons, mutant GARS1 may also act as a ligand for Trk receptors, aberrantly activating Trk 
signaling. Mutant GARS1 could also bind to HDAC6, increasing its de-acetylation activity and 
leading to hypo-acetylated tubulin. For peripheral neuropathy related to YARS1, increased mutant 
YARS1 binding to TRIM28 (blue) may alter regulation of DNA damage response genes or genes 
important for neuronal function.   
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1.3.4 Impaired ARS function in dominant axonal neuropathy 

Data from in vitro aminoacylation and yeast complementation assays indicate that almost all 

neuropathy-associated ARS mutations cause deficits in tRNA charging.110,170,171,176,307 

Additionally, data from three animal models suggest that the mutant proteins are sub-functional. 

First, in Drosophila projection neurons, the morphological defects caused by neuron-specific 

homozygosity for a null gars1 allele were fully rescued by a wild-type human GARS1 transgene, 

partially rescued by the neuropathy-associated E71G allele, and not rescued by the neuropathy-

associated L129P allele.331 Second, whereas over-expressing wild-type gars1 rescues the 

neuromuscular phenotype of zebrafish homozygous for a loss-of-function allele, over-expressing 

the neuropathy-associated G526R allele showed no rescue.332. Finally, mice heterozygous for 

P234KY or C201R Gars1 display a dominant neuropathy, but homozygosity for these mutations 

is lethal.333 In sum, there is an abundance of data showing that neuropathy- 

associated ARS missense mutations have a deleterious effect on gene function, indicating that 

this is a component of disease pathogenesis. 

 

In contrast, three lines of evidence argue against a simple loss-of-function effect (i.e., 

haploinsufficiency) as the underlying mechanism of ARS-related neuropathy. First, mice 

heterozygous for a Gars1 null allele have a wild-type phenotype.69 Second, none of the 

individuals with ARS-mediated dominant peripheral neuropathy are heterozygous for a null 

allele. However, recessive individuals are frequently compound heterozygous for a missense and 

a null allele. In these cases, parents carrying the null allele are not reported to have peripheral 

neuropathy symptoms, although few have been clinically evaluated. Additionally, data from the 

Genome Aggregation Database (gnomAD) indicate that AARS1, HARS1, GARS1, YARS1, and 

WARS1 are tolerant of protein truncating variants in the heterozygous state.334 In this database, 

the probability that a gene is haploinsufficient is calculated by comparing the number of protein-

truncating variants that would be expected in the gene based on its sequence content, size, and 

methylation to the number of protein-truncating variants seen in the general population 

(excluding individuals with pediatric diseases and their first degree relatives).334,335 This 

probability is communicated as “pLI” scores, or “probability of being loss-of-function 

intolerant,” where the pLI score for a haploinsufficient gene is 1. The pLI scores for the five 

ARS genes implicated in dominant peripheral neuropathy are: 0 (AARS1), 0 (HARS1), 0 
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(YARS1), 0.31 (GARS1), and 0.3 (WARS1).334 Therefore, heterozygosity for a null allele in any of 

these five genes does not cause a phenotype that is subject to purifying selection. Since gnomAD 

only excludes individuals with known pediatric disease, we do not know if these heterozygous 

null individuals in the database have a peripheral neuropathy. However, cumulatively, these data 

strongly argue against haploinsufficiency as the primary mechanism for a penetrant, ARS-related 

neuropathy. 

 

One possible explanation for the role of loss-of-function missense mutations in dominant 

neuropathy is a dominant-negative effect. Dominant-negative mutations, or anti-morphs, are 

loss-of-function mutations that also inhibit the function of the wild-type gene product.336 The 

catalog of Mendelian diseases is replete with pathogenic dominant-negative alleles in genes 

encoding transcription factors such as p53,337 receptors like G-protein subunits338, ion 

channels339,340, and structural proteins like keratins.341 Dominant-negative mutations in enzymes 

are rarer, likely because it takes a large change in enzymatic concentration or function to impact 

metabolic flux.342 As such, most loss-of-function mutations in enzymes are recessive.342 

However, dominant-negative mutations have been described in PLKR 343 (encoding pyruvate 

kinase, a critical metabolic enzyme), PSEN1344 (which encodes a member of the gamma 

secretase complex that cleaves amyloid precursor protein), UBC12345 (a neddylation conjugating 

enzyme), and GALT346 (an enzyme involved in galactose metabolism).  

 

Prerequisites for a dominant-negative effect include: (1) the mutant protein should be stably 

expressed; (2) the mutant protein should have reduced or ablated function; and (3) the affected 

protein should normally dimerize (or oligomerize) and mutant subunits should retain the ability 

to interact with wild-type subunits. Indeed, AARS1, YARS1, GARS1, HARS1, and WARS1 all 

charge tRNA in the cytoplasm as dimers (Table 1.1); if an inactive mutant subunit dimerizes 

with a wild-type subunit, it could result in a significant reduction in tRNA charging compared to 

the haploinsufficient state. This would shift the burden of tRNA charging onto the reduced 

population (i.e., 25%) of wild-type/wild-type dimers. 

 

Multiple lines of evidence support a dominant-negative effect: (1) data from primary patient cell 

lines indicate that pathogenic ARS alleles do not reduce the total amount of protein detectable 
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via Western blots170,301,333,347,348; (2) in vitro and in vivo functional assays demonstrate that the 

vast majority of pathogenic ARS variants impair enzyme function,110,170,171,176,264,307,349 and (3) 

ultracentrifugation experiments or co-immunoprecipitation experiments have shown that mutant 

ARS retain the ability to dimerize.176,264,275,300,350 However, no studies have demonstrated that 

mutant human ARS is dominantly toxic when co-expressed with wild-type human ARS, nor that 

this toxicity is dependent on the hetero-dimerization between wild-type subunits and mutant 

subunits.  

 

Several studies have generated data that is consistent with a dominant-negative effect. The first 

study found that yeast cells expressing one wild-type and one mutant copy of yeast tyrosyl-tRNA 

synthetase showed reduced growth compare to yeast cells expressing only the wild-type 

enzyme.275 The second study identified a loss-of-function zebrafish gars1 mutation, T209K, that 

ablates dimerization.332 Zebrafish that are homozygous for this allele show a severe 

neuromuscular defect, and zebrafish heterozygous for this allele have no phenotype.332 When 

T209K was over-expressed in either gars1T209K/+ or gars1+/+ zebrafish, the fish had no 

phenotype, indicating that a dimer-reducing loss-of-function gars1 mutation is not dominantly 

toxic.332 However, over-expression of G526R gars1, which dimerizes332 but is non-functional301, 

caused neuromuscular junction defects. Notably, over-expression of T209K in cis with G526R 

improved the neuromuscular junction phenotype, suggesting that dimerization is required for the 

toxicity of G526R gars1.332 The third study investigated H257R WARS1, which decreases 

enzyme activity in vitro but does not impact dimerization.264 To measure the potential 

downstream impact on protein synthesis, cultured cells were co-transfected with a construct to 

express wild-type or H257R WARS1 (or an empty vector) and a plasmid expressing b-Gal or 

luciferase. b-Gal or luciferase activity was interpreted as a read-out for translation of the 

respective enzyme, and protein synthesis as a whole. Whereas wild-type WARS1 increased 

reporter activity above that of the empty vector, H257R WARS1 decreased reporter activity 

below that of empty vector.264 There are significant limitations to this approach, including an 

inability to control for a consistent copy number of each vector across a population of transfected 

cells, and the reliance on the enzymatic activity of two reporter proteins as an indication of 

global protein synthesis. However, the authors concluded that these data demonstrated that 

H257R WARS1 exhibited a dominant-negative effect.  
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Lastly, a study of HARS1 variants provides significant circumstantial evidence of a dominant-

negative mechanism of neuronal toxicity. Mullen et al., examine the variant R137Q HARS1175, as 

well as V155G HARS1 and Y330C HARS1, both of which are characterized in Section 2.3.2. The 

authors over-expressed these alleles in PC12 cells, which can be differentiated to generate axon-

like projections. Over-expression of all three HARS1 alleles showed an increase in EIF2α 

phosphorylation, a marker of the integrated stress response and an indication of accumulating 

uncharged tRNA,351 consistent with significantly reduced HARS1 function.350 This was 

accompanied by an approximate 20% reduction in global protein synthesis, as measured by OP-

Puromycin incorporation.350 This also corresponded to a modest decrease in the length of the 

longest neurite in each cell.350 These findings suggest that the ability to form or maintain long 

neuronal processes, such as the long axons of the peripheral nerve, is dependent on protein 

synthesis. Critically, these three phenotypes—increased EIF2α phosphorylation, decreased 

protein synthesis, and shortened length of the longest neurite—were recapitulated when the cells 

were treated with histidinol, a small-molecule inhibitor of HARS1.350 This directly demonstrates 

that pharmacological impairment of HARS1 phenocopies the toxicity of dominant HARS1 

mutations, consistent with a loss-of-function effect achieved through a dominant-negative 

mechanism. 

 

As a complementary approach, Mullen et al. injected wild-type zebrafish embryos with V155G 

or Y330C human HARS1 mRNA. By 48 hours post fertilization, these zebrafish neurons showed 

improper guidance.350 Neuronal processes in fish expressing mutant HARS1 were also shorter 

than those of fish expressing wild-type human HARS1 protein.350 Unsurprisingly for such severe 

morphological defects, the fish also displayed motor deficits in behavioral assays.350 This 

phenotype was replicated by treating the fish with the protein synthesis inhibitor cyclohexamide, 

which also shortened the length of the neuronal processes in the dorsal root ganglia.350 This 

demonstrates that chemically inhibiting protein synthesis will mimic the phenotype 

of HARS1 mutations, supporting the hypothesis that reduced protein synthesis is part of the ARS-

associated neuropathy disease mechanism. 
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It is important to consider how impaired ARS function would specifically affect peripheral nerve 

axons. Of note, Mullen et al. found that over-expressing patient HARS1 mutations in PC12 cells 

did not affect the size of the cell body or the number of neurite projections the cells produced, 

but did decrease the length of the longest neurite; in other words, cells could not grow or sustain 

projections beyond a certain distance from the soma.350 Similarly, expression of these mutations 

in zebrafish caused a decreased axon length in dorsal root ganglia cells.350 It is possible that 

maintaining the health of long axons, such as the long axons of the peripheral nervous system, is 

particularly difficult with defects in housekeeping functions, such as protein translation. Indeed, 

mutations in other ubiquitously expressed genes (e.g., MFN2 and RAB7) have been implicated in 

axonal neuropathy289,352, as discussed in Section 1.2.4.  

 

However, a dominant-negative effect may not apply to all neuropathy-associated ARS mutations. 

One major piece of evidence points away from this as a unifying mechanism; in theory, if ARS 

alleles are dominant-negatives, then loss of ARS function should drive the pathology, which 

should then be rescued by over-expression of wild-type ARS. However, in two mouse models of 

Gars1-mediated peripheral neuropathy, Gars1P234KY/+ and Gars1C201R/+, over-expressing wild-

type human GARS1 was not sufficient to rescue the phenotype333. There are significant caveats 

to these two mouse models; neither represent a human disease allele, and both cause early-onset 

phenotypes that are similar to the mouse model of ∆ETAQ GARS1, a mutation which causes an 

early-onset, severe SMA-like phenotype in humans.170 In particular, Gars1P234KY/+ causes 

premature lethality that is not seen in individuals with dominant peripheral neuropathy.69 As 

such, it remains to be seen whether these findings can be generalized to other ARS alleles that 

cause a later-onset, milder phenotype in human. As future work investigates a dominant-negative 

mechanism, it will be important to determine if it can be alleviated by supplying additional wild-

type enzyme to the cell. To the best of our knowledge, there are only a small number of studies 

showing that over-expression of a wild-type allele rescues a dominant-negative effect; moreover, 

these studies have been performed in vitro, and for dominant-negative alleles in structural 

proteins (Type VII Collagen353) or receptors (Follicle Stimulating Hormone Receptor354). It 

remains to be seen whether a dominant negative mutation in an enzyme can be rescued by over-

expression of the wild-type protein. 
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1.3.5 Proposed gain-of-function mechanisms in dominant axonal neuropathy 

In contrast to a loss-of-function mechanism of disease, a second possibility is that neuropathy-

associated ARS mutations cause the encoded enzymes to gain a novel, dominantly toxic function 

that specifically affects the peripheral nervous system. This may not be mutually exclusive with 

a loss-of-function effect, as a mutation may simultaneously impair enzymatic activity and 

facilitate novel binding partners. There is evidence that YARS1,355 GARS1,356 HARS1,357 and 

AARS1348 mutations change the conformation of the enzyme and expose internal protein 

residues, which are posited to be new binding interfaces for aberrant protein interactions.  

 

One aberrant interaction that has been explored for mutations in both GARS1 and AARS1 is 

neomorphic binding to neuropillin-1 (NRP1). Neuropilin-1 is a transmembrane protein that 

participates in the development of the nervous system and cardiovascular system.358 It acts as a 

receptor for semaphorin axon guidance factors, as well as a receptor for vascular endothelial 

growth factor (VEGF)358, which is critical for both neuron development and angiogenesis.359 A 

2015 study that aimed to identify novel binding partners of mutant GARS1 found that 

immunoprecipitation of NRP1 co-immunoprecipitated a small amount of wild-type GARS1, and 

a significantly increased amount of mutant GARS1 (here, the high-confidence variants L129P, 

G240R, and E71G were tested, along with the mouse spontaneous mutation P234KY).360 By 

systematically deleting different NRP1 domains and assessing whether NRP1 could still co-

immunoprecipitate GARS1, the authors mapped the GARS1 binding location to the b1 domain, 

which is the binding site of VEGF-A165.360 The authors then showed that increasing 

concentrations of VEGF-A165 could decrease the amount of mutant GARS1 bound to NRP1 in 

vitro, and vice versa.360 Additionally, to explain what would be an extracellular interaction for a 

cytoplasmic protein, the authors demonstrated that GARS1 is present in exosomes of NSC34 

motor neuron-like cells by enriching for exosomes in the cell media and immunostaining for 

GARS1.360 This finding was supported by treating cells with an exosome-pathway inhibitor, 

which decreased the amount of extracellular GARS1 detected, and by treating cells with an 

activator of microvesicle release, which increased the amount of GARS1 detected.360 
 

The authors followed this work by investigating the interaction between NRP1 and mutant 

GARS1 in Gars1P234KY/+ mice (as noted above, this mouse does not model a human disease 
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allele, and exhibits a severe early-onset neuromuscular phenotype with pre-mature death between 

5 and 8 weeks of age69, which does not recapitulate patient phenotypes).360 The authors found 

that Gars1P234KY/+ mice had defects in facial neuron migration, similar to those seen in mouse 

models of Nrp1 and Vegf mutants.360 They also found that Gars1P234KY/+ mice who were also 

heterozygous for a Nrp1 null allele had a significantly more severe phenotype, indicating that 

Nrp1 is a genetic modifier of the mouse pathology.360 Finally, the authors showed that treating 

Gars1P234KY/+ with VEGF-A165—but no other trophic factors—improved motor function. From 

these studies, the authors posit that the mechanism of GARS1-mediated peripheral neuropathy is 

due to a gain-of-function interaction with NRP1.  

 

To demonstrate that this interaction is not limited to GARS1, these authors have performed 

similar in vitro studies demonstrating an interaction between mutant AARS1 alleles and 

NRP1.348 Here, both NRP1 and AARS1 were ectopically expressed in NSC34 motor neuron-like 

cells. Immunoprecipitation of NRP1 co-immunoprecipitated three mutant forms of AARS1 

(N71Y, G102R, and R329H).348 However, NRP1 did not co-immunoprecipitate wild-type 

AARS1, or any AARS1 produced from three mutations in the editing domain and C-terminal 

domain.348 The authors also demonstrated that immunoprecipitation of NRP1 in patient 

lymphocyte cells co-immunoprecipitated R329H AARS1, but did not co-immunoprecipitate 

wild-type AARS1 in control lymphocytes.348 Lastly, they pursue a similar domain mapping 

strategy as they performed for GARS1, and determine that mutant AARS1 binds to the same b1 

domain as GARS1.348 Here, to explain the interaction between a cytoplasmic protein and an 

extracellular domain, the authors remove cell culture media from HEK293T cells and 

immunoblot for AARS1. They do not demonstrate that it is present in exosomes, or control for 

the possibility of cell lysis. 

 

There are several major gaps in this model of ARS-mediated peripheral neuropathy. One 

inconsistency is the seemingly neuron-specific interaction between GARS1 and NRP1, despite 

the fact that GARS1 is ubiquitously expressed, and the signaling pathway of NRP1 and VEGF-

A165 is not only critical for neuronal development but for cardiovascular development as well. If 

GARS1 interferes with VEGF-A165 binding to NRP1 in other tissues, this interaction should 

cause cardiovascular defects. However, this is not a known phenotype of any patient with 
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GARS1-mediated peripheral neuropathy. This has also been assessed in another Gars1 mouse 

model, Gars1C201R/+ (this mutation is also not a patient mutation, but arose from ENU 

mutagenesis), where no cardiovascular defects were identified.361 The expression pattern of 

NRP1 is also inconsistent with the human phenotypes, as NRP1 plays a critical role in 

development,362 and the ARS-mediated peripheral neuropathy is a degenerative process that 

usually onsets in adolescence or adulthood. Finally, if impaired NRP1 signaling were to play a 

role in any of the human neuropathies, it would most likely contribute to the severe, childhood-

onset motor neuropathies, like that caused by ∆ETAQ GARS1.170 Indeed, a Gars1∆ETAQ/+ mouse 

model shares a similar phenotypic severity with the Gars1P234KY/+ mouse discussed above.170 

However, overexpression of ∆ETAQ GARS1 in NSC34 cells followed by immunoprecipitation 

of NRP1 did not detect an interaction between ∆ETAQ GARS1 and NRP1.170 Mass spectrometry 

of ∆ETAQ GARS1 binding partners in motor neuron cells also failed to detect an interaction 

with NRP1.170 Based on the inability to replicate this interaction with one of the most toxic 

GARS1 mutations, it is unlikely that neomorphic binding to NRP1 is a common mechanism of 

ARS-mediated dominant peripheral neuropathy. 

 

An alternate gain-of-function mechanism that has been proposed is an aberrant interaction with 

members of the tropomycin receptor kinase (TRK) family—TrkA, TrkB, and TrkC. Trk proteins 

are membrane-bound receptors that bind neurotrophic growth factors in a signaling pathway 

required for the proper development of sensory neurons.363 This proposed mechanism stems 

from the observation that sensory neuron fate is disturbed in Gars1C201R/+ mice, with a prenatal 

imbalance in subtypes of sensory neurons that leads to changes in sensory behavior upon birth.364 

To test a possible interaction between mutant GARS1 and Trk proteins, wild-type, P234KY, or 

C201R GARS1 were transfected into NSC34 cells.364  Then TrkA, TrkB, or TrkC were 

immunoprecipitated, and co-immunoprecipitated proteins were immunostained for GARS1.364  

All three members of the Trk family co-immunoprecipitated P234KY and C201R GARS1, 

although not wild-type.364 To validate this interaction with human GARS1 mutations, 

recombinant wild-type, L129P, or G240R GARS1 was added to the media of N2a neuroblastoma 

cell lines.364 Both mutations (but not wild-type) caused an increase in ERK1/2 phosphorylation, 

an integral component of the Trk signaling cascade.364 These data lead the authors to propose 

that extracellular mutant GARS1 aberrantly binds and activates Trk receptors, changing sensory 
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neuron differentiation and/or survival early in development. Although it is intriguing to consider 

the possibility that developmental defects predispose sensory neurons for later-stage 

degeneration in ARS-mediated CMT, additional in vivo work is required to link these defects to 

impaired Trk signaling. Additional work is also required to test the specificity of this interaction; 

if this interaction can be detected between Trk receptors and a benign GARS1 polymorphism, or 

between Trk receptors and a mutant GARS1 that is strictly linked to motor neuron phenotypes 

such as ∆ETAQ, it would argue against this as a mechanism of sensory neuron impairment in 

GARS1-mediated CMT. 

 

An alternate possibility is that GARS1 mutations cause inappropriate binding of intracellular 

proteins, specifically HDAC6, a histone deacetylase that acts on alpha-tubulin in the 

cytoskeleton.365 One of several post-translational modifications that regulate tubulin function,366 

alpha-tubulin acetylation promotes axonal transport by increasing kinesin binding to 

microtubules.367 In this model, HDAC6 activity decreases alpha-tubulin acetylation, which leads 

to decreased kinesin binding and axonal transport. Defects in axonal transport are linked to a 

number of neurological diseases, including peripheral neuropathies.295  

 

Studies of the Gars1P234KY/+ and the Gars1 C201R/+ mouse models have found reduced tubulin 

acetylation in the dorsal root ganglia and sciatic nerve, accompanied by defects in axonal 

transport.368,369 Inhibiting HDAC6 with the small molecule tubastatin A rescues these defects and 

improves the motor function of both mouse models.368,369 Two studies perform co-

immunoprecipitation experiments in vitro to detect an interaction between GARS1 and HDAC6: 

Benoy et al. identify an interaction between HDAC6 and both wild-type and C102R GARS1, 

whereas Mo et al. shows that only mutant GARS1, not wild-type, can interact with HDAC6. Mo 

et al. also find that the cells expressing the three GARS1 mutants with the strongest HDAC6 

interaction (P234KY, S581L, and G598A) also have the lowest amount of acetylated alpha-

tubulin. This leads them to propose a mechanism in which mutant GARS1 aberrantly binds to 

HDAC6 and increases its de-acetylation activity, decreasing tubulin acetylation and impairing 

axonal transport.370 However, this interaction between GARS1 and HDAC6 does not appear to 

be specific to pathogenic variants. One of the GARS1 variants with the strongest effects on 

HDAC6 binding and alpha-tubulin deacetylation, S581L, has been re-evaluated and found to be 
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non-pathogenic, since it does not segregate with disease in affected families.371 Therefore, it is 

unclear whether this interaction is meaningful for GARS1-mediated peripheral neuropathy. It is 

more likely that the benefits of HDAC6 inhibition are not specific to the genetic or 

environmental insult, but that improving axonal transport ameliorates the overall neuronal 

dysfunction in peripheral neuropathy. For example, HDAC6 inhibitors have been shown to 

improve peripheral neuropathy phenotypes in mice with Mfn2 mutations,372 Hspb1 mutations,373 

and mice with chemotherapy-induced peripheral neuropathy.374  

  

Lastly, there is a body of research investigating non-canonical functions of wild-type YARS1 in 

the nucleus. ARS enzymes can charge tRNA in the nucleus, as a proofreading mechanism to 

ensure that a tRNA molecule is properly spliced and folded before it is exported to the 

cytoplasm.375 However, recent studies focus on a novel role for YARS1 in the nucleus. The 

nuclear localization signal (NLS) of YARS1 is found in the anticodon binding domain, and is 

masked by bound tRNATyr.328 Under oxidative stress conditions, tRNATyr is cleaved and the NLS 

is exposed, increasing YARS1 nuclear localization.329 Through a combination of co-

immunoprecipitation and mass spectrometry experiments, YARS1 was found to bind nuclear 

proteins TRIM28 and HDAC1.329 Both of these proteins are transcriptional co-factors that work 

together to deacetylate the transcription factor E2F1, repressing its activity.329 In this proposed 

model, YARS1 sequesters TRIM28 and HDAC6, preventing them from deacetylating E2F1, and 

increasing the function of E2F1 to upregulate its target genes, which include DNA damage repair 

genes.329 Interestingly, when YARS1 is excluded from the nucleus by mutating the NLS, the 

expression of these DNA damage repairs decreases, supporting the nuclear role of YARS1 in 

driving their expression.329  

 

Small angle X-ray scattering studies and hydrogen-deuterium exchange assays have defined 

protein conformation changes associated with three dominant YARS1 mutations (E196K, G41R, 

and 153-156∆VKQV).355 This corresponds to increased interaction with TRIM28 and HDAC1, 

and subsequent increased E2F1 acetylation and expression of DNA damage response genes.376 In 

this proposed mechanism, YARS1 mutations increase the activity of a non-canonical YARS1 

function (i.e., are hypermorphs). However, it is unclear how increased activity of the E2F1 

transcription factor or increased expression of DNA repair genes relate to peripheral neuropathy 
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phenotypes. Indeed, pharmacologically repressing E2F1 activity does not improve the 

neurotoxicity of E196K YARS1 in a Drosophila model.376  

 

One of the most compelling pieces of evidence from these studies is that inhibiting the 

translocation of E196K YARS1 from the cytoplasm to the nucleus by mutating the NLS does in 

fact appear to rescue numerous neurological phenotypes in Drosophila, including locomotion 

defects and aberrant neuromuscular junction morphology.376 There are a number of possible 

explanations for this observation. The authors, Bervoets et al., propose that this indicates a gain-

of-function mechanism, in which mutant YARS1 aberrantly binds to transcription factors in the 

nucleus and misregulates gene expression. Alternately, it is possible that in this model, YARS1 

is interfering with the nuclear proofreading function of drosophila tyrosyl-tRNA synthetase, and 

that incompletely processed tRNAs are exiting the nucleus and impairing translation in the 

cytoplasm. This hypothesis is supported by transcriptomic data of misregulated genes in the 

brains of Drosophila over-expressing either wild-type YARS1 or E196K YARS1. Here, many of 

the differentially expressed genes play a role in stress response, protein misfolding, and ribosome 

biogenesis, indicating a broader defect in protein translation.376 These defects may not be 

sufficient to cause a detectable neurological phenotype in flies expressing wild-type YARS1, but 

may be exacerbated by E196K YARS1. It is also important to consider that over-expressing 

human YARS1 (wild-type and mutant) in a Drosophila model may produce spurious protein-

protein interactions or cellular pathology that is not representative of YARS1 biology in a human 

peripheral nerve, where it is expressed at endogenous levels.  

 

Although the finding of novel binding interactions with NRP1 receptors, Trk receptors, HDAC6, 

and nuclear transcription co-factors could yield new insights into the pathogenesis of individual 

ARS mutations, it would be surprising if any of these mechanisms were shared across 

neuropathy-associated mutations in different ARS loci. The structures of the five neuropathy-

associated ARS enzymes differ significantly; YARS1 and WARS1 are Class I enzymes, whereas  

GARS1, AARS1, and HARS1 are Class II enzymes (Table 1.1). Furthermore, pathogenic 

mutations do not localize to a specific domain (Figure 1.4), so it is unlikely that they would all 

have the capacity to bind to the same proteins. If different mutant ARS enzymes were to 

aberrantly bind to different proteins that act in a common pathway, it is possible that this may 
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explain the shared pathogenic effect; however, this has not been shown. Such a common 

pathway may be related to neuronal signaling or axonal transport, as discussed above, or may be 

related to protein translation independent of deficits in aminoacylation. Interestingly, the latter 

possibility could provide an explanation for the translation defects observed in Drosophila 

models of GARS1 and YARS1 mutants. When several neuropathy-associated mutations in human 

GARS1 (E71G, G240R, and G526R) or YARS1 (G41R, 153-156delVKQV, and E196K) are over-

expressed in Drosophila motor or sensory neurons, they reduce protein translation rates and 

cause muscle denervation and morphological defects.306 However, this study concluded that 

mutant GARS1 does not impair the endogenous activity of Drosophila gars1, and that the 

reduced translation rate caused by over-expressing G240R human GARS1 cannot be rescued by 

over-expressing wild-type Drosophila gars1. These findings are particularly interesting since, if 

the translation defects in flies over-expressing mutant GARS1 are not a result of mutant GARS1 

suppressing the endogenous protein via a dominant-negative effect, it is possible that they are 

caused by aberrant interactions between GARS1 mutant proteins and other components of the 

translational machinery.  

 

1.3.6 Future directions for defining a mechanism of dominant ARS disease 

There is currently evidence to support multiple proposed mechanisms of ARS-mediated 

peripheral neuropathy; however, additional research is needed to determine if either mechanism 

applies to the majority of neuropathy-associated ARS mutations and loci. For the loss-of-

function model, it will be critical to determine if dimerization is required for pathogenicity. This 

question can be addressed by designing ways to decrease the dimerization of a pathogenic ARS 

protein and testing for phenotypic rescue in a relevant model organism (see Chapter 4), or by 

increasing dimerization and testing for an exacerbation of the phenotype. It will also be 

important to determine which dominant ARS mutations cause phenotypes that can be rescued by 

over-expression of the wild-type allele, which would suggest an overall loss of ARS function is 

central to the pathology. 
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Figure 1.4. Cartoon map of ARS variants associated with dominant peripheral neuropathy. 
 
Cartoon illustrations of the protein domains of GARS1, HARS1, YARS1, AARS1, and WARS1 are 
shown. The WHEP domain is shown in purple, the catalytic domains in gray, the anticodon-
binding domain in light blue, and the editing domain for AARS1 in dark blue. Patient variants 
with evidence for pathogenicity are shown using vertical lines to indicate where they map on the 
linear protein domains.   
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One argument for a dominant-negative mechanism is that only homodimeric ARS have been 

implicated in disease to date. It will be important to determine if mutations in monomeric 

enzymes, such as MARS1, can cause dominant axonal neuropathy, since a dominant-negative 

mechanism would not be possible for monomeric enzymes. Identifying MARS1 variants that 

segregate with disease in large pedigrees or demonstrating that MARS1 variants cause dominant 

peripheral neuropathy in animal models would be important steps toward resolving this issue. 

 

For the gain-of-function model, it will be important to show that any novel protein-protein 

interactions—whether with NRP1, TRIM28, Trk receptors, HDAC6, or other proteins—are 

specific to mutations associated with neuropathy, and that these interactions do not occur with 

nonpathogenic protein variants. Additionally, showing that multiple mutant ARS enzymes can 

participate in the same aberrant interaction, or different aberrant interactions that lead to the 

same cellular effect, will add weight to this model. Finally, demonstrating that mutations in other 

components of these pathways also lead to peripheral neuropathy, which has not been shown yet, 

would be a strong confirmation of this mechanism. 

 

After refining the loss- and gain-of-function models, the next step will be to determine if there is 

any interplay between the two mechanisms that may affect phenotypic outcome. For example, 

some mutations, like G598A162 and ∆ETAQ GARS1170 are linked to an early-onset, severe spinal 

muscular atrophy, which may be due to the compound effects of loss-of-function and gain-of-

function mechanisms. 

 

1.4 Conclusions 
 

ARS genes are emerging as a significant cause of rare inherited diseases, including recessive 

mitochondrial disorders, recessive multisystem disorders, and dominant axonal neuropathies. All 

of the 37 human ARS enzymes have been implicated in a genetic disease phenotype. However, 

the full phenotypic and allelic spectrum of these disorders is undefined. In particular, it is 

unknown if additional ARS genes can cause dominant peripheral neuropathy, or what the 

mechanism of dominant disease is for AARS1, GARS1, HARS1, WARS1, and YARS1 mutations. 

In this dissertation, I will present and functionally characterize ARS alleles that have been newly 
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identified in patients with multi-system recessive disorders or dominant peripheral neuropathies 

(Chapter 2). These efforts will broaden our understanding of the allelic spectrum of these 

diseases, as well as shed light on how these enzymes function and tolerate variation. I will also 

present a model organism-based prediction pipeline to implicate additional ARS in dominant and 

recessive phenotypes, which I apply to threonyl-tRNA synthetase (TARS1). These studies 

resulted in the identification of a hypomorphic TARS1 allele and characterization of recessive 

TARS1 phenotypes in worm and mouse (Chapter 3). Finally, I will address the mechanism of 

dominant ARS-mediated disease by showing that dominant pathogenic variants in alanyl-tRNA 

synthetase (AARS1) exert a dominant-negative when co-expressed with wild-type AARS1 in 

yeast (Chapter 4). This work aims to contribute to the known clinical, locus, and allelic spectrum 

ARS-mediated disease; expand the role of model organism research in predicting pathogenic 

ARS alleles and investigating related phenotypes; and advance efforts to test a dominant-

negative mechanism of ARS-mediated peripheral neuropathy.
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Chapter 2  
Expanding the Locus, Allelic, and Phenotypic Heterogeneity of 

ARS-Mediated Disease 
 
 
2.1 Introduction 
 
All 37 members of the ARS gene family have been implicated in either dominant or recessive 

human genetic diseases. Bi-allelic variants in 36 ARS genes have been found in patients with 

multisystem recessive phenotypes, which frequently includes central nervous system 

pathology.68,377 These patients are either homozygous for hypomorphic missense alleles, 

compound heterozygous for two hypomorphic alleles, or compound heterozygous for one 

hypomorph and one null; complete loss of ARS function is not compatible with life.68 Based on 

the patient genotypes and functional studies of these variants, a loss-of-function mechanism is 

responsible for these recessive disorders.  

 

Mono-allelic variants in 5 ARS genes have been confidently implicated in dominant phenotypes, 

and all cause similar dominant axonal peripheral neuropathies. Here, these variants comprise 

missense mutations or small in-frame deletions. While these variants impair ARS function in 

vitro or in vivo,68 haploinsufficiency for these genes does not appear to cause peripheral 

neuropathy (as discussed in Section 1.3.4). A pathogenic mechanism encompassing both loss of 

enzymatic function and dominant toxicity is currently under investigation (Chapter 4).  

 

For recessive ARS-mediated disorders, there is broad clinical and allelic heterogeneity that 

remains to be fully defined. For dominant ARS-mediated disease, the full spectrum of ARS loci 

and variants that can cause dominant peripheral neuropathy is not known. The studies presented 

in this Chapter contribute to resolving these questions by evaluating previously uncharacterized 
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alleles in five ARS genes for a role in recessive or dominant disease based on genetic and 

functional evidence. 

