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PREFACE 

 

By 1846 the importance of the Great Lakes waterway was growing and more federal 

investment to projects throughout the system yielded growth in sailing vessels and trade (Barton 

et al. 1846).  Discovery of iron-rich rock formations in northern Michigan and Minnesota 

provided increased incentive to provide vessels access into Lake Superior and by 1855 the state 

of Michigan opened a navigation lock to traverse the rapids at Sault Ste. Marie.  The iron ore 

trade blossomed to support steel production and derivative industries.  Steel production requires 

both iron ore and coal which predetermined the location of mills in the region.  As coking coal is 

more fragile in transport than iron ore, steel producers situated their mills to allow coal transport 

by rail and received iron ore by boat.  The national importance of the Soo Locks was well 

established by 1881 when the federal government and U.S. Army Corps of Engineers assumed 

responsibility for the facility to secure and improve its operational efficiency.  Steel production 

in the U.S. expanded and in 1901 US Steel (Pittsburgh, PA) under the leadership of Andrew 

Carnegie incorporated to become the world’s first billion-dollar company.  Since then, a series of 

federal projects have improved, expanded, and deepened the Great Lakes navigation system to 

its current form.  Though technologies and production methods for both iron ore and steel have 

evolved, the importance of this waterway has endured and remains crucial to North American 

manufacturing.  This study takes a multi-disciplinary approach to investigate the intersection of 

engineered systems, transportation performance, as well as market driven allocation of 

infrastructure funds that enable the efficacy of this waterway system.     
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ABSTRACT 
 

Decades of under-investment into aging infrastructure have resulted in uncertain reliability 

and systemic under-performance.  The infrastructure spending gap in the U.S has grown to $2.6 

trillion, and estimates suggest half of that is necessary within the next five years to avoid major 

impact to GDP.  Yet spending levels remain below needs and policymakers seek more efficient 

allocation models for public funds and alternative financing mechanisms to accelerate the pace 

of investment to meet society’s needs.  There is substantial private capital ready to enter the 

infrastructure sector along with innovations in contractual public-private partnership models.  

Financing mechanisms, such as infrastructure banking, show promise in extending the value of 

federal spending.  However, a gap exists in the modeling of revenue streams and risk exposures 

for private entities which are necessary for the integration of public and private capital.  Big data 

analytics are applied in this research to reveal opportunity costs and risk exposures which we 

apply to model revenue streams and assess infrastructure funding decisions.  

This dissertation investigated the waterway infrastructure of the Great Lakes, which 

comprises a network of deep-draft ports and connecting channels that serve a prominent role for 

commerce and manufacturing in North America.  The waterway system requires annual funding 

to maintain navigable depths and functional port and lock infrastructure.  An obstacle to funding 

decisions is the uncertainty surrounding financial returns on investment from improved maritime 

efficiency, in part because transportation and logistics metrics or benchmarks are lacking.  Iron 

ore, the primary commodity in the Great Lakes, serves as the use case in this work to assess 



 xiv 

performance metrics for the waterway infrastructure that enables efficient and sustainable 

transport from mines to steel mills.   

This dissertation integrates new data analytics across traditional disciplinary silos to gain new 

insight into the risks, performance, and funding mechanisms for harbor infrastructure.  Corporate 

financial metrics are used to map and quantify interdependencies within the value chain from 

iron ore production to finished goods.  These interdependencies are further applied to assess 

financial risk exposures to infrastructure disruption using analytic tools such as input-output 

modeling.  We applied big data analytic tools to assess the performance of maritime shipping 

with highly granular spatial and temporal datasets, including vessel draft, transit time and cargo.  

Vessel position information from historic Automatic Identification System (AIS) was used to 

develop a novel Maritime Transportation Efficiency (MTE) metric, defined as mass per time and 

directly applicable to bulk carriers.  Regression analysis of vessel performance to hydrologic 

conditions in the waterway provided a means to predict changes in logistics performance 

resulting from infrastructure investment.  We use Monte Carlo simulation to calculate expected 

MTE for vessels in the waterway under varying conditions which are correlated to transportation 

costs.  Analytics techniques, like those applied in this dissertation, are useful to model revenue 

streams and reveal potential for new funding mechanisms and market-driven financing models.   

We suggest a new funding model for harbor infrastructure based on user demand with a fee 

structure adaptive to actual vessel requirements, attainable through existing data sources and new 

analytical tools.  Demand-driven funding decisions for harbor maintenance can maximize value 

returns for users.  A fee structure, outside of the Congressional appropriations processes, is more 

responsive to user needs and provides a means to deploy alternative financing models such as 

infrastructure banking for waterway maintenance and port depth construction dredging.     
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CHAPTER 1 

Background and Research Need 

 

Funding requirements continue to outpace available public resources to improve and renew 

America’s aging infrastructure, which threatens their service and reliability [2].  This is a 

challenge that governments and public infrastructure managers have contended with for decades.  

This issue first became popular in the academic literature in the 1990’s following two decades of 

decline in public spending on infrastructure [3].  Aschauer [4], [5] established a connection 

between public investment to infrastructure, economic productivity, and private capital outlay, 

most evident in the Transportation and Water sectors.  Those studies found that the lag in 

government investment in public facilities decreased economic productivity levels by up to 50 

percent [5].  This was not uniformly accepted, and uncertainty over the apparent “spending gap” 

and the proper attribution for responsibility to resolve it remained in question [6].  Two areas of 

debate emerged; First, what is the causation and correlation between infrastructure investment 

and economic productivity? Second, what actions are appropriate, and by whom, to address 

lagging improvements [7].  Empirical evidence for the positive relationship between 

infrastructure and economic growth is offered by Sanchez-Robles [8], but considerable 

uncertainty remained in what alternatives are best to address the needs.  Cain [9] investigated, 

but stopped short of resolving, the question of jurisdiction to reinvest in failing infrastructure.  

These questions persist and the infrastructure debate is far from resolved.  What are the roles of 

public and private capital to address infrastructure needs?  What is the jurisdiction between 
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federal, state, and local governments for public goods?  What assets are truly a “public good” 

and therefore expensed from the general treasury, versus separate funding mechanisms such as 

tolls or user fees?   