 

One of the strongest forms of evidence for the pathogenicity of a variant is co-segregation with 

disease in a large pedigree, with known genotypes of affected and unaffected individuals.378 The 

first pathogenic variants in aminoacyl-tRNA synthetases were identified through this approach, 

using co-segregation of disease with chromosomal markers (linkage analysis) in large pedigrees, 

followed by targeted gene sequencing to identify the precise genetic lesion.106,160,275,379 However, 

as next-generation sequencing has become a more accessible diagnostic tool, more aminoacyl-

tRNA synthetase variants have been found in small families or as de novo events. The number of 

ARS genes known to cause disease has also grown, from just 7 in 2010,75,79,106,160,195,241,275 to all 

37 members of the gene family in 2021.144,221,222,377 One major challenge facing the ARS 

research and clinical community is the interpretation of novel patient variants as benign or 

pathogenic, particularly in the absence of sufficient genetic data.  

 

There are multiple forms of genetic evidence that can provide robust evidence for pathogenicity.  

If a variant co-segregates with disease in a small pedigree comprising only a few genotyped 

individuals, it is possible that this co-segregation is due to chance. However, if the variant co-

segregates with disease in a large, multi-generational pedigree with many genotyped individuals, 

it becomes highly unlikely that such segregation is due to chance,378 and provides compelling 

evidence that the variant is responsible for the phenotype. For example, the variant R329H 

AARS1 was initially found in a large French family with 23 affected individuals, 17 of whom 

were genotyped (6 unaffected individuals were also genotyped).106 This data provides strong 

genetic evidence that R329H is a pathogenic allele. 

 

Another form of genetic evidence for pathogenicity is variant enrichment in affected populations, 

compared to unaffected control populations. Overall, ARS-mediated disease is too rare to have 

identified many affected individuals with the same variant. Again, R329H AARS1 is an 

illustrative example. Since it was initially reported by Latour et al. in 2010, it has been identified 

in an additional 9 families on at least 3 independent haplotypes, bringing the total published 

number of individuals with R329H AARS1-mediated CMT to at least 46 (this conservative  
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Table 2.1. R329H AARS1 is a recurrent pathogenic allele. 
 

Family or Cohort Study Number of affected, 
genotyped individuals 

Ethnicity/Geographic 
Location Reference 

Family 17 French Latour et al. 2010 
Family 3 French Latour et al. 2010 
Family 8 Australian McLaughlin et al. 2012 
Family 3 UK Bansagi et al. 2015 
Family 1 UK Bansagi et al. 2015 
Family 2 UK Bansagi et al. 2015 
Family 2 UK Bansagi et al. 2015 
Family 2 Ireland Bansagi et al. 2015 

Cohort Study 1 Mediterranean Bacquet et al. 2018 
Cohort Study 1 Mediterranean Bacquet et al. 2018 

Family 3 Canary Islands Lousa et al. 2019 
Family 2 Korean Lee et al. 2020 
Family 3 United States This study 
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estimate considers that two individuals identified in a French cohort study may have been 

previously identified by Latour et al.) (Table 2.1). It is also necessary to consider the frequency 

of R329H AARS1 in unaffected populations.  

 

One accessible tool for this work is gnomAD, a database of variants that have been identified in 

large-scale sequencing projects, along with the variant’s allelic frequency. This data excludes 

individuals with severe pediatric disease and their first-degree relatives, providing a glimpse of 

allelic variation in all other individuals.334 However, it does not exclude individuals  

with adult-onset diseases such as ARS-mediated peripheral neuropathy, making it an imperfect 

control population for these analyses. Despite these limitations, the fact that R329H is not 

present in gnomAD indicates that it is an extremely rare allele. This suggests that its 

identification in 11 families with Charcot-Marie-Tooth disease is unlikely to be due to chance. 

 

A final piece of genetic information that can be used to build an argument for or against 

pathogenicity is conservation analysis. Aminoacyl-tRNA synthetases are found in all unicellular 

and multi-cellular organisms. If an amino acid is invariant across multiple different biologically 

diverse organisms, it is presumed to be important to enzyme function; any amino acid changes 

that are deleterious would have undergone purifying selection. As an example, the R329 residue 

in AARS1 is conserved between humans and bacteria,107 suggesting that this arginine is important 

for enzyme function, and changing it to a different amino acid may be deleterious.   

 

Investigating the conservation and population frequency of an ARS variant are important initial 

steps in assessing the evidence for its pathogenicity. However, in the absence of substantial 

genetic evidence (co-segregation in families and/or recurrence in multiple affected individuals), 

it is still difficult to determine its contribution to disease. Here, it can be useful to assess the 

impact of the variant on gene function, either through in vitro aminoacylation assays or in vivo 

models. If a variant has a similar effect as a high-confidence, known pathogenic variant, this 

lends support to an argument for pathogenicity.  

 

One way to determine if an ARS variant impacts enzyme function is to express recombinant 

human ARS in bacteria, purify it, and perform an in vitro aminoacylation assay. Here, wild-type 
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or mutant ARS enzyme is incubated with its substrates: ATP, tRNA and (radiolabeled) amino 

acid.297 The first step of the reaction—in which the ARS enzyme binds ATP and the amino acid, 

and releases pyrophosphate—can be measured by addition of a colorimetric reagent that 

recognizing free pyrophosphate.298 To investigate the complete aminoacylation reaction, the 

amount of charged tRNA can be measured; at various time points within the first 5 minutes of 

the reaction, aliquots of the mixture are spotted on filter paper soaked with trichloroacetic acid 

(TCA).297 After the tRNA precipitates are washed and dried, the amount of radiolabeled amino 

acid that been ligated to the tRNA is measured with a scintillation counter.297 These assays 

should be performed according to Michaelis-Menten conditions, and data should be fit to the 

Michaelis-Menten equation, in order to accurately detect defects in aminoacylation.297  

 

Aminoacylation assays for high-confidence pathogenic ARS alleles demonstrate that these 

variants reduce enzymatic function. For example, R329H AARS1 shows 1/50th of the enzymatic 

activity of wild-type AARS1.107 Other high-confidence variants in GARS1 and YARS1, all of 

which were identified through linkage analysis,160,296,380,275,379,381 show similar defects. L129P 

and G240R GARS1 both significantly reduce enzymatic activity,300,371 as does a high-confidence 

YARS1 variant, G41R.275,382 In the case of another high-confidence YARS1 variant, E196K, there 

is conflicting evidence between reduced activity in a pyrophosphate release assay275 and no 

effect on enzyme activity in a steady state aminoacylation assay.382 E196K does impair gene 

function in yeast complementation assays275,383; these discrepancies highlight the importance of 

using multiple functional assays to build a consensus on the variant’s effect. 

 

Yeast complementation assays test the ability of an ARS variant to support yeast growth in the 

absence of the endogenous yeast ARS gene. Yeast viability is maintained by expressing the wild-

type yeast gene from a maintenance vector bearing a URA3 auxotrophic marker. Then, the 

pathogenic ARS variant is transformed into the strain (either modeled in the yeast gene or the 

human open reading frame). Yeast are plated on media containing 5-fluoroorotic acid (5FOA), 

which selects for spontaneous loss of the maintenance vector,299 and yeast growth is supported 

solely by the function of the wild-type or mutant ARS under investigation. An ARS variant that 

reduces yeast growth compared to the wild-type allele is defined as a loss-of-function allele. This 

assay has been validated with high-confidence pathogenic dominant alleles. For example, R329H 
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AARS1 causes a loss-of-function in yeast complementation assays, either when modeled in the 

yeast ortholog ALA1107 or human AARS1 (Section 4.3.1). The pathogenic YARS1 alleles G41R 

and E196K also reduce yeast growth in complementation assays when modeled in either the 

yeast ortholog TYS1275 or human YARS1,383 as does the pathogenic GARS1 allele L129P in the 

yeast ortholog GRS1301, and the pathogenic GARS1 allele G240R in the human gene (Figure 1.1). 

 

In vitro aminoacylation assays and yeast complementation assays can also be employed to 

investigate recessive ARS variants. Here, the KARS1 variant R505H is a useful illustration. This 

variant has been identified in six individuals with leukoencephalopathy and hearing loss, either 

in the homozygous state191 or in trans to other KARS1 missense alleles (P533S72,187 or A526V190. 

Although it has not been identified in any large pedigrees, this degree of recurrence in a small 

patient population with a consistent phenotype provides strong evidence of pathogenicity. 

R505H KARS1 is found in gnomAD at an allele count of 1 in 251,414,334 indicating that it is a 

rare allele. Conservation analysis shows that it is invariant between humans, fruit flies, and 

yeast.72 Functional assessment using in vitro aminoacylation assays demonstrate that it has 1/20th 

the activity of wild-type KARS1, and when modeled in the yeast ortholog KRS1, it causes a mild 

reduction of yeast growth72. Both in vitro and in vivo evidence is consistent with R505H KARS1 

partially reducing KARS1 function as a hypomorph. Because R505H KARS1 has been found in a 

homozygous individual with leukoencephalopathy,191 it is unsurprising that it retains partial 

function, since complete loss of function would be incompatible with life. Consistent with this, it 

has been identified in trans with P533S in four individuals,72,187 a variant with 1/200th of wild-

type activity in aminoacylation assays.72 It is likely that the partial enzymatic function of R505H 

KARS1 significantly contributes to the viability of these patients.  

 

There are limitations to in vitro aminoacylation assays and yeast complementation assays. 

Although they provide clues about a variant’s effect on gene or enzyme function, neither assay is 

a model of the human tissue affected in ARS-related diseases, and neither can provide evidence 

of the variant’s impact in that biological context. This is especially true for hypomorphic alleles, 

where the deleterious effects of the variant may be modulated by the cellular environment, such 

as amino acid availability, tRNA levels, and protein translation demands.  
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A major limitation of all experimental approaches that detect a loss-of-function effect is that, 

while impaired enzyme function explains the recessive disease mechanism, it is only one 

component of the dominant mechanism. In addition to reducing enzyme function, dominant ARS 

mutations are also toxic, particularly to long neurons. As discussed in Section 1.3.4 and 1.3.5, 

this may be related to the decreased enzyme function through a dominant-negative mechanism, 

or could be through a neomorphic gain-of-function mechanism (or some combination of the 

two). It is currently unclear what differentiates a toxic loss-of-function mutation from a non-toxic 

loss-of-function mutation. Testing patient variants for a dominant toxic effect in neurons 

currently requires over-expressing ARS variants in flies,384 worms,174 or fish110,350 then assessing 

motor behavior or neuron morphology in these organisms. Alternately, mouse models can be 

generated and evaluated for peripheral neuropathy phenotypes170, which is even more expensive 

and time consuming. An inexpensive and rapid assay in an easily manipulated model, such as 

yeast, is required to effectively test large numbers of patient variants for dominant toxicity. This 

is discussed further in Chapters 4 and 5.  

 

All data from functional assays must be evaluated in the context of the genetic evidence for 

pathogenicity, and ideally in the context of other functional assays. Although each approach has 

limitations, validating these assays with high-confidence pathogenic ARS variants provides a 

framework with which to investigate newly identified patient variants of uncertain significance. 

In this Chapter, I will present six studies that describe previously unreported ARS variants 

identified in patients, evaluate their impact on gene function, and assess their contribution to 

disease pathology. These studies span both dominant and recessive diseases, as well as variants 

in both established and candidate ARS disease genes. Such efforts contribute to building a 

catalog of pathogenic ARS variants, which helps define the full genetic and phenotypic spectrum 

of these diseases. They also contribute to defining disease mechanisms and understanding how 

mutations in the translation machinery affect cellular health and tissue function. 

 

Parts of this chapter are adapted from: “A recurrent GARS mutation causes distal hereditary 

motor neuropathy” published in Journal of the Peripheral Nervous System (Volume 24, Issue 4, 

pages 320-323, October 19 2019, License Number 5114850026750); “Substrate interaction 

defects in histidyl-tRNA synthetase linked to dominant axonal peripheral neuropathy,” published 
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in Human Mutation (Volume 39, Issue 3, pages 415-432, December 26 2017, License Number 

5114850191607); and “MARS variant associated with both recessive interstitial lung and liver 

disease and dominant Charcot-Marie-Tooth disease,” published in European Journal of Medical 

Genetics (Volume 61, Issue 10, pages 616-620, October 2018). For the latter, I retain the right to 

include this Elsevier article in a thesis or dissertation. Permission was requested for reproduction 

of data through the Copyright Clearance Center (see license numbers above). Additionally, the 

Contracts, Rights, and Permissions Coordinator from IOS press granted use of materials from 

 “A novel mutation in MARS in a Patient with Charcot-Marie-Tooth Disease, Axonal, Type 2U 

with Congenital Onset,” published in the Journal of Neuromuscular Diseases (Volume 6, Issue 

3, pages 333-339, July 22 2019). The author performed all the studies in this chapter with the 

following exceptions: the clinical evaluations, phenotypic classifications, and diagnostic 

sequencing was performed by clinical collaborators; Jamie Abbott performed the aminoacylation 

assays for HARS1 variants (Table 2.2). Christina del Greco assisted with cloning R131H, V372I, 

R619C, Q639P, and R663Q TARS1, and performed the yeast complementation assays for these 

variants (Figure 2.6).  

 

2.2 Materials and methods 

 

2.2.1 Identification of patient variants 

ARS variants were identified in patients using a CMT gene panel (G327R GARS1 Patient 1, 

Y330C HARS1) or whole-exome sequencing (G327R GARS1 Patient 2, V155G HARS1, S356N 

HARS1, A397T MARS1, R619C MARS1, Y307C MARS1, ∆M236 NARS1, S461F NARS1, 

C342Y NARS1, R663Q TARS1, R619C TARS1, and Q639P TARS1). The TARS1 variants R131H 

and V327I were identified by a combination of homozygosity mapping and whole-exome 

sequencing. For the R619C/Y307C MARS1 patient, compound heterozygous variants in TG and 

VPS13C were also identified. The ∆M236 NARS1 patient was also heterozygous for a variant in 

SQSTM1. No other additional variants were reported.  

 

2.2.2 ClustalW alignments 
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Multiple-species alignments were generated using Clustal Omega software.385 Protein sequences 

were obtained from the NCBI Protein Database. For glycyl-tRNA synthetase, the accession 

numbers were: BAA06338.1 (H. sapiens), AAH21747.1 (M. musculus), CCD72866.1 (C. 

elegans), KZV13199.1 (S. cerevisiae), AUP44736.1 (E. coli). For histidyl-tRNA synthetase, the 

accession numbers were: NP_002100.2 (H. sapiens), NP_032240.3 (M. musculus), AAB38116.1 

(C. elegans), QHB12288.1 (S. cerevisiae), B1XAY9.1 (E. coli). For methionyl-tRNA synthetase, 

the accession numbers were: NP_004981.2 (H. sapiens), NP_001165053.1 (M. musculus), 

CAA97803.1 (C. elegans), CAA97293.1 (S. cerevisiae), A7ZNT3.1 (E. coli). For asparaginyl-

tRNA synthetase, the accession numbers were: NP_004530.1 (H. sapiens), NP_001136422.2 (M. 

musculus), CAA95808.1 (C. elegans), GHM92552.1 (S. cerevisiae), BAL38068.1 (E. coli). For 

threonyl-tRNA synthetase, the accession numbers were: AAH10578.2 (H. sapiens), 

AAH55371.1 (M. musculus), CAA93762.1 (C. elegans), P04801.2 (S. cerevisiae), P0A8M3.1 

(E. coli). 

 

2.2.3 Generation of ARS expression constructs 

For all yeast complementation assays, the human ARS proteins were expressed from a ADH1 

promoter on the gateway-compatible pYY1 construct,159,386 which harbors a 2-micron origin of 

replication resulting in a high plasmid copy number per cell and bears a LEU2 auxotrophic 

marker. The open reading frames (ORFs) of wild-type human MARS1, HARS1, NARS1, and 

TARS1 were amplified from HeLA or fibroblast cDNA with using primers containing the attB1 

and attB2 recombination sequences (primer sequences in Appendix A). The GARS1 ORF was 

previously amplified with attB-containing primers from the original pYY1 vector.159,386 All PCR-

generated ORFs were purified with Qiagen Spin Miniprep columns and recombined into 

pDONR221 using the Gateway cloning technology (Invitrogen) BP reaction. The reaction was 

transformed into Top10 cells (Invitrogen). Clones were isolated and grown in media containing 

kanamycin to select for the presence of the kanamycin resistance cassette on pDONR221. 

Plasmid DNA was purified from these clones using the Qiagen Spin Miniprep kit, then digested 

with BsrGI to identify clones with successful insertion. These clones were sequence-verified to 

ensure there were no PCR amplification errors. Then, the QuickChange II XL Site-Directed 

Mutagenesis Kit (Agilent) was used to introduce patient variants into the appropriate wild-type 
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ORF (primer sequences in Appendix A). The reaction was transformed into Top10 cells 

(Invitrogen) and grown in kanamycin-containing LB to select for the presence of the kanamycin-

resistance gene on the pDONR221 plasmid. The plasmids were extracted and purified for Sanger 

sequencing using the Qiagen Miniprep kit. Sequencing ensured that the desired mutation was 

generated and that there were no additional off-target mutations. Then, the Gateway LR reaction 

was performed to recombine wild-type and mutant ORFs into the pYY1 vector. The reaction was 

transformed into Top10 cells, which were grown in ampicillin-containing LB to select for the 

presence of the ampicillin-resistance gene on the pYY1 vector. The plasmids were then 

extracted, purified, and digested with BsrGI (New England Biolabs) to identify recombinants.  

 

2.2.4 Yeast complementation assays 

Yeast complementation assays were performed using strains with the yeast ARS ortholog deleted 

(ΔHTS1,175 ∆MES1,216 ∆GRS1,387 ∆DED81 (Horizon Discovery, Clone ID 20982), and ∆THS1 

(Horizon Discovery, Clone ID 21471). These strains maintain viability by carrying a pRS316 

vector that expresses the yeast ARS gene from its endogenous promoter, contains a yeast 

centromere sequence that results in a low copy number per cell, and bears the auxotrophic 

marker URA3. The pYY1 vector (expressing the human ARS ORF or an empty control) was 

introduced into the appropriate strain using lithium acetate yeast transformation, performed at 

30°C with 200ng of plasmid. Transformed yeast were grown on solid media lacking uracil and 

leucine to select for cells with both the pRS316 maintenance vector and the pYY1 experimental 

vector. After 3 days of growth at 30°C, individual colonies were picked into 2mL liquid media 

lacking uracil and leucine. They were grown for 2 days at 30°C, shaking at 275 rpm until 

saturated. 1 mL of saturated culture was then centrifuged at 15,000 rpm for 1 minute and re-

suspended in 50µl water. Serial 1:10 dilutions were made to 1:100 or 1:1,000, and then 10µl of 

each diluted mix (including undiluted) was spotted on plates containing 0.1% 5-fluoroorotic acid 

(5-FOA) (Teknova). Yeast growth was visually assessed after 3 to 5 days. In each experiment, at 

least two independently generated clones were tested for each mutation. 

 

2.2.5 HARS1 aminoacylation assays 
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Aminoacylation assays were performed using a modified version of the previously described 

Uhlenbeck-Wolfson assay.388,389 Multiple turnover experiments were conducted in buffer 

comprised of 50 mM HEPES pH 7.5, 150 KCl, 10 mM MgCl2, 5 mM β-ME, 2 U/ml PPase 

and 32P-labeled tRNAHis. A fixed concentration of enzyme (5 nM for WT HARS1 and 20 nM for 

CMT variants) was used with saturating concentrations of two of the three substrates. The 

saturating concentrations of tRNAHis, ATP, and histidine were 5 µM, 10 mM, and 5 mM, 

respectively. The variable concentrations of these substrates were 100 nM to 15 µM, 25 µM to 5 

mM, and 1 µM to 5 mM, for tRNAHis, ATP and histidine, respectively. Experiments with mutant 

HARS1 typically required a 2-3 fold higher final concentration of the variable substrate than the 

wild-type HARS1. To calculate the initial rates, the reactions were typically sampled during the 

first minute. After the reaction was terminated with quenching buffer (400 mM NaOAc [pH 4.5] 

and 0.1% SDS), the tRNA was digested to single nucleotides with 0.1ug of P1 nuclease (Sigma) 

for 40-60 minutes at room temperature. Radiolabeled aminoacylated A76 was separated from 

non-aminoacylated A76 by thin-layer chromatogragraphy on PEI-cellulose plates (Scientific 

Adsorbents) with a mobile phase of 0.1M ammonium acetate and 5% acetic acid. Radioisotopic 

imaging on a phosphor screen (Bio-Rad Molecular Imager FX) was used to detect radioactive 

products. The concentration of aminoacylated tRNAHis was quantified by comparing the ratio of 

the relative amount of aminoacylated A76 to total radiolabeled product.  

 

2.3 Results 

 

2.3.1 A recurrent GARS1 mutation causes distal hereditary motor neuropathy. 

Two patients with a similar peripheral neuropathy were examined by neurologists at the 

University of Iowa or the University of Pennsylvania, respectively. Both patients were young 

women with an adolescent onset of distal weakness in the legs and arms. Clinical 

electrophysiology showed decreased motor axon (but not sensory axon) conduction velocities, 

indicating a distal motor neuropathy. Whole-exome or gene panel sequencing was performed, 

which revealed a c.979G>A variant in both (presumably) unrelated patients that changes glycine 

at amino acid number 327 to arginine (G327R). In both patients, the variant likely arose de novo; 

the unaffected mother and father of Patient 1 did not carry the mutation, nor did the unaffected  
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Figure 2.1. Identification and characterization of G327R GARS1. 
 
(A) Pedigrees of patients 1 and 2. The individuals in brackets were adopted into the family. (B) 
Conservation analysis of the affected residue. The position of G327 GARS1 is shown with 
flanking amino acid acids from evolutionarily diverse species. G327 is highlighted in pink. (C) 
Representative images of haploid yeast lacking the endogenous GRS1 transformed with an empty 
construct (“Empty pyy1”), wild-type human ∆MTS∆WHEP GARS1, or an expression construct 
with G327R ∆MTS∆WHEP GARS1. Four independently generated G327R GARS1 expression 
clones were tested (across the top, 1-4) and two independent colonies were evaluated per 
transformation (Set 1 and Set 2). Each colony was plated undiluted or diluted on media 
containing 5-FOA. Yeast were grown at 30°C.  
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Table 2.2. gnomAD allele counts of characterized ARS variants. 
 

Gene Variant Allele Count Allele Number Allele Frequency Number of 
homozygotes 

GARS1 G327R Not present N/A N/A N/A 

HARS1 
V155G Not present N/A N/A N/A 
Y330C Not present N/A N/A N/A 
S356N 6 282,884 2.12E-05 0 

MARS1 
A397T Not present N/A N/A N/A 
Y307C 2 251,470 7.95E-06 0 
R618C 3 282,892 1.06E-05 0 

NARS1 
∆M236 Not present N/A N/A N/A 
C342Y Not present N/A N/A N/A 
S461F Not present N/A N/A N/A 

TARS1 

R663Q Not present N/A N/A N/A 
R131H 31 281,744 1.10E-04 0 
V372I 49 251,318 1.95E-04 0 
R619C Not present N/A N/A N/A 
Q639P Not present N/A N/A N/A 

 
N/A, or Not Applicable, indicates that the allele could not be identified in gnomAD. 
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mother and sister of Patient 2 (the father was unavailable, but was not known to have a 

neuropathy) (Figure 2.1A). G327R is absent in gnomAD (Table 2.2) and affects a glycine 

residue conserved between humans, mice, worms, and yeast (Figure 2.1B). Therefore, it was  

prioritized for functional evaluation using a yeast complementation assay. This assay 

demonstrated that wild-type human GARS1 can support formation of yeast colonies in the 

absence of the endogenous yeast ortholog GRS1 (Figure 2.1C). However, G327R GARS did not 

rescue the deletion of GRS1, indicated by an absence of yeast growth; these data strongly suggest 

that G327R impairs gene function (Figure 2.1C).  This is consistent with the loss-of-function 

pattern observed in pathogenic GARS1 variants from patients with peripheral 

neuropathies,170,171,301,371 and strengthens the argument that G327R GARS is a pathogenic allele. 

In sum, G327R GARS1 adds to the increasing catalog of loss-of-function missense GARS1 

mutations linked to dominant peripheral neuropathies.  

 

2.3.2 Newly identified HARS1 variants in patients with dominant peripheral neuropathy  

Mutations in HARS1 have been found to segregate with dominant peripheral neuropathy in 

several multi-generational pedigrees174; however, only a small number of pathogenic HARS1 

mutations have been described.174,175. Here, we discuss three newly identified HARS1 variants in 

three families with a motor-predominant axonal neuropathy. In the first family, the variant 

V155G was present in five individuals with motor neuropathy, and absent in one unaffected 

individual (Figure 2.2A). In the second family, the variant Y330C was present in two individuals 

with motor-predominant peripheral neuropathy, but absent in two unaffected individuals (Figure 

2.2A). The third family comprised an affected daughter with a mild to moderate motor-

predominant peripheral neuropathy, who was heterozygous for S356N HARS1. Notably, her 

unaffected mother was also heterozygous for S356N, indicating that this variant either does not 

cause a fully penetrant phenotype or is not pathogenic (Figure 2.2A). Neither V155G nor Y330C 

are present in gnomAD (Table 2.2). S356N is present at a low frequency, with an allele count of 

6/282,884. All three affected amino acids are evolutionarily conserved from human to mouse, 

worm, and yeast; Y330 is also conserved in bacteria (Figure 2.2B) This suggests that these 

variants may be deleterious to enzymatic function.  
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Figure 2.2. Identification and characterization of V155G, Y330C, and S356N HARS1. 
 
(A) Pedigrees of three identified families with HARS1 variants. A diagonal line indicates the 
individual is deceased. Genotypes are shown for individuals with available DNA samples. (B) 
Conservation analysis of V155, Y330, and S356N. Each residue is shown in pink, with flanking 
amino acids from evolutionarily diverse species. (C) Yeast complementation assay for V155G, 
Y330C, and S356N. Representative images from haploid yeast lacking HTS1, transformed with 
either an empty vector (“Empty pyy1”), wild-type HARS1, V155G HARS1, Y330C HARS1, or 
S356N HARS1. Yeast were spotted in 1:10 dilutions on media containing 5-FOA, and were 
grown at 30°C. 
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To test this possibility, in vitro aminoacylation assays were performed. Here, to carefully assess 

the effect of each individual mutant on substrate recognition, assays were performed with a fixed 

concentration of enzyme and varying concentrations of substrate. The initial velocity of the 

reaction and substrate concentration were fit to the Michaelis Menten equation, which provided 

estimates of Km (the concentration of the substrate which permits the enzyme to reach half of its 

maximum velocity, or Vmax) and kcat (the turnover number). From this, kcat/Km was calculated, a 

value that represents the overall efficiency of the enzyme in both binding the substrate and 

performing the reaction. In the first reaction, the tRNA concentration was varied, while ATP and 

histidine concentrations were held at saturating concentration. None of the three HARS1 mutants 

showed increased Km values for tRNA (Table 2.3). In the second reaction, histidine 

concentration was varied. Here, Y330C and V155G exhibited a 25-fold and 85-fold increase in 

Km value, respectively, indicating these mutations required significantly increased histidine 

concentration to reach half of Vmax, and suggesting a decreased affinity for histidine relative to 

the catalytic turnover (Table 2.3). In the third reaction, ATP concentration was varied. Here, the 

Km for Y330C increased 40-fold, and maximum velocities could not be reached for S356N and 

V155G even at saturating concentrations (Table 2.3). These data suggest that a major contributor 

to the decrease in the catalytic activity for these enzymes comes from a significant increase in 

Km for ATP. In all three experiments, each HARS1 mutation decreased substrate turnover (kcat), 

as well as the overall catalytic efficiency (kcat/Km) (Table 2.3). 

 

To determine how these in vitro deficiencies impact cellular function in vivo, the three mutations 

were tested for the ability to rescue yeast growth when the endogenous yeast ortholog, HTS1, 

was deleted. Wild-type HARS1 was able to support colony formation, indicating that human 

HARS1 can at least partially complement loss of HTS1 (Figure 2.2C). In contrast, V155G HARS1 

lead to significantly reduced yeast growth, and neither Y330C nor S356N supported any growth 

(Figure 2.2C). These data are consistent with all three mutations reducing gene function. In this 

assay, Y330C and S356N HARS are functionally null alleles, while V155G is hypomorphic, with 

enough gene function to support limited colony formation. 

 

In sum, the above functional studies indicate that V155G, Y330C, and S356N impair HARS1 

function. For V155G and Y330C, the combination of the functional data and the segregation  
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Table 2.3. Steady state kinetics of tRNAHis aminoacylation by wild-type and neuropathy-
associated mutations in HARS1. 

 
Values reported are the mean ± standard error of three independent experiments. 
  

 

Variable Substrate 

tRNA histidine ATP 

Km (µM) kcat  (s-

1) 

kcat/Km 
(µM-1 s-1) Km (µM) kcat  (s-

1) 
kcat/Km 

(µM-1 s-1) Km (µM) kcat  (s-1) kcat/Km 
(µM-1 s-1) 

WT 
HARS 

0.782 ± 
0.101 

5.4 ± 
0.2 6.9 8.0 ± 4.0 4.1 ± 

0.4 0.5 ± 0.4 44.2 ± 5.5 5.8 ± 0.2 0.13 

S356N 
HARS 

0.199 ± 
0.059 

0.30 ± 
0.02 1.5 10.8 ± 

9.1 
0.39 ± 
0.04 0.04 ND ND 1.5x10-4 ± 

1.2x10-5 

Y330C 
HARS 

0.330 
±0.072 

0.56 ± 
0.03 1.7 202.9 ± 

83.23 
0.74 ± 
0.10 0.004 1,763 ± 

544 0.48 0.000272 

V155G 
HARS 0.979±0.159 3.05 ± 

0.14 3.1 687.2 ± 
200.0 

2.08 ± 
0.16 0.003 ND ND 3.8x10-4 ± 

2.7x10-5 
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with disease in the affected families provides strong evidence that these variants are pathogenic. 

Although S356N clearly affects HARS1 function, the minimal genetic data (i.e., the incomplete  

penetrance within a small pedigree) makes it difficult to know whether S356N is pathogenic. 

Importantly, in the absence of convincing genetic evidence, a loss-of-function effect is not 

sufficient to determine pathogenicity, because loss of function is likely necessary but not 

sufficient for an ARS mutation to cause dominant peripheral neuropathy.68 To further inform the 

interpretation of this variant, further investigation is required in an informative model system that 

can reveal dominant, neurotoxic properties of ARS mutations. 

 

2.3.3 A MARS1 variant of uncertain significance in Charcot-Marie-Tooth disease 

Here, we evaluate a MARS1 variant found in an 11-year-old girl who presented with a severe 

motor peripheral neuropathy that began in her first year of life. Exome sequencing was 

performed, and a heterozygous MARS1 variant, A397T, was identified. The patient’s unaffected 

mother did not carry the mutation, and the father was not available for testing (Figure 2.3A). 

MARS1 variants have been previously described in patients with adolescent or adult-onset 

dominant peripheral neuropathy.216–218 The genetic evidence is weak for all of these cases, 

although one variant has been functionally evaluated in a yeast complementation assay and 

reduces gene function when tested in the yeast ortholog MES1216. Based on the motor neuropathy 

presentation of the A397T/+ proband, the fact that A397 is conserved to yeast (Figure 2.3B), and 

the absence of A397T from gnomAD (Table 2.2), this variant was prioritized for further study. 

To determine if this variant reduced gene function similar to known pathogenic dominant 

variants in other ARS genes, it was assessed for a loss-of-function effect in a yeast 

complementation assay.  

 

Here, we performed a yeast complementation assay with the human MARS1 coding sequence. 

Wild-type human MARS1 supported robust yeast growth in the absence of the yeast gene MES1 

(Figure 2.3C). However, four independent clones of A397T MARS1 only lead to sporadic colony 

formation, suggesting that this mutation impairs gene function (Figure 2.3C).  
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Figure 2.3. Identification and characterization of A397T MARS1. 
 
(A) Pedigree information of an individual heterozygous for A397T MARS1. (B) Conservation 
analysis of A397, shown in pink. Surrounding amino acids from evolutionarily diverse species 
are shown. (C) Representative images from haploid yeast lacking MES1, transformed with either 
an empty vector (“Empty pyy1”), wild-type MARS1, or four independently generated A397T 
MARS1 constructs. Yeast were spotted in 1:10 serial dilutions on media containing 5-FOA, and 
were grown at 30°C. 
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2.3.4 Identification and characterization of MARS1 variants in patients with recessive disease 

Previous studies have shown that bi-allelic MARS1 variants cause a severe recessive disorder 

predominantly characterized by interstitial lung and liver disease; to date, a total of 12 mutations 

have been found across 36 patients.210–212,214,215,390 We identified a case of MARS1-mediated 

recessive disease in a male infant who presented with transfusion-dependent anemia, 

hypothyroidism, cholestasis, developmental delay, and interstitial lung disease. Through whole-

exome sequencing, the patient was found to be compound heterozygous for two MARS1 variants; 

a Y330C variant was inherited from his mother and, interestingly, the same R618C mutation that 

was previously identified in a small pedigree with CMT disease216 was inherited from his father 

(Figure 2.4A). The R618 residue is conserved to E. coli; in contrast, Y330 is conserved in mouse 

and worm, but not in yeast or bacteria (Figure 2.4B). R618C is found in 3/282892 alleles in 

gnomAD, and Y330C is found in 2/251470 alleles (Table 2.2). 

 

To determine the functional consequences of R618C and Y307C MARS1, a yeast 

complementation assay was performed, modeling these variants in the human open-reading 

frame as previously described. Consistent with previous data studying R618C in the yeast gene 

MES1, R618C MARS1 failed to support yeast growth, supporting its loss-of-function designation. 