We continue to contend with these questions and the “infrastructure gap” continues to grow. 

The estimated costs for addressing the infrastructure needs have escalated from $1.3 to $5.9 

trillion in the U.S. since 2001 [10].  Calls for increased public spending continue, and political 

rhetoric favors massive infrastructure finance reform, but it is unlikely that spending at the 

federal or state levels alone will be sufficient to address the need.  Alternative financing 

mechanisms such as those available through Public-Private Partnerships (PPPs) have garnered 

attention and are appealing to accelerate joint capital outlay for project delivery.  There are clear 

advantages to the upfront provision of project funds which reduces construction costs and brings 

revenue sources online sooner.  The added value from accelerated project delivery often exceeds 

the financing costs associated with borrowed money [11].   The concept of “Value for Money” 

has established itself in the PPP lexicon as are evaluation processes that  intend to attribute value, 

costs, and risks to advance project considerations beyond the balance sheet [12].  A blend of 

public and private capital is necessary to address the infrastructure gap, but obstacles exist that 

have impeded private participation or failed to adequately mitigate financial risks.  Studies that 

investigate critical drivers of success and failure for PPPs [13], [14] and our understanding of 

effective (and efficient) financing models continues to evolve.  It is evident that successful 

financing arrangements are predicated upon a thorough understanding of system users, 

associated revenue streams, and risk exposure to variabilities in performance and structural 

health. 



 3 

This dissertation is motivated by the investment gap in port and waterway infrastructure and 

the derivative impact that it has on waterway users.  Ports and coastal infrastructure comprise 

one of seventeen sectors evaluated by ASCE’s Infrastructure Report Card [10].  American ports 

annually carry more than $5 trillion dollars in goods accounting for 26% of the country’s GDP 

[15].  Waterway infrastructure systems such as harbors, locks, canals, and breakwaters play an 

important role in industry supply chains and provide a competitive advantage to companies by 

reducing risks to transportation and logistics [16], [17].  Despite the importance of this sector to 

the economy, there is a spending gap of $32 billion for landside projects and a $28 billion 

dredging backlog which have resulted in inefficiencies, delays, and lost revenues for waterway 

users [15].  Maintenance shortfalls of harbors and waterways nationwide have prompted 

initiatives to explore alternative financing mechanisms and prioritization methods [18].  Concern 

over system performance has renewed examination into how America should fund the operation 

of its waterway infrastructure.   

The U.S. Army Corps of Engineers (USACE) is responsible for managing the nation’s 

navigation infrastructure under the agency’s civil works mission and has engaged with industry 

in exploring alternative financing and revenue generating options [18], [19].  In its current state, 

existing revenue sources and funding from the general treasury have been unable to meet 

growing needs of existing assets.  It is estimated that the value of USACE capital stock has 

declined from $250 billion in 1980 to $165 billion in 2011 [20].  The U.S. Congress included 

provisions for alternative financing options and directed pilot PPP projects that would address 

lagging project needs [21].  The Task Committee on Alternative Financing for Waterways 

Infrastructure identified several impediments including proper identification of revenue sources, 
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and fiscal authority to manage those revenues separately from general treasury appropriations 

[18].   

Existing funding mechanisms for waterway infrastructures are generally divided into two 

categories: Inland and Coastal Harbors.  Inland waterways include the network of rivers and 

shallow draft ports (less than 20 feet) primarily accommodating barge traffic.  This system of 

infrastructure combines funding from the general treasury and revenue from a Fuel Tax of $0.29 

per gallon [22].  Coastal Harbors are funded through a Harbor Maintenance Tax (HMT) based on 

the value of cargo and taxed at a 0.125% rate, an ad valorum tax [23].  Whereas Inland 

Waterway funds support both maintenance and construction projects, Harbor funds are 

exclusively for operations and maintenance (O&M) activities.  Funding for construction projects 

is shared between project sponsors (typically states or port authorities) and federal appropriations 

from the general treasury.  The focus of this dissertation is on Coastal Harbor projects and 

Harbor Maintenance funding, specifically the Great Lakes system, as will be described in detail 

later in this chapter. 

Despite the needs described here, the topic of financing and funding waterway infrastructure 

has received limited attention in the academic literature.  A search within the Scopus database 

using keywords “Alternative Finance” + “Waterway Infrastructure” returned only three (3) 

results.   keywords “Alternative Finance” + “Navigation” returned five (5), and keywords 

“Alternative Finance” + “Harbor Maintenance” returned a single result.  A search on more 

common terms “Waterway Infrastructure” + “Funding” + “Navigation” returned twelve results, 

but only five since 2011 and two of those in academic journals.  It is necessary to distinguish 

between funding and financing for infrastructure projects, though the two terms are frequently 

used interchangeably.  Funding describes the payment for (the cost of) either maintenance or 
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construction activities and is attributed to a revenue source, be it general treasury funds or harbor 

maintenance taxes.  Financing involves leveraged funds, most commonly through bonds or 

loans, which are subject to interest and a cost of borrowed capital.  Many of the financing 

mechanisms reside outside governmental or USACE authorities and require a private partner to 

become practicable, hence the motivation behind PPPs.  Much of the discourse on the topic of 

alternative finance for waterways exists in government, or government-contracted, think tanks 

which would benefit from increased scholarly contribution.  A fundamental challenge to 

addressing this in research is the complex, multi-disciplinary nature of the problem.   

This dissertation applies new data analytics integrated across traditional disciplinary silos to 

gain new insight into the risks, performance, and funding mechanisms for harbor infrastructure 

in the Great Lakes.   First, we seek to understand the network of corporate activities most closely 

connected to the waterway infrastructure through corporate supply chains.  Risks associated with 

infrastructure disruption or under-performance most immediately affect direct users, but they 

also have a pronounced impact on derivative users that is not well-understood.  Second, we 

investigate objective, data-driven measures for port and waterway performance. This is 

necessary to model commodity flows and associated financial transactions in the waterway.  

Third, this dissertation explores new management practices that connect maintenance funding to 

shipping logistics performance and demand which has potential to minimize overall costs and 

reduce unnecessary, or unwarranted, spending.  Finally, we suggest a new approach to fund and 

finance harbor infrastructure based on user demand with a fee structure adaptive to actual vessel 

requirements, connected to revolving loans.  We posit that such a fee structure, outside of the 

Congressional appropriations processes, would be more responsive to industry needs and 

accelerate capital outlay for improvements projects by making financing more available.   
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Figure 1.1: Dissertation approach 

Ecosystem of Infrastructure Users and their Financial Risk Exposure 

It is necessary to understand the network of interconnected users of an infrastructure system 

to assess the full value of the waterway. Simkins and Stewart argued that the full value of cargo, 

rather than tonnage, should inform port funding decisions and prioritization, but noted that 

economic relationships and financial data are often missing from decision models [24].   To 

address this need we have to understand how to value corporate risk exposures and target 

investments that yield the greatest capacity to mitigate opportunity costs and threats [25].   

Network mapping is a tool that has been used in the financial industry to uncover non-systemic 

phenomena or vulnerabilities in financial transactions.  These models have been adapted to 

understand financial interdependencies in industry supply chain networks [26].  Interpretations of 

these transactive maps using network theory have uncovered economic drivers in an industry 
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ecosystem or the impacts of policies on capital flows [27], [28].  This approach could be adopted 

to map supply chain interdependencies for waterways and assist in valuing those infrastructures.  

The disruption of port operations due to natural disaster, manmade-hazards, or functional 

degradation has a negative impact on economic activity [29]–[32].  A popular approach for 

estimating this impact is the application of Input-Output (IO) models to calculate propagated 

economic loss following a catastrophic event [29], [30].  Zhang and Lam estimate losses within 

the supply chain for adjacent industries using specified discrete scenarios [32].  MacKenzie et al. 

simulated the effects of shifts to alternate transportation modes under port closure scenarios on 

shipping costs increases [33].  Pant et al. assessed the multi-regional impacts of inland port 

disruption by applying dynamic inoperability input-output models [34].  Darayi et al. 

recommended investment strategies that mitigate risk of disruption by identifying critical node 

and component importance within an infrastructure system [35], [36]. We sought to integrate 

financial metrics and mapping techniques to quantitatively assess the full value of the waterway 

infrastructure and test sensitivity to disruption in various segments of the system.  

 

Research Question1:  What is the financial risk to supply chains from unplanned disruption to 

Great Lakes waterway infrastructure?   

 

Measuring System Performance with Big Data 

Funds for waterway infrastructure projects are primarily intended to reduce transportation 

costs by enhancing system performance, yet few objective performance metrics are in use.  

Mitchell and Scully identified this gap for improved management of USACE projects and 

identified vessel Automatic Identification System (AIS) data as a burgeoning asset for evaluation 
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[37].  These data are described in greater detail in Chapter 2.  The application of AIS to the 

inland waterway system  and for port fluidity characterization  have expanded the availability of 

performance statistics and monitoring, but information gaps in the Great Lakes remain [38], [39].  

Travel time and vessel turnaround time in port are important metrics for performance, but for the 

Great Lake system, variable water level and vessel payload are paramount.   

Vessel payload is dependent on available draft and is determinant of shipping revenue and 

transportation costs to freight consumers.  In the Great Lakes, available draft and resultant 

payload vary seasonally by up to two meters [40], which significantly affects performance and 

cashflows for shippers.  Meyer et al. developed indexed-based insurance instruments to hedge 

against reduced revenue from restrictive vessel drafts [41], [42].  However, absent from the 

literature is any connection between actual vessel load and water surface levels.  In the era of big 

data, we sought to apply analytics and machine learning tools to develop objective measures for 

waterway and port performance.  These measures offer insight as a baseline, and a means to 

predict system response to investment activities.     

 

Research Question2:  How can big data analytics yield insight to port and waterway 

performance and operations?   

 

Revenues for Harbor Maintenance 

The allocation of funds for harbor maintenance follows federal budgeting procedures, which 

are based on estimated costs to achieve Congressionally authorized channel dimensions [43].  

Appropriations from Congress determine the amount of available funds for individual projects in 

each fiscal year [23], but these are not necessarily reflective of vessel traffic and draft 
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requirements.  Appropriations are spent from the Harbor Maintenance Trust Fund (HMTF) 

which has been the subject of debate since it was first instituted in 1986.  A value-based fee is 

unique to the United States.  Other countries fund harbor maintenance from their General 

Treasury or directly through port user fees [44], [45].  As the HMT is value-based, the U.S. 

Supreme Court has ruled it a tax rather than a user fee and found it to be in violation of the 

Export Clause of the Constitution [46].  Since 1998 the tax is collected on imported goods and 

domestic shipments but excludes U.S. exports.  The collection of taxes as applied only to imports 

remains contentious and is subject to consultation under the General Agreement on Tariffs and 

Trade (GATT) which today is governed by the World Trade Organization (WTO).  There is a 

direct correlation between available draft and vessel payload, but only an abstract relationship 

between HMT collections and appropriation of maintenance funds.  Freight consumers 

ultimately assume the cost of navigation channel maintenance activities either directly or 

indirectly (through the HMT), which should be considered in project decisions.   

There have been several recommendations to amend, replace, or eliminate the HMT [45], 

[47], [48].  The Clinton administration pursued several alternatives, including replacement with a 

user fee and a return to expenditures from the General Treasury, but neither was taken up by the 

106th Congress [47].  Kumar proposed a user fee structure based on tonnage, vessel draft, and 

time-in-harbor which would pass the constitutionality test and better adhere to principles set 

forth in the GATT [45].  McIntosh et al. investigated various plans including a fee based on 

tonnage alone, abolishment of expenses by General Treasury, and replacement with a fuel excise 

tax [48].  Each option necessarily shifts the burden of payment and would likely result in 

opposition and endorsement.  Sentiment favors a user fee model based on objective data that 

reflect maintenance needs.  Unfortunately, data availability to support such a model have been 
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limited to date [49].  In recent years, big data and sensor technology have provided opportunities 

for improved insight in vessel and port usage that could result in the design of updated, equitable 

financing models for harbor infrastructure which this dissertation investigates for the Great 

Lakes.   