Y307C MARS1 lead to yeast growth comparable to that of wild-type MARS1, indicating that in 

this assay it does not substantially impair function (Figure 2.4C). Considering that a complete 

absence of MARS1 function should be incompatible with life, it is expected that at least one of 

two MARS1 alleles retain some function. Due to the phenotypic similarities of this patient and 

other MARS1-mediated recessive disease, it is likely that Y307C is a pathogenic allele, and that 

the yeast complementation assay does not have sufficient resolution to detect mildly 

hypomorphic variants.  

 

2.3.5 NARS1 is a candidate gene for dominant peripheral neuropathy 

Here, we present data implicating an additional ARS gene—NARS1—in dominant peripheral 

neuropathy. NARS1 is the sixth dimeric49, cytoplasmic ARS to be mutated in patients with 

dominant peripheral neuropathy. We identify two large families with cases of dominant axonal  
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Figure 2.4. Identification and characterization of R618C and Y307C MARS1. 
 
(A) Pedigree displaying the inheritance pattern of R618C and Y307C MARS1. (B) Conservation 
analysis of MARS1 variants. Y307 and R618 are shown in pink, surrounded by flanking amino 
acid sequences from evolutionarily diverse species. (C) Representative images from haploid 
yeast lacking MES1, transformed with either an empty vector (“Empty pyy1”), wild-type 
MARS1, Y307C MARS1, or R618C MARS1. Yeast were spotted in 1:10 serial dilutions on media 
containing 5-FOA, and were grown at 30°C. 
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neuropathy. In the first family (Family A), the variant S461F NARS1 co-segregates with disease 

in five affected individuals (three unaffected individuals were genotyped and do not carry this 

allele) (Figure 2.5A). In the second family (Family B), the variant C342Y NARS was identified 

in three affected individuals (six unaffected individuals were genotyped and did not carry this 

allele) (Figure 2.5A). Finally, one case of a de novo in-frame deletion (∆M236 NARS1) was 

found in a patient who had sensorimotor neuropathy in addition to cerebellar ataxia, cognitive 

impairment, and abnormal eye movements (Figure 2.5A). None of these three variants are found 

in gnomAD (Table 2.2), indicating that they are rare. All three affect conserved residues: S461 

NARS1 is conserved between humans, mouse, worm, and yeast; C342 NARS1 is conserved 

between humans, mouse, and worms; M236 NARS1 is conserved between humans and mouse 

(Figure 2.5B) 

  

A yeast complementation assay was performed to assess the consequence of these variants on 

gene function. Wild-type human NARS1 supported yeast growth in the absence of the yeast 

ortholog DED81. However, none of the three patient NARS1 variants (S461F, C324Y, or 

∆M236) lead to colony formation, indicating that all three are loss-of-function alleles in this 

assay (Figure 2.5C). These data are consistent with the pattern of loss-of-function mutations 

found in other ARS-mediated dominant neuropathies. Together with the pedigree information for 

S461F and C342Y, these experiments suggest that NARS1 is a candidate gene for dominant 

peripheral neuropathy. However, because NARS1 has not been previously implicated in this 

phenotype, additional models to test for neurotoxic dominant properties are required to more 

confidently link it to disease. In this case, determining if one of the NARS1 variants with stronger 

genetic evidence (S461F or C342Y) can cause peripheral neuropathy in a mouse model would be 

the strongest evidence to implicate NARS1 in dominant disease.  

 

2.3.6 Expanding the phenotypic spectrum of TARS1-mediated recessive disease 

Bi-allelic loss-of-function mutations in threonyl-tRNA synthetase (TARS1) were recently 

identified in two patients with triochothiodystrophy (TTD)253, a rare neuro-ectodermal condition 

marked in part by brittle hair.391 One of these two patients presented with the characteristic TTD 

“tiger-tail” hair banding pattern, along with ichthyosis, follicular keratosis, delayed physical  
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Figure 2.5. Identification and characterization of NARS1 variants in individuals with 
dominant peripheral neuropathy.  
 
(A) Pedigrees of three families with NARS1 variants. Hearsay cases of peripheral neuropathy are 
marked in gray. Clinically evaluated patients are marked with an asterisk. In Family A, the 
Generation III individual marked with gray is oligosymptomatic. (B) Conservation analysis of 
M236, C324, and S461, marked in pink. Flanking residues from evolutionarily diverse species 
are shown. (C) Representative images from haploid yeast lacking the yeast ortholog DED81, 
transformed with an empty vector (“Empty pyy1”), wild-type NARS1, ∆M236 NARS1, C342Y 
NARS1, or S461F NARS1. Yeast were serially diluted on media containing 5-FOA, and were 
grown at 30°C. 
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development, acromandibular dysplasia, and recurrent respiratory tract infections.253 The other 

patient also had hair with the “tiger-tail” banding pattern, was born a collodion baby encased in a 

shiny membrane, and had ichthyosis.253 Functional evidence from yeast complementation assays 

and primary fibroblasts convincingly demonstrated that these mutations significantly impair 

TARS1 function and stability.253  

 

However, these are not the only phenotypes associated with reduced TARS1 function. Here, we 

report three additional patients with bi-allelic TARS1 mutations. These patients all present with 

infantile-onset or childhood-onset severe neurological symptoms, including seizures, 

microcephaly, intellectual disability, spasticity, and ataxia. They also have musculoskeletal and 

craniofacial dysmorphism. Although neurological symptoms are the most prominent aspect of 

the presentations, there are some skin and hair phenotypes reminiscent of TTD: the proband from 

Family 3 has thin and fragile hair, as well as translucent and easily scratched skin. The proband 

from Family 2 is noted to have sparse eyebrows. 

 

Six TARS1 variants were identified in these patients. Proband 1 is a Pakistani individual born to 

consanguineous parents who is homozygous for a complex allele containing two variants, 

R131H and V372I TARS1 (Figure 2.6A). Interestingly, these variants are both present in 

gnomAD at a low frequency in the South Asian population (Table 2.2). Proband 2 is an Egyptian 

individual who is compound heterozygous for R619C TARS1 (inherited from their father) and 

Q639P TARS1 (inherited from their mother) (Figure 2.6A). Neither of these variants are present 

in gnomAD (Table 2.2). Proband 3 is homozygous for R663Q TARS1 (Figure 2.6A), which is 

also not found in gnomAD (Table 2.2). The older sibling of Proband 3 was stillborn at full term 

with multiple abnormalities. Although there is no known consanguinity in the Family 3, they are 

noted to come from a small Italian town. All six TARS1 variants are conserved across diverse 

species; R131H and R619C are conserved between human, mouse, worm, and yeast, and V372 

and R663 are conserved between human, mouse, worms, yeast, and bacteria (Figure 2.6 B). In 

this analysis, Q639 is only conserved between human and mouse (E.coli also show a Q at this 

residue, although the surrounding region does not appear to have high conservation with 

mammalian species) (Figure 2.6B) 
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Figure 2.6. Identification and characterization of recessive TARS1 variants. 
 
(A) Pedigrees of three families with TARS1 variants. (B) Conservation analysis of TARS1 
variants. R131, V372, R619, Q639, and R663 are all marked in pink. Each affected residue is 
shown with surrounding sequences of evolutionarily diverse species. (C) Representative images 
from haploid yeast lacking THS1, transformed with an empty vector (“Empty pyy1”), wild-type 
TARS1, or mutant TARS1 (in the first panel, R131H and V372, tested independently and in cis; in 
the second panel, R619C and Q639P; in the third panel, R663Q). Yeast were spotted on media 
containing 5-FOA in serial 1:10 dilutions, and were grown at 30°C. 
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To assess the functional consequence of these variants, we performed a yeast complementation 

assay in a strain with the endogenous threonyl-tRNA synthetase gene, THS1, deleted. Wild-type 

human TARS1 supported yeast growth in the absence of THS1 (Figure 2.6 C). R131H and V372I 

TARS1 were tested individually and in cis, to determine if one variant or both variants together  

impacted TARS1 function. Interestingly, when tested individually and in cis, R131H and V372I 

TARS1 supported yeast growth comparable to wild-type TARS1 (Figure 2.6 C). A similar result 

was obtained for both R619C and Q639P TARS1, which were identified in trans; neither variant 

significantly reduced yeast growth (Figure 2.6 C). One possibility is that this yeast 

complementation assay does not have the resolution to detect mild to moderate defects in TARS1 

function, and that a more sensitive assay (for example, an in vitro aminoacylation assay) is 

required to determine if they impact enzyme activity. 

 

In contrast, the R663Q TARS1 mutation, which was found in the homozygous state, does not 

support any yeast growth, indicating that it significantly impairs TARS1 function (Figure 2.6 C). 

In light of what is known about the relationship between impaired ARS function and severe 

multisystem disorders, and previous work demonstrating the role of reduced TARS1 function in 

disease253, these data indicates that R663Q TARS1 is likely a pathogenic allele. This case serves 

as a useful reminder that the function of a human ARS in a yeast system may not directly 

translate to the function in an affected patient cell—although this mutation does not support any 

yeast growth, a complete loss of function in a human patient would be incompatible with life. 

Therefore, it is probable that R663Q TARS1 is a pathogenic mutation that significantly impairs, 

but does not ablate, TARS1 function. 

 

2.4 Discussion 

 

Here, we present the identification and functional characterization of 15 previously unreported 

ARS variants across 4 studies of dominant disease and 2 studies of recessive disease. These 

efforts contribute to expanding the known genetic and phenotypic heterogeneity of ARS-

mediated disease and to defining the features of pathogenic ARS variants. 
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Two of these studies examine novel patient variants in two well-characterized ARS disease 

genes, HARS1 and GARS1. In these cases, the patients’ presentations—adolescent to adult-onset 

dominant peripheral neuropathy with mild to moderate severity—is consistent with previously 

described HARS1- or GARS1-mediated disease. Although the G327R GARS1 variant arose de 

novo, its reoccurrence in two individuals with similar phenotypes provides strong genetic 

evidence of pathogenicity. For HARS1, two of the three variants—Y330C and V155G HARS1—

segregate with disease in the patient’s families, although one (S356N HARS1) shows incomplete 

penetrance. Additionally, all four of these novel mutations impair gene function, consistent with 

previous reports of pathogenic GARS1 and HARS1 mutations.170,174,175,371 In total, these data 

support the pathogenicity of G327R GARS1, Y330C HARS1, and V155G HARS1, whereas 

S356N HARS1 requires further investigation. 

 

The MARS1 cases described here provide an example of both recessive and dominant phenotypes 

associated with a single gene. The patient with recessive developmental delay, cholestasis, and 

interstitial lung disease presents with a phenotype previously linked to bi-allelic loss-of-function 

MARS1 mutations. For this individual, although only the R618C MARS1 variant significantly 

impaired MARS1 function in a yeast complementation assay, it is likely that Y307C MARS1 is 

also a pathogenic allele based on the similarity of the phenotype with the known hallmarks of 

MARS1-mediated recessive disease. Of note, this patient inherited the R618C MARS1 allele from 

his father. Although nerve conduction velocity studies were not available, the father was 

reportedly healthy. Explicit questioning did not reveal any family history of a peripheral 

neuropathy that might match the phenotype previously attributed to R618C. It is still possible 

that R618C causes a mild, late-onset phenotype with reduced penetrance; however, the absence 

of a family history of peripheral neuropathy contributes to the uncertainty surrounding R618C 

MARS1 as a pathogenic variant. 

 

A newly identified MARS1 variant, A397T, was identified in an individual with early-onset 

dominant peripheral neuropathy. While our functional data are suggestive of pathogenicity, the 

minimal genetic information available for this variant makes it impossible to confidently 

implicate A397T in the patient’s phenotype. There is also a significant disparity between the 

severe childhood-onset phenotype associated with A397T and the later-onset CMT phenotype 
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seen in patients with R618C, P800T, or R737W MARS1.216–218 It is possible that differential 

MARS1 impairment correlates with differential severity, or that environmental or genetic 

modifiers might lead to variable phenotypes. Alternately, it is possible that none of these MARS1 

variants are pathogenic. To date, no MARS1 mutations have been shown to segregate with CMT 

in large, multigenerational families, nor have any been tested for a dominant neuropathy 

phenotype in a multicellular model system. Whether MARS1 will ultimately be confirmed as a 

bona-fide CMT disease gene will have significant bearing on a proposed mechanism of disease, 

as it would be the first implicated ARS gene to function as a monomer.392 This would rule out a 

dominant-negative effect, which is dependent on homo-dimerization, as a predominant unifying 

mechanism. 

 

By this logic, the argument for a dominant-negative mechanism is strengthened by implicating 

yet another homodimeric, cytoplasmic enzyme in dominant disease. Here, we present data to 

support the argument that variants in NARS1—which encodes a homodimeric49, cytoplasmic 

enzyme—causes dominant peripheral neuropathy. We identify three loss-of-function NARS1 

variants in individuals with dominant sensorimotor neuropathy. Two of these variants segregate 

with this phenotype in multigenerational pedigrees, which, combined with the functional data, 

builds a strong case for pathogenicity (the third variant is de novo). 

 

Two recent studies have implicated NARS1 in recessive disorders that include 

neurodevelopmental defects, seizures, and microcephaly.221,222 Interestingly, the phenotypic 

spectrum of recessive NARS1 disease also includes peripheral neuropathy,222 indicating that the 

peripheral nervous system is sensitive to decreased NARS1 function; this also supports a 

dominant-negative mechanism for dominant NARS1-mediated disease. One of these studies also 

identified eight patients with mono-allelic de novo NARS1 mutations, who presented with global 

developmental delay, intellectual disability, seizures, dysmorphic features, spasticity, ataxia, and 

microcephaly, as well as some cases of demyelinating neuropathy.222 Six of these patients were 

heterozygous for a premature stop codon, R534* NARS1. The effect of this truncation on mRNA 

and protein stability was not thoroughly addressed, but the authors determined that NARS1 

enzymatic activity in patient lymphoblast cells was reduced by approximately 80% compared to 

unaffected control cells.222 Although the authors propose that a dominant-negative mechanism is 
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responsible, it is also possible that these patients have a non-coding NARS1 variant in trans, 

which would not be detected by whole exome sequencing. This would also explain the 

phenotypic similarity between these patients and the other individuals with bi-allelic NARS1 

mutations presented in the same study.   

 

The ataxia and intellectual impairment described in these patients may overlap with the 

phenotypes of the ∆M236/+ NARS1 individual described here, who presents with both peripheral 

neuropathy and other central nervous system disorders. It is possible that the ∆M236/+ NARS1 

individual also has a non-coding variant in trans that was not detected with whole exome 

sequencing. It is also possible that this patient may have multiple genetic disorders, with a 

second unrelated variant accounting for the additional central nervous system phenotypes. 

Notably, this patient is heterozygous for the SQSTM1 variant A33V, which has been associated 

with ALS and FTD.393,394 Interestingly, bi-allelic variants in SQSTM1 cause a neurodegenerative 

disorder including ataxia, cognitive decline, and gaze palsy.395 This description matches the 

patient’s additional phenotypes of cerebellar ataxia, cognitive impairment, and abnormal eye 

movement. Therefore, this patient may have an undetected non-coding variant in SQSTM1 in 

trans with A33V, and their multifaceted phenotype may be a result of both SQSTM1 recessive 

disease and NARS1 dominant disease.  

 

We also have expanded the limited phenotypic spectrum of described TARS1 phenotypes from 

trichothiodystrophy (TTD) to include a broader range of neurological symptoms. Here, the 

functional consequences of some patient variants are unclear—specifically, the complex allele 

containing R131H and V327I TARS1, and the individual variants R619C and Q639P TARS1. 

These require experimental approach with higher resolution than a yeast complementation assay. 

However, the R663Q TARS1 variant clearly impairs TARS1 function, and is likely the cause of 

the neurological and dysmorphic symptoms in a homozygous individual. It is also striking that 

this individual has thin and brittle hair, similar to the phenotype originally described in TTD 

patients. One possibility is that the hair and skin are less susceptible to mutations that mildly 

impair TARS1 (like the R131H and V372I allele or the R619C/Q639P variants in trans) than the 

central nervous system, but that more significant impairment affects both systems. Of note, the 

records of the previously reported TTD patients253 were from early in life, and both individuals 
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were lost to follow-up. It is unknown whether these patients may have also developed more 

pronounced neurological symptoms. Moving forward, it will be critical to identify additional 

patients and develop appropriate model systems to understand the full phenotypic spectrum of 

TARS1-related disease, and to understand how reduced threonine-tRNA charging causes these 

symptoms.   

 

This body of work has added to the known range of dominant and recessive disorders caused by 

mutations in aminoacyl-tRNA synthetase genes. It has also continued to demonstrate the 

relevance of testing patient variants for loss-of-function effects. However, caution is warranted 

when interpreting negative results from a yeast complementation assay given the limited 

resolution for hypomorphic alleles. Caution is also required when interpreting positive results 

from a yeast complementation assay, particularly for dominant peripheral neuropathy variants, as 

all loss-of-function mutations are not necessarily dominantly toxic to neurons. Overall, this work 

contributes to a building a large catalog of pathogenic ARS variants that will be an invaluable 

resource for research and clinical communities. It will also play an essential role in deciphering 

the mechanism of ARS-mediated disorders and understanding how mutations in these genes 

affect protein translation, cellular health, and tissue function. 
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Chapter 3  
Designing Predictive Models to Assess Threonyl-tRNA Synthetase 

(TARS1) for a Role in Recessive and Dominant Phenotypes 
 

3.1 Introduction 

 

To date, five of the thirty-seven ARS genes (AARS1, GARS1, HARS1, YARS1, WARS1) have 

been confidently implicated in dominant peripheral neuropathy.68 It is currently unknown if there 

are any unique characteristics of these five genes that might explain their role in this disease, or, 

if the pathology is due to a defect in tRNA charging, whether mutations in any other ARS gene 

could also cause dominant peripheral neuropathy. The only known shared characteristics of 

AARS1, GARS1, HARS1, YARS1, and WARS1 is that they perform their canonical role of 

tRNA charging in the cytoplasm, and that they all function as homodimeric enzymes (Table 1.1). 

This raises the possibility that mutations in any additional cytoplasmic, homodimeric ARS 

enzymes could also cause disease. 

 

Previous research into the mechanism of pathogenic ARS mutations has yielded two important 

findings: 1) the majority of recessive and dominant ARS mutations cause a reduction of gene 

function in vitro or in yeast complementation assays (as discussed in Section 1.3.4) and 2) 

expression of dominant ARS mutations in multicellular organisms causes neuronal dysfunction, 

including morphological and behavioral defects. Dominant ARS variants have been studied in: 

Drosophila models of GARS1 and YARS1 mutations, where they cause neuromuscular junction 

defects and motor impairment306,384; zebrafish models of HARS1 mutations, where they lead to 

shortened and misguided axons350; and C. elegans models of HARS1 and AARS1 mutations, 

which affect neuron morphology.174,175,307 For example, when HARS1 mutations are expressed in 

GABA-ergic neurons in worms, 40-50% of the worms have aberrant neuron projections from the 
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ventral nerve cord to the dorsal nerve cord, with a branching phenotype that suggests impaired 

axon guidance.174 These worms also display a thinning of the dorsal nerve cord and impaired 

locomotion in a swimming assay. However, these models are limited in their ability to 

recapitulate the human peripheral neuropathy phenotype. In humans, the neuropathy usually 

progresses in a length-dependent manner, with the longest axons of the peripheral nervous 

system affected first. The neurons of flies, fish, and worms are relatively short, making it 

difficult to understand this length-dependent aspect of ARS toxicity. Additionally, these models 

rely on transgenic approaches that over-express ARS proteins. While this may help exacerbate a 

phenotype in shorter neurons, it does not accurately reflect the approximately equal expression of 

wild-type and mutant alleles in humans.  

 

Mouse models can circumvent some of these limitations, and offer the benefit of an established 

mammalian system for studying human genetic diseases. There are currently three mouse models 

of dominant ARS disease, all caused by mutations in glycyl-tRNA synthetase (Gars1). Only one 

of these lines was designed to study a human variant—the ∆ETAQ GARS1 mutation, which 

causes a severe, early-onset SMA-like phenotype in humans.170 Gars∆ETAQ/+ mice develop 

neuromuscular junction (NMJ) defects by 6 weeks of age and motor defects by 12 weeks.170. The 

other two Gars1 mouse models derive from spontaneous or ENU-induced mutagenesis. The 

spontaneous P234KY Gars1 mutation causes severe neuromuscular dysfunction by 3 weeks of 

age and dramatically shortened lifespan.69 The milder C201R Gars1 mutation causes notable 

behavioral defects in grip strength by 1 month of age, although it does not affect lifespan.347 

Based on the early-onset phenotypes in these two lines and their similarity to the ∆ETAQ model, 

it is likely that the human equivalent of P234KY Gars1 and C102R Gars1 would be more akin to 

the severe SMA-like phenotype caused by ∆ETAQ. Although these mice lines are relevant 

resources for studying the early-onset form of GARS1-mediated neuropathy, they are not 

representative of the less severe, adult-onset form of ARS-mediated peripheral neuropathy. 

 

Other genetic causes of dominant axonal peripheral neuropathy have been modeled in mice. 

These include mutations in the microtubule motor protein KIF1B-β,396 the dynein heavy chain 

protein DHC,397 the neurofilament protein NEFL,398,399 and the chaperone protein HSPB1.373 

These mice show impaired neuromuscular function in a series of behavioral assays that include 
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rotarod tests, measurements of grip strength, and gait analysis. Although some of these mice 

display mild symptoms as early as three months of age,397 others do not show overt signs of a 

neuropathy until 6 months,373 9 months,399, or even 12 months of age.396 It is likely that a mouse 

model of an ARS mutation that causes a later-onset, milder human phenotype would more 

closely resemble these models. 

 

Currently, only five ARS genes—AARS1, GARS1, HARS1, WARS1, and YARS1— are 

confidently implicated in dominant peripheral neuropathy. It is currently unclear if there are 

special characteristics of these five genes that can enable them to cause dominant peripheral 

neuropathy, or if variants in any ARS could cause this disorder. The only known shared function 

between them is their canonical role of tRNA charging in the cytoplasm. Therefore, if there is a 

common mechanism of peripheral neuropathy, it is likely to be related to altered axoplasmic 

tRNA charging, which could also be caused by mutations in other cytoplasmic ARS genes. 

Additionally, these five ARS genes all encode homodimeric enzymes (Table 1.1), suggesting 

that homodimerization is important for disease pathology. Therefore, we predict that mutations 

in another homodimeric, cytoplasmic ARS could also cause dominant peripheral neuropathy. 

 

We sought to test this hypothesis in the absence of convincing patient data, relying on the model 

organisms that have been previously used to characterize known dominant pathogenic variants in 

other ARS genes. These pathogenic variants impair gene function in yeast complementation 

assays,174,175,307 and cause morphological and behavioral defects when over-expressed in C. 

elegans neurons.174,175,307 We set out to identify similar variants in an ARS gene that is not yet 

implicated in dominant neuropathy and that encodes a homodimeric, cytoplasmic enzyme—

threonyl-tRNA synthetase (TARS1)56. At the time, TARS1 had not been implicated in dominant 

or recessive disease. This presented an additional opportunity to discover recessive variants in 

TARS1 and define the related phenotypes.  

 

To design TARS1 variants that were likely to be deleterious and dominantly toxic, missense 

mutations were introduced at highly conserved residues. These were tested in yeast 

complementation models to identify those that reduced gene function; loss-of-function variants 

were prioritized for neuronal toxicity studies in C. elegans (Figure 3.1). A loss-of-function  
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Figure 3.1. Flow-chart of the prediction pipeline designed to identify novel ARS candidates 
for dominant and recessive phenotypes.  
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mutation that was dominantly toxic to C. elegans neurons was then modeled in mouse to 

determine if it caused a peripheral neuropathy (Figure 3.1). Additionally, this pipeline was 

effective at identifying a novel hypomorphic TARS1 allele, which lead us to a preliminary 

characterization of recessive TARS1 phenotypes in worm and in mouse (Figure 3.1). Although 

TARS1 has now been linked to a form of recessive trichothiodystrophy,253 this mouse model 

provides an important resource to further explore the phenotypic spectrum of TARS1-related 

disease and to investigate whether reduced threonine-tRNA charging differentially affects 

mammalian tissues. 

 

The studies presented in this Chapter represent a collaborative effort between the author and 

multiple mentors with expertise in C. elegans or mouse biology. The author of this chapter 

performed the yeast complementation assays (Figure 3.2), generation and characterization of 

tars-1 knock in worms (Figure 3.4 through 3.7), and lead efforts to breed, genotype, and 

characterize mouse lines (Figure 3.8 through Figure 3.18). Stephanie Oprescu generated an 

initial panel of THS1 variants that lead to the identification of the three candidate TARS1 variants 

studied in this Chapter. Dr. Asim Beg generated and characterized worms over-expressing the 

tars-1 alleles in GABA-ergic neurons (Figure 3.3). All mouse lines were generated by Dr. 

Thomas Saunders and the University of Michigan Transgenic Core, and guidance and assistance 

in mouse husbandry, genotyping, dissection, and behavioral analysis was provided by Dr. 

Miriam Meisler, Dr. Young Park, Dr. Guy Lenk, and Jennifer Pierluissi. Mouse behavioral 

testing was performed by the author, Dr. Young Park, and Steven Whitesall of the Molecular and 

Integrative Physiology Phenotyping Core. Analysis of mouse footprints was performed by the 

author, Dr. Young Park, and Jennifer Pierluissi. Nerve conduction studies were performed by 

John Hayes of the Michigan Mouse Metabolic Phenotyping Center. Preparation of histology 

sections was performed by Histoserv, Inc., and analysis of pup H&E and PAS histology was 

performed by Dr. Jerrold Ward. Dr. Marina Grachtchouk dissected adult mouse skin for 

histology, and Dr. Andrzej Dlugosz interpreted the pathology and provided guidance on 

analyzing the mouse hair phenotype. Matthew Pun and Molly Kuo assisted with the 

computational analysis of the mouse proteome. 
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3.2 Materials and methods 

 

3.2.1 Generation of TARS1 expression constructs 

The open reading frame (ORF) of TARS1 was amplified from HeLa cell cDNA, using primers 

with the attB1 and attB2 gateway recombination sequences (primer sequences in Appendix A). 

These amplicons were purified with Qiagen Spin Miniprep columns and recombined into 

pDONR221 using Gateway cloning technology (Invitrogen). The recombination reaction was 

then transformed into Top10 cells (Invitrogen) to isolate clonal populations. Individual bacterial 

colonies were selected and grown in media containing kanamycin, which selected for the 

kanamycin resistance cassette on pDONR221. Plasmids were then isolated using the Qiagen 

Miniprep kit and genotyped by digesting with BsrGI (New England Biolabs) to detect the 

presence of the TARS1 insert. Clones with successful insertions were analyzed by Sanger 

sequencing to ensure absence of mutations introduced by amplification errors. To introduce 

variants into the TARS1 ORF, site-directed mutagenesis was performed with the QuickChange II 

XL Site-Directed Mutagenesis Kit (Agilent) (primer sequences in Appendix A). The reaction 

was transformed into Top10 cells and grown in LB containing kanamycin to select for 

pDONR221. Plasmid DNA was isolated and sequenced as above, to ensure successful 

mutagenesis. Then, the Gateway LR reaction was used to recombine the wild-type or mutant 

TARS1 into the vector pYY1. This vector has a 2-micron origin of replication, resulting in a high 

copy number per cell, as well as the ADH1 promoter, resulting in strong constitutive TARS1 

expression. Recombinants were transformed into Top10 cells, which were plated on ampicillin to 

select for the ampicillin resistance cassette on pYY1. Then, plasmids were extracted, purified, 

and digested with BsrGI to identify successfully recombined clones.  

 

3.2.2 Yeast complementation assay 

Yeast complementation assays were performed with the ∆THS1 strain (Horizon Discovery, 

Clone ID 21471). Yeast viability was maintained with a pRS316 vector that expressed wild-type 

THS1 from its endogenous promoter. pRS316 also carries the auxotrophic marker URA3, and has 

a yeast centromere sequence which results in a low copy number per cell. The pYY1 vector 
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(expressing wild-type TARS1, mutant TARS1, or an empty control) was transformed into yeast 

with a standard lithium acetate transformation, performed at 30°C with 200ng of plasmid. Yeast 

were grown on solid media without uracil and leucine, which selected for cells with both pRS316 

and pYY1. Yeast were grown for 3 days at 30°C, then individual colonies were picked into 2mL 

liquid media lacking uracil and leucine. These cultures were grown for 2 days at 30°C, shaking at 

275 rpm. Then, 1mL of saturated culture was centrifuged at 15,000 rpm for 1 minute and cell 

pellets were re-suspended in 50µl water. Yeast were serially diluted to 1:10, 1:100, or 1:1000 

using water. 10µl of each dilution (included undiluted yeast) was spotted on complete media 

containing 5-FOA (Teknova), which selects for cells that have spontaneously lost the pRS315 

vector expressing URA3 and THS1.400 After 3 to 5 days, yeast growth was visually inspected. 

 

3.2.3 Cloning tars-1 expression constructs 

Wild-type tars-1 was amplified from C. elegans cDNA with primers containing the attB1 and 

attB2 Gateway recombination sequence (sequences found in Appendix A), then purified and 

recombined into pDONR221 using the Gateway BP reaction (Invitrogen). Clones were isolated 

as described above, and successful recombination into vectors was confirmed by BsrGI digest 

followed by Sanger sequencing. Site-directed mutagenesis using the QuickChange II XL Site-

Directed Mutagenesis Kit (Agilent) was performed on wild-type tars-1 in pDONR221 

(mutagenesis primer sequences in Appendix A). Plasmids were transformed into Top10 cells, 

purified, and verified via Sanger sequencing. Wild-type or mutant tars-1 was recombined into 

the expression vector using the Gateway LR reaction. This resulting expression vector contains a 

unc-25 promoter and let858 termination sequence, which is active specifically in worm GABA-

ergic neurons.401 The LR reaction was transformed into Top10 cells, purified, and verified by 

BsrGI digest. 

 

3.2.4 Overexpressing tars-1 in GABA-ergic neurons 

To inject worms with tars-1, the following mixes were prepared for each construct: 50ng/µl 

expression plasmid bearing tars-1, 47.5ng/µl 1kb+ ladder (which facilitates uptake of the 

plasmid), and 2.5 ng/µl pCFJ90 plasmid, a co-injection marker that leads to transient expression 
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of mCherry in the pharynx. This mix was delivered to the worm gonadal tract using standard 

microinjection techniques,402 using an inverted microscope (Olympus IX71) and 

micromanipulator (Narishige). The oxIS12 worm strain was used for these experiments. These 

worms harbor a transgene for GFP expression in GABA motor neurons (Punc-47::GFP), which 

allows visualization of commissural processes.403 

 

3.2.5 CRISPR-Cas9 genome editing in worm 

CRISPR-Cas9 genome editing was performed according to previously described methods.404 

Briefly, the gonadal tract of P1 adult worms was injected with an injection mix of: 300mM KCl, 

20mM HEPES, 2.5 ng/µl pCFJ90, 50ng/µl single stranded oligonucleotide homologous donor 

repair template (Integrated DNA Technologies), 5µM single guide (sg) RNA (Synthego), and 

5µM Cas9 protein (Integrated DNA Technologies). Sequences for the repair templates and guide 

RNAs can be found in Appendix A. Injected worms were then placed on single 35mm plates of 

nematode growth media (NGM) and fresh OP50 bacteria as a food source. Approximately 2 days 

after injection, plates were screened for the presence of F1 progeny expressing the pCFJ90 

marker, which expresses mCherry in the pharyngeal muscles. This enriches for worms that were 

exposed to the injection mix, increasing the likelihood of identifying a worm subjected to 

genome editing. 

 

The mCherry-positive F1s were singled to individual plates and allowed to produce their own 

offspring (F2). Then, the F1 worms were placed in lysis buffer (50mM KCl, 10mM Tris-HCl pH 

8.3, 2.5mM MgCl2, 0.45% NP-40, 0.45% Tween-20, 1mg/mL proteinase K) and lysed with 

incubation at -80°C for one hour, incubation at 65°C for one hour, and incubation at 95°C for 

fifteen minutes. To genotype worms, the targeted tars-1 region was amplified by PCR (primer 

sequences in Appendix A) using Q5 PCR mix (New England Biolabs). Amplicons were then 

purified with DNA Clean and Concentrator kits (Zymo Research) and digested with the 

appropriate restriction enzyme (EagI for G541R or SacI for R433H, New England Biolabs). 

Digested PCR products were separated on a 1% agarose gel and analyzed to identify successful 

integration of the restriction site. Then, the undigested PCR product from F1s with successful 

gene editing events was submitted for Sanger sequencing to confirm proper insertion of the 



 84 

restriction site and the desired tars-1 mutation. The offspring of these F1 worms were then 

maintained for subsequent experiments. 

 

3.2.6 Back-crossing and balancing worm strains 

To reduce possible off-target mutations caused by CRISPR-Cas9 editing, G541R/+ tars-1 worms 

were back-crossed to the ancestral N2 strain five times, and R433H/+ tars-1 worms were back-

crossed six times. To analyze G541R in the heterozygous state, wild-type and G541R/+ worms 

were balanced with the mIN1 inversion. This inversion stretches across the tars-1 locus,405 which 

prevents recombination with the G541R allele. This balancer allele also contains a transgene 

driving GFP expression in the pharynx, as well as a recessive dpy mutation that confers the Dpy 

phenotype to any homozygous worms.405 Thus, possible phenotypes and genotypes from the 

offspring of a balanced hermaphrodite worm are: GFP and Dpy (+/+ tars-1), GFP and non-Dpy 

(G541R/+ tars-1), and non-GFP non-Dpy (G541R/G541R).  