 

Research Question3:  Can alternate funding mechanisms for harbor maintenance reduce 

expenditures and operationalize market-based investment decisions?   

 
 

The Great Lakes Waterway 

The Great Lakes, on the border between the United States and Canada, comprise the largest 

freshwater system in the world and serve as a vital maritime highway for dry bulk commodities 

[50]–[52].  The system contains more than 100 U.S. and Canadian ports situated along 11,000 

miles of coastline [53].  The Great Lakes are distinct from inland waterway systems in that they 

accommodate deep draft vessels (rather than barge traffic) to transport bulk commodities such as 

iron ore [51], [54].  The waterway connects to overseas markets through the St. Lawrence 

Seaway, but more than 90% of U.S. commodities remain within the system, being transported 

between domestic ports [54].  A series of improvements over the life of the system has deepened 

the most restrictive points (connecting channels between lakes) to a nominal depth of 8.2 meters, 

though functional depths change seasonally as lake levels fluctuate impacting vessel load [41], 

[55].  The network of interdependent ports, harbors, connecting channels, and locks annually 

carries more than 150 million tons of bulk commodities for U.S and Canadian manufacturing 

centers [53]. Gross revenue for transportation in the Great Lakes is approximately $1-2 billion 

annually [56]–[58] 
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The American States and Canadian Provinces that border the Great Lakes have an estimated 

GDP of $6 trillion, which, if combined, would represent the world’s third largest economy, 

behind the U.S. and China [59].  Steel producers generate nearly half of the demand for freight 

movement, primarily iron ore from mining operations along Lake Superior to steel mills situated 

throughout the lower Great Lakes (Figure 1.2).  These maritime shipping routes are at the core of 

the manufacturing supply chain in the U.S. and Canada. Iron ore vessels traverse the St Marys 

River and the navigation locks in Sault Ste Marie, MI (Soo Locks) which are owned and 

operated by USACE [55].  

Periods of low water adversely impact cargo volumes which increase unit transportation 

costs and force higher transport pricing over long periods. Meyer et al. developed hydrology-

based hedging instruments to insulate shippers from extreme conditions in the Great Lakes and 

evaluated tradeoffs between financial (insurance) and physical (dredging) risk mitigations [41], 

[42].  This issue was most pronounced from 2005-2013 when historic low water levels coincided 

with a dredging backlog [40].  The effect of reduced payload is most pronounced in iron ore 

Figure 1.2: Primary cargos by origin in the Great Lakes 
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vessels due to the density of that cargo.  Increased transportation costs in this sector have 

derivative impacts on the price of steel production and manufacturing which is qualitatively 

understood, but not readily quantified.   

 

Iron Ore and Steel in the Great Lakes Region  

Steel production begins with molten pig iron or direct reduced iron and requires quality raw 

materials such as coal, limestone, and iron ore [60].  In the United States, iron ore is exclusively 

mined from the Mesabi and Marquette ranges located in northern Minnesota and Michigan, 

respectively [61].  Seven active mines with a combined production capacity of 53 million tons 

supply 15 steel mills in the U.S. and Canada which specialize in advanced steel making [62]–

[65].  These “integrated” steel mills utilize blast furnaces for molten pig iron and basic oxygen 

furnaces for steelmaking to produce specialty grades of Advanced High Strength Steel (AHSS) 

used in manufacturing [66], [67].  See Appendix A for the full list of mines (Table A.1), 

transloading facilities (Table A.2), and integrated steel mills (Table A.3).  The Great Lakes 

waterway serves as the critical transportation corridor to connect this network of mines and 

mills. 

Virtually all iron ore produced in the United States is transported via the Great Lakes 

waterway and passes through the Soo Locks [52], [54], [68].  Ships on the Great Lakes transport 

processed iron pellets known as taconite, classified as iron ore in the North American Industry 

Classification System (NAICS code 1011).  Taconite pellets are formed by pulverizing and 

separating raw ore and concentrating iron content with other flux material, especially crushed 

limestone which passes upbound through the waterway [69], [70].  There are two major 

producers of iron ore in the U.S.: Cleveland Cliffs (56%) and US Steel (44%) [64], [65].  These 
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companies supply ore to more than 90% of all integrated steelmaking in the U.S. and more than 

55% in Canada [61], [71].  Approximately 1.3–1.5 tons of taconite pellets are consumed to 

produce one ton of steel [72].   

The demand for taconite in the Great Lakes is driven by integrated steelmakers who operate 

blast furnaces for production of molten iron.  Integrated steel making is reliant on mined material 

(taconite pellets) which differs from electric arc furnace production, also known as mini-mills.  

Electric arc furnaces account for 60-70% percent of production in the United States and 45% of 

Canadian steel [72].  However, there is an important distinction between construction grade steel 

produced in mini-mills and higher strength products at the core of manufacturing, which places 

strict limits on substitution in the supply chain.  Integrated steel makers have been responsible 

for advancing stronger and lighter steel grades collectively known as Advanced High Strength 

Steel (AHSS).  The automotive industry is the primary consumer of these products and the 

streamlined delivery to manufacturing centers requires consistent production.  In turn, these 

downstream supply chains require a continuous flow of raw materials on the Great Lakes [66], 

[67].  Annually 45-50 million tons of refined taconite pellets move through the Great Lakes 

Waterway to steel mills that specialize in production of AHSS.   

The entire raw materials-to-finished goods value chain is connected to the Great Lakes 

waterway which needs to ensure efficient and resilient system performance.  Taconite pellet and 

steel production, at mines and mills respectively, is relatively consistent throughout the year 

despite an annual disruption to navigation in the winter months.  The navigation system, 

including the Soo Locks, experiences a scheduled 10-week closure from January 15 to March 25 

when ice conditions are heaviest [55], severing iron mines from steel mills.  During winter 

months, taconite producers stockpile material at iron ore docks on Lake Superior.  Steel 
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producers build stockpiles during the navigation season to sustain production throughout the 

winter.  This stockpiling practice creates recurring cycles in both industries for inventory 

maintenance and operating costs of production.   

Rail and transloading infrastructure facilitate the movement of taconite via dry bulk carriers 

to steel mills via the Great Lakes waterway.  The network of railways, ore loading docks, and 

transloading facilities are owned and operated by a small group of firms.  Mines operate year-

round and move taconite by rail to one of five ore loading docks where material is stockpiled or 

loaded directly onto maritime vessels [64].  Most integrated mills are situated along the 

waterway and receives taconite directly from the vessels.  Two mills in Middleton, OH and 

Pittsburgh, PA utilize transloading facilities along Lake Erie to complete the movement via rail 

[62], [65].  Only one integrated mill (Granite City, IL) primarily receives taconite via rail and is 

not directly dependent on the Great Lakes waterway.  The value for chain for iron ore to steel 

manufactured products is highly dependent on maritime shipping in the Great Lakes.    

 

Shipping in the Great Lakes 

Most ships on the Great Lakes are from U.S. and Canadian flagged fleets travelling inter-lake 

routes.  Canadian vessels are constructed to navigate the Welland Canal and St. Lawrence 

Seaway with lock dimensions restricting vessel size to 225.5 x 23.8 meters and are descriptively 

classified as “Seaway Max” [51].  Larger vessels, which comprise much of the U.S. fleet, remain 

above the Welland Canal and service ports on the upper four lakes [54].  Following construction 

of a new Poe Lock in Sault Ste Marie (1968), larger ships began to enter service to maximize 

dimensional use of the infrastructure.  The Poe Lock is 365.9 x 33.5 meters (1,200 x 110 feet) 

while the MacArthur Lock (situated parallel to the Poe) is 243.9 x 24.4 meters (800 x 80 feet) 
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wide.  Over time the American fleet added larger vessels and decommissioned older, smaller 

vessels.  Thirteen vessels of 1,000 feet or more in length, known as “Footers,” are owned by the 

three largest U.S. shipping companies on the Great Lakes (Table 1.1).  This finite subset of 

vessels accommodates a substantial portion of goods moving down from Lake Superior 

including more than 50% of iron ore [73].  Appendix B shows a complete list of U.S. flagged 

vessels operating in the Great Lakes. A vessel’s Deadweight Tonnage (DWT) describes its 

maximum payload, but actual load varies with available depth and water surface elevations in the 

Great Lakes. 

Table 1.1: List of 1,000-foot vessel "Footers" in operation on the Great Lakes 
 

There is a clear connection between vessel and port performance, shipping costs, and funding 

for infrastructure which, to date, is inadequately quantified.  A deeper understanding of these 

relationships is needed to reveal the full value of waterway infrastructure and unlock potential 

for private investment, improve allocation of public funds, and pursue alternative financing 

options.   

 

Organization of Dissertation  

Vessel Name Fleet Length 
(feet) 

Beam 
(feet) 

Per-Trip Carrying 
Capacity (tons) 

Capacity per foot 
of Draft (tons) 

American Century American Steamship Co. 1,000 105 68,880 3,192 
Indiana Harbor American Steamship Co. 1,000 105 68,757 3.192 
Walter J McCarthy Jr. American Steamship Co. 1,000 105 68,757 3,192 
American Integrity American Steamship Co. 1,000 105 68,320 3,168 
Burns Harbor American Steamship Co. 1,000 105 71,120 3,192 
American Spirit American Steamship Co. 1,000 105 66,080 3,180 
Edwin H. Gott Great Lakes Fleet 1,004 105 69,664 3,204 
Edgar B Speer Great Lakes Fleet 1,004 105 69,552 3,204 
Presque Isle Great Lakes Fleet 1,000 104 58,240 3,096 
Paul R. Tregurtha Interlake Steamship Co. 1,013 105 69,580 3,216 
James R. Barker Interlake Steamship Co. 1,000 105 67,475 3,168 
Mesabi Miner Interlake Steamship Co. 1,000 105 67,465 3,168 
Stewart J. Cort Interlake Steamship Co. 1,000 105 64,690 3,096 
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We approached the primary research questions in three steps, as shown in Figure 1.3.  The 

integration of diverse and granular data sets was fundamental to each of the research phases. A 

detailed description of data sources is provided in Chapter 2.  

In Chapter 3 we create a digital twin for shipping in the Great Lakes and characterize the 

flow of commodities on the waterway with a focus on iron ore.  Using corporate financial data, 

we map the value chain network for steel to finished goods.  Quantified financial data are further 

applied to a supply-driven input output inoperability model (SIIM) to assess supply chain 

sensitivity and risk of disruption for specific infrastructure nodes within the waterway.  This 

presents a robust valuation of waterway risks throughout the manufacturing supply chain.   

Chapter 4 quantifies port and waterway performance with transit and time-in-port statistics 

integrated with vessel load data.  We assess machine learning models to regress variations in 

vessel payload to water surface elevations. This serves as a predictive tool to account for 

seasonal changes in performance.  Using AIS data, we develop travel time statistics throughout 

Chapter 3 
Financial risks in the 

manufacturing supply chain 
from waterway disruption 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Map Corporate 
Ecosystem using Supply 

Chain Data 

Quantify Interdependency 
between firms using 

corporate finance data 

Assess Financial Risk of 
Disruption using SIIM 

Chapter 4 
Utilize big data to measure 

port and waterway 
performance 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Regression of vessel 
payload to water surface 

levels using lock data 
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efficiency through data 
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Chapter 5 
Assess value return from 
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Determine shipping cost 
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time-in-port  
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Figure 1.3: Dissertation organization 
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the waterway, and present algorithms useful for the analysis of that data in a non-linear system.   

This is the first study to integrate vessel payload and travel time statistics to produce a Maritime 

Transportation Efficiency (MTE) metric for bulk carriers expressed as mass per time.  The 

metric provides a meaningful proxy for transportation costs and serves as a predictable means to 

assess dredging project benefits.   