 

3.2.7 Analysis of worm axonal morphology 

To visualize changes in GABA-ergic neuron morphology, worms were crossed to a oxIS12 

background, which contains a transgene expressing GFP in GABA-ergic neurons.403 These 

worms were then age-synchronized by placing fertile adult hermaphrodites on a plate to lay 

embryos for 2-5 hours, then removing the adults and letting the offspring grow to adulthood. 

When worms reached L4 or P1, sets of 25-30 worms were moved to fresh plates and 

continuously transferred to fresh plates every other day until P7, when they were analyzed. 

Approximately 5µl of polystyrene beads (Polysciences Incorporated) were placed on a 10% 

agarose pad, and 5-7 worms were deposited in the beads. A coverslip was gently placed on top of 

the worms to encourage immobilization in the beads. Then, worms were imaged on a Nikon 

Eclipse Ti microscope. Any axon breaks, thinning of the dorsal nerve cord, or axonal branching 

were scored as abnormalities. This experiment was performed blinded to genotype.  

 

3.2.8 Analysis of worm development 
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To identify differences in the rate of development, R433H/R433H tars-1 worms and wild-type 

N2 worms were first age-synchronized by placing approximately 25 adult worms on a 60 mm 

plate with NGM and OP50, letting them produce embryos for 4-5 hours, and then removing the 

adults. After 48 hours, worms were transferred to unseeded 35mm NGM plates in batches of 4-5 

worms. These worms were filmed and analyzed using the WormLab System (MBF Biosciences). 

Plates were filmed for 30-second intervals, with the camera set at 4.81um/pixel for 

R433H/R433H worms (Setting 1 on the Wormlab camera apparatus [MBF Bioscience]) and 

8.47um/pixel for N2 worms (Setting 3 on the Wormlab camera apparatus [MBF Bioscience]). 

After filming, worms were moved to new NGM plates seeded with OP50. Filming was repeated 

every 24 hours up to 168 hours, or 7 days, after birth (as R433H/R433H worms increased in size, 

filming was performed with the camera setting at 8.47um/pixel). All videos were analyzed with 

the WormLab software (MBF Bioscience), and the worm length parameter was extracted to 

compare the size of R433H/R433H tars-1 worms and N2 worms over the course of development. 

 

3.2.9 Worm thrash assays 

Thrash assays were performed to detect changes in worm movement. The bottom of a 66mm 

well (Thermo Scientific) was coated with 2.5% agar. 500µl liquid M9 media (22mM H2KO4P, 

42 mM HNa2O4P, 85 mM NaCl, 1mM MgSO4) was added to each well, and 1-5 worms (wild-

type or R433H/R433H tars-1) were placed in the M9. Worms were allowed to acclimate for 30-

60 seconds before they were filmed with the WormLab System (MBF Biosciences) for 1 minute. 

Only worms with at least 1,000 frames of high-quality video were included in subsequent 

analysis. To identify defects in locomotion, the WormLab “Speed” parameter was analyzed; this 

parameter calculates changes in the center point of the worm over time. 

 

3.2.10 Generation of G541R and R433H Tars1 mouse lines 

The G541R mutation was introduced into mouse Tars1 using CRISPR-Cas9 mediated gene 

editing, performed by the University of Michigan Transgenic Animal Core. A single-stranded 

oligonucleotide (ssODN) was designed to introduce the G541R mutation in cis with silent 

mutations that introduced a HhaI cut site and destroyed the PAM site. A mixture of Cas9, 
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sgRNA, and ssODN was injected into 308 hybrid C57BL/6J x SJL/J zygotes, and the 280 

surviving zygotes were transferred to 11 pseudopregnant female mice. These mice produced 59 

offspring, which were all genotyped by PCR-amplification (primer sequences in Appendix A) 

and HhaI digestion to identify successful introduction of the repair template. PCR products were 

submitted for Sanger sequencing to ensure the proper integration of the entire repair template. 

Mice carrying the G541R Tars1 allele were then mated to C57BL/6 mice to establish germline 

transmission. 

 

A similar approach was taken to generate the R433H Tars1 mutation. Synonymous mutations in 

the repair template in cis with R433H ablate a BglI cut site that is present in the wild-type allele, 

and prevent binding of the guide RNA after repair. Cas9, sgRNA, and ssODN was injected into 

hybrid zygotes, which were then implanted into pseudopregnant females. These mice produced 

32 pups, which were genotyped to by PCR-amplification (primer sequences in Appendix A) and 

BglI digestion to identify mice that had incorporated the repair template. Amplicons were then 

submitted for Sanger sequencing to identify mice with proper integration of the repair template. 

These mice were then mated to C57BL/6 mice to establish germline transmission. 

 

3.2.11 Mouse behavioral assays 

To analyze gait, mouse paws were painted with non-toxic paint (the back paws with red paint 

and the front with paws blue paint). Mice were prompted to walk down a strip of paper fitted 

inside a narrow walkway. After the paint had dried, three subsequent footsteps in the middle of 

the strip were analyzed. The length between each step and the width of the mouse stance was 

measured. To test mice for general motor function, an accelerated rotarod test was used. Mice 

were placed on a rotating horizontal bar 10 inches above the desktop, rotating at 4 rpm. The 

speed was gradually increased to 40 rpm over the course of 5 minutes; if the mouse fell, the time 

to fall was recorded. Mice were also tested for their ability to run on a treadmill. Each mouse was 

placed on a treadmill in front of an electric grid. The treadmill began moving at 9 meters/minute, 

then increased by 1 meter/minute each minute. If a mouse fell off, it received a light electrical 

shock. The time until a mouse received three electrical shocks (counted as at least one second 

with multiple paws on the grid) was recorded. The test was stopped after 22 minutes. An 
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alternate test of activity was performed using a running wheel. Mice were placed in cages 

containing food, water, and a running wheel. This wheel recorded the total time the mice spent 

running on the wheel, as well as the total distance they traveled. Mice were housed in these cages 

for 7 days, and the total distance traveled each day was recorded. To test motor strength, a “wire 

hang” test was performed. Mice were placed on a wire grid lying horizontally on the table top. 

The grid was then turned upside down and held approximately 10 inches above an empty cage 

for 3 minutes. The time to fall was recorded with a stopwatch. To test grip strength, a Grip 

Strength Meter (Columbus Instruments) was used. Mice were held and allowed to hold the test 

apparatus with their fore paws. Then, gentle and uniform force was applied at the base of its tail 

until the force applied exceeded the mouse’s ability to maintain its grip. The peak force was then 

recorded as the mouse’s grip strength. Each mouse was tested in 5 subsequent trials. All 

behavioral analyses were performed blinded to genotype.  

 

3.2.12 Mouse nerve conduction measurements  

To assess defects in nerve conduction amplitude and velocity, nerve conduction studies were 

performed according to published protocol.406 In short, mice were anesthetized and core 

temperature was maintained at 34 °C with a heating lamp. Skin temperature was monitored with 

an infrared probe (Fluke, Everret, WA) and kept at 32 °C. Stainless steel needle electrodes 

(Natus, Middleton, WI) were cleaned with 70% alcohol between animals. Sural sensory nerve 

conduction velocity (NCV) was determined by recording at the dorsum of the foot and 

antidromically stimulating with supramaximal stimulation at the ankle. Nerve conduction 

velocity was calculated by dividing the distance by the take-off latency of the sensory nerve 

action potential. Sciatic-tibial motor NCV was determined by recording at the dorsum of the foot 

and orthodromically stimulating with supramaximal stimulation first at the ankle, then at the 

sciatic notch. Latencies were measured in each case from the initial onset of the compound 

muscle action potential. The sciatic-tibial motor NCV was calculated by subtracting the 

measured ankle distance from the measured notch distance. The resultant distance was then 

divided by the difference in the ankle and notch latencies for a final nerve conduction velocity. 

Amplitude was calculated at the dorsum to ankle measurement. Amplitude was calculated from 

the onset of the compound muscle action potential to the peak of the negative deflection.  
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3.2.13 Mouse dissections 

The author assisted Dr. Guy Lenk (Meisler Laboratory, University of Michigan) with dissections 

on two Tars1+/+ mice, two Tars1G541R/+ mice, and two Tars1F538Kfs*4/+ mice. All mice were eleven 

weeks old. Mice were euthanized by cervical dislocation and decapitation. Brains were dissected 

and lysed with 1mL RIPA buffer (Thermo Scientific) and 1x Halt Protease Inhibitor Cocktail 

(Thermo Scientific) in a dounce homogenizer. Then, lysate was centrifuged at 4,500xg for 5 

minutes at 4°C. Supernatants were removed and aliquoted for protein analysis. 

 

3.2.14 Western blots from mouse brain 

Total protein concentration was measured using the Thermo Scientific Pierce BCA Protein 

Assay Kit. 6.25µg, 12.5µg, or 25µg of lysate was analyzed. Samples were prepared with 1X 

Novex Tris-Glycine SDS sample buffer (Invitrogen) and 2-mercaptoethanol (BME), and were 

boiled at 99°C for 5 minutes. Protein samples were separated on precast 4-20% Novex 

Wedgewell Tris-glycine gels (Invitrogen) at 150V for 1 hour and 15 minutes. PVDF membranes 

(Millipore Sigma) were pre-washed in 100% methanol for 1 minute, then soaked in 1X transfer 

buffer (Invitrogen) and 10% methanol between two pieces of filter paper (Thermo Fisher 

Scientific). Samples were transferred from the Tris-Glycine gel to the PVDF membrane using a 

Mini Trans-Blot Electrophoretic Transfer Cell (Biorad) at 0.03A for 18-20 hours. The membrane 

was then blocked in 2% milk in 1X TBST overnight at 4°C. After blocking, the membrane was 

washed with 1X TBST three times, with each wash comprising five minutes of rocking at room 

temperature. Primary antibody was applied in the 2% milk solution: anti-TARS1 (Thermo Fisher 

PA5-30690) was applied at 1:500 dilution, and anti-actin (Sigma A5060) was applied as a 

loading control at 1:5,000 dilution. Primary antibody was incubated overnight at 4°C. 

Membranes were then washed three times with 1X TBST as above, and secondary antibodies 

(anti-mouse HRP [1:2,000; Thermo Fisher Scientific] for TARS1 and anti-rabbit HRP [1:5,000; 

EMD Millipore] for actin) were applied in 2% milk solution. The blots were rocked for 1 hour at 

room temperature before incubating with SuperSignal West Dura substrate (Thermo Scientific) 

according to the manufacturer’s instructions.  
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3.2.15 Preparation of mouse tissues for histology 

To investigate P0 pups for gross histological changes, dead pups were collected and live pups 

were sacrificed by decapitation. Pups were individually fixed in neutral-buffered formalin, 

rocking overnight at room temperature. Then, pups were placed in 70% ethanol and stored at 

4°C. To investigate histological changes in the hair and skin of adult mice, three 

Tars1R433H/F538Kfs*4 mice and their age-matched, sex-matched Tars1R433H/+ littermates were 

sacrificed. The mice were shaved, and skin was collected from the dorsal trunk, ventral trunk, 

ears, tail, and paws, as well as from the area of the head with visible hair loss. Skin samples were 

placed on 0.45µm HA filters (Millipore) wetted in PBS and strips were cut parallel to the 

direction of hair follicle growth. All strips were then fixed overnight in neutral-buffered formalin 

at room temperature, then transferred to 70% ethanol and stored at 4°C. 

 

Samples were shipped to Histoserv, Inc. for embedding and sectioning. Briefly, samples with 

bone were decalcified; then, tissues were dehydrated, and water inside of the tissues was 

replaced with paraffin wax. Tissues were then embedded into wax blocks of paraffin. Blocks 

were then sectioned and affixed to slides (two sagittal sections were taken for the P0 pups). 

Adult skin sections were stained with H&E; P0 pup sections were stained with either H&E or 

PAS, which detects glycoproteins and mucins.407  

 

3.2.16 Analysis of epidermal thickness in P0 pups 

Dorsal skin from H&E-stained sections was used to analyze the epidermal thickness of four 

Tars1R433H/F538Kfs*4 mice and three Tars1R433H/+ littermates. Five 1mm areas were selected, evenly 

spaced out across the back. In each 1 mm area, the thickness of the epidermis was measured by 

drawing lines in Adobe Illustrator that span the width of the epidermal layer, then using the 

200um scale in each image to convert line length to um. Five measurements were made that 

evenly spanned the 1mm area; each measurement was made at the widest local area.   
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3.3 Results 
 

3.3.1 Identification of three loss-of-function TARS1 mutations 

Previous work in the Antonellis group had assessed a panel of variants in the yeast threonyl-

tRNA synthetase gene, THS1. Three of these variants reduced yeast growth and were therefore 

selected for study in the human TARS1 open reading frame. The three variants—N412Y, R433H, 

and G541R—were designed to affect residues conserved between human, mouse, worm, and 

yeast (Figure 3.2A). To assess whether these variants affected the function of human TARS1, a 

complementation assay was performed using a yeast strain with the endogenous THS1 deleted. 

Yeast viability was maintained with a pRS316 vector expressing the yeast THS1, along with 

URA3. The pYY1 vector expressing either wild-type or mutant human TARS1 was transformed 

into yeast, then yeast were plated on 5-FOA, which selects for the loss of the maintenance vector 

expressing URA3 and THS1. Wild-type TARS1 supported yeast growth, demonstrating that 

human TARS1 can function in yeast (Figure 3.2B). Transformation with N412Y TARS1 or 

G541R TARS1 did not lead to formation of colonies, indicating that these two mutations 

significantly impair gene function. Transformation with R433H TARS1 did support yeast growth, 

but lead to significantly fewer colonies than wild-type TARS1, indicating it was a partial loss-of-

function allele (Figure 3.2B). Based on these data, all three variants were prioritized for studies 

in worm to determine whether they were dominantly toxic to C. elegans neurons. Of note, the 

variant nomenclature used in this Chapter will remain consistent with the amino acid numbers of 

the human alleles for ease of comprehension. However, the C. elegans and mouse numbers differ 

from the human by one amino acid residue (Table 3.1). 

 

3.3.2 Over-expression of G541R tars-1 is dominantly toxic to C. elegans neurons 

Pathogenic loss-of-function variants in HARS1 and AARS1 are dominantly toxic to C. elegans 

neurons when over-expressed from a transgene, causing a branching morphology in GABA-ergic 

neurons and a failure to reach from the ventral nerve cord to the dorsal nerve cord.174,175,307 To 

determine if the TARS1 loss-of-function variants could cause a similar phenotype, they were 

over-expressed in C. elegans GABA-ergic neurons. GABA-ergic neurons are a population of 19 
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Figure 3.2. Conservation and yeast complementation analyses for three designed TARS1 
variants. 
 
(A) Conservation analysis of N412, R433, and G541 TARS1. The targeted residues are shown in 
pink, surrounded by flanking sequences from evolutionarily diverse species. (B) Representative 
images of yeast haploid strains with THS1 deleted, transformed with an empty vector (“Empty”), 
wild-type TARS1, N412Y TARS1, R433H TARS1, or G541R TARS1. Yeast were spotted on 
media containing +5FOA in serial dilutions, then grown at 30°C. 
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Table 3.1. Comparison of amino acid numbering between human TARS1, worm tars-1, 
and mouse Tars1. 
 

TARS1 variant 
(H. sapiens) 

tars-1 variant 
(C. elegans) 

Tars1 variant 
(M. musculus) 

R433H R432H R432H 
G541R G540R G540R 
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motor neurons that innervate body wall muscles, are required for locomotion,408 and have 

defined projections across the circumference of the worm that are easily visualized with GFP 

(Figure 3.3B). N412Y, R433H, and G541R were each introduced to the tars-1 coding sequence, 

which was expressed from the GABA-ergic neuron promoter unc-47.403 In this construct, tars-1 

is separated from a mCherry reporter by a SL2 splice site, which allows mCherry signal to mark 

proper transgene expression without introducing a tag onto the tars-1 protein409 (Figure 3.3A). 

Expressing wild-type tars-1 did not lead to any morphological defects, indicating that increased 

levels of wild-type tars-1 is not toxic. Similarly, R433H tars-1 did not cause changes in neuronal 

morphology. However, G541R tars-1 caused failure of commissures to reach the dorsal nerve 

cord, aberrant commissure branching, and thinning of the dorsal nerve cord (Figure 3.3C) This 

phenotype recapitulated the morphological defects previously seen with hars-1 and aars-2 

mutants.174,175,307 Worms expressing N412Y tars-1 could not be recovered. These findings were 

based on small numbers of animals, so statistical significance cannot be assessed. However, 

based on the compelling neuronal morphology defects, G541R TARS1 was pursued to model in 

the endogenous locus. R433H TARS1 was also knocked into the endogenous locus as a potential 

candidate for recessive TARS-mediated phenotypes, as it was a partial loss-of-function allele in 

yeast but was not dominantly toxic to worm neurons. 

 

3.3.3 Introduction of tars-1 variants to the endogenous worm locus  

A major limitation of the above tars-1 transgenic studies is the inability to control for the 

expression level of the mutant protein. In this plasmid-based method, the number of plasmid 

copies that are incorporated into extrachromosomal arrays can be variable, as can the degree of 

array silencing.410 This leads to inconsistencies from cell to cell, and from worm to worm. To 

address these limitations, CRISPR-Cas9 mutagenesis was used to introduce R433H or G541R 

into the endogenous tars-1 locus, using previously detailed methods for site-specific gene editing 

in worm.404 In addition to the desired tars-1 missense mutation, silent mutations were included in 

the ssODN repair template to introduce unique restriction enzyme cut sites (EagI in cis with 

G541R and SacI in cis with R433H). These enable quick identification of worms that are 

heterozygous or homozygous for the mutation of interest by amplifying the locus with PCR and  
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Figure 3.3. Over-expression of G541R tars-1 is dominantly toxic to worm GABA-ergic 
neurons. 
 
(A) Cartoon of the construct injected into C. elegans gonadal tract. A GABA-ergic neuron 
promoter, Punc-47, drives expression of wild-type or mutant tars-1, followed by a mCherry 
reporter and the unc-54 termination sequence. (B) Worms were analyzed in the oxIS12 
background, which expresses GFP in GABA-ergic neurons for easy visualization of the ventral 
nerve cord (VNC) and its projections across the body to the dorsal nerve cord (DNC). (C) 
Images of GABA-ergic neurons from worms over-expressing wild-type tars-1 (left), R433H 
tars-1 (middle), or G541R tars-1 (right). Transgenic expression is indicated by mCherry signal. 
Aberrant neuronal morphology in worms expressing G541R is highlighted with white arrows. 
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digesting with the relevant enzyme to detect the restriction site marker of successful homology-

directed repair. This approach was used to screen the progeny of injected worms and identify 

worms that were heterozygous for G541R (Figure 3.4A) and worms that were either 

heterozygous or homozygous for R433H (Figure 3.4B).  

 

3.3.4 G541R tars-1 is homozygous lethal in worm 

An additional advantage of gene editing is the ability to stably propagate a mutation and follow 

its inheritance pattern across subsequent generations. Variation from the expected 1:2:1 pattern 

of allele segregation indicates that a mutation is deleterious. To assess the viability of G541R and 

R433H tars-1 worms, individual unbalanced heterozygote hermaphrodites were moved to 

separate plates, where they self-fertilized to produce dozens of offspring. Upon maturation to the 

L4 or P1 stage of development, each progeny was individually genotyped. The observed ratio of 

homozygote wild-type, heterozygote mutant, and homozygote mutant was compared to the 1:2:1 

ratio expected for allelic segregation. Out of 91 offspring, no G541R/G541R offspring were 

recovered, indicating that G541R is a loss-of-function allele (Figure 3.5A). This confirms the 

results from the yeast complementation assay. In contrast, R433H/R433H homozygotes were 

recovered, but at a lower frequency than would be expected for a benign variant (Figure 3.5B). 

This may indicate that R433H homozygotes were born less often R433H heterozygotes and wild-

type worms, or that there were fewer homozygotes on the plate that had reached the genotyping 

L4/P1 (adolescent/adult) stage, leading to an under-sampling of this genotype. In either scenario, 

the data indicate that homozygosity—but not heterozygosity—for R433H is deleterious but not 

lethal. This also agrees with the yeast complementation data indicating R433H is a hypomorphic 

allele.  

 

3.3.5 R433H tars-1 causes recessive developmental delay and locomotion defects in worm 

The depletion of R433H/R433H tars-1 worms in the above Mendelian analyses could be due to 

under-sampling of this genotype, which would happen if developmental delay prevented them 

from reaching adulthood at the same rate as wild-type or R433H/+ tars-1 worms. To investigate 

this possibility, a population of R433H/R433H tars-1 worms and wild-type N2 worms were age- 



 96 

 
 
Figure 3.4. CRISPR-Cas9 strategies to introduce G541R or R433H into the endogenous 
tars-1 locus. 
 
(A) Top: Cartoon of the G541 locus in tars-1, aligned with the repair template sequence and 
guide RNA. Introduction of point mutations that change the glycine to arginine (blue) 
simultaneously ablate the PAM site (green) and introduce an EagI restriction site (purple) for 
genotyping. Bottom left: cartoon depicting PCR amplification of the targeted region, with a 
representative chromatogram above it. Bottom right: EagI digestion of amplicons from a wild-
type or heterozygous worm. (B) Top: cartoon of the R433 locus in tars-1, aligned with the repair 
template and guide RNA sequence. The repair template encodes the arginine to histidine change 
(red), as well as synonymous mutations that introduce a SacI cut site (purple) and prevent re-
editing after repair. Bottom left: cartoon depicting PCR amplification of the targeted region, with 
a representative chromatogram of a homozygous worm above it. Bottom right: SacI digestion of 
amplicons from a wild-type, heterozygous, or homozygous worm. 
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Figure 3.5. Mendelian analysis of G541R/+ tars-1 offspring and R433H/+ tars-1 offspring. 
 
(A) Genotype analysis of 91 offspring from G541R/+ tars-1 hermaphrodites. A representative 
genotyping gel image is shown. The observed and expected number of each genotype is listed.  
(B) Genotype analysis of 177 offspring from R433H/+ tars-1; a representative image from a 
genotyping gel is shown. The observed and expected number of each genotype is shown. For 
both analyses, a Chi-square was performed to determine if the difference between observed 
genotype frequency and expected genotype frequency was statistically significant. 
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synchronized and the size of worm cohorts was tracked for over 7 days. At 48 hours after worms 

were hatched, worm length was measured each day using the WormLab video and software 

system. R433H/R433H tars-1 worms were consistently smaller than wild-type controls until Day 

7 (Figure 3.6A). Whereas wild-type worms reach a mature size of approximately 1mm 3-4 days 

after birth, R433H/R433H tars-1 worms do not reach this size until 6-7 days after birth.  

 

To assess whether R433H/R433H tars-1 causes behavioral defects, a thrash assay was performed 

with adult worms 9 days after they reached adulthood (P9). Here, R433H/R433H tars-1 worms 

were age-matched to wild-type N2s by synchronizing embryo production, as described in 

Section 3.2.7. The WormLab video capture and analysis system was used to record one-minute 

videos of worms swimming in M9 buffer, track their motion, and calculate locomotion 

parameters. R433H/R433H worms moved at a significantly reduced speed compared to wild-

type worms (Figure 3.6B), indicating that reduced tars-1 function affects the neuromuscular 

circuitry governing worm locomotion.  

 

3.3.6 Morphological defects are absent in G541R/+ GABA-ergic neurons 

To determine if G541R/+ worms could re-capitulate the GABA-ergic neuron defects seen when 

over-expressing G541R tars-1, they were crossed into the oxIS12 strain (which expresses GFP in 

the GABA-ergic neurons) and examined for neuronal abnormalities at P7.  R433H/R433H tars-1 

worms at P9 were also included in these studies; if the dominant toxicity of G541R was due to a 

dominant-negative effect that decreased overall tars-1 function, then homozygosity for a 

hypomorphic allele might also reduce tars-1 function enough to cause neuronal defects. Worms 

were scored as having aberrant axons based on the presence of neuronal commissure branching, 

breakage, or incorrect guidance, as well as thinning of the dorsal nerve cord. Although some 

striking examples of aberrant morphology were identified in G541R/+ tars-1 and R433H/R433H 

tars-1 worms (Figure 3.7A), neither genotype caused a significant increase in the percentage of 

worms with morphological defects (Figure 3.7B and C). Based on the strength of the neuronal 

phenotype when G541R was over-expressed, G541R was selected for validation in a mammalian 

model, with the expectation that longer mouse peripheral nerves would be more sensitive to 

endogenous expression levels of a dominant ARS allele than the shorter worm neurons. 
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Figure 3.6. Developmental and locomotion defects in R433H/R433H tars-1 worms. 
 
(A) Body length measurements of R433H/R433H tars-1 worms and wild-type tars-1 worms 
(N2) across six days after hatching. 3 R433H/R433H worms were measured on Day 2, then 18-
30 worms each day after. 18-30 wild-type worms were measured each day. Bars indicate the 
mean worm length for each day, along with 95% confidence intervals. Statistical significance 
was calculated with an unpaired t-test; ****, p<0.000001; ns = not significant.  (B) Movement 
speed of 28 P9 wild-type worms (N2) and 27 P9 R433H/R433H tars-1 worms is shown. Speed 
was calculated by analyzing the track length of the worm over time. Bars indicate mean speed 
and 95% confidence intervals. Statistical significance was calculated with an unpaired t-test. 
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Figure 3.7. GABA-ergic neuron morphology in G541R/+ and R433H/R433H tars-1 worms. 
 
(A)  Images of GABA-ergic neurons from wild-type worms with the mIn1 balancer, G541R/+ 
worms with the mIn1 balancer, and R433H/R433H worms. Morphological defects in G541R/+ 
worms and R433H/R433H worms are highlighted with white arrows. (B) Percentage of wild-
type worms and G541R/+ worms with aberrant GABA-ergic neuron morphology. (C) Percentage 
of wild-type worms (N2) and R433H/R433H worms with abberant GABA-ergic neuron 
morphology. Statistical significance was calculated using Fisher’s Exact Test; ns = not 
significant. 
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3.3.7 Establishment of G541R and R433H Tars1 mouse lines 

The mouse TARS1 ortholog, Tars1, was edited using CRISPR-Cas9 to introduce the G541R 

variant in cis with silent mutations that form a HhaI cut site and ablate the PAM site. Two 

founders carrying the G541R variant were identified and mated to establish germline 

transmission, then back-crossed to C57BL/6 mice twice for further analysis. Genotyping was 

performed by PCR-amplification of Tars1 exon 14, followed by HhaI digestion to identify 

successful introduction of the repair template (Figure 3.8A). All PCR amplicons from the 

founder cohort were also Sanger-sequenced to identify insertions or deletions that might produce 

a frameshift and a premature stop codon. As a result, we identified a mouse carrying an 11 base 

pair deletion that ablates a HaeIII cut site and that leads to a premature stop codon shortly 

downstream of the PAM site (F538Kfs*4). When this region is amplified and digested with 

HaeIII, the presence of an undigested upper band indicates the frameshift allele (Figure 3.8B). 

Founder Tars1F538Kfs*4/+ mice were also mated to C57BL/6 mice to establish germline 

transmission. 

 

A similar approach was taken to identify mice that had undergone successful CRISPR-Cas9 

editing of the R433H Tars1 mutation. Here, silent mutations in cis with R433H ablate a BglI cut 

site and the PAM site. In this genotyping strategy, Tars1 exon 12 is amplified with PCR and 

digested with BglI; amplicons that remain undigested indicate the R433H mutation (Figure 

3.8C). Two Tars1R433H/+ founders were identified and mated to establish germline transmission. 

One Tars1R433H/+ line was backcrossed to C57BL/6 mice twice for further analysis. 

 

3.3.8 Homozygosity for G541R or F538Kfs*4 is not compatible with life in mouse models 

If G541R is a loss-of-function allele in mouse, as it is in yeast and worm, homozygosity for 

G541R Tars should not be compatible with life. To test this, three litters from TarsG541R/+ x 

TarsG541R/+ mating pairs were genotyped to assess whether the G541R allele segregated 

according to 1:2:1 Mendelian ratios. Out of 19 mice, no TarsG541R/G541R genotypes were detected 

at 3 weeks of age (Figure 3.9A). As a comparison, the same experiment was performed with the 

F538Kfs*4 Tars1 mouse line; this mutation encodes a premature stop codon, producing a  
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Figure 3.8. CRISPR-Cas9 genome editing to introduce G541R and R433H into the Tars1 
locus. 

 
(A) Left: chromatogram of a G541R/+ Tars1 mouse, with the sequence of the wild-type and 
mutant alleles below. The HhaI site introduced by the repair template is highlighted in blue, and 
the introduced arginine in red. Middle, right: genotyping strategy for amplifying exon 14 and 
identifying the G541R mutant allele by HhaI digest. (B) Left: chromatogram of a mouse with an 
11 base pair deletion in Exon 14. This deletion causes a frameshift and a premature stop codon at 
amino acid 541 (F538Kfs*4). It also ablates a HaeIII cut site (blue). Middle, right: genotyping 
strategy for amplifying exon 14 and identifying the frameshift allele by HaeIII digest. (C) Left: 
chromatogram of a R433H/+ mouse, with the sequence of the wild-type and mutant alleles 
below. The nucleotides changed to convert arginine into histidine also ablate a BglI cut site in the 
wild-type allele (blue). Middle, right: genotyping strategy for amplifying exon 12 and identifying 
the R433H allele by BglI digest. 
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Figure 3.9. Mendelian ratios of mutant Tars1 mouse lines. 
 
(A) Genotype analysis of 19 offspring from Tars1G541R/+ x Tars1G541R/+ mating pairs. (B) 
Genotype analysis of 28 offspring from Tars1F538Kfs*4/+ x Tars1F538Kfs*4/+ mating pairs. (C) 
Genotype analysis of 43 offspring from Tars1R433H/+ x Tars1R433H/+ mating pairs. All mice were 
genotyped at approximately 3 weeks of age. Chi-square tests were performed to determine if the 
difference between observed genotype counts and expected genotype counts was statistically 
significant.  
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transcript that is predicted to undergo nonsense mediated decay. From a total of 28 offspring, no 

TarsF538Kfs*4/F538Kfs*4 mice were identified (Figure 3.9B). These data indicate that both G541R 

Tars1 and F538Kfs*4 Tars1 are loss-of-function mutations in mouse. In contrast, TarsR433H/R433H 

mice were born at a frequency that did not deviate from expected Mendelian ratios (Figure 

3.9C). This is consistent with R433H TARS1 retaining some function, as predicted by the yeast 

and worm studies.  

 

3.3.9 Tars1G541R/+ mice do not develop a detectable peripheral neuropathy by one year of age 

To determine if G541R Tars1 could cause a dominant peripheral neuropathy in mouse, cohorts 

of Tars1G541R/+ mice and their littermate Tars1+/+ controls were evaluated for behavioral 

indications of neuromuscular defects. First, two Tars1G541R/+ founders were mated with C57BL/6 

mice to establish two independent lines carrying the mutation (Line A and Line B). The Line A 

founder produced a litter of four males (two Tars1G541R/+ and two Tars1+/+). At 2 months of age, 

this cohort was evaluated for behavioral defects that might indicate neuromuscular impairment. 

Gait analysis revealed that the two Tars1G541R/+ showed a 20% reduction in stride length, and 

took a 14% wider stance with their front paws (Figure 3.10A). However, there were no 

significant differences in rotarod performance (Figure 3.10B), ability to hang on a wire mesh 

(Figure 3.10C), or grip strength (Figure 3.10D) across five sequential days of testing.  

 

To increase the sample size of this cohort, three Tars1G541R/+ and three Tars1+/+ males from the 

Line B founder were added. All ten mice were then subjected to the same battery of behavioral 

assays at 5-6 months of age. The stride length of all ten mice were assessed in a gait analysis; as 

before, Tars1G541R/+ mice took shorter steps Tars1+/+ mice (Figure 3.11B), despite no difference 

in body size between the two genotypes (Figure 3.11A). Stride width was only measured for the 

four Line A mice; again, the Tars1G541R/+ mice took slightly wider stances with their front paws 

(Figure 3.11B). The combined Line A and Line B cohort was then tested for their grip strength, 

ability to hang from a wire mesh, ability to run on a treadmill, and performance on a rotarod. 

There was no difference in grip strength (Figure 3.12A) or latency to fall off the wire mesh 

(Figure 3.12B) between Tars1G541R/+ and Tars1+/+ mice. Tars1G541R/+ mice did perform poorly on 

the first day of treadmill running and rotarod testing; however, this difference was not replicable 
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Figure 3.10. Tars1G541R/+ mice have a shorter gait and wider stance at 2 months of age. 
 
(A) Gait analysis for two male Tars1G541R/+ mice and two male Tars1+/+ littermates. 36-37 steps 
front paw steps and 36-37 hind paw steps were analyzed for each genotype. An unpaired t-test 
with Welch’s correction was performed to determine statistical significance. (B) Rotarod 
performance data across five consecutive days (C) Latency to fall from a wire grid, measured for 
five consecutive days. (D) Grip strength, measured for five consecutive days. For (B)-(D), 
unpaired t-tests were performed to determine statistical significance. **** p<0.0001, ** p<0.01, 
* p<0.05, ns = not significant. 
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Figure 3.11. Tars1G541R/+ mice have a shorter gait and wider stance at 5-6 months of age. 
 
(A) Weight of 5 male Tars1G541R/+ mice and 5 male Tars1+/+ littermates at 5-6 months of age. (B) 
Gait analysis for 5 male Tars1G541R/+ mice and 5 male Tars1+/+ littermates. For stride length 
measurements, 85-90 front paw steps and 85-90 hind paw steps were analyzed for each 
genotype. For stride width measurements, only 2 male Tars1G541R/+ mice and 2 male Tars1+/+ 
mice were assessed; 36 steps front paw steps and 36 hind paw steps were analyzed for each 
genotype. For (A) and (B) an unpaired t-test with Welch’s correction was performed to 
determine statistical significance. **** p<0.0001, ** p<0.01, ns = not significant. 
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Figure 3.12 No difference between Tars1G541R/+ mice and Tars1G541R/+ mice in motor function 
or grip strength at 5-6 months of age.  
 