We apply the proposed MTE metric in Chapter 5 to predict changes in performance using 

Monte Carlo simulation.  We evaluate improvements to shipping efficiency and cost reductions 

for landside infrastructure investment at Burns Harbor.  We assess the real value of maintenance 

dredging in Toledo Harbor under variable water levels and quantify diminishing returns that 

exist during periods of uncharacteristically high water or decreased demand for freight.  

Consideration of system performance and the return on value of dredging can improve capital 

outlay for waterway projects.  We discuss a draft-based user fee model to replace HMT as the 

basis of revenue for harbor projects.  This would enable market-driven decisions that link capital 

expenditure to system performance which is informed through real-time AIS data.     
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CHAPTER 2 

Data Sources 

 

This chapter is intended to provide an overview of the data types and sources used in this 

dissertation.  Their specific applications, processing methods and integration in the analytical 

tools are described in the methods sections of the subsequent chapters.  Datasets assembled and 

processed as part of this dissertation are available publicly through the University of Michigan 

Deep Blue data repository under creative commons Attribution-Noncommercial 4.0 International 

license (CC BY-NC 4.0).   

  

Financial Data 

Supply chain and corporate financial metrics are accessible through databases such as 

FactSet or the Bloomberg Terminal.  Supplier-customer data available through the Supply Chain 

(SPLC) module within the Bloomberg terminal includes sales revenue dependence of suppliers 

on their customers as a percentage of a company’s total sales.  This module provides financial 

information on customers and suppliers estimated from a variety of sources including public (10-

K) filings.  All transactional relationship data in the supply chain are reported as percent revenue 

between suppliers and buyers.  Data confidence is highest for relationships in which revenue 

streams account for 10 percent or more of a firm’s total sales (percent of revenue).  Reporting 

above that threshold is mandated by the SEC, but many other data are also available [74].  Few 

data were available on privately owned companies and those traded on the Canadian Stock 
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Exchange (e.g., Algoma and Stelco steel companies).  Various corporate performance metrics are 

available for publicly traded firms, such as inventory turnover ratios.  This study used inventory 

turnover to quantify supply-side dependency for manufacturing firms on intermediate goods.  

Five-year average inventory turnover ratios (2014-2018) were collected for all suppliers in the 

network using the FactSet financial database [58].  Financial and corporate data collected for the 

supply chain are available publicly through the University of Michigan Deep Blue data 

repository [75].   

 

Lock Performance Monitoring System  

The USACE collects data on all vessels transiting navigation locks which includes vessel 

name/number, origin/destination, cargo tonnage, and timestamp information which is stored in 

the Lock Performance Monitoring System (LPMS) [76].  Data available publicly on the USACE 

website is aggregated to protect proprietary information.  This study utilized raw data from the 

facility in Sault Ste Marie, MI (Soo Locks) for the period from March 2005 to September 2018, 

includes the origin, destination, and individual vessel tonnage data necessary for this analysis 

(sample shown in Appendix D).  The full LPMS dataset contains 55,342 records including 

13,657 transits of iron ore.  A modified version of the dataset with encrypted vessel names and 

removed vessel identifiers (to protect proprietary information) is available publicly through the 

University of Michigan Deep Blue data repository [73]. 

 

Great Lakes Water Levels 

Water levels throughout the Great Lakes are monitored by the National Oceanic and 

Atmospheric Administration (NOAA) and USACE.  Monthly average water levels for each of 
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the waterbodies consider information from multiple stations coordinated between the agencies 

and publicly available on the USACE webpage [40].  Mean water surface elevation data is 

available for each of the waterbodies since 1918.  Single station data containing instantaneous 

and mean daily levels are available from the NOAA Tides and Current website [77].  This study 

utilized single station data from the NOAA Tides and Current website for six gauges which are 

representative of system extremities (#9099064 Duluth, MN, #9076024 Rock Cut in St Marys 

River, #9087044 Calumet, IL, #9014070 Algonac, MI, #9063085 Toledo, OH, #9063063 

Cleveland, OH).   

Changes in water level are highly correlated in the Great Lakes system.  We observed high 

correlation (𝜌!,#) between lakes and the connecting channels through Lake St. Clair and St 

Marys River.  All the waterbodies are positively correlated and segments above Lake Erie 

exhibit correlation above 0.7 (see Appendix C for full correlation table).   

Winter ice cover data is also available on a daily basis from NOAA [78].  These data records 

express percent of surface ice cover on each of the waterbodies in the system.  Data are generally 

available from November through May, when ice is present in the waterway.   

 

Automatic Identification System  

Real time Automatic Identification System (AIS) data are collected and actively managed by 

the US Coast Guard with the primary purpose of improving safety.  Transponders are mandated 

for all commercial vessels larger than 300 gross tons and on all passenger vessels [79].  The data 

include both static and dynamic features.  Static features include vessel name, identification 

number, and dimensions which are specific to each vessel and do not change over time.  

Dynamic features include Position (Lat-Lon), Speed and Course over ground which are 
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continuously updated and generally recorded in 1-minute increments.  The historical AIS data is 

archived and publicly available through the Marine Cadastre website, managed jointly by the 

Bureau of Ocean Energy Management (BOEM) and NOAA [80].   

This study expands the utilization of AIS in its application to the Great Lakes waterway.  

Historical data for Universal Transverse Mercator (UTM) Zones 15-18 is assembled over the 

period 2015-2017.  Data for each UTM Zone is available in monthly files which required the 

collation of 132 data files for the Great Lakes.  The AIS data is cumbersome in its raw form.  

The full dataset is comprised of several billion lines which is cropped to 41.3 - 49.0o N Latitude 

and 72.3 - 92.2o W Longitude, covering the Great Lakes. The data was further filtered by 

capturing entry and exit records for defined segments of the waterway.  These “trimmed” 

datasets for each navigation season (2015-2017) contain 13 to 19 million lines each and are 

available publicly through the University of Michigan Deep Blue data repository [73]. 

 

Dredging Data 

 Historical dredging records are available through the USACE Navigation Data Center.  

The Institute for Water Resources (IWR) maintains contracted dredging data from 1990 which 

includes harbor/project name, expected and actual dredging volumes and costs [81].  The 

historical dataset includes 5,138 records from 1983-2018.  The USACE reports consolidated 

contract data for fiscal years 2019 and 2020 separately.   
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CHAPTER 3 

Applied Financial Metrics to Measure Interdependencies in a Waterway Infrastructure 
System 

 
This chapter is published in the Journal of Infrastructure Systems. 
 
Sugrue, D., Martin, A., Adriaens, P. 2021. “Applied Financial Metrics to Measure 
Interdependencies in a Waterway Infrastructure System.” Journal of Infrastructure Systems. 
27(1). http://ascelibrary.org/doi/10.1061/%28ASCE%29IS.1943-555X.0000588. 

 
Introduction 

Waterway systems serve as critical logistics infrastructure for the movement of goods and are 

widely regarded as the most economical (and environmentally friendly) means of freight 

transportation [82], [83].    Impediments to waterway performance may restrict freight 

throughput and force the movement of goods via another mode at higher cost, or in severe cases, 

disrupt the supply chain [17], [84].  The estimation of regional and industry-wide losses due to 

waterway disruptions is fraught with uncertainty and requires the development of advanced 

methodologies to estimate the impact of supply shocks [17], [34].   

 Research has shown that the disruption of port operations due to natural disaster, 

manmade-hazards, or functional degradation impacts economic activity [29]–[31].  A popular 

approach to estimate this impact is the application of Input-Output (IO) models to calculate 

propagated economic loss following a catastrophic event [29], [30].  Zhang and Lam estimate 

losses within the supply chain for adjacent industries using specified discrete scenarios [32].  

Research on coastal ports is dominant in the literature, but inland ports and waterways also 

exhibit significant cascading effects due to freight disruption [17], [33], [34].  MacKenzie et al. 
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simulated the effects of shifts to alternate transportation modes under port closure scenarios on 

shipping costs increases [33].  Pant et al. assessed the multi-regional impacts of inland port 

disruption by applying dynamic inoperability input-output models [34].  Darayi et al. 

recommended investment strategies that mitigate risk of disruption by identifying critical node 

and component importance within an infrastructure system [35], [36].  Others have 

recommended analytical approaches to allocate finite budgets for dredging of inland waterways 

to maximize total economic benefit, or minimize opportunity costs [85].  Common to these 

studies is the importance of accurately modeling the network of transportation systems and the 

interdependencies between waterway users.   

This study applies corporate financial metrics to quantify the economic interdependencies 

between firms in the value chain of iron ore, steel, and manufactured goods in the Great Lakes 

Region.  We apply network modeling to understand the flow of materials in the waterway and 

investigate the cascading effects of disruption on the value chain of manufactured goods.  For 

publicly traded companies, robust data for corporate revenue and financial metrics provide a 

practical means to quantify interdependencies in production and test sensitivity to disruption.   

Input-Output Model Background 

The Leontief Input-Output (IO) model is widely used to investigate macro-economic 

perturbations across interconnected sectors of the economy [86], [87].  The balance equation for 

the IO model is shown as  

𝑥$ = ∑𝑥$% + 𝑐$ = ∑𝑎$%𝑥% + 𝑐$    (3.1) 

Where 𝑥$ is the total demand for product 𝑖, 𝑐$ is final demand for 𝑖, and 𝑥$% is the demand for 

product 𝑖 as input to produce 𝑗.  The interdependency matrix (𝑎$%)	describes the proportion of 
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inputs (𝑖) needed to produce a unit of 𝑗 and is fundamental to the model.  Equation 3.2 shows the 

model in its simplified matrix form.      

x=Ax+c (3.2) 

The IO model accounts for a series of linear relationships between sectors, and effectively 

models equilibrium changes given demand-driven shifts.  For example, a decrease in demand for 

cars or industrial products would have a proportional reduced demand for steel and components 

as an intermediate good.     

The IO model has been applied to investigate system-wide perturbations given disruption or 

inoperability of key sectors within a system.  Haimes and Jiang developed the inoperability 

input-output model (IIM) for interdependent infrastructures and showed its usefulness in 

predicting shifts in demand for specified sectors given reduced operability of another [88].  

Subsequent studies have investigated cascading effects in interdependent systems from 

inoperability to minimize total loss [89] which may result from natural disaster or manmade 

hazard [90], utility failure [91], or natural disaster [92].  The principal IIM is shown as 

𝒒 = 𝑨∗𝒒 + 𝒄∗ (3.3) 

Where 𝒒 is the normalized inoperability vector, 𝑨∗ represents the interdependency matrix of 

coupled industries, and 𝒄∗ is the demand-side degree of inoperability.  It is common to see this 

expressed in its Leontief inverse form using the identify matrix, I. 

𝒒 = (𝑰 − 𝑨∗)	'𝟏𝒄∗ (3.4) 

Interdependency between sectors of the  U.S. economy is typically quantified using data 

from the Bureau of Economic Analysis (BEA) and researchers have mapped perturbations 

between sectors from major disruptions, terrorist attack for example [93], [94].  As with the 
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Leontief IO model, the usefulness of the IIM is highly dependent on quantifiable data to support 

relationships between industries conveyed by the interdependency matrix, 𝑨∗.     

Haimes et al. developed the Dynamic IIM (DIIM) which accounts for differing recovery 

times for industries after disaster [93], [95], [96].  Barker and Santos extended the use of the 

DIIM to evaluate how inventory levels within supply chain sectors affect recovery and total 

economic loss of disruption over time [97], [98].  Niknejad and Petrovic noted the difficulty 

assembling reliable data to describe interdependency across the global network and proposed a 

fuzzy multi-criteria method to quantify the relationship between entities [99].  Dass and Fox 

utilize metrics such as inventory turnover to model network interdependencies for complex 

supply chains [100].  We integrate such metrics to develop independency in the IO model.   

A supply-driven approach to IO modeling was developed by Ghosh to provide a foundation 

for understanding the propagation of change through value added steps in the supply chain [101].   