(A) Grip strength of 5 male Tars1G541R/+ mice and 5 male Tars1+/+ littermate, measured for three 
consecutive days. (B) Latency to fall from a wire grid, measured for three consecutive days. (C) 
Length of time spent running on a treadmill, measured for three consecutive days. (D) Rotarod 
performance data, measured for three consecutive days. All bars represent mean value with 95% 
confidence intervals. Unpaired t-tests were performed for each assay to determine statistical 
significance. ** p<0.01, * p<0.05, ns = not significant. 
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in the subsequent two days of testing (Figure 3.12C and Figure 3.12D). Similar gait changes 

have been seen in other mouse models of dominant peripheral neuropathy373,399 and are 

indicative of neuromuscular dysfunction. However, additional behavioral evidence was required 

to build a compelling argument for neuromuscular dysfunction in Tars1G541R/+ mice. We pursued 

three strategies to more rigorously test the phenotype. One Tars1G541R/+ line (Line B) was back-

crossed an additional time to C57BL/6 mice to increase the amount of C57BL/6 genetic 

background, which served the additional purpose of continuing to cross away any possible off-

target mutations induced during CRISPR-Cas9 mutagenesis. Then, a larger cohort of 

Tars1G541R/+ mice was generated—8 Tars1G541R/+ and 8 Tars1+/+ from a total of three litters born 

within three weeks of each other— to provide the statistical power to detect subtle differences 

between the groups. Finally, this larger cohort was assessed at 1 year of age, which is more 

consistent with phenotypes observed in other mouse models of axonal CMT disease.396 Indeed, 

because ARS-mediated peripheral neuropathy is a degenerative disorder, older mice were 

expected to show a more severe phenotype.  

 

Surprisingly, when gait was assessed for 1-year-old mice, Tars1 G541R/+ mice took longer strides 

and smaller stances than their wild-type littermates (Figure 3.13A), the opposite of what was 

noted for the previous cohorts. Although these differences are statistically significant, it is 

difficult to interpret their biological relevance. However, we can conclude that this cohort of 

Tars1 G541R/+ mice does not display the hallmarks of neurodegenerative gait impairment. They are 

also not deficient at running on a wheel (Figure 3.13B), although the lack of a statistically 

significant signal may be partially due to the wide range of running activity of the wild-type 

mice. Finally, motor nerve conduction amplitude, sciatic motor nerve conduction velocity, and 

sural nerve conduction velocities were measured. Axonal peripheral neuropathy is marked by a 

primary defect in the axon, which causes decreased nerve conduction amplitudes.411 This 

degeneration can also affect the integrity of the myelin sheath and cause secondary decreases in 

nerve conduction velocities as well.411 However, consistent with the absence of a behavioral 

phenotype, Tars1 G541R/+ mice did not show any electrophysiological defects in nerve conduction 

studies.  
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Figure 3.13. Behavior and nerve conduction analysis for Tars1G541R/+ mice at 12 months of 
age. 
 
(A) Gait analysis for 10 male Tars1G541R/+ mice and 10 male Tars1+/+ littermates at 1 year of age. 
For stride length and width measurements, 330-353 front paw steps and 330-353 hind paw steps 
were analyzed for each genotype. (B) Distance traveled on a wheel, measured for 7 consecutive 
days. (C) Nerve conduction amplitudes in the motor nerves of Tars1G541R/+ and Tars1+/+ mice (D) 
Nerve conduction velocities for the sciatic motor nerves of Tars1G541R/+ and Tars1+/+ mice (E) 
Nerve conduction velocities for the sural nerves of Tars1G541R/+ and Tars1+/+ mice. All bars 
represent the mean value, with 95% confidence intervals. For all comparisons, an unpaired t-test 
with Welch’s correct was performed to determine if the differences between Tars1G541R/+ and 
Tars1+/+ mice were statistically significant. **** p<0.0001, *** p<0.001, ** p<0.01, * p<0.05, 
ns = not significant. 
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3.3.10 Tars1G541R/+ mice have reduced Tars1 levels 

To determine if G541R Tars1 reduced Tars1 protein levels, protein lysates were obtained from 

the brains of 11-week-old mice with +/+, G541R/+, and F538Kfs*4/+ genotypes. Two mice from 

each genotype were assessed. Total TARS1 abundance was analyzed with immunostaining. 

Here, we used an antibody that recognized both human TARS1 and mouse Tars1, and included 

lysate from yeast expressing human TARS1 as a size control (both human TARS1 and mouse 

Tars1 are predicted to be 83.4 kilodaltons). To more accurately compare protein abundance 

across genotypes, Tars1+/+ lysates were included in a gradient of 6.25µg, 12.5µg, and 25µg. 

25µg of Tars1F538Kfs*4/+ lysate was detected at a similar intensity as 12.5µg of Tars1+/+ lysate, 

consistent with decreased expression from the F538Kfs*4 allele (Figure 3.14) (One important 

caveat is that the TARS1 antibody recognizes an epitope between 346 and 657 amino acids, and 

may not be able to recognize a truncated protein at 541 amino acids.) Notably, 25µg of 

Tars1G541R/+ lysate lead to an intermediate Tars1 band intensity, between that of Tars1F538Kfs*4/+ 

and Tars1+/+ . This suggests that although G541R does not fully destabilize TARS1 protein, it is 

not expressed at wild-type levels. This may explain why over-expression of G541R caused 

neuronal phenotypes in worm, but endogenous levels of expression in worm or mouse did not.  

 

3.3.11 P0 deaths are enriched for Tars1R433H/F538Kfs*4 mice 

Many individuals with recessive ARS-mediated disease are compound heterozygous for a 

hypomorphic missense allele and a null allele.68 The above studies in yeast and worm indicate 

that R433H TARS1 is a hypomorphic allele, and the mouse studies of F538Kfs*4 Tars1 

homozygous lethality indicate that it is a null allele. To investigate a genotype relevant to human 

patients, Tars1R433H/R433H mice were crossed to Tars1F538Kfs*4/+ mice to obtain compound 

heterozygous offspring. One expectation was that these offspring would develop phenotypes 

similar to those seen in patients with other ARS-mediated recessive disease, such as 

microcephaly, developmental delay, or small stature.126,221,233 Another expectation was that 

reduced Tars1 function would preferentially affect tissues with a high requirement for threonine 

in proteins. To identify these proteins, we sorted the mouse proteome by threonine content and 

removed uncharacterized proteins, along with proteins with a Uniprot annotation score under 

three, which eliminated poorly annotated proteins from the list. It should be noted that this  
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Figure 3.14. Tars1G541R/+ mice show reduced Tars1 expression in brain tissue. 
 
Representative western blot image for Tars1 protein in brain tissue of a Tars1G541R/+ mouse, 
Tars1+/+ mouse, and Tars1F538Kfs*4/+ mouse. Human TARS1, expressed in yeast, is shown on the 
left as a size control. For Tars1+/+ samples, 6.25µg, 12.5µg, and 25µg lysate was loaded. For 
Tars1G541R/+ and Tars1F538Kfs*4/+ samples, 25µg was loaded. The top blot shows signal from a 
TARS1 antibody; the bottom blot shows signal from an actin antibody, as a loading control. An 
arrow indicates the expected size of TARS1 and Tars1. The full blot is shown. 
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preliminary search may miss proteins with a lower overall threonine percentage but a localized 

high threonine content. The identified proteins composed of at least 15% threonine are primarily 

glycoproteins and mucins (Table 3.2).  

 

Mucins are the primary structural component of the mucus membranes that coat all wet epithelial 

surfaces in the body, including the lungs and the stomach.412 Mucin backbones are composed of 

tandem repeats of proline, threonine, and/or serine. These repeats are densely modified by O-

linked glycosylation, which maintains the integrity of the mucous membrane.412 The importance 

of threonine to these proteins is also supported by previous reports that intestinal mucin synthesis 

can be improved with threonine supplementation413 or impaired with threonine reduction.414 

Threonine deprivation and knockdown of TARS1 can decrease translation of a mucin protein 

(MUC1) in pancreatic cancer cells, without affecting global translation415. Therefore, it is 

possible that mice with reduced Tars1 function will be unable to incorporate sufficient threonine 

into mucin proteins to support proper mucous formation in tissues like the lungs or the gut.  

 

Offspring of the Tars1R433H/R433H and Tars1F538Kfs*4/+ mice were genotyped at 3 weeks of age. 

Based on Mendelian segregation, 50% of offspring were expected to be R433H/+ and 50% to be 

R433H/F538Kfs*4. However, there was a significant depletion of R433H/F538Kfs*4 at this 

stage of life (Figure 3.15A), indicating decreased viability prior to genotyping. Since no 

mortality was observed in developing pups, this death likely happens in utero or shortly after 

birth. In general, there is a base rate of neonatal mortality in laboratory mice, especially for the 

C57BL/6 strain.416 However, an analysis of neonate deaths across four litters showed that pups 

that died at P0 were strikingly enriched for the R433H/F538Kfs*4 genotype. Out of 15 

genotyped neonatal deaths, 13 were R433H/F538Kfs*4 mice (Figure 3.15B).  

 

3.3.12 P0 Tars1R433H/F538Kfs*4 mice lack air in their lungs and PAS+ material in their bronchiolar 
club cell epithelia 

To gain insights into the reduced viability of Tars1R433H/F538Kfs*4 mice, a cohort of four P0 

Tars1R433H/F538Kfs*4 pups and three age-matched Tars1R433H/+ littermates was collected for 

histology studies. The four Tars1R433H/F538Kfs*4 pups were all found dead within a few hours after  
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Table 3.2. Threonine-rich proteins in the mouse proteome. 
 

Gene Protein % 
Threonine 

Tissue with 
strongest 

expression417 

Muc19 Mucin-19 22% Submandibular 
gland 

Muc4 Mucin-4 19% Lung 

Muc20 Mucin-20 18% Lung, kidney 

Muc6 Mucin-6 18% Brain, liver, 
stomach, intestine 

Timd4 T-cell immunoglobulin and mucin 
domain-containing protein 4 17% Brain, liver, 

stomach, intestine 

Cd164 Sialomucin core protein 24 17% Kidney, liver, lung, 
pancreas, thymus 

Emcn Endomucin 17% Lung, heart, kidney 

Gp1ba Platelet glycoprotein Ib alpha chain 17% Platelets418 

Plin4 Perilipin-4 16% White adipose 
tissue419 

Defb26 Beta-defensin 16% Testis420 

Prg4 Proteoglycan 4 16% Liver 

Nup62 Nuclear pore glycoprotein p62 15% Widely expressed 

Muc16 Mucin-16 15% 
Eye, uterus, heart, 
lung, gastric tract, 

gall bladder421 

Plet1 Placenta-expressed transcript 1 protein 15% 
Colon, lung, salivary 
gland, keratinocytes, 

thymus422 
Ovgp1 Oviduct-specific glycoprotein 15% Oviduct423 

Defb22 Beta-defensin 22 15% Testis 
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Figure 3.15. Neonatal lethality of Tars1R433H/F538Kfs*4 mice. 
 
(A) Genotype analysis of Tars1R433H/R433H and Tars1F538Kfs*4/+ offspring, genotyped upon weaning 
at 3 weeks of age. The observed and expected number of each genotype is shown. (B) Genotype 
analysis of 15 deceased pups, identified within one day after birth. The observed and expected 
number of each genotype is shown. For (A) and (B), a Chi-square test was used to determine if 
the difference between the number of observed and expected genotypes was statistically 
significant. (C) H&E staining of lung sections from three Tars1R433H/+ P0 pups (top row) and five 
Tars1R433H/F538Kfs*4 P0 pups (bottom row). All Tars1R433H/+ pups were alive when identified at P0. 
The first four Tars1R433H/F538Kfs*4 pups were identified dead at P0; the fifth was found alive with a 
gasping, labored breathing pattern. (D) PAS staining of lung sections from three Tars1R433H/+ P0 
pups (top row) and four Tars1R433H/F538Kfs*4 P0 pups (bottom row). Black arrows highlight the 
magenta PAS signal in the bronchioles of Tars1R433H/+ mice (top row), and the absence of PAS 
signal in the collapsed bronchioles of Tars1R433H/F538Kfs*4 mice (bottom row). 
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birth. Interestingly, in a separate litter, a Tars1R433H/F538Kfs*4 pup was found immediately after 

birth (traces of birth fluids were still visible) with visibly labored breathing and a failure to right 

itself. This additional pup was included in the cohort to investigate its breathing phenotype. All 

pups were fixed in formalin overnight, washed with 70% ethanol, and then sent for processing at 

Histoserv, where sagittal sections were taken for H&E staining and Periodic Acid Schiff (PAS) 

staining (which detects glycoproteins and mucins407).  

 

The four P0 Tars1R433H/F538Kfs*4 mice that were found dead had no air in their lungs. Whereas the 

alveoli of Tars1R433H/+ mice were expanded with air (Figure 3.15 C, top), the alveoli of 

Tars1R433H/F538Kfs* mice were collapsed (Figure 3.15 C, bottom). Based on the otherwise mature 

body development of these pups, this indicates that they died either shortly before or upon birth. 

Interestingly, the additional Tars1R433H/F538Kfs*4 pup found alive immediately after birth had only 

partially expanded alveoli, which correlates with the observed labored breathing. Moreover, 

although the bronchioles of Tars1R433H/+ mice are replete with the magenta PAS+ signal of 

secretory cells, this signal is absent from the collapsed bronchioles of Tars1R433H/F538Kfs*4 mice. 

(Figure 3.15D) Further work is needed to determine whether this is a result of an absent 

population of cells or a result of decreased glycoprotein production, or both (discussed further in 

Chapter 5). 

 

3.3.13 Surviving Tars1R433H/F538Kfs*4 mice have reduced body weight 

Tars1R433H/F538Kfs*4 mice that passed the P0 mark survived to adulthood with no apparent 

breathing abnormalities. However, these mice were on average smaller than their Tars1R433H/+ 

littermates (Figure 3.16A). Male and female mice from nine litters were weighed once every 

week until 23 weeks of age. Only litters containing both genotypes were included in the analysis. 

Reduced body weight was more consistent in females (Figure 3.16B) than males, who reach a 

normal body size by 7 weeks of age (Figure 3.16C). This reduced size is consistent with growth 

restriction phenotypes in human patients with ARS-mediated recessive disease, as well as the 

reduced size of mice homozygous for a hypomorphic Cars1 mutation, which is being 

investigated by another graduate student in the Antonellis group, Molly Kuo.  
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Figure 3.16. Reduced body weight of Tars1R433H/F538Kfs*4 mice. 
 
(A) Image of four littermates at P11, grouped together for comparison of body size. Each mouse 
is labeled with its genotype. (B) The average weekly weights of female Tars1R433H/F538Kfs*4 mice 
and female Tars1R433H/+ littermates are shown, until 23 weeks of age. (C) The average weekly 
weights of male Tars1R433H/F538Kfs*4 mice and female Tars1R433H/+ littermates are shown, until 23 
weeks of age. For (B) and (C), bars represent the mean value and one standard deviation. An 
unpaired t-test was performed for each week to determine if the difference between the two 
genotypes was statistically significant. **** p<0.0001, *** p<0.001, ** p<0.01, * p<0.05. All 
values in (C) that are not marked with an asterisk are not significantly different. 
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3.3.14 Tars1R433H/F538Kfs*4 mice display hair and skin defects 

As these studies were underway, a report of two human individuals with bi-allelic TARS1 

variants and triochothioydstrophy (TTD) phenotypes was published.253 Both individuals 

presented with the classic “tiger-tail” banding pattern of the hair shaft and ichthyosis. One 

individual had follicular keratosis, the other was born as a “collodion baby”, encased in a tight 

shiny membrane.253 Interestingly, the described “collodion baby” phenotype was reminiscent of 

two Tars1R433H/F538Kfs*4 mice that were found dead shortly after birth. The bodies of these mice 

were encased in a tight membrane (Figure 3.17 A and B) with visible blisters (right image). One 

mouse (right image) was submitted for histopathology as described above; however, there was 

no immediately apparent signatures of a mouse collodion baby phenotype, such as a thickened 

stratum corneum. Further investigation is required to fully define this specific phenotype. 

Interestingly, the TarsR433H/F538Kfs*4 P0 pups did show evidence of other skin and hair 

abnormalities. In the cohort of four TarsR433H/F538Kfs*4 and three TarsR433H/+ littermates, 

TarsR433H/F538Kfs*4 mice had a thinner epidermal layer than control mice (Figure 3.17 B and C); on 

average, the epidermis was 35% thinner. Additionally, these four mice had follicular hypoplasia 

(i.e. less mature and/or fewer hair follicles).  

 

Adult Tars1R433H/F538Kfs*4 mice also displayed a striking hair phenotype. Of the mouse cohort that 

was followed and weighed over the course of 23 weeks, 10 out of 14 Tars1R433H/F538Kfs*4 mice 

(71.4%) lost hair on their heads and/or upper back by 23 weeks of age, compared to 1 out of 23 

Tars1R433H/+ littermates (4.35%). Hair loss onset occurred between 13 and 23 weeks of age 

(Figure 3.18A). It followed a stereotypic pattern of bald spots on the head and/or along the 

scapula of the upper back (Figure 3.18B). In more advanced stages, it would reach across the 

entire upper back (Figure 3.18C). To more thoroughly define this phenotype, histopathology was 

performed on hair samples from the affected regions for three Tars1R433H/F538Kfs*4 mice and three 

Tars1R433H/+ littermates; one pair was 2 months old, another was 12 months old, and the third was 

14 months old. Analysis of H&E staining did not reveal any gross abnormalities in hair follicles, 

although this analysis was complicated by the asynchronous hair cycling of adult mice. Further 

work is required to define this phenotype (discussed in Chapter 5).  
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Figure 3.17. Skin abnormalities in Tars1R433H/F538Kfs*4 P0 pups. 
 
(A) Images of two Tars1R433H/F538Kfs*4 pups born encased in a tight membrane. A black arrow 
points to a blister on the right-hand mouse. (B) H&E staining of dorsal skin sections in P0 pups. 
Black arrows point to the dark pink epidermal layer. The upper image shows skin from a 
Tars1R433H/+ mouse, and the bottom image shows skin from a Tars1R433H/F538Kfs*4 mouse. (C) 
Measurements of epidermal thickness of four Tars1R433H/F538Kfs*4 P0 Pups and three Tars1R433H/+ 
P0 littermates. The mean epidermal thickness is decreased by 35% in Tars1R433H/F538Kfs*4 mice. 
Bars indicate the mean value and 95% confidence interval. Statistical significance was 
determined with an unpaired t-test with Welch’s correction. N=75 for R433H/+ values and 
n=100 for R433H/F538Kfs*4 values. 
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Figure 3.18. Adult onset hair loss in Tars1R433H/F538Kfs*4 mice. 
 
(A) The cumulative percentage of Tars1R433H/F538Kfs*4 mice (pink) and Tars1R433H/+ (gray) mice 
with hair loss on the back of their head or upper back is shown, until 23 weeks of age. (B) 
Representative images of four individual Tars1R433H/F538Kfs*4 mice with hair loss; the consistent 
pattern of upper back bald patches is shown for #1620, 1674, and 1347. (C) (Bottom image) A 
representative image of extended hair loss stretching from the head to the middle of the back in a 
Tars1R433H/F538Kfs*4 mouse, 14 months of age. His Tars1R433H/+ littermate is shown above, with 
signs of barbering by the nose and mild age-related hair thinning on the back. 
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3.4 Discussion 
 

The work presented in this Chapter aimed to use the established characteristics of pathogenic 

ARS variants in model organisms (i.e., loss-of-function in yeast, dominantly toxic to C. elegans 

neurons) to build a pipeline for predicting the pathogenicity of variants in TARS1 for both 

recessive and dominant phenotypes. Through this process, we successfully identified a 

hypomorphic TARS1 allele, R433H. R433H reduced yeast growth in a complementation assay, 

caused developmental delay and thrashing defects in homozygous C. elegans, and caused 

premature death linked to lung failure, decreased body size, and hair defects in mouse when 

modeled in trans with a null allele. This pipeline also identified a candidate dominant variant, 

G541R TARS1, that was loss-of-function in a yeast complementation assay, was homozygous 

lethal to both worm and mouse, and was dominantly toxic to C. elegans neurons in an over-

expression system. However, G541R TARS1 did not cause reproducible neuromuscular defects 

in heterozygous worms or mice, likely due to insufficient abundance of the mutant protein in 

relevant tissues. Therefore, it is not possible to draw conclusions about TARS1 as a candidate for 

dominant peripheral neuropathy based on this specific variant. 

 

Reduced levels of the G541R Tars1 protein is the most likely reason that heterozygous worms 

and mice did not develop neurological phenotypes. In general, pathogenic dominant ARS 

variants do not significantly reduce protein abundance, to the extent that this can be detected in 

patient fibroblasts or lymphoblasts in vitro.170,301,348 However, it is also useful to consider the 

limitations of mice when modeling dominant axonal neuropathies. Mouse peripheral neurons are 

much shorter than humans, and may not be as sensitive to a variant that produces a late-onset, 

mild neuropathy in humans. For example, mouse models of patient variants in HSPB1 and MFN2 

(other dominant axonal Charcot-Marie-Tooth disease genes) show a significant discrepancy 

between transgenic models with high expression levels and knock-in variants with endogenous 

expression levels. While transgenic models develop multiple symptoms of peripheral neuropathy 

by 6 months of age,373,424,425 mice expressing endogenous levels of the pathogenic allele show no 

significant signs of neuromuscular defects as late as 18 or 20 months of age.426,427  
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If G541R TARS1 does not produce fully stable TARS1 protein, this could also explain the 

discrepancy seen between the two worm models of G541R tars-1. Over-expressing G541R in 

GABA-ergic neurons may have compensated for the reduced stability of the protein and allowed 

it to reach toxic levels that caused morphological defects. Endogenous levels of expression may 

not have been sufficient to produce these defects. Another possibility is that the axons in worm 

are not long enough to be sensitive to endogenous expression levels of a toxic ARS allele; further 

work with established pathogenic ARS alleles is required to determine if these morphological 

phenotypes can be reproduced with knock-in models. It will also be informative to determine if 

homozygosity for partial loss-of-function alleles can also produce these aberrant morphologies. 

If so, this would demonstrate that a loss of ARS function can cause morphological defects in 

GABA-ergic neurons, which would support a dominant-negative mechanism for the dominant 

alleles that produce these same defects. However, homozygosity R433H tars-1 did not produce 

this phenotype (Figure 3.7C), indicating that testing this hypothesis may require variants with a 

more significant impact on ARS function. 

 

Although modeling G541R in mouse Tars1 did not provide evidence that TARS1 alleles can cause 

dominant peripheral neuropathy, the homozygous lethal nature of G541R (and of F538Kfs*4) 

answers a different critical question. Threonyl-tRNA synthetase is unique among the ARS gene 

family; in addition to the gene encoding the cytoplasmic enzyme (TARS1) and the gene encoding 

the mitochondria enzyme (TARS2), there is a third paralog, TARS3 (Tarsl2 in mouse). TARS3 likely 

arose from a duplication event in eukaryotic history, and is found across mammalian species, as 

well as in birds and houseflies.428 Mouse Tars1 and Tarsl2 share 76.4% identity across all domains 

except the N-terminal extension, which is only 10.3% identical.429 Although Tarsl2 has not been 

fully characterized, it is reported to be ubiquitously expressed in mouse, localized to both the 

cytoplasm and the nucleus, and capable of charging tRNA with threonine in vitro.429 Although 

there is no known genetic redundancy for any cytoplasmic or mitochondrial ARS, redundancy 

between TARS1 and TARS3 had not been tested prior to this dissertation. If there was redundancy, 

we would not expect TARS1 variants to cause recessive disease. Our studies address this question 

by demonstrating that homozygosity for either of two loss-of-function Tars1 alleles (G541R or 

F538Kfs*4) is incompatible with life, indicating that Tarsl2 cannot fully compensate for loss of 

Tars1. It remains to be seen whether Tarsl2 might partially compensate, perhaps extending the 
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viability of homozygous null Tars1 embryos in utero. Regardless, if this threonyl-tRNA synthetase 

duplication has remained intact over mammalian evolution but is not redundant with Tars1, it may 

have acquired other non-canonical activities in the cell. The function of TARS3 should be the 

subject of future investigation. 

 

Finally, we identified a hypomorphic Tars1 allele (R433H) and, after determining that it reduced 

gene function in yeast and worm, used it to generate a mouse model of Tars1-mediated recessive 

phenotypes. Preliminary investigation of mice that are compound heterozygous for R433H and the 

null allele F538Kfs*4 revealed that these mice frequently die at birth without air in their lungs. 

Tars1R433H/F538Kfs*4 mice that survive are smaller than their littermates and develop hair loss in 

consistent patterns on their heads and upper back. Although additional work is required to further 

define these phenotypes, this model will be a valuable resource to investigate the effects of reduced 

Tars1 function across different cell populations, and provide mammalian tissues to investigate how 

reduced Tars1 function impacts protein translation. These future studies can inform the assessment 

of patients with recessive TARS1-mediated disease and aid efforts to develop therapies for ARS-

mediated recessive diseases more broadly. 

 

One possibility is that proteins with a particularly high threonine content, such as mucins, are 

especially sensitive to decreased Tars1 activity. This could lead to defects in the tissues that rely 

heavily on these proteins, such as the lung. Interestingly, the gut is also dependent on mucin 

synthesis.412 Although preliminary investigation of gut histology in P0 mice did not identify any 

changes in PAS signal, a careful analysis of gut mucin production should be included in future 

characterizations of this mouse. Another possibility is that decreased Tars1 activity reduces global 

protein translation by triggering phosphorylation of eIF2α. This might affect cells with a high 

demand for protein translation, such as differentiating stem cells. For example, if aging hair follicle 

stem cells cannot properly translate the proteins required for differentiation, this may explain a 

failure to regrow hair in the adult Tars1R433H/F538Kfs*4. These possibilities are further discussed in 

Chapter 5. 

 

Overall, research described in this Chapter has demonstrated the efficacy of using a tiered model 

organism approach to predict the pathogenicity of TARS1. Although it is still unclear whether 
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variants in TARS1 can cause dominant peripheral neuropathy, the lessons learned from studying 

G541R TARS1 will pave the way for future iterations of this process. Additionally, this work 

provides a template for predicting the pathogenicity of any ARS gene that has not yet been 

implicated in dominant or recessive disease, and for building the appropriate model systems to 

further investigate the mechanisms of these dominant or recessive phenotypes. 
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Chapter 4  
Testing Neuropathy-Associated AARS1 Alleles for a Dominant-

Negative Effect  
 

4.1 Introduction 
 

Hereditary peripheral neuropathies are a group of phenotypically and genetically heterogeneous 

clinical phenotypes. These diseases are characterized by decreased sensory and/or motor neuron 

function in the distal extremities. This leads to sensory loss and muscle atrophy, which often 

begins in the feet and lower leg muscles and may progresses to include the hands and forearms 

of the upper extremities.285 If a genetic peripheral neuropathy is restricted to impaired motor 

neuron function, it is classified as distal hereditary motor neuropathy (dHMN).295 If the 

symptoms include both sensory and motor neuron dysfunction, it is classified as Charcot-Marie-

Tooth (CMT) disease.285 CMT disease can arise from a primary defect in the myelinating 

Schwann cells of the peripheral nervous system, which is classified as CMT Type I.287 These 

defects are usually caused by mutations in genes that are important for myelin production or 

function, such as PMP22, which encodes a critical component of the myelin sheath; mutations in 

PMP22 account for over half of CMT disease cases.430 Alternately, CMT disease can be caused 

by a primary defect in the axon of the peripheral neuron, classified as CMT Type 2. The most 

common form of CMT Type 2 is caused by mutations in MFN2, which accounts for 20-30% of 

CMT Type 2 cases.431 Like ARS genes, MFN2 is a ubiquitously expressed, essential gene 

required for a basic cellular function (mitochondrial fusion).290 Peripheral neurons are thought to 

be particularly sensitive to defects in MFN2, because mitochondrial function is required across 

the long axons of the peripheral neurons, including in distal regions of the axon like dendrites 

and synapses.290 
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Mutations in five aminoacyl-tRNA synthetases have been linked to dominant peripheral 

neuropathies: alanyl-(AARS1),106 histidyl-(HARS1),174 glycyl-(GARS1),160 tryptophanyl-

(WARS1),264 and tyrosyl-(YARS1) tRNA synthetases.432 In addition, methionyl-tRNA synthetase 

(MARS1) variants have been identified in patients with CMT disease216; however, there is not 

convincing genetic evidence for pathogenicity of these MARS1 alleles. It remains to be seen how 

many additional ARS genes will be implicated in dominant peripheral neuropathy. Defining the 

locus and allelic heterogeneity of this disorder will be critical both for patient diagnosis and 

defining disease mechanisms. 

 

As discussed in Chapter 1, bi-allelic ARS variants that reduce enzyme function cause recessive 

disorders that are early-onset and that affect multiple tissues.68,377 In some cases, the 

constellation of recessive phenotypes includes peripheral neuropathy,126,433,222 demonstrating that 

peripheral neurons are sensitive to reduced ARS function. However, this reduction of ARS 

function is likely greater than 50%, because heterozygosity for a null ARS allele is not sufficient 

to cause a highly penetrant peripheral neuropathy—null alleles are not found in CMT patient 

populations, but are found in individuals who, to the best of our knowledge, are unaffected. 

Additionally, mice that are heterozygous for a Gars null allele do not develop a peripheral 

neuropathy.69 Based on all of these observations, haploinsufficiency is unlikely to be the disease 

mechanism for ARS-associated dominant neuropathy. 

 

The pathogenic ARS variants linked to dominant peripheral neuropathy are exclusively missense 

mutations or small in-frame deletions; the absence of frameshift alleles and premature stop 

codons indicate that an expressed mutant protein is required for pathogenicity. It is possible that 

these missense alleles act as neomorphs, exposing novel binding interfaces that facilitate aberrant 

protein interactions and lead to dysregulated neuronal pathways (Section 1.3.5). However, if 

there is a common mechanism to explain the role of all five ARS enzymes implicated in 

dominant neuropathy, it is unlikely that all mutations will cause the same neomorphic 

interaction. Rather, any common mechanism would likely be related to the shared canonical role 

in tRNA charging. 
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One notable commonality is that all five enzymes function as homodimers in the cytoplasm. This 

raises the possibility of a dominant-negative mechanism, in which decreased function of the 

mutant subunit reduces the function of the wild-type subunit in the dimeric holoenzyme; this 

would lower the overall ARS activity in the cell below 50%. A dominant-negative mechanism 

requires: 1) the mutant allele to reduce protein function, 2) the mutant allele to be stably 

expressed, and 3) the mutant allele to interact with the wild-type allele, repressing its function. 

This mechanism is supported by an abundance of data showing that the majority of neuropathy-

associated ARS variants reduce enzyme activity.110,176,307,170,171,264,434 Pathogenic variants also do 

not appear to affect the abundance of ARS protein detected in patient cells,170,301,333,347 nor do 

they abolish dimerization176,264,300,350432; these observations are also consistent with a dominant-

negative mechanism. Furthermore, models have shown that pathogenic ARS variants impair 

protein translation,264,306,350 which is consistent with the expected decrease in tRNA charging 

resulting from a dominant-negative effect. However, no study has adequately, explicitly 

addressed a dominant-negative mechanism for ARS-related dominant neuropathy. Addressing 

this question will test for a unifying mechanism of disease for all five implicated dimeric ARS 

enzymes. It will also provide a relevant framework to assess the pathogenicity of newly 

identified variants in patients with ARS-related CMT disease.  

 

Here, we generated a yeast model to test human AARS1 variants for a dominant-negative effect. 

We focused on well-characterized alleles in two critical domains of the enzyme: the anti-codon 

binding domain (R329H)106 and the amino acid activation domain (G102R).109 We found that 

R329H and G102R AARS1, as well as three additional AARS1 variants, are dominantly toxic to 

yeast growth when co-expressed with wild-type AARS1. We then engineered a dimer-disrupting 

variant in the C-terminal domain and expressed it in cis with the pathogenic AARS1 variants. 

These double-mutants rescued the impaired yeast growth, demonstrating that the dominant 

toxicity of mutant AARS1 is dependent on dimerization with wild-type AARS1, and that these 

AARS1 variants can be classified as dominant-negative (or antimorphic) alleles.  

 

The author performed all experiments presented in this Chapter, with the important exception of 

assessing R326W, R329C, and R329S AARS1 for a dominant-negative effect (Figures 4.9 and 
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4.10), which was performed by Sheila Marte. Additionally, Dr. Mike Shy and Shawna Feely 

contributed clinical and genetic information on four additional individuals with AARS1 variants.  

 

4.2 Materials and methods 
 

4.2.1 Yeast complementation and dominant toxicity assays 

All yeast assays were performed using the ptetO7-ALA1 strain from the Yeast Tet-Promoters 

Hughes Collection (YSC1180-202219317, Horizon Discovery). AARS1 variants were generated 

using site-directed mutagenesis (Agilent QuikChange II XL Site-Directed Mutagenesis Kit) 

against the AARS1 open reading frame in pDONR221 (primer sequences found in the Appendix 

A). All clones were verified via Sanger sequencing to ensure that the desired mutation was 

generated and that no amplification errors were present. The Gateway cloning (Invitrogen) LR 

reaction was used to recombine the wild-type or mutant AARS1 locus into pAG425GAL-ccdB 

(Addgene #14153), which is a Gateway-compatible vector with a 2-micron origin of replication 

that produces a high vector copy number, a GAL1 promoter to drive high expression of the target 

gene in a galactose-inducible fashion, and a LEU2 auxotrophic marker.  

 

To assess the function of AARS1 variants independent of wild-type AARS1, a p413 vector 

(ATCC #87370) with no AARS1 insert (‘Empty’) was introduced into ptetO7-ALA1 using lithium 

acetate yeast transformation. The p413 vector contains a ADH1 promoter to drive constitutive 

expression of the target gene, a centromeric origin of replication to produce a low plasmid copy 

number per cell, and a HIS3 auxotrophic marker for selection. This transformation was followed 

by pAG425 expressing wild-type or mutant AARS1. Colonies were grown on media lacking 

histidine and leucine (DO Supplement -His/-Leu, Takara Bio) to select for the presence of both 

vectors. After transformation, colonies were grown in 2mL liquid media in a 14mL round-

bottom conical tube (Fisher Scientific) for two days at 30°C, shaking at 275 rpm until saturated. 

Yeast were then diluted to 1:10, 1:100, and 1:1000 in water. 10µl of serial dilutions were spotted 

on plates containing glucose, galactose/raffinose (Takara Bio Minimal SD Bases), or 

galactose/raffinose with 10µg/ml doxycycline (Fisher Scientific BP26531). Plates were imaged 

after four days of growth. 
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To assess the dominant toxicity of AARS1 variants in the presence of wild-type AARS1, Gateway 

Cassette C (Invitrogen) was cloned into the p413 vector just downstream of (3’ to) the ADH1 

promoter using the SmaI restriction site, then sequence verified to confirm correct orientation. 

The LR Gateway reaction was used to recombine wild-type AARS1 from pDONR221 into p413. 

This construct was transformed into the ptetO7-ALA1 strain, followed by AARS1 (wild-type or 

mutant) in the pAG425 vector. Yeast were grown and spotted as detailed above. 

Complementation and dominant toxicity assays were performed side-by-side with the same 

pAG425 plasmid aliquots to enable direct comparisons.  

 

4.2.2 Yeast protein isolation 

The ptetO7-ALA1 strain was transformed with mutant AARS1 in pAG425 and grown on media 

lacking leucine (DO Supplement -Leu, Takara Bio). One colony was picked and placed into 3mL 

media and grown for 2-3 days shaking at 275rpm at 30°C until saturated, reaching an optical 

density (OD600) of approximately 2. Yeast were then centrifuged at 1000xg for 10 minutes, 

washed once with water, transferred to a 1.5mL Eppendorf tube, then centrifuged at 15,000 rpm 

for 1 minute. The supernatant was removed and the pellet was stored at -80°C. The pellet was 

thawed in 150µl yeast lysis buffer (50mM Na-HEPES pH 7.5, 100mM NaOAc, 1mM EDTA, 

1mM EGTA, 5 mM MgOAc, 5% glycerol, 0.25% NP-40, 3 mM DTT) with 1X Halt Protease 

Inhibitor Cocktail (Thermo Fisher Scientific). Approximately 100µl of 0.5mm cold glass beads 

(Biospec Products) were added to each sample. Samples were vortexed at 4°C for three minutes, 

followed by two minutes resting on ice, followed by three additional minutes of vortexing at 

4°C. To remove the lysate from the beads, a 26-gauge needle (BD PrecisionGlide) was used to 

make a hole in the bottom of the 1.5mL tube, which was then immediately inserted into a 14mL 

round bottom conical tube. Lysates were centrifuged at 200xg at 4°C for 5 minutes. The lysates 

were collected from the bottom of the conical tube and transferred to a 1.5mL Eppendorf tube, 

then were centrifuged at 13,200 rpm for 5 minutes at 4°C. Supernatants were collected for 

measurement using the Thermo Scientific Pierce BCA Protein Assay kit, and 50µg of protein per 

sample was analyzed by Western blot (see below). 
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4.2.3 Co-immunoprecipitation of wild-type AARS1 and mutant AARS1 

The LR Gateway reaction was used to recombine the wild-type or mutant AARS1 open reading 

frame from pDONR221 into pDEST40 (Thermo Fisher Scientific) or pTM3xFLAG (gift from 

Moran Laboratory, University of Michigan). These vectors allowed differential tagging of the 

mutant and wild-type AARS1 alleles; wild-type AARS1-3xFLAG was expressed from 

pTM3xFLAG using a CMV promoter, and either wild-type or mutant AARS1-6xHis was 

expressed from pDEST40 using a CMV promoter. 100mm plates (Falcon) were seeded with 1.5-

2 million HEK293T cells; the following day, these were transfected with 0.5pmol plasmid using 

Lipofectamine 3000 (Invitrogen). 48 hours after transfection, cells were harvested using Trypsin-

EDTA (Gibco, Fisher Scientific) and centrifuged at 2000rpm for 2 minutes at 4°C. Cells were 

then washed once with 1X PBS (Thermo Fisher Scientific), centrifuged again (as above), and 

then resuspended in 1mL lysis buffer (20mM Tris-HCl pH 8, 137mM NaCl, 2mM EDTA, 

1%NP-40, 0.25% sodium deoxycholate) with 1X Halt Protease Inhibitor Cocktail (Thermo 

Fisher Scientific) for 2 hours rocking at 4°C. Samples were then centrifuged for 15 minutes at 

13,200 rpm at 4°C. The supernatant was collected and protein concentration was measured using 

the Thermo Scientific Pierce BCA Protein Assay kit.  

 

To conjugate beads with individual antibodies, 25µl of Dynabeads Protein G (Fisher Scientific) 

were aliquoted per sample. All immunoprecipitations were performed using a MagnaRack 

(Invitrogen). Each aliquot was washed twice with 500µl Conjugation Buffer (0.5% BSA, 0.1% 

Triton X-100 in PBS), then suspended in 500µl Conjugation Buffer with 2µg 6xHis antibody 

(abcam 18184) or 2µg FLAG antibody (BioLegend 637302). Beads and antibody were incubated 

overnight rocking at 4°C. 

 

Prior to immunoprecipitation, lysates were pre-cleared to remove any proteins with non-specific 

affinity for the magnetic beads. An additional 25µl of Dynabeads per sample was aliquoted and 

washed once with lysis buffer. Then, 1mg of cell lysate in 500µl lysis buffer was added to the 

beads and rocked at 4°C for two hours. Supernatant from the antibody-conjugated beads was 

then removed, and the pre-cleared lysates were added. Samples were incubated for 3 hours 

rocking at 4°C. For anti-6xHis IPs, samples were washed four times with 1mL High Salt Buffer 
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(10mM Tris-HCl pH 7.5, 400mM NaCl, 1 mM EDTA, 1mM EGTA, 0.5% NP-40). For anti-

FLAG IPs, samples were washed three times with 1mL Low Salt Buffer (10mM Tris-HCl pH 

7.5, 137mM NaCl, 1 mM EDTA, 1mM EGTA, 0.5% NP-40). On the last wash, samples were 

moved to fresh 1.5 mL tubes to prevent co-elution of proteins bound to the tube walls. Samples 

were re-suspended in 50µl wash buffer with 50µl 2x Tris Glycine Buffer (Invitrogen). 4µl BME 

was added before samples were boiled at 99°C for 5 minutes and the supernatant was collected 

for Western blot (see below). Samples were divided in half and loaded in duplicate for 

immunoblotting with anti-AARS1, anti-6xHis, or anti-FLAG. 

 

4.2.4 Disuccinimidyl suberate crosslinking experiments 

To determine the degree of AARS1 dimerization in patient cells, AARS1 protein was crosslinked 

with disuccinimidyl suberate (DSS) and analyzed by Western blot. Patient and control fibroblasts 

were grown at 37°C in 5% CO2 and standard growth media (DMEM supplemented with 10% 

FBS, 2mM L-glutamine, 100U/mL penicillin, and 50ug/mL streptomycin [Invitrogen]). 

Approximately 1 million cells were harvested from each sample with Trypsin-EDTA (Gibco, 

Fisher Scientific) and centrifuged at 2,000 rpm for 2 minutes at 4°C. They were then washed 

once with 1X PBS (Thermo Fisher Scientific), transferred to a 1.5mL tube, and centrifuged again 

(as above). Cells were then re-suspended in 50mM HEPES 0.5% NP-40. The sample was 

divided in two, and 50mM DSS (Thermo Fisher Scientific) was added to one aliquot to a final 

concentration of 5mM. Both aliquots were incubated at room temperature for 30 minutes. The 

crosslinking reaction was then quenched with a final concentration of 30mM TrisCl pH 7.5 at 

room temperature for 15 minutes. Samples were centrifuged at 13,200 rpm for 10 minutes at 

4°C, and the supernatant was collected for Western blot analysis (see below). 20µg protein was 

analyzed for each sample. AARS1 antibody (Bethyl Laboratories A303-473A) was used at a 

dilution of 1:500. 

 

4.2.5 Co-immunoprecipitation of wild-type ALA1 and wild-type AARS1 

To investigate an interaction between yeast ALA1 and human AARS1, co-immunoprecipitation 

experiments were performed. First, the endogenous yeast ALA1 coding sequence was amplified 
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from a previously published107 pDONR221 clone with or without a C-terminal 6xHis tag 

encoded in the reverse primer (see primer sequences in Appendix A). Then, Gateway cloning 

was used to recombine these constructs into p413 (see above). The ptetO7-ALA1 strain was 

transformed with p413 to express either 6xHis-tagged or untagged ALA1, then subsequently 

transformed with pAG425 to express either R329H or G757* human AARS1. Colonies were 

grown for 2-3 days until saturated in -leu -his liquid glucose growth medium, then washed in 

water and re-suspended in 125-250mL -leu -his galactose liquid culture (Takara Bio Minimal SD 

Bases, Takara Bio DO Supplement -His/-Leu). Cultures were grown to saturation, then 

centrifuged at 1000xg at 4°C for 20 minutes. Yeast were washed with water and aliquoted evenly 

into 4-5 1.5mL tubes, where they were centrifuged at 15,000 rpm for 1 minute. The supernatant 

was removed, and pellets were stored at -80°C. The pellets were thawed in Yeast Lysis Buffer 

(50mM Na-HEPES pH 7.5, 100mM NaOAc, 1mM EDTA, 1mM EGTA, 5 mM MgOAc, 5% 

glycerol, 0.25% NP-40, 3 mM DTT) with 1X Halt Protease Inhibitor Cocktail (Thermo Fisher 

Scientific). Approximately 100µl of buffer was used for each 100mg of pellet. Cells were lysed 

using the methods detailed above (Section 4.2.2). 

 

25µl of Dynabeads Protein G (Fisher Scientific) were prepared for each of the samples. Beads 

were washed twice with 500µl Conjugation Buffer (0.5% BSA, 0.1% Triton X-100 in PBS), then 

re-suspended in 500µl buffer and 2µg anti-AARS (ab226259). Beads and antibody were 

incubated overnight rocking at 4°C. Yeast cell lysates were pre-cleared before 

immunoprecipitation: 25µl of magnetic beads were aliquoted and washed once with lysis buffer, 

before 2mg of yeast lysate in a total of 500µl lysis buffer was added. Samples were rocked at 

4°C for 1 hour. The supernatant was then removed from antibody-conjugated beads and replaced 

with the pre-cleared lysates. These were rocked for 2.5 hours at 4°C. After incubation, they were 

washed once with 500µl lysis buffer, once with 200µl lysis buffer, and then re-suspended in 

100µl lysis buffer before being transferred to a fresh 1.5mL Eppendorf tube. The supernatant 

was then removed, and beads were suspended in 25µl lysis buffer and 25µl 2x Tris Glycine 

Buffer (Invitrogen). Samples were boiled for 5 minutes with 2µl BME, and supernatants were 

removed to analyze in western blot assays.  
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4.2.6 Western blot analyses 

To assess the levels of specific proteins in each experiment we performed western blot analyses. 

Protein concentrations for each sample were measured using the Thermo Scientific Pierce BCA 

Protein Assay kit. Samples were prepared with 1X Novex Tris-Glycine SDS sample buffer 

(Invitrogen) and 2-mercaptoethanol (BME), and boiled at 99°C for 5 minutes. Protein samples 

were separated on precast 4-20% Novex Wedgewell Tris-glycine gels (Invitrogen) at 150V for 1 

hour and 15 minutes. PVDF membranes (Millipore Sigma) were pre-washed in 100% methanol 

for 1 minute, then soaked in 1X transfer buffer (Invitrogen) and 10% methanol between two 

pieces of filter paper (Thermo Fisher Scientific). The separated protein samples were transferred 

to the PVDF membranes using a Mini Trans-Blot Electrophoretic Transfer Cell (Biorad) at 100V 

for 1 hour. Membranes were then blocked for 1 hour with a 5% milk powder solution in 1X 

TBST. Primary antibodies were applied in 5% milk powder and membranes were incubated by 

rocking overnight at 4°C. The following day, membranes were washed three times with 1X 

TBST. Secondary antibodies against mouse (for the 6xHis primary antibody and PGK1 primary 

antibody), rabbit (for the AARS1 primary antibody and actin primary antibody), or rat (for the 

FLAG primary antibody) (Licor) were diluted in 5% milk powder solution at a concentration of 

1:20,000, along with 0.1% Tween-20 and 0.02% SDS. This solution was applied to membranes 

for one hour, rocking at room temperature. Membranes were then washed three times with 1X 

TBST before exposure using a Licor Odyssey CLx Imaging System. 

 

For yeast protein and HEK293T co-immunoprecipitation experiments, the AARS1 antibody 

(Bethyl Laboratories A303-473A) was used at 1:1,000 dilution. For fibroblast DSS assays, the 

same AARS1 antibody was used at 1:500 dilution. For HEK293T and yeast co-

immunoprecipitation experiments, the 6xHis antibody (abcam 18184) was used at a dilution of 

1:3,000. The FLAG antibody (BioLegend 637302) was used at a 1:2,500 dilution. The loading 

control was actin (Sigma A5060, 1:5,000) for mammalian protein blots and PGK1 (ab113687, 

1:3,000) for yeast protein blots. For co-immunoprecipitation studies of AARS1 and ALA1, the 

AARS1 antibody used was ab226259 at 1:500. Full length images of western blots are available 

in Appendix B. 
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4.3 Results 
 

4.3.1 Pathogenic AARS1 alleles suppress yeast cell growth in the presence of wild-type AARS1 

Yeast complementation assays have been successfully used to assess the effect of ARS variants 

on gene function.307 However, yeast have not been used to determine the effect of ARS variants 

in the presence of the wild-type allele, which is important for defining the mechanism of 

dominant ARS-related neuropathy. To investigate the dominant toxicity of AARS1 variants, we 

developed an assay to assess the combined effects of human wild-type AARS1 and human mutant 

AARS1 on yeast viability, using the ptetO7-ALA1 strain. In this strain, the yeast AARS1 ortholog, 

ALA1, is placed under control of a doxycycline-repressible promoter.435 This strain was 

transformed with: (1) a low-copy number, centromere-bearing vector (p413) containing a wild-

type AARS1 allele; and (2) a high-copy number vector (i.e., bearing a 2 micron origin of 

replication) with a galactose-inducible promoter (pAG425) directing high levels of expression of 

a mutant AARS1 allele (Figure 4.1B). Although this does not reflect the approximately equal 

allelic expression in human cells, we expect that high levels of mutant AARS1 are required to 

detect a dominant toxic effect in yeast cells, which are less likely to be sensitive to defects in 

AARS1 than a human peripheral nerve axon. To test mutant AARS1 alleles for a dominant toxic 

effect, yeast cells were grown in the presence of galactose (to express mutant AARS1) and 

doxycycline (to repress endogenous ALA1). Subsequent yeast growth was then solely dependent 

on the two forms of human AARS1: one wild-type and one mutant. 

 

To evaluate neuropathy-associated AARS1 variants for a dominant-negative effect, we focused 

on two well-characterized pathogenic AARS1 variants, R329H and G102R. R329H is a recurrent 

mutation in the tRNA binding domain that has been identified in 9 families with CMT disease 

(Table 2.1). It affects a highly conserved residue, and significantly impairs AARS1 enzymatic 

function when assessed in an in vitro aminoacylation assay that evaluates enzyme activity under 

Michaelis-Menten conditions.107 The G102R variant affects a highly conserved residue in the 

activation domain of AARS1 and was found in a family with dominant myeloneuropathy. Both 

G102R109 and R329H107 have been modeled at conserved codons in the yeast ortholog ALA1, and 

were unable to support yeast growth, indicating a loss-of-function effect in vivo. To distinguish 
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Figure 4.1. Yeast expression of human wild-type or mutant AARS1. 
 
(A) Cartoon of the AARS1 protein structure, with the junction between the editing domain (blue) 
and the C-terminal domain (pink) magnified. A chromatogram illustrates the five base pair 
insertion introduced at this junction to create a premature stop codon, G757*. This insertion also 
shifts the open reading frame to generate another stop codon 13 amino acids downstream. (B)  
Western blot of yeast protein lysates, from yeast expressing: an empty p413 vector or wild-type 
AARS1 from p413 (left); wild-type or mutant AARS1 from pAG425 (right). The top blot was 
probed with an antibody against AARS1, and the bottom with an antibody against the yeast 
housekeeping gene PGK1. Full-length AARS1 is predicted to migrate at 107kDa. The lower 
band likely corresponds to a downstream open-reading frame beginning at M44, which is 
predicted to produce a 102kDa AARS1 protein. A representative image from four biological 
replicates is shown 
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any dominant-negative properties of these variants from a purely loss-of-function effect, we also 

generated a premature stop codon, G757* (Figure 4.1A), which does not generate detectable 

levels of AARS1 protein (Figure 4.1B). Therefore, it is expected to be a loss-of-function allele 

that does not exert dominant-negative effects. This is a more precise negative control than an 

empty vector because it includes the AARS1 coding sequence, meaning yeast transformed with 

the G757* allele must replicate and express an almost identical vector as yeast expressing the 

G102R or R329H alleles. 

 

To confirm that R329H and G102R are loss-of-function alleles when tested in the human AARS1 

coding sequence, ptetO7-ALA1 yeast were first transformed with an empty p413 vector, then 

with either wild-type or mutant human AARS1 expressed from the GAL1 inducible promoter on 

pAG425. When plated on galactose and doxycycline, yeast expressing G757* did not form 

colonies (Figure 4.2A), indicating that yeast cannot grow without ALA1 expression or functional 

AARS1. Transformation with wild-type AARS1 lead to robust yeast growth, confirming that wild-

type AARS1 can complement loss of ALA1. Neither G102R AARS1 nor R329H AARS1 

supported yeast growth (Figure 4.2A), confirming previous reports that these are loss-of-function 

alleles.107,109  

 

To test for dominant toxicity, ptetO7-ALA1 yeast cells were transformed with wild-type AARS1 

on the low-copy p413 vector, then with wild-type or mutant AARS1 on the high-copy, glactose-

inducible pAG425 vector. Transformed strains were spotted on galactose (to induce expression 

from the pAG425 vector) and doxycycline (to repress ALA1 expression). The combination of 

wild-type AARS1 and G757* AARS1 supported growth, as did the combination of the two wild-

type AARS1 plasmids (Figure 4.2B). Importantly, over-expressing the G757* variant—a loss-of-

function AARS1 allele that does not lead to detectable protein (Figure 4.1B)—does not interfere 

with yeast growth. Similarly, over-expressing wild-type human AARS1 does not interfere with 

yeast growth. In contrast, the combination of wild-type AARS1 with G102R AARS1, and the 

combination of wild-type AARS1 with R329H AARS1, both caused significantly reduced yeast 

growth (Figure 4.2B). This demonstrates that these alleles are not only loss-of-function but also 

dominantly toxic to yeast cell growth, even in the presence of wild-type AARS1. This toxicity is 

at least partially rescued by restoring ALA1 expression (Figure 4.3A, 4.3B), which suggests that  



 136 

 
 
 
Figure 4.2. G102R and R329H AARS1 are loss-of-function, dominantly toxic alleles in 
yeast. 
 
(A) Images of yeast strains expressing an empty p413 vector and (plated left to right) G757*, 
wild-type, G102R, or R329H AARS1 from a galactose-inducible, high copy number vector 
(pAG425). The top panel shows yeast spotted in 1:10 serial dilutions on glucose media lacking 
histidine and leucine. The bottom panel shows yeast spotted in 1:10 serial dilutions on galactose 
and raffinose media lacking histidine and leucine, with 10µg/mL doxycycline.  (B) Images of 
yeast strains expressing wild-type AARS1 from p413, a low copy number vector with an ADH1 
promoter. These strains also express (plated left to right) G757*, wild-type, G102R, or R329H 
AARS1 from pAG425. The top panel shows 1:10 serial dilutions on glucose media lacking 
histidine and leucine. The bottom panel shows 1:10 serial dilutions on galactose and raffinose 
media lacking histidine and leucine, with 10µg/mL doxycycline. For both (A) and (B), 13 (for 
G102R) or 16 (for R329H) biological replicates were performed. 
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Figure 4.3. ALA1 interacts with R329H AARS1. 
 
(A) Images of yeast strains expressing an empty p413 vector and G757*, wild-type, G102R, or 
R329H AARS1 from pAG425. (B) Representative images of yeast strains expressing a wild-type 
AARS1 from p413 and G757*, wild-type, G102R, or R329H AARS1 from pAG425. For (A) and 
(B), strains are spotted in 1:10 serial dilutions on galactose and raffinose media lacking histidine 
and leucine. These plates do not contain doxycycline to repress ALA1 expression. 13 (for 
G102R) or 16 (for R329H) biological replicates were performed. (C) Western blot of yeast lysate 
from strains expressing R329H or G757* AARS1, with 6xHis-tagged ALA1 or untagged ALA1 
(left). To the right, a western blot of immunoprecipitated AARS1 and co-immunoprecipitated 
ALA1-6xHis. Primary antibodies include anti-AARS1, anti-6xHis, and anti-PGK1 as the Input 
loading control. A representative image from two technical replicates is shown. 
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the dominant toxicity associated with R329H and G102R AARS1 is due to reduced alanine-tRNA 

charging. Interestingly, ALA1 does not fully rescue the toxicity of R329H. This may be related to 

the observation that human R329H AARS1 interacts with wild-type yeast; immunoprecipitation 

of R329H AARS1 co-immunoprecipitates 6xHis-tagged ALA1 (Figure 4.3C). This interaction is 

consistent with R329H AARS1 acting as a dominant-negative allele against ALA1. 

 

4.3.2 Pathogenic AARS1 variants do not significantly reduce dimerization 

The data presented in Figure 4.2 demonstrate that the pathogenic, loss-of-function G102R and 

R329H AARS1 variants are dominantly toxic to yeast cell growth; however, this experiment does 

not distinguish between a dominant-negative effect and some gain-of-function toxicity unrelated 

to AARS1 function. To directly test for a dominant-negative effect, we first investigated if 

mutant AARS1 dimerizes with wild-type AARS1. Ultracentrifugation analyses have 

demonstrated that isolated mutant ARS proteins retain homo-dimerization176,300,350; however, no 

studies have addressed hetero-dimerization between the AARS1 mutant and wild-type subunits. 

To address this, HEK293T cells were transfected with a vector expressing wild-type human 

AARS1 with an in-frame 3xFLAG tag, and a vector expressing wild-type or mutant AARS1 

(G102R or R329H) with an in-frame 6xHis tag (Figure 4.4A). After growth for 48 hours, cells 

were lysed and AARS1-6xHis was immunoprecipitated. Co-immunoprecipitated proteins were 

subjected to a western blot with an anti-FLAG antibody to detect AARS1-3xFLAG. The 

reciprocal immunoprecipitation was also performed, by immunoprecipitating AARS1-3xFLAG 

and immunoblotting for AARS1-6xHis. Both approaches detected comparable interactions 

between wild-type and wild-type, wild-type and G102R, and wild-type and R329H (Figure 4.4B 

and 4.4C). To assess dimerization of endogenous AARS1 in patient cells, fibroblasts from a 

patient heterozygous for R329H AARS1 were crosslinked with disuccinimidyl suberate (DSS), 

along with two independent control fibroblast cell lines. In untreated lysates (-DSS), AARS1 is 

detected between 100 and 130 kDa. In DSS-treated lysates, there is an additional band that 

migrates between the 130kDa and 250kDa markers, consistent with a dimeric AARS1 protein 

(Figure 4.5A). The percentage of AARS1 in dimeric form was not significantly different 

between control and patient cell lines (Figure 4.5B). Combined, these data indicate that mutant  
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Figure 4.4. R329H and G102R do not impair dimerization with wild-type AARS1. 
 
(A) (Top) Cartoon of plasmid expressing wild-type AARS1 tagged with 3xFLAG and plasmid 
expressing wild-type or mutant AARS1 tagged with 6xHis. (Bottom) Western blot of HEK293T 
cells expressing wild-type AARS1-3xFLAG and/or wild-type, G102R, or R329H AARS1-6xHis. 
(B) Western blot demonstrating immunoprecipitation of 6xHis-tagged AARS1 protein and co-
immunoprecipitation of 3xFLAG-tagged wild-type AARS1. Five biological replicates were 
performed for R329H; three biological replicates were performed for G102R. (C) Western blot 
demonstrating immunoprecipitation of 3xFLAG-tagged wild-type AARS1 and co-
immunoprecipitation of 6xHis-tagged wild-type, G102R, or R329H AARS1. Two biological 
replicates were performed for both G102R and R329H. Primary antibodies include anti-FLAG, 
anti-6xHis, anti-AARS1 and anti-actin as the Input loading control.  
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Figure 4.5. Chemical crosslinking of AARS1 in patient fibroblast cells. 
 
(A) Western blot of fibroblast lysates from a R329H/+ AARS1 individual and two +/+ controls. 
Lysates were crosslinked with DSS treatment (+DSS) or left untreated (-DSS), then separated on 
a gel and probed with an anti-AARS1 antibody. An image of the full blot is shown. (B) The 
percentage of AARS1 signal corresponding to the dimeric form of AARS1, quantified with 
ImageJ. The mean and standard deviation of four technical replicates is shown. Unpaired t-tests 
with Welch’s correction were performed to determine if there was a statistically significant 
difference between R329H/+ cells and either of the two wild-type controls. ns = not significant.  
  



 141 

AARS1 proteins retain the ability to dimerize with wild-type AARS1, which is required for a 

dominant-negative effect. 

 

4.3.3 Designing dimer-disrupting AARS1 variants 

A dominant-negative mechanism for ARS variants requires an interaction between the wild-type 

and mutant subunits of the homodimer. Therefore, if neuropathy-associated AARS1 alleles 

function via a dominant-negative effect, placing a dimer-disrupting variant in cis with a 

dominant pathogenic variant should impair its ability to bind to the wild-type subunit. This 

should alleviate the dominant-negative effect and, in yeast, rescue the impaired growth. To 

identify dimer-disrupting variants, a series of deletions were designed in the C-terminal 

dimerization domain based on the published crystal structure.30 These engineered deletions 

targeted amino acids that have multiple contacts with the opposite subunit (Figure 4.6A, left). 

This series comprised a seven amino acid deletion to encompass several contact points 

(∆KNVGCLQ) as well as smaller deletions within or near this region for a more targeted 

approach (∆NVG and ∆QE). This series also included a deletion of C947, a cysteine residue that 

forms a putative disulfide bond with C773 on the opposite subunit30. Finally, a stop codon at 

Q855 was designed to ablate the entire terminal globular domain (Figure 4.6A, right). The panel 

of putative dimer-disrupting AARS1 alleles were cloned into the pAG425 vector and transformed 

into the ptetO7-ALA1 yeast strain, then tested for their ability to support yeast growth in a 

complementation assay, with the expectation that dimerization is required for AARS1 function.  

 

None of the deletions fully complemented loss of ALA1, indicating that they all reduce AARS1 

function, consistent with impaired dimerization and/or decreased protein expression (Figure 

4.6B). To distinguish between these two possibilities, each allele was also evaluated for an effect 

on AARS1 expression. The ∆NVG allele lead to no detectable AARS1 protein, providing an 

explanation for its failure to complement in yeast. The C947 deletion significantly reduced 

AARS1 expression (Figure 4.6C) but still showed partial complementation in yeast, indicating 

that the C947 residue may be more important for stability than for AARS1 function. The deletions 

∆KNVGCLQ and ∆QE also reduced AARS1 expression (Figure 4.6C) and lead to less yeast 

growth than ∆C947 (Figure 4.6B), suggesting that these deletions reduce dimerization as well as  
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Figure 4.6. Designing and testing a deletion series in AARS1 dimerization domain. 
 
(A) (Left) Crystal structure of the AARS1 C-terminal dimerization domain. One subunit is 
shown in green, the other in purple. Amino acid residues that contact the opposite subunit are 
shown in dark green or dark purple. The residues targeted in this assay are shown in pink and 
labeled. (Right) Illustration of the dimerization domain with the Q855* mutation. The dashed 
circles indicate the globular domain that is ablated by the premature stop codon. (B) Yeast strains 
expressing the negative control G757* AARS1, the positive control WT AARS1, or each of the 
five deletions designed in the dimerization domain. Yeast are spotted in 1:10 serial dilutions on 
galactose and raffinose media lacking leucine, with 10µg/mL doxycycline. A representative 
image of four biological replicates is shown. (C) Western blot of yeast lysates from each of the 
dimerization deletion strains. Yeast were grown in galactose and raffinose media lacking leucine, 
with no doxycycline. Blots were treated with anti-AARS1 antibody or anti-PGK1 antibody. A 
representative image of three biological replicates is shown. 
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protein abundance. Only the globular domain deletion Q855* produced a loss-of-function protein 

with no detectable decrease in protein levels. This made it an ideal candidate to test for reduced 

dimerization. Overall, these data demonstrate that the dimerization domain of AARS1 is 

important for both the stability and the function of the protein, indicating that AARS1 must form 

a homodimer to successfully charge tRNA.   

 

To test if Q855* reduces binding to wild-type AARS1, HEK293T cells were transfected with 

wild-type AARS1-3xFLAG and either wild-type or Q855* AARS1-6xHis (Figure 4.7A). 

Immunoprecipitation of wild-type AARS1-6xHis co-precipitated wild-type AARS1-3xFLAG, 

indicating an interaction between the two tagged wild-type subunits (Figure 4.7B). However, 

immunoprecipitation for Q855* AARS1-6xhis did not co-precipitate wild-type AARS1-3xFLAG 

(Figure 4.7B), indicating that the Q855* truncation reduces binding to the wild-type AARS1 

protein. These findings were supported by performing the reciprocal experiment. Here, 

immunoprecipitation of wild-type AARS1-3xFLAG co-immunoprecipitated wild-type AARS1-

6xhis (Figure 4.7C). However, wild-type AARS1-3xFLAG did not co-immunoprecipitate Q855* 

AARS1-6xhis (Figure 4.7C).  These data demonstrate that the engineered Q855* AARS1 variant 

reduces interactions with wild-type AARS1 and confirms that the C-terminal globular domain is 

required for dimerization.   

 

4.3.4 Reducing the dimerization capacity of pathogenic AARS1 alleles rescues yeast growth 

If G102R or R329H AARS1 reduce yeast growth through a dominant-negative mechanism, then 

impairing their ability to dimerize with wild-type AARS1 should rescue yeast growth. To test 

this, the Q855* mutation was introduced in cis with either G102R or R329H using site-directed 

mutagenesis. These double mutants were then cloned into pAG425 and transformed into the 

ptetO7-ALA1 strain. Both G102R+Q855* AARS1 and R329H+Q855* AARS1 produced a stable, 

truncated AARS1 protein (Figure 4.8A). Complementation assays studying G102R+Q855* 

AARS1 and R329H+Q855* AARS1 in the presence of an empty p413 vector showed no yeast 

growth, consistent with the double-mutants acting as loss-of-function alleles (Figure 4.8B). 

These alleles were then tested in the presence of wild-type AARS1 expressed from the p413 

vector. As before, neither the control allele G757* AARS1 nor wild-type AARS1 repressed 
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Figure 4.7. Q855* AARS1 impairs dimerization with wild-type AARS1. 
 
(A) (Top) Cartoon of plasmid expressing wild-type AARS1 tagged with 3xFLAG and plasmid 
expressing wild-type or Q855* AARS1 tagged with 6xHis. (Bottom) Western blot of HEK293T 
cells expressing wild-type AARS1-3xFLAG and/or wild-type or Q855* AARS1-6xHis. (B) 
Western blot showing immunoprecipitation of 6xHis-tagged AARS1 protein and co-
immunoprecipitation of 3xFLAG-tagged wild-type AARS1. ImageJ quantification of anti-FLAG 
band intensity is shown above. Bars indicate the mean value and one standard deviation for 3 
biological replicates. (C) Western blot showing immunoprecipitation of 3xFLAG-tagged wild-
type AARS1 protein and co-immunoprecipitation of 6xHis-tagged AARS1. ImageJ 
quantification of anti-6xHis band intensity is shown above. Bars indicate the mean value and one 
standard deviation for 3 biological replicates. For (A)-(C), primary antibodies include anti-
FLAG, anti-6xHis, anti-AARS1 and anti-actin as the Input loading control. Unpaired t-tests were 
performed to determine if the difference in band intensity between samples was statistically 
significant. **** p<0.0001, *** p<0.001, ** p<0.01, * p<0.05. 
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Figure 4.8. Reducing dimerization of G102R and R329H with wild-type AARS1 rescues 
yeast growth. 
 
(A) Western blots of yeast lysates from yeast expressing the negative control G757* AARS1, the 
positive control WT AARS1, G102R AARS1 alone or in cis with Q855*, or R329H AARS1 alone 
or in cis with Q855*. Yeast were grown in galactose and raffinose media lacking leucine, with 
no doxycycline. Representative images were selected from three biological replicates. Blots were 
treated with anti-AARS1 antibody and anti-PGK1 antibody as a loading control. (B) Yeast 
strains expressing an empty 413 vector and wild-type or mutant AARS1 from pAG425. (C) 
Yeast strains expressing wild-type AARS1 from p413, and wild-type or mutant AARS1 from 
pAG425. For (B) and (C), strains were spotted in a 1:10 dilution on galactose and raffinose 
media lacking histidine and leucine, with 10µg/mL doxycycline. Representative images from 8 
biological replicates are shown. 
  



 146 

yeast growth, and both G102R AARS1 and R329H AARS1 repressed yeast growth. However, 

placing Q855* in cis with either G102R or R329H AARS1 ameliorated the phenotype and 

rescued growth. This rescued growth was comparable to the growth of yeast expressing the non-

toxic control alleles G757* or wild-type AARS1 (Figure 4.8C). These in vivo data demonstrate 

that disrupting the dimerization of G102R or R329H AARS1 with wild-type AARS1 is sufficient 

to rescue the dominant toxic phenotype, and shows that this phenotype is a result of mutant 

AARS1 dimerizing with wild-type AARS1. In sum, our yeast and biochemical data provide 

evidence that neuropathy-associated AARS1 alleles are loss-of-function variants that dominantly 

repress yeast growth through dimerization with the wild-type subunit; i.e. that they act via a 

dominant-negative mechanism. 

 

4.3.5 The AARS1 anticodon-binding domain is susceptible to dominant-negative mutations 

R329H AARS1 is a high-confidence pathogenic allele, as it has been identified in at least 46 

individuals across 9 families with dominant peripheral neuropathy (Table 2.1). This includes a 

newly identified family comprising three individuals, all with dominant axonal Charcot-Marie-

Tooth disease (Table 4.1). Therefore, characterizing R329H as a dominant-negative allele 

suggests that a dominant-negative effect is a relevant component of pathogenicity. If other 

AARS1 alleles with less robust genetic evidence—such as G102R—also have a dominant-

negative effect, this increases the likelihood that they too are pathogenic. To apply this 

dominant-negative assay to other AARS1 alleles, we first focused on a set of variants at the R329 

residue and the surrounding region. This includes R326W, a loss-of-function variant identified in 

a multi-generational family with CMT,110 and R329S, a recently identified variant in a patient 

with axonal neuropathy (Table 4.1). Interestingly, previous work by McLaughlin et al. identified 

a high degree of cytosine methylation in this area, making these nucleotides susceptible to 

cytosine deamination. This study predicted numerous missense variants that could arise from 

such CàT changes, including R326W and R329S, which have now both identified in 

individuals with dominant peripheral neuropathy.107 McLaughlin et al. also predicted that 

cytosine deamination could lead to the mutation R329C. Therefore, in addition to the now-

confirmed patient alleles, we included R329C in our functional studies with the hypothesis that it 

will be ultimately be identified in CMT patients. The R326W, R329S, and R329C variants were  
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Table 4.1. Clinical information of four additional patients with AARS1-mediated dominant peripheral neuropathy. 

 

Patient 
ID Gender Age Mutation 

Age 
of 

Onset 
CMTNS Vibration 

LL 
Vibration 

UL 
Cutaneous 

LL 
Cutaneous 

UL 

Ulnar 
DML 
(ms) 
<3.4 

Ulnar 
NCV1 
(m/s) 
>49 

Ulnar 
NCV2 
(m/s) 
>50 

Ulnar 
CMAP 
(mV) 
>2.8 

Median 
DML 
(ms) 
<3.5 

Median 
NCV 
(m/s) 
>48 

Median 
CMAP 
(mV) 
>3.5 

75872-
0001 Male 56 R329S 11 29 

(Severe) 

Absent 
toes, 

ankles, 
knees 

Absent 
fingers, 
reduced 
wrists 
and 

elbows 

Absent 
toes, 

ankles, 
knees 

Absent 
fingers, 
wrists 

4.4 24 23 0.323 NR NR NR 

75292-
0001 Male 76 R329H 56 11 (Low 

moderate) 

Reduced 
toes, 

ankles, 
knees 

Normal Normal Normal 3.2 39 42 9.3 5.4 39 5.4 

75292-
9001 Female 44 R329H 20 7 (Mild) 

Reduced 
toes, 

ankles, 
knees 

Normal Normal Normal 2.9 49 50 8 4.5 43 4.9 

75292-
0100 Male 72 R329H 25 11 (Low 

moderate) 

Absent 
toes, 

reduced 
ankles 

Normal Normal Normal 3.2 45 55 10.1 4.8 41 5.6 

 
CMTNS=CMT Neuropathy Score, LL=lower limb, UL=upper limb, DML=distal motor latency (upper limit of normal is 3.4 
milliseconds for the ulnar nerve and 3.5 milliseconds for the median nerve), NCV=nerve conduction velocity (lower limit of normal is 
49 or 50 meters per second for the ulnar nerve and 48 meters per second for the median nerve), CMAP = compound muscle action 
potential (lower limit of normal is 2.8 millivolts for the ulnar nerve and 3.5 for the median nerve). NR=no recording. 
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introduced into the AARS1 open reading frame with site-directional mutagenesis, then cloned 

into the galactose-inducible pAG425 expression vector and transformed into the ptetO7-ALA1 

yeast strain. G757* AARS1, R329H AARS1, and wild-type AARS1 were included as controls. To 

demonstrate that only pathogenic AARS1 alleles have a dominant toxic effect, G931S AARS1, a 

benign polymorphism found in the general population (with a gnomAD allele count of 

2,147/282,842, including 20 homozygous individuals334), was included as a negative control. As 

previously reported,110 R326W did not support yeast growth in the absence of ALA1 (Figure 

4.9A, top panel). Consistent with the functional importance of this region, R329S and R329C 

also did not support yeast growth (Figure 4.9A, top panel). G931S AARS1 supported yeast 

growth comparable to yeast expressing wild-type AARS1. These variants were then tested in the 

presence of the wild-type AARS1 allele expressed from p413. Similar to R329H and G103R, 

R326W, R329C, and R329S AARS1 repressed yeast growth compared to G757*, wild-type, or 

G931S AARS1 (Figure 4.9B, top panel). This shows that these three alleles also exert a dominant 

toxic effect. Notably, as was the case for G102R and R329H, this growth defect was improved 

when strains were plated on media with no doxycycline, which restores endogenous ALA1 

expression (Figure 4.9 A and B, bottom panels). This supporting the argument that the repressed 

growth phenotype is due to an alanine-tRNA charging defect.  

 

To determine if the toxicity of these alleles depends on their ability to dimerize with wild-type 

AARS1, the dimer-disrupting Q855* variant was introduced in cis with R326W, R329S, and 

R329C. These double-mutant alleles were transformed into yeast expressing wild-type AARS1 

from p413, and plated on galactose and doxycycline to express the double-mutant AARS1 allele 

and repress endogenous ALA1. Q855* rescued the yeast growth phenotype for all three variants 

(Figure 4.10B, top panel), indicating that R326W, R329S, and R329C exert their dominantly 

toxic effect through dimerization—i.e., they are also dominant-negative alleles. In sum with 

G102R and R329H, these experiments present convincing evidence that dominant pathogenic 

AARS1 alleles exert a dominant-negative effect. 
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Figure 4.9. R326W, R329C, and R329S AARS1 are dominantly toxic to yeast. 
 
(A) Yeast strains expressing an empty 413 vector and wild-type or mutant AARS1 from 
pAG425. The blue asterisks indicates the spot is diluted at 1:10,000; the orange asterisk indicates 
the spot is diluted at 1:1,000 (B) Yeast strains expressing wild-type AARS1 from p413, and wild-
type or mutant AARS1 from pAG425. For top panels of (A) and (B), strains were spotted in a 
1:10 dilution on galactose and raffinose media lacking histidine and leucine, with 10µg/mL 
doxycycline.  For bottom panels of (A) and (B), strains were spotted in a 1:10 dilution on 
galactose and raffinose media lacking histidine and leucine, with no added doxycycline to 
repress endogenous ALA1.  
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Figure 4.10. Reducing dimerization of R326W, R329C, or R329S AARS1 with wild-type 
AARS1 rescues yeast growth. 
 
(A) Yeast strains expressing an empty 413 vector and wild-type or mutant AARS1 from 
pAG425. (B) Yeast strains expressing wild-type AARS1 from p413, and wild-type or mutant 
AARS1 from pAG425. Blue asterisks indicate a spot is diluted at 1:10,000; orange asterisks 
indicate a spot is diluted at 1:1,000. For top panels of (A) and (B), strains were spotted in a 1:10 
dilution on galactose and raffinose media lacking histidine and leucine, with 10µg/mL 
doxycycline.  For bottom panels of (A) and (B), strains were spotted in a 1:10 dilution on 
galactose and raffinose media lacking histidine and leucine, with no added doxycycline. 
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4.4 Discussion 
 

Here, we present a humanized yeast assay to study the dominant toxicity of CMT-associated 

AARS1 alleles. We demonstrate that multiple pathogenic, loss-of-function AARS1 variants 

repress yeast growth when co-expressed with the wild-type AARS1 allele, indicating that they are 

dominantly toxic. We also show that these variants retain the ability to dimerize with the wild-

type AARS1 protein, and that disrupting this interaction by deleting critical dimerization 

residues from the mutant protein is sufficient to rescue the repressed yeast growth. This provides 

strong evidence that these pathogenic AARS1 alleles can act via a dominant-negative mechanism 

to repress the activity of wild-type AARS1. 

 

An important consideration when interpreting results from this model is that the allelic 

expression is intentionally skewed, with the pathogenic allele over-expressed relative to the wild-

type one. This does not accurately reflect the approximately equal expression in human tissues; 

therefore, any dominant-negative effects in patients are likely to be much weaker than those 

demonstrated here, and less likely to have such significant consequences for cell viability. 

However, this would be more consistent with the patients’ late-onset and tissue-restricted 

phenotype. A terminally differentiated peripheral neuron that must maintain local protein 

translation far from the soma may be particularly susceptible to even mild dominant-negative 

effects of an ARS mutation. To fully determine if a dominant-negative effect drives dominant 

AARS1-mediated peripheral neuropathy, a knock-in animal model (e.g., mouse or worm) with an 

axonal pathology is required. Then, a dimer-disrupting variant such as Q855* can be introduced 

in cis with the pathogenic allele to determine if this ameliorates the neuronal phenotype. 

 

It will also be important to adapt this dominant-negative yeast model to study other pathogenic 

variants in not only AARS1, but in GARS1, HARS1, YARS1, and WARS1. We hypothesize that 

these alleles will also produce dominant-negative effects, because these genes also encode homo-

dimeric ARS enzymes (Table 1.1). Although there has been recent debate30,348 as to whether 

AARS1 functions as a dimer or a monomer, the results of our study demonstrate that it functions 

as a dimer. The C-terminal dimerization domain (beginning at G757) that was previously 

reported to be dispensable for aminoacylation in vitro30 is likely required for AARS1 stability in 
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vivo; truncating the protein at this residue leads to undetectable levels of AARS1 protein when 

expressed in yeast cells. Furthermore, the globular domain beginning at Q855*, while not 

required for protein stability in yeast or mammalian cells, is required for AARS1 dimerization 

and for AARS1 complementation in yeast, suggesting that dimerization is required for AARS1 

function in vivo. Finally, chemically crosslinked AARS1 from human fibroblast cells is detected 

at two molecular weights, one corresponding to a monomeric form and one corresponding to a 

dimeric form. In total, these data indicate that the dimerization domain is necessary for AARS1 

function. 

 

Although we hypothesize that dominant-negative effects will be a common theme for dominant 

pathogenic ARS variants, it is possible that this is only one component of the disease 

mechanism. For instance, there are rare exceptions to the loss-of-function pattern seen in patient 

alleles—the E337K AARS1 variant increases rather than decreases AARS1 function, despite its 

proximity to dominant-negative anticodon-binding domain alleles.110 It will be important to 

carefully reconsider the genetic evidence for the pathogenicity of E337K AARS1, as well as to 

assess it for a similar dominant-toxicity in yeast. If E337K is dominantly toxic in this system, 

comparing protein translation in yeast expressing E337K AARS1 to protein translation in yeast 

expressing R329H AARS1 may provide insights into the pathogenic mechanism of E337K, as 

discussed in Section 5.2.1.  

 

It is important to point out that dominant-negative and gain-of-function effects are not mutually 

exclusive as causes for ARS-related neuropathy. Indeed, these two mechanisms may work in 

concert to exacerbate neuronal pathology. A recent study showed that the pathogenic AARS1 

variants N71Y, G102R, and R329H each cause a conformational change that enables binding to 

Neuropilin-1,348 a widely expressed receptor that modulates a variety of signaling pathways, 

which is critical for neurovascular development.362 However, although such an interaction might 

compound the damage in patient neurons, our yeast model proves that a neuronal-specific (or 

mammalian-specific) interaction is not required to make G102R or R329H toxic to cells.  

 

To the best of our knowledge, there have been few yeast systems developed to test human 

pathogenic variants for a dominant-negative effect; notable examples include reporter assays to 
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test for dominant-negative p53 mutations436,437 and enzymatic evaluation of yeast expressing 

dominant-negative UDP-galactose4-epimerase (GALE) alleles.346,438 Here, we describe a 

tractable yeast model for rapidly evaluating patient variants in aminoacyl-tRNA synthetase genes 

for a dominant-negative effect. This system is likely applicable beyond aminoacyl-tRNA 

synthetases, and should be considered when evaluating dominant-negative patient variants in any 

essential, highly conserved human gene.  
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Chapter 5  
Conclusions and Future Directions 

 

5.1 Summary 
 

Aminoacyl-tRNA synthetases (ARSs) are a family of enzymes that ligate tRNA to cognate 

amino acids, forming a critical substrate for protein translation. Research over the past two 

decades has implicated ARS-encoding genes in dominant and recessive human disease 

phenotypes. Due to their essential function, the complete loss of an ARS-encoding gene is 

incompatible with cellular life. However, bi-allelic ARS mutations that significantly decrease 

enzymatic function (but do not ablate it) cause a wide array of complex human phenotypes; 

partial loss of mitochondrial ARS function causes severe mitochondrial disorders, and partial 

loss of cytoplasmic ARS function causes multisystem disorders that can include central nervous 

system pathologies, liver failure, interstitial lung disease, and global developmental delay.68 The 

full range of genotypes and phenotypes for these recessive disorders is not yet fully defined. It is 

also unclear how reduced ARS function impacts protein translation and cellular health, or why 

some tissues seem to be more sensitive to mutations in certain ARS genes than others (for 

example, why variants in MARS1 predominantly cause lung phenotypes210).  

 

In addition to recessive diseases, there is strong genetic evidence to implicate five ARSs—

AARS1, GARS1, HARS1, YARS1, and WARS1—in dominant disease, which is restricted to axonal 

peripheral neuropathies. All five genes encode cytoplasmic, homodimeric enzymes (GARS1 also 

acts in the mitochondria).13 Mutations in these genes cause motor and/or sensory neuron 

degeneration that leads to muscle wasting in the distal extremities, which usually begins in 

adolescence or adulthood. Moving forward, it will be important to determine if other ARS genes 

can also cause dominant neuropathy or if there is something unique about the five loci already 
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implicated. This will be critical for improving patient diagnosis and may also provide insight into 

common disease mechanisms. For example, if the remaining homodimeric ARS enzymes—but 

no monomeric ones—are found to cause dominant peripheral neuropathy, this would suggest 

dimerization is required for the molecular pathology and support a dominant-negative disease 

mechanism. In parallel to gene discovery, it will be important to build appropriate disease 

models to directly test mechanistic hypotheses in vivo. This dissertation work addressed several 

of these objectives; the results are summarized below. 

 

5.1.1 Summary of Chapter 2 

In Chapter 2, we evaluate novel ARS variants for a role in recessive or dominant disease. These 

variants are often discovered through diagnostic exome sequencing, and it can be difficult to 

obtain a complete family history and ascertain if the variant segregates with disease. In this 

context, determining the variant’s impact on protein function contributes to determining 

pathogenicity. To assess patient variants in GARS1, HARS1, MARS1, NARS1, and TARS1, yeast 

complementation assays were performed using the human coding sequence of each gene. Here, 

the endogenous yeast ARS gene is effectively replaced with the human ARS. If the growth of 

yeast carrying the patient allele is reduced compared to the growth of yeast carrying the wild-

type human ARS, this indicates that the patient variant impairs gene function. 

 

Variants in GARS1, HARS1, MARS1, and NARS1 were identified in individuals with dominant 

peripheral neuropathies. In yeast complementation assays, these variants reduced yeast viability, 

indicating that they impaired gene function. This is consistent with the pattern of impaired 

function seen across most dominant ARS alleles,68,307 and supports the argument that these 

variants are pathogenic. This work expands the spectrum of pathogenic variants in GARS1 and 

HARS1, and in the case of NARS1, contributes towards implicating an additional homodimeric 

ARS in dominant peripheral neuropathy. However, some of the loss-of-function variants—

specifically, M236del NARS1, S356N HARS1, and A397T MARS1— have limited genetic 

evidence for pathogenicity, and require further investigation to confidently implicate them in 

disease.  
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In Chapter 2, we also investigate bi-allelic variants in MARS1 and TARS1, which were identified 

in patients with multisystem recessive diseases. Only one of two MARS1 alleles (detected in 

trans) significantly decreased yeast growth compared to wild-type. However, yeast 

complementation assays often cannot detect mild hypomorphic alleles. Moreover, because the 

patient phenotype was highly consistent with the established lung-predominant MARS1 

phenotype, it is likely that both MARS1 variants are pathogenic in this individual. Similarly, only 

one of the four tested TARS1 alleles reduced yeast growth. Since the individual is homozygous 

for this allele, it is likely that this deleterious variant is pathogenic. The other three TARS1 alleles 

require additional experiments in a more sensitive assay to resolve their role in disease. 

 

5.1.2 Summary of Chapter 3 

In Chapter 3, we describe a model organism pipeline to predict the pathogenicity of novel 

variants in a homodimeric ARS that had not been associated with disease—TARS1. A panel of 

mutations in TARS1 was designed to affect highly conserved residues, then tested for reduced 

function in a yeast complementation assay. Loss-of-function mutations were then prioritized for 

testing in C. elegans. Over-expression of G541R tars-1 caused GABA-ergic neuron defects, 

similar to those caused by known pathogenic HARS1 or AARS1 alleles. However, these neuronal 

defects were not recapitulated when G541R was knocked into the endogenous tars-1 locus. 

 

To determine if G541R TARS1 causes a peripheral neuropathy in a mammalian system, this 

variant was edited into the mouse Tars1 gene. Tars1G541R/+ mice were evaluated at 2 months, 5-6 

months, and 1 year of age. Although there were behavioral indications of neuromuscular defects, 

these were not reproducible, and nerve conduction amplitudes and velocities were normal. 

Western blots from mouse brain lysate showed that Tars1 abundance was decreased in 

Tars1G541R/+ mice compared to Tars1+/+ littermates, suggesting that G541R Tars1 is not fully 

stable. This likely accounts for the absence of neuromuscular phenotypes in these mice. There 

are also broader limitations in modeling an axonal length-dependent phenotype in mice. Mice 

have shorter peripheral neurons than humans, and might require an over-expression of toxic 

protein to produce a phenotype. Overall, experiments assessing TARS1 for a role in dominant 

peripheral neuropathy were inconclusive. 
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An additional loss-of-function allele, R433H TARS1, was identified in the initial yeast 

complementation assays. This allele partially supported yeast growth, indicating that it is 

hypomorphic. R433H was not dominantly toxic when over-expressed in C. elegans neurons, but 

did lead to gross phenotypic differences when edited into the endogenous tars-1 locus. 

Homozygous R433H/R433H tars-1 worms were significantly developmentally delayed and had 

locomotion defects. This indicated that R433H was a candidate for studying recessive 

phenotypes in a mammalian model, because it reduced protein function enough to produce a 

phenotype, but not enough to be lethal. This variant was generated in mouse Tars1 using 

CRISPR-Cas9 editing. Tars1R433H/R433H mice were grossly normal, and were mated to mice that 

were heterozygous for a null Tars1 allele (F538Kfs*4). One striking phenotype of 

Tars1R433H/F538Kfs*4 mice was a high incidence of neonatal mortality. Histopathology of these 

pups found that they had no air in their lungs, a thinner dorsal epidermis, and follicular 

hypoplasia. Tars1R433H/F538Kfs*4 mice that survived past this stage lived to adulthood, but were 

smaller than their Tars1R433H/+ littermates. They also showed hair loss in consistent patterns on 

their heads and upper backs, beginning at 13 weeks old. This is particularly interesting in light of 

recent reports identifying bi-allelic TARS1 mutations in patients with trichothiodystrophy, a 

disorder marked by brittle hair. This mouse model will be a valuable resource for future work 

studying the consequences of reduced Tars function across different cell types and tissues, 

particularly in the lung and hair. 

 

5.1.3 Summary of Chapter 4 

Implicating an additional homodimeric ARS, like TARS1, in dominant peripheral neuropathy is 

one way to strengthen the argument for a dominant-negative mechanism. Another is to test a 

dominant-negative effect directly, as demonstrated in Chapter 4. Here, a standard yeast 

complementation assay was adapted to introduce both mutant and wild-type ARS into the cell 

and test their combined effect. This Chapter focused on two dominant pathogenic variants in 

AARS1, G102R and R329H. Both variants repressed yeast growth when co-expressed with wild-

type AARS1. Both variants also retained the ability to interact with wild-type AARS1, as 

determined by co-immunoprecipitation studies in HEK293T cells. To reduce this interaction, a 
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truncation mutation, Q855*, was designed in the dimerization domain. This mutation failed to 

support yeast growth, but still produced a stably expressed protein. It also significantly reduced 

dimerization with wild-type AARS. When this mutation was modeled in cis with G102R or 

R329H, the repressed yeast growth phenotype was fully rescued, demonstrating that the 

dimerization between the loss-of-function protein and the wild-type protein was responsible for 

the reduced growth. This provides direct evidence that G102R and R329H can act as dominant-

negative alleles. This assay was expanded to assess additional variants in the anti-codon binding 

domain (R326W, R329S, and R329C), all of which similarly behaved as dominant-negative 

alleles. 

 

In summary, this dissertation work made several important contributions to the field of ARS-

mediated disease. Through assessing patient variants for loss-of-function effects, and through 

designing a model organism pipeline to implicate novel ARS in mammalian phenotypes, this 

work expanded the known locus, allelic, and phenotypic heterogeneity of ARS-mediated disease. 

It also directly tested the hypothesis that pathogenic ARS alleles act through a dominant-negative 

mechanism, demonstrating that pathogenic AARS1 variants are dominant-negatives in a yeast 

cell. The development of this assay creates substantial opportunities to explore a dominant-

negative effect as a common mechanism of pathogenic ARS alleles, as discussed below.  

 

The author is the primary contributor to this Chapter. Matthew Pun and Molly Kuo assisted with 

the computational analysis of the yeast proteome. 

 

5.2 Future Directions 
 

Among the many remaining questions pertaining to ARS-mediated disease, there are two of 

particular interest: 1) What is the mechanism of dominant ARS-mediated peripheral neuropathy, 

and 2) How does reduced function of a ubiquitously expressed housekeeping gene affect certain 

tissues more than others? The experiments proposed in this Section aim to address these 

questions. 
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We propose that dominant ARS variants act through a dominant-negative mechanism, which 

reduces the collective amount of functional ARS protein in the cell.  The large majority of 

pathogenic ARS variants are missense mutations that have been shown to decrease protein 

function, but do not impair protein stability. (The only ARS variant with multiple lines of 

evidence demonstrating that function is not reduced is discussed below in Section 5.2.1.) 

Importantly, the only five ARS genes with strong genetic evidence of dominant pathogenicity all 

function as homodimers. These lines of evidence are all consistent with a mechanism in which a 

mutant subunit of the dimer compromises the activity of the wild-type subunit. In this model, 

only the dimers comprising two wild-type subunits can charge enough tRNAs to meet the protein 

synthesis needs of the cell, which is insufficient in sensitive cells like peripheral neurons. In 

Chapter 4, we present evidence that five AARS1 alleles have a dominant-negative effect in yeast. 

This is a promising start to testing a broadly applicable dominant-negative mechanism of disease. 

To strengthen this argument, additional pathogenic variants in AARS1, as well as GARS1, 

YARS1, HARS1, and WARS1 need to be tested in this system. Demonstrating that pathogenic 

alleles across these five genes can have a dominant-negative effect in yeast would provide strong 

evidence that this is a common characteristic of disease alleles and as such, would suggest that a 

dominant-negative effect is relevant to the mechanism. Furthermore, if a dominant-negative 

effect that leads to reduced tRNA charging is a common mechanism, then similar loss-of-

function alleles in other cytoplasmic, homodimeric ARS are also candidates for dominant 

peripheral neuropathy.  Defining this mechanism will allow us to predict the allelic spectrum of 

dominant pathogenic alleles in these genes. 

 

ARS enzymes are ubiquitously expressed house-keeping proteins required in every cell. It is 

currently unknown why mutations in these genes can give rise to more severe phenotypes in 

some tissues than others. In the case of dominant disease, the phenotype is restricted to the 

peripheral nervous system. This may reflect the fact that these neurons are uniquely long, 

terminally differentiated, and perform protein synthesis at synapses far from the soma.439 As 

such, they might be uniquely sensitive to a decrease in ARS function caused by a dominant-

negative allele. In the case of recessive disorders, significantly reduced function of ARS activity 

broadly causes neurological phenotypes. However, some tissues are particularly sensitive to 

decreased function of particular ARS genes (for example, the lung is most predominantly 
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affected in patients with MARS1 and FARSB mutations145,210). We propose that this may be due 

to the production of critical proteins in these tissues that have a high requirement for the amino 

acid corresponding to the affected synthetase. In this model, decreased availability of the 

required charged tRNA may have an outsized impact on the synthesis of those critical proteins. 

Testing this hypothesis requires a model of ARS-mediated recessive phenotypes with 

specifically affected tissues, such as the compound heterozygous Tars1 mouse described in 

Chapter 3.  

 

5.2.1 Extended analysis of dominant-negative AARS1 alleles 

We have developed a yeast complementation assay that can be used to study both loss-of-

function and dominant-negative characteristics of AARS1 variants. This presents the opportunity 

to comprehensively evaluate all known pathogenic AARS1 alleles and to define the downstream 

consequences of these alleles for cellular health. These studies should be pursued with three 

major aims: (1) test additional dominant AARS1 alleles for a dominant-negative effect, (2) 

delineate the differences between loss-of-function dominantly toxic and loss-of-function non-

toxic AARS1 alleles, and (3) define the impact of hypomorphic and dominantly toxic AARS1 

variants on protein translation.  

 

First, additional AARS1 variants found in patients with dominant peripheral neuropathy should 

be assessed for a dominant-negative effect. These include N71Y and S627L, two variants that 

have been previously shown to reduce enzymatic function.107,110 This is an also an opportunity to 

test two variants that have not yet been functionally evaluated, D893N112 and E688G.111 These 

additional variants segregate with dominant peripheral neuropathy in small pedigrees and affect 

highly conserved residues (E668 is conserved between humans and bacteria, and D893 is 

conserved between humans and fruit flies).112,111 (Incidentally, using human AARS1 for this 

yeast assay allows residues that are not conserved to yeast, like D893, to be evaluated). If any of 

these additional AARS1 alleles are dominantly toxic when co-expressed with wild-type AARS1, 

they can then be placed in cis with Q855* to determine if decreasing dimerization improves 

yeast growth (this test does not apply to D893N, which would be cut off by the Q855* 
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truncation). Identifying additional dominant-negative AARS1 alleles would provide strong 

evidence of a loss-of-function disease mechanism.  

 

Another possibility is that these variants may have no effect, or increase enzymatic activity like 

E337K AARS1. E337K AARS1 was identified in a small pedigree with five genotyped affected 

individuals and only one genotyped, unaffected individual.110 All affected individuals were 

heterozygous for E337K AARS1, while the one unaffected individual did not carry the 

mutation.110 The E337 residue is conserved between humans and fruit flies,110 and is absent from 

gnomAD.334. E337K increases yeast growth in a complementation assay and increases in vitro 

aminoacylation activity, acting as a hypermorph.110 E337K is the only neuropathy-associated 

ARS variant known to cause a gain of enzymatic function; as an outlier, it will be important to 

continue to strengthen the genetic argument for pathogenicity by identifying additional patients 

with this variant. 

 

To functionally investigate E337K AARS1 further, it will be informative to co-express it with 

wild-type AARS1 in yeast to determine if it causes a dominantly toxic effect. If so, there are at 

least two possible explanations. The first possibility is that exceeding cellular demands for 

changed tRNAAla is actually detrimental to protein translation. The availability of tRNA for a 

given codon determines ribosome speed.440 Codons corresponding to highly abundant tRNAs are 

translated faster than codons corresponding to lowly abundant tRNAs (rare codons).440,441 Local 

pauses or slow-downs in ribosomal speed can provide a chance for the polypeptide that is being 

translated to fold properly.441,442 These slow-downs are often found when translating across the 

domain boundaries of multi-domain proteins, allowing time for the independent folding of the 

previously translated domain.441 Silent mutations that alter translational speed by swapping a rare 

codon for a common one, or vice versa, can impact the folding and function of disease-

associated proteins.443 If E337K AARS1 increases the proportion of charged tRNAAla in the 

tRNA pool, it may disrupt these carefully coordinated translation dynamics by increasing the 

translation speed through alanine codons. This could disrupt the timing of co-translational 

protein folding and, for proteins with sensitive folding dynamics, may cause them to misfold and 

be targeted for degradation. Alternately, E337K AARS1 could cause a broader increase in protein 

misfolding, trigger protein aggregations and/or inducing the unfolded protein response pathway 
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in the endoplasmic reticulum, which would trigger PERK to phosphorylate eIF2α and induce a 

global repression of translation initiation through preventing the recycling of eIF2.351 

 

Alternately, E337K could cause aberrant interactions with some component of the protein 

translation machinery, resulting in similar decreases in protein translation. This interaction could 

be increased binding to tRNAAla, which could decrease the availability of free tRNA for wild-

type AARS1; in vitro aminoacylation studies found that E337K AARS1 exhibited a 5-fold 

decrease in Km for tRNA relative to wild-type AARS1, indicating increased affinity for tRNA.110 

However, this did not result in increased turnover (kcat for E337K was 0.4, compared to 0.6 for 

wild-type).110 This data indicate that E337K could be dominantly toxic through altering tRNA 

binding dynamics. Another possibility is that E337K AARS1 causes aberrant interactions with 

ribosomes or other components of the translation machinery, leading to impaired protein 

synthesis similar to dominant-negative alleles. To further investigate these possibilities, co-

immunoprecipitation studies should be performed with E337K AARS1 to investigate protein 

binding partners using mass spectrometry, or tRNA binding partners using either Northern blots 

hybridization or RNA-seq methods suitable for detecting tRNA.444 

 

Second, the yeast assay developed in this thesis should be applied to compare loss-of-function 

toxic AARS1 alleles and loss-of-function non-toxic AARS1 alleles. It is currently unclear what 

distinguishes these two types of variants. The heterozygous parents of individuals with recessive 

disease have not been reported to have a peripheral neuropathy, although most have not been 

clinically evaluated, and there may be undetected late-onset or sub-clinical phenotypes. One 

possibility is that recessive missense variants are destabilizing, which would mean that an 

otherwise dominantly toxic protein does not accumulate to sufficient levels to have a toxic effect. 

Indeed, decreased protein stability has been demonstrated for some variants—individuals who 

are compound heterozygous for I699T and C901Y AARS1, or for T726A and T756I AARS1 show 

a 60-80% reduction in total AARS1 protein.105 The G931D AARS1 variant also reduces AARS1 

levels; individuals with the G931D/+ AARS1 genotype express less AARS1 protein than +/+ 

individuals, and individuals with the G931D/Y690Lfs*3 AARS1 genotype express less AARS1 

protein than +/Y690Lfs*3 individuals.103 Another possibility is that recessive AARS1 variants 
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reduce dimerization with the opposite subunit. In this scenario, they might only cause a very 

mild dominant negative effect in heterozygous carriers, or no dominant-negative effect at all.  

 

To test these two hypotheses, a panel of recessive missense AARS1 alleles should be expressed in 

yeast to evaluate the total amount of AARS1 protein generated by each isolated allele. Any 

stable recessive variants should then be co-expressed with the wild-type allele in a dominant-

negative assay, with the hypothesis that only dominant—but not recessive—missense alleles will 

have a dominant-negative effect. If recessive variants do act as dominant-negative alleles, it is 

possible that: (1) the variant may be stably expressed in yeast cells but not in human cells, (2) the 

variant may only cause weakly dominant-negative effects in a human peripheral neuron that is 

not sufficient to cause peripheral neuropathy, or (3) individuals heterozygous for this variant do 

develop neuropathy that is late-onset, mild, and/or goes undetected. However, if stably expressed 

recessive variants do not act as dominant-negative alleles, they should be further investigated to 

determine if they reduce dimerization. Here, the most sensitive assay to use is 

ultracentrifugation, which has previously been used to study dimerization of GARS300 and 

HARS.176,350 

 

Finally, generating appropriate models of both dominant and recessive AARS1 alleles in yeast 

will allow us to define the impact of these variants on protein translation, as discussed below. 

Ideally, these studies should be performed with a hypomorphic recessive allele, a dominant-

negative allele like R329H (co-expressed with wild-type), and E337K (co-expressed with wild-

type). We would expect that a recessive allele and a dominant-negative allele would have similar 

effects on protein translation. This would also be an opportunity to test the hypotheses proposed 

for E337K by determining if it affects protein translation, or acts through some other mechanism. 

 

Loss-of-function pathogenic AARS1 alleles may impair protein synthesis by increasing the pool 

of uncharged tRNAAla in the cell. This is recognized by GCN2, stimulating its kinase function to 

phosphorylate eIF2α, which then prevents eIF2B from recycling GDP-eIF2 into GTP-eIF2.3 This 

prevents eIF2 from delivering initiator tRNAMet to the ribosome to begin protein translation.3 To 

determine whether this pathway is activated in yeast expressing pathogenic AARS1 alleles, yeast 

lysate should be evaluated via Western blot for an increase in eIF2α phosphorylation. If yeast 
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expressing the pathogenic AARS1 alleles have increased eIF2α phosphorylation, this indicates 

that there is likely reduced protein synthesis in the cell. Here, we would expect that a 

hypomorphic AARS1 allele and a dominant-negative AARS1 allele would both increase eIF2α 

phosphorylation. If E337K causes widespread protein misfolding, as proposed above, it may also 

trigger eIF2α phosphorylation through the unfolded protein response pathway.351 Alternately, if 

E337K acts by causing localized protein misfolding, sequestering tRNA or aberrantly binding to 

other components of translation machinery, we would not expect to see an increase in eIF2α.  

 

Subsequent effects on global protein translation can be tested by treating yeast with puromycin, 

an aminonucleoside that can be incorporated into nascent peptides.445 After treatment, yeast are 

lysed and puromycin incorporation is measured with immunoblotting.445 Here, we would expect 

that a hypomorphic, recessive AARS1 allele and a dominant-negative AARS1 allele would both 

show a large decrease in puromycin incorporation. If E337K acts to repress protein synthesis 

(either by triggering the unfolded protein response, sequestering tRNA, or aberrantly binding to 

translation machinery), we would also expect it to show decreased puromycin incorporation. 

These observations, in tandem with the eIF2α phosphorylation, would show that the dominant-

negative AARS1 allele reduces protein translation similar to a recessive hypomorphic AARS1 

allele. These observations would also indicate that, although E337K is not a dominant-negative 

allele, it causes similar defects in protein translation, which would help identify a unifying 

cellular pathology. 

 

If AARS1 alleles do not show global reductions in protein synthesis, this may indicate that there 

are amino-acid specific defects in protein translation. In theory, reducing the amount of amino 

acid that is ligated to tRNAs should have an effect similar to starving the cell for that amino acid.  

Here, studies that decrease arginine availability304 or inhibit histidine biosynthesis446 have 

demonstrated that these amino acid restrictions cause ribosomes to stall at histidine or arginine 

codons, respectively. Therefore, we might expect cells expressing pathogenic loss-of-function 

AARS1 alleles to stall at alanine codons, which could be detected with ribosome sequencing. 

Here, we would expect that yeast expressing a hypomorphic recessive AARS1 allele and a 

dominant-negative AARS1 allele to show increased pile-up of ribosomes at alanine codons, 

relative to yeast expressing wild-type AARS1. Ribosome profiling may also be a high-resolution 
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approach to discern the mechanism of E337K. For example, if E337K decreases the amount of 

charged tRNAAla in the cell by inappropriately sequestering uncharged tRNAAla, we would 

expect to see an increase in ribosome stalling similar to the loss-of-function alleles. On the other 

hand, if E337K overproduces charged tRNAAla and interferes with ribosome kinetics, we would 

expect to see a decrease in ribosome abundance at alanine codons compared to the wild-type 

allele. In this case, the identity of transcripts with this decreased ribosome abundance should be 

further scrutinized to determine if there is a corresponding decrease in protein abundance. If 

AARS1 alleles do not cause detectable ribosome stalling, this may reflect either a global 

repression of protein synthesis through eIF2α phosphorylation, or rapid turnover of stalled 

ribosomes that cannot be detected by ribosome profiling. In this case, such experiments may 

need to be performed in a yeast background that lacks factors that can dissociate stalled 

ribosomes (Dom34, Hbs1, and Rli1).446 

 

If hypomorphic and dominant-negative AARS1 alleles cause ribosome stalling at alanine codons, 

we would expect yeast proteins with a high alanine content to be most affected. These proteins 

are primarily ribosomal proteins and cell wall proteins (Table 5.1). In lieu of commercially 

available antibodies for yeast cell wall proteins, these genes could be endogenously tagged to 

facilitate immunostaining and determine whether expressing AARS1 alleles decreases their 

abundance. Alternately, the fitness of the cell wall could be evaluated using stains such as 

calcofluor white, which produces greater signal when there is cell wall stress, or aniline blue and 

FITC-ConA, which stain for 1,3-β-glucan and mannoproteins, respectively.447 Here, we would 

expect a recessive AARS1 allele and a dominant-negative AARS1 to decrease cell wall integrity, 

which could contribute to decreased cell viability. In the case of E337K, if it acts to decrease the 

amount of charged tRNAAla in the cell, we would also expect to see impaired cell wall integrity. 

However, if it triggers misfolding of specific proteins, or global protein misfolding, we would 

not necessarily expect this to impact on cell wall proteins. 

 

5.2.2 Identifying dominant-negative alleles in GARS1, HARS1, WARS1, and YARS1. 
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Table 5.1. Alanine-rich proteins in S. cerevisiae. 

Name % alanine 

CWP2 Cell wall protein* 26 

HOR7 Hypo-osmolarity responsive protein 24 

RLA3 60S acidic ribosomal protein P1-beta 23 

PAU7 Seripauperin-7* 22 

CCW12 Covalently-linked cell wall protein 12* 22 

TIR3 Cell wall protein TIR3* 22 

DDR2 Protein DDR2 21 

FIT3 Facilitator of iron transport 3* 21 

RLA4 60S acidic ribosomal protein P2-beta 21 

TIR1 Cold shock-induced protein TIR1* 21 

RLA2 60S acidic ribosomal protein P2-alpha 21 

TIP1 Temperature shock-inducible protein 1* 20 

TIR2 Cold shock-induced protein* 20 

TOM6 Mitochondrial import receptor subunit 20 

RLA1 60S acidic ribosomal protein P1-alpha 19 

HS150 Cell wall mannoprotein HSP150* 18 

PIR3 Cell wall mannoprotein PIR3* 18 

ATP5E ATP synthase subunit epsilon, mitochondrial 18 

PAU5 Seripauperin-5* 17 

DAN1 Cell wall protein DAN1* 17 

PAU17 Seripauperin-17* 17 

RL13B 60S ribosomal protein L13-B 17 

LSO2 Protein LSO2 16 

PAU16 Seripauperin-16* 16 

PAU19 Seripauperin-19* 16 

PAU3 Seripauperin-3* 16 
 

*Cell wall proteins  
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The humanized yeast assay to detect dominant-negative alleles should next be expanded to 

assess pathogenic alleles in other dominant ARS disease genes. Here, the initial focus should be 

on variants with strong genetic evidence of pathogenicity, such as G240R160,448 and G526R449 in  

GARS1, T132I174 and D364Y174 in HARS1, D314G265 and H257R264 in WARS1, and G41R and 

E196K in YARS1.379275 For studies of HARS1, WARS1, and YARS1, yeast strains with a 

doxycycline-repressible promoter driving HTS1, WRS1, and TYS1 are available commercially 

from the Hughes Collection.435 Although such a strain does not exist for GARS1 studies, another 

graduate student in the Antonellis group, Sheila Marte, is currently working to replace the 

endogenous GRS1 promoter with a doxycycline-repressible promoter.  

 

The above neuropathy-associated ARS variants are loss-of-function alleles in homodimeric 

enzymes; therefore, we expect them to act as dominant-negative alleles when co-expressed with 

the respective wild-type gene, similar to the dominant-negative variants in AARS1. Interestingly, 

there is some preliminary evidence to suggest that G41R and E196K YARS1 show properties of 

dominant-negatives alleles when tested in yeast. When each variant was modeled in the yeast 

ortholog TYS1 and over-expressed in yeast with wild-type TYS1, they repressed yeast growth.275 

Similarly, yeast expressing wild-type TYS1 and G41R YARS1 grew slower than yeast expressing 

wild-type TYS1 and wild-type YARS1, or yeast expressing TYS1 and E196K YARS1.275 This 

could indicate that G41R YARS1 may also repress the endogenous TYS1, acting similar to R329H 

AARS1 (as discussed in Chapter 4).  

 

To conclusively determine that dominant toxicity is a result of a dominant-negative effect, as 

opposed to some other gain of function, it is necessary to reduce the dimerization of the mutant 

allele and determine if this rescues the phenotype. In the cases of GARS1 and YARS1, dimer-

reducing alleles have already been identified. The T209K GARS1 variant was identified as a 

recessive allele in zebrafish gars, and was shown to significantly reduce the percentage of 

dimeric gars in native western blots. Additionally, P167T YARS1, which causes a severe 

multisystem disease in the homozygous state, was shown to reduce binding to wild-type YARS1 

in co-immunoprecipitation assays.273 Identifying dimer-reducing variants in HARS1 and WARS1 

may be more challenging. Here, the published crystal structures of human WARS160 and human 

HARS141 will be valuable resources for identifying residues to target that could disrupt 
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dimerization. In these structures, the dimer interface is internal, and does not lend itself to large 

domain deletions. Alanine scanning may be the best approach, followed by yeast 

complementation assays and immunoblotting to identify loss-of-function, stably expressed 

alleles. Once these alleles have been identified, they can be tested for reduced binding to the 

wild-type protein using the co-immunoprecipitation approach described in Chapter 4.  

 

If multiple pathogenic variants across multiple ARS genes are shown to act as dominant-negative 

alleles, this would provide strong evidence that this is a relevant disease mechanism.  

Importantly, benign polymorphisms selected from gnomAD should be included in assessments 

for each of these genes, to demonstrate the specificity of a dominant-negative effect. These data 

would indicate that reduced ARS function is likely a central component of disease pathology, 

which would support previous observations of impaired protein translation in neuronal models of 

dominant ARS disease.306,350 Alternately, yeast may be more sensitive to reduced function of 

some ARS than others, and it may be difficult to detect dominant-negative effects for all variants 

in all ARS genes. It is also possible that some pathogenic ARS variants may have an alternative 

mechanism of action; if any variants cause dominant toxicity that is not rescued by reducing 

dimerization, this could provide an opportunity to explore other gain-of-function hypotheses, 

such as interference with other components of the translation machinery.   

 

5.2.3 Defining a panel of dominant-negative GARS1 alleles  

One goal of the Antonellis group is to use high-throughput techniques to identify all loss-of-

function variants in pathogenic ARS genes. This will circumvent the need to individually test 

patient variants for loss-of-function effects in yeast, which is not a feasible approach to assess all 

possible variants of uncertain significance. In collaboration with Jacob Kitzman’s group, a 

postdoctoral fellow in the Antonellis laboratory, Megan Forrest, is performing saturation genome 

editing on GARS1 in vitro to identify all variants that do not support cell growth. This work will 

provide novel insights into GARS1 biology, as well as help separate out benign variants and 

deleterious variants. However, as discussed previously, we do not expect all loss-of-function 

variants to be dominantly toxic, and as such, it will be difficult to differentiate between 

candidates for recessive disease and candidates for dominant disease. 
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Here, the yeast dominant toxicity assay can play a significant role. Any loss-of-function variants 

identified in GARS1 saturation genome editing should first be assessed for an effect on protein 

stability, using a flow-sorting method such as VAMP-seq450 that is amenable to testing a large 

library of variants. Then, a smaller panel of variants that are loss-of-function but stably expressed 

can be tested in the yeast dominant toxicity assay. Although this assay is low-throughput, this 

assay does have the advantage of being relatively inexpensive and quick. If mutagenesis and 

cloning were performed in a high-throughput fashion, then over 100 variants could be tested in 

1-2 months. The benefits of overlapping a yeast dominant toxicity assay with the saturation 

mutagenesis efforts are two-fold: (1) GARS1 variants that are loss-of-function but dominantly 

toxic will be pre-emptively defined, providing support for pathogenicity if they are identified in 

patients with dominant peripheral neuropathy, and (2) distinguishing loss-of-function, non-

dominant variants from loss-of-function dominant variants will yield greater insight into the 

mechanism of GARS1 pathogenicity. If both types of variants are mapped onto the GARS1 

crystal structure, this could also provide insights into the structural features that play a role in 

disease. 

 

5.2.4 Predicting dominant-negative alleles in additional homodimeric, cytoplasmic ARS 

Once the yeast dominant-negative assay has been appropriately validated for a series of 

pathogenic alleles in ARS genes already implicated in dominant neuropathy, this assay can then 

be used to predict and assess variants in ARS genes that have not yet been implicated in 

dominant disease, particularly other the five remaining homodimeric, cytoplasmic ARS (TARS1, 

CARS1, KARS1, DARS1, and SARS1). This could produce preliminary evidence that they are 

candidate genes for dominant peripheral neuropathy. This assay could be incorporated into the 

model organism prediction pipeline described in Chapter 2, to help prioritize candidate mutations 

for testing in worm and mouse. 

 

The above efforts should begin with TARS1; the appropriate yeast strain is available from the 

Hughes Collection435 and the crystal structure of TARS1 is available56 to inform careful design 

of loss-of-function mutations, as well as mutations that could decrease dimerization (a critical 
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part of demonstrating a dominant-negative effect, as discussed above). Currently, another 

graduate student in the Antonellis group, Allison Cale, is developing these tools. After designing 

TARS1 variants at conserved residues and testing them for impaired function, it will be important 

to assess the variant’s effect on protein stability. Then, the yeast dominant-negative assay can be 

used to identify the best candidates to test further, which may improve the likelihood that the 

selected variant is dominantly toxic to neurons in a multicellular organism.  

 

All of the remaining homodimeric ARS enzymes should also be evaluated in this system. Here, it 

would be helpful to begin with the ARS loci that include peripheral neuropathy as part of a 

recessive pathology. This might indicate that peripheral nerves are sensitive to decreased 

function of that ARS. This applies to patients with bi-allelic variants in cysteinyl-tRNA 

synthetase (CARS1)126 and lysyl-tRNA synthetase (KARS1).195 The remaining cytoplasmic, 

homodimeric enzymes are aspartyl-tRNA synthetase (DARS1) and seryl-tRNA synthetase 

(SARS1), which could be targeted next. For CARS1, KARS1, DARS1, and SARS1, yeast strains 

with a doxycycline-repressible promoter driving the respective ARS ortholog are commercially 

available435; however, any other methods of repressing endogenous yeast ARS function while 

over-expressing both mutant and wild-type human ARS would also be valid approaches.  

 

5.2.5 Detecting ARS dominant toxicity in cultured mammalian cells  

As the dominant-negative assay expands to additional ARS, it would be valuable to develop an 

orthogonal approach in human cell lines. This would obviate the need for developing and 

validating numerous yeast strains. A cell line should be selected with a single copy of the wild-

type ARS gene. HAP1 cells would be the most feasible and applicable across different ARS 

genes. (Alternately CRISPR-Cas9 editing could be used to reduce the number of functional ARS 

copies in multi-ploidal cell lines, including neuroblastoma cell lines that can be differentiated to 

harbor neurite projections.) Then, wild-type or mutant ARS expressed by a doxycycline-

inducible promoter could be transfected into the cell population, with a drug resistance cassette 

or GFP marker to select for the transfected population. Application of doxycycline to the cells 

would induce expression of wild-type or mutant ARS, and dominant toxicity would be measured 

by determining cell viability. This approach should first be validated with known pathogenic 
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dominant-negative alleles like R329H AARS1, but then could be expanded as a predictive assay 

for novel ARS loci and alleles. Moreover, because cell lines are more amenable to high-

throughput analysis of ARS loci, many variants could be assessed simultaneously. In this 

scenario, comparing the frequency of alleles before and after doxycycline induction would allow 

identification of the alleles that were dominantly toxic and reduced cell viability. In combination 

with saturation genome editing, this approach could be a high-throughput assay to differentiate 

between loss-of-function, dominantly toxic alleles and loss-of-function, non-toxic alleles, as 

discussed above for GARS1.  

 

5.2.6 Defining the requirement for threonyl-tRNA synthetase in the mouse lung and hair follicle 

The experiments proposed above would significantly advance our understanding of the allelic 

spectrum of dominant ARS-mediated disease, as well as the mechanism of disease. We predict 

that mild to moderate impairment of protein synthesis, caused by reduction in any population of 

charged tRNA, specifically impacts the peripheral nervous system due to the long, terminally 

differentiated axons that perform local protein synthesis at synapses.439 This is in contrast to our 

proposed mechanism of ARS-mediated recessive disease, in which a greater reduction of ARS 

function causes severe impairment of protein synthesis, affecting numerous tissues across the 

body that have high protein translation demands. However, there are still outstanding questions 

as to why pathogenic variants in some ARS genes affect certain tissues more than others. For 

example, it is unclear why the lung is particularly sensitive to mutations in MARS1210, or why the 

liver is particularly sensitive to mutations in LARS.196 One hypothesis is that there are critical 

proteins in these tissues with a high requirement for a certain amino acid, and that such proteins 

are therefore particularly sensitive to reduced function of the corresponding ARS.   

 

The phenotypes of the TarsR433H/F538Kfs*4 mouse (Section 3.3.12) may provide some clues. One of 

the most striking phenotypes was premature death at P0. Histopathology of these mice showed 

that there was no air present in the alveoli, indicating that mice either died in utero or upon birth. 

There was also an absence of PAS+ club cells in the bronchioles, indicating a lack of 

glycoproteins and/or mucins. Intriguingly, these proteins are threonine-rich; the backbone of 

mucin proteins is composed of tandem proline, threonine, and/or serine repeats (PTS domains). 



 172 

These PTS domains are densely O-glycosylated, which contribute to the structure and function of 

mucous membranes.412 We hypothesize that reduced TARS1 function preferentially impacts the 

production of these mucin proteins, impairing the formation or maintenance of the mucosal 

linings in the lungs.  

 

Initial research into hypothesis should include immunohistochemistry staining for a series of 

mucin proteins expressed in the lung, including mucin-4, mucin-20, and endomucin (see Table 

3.2). If there is reduced mucin protein expression, protein mass spectrometry of lung tissue 

should be performed and the threonine content of misregulated proteins should be analyzed. If 

there is a significant depletion of threonine-rich proteins, this would indicate an amino acid 

specific defect in protein synthesis. If there is no significant depletion for threonine-rich proteins, 

this may indicate a global impairment in protein synthesis that happens to include mucin 

proteins. In either case, this analysis may provide insight into the pathways dysregulated in the 

lung tissue of these mice. 

 

It will also be important to determine if the absent PAS+ stain reflects the absence of club cells, 

or merely a lack of PAS+ material within them. This could be done by performing 

immunohistochemistry for SCGB1A1, the primary product of club cells (which is only 7% 

threonine, and therefore unlikely to be targeted by a threonine-specific mechanism). Club cells 

are important in maintaining lung homeostasis and protection against infection. They are also 

stem cells.451 Club cells arise from the primary stem cell population, basal cells; then, club cells 

can differentiate into either ciliated cells or the mucin-producing goblet cells.451 If club cell 

abundance is reduced in TarsR433H/F538Kfs*4 mice, this could indicate an impairment in stem cell 

proliferation or differentiation. Indeed, stem cells may be particularly sensitive to reductions in 

ARS function—a recent investigation of the microcephaly phenotype in recessive NARS1-

mediated disease demonstrated that in brain organoids derived from patient cells, radial glial 

cells showed reduced viability and proliferation.221 More broadly, undifferentiated stem cells 

have been found to maintain a low basal rate of translation, which increases upon 

differentiation.452,453,454,455 For example, in quiescent skeletal muscle stem cells, eIF2α 

phosphorylation maintains stem cell state; loss of phosphorylation by replacing the 

phosphorylated eIF2α serine residue with alanine causes differentiation and activation of the 
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myogenic program.456 One explanation for a possible lack of club cells in TarsR433H/F538Kfs*4 mice 

is that the uncharged levels of tRNAThr in basal stem cells maintain a state of global translation 

repression through eIF2α phosphorylation, preventing differentiation into club cells. 

 

Another indication of impaired stem cell function in TarsR433H/F538Kfs*4 mice may be found in 

their hair phenotype.  71% of adult TarsR433H/F538Kfs*4 mice lose hair on their heads and upper 

back by 23 weeks of age (Figure 3.18); however, significant work is needed to further define this 

phenotype. One explanation is that the reservoir of hair stem cells is affected by impaired Tars 

function, and may be unable to differentiate and generate new hair follicles. A study of protein 

synthesis in mouse hair follicles found that translation was highly dynamic across the stages of 

the hair follicle life cycle.457 The authors used OP-puromycin incorporation to quantify the rate 

of nascent protein synthesis across bulge stem cells and differentiated cells. They found that 

protein synthesis increased in the transition from the quiescence stage (telogen) to growth stage 

(anagen), and was highest in differentiated cell populations in the growth stage. This data 

suggests there is a correlation between hair stem cell activation and increased protein translation 

rate. Here, as with basal cells in the lung, reduced Tars function may impair the ability of bulge 

stem cells to exit quiescence by preventing an increase in global protein translation needed to 

fully execute the differentiation program. In both cases, immunostaining of different cell 

populations in both the lung and the hair follicle may provide more information on whether there 

are increased populations of stem cells and/or decreased populations of differentiated cells. It 

would also be informative to measure OP-puromycin incorporation in differentiating lung or hair 

cells and determine if these cells show reduced global protein synthesis compared to their control 

littermates. 

 

5.3 Concluding Remarks 
 

The work presented in this dissertation addressed three aims: 1) expanding the allelic, locus, and 

phenotypic heterogeneity of ARS-mediated disorders, 2) predicting the pathogenicity of ARS 

loci that have not yet been implicated in disease, and 3) testing high-confidence pathogenic ARS 

alleles for a dominant-negative effect. Here, we have characterized newly identified patient 

alleles in GARS1, HARS1, MARS1, TARS1, and NARS1, and provided an assessment of their 
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pathogenicity. We have also developed a pipeline of model organism assays to predict the 

pathogenicity of dominant and recessive TARS1 alleles. Through these efforts, we have produced 

new models of TARS1-mediated recessive phenotypes that will be assets in investigating the 

effects of reduced TARS1 activity on cellular function. Finally, we have pioneered a yeast assay 

to assess human ARS alleles for a dominant-negative effect, and demonstrated that pathogenic 

AARS1 variants are dominant-negative alleles. This work strengthens the evidence for a 

common, loss-of-function mechanism of ARS-mediated disease. 
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Appendix A 

Oligonucleotide Sequences 

 
Table A.1 Gateway cloning primers for yeast complementation constructs. Primers are 
listed 5’ to 3’. 
 
Primer Sequence 

MARS1 ORF GW F GGGGACAAGTTTGTACAAAAAAGCAGGCTTCGAAGGAGAT
AGAACCATGAGACTGTTCGTGAGTGATGG 

MARS1 ORF GW R GGGGACCACTTTGTACAAGAAAGCTGGGTCTTACTTTTTCT
TCTTGCCTTTAGG 

HARS1 ORF GW F GGGGACAAGTTTGTACAAAAAAGCAGGCTCAATGGCAGAG
CGTGCGGCGCTGG 

HARS1 ORF GW R GGGGACCACTTTGTACAAGAAAGCTGGGTTTCAGCAGATG
CAGAGGGGCTGG 

NARS1 ORF GW F GGGGACAAGTTTGTACAAAAAAGCAGGCTCTATGGTGCTA
GCAGAGCTGTACG 

NARS1 ORF GW R GGGGACCACTTTGTACAAGAAAGCTGGGTCTTATGGCGTG
CAACGCTGGACA 

TARS1 ORF GW F GGGGACAAGTTTGTACAAAAAAGCAGGCTCAATGTTTGAG
GAGAAGGCCAGC 

TARS1 ORF GW R GGGGACCACTTTGTACAAGAAAGCTGGGTTTTAAAATTCTT
CTTCTGC 

scALA1 6xHis GW F GGAGAAGCTTTCCATTCATCATCACCATCACCATTAAGACC
CAGCTTTCT 

scALA1 6xHis GW R AGAAAGCTGGGTCTTAATGGTGATGGTGATGATGAATGGA
AAGCTTCTCC 
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Table A.2 Mutagenesis primers for yeast complementation assays. Primers are listed 5’ to 
3’. 
 
 
Primer Sequence 
G327R GARS1 Mut F GCTGCTGCCCAGATTAGAAATTCTTTTAGAA 
G327R GARS1 Mut R TTCTAAAAGAATTTCTAATCTGGGCAGCAGC 
V155G HARS1 Mut F ACCACATAGCAAAGGGATATCGGCGGGATAA 
V155G HARS1 Mut R TTATCCCGCCGATATCCCTTTGCTATGTGGT 
Y330C HARS1 Mut F CTCGAGGGCTGGATTGCTACACTGGGGTGAT 
Y330C HARS1 Mut R ATCACCCCAGTGTAGCAATCCAGCCCTCGAG 
S356N HARS1 Mut F CCCTGGGTGTGGGCAATGTGGCTGCTGGAG 
S356N HARS1 Mut R CTCCAGCAGCCACATTGCCCACACCCAGGG 
A397T MARS1 Mut F TGTGCTCGCTTCCTGACTGACCGCTTCGTGG 
A397T MARS1 Mut R CCACGAAGCGGTCAGTCAGGAAGCGAGCACA 
R618C MARS1 Mut F CCTGCTGACATCTGGTGCTTCTATCTGCTGT 
R618C MARS1 Mut R ACAGCAGATAGAAGCACCAGATGTCAGCAGG 
Y307C MARS1 Mut F AGTGGAACACCCTCTGTCTGTGTGGGACAGA 
Y307C MARS1 Mut R TCTGTCCCACACAGACAGAGGGTGTTCCACT 
S461F NARS1 Mut F CCCGTCTTACTGAATTTGTCGACGTGTTGAT 
S461F NARS1 Mut R ATCAACACGTCGACAAATTCAGTAAGACGGG 
C342Y NARS1 Mut F CACGTGGAAGCTGAGTATCCTTTCCTGACTTT 
C342Y NARS1 Mut R AAAGTCAGGAAAGGATACTCAGCTTCCACGTG 
∆M236 NARS1 Mut F CAACAACAGACACATGATCCGAGGAGAAAA 
∆M236 NARS1 Mut R TTTTCTCCTCGGATCATGTGTCTGTTGTTG 
R131H TARS1 Mut F TGTGGGACCTGGACCACCCTCTGGAAGAAGA 
R131H TARS1 Mut R TCTTCTTCCAGAGGGTGGTCCAGGTCCCACA 
V372I TARS1 Mut F AGAGGATTCCAGGAGATAGTCACCCCAAACA 
V372I TARS1 Mut R TGTTTGGGGTGACTATCTCCTGGAATCCTCT 
R619C TARS1 Mut F TTTTGGCTGTCCCCTTGCCAGGTAATGGTAG 
R619C TARS1 Mut R CTACCATTACCTGGCAAGGGGACAGCCAAAA 
Q639P TARS1 Mut F CCCAAAAGGTACGACCACAATTCCACGATGC 
Q639P TARS1 Mut R GCATCGTGGAATTGTGGTCGTACCTTTTGGG 
R663Q TARS1 Mut F TGAATAAAAAGATTCAAAATGCACAGTTAGC 
R663Q TARS1 Mut R GCTAACTGTGCATTTTGAATCTTTTTATTCA 
G541R TARS1 Mut F GATGGAGCTTTCTATCGCCCAAAGATTGACATAC 
G541R TARS1 Mut R GTATGTCAATCTTTGGGCGATAGAAAGCTCCATC 
R433H TARS1 Mut F CGAGAACTGCCTCTGCACCTAGCTGATTTTGGG 
R433H TARS1 Mut R CCCAAAATCAGCTAGGTGCAGAGGCAGTTCTCG 
N412Y TARS1 Mut F CCTGAAACCCATGTACTGCCCAGGACACTGC 
N412Y TARS1 Mut R GCAGTGTCCTGGGCAGTACATGGGTTTCAGG 
G757* AARS1 Mut F ATTGTGGCTGTCACATGACTGGTGCCGAGGCCCAG 
G757* AARS1 Mut R CTGGGCCTCGGCACCAGTCATGTGACAGCCACAAT 
R329H AARS1 Mut F TGAGACGGATTCTCCACCGAGCTGTCCGATA 
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R329H AARS1 Mut R TATCGGACAGCTCGGTGGAGAATCCGTCTCA 
G102R AARS1 Mut F TTCTTCGAGATGCTGCGCTCTTGGTCTTTTG 
G102R AARS1 Mut R CAAAAGACCAAGAGCGCAGCATCTCGAAGAA 
R326W AARS1 Mut F GGATATGTGTTGAGATGGATTCTCCGCCGAG 
R326W AARS1 Mut R CTCGGCGGAGAATCCATCTCAACACATATCC 
R329S AARS1 Mut F TTGAGACGGATTCTCAGCCGAGCTGTCCGAT 
R329S AARS1 Mut R ATCGGACAGCTCGGCTGAGAATCCGTCTCAA 
R329C AARS1 Mut F TTGAGACGGATTCTCTGCCGAGCTGTCCGAT 
R329C AARS1 Mut R ATCGGACAGCTCGGCAGAGAATCCGTCTCAA 
Q855* AARS1 Mut F GACAGCAACCCCAACTAGCCTCCTGTCATCC 
Q855* AARS1 Mut R GGATGACAGGAGGCTAGTTGGGGTTGCTGTC 
∆KNVGCLQ AARS1 Mut F GCACAGGCCACAGGCGAGGCGCTGCAGCTG 
∆KNVGCLQ AARS1 Mut R CAGCTGCAGCGCCTCGCCTGTGGCCTGTGC 
∆NVG AARS1 Mut F CAGGCCACAGGCAAGTGCCTGCAGGAGGCG 
∆NVG AARS1 Mut R CGCCTCCTGCAGGCACTTGCCTGTGGCCTG 
∆C947 AARS1 Mut F GGCAAGAACGTTGGCCTGCAGGAGGCGCTG 
∆C947 AARS1 Mut R CAGCGCCTCCTGCAGGCCAACGTTCTTGCC 
∆QE AARS1 Mut F AACGTTGGCTGCCTGGCGCTGCAGCTGGCC 
∆QE AARS1 Mut R GGCCAGCTGCAGCGCCAGGCAGCCAACGTT 
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Table A.3 Gateway cloning primers for C. elegans expression constructs. Primers are listed 
5’ to 3’. 
 
 
Primer Sequence 

c.e. tars-1 GW F GGGGACAAGTTTGTACAAAAAAGCAGGCTCAAAAAATGCGATT
GAACTGTTTCC 

c.e. tars-1 GW R GGGGACCACTTTGTACAAGAAAGCTGGGTTTTATGCCCATTCCT
CAGACTTTTCC 
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Table A.4 Mutagenesis primers for tars-1 cDNA. Primers are listed 5’ to 3’. 
 
Primer Sequence 
c.e. tars-1 G540R Mut F AGAAATGAAATGTCTAGAGCTTTGACTGGACTT 
c.e. tars-1 G540R Mut R AAGTCCAGTCAAAGCTCTAGACATTTCATTTCT 
c.e. tars-1 N411Y Mut F GGTTTGAAGCCGATGTACTGCCCGGGGCATT 
c.e. tars-1 N411Y Mut R AATGCCCCGGGCAGTACATCGGCTTCAAACC 
c.e. tars-1 R432H Mut F ATGAGCTTCCATTCCATTTCGCTGATTTTGGA 
c.e. tars-1 R432H Mut R TCCAAAATCAGCGAAATGGAATGGAAGCTCAT 
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Table A.5 Single guide RNA sequences for C. elegans gene editing. Primers are listed 5’ to 
3’. 
 
Primer Sequence 
G540R sgRNA  CCGGGAGATGGAGCATTCTACGG 
R432H sgRNA CCATTCCGATTCGCTGATTTTGG 
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Table A.6 Single stranded oligonucleotide repair templates for C. elegans gene editing. 
Primers are listed 5’ to 3’. 
 
Primer Sequence 

G540R ssODN 
TCAGGCAGAAAATGGGTGTTGAACCCGGGAGATGGAG
CATTCTACCGGCCGAAAATCGATATCACCATTCAAGAT
GCTCTCAAGAGAAA 

R432H ssODN 
GTCTCATGTTCGGACACATGCCACACACCTACAATGAG
CTCCCGTTTCATTTTGCAGACTTTGGAGTTTTGCACAGA
AATGAAATGTCTGGTGCTTTGACTG 
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Table A.7 PCR primers for tars-1 G540R locus and tars-1 R432H locus (C. elegans). 
Primers are listed 5’ to 3’. 
 
Primer Sequence 
G540R tars-1 F CGTCAAGATCAAATTTCCGAGG 
G540R tars-1 R CGAGTCAGTCAGAGACTATGCA 
R432H tars-1 F ATCGGCGTTCTGGTATCC 
R432H tars-1 R CCAATGCGCTCAACGCTT 
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Table A.8 PCR primers for mouse Tars1 G540R and F538Kfs*4 locus, and Tars1 R432H 
locus. Primers are listed 5’ to 3’. 
 
Primer Sequence 
G540R and F538Kfs*4 Tars F GTGTCGAGTGAGGGAATGTTTTCTGTA 
G540R and F538Kfs*4 Tars R TTAAACCTGATGGGCAACTGAAA 
R432H Tars F CTTCTATTGCTCTGTGAGGC 
R432H Tars R TATCTCCCTTCACCTGTAACC 
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Appendix B 

Full Western Blot Images 

 
 
 

 
Figure B.1 Full image of western blot presented in Figure 4.1 
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Figure B.2 Full image of western blot presented in Figure 4.3 
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Figure B.3 Full image of western blot presented in Figure 4.4 
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Figure B.4 Full image of western blot presented in Figure 4.6 
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Figure B.5 Full image of western blot presented in Figure 4.7 
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Figure B.6 Full image of western blot presented in Figure 4.8 
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