The supply-driven IIM (SIIM) has been further adapted to estimate disruptions passed forward in 

the supply chain from perturbations in the production of intermediate goods [102].  This is 

particularly applicable in systems where demand for goods is inelastic and substitution is limited, 

as in physical infrastructure supporting a network.  The price impact of goods using the SIIM is 

calculated using Equation 3.5.        

∆𝒑 = 𝑨(𝒔)∗∆𝒑	+	𝒛∗ = 8𝑰 − 𝑨(𝒔)∗9	'𝟏𝒛∗   (3.5) 

Where ∆𝒑 is the price change for goods and z* is exogenous change in value for value-added 

inputs.  The usefulness of the SIIM in predicting forward impact of supply changes has been the 

subject of debate which requires consideration in its application [103]–[105].  For example, 

Oosterhaven notes that the SIIM may only be appropriate in modeling supply-driven changes 

where substitution and demand elasticities approach zero [106].  Researchers have revisited the 
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efficacy of SIIM by applying it to manufacturing sectors with limited suppliers of unique 

production inputs [107]–[109].  As with other IIM approaches, the quantification of 

interdependencies is crucial.  Wie et al. proposed an ordered weighted averaging technique to 

convey the relationship between nodes in manufacturing [110]. 

 The application of SIIM in this paper is focused on supply chain disruption using detailed 

financial metrics to quantify supplier-customer relationships.  Such metrics are publicly available 

through financial databases such as the Bloomberg Terminal and [58], [111].  Corporate revenue 

and inventory turnover ratios are used to map material flows in a steel value chain and to 

quantify interdependencies between firms.  These metrics have significance in logistics and 

supply chain network analysis given their impact on supply availability and a firm’s ability to 

meet customer demand in periods of disruption [100], [112], [113]. 

 

Case Study: Supply of Iron Ore to Steel Mills via the Great Lakes Waterway 

 Steel production begins with molten pig iron or direct reduced iron and depends on 

quality raw materials such as coal, limestone, and iron ore [60].  In the United States, iron ore is 

exclusively mined from the Mesabi and Marquette ranges located in northern Minnesota and 

Michigan, respectively [61].  Seven active mines with a combined production capacity of 53M 

tons per annum supply 15 steel mills in the U.S. and Canada which specialize in advanced steel 

making [62]–[65].  These “integrated” steel mills utilize blast furnaces for molten pig iron and 

basic oxygen furnaces for steelmaking to produce specialty grades of Advanced High Strength 

Steel (AHSS) used in manufacturing [66], [67].  See Appendix A for the full list of mines, 

integrated steel mills, and transloading facilities.  The Great Lakes waterway serves as the 

critical transportation corridor to connect this network of mines and mills.  
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Ships on the Great Lakes transport processed iron pellets known as taconite, commonly 

classified as iron ore in the North American Industry Classification System (NAICS code 1011).  

More than 90% of iron ore produced in the United States is transported via the Great Lakes 

waterway and passes through the navigation locks in Sault Ste Marie, Michigan (Soo Locks) 

[52], [54], [68].  There are three producers of iron ore in the U.S.; Cleveland Cliffs (40%), US 

Steel (44%) and ArcelorMittal (16%) [64], [65] which supply ore to more than 90% of all 

integrated steelmaking in the U.S. and more than 55% in Canada [61], [71].  Approximately 1.3–

1.5 tons of taconite pellets are consumed to produce one ton of steel [72].   

Rail and transloading infrastructure facilitate the movement of taconite on dry bulk carriers 

to steel mills via the Great Lakes waterway.  The network of railways, ore loading docks, and 

transloading facilities are owned and operated by a limited group of firms (see Appendix A).  

Mines operate year-round and move taconite by rail to one of five ore loading docks where 

material is stockpiled or loaded directly onto maritime vessels [64].  Most integrated mills are 

situated along the waterway and receive taconite directly from the vessels.  Two mills in 

Middleton, OH and Pittsburgh, PA utilize transloading facilities along Lake Erie to complete the 

movement via rail [62], [65].  Only one integrated mill (Granite City, IL) primarily receives 

taconite via rail separate of the Great Lakes waterway.  Transportation costs are typically $20-30 

per ton of ore, roughly one third of raw material costs [114].    

Turnover ratios are illustrative of financial performance and supply chain efficiency on the 

Great Lakes.  For instance, the navigation system experiences a scheduled 10-week closure from 

January 15 to March 25 when ice conditions are heaviest [55], severing iron mines from steel 

mills.  During winter months, taconite producers stockpile material at iron ore docks.  Steel 

producers build stockpiles during the navigation season to sustain production throughout the 
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winter.  This stockpiling practice creates recurring cycles in both industries for inventory and 

operating costs of production. Seasonality is evident in Cleveland Cliffs’ inventory turnover ratio 

that peaks in the fourth quarter and decreases sharply at the beginning of each year (Figure 3.1).  

In corporate accounting the inventory turnover ratio is a measure of the number of times 

inventory is sold or used in a reporting period [115].  Other studies have used these metrics as 

indicators of risk exposure in supply chains [116], [117].   We apply it along with attributional 

percentage or sales revenue to quantify customer-supplier relationships.   

 
Figure 3.1: Inventory Turnover for Cleveland Cliffs (CLF).  This demonstrates a seasonal cycle corresponding to 
navigation season.  A pronounced demand-side market adjustment in 2016 resulted from subsidized foreign steel. 

 

Methodology 

 This study assembled detailed data to quantify supplier-customer relationships for iron 

ore, steel, and manufactured goods with a shared dependence on transportation of raw materials 

on the Great Lakes waterway.  Production, consumption, and transportation data for iron ore was 

assembled from corporate annual reports (Form 10-K) required by the U.S. Securities and 

 
Figure 1: Inventory Turnover ratio demonstrates a strong seasonal cycle corresponding to navigation season on the 
Great Lakes. A pronounced demand-side market adjustment visible in 2016 resulted from subsidized foreign steel. 
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Exchange Commission (SEC) as well as navigation data available through the U.S. Army Corps 

of Engineers (USACE).   

We developed two network models to illustrate the complexity and interdependencies 

between manufacturing supply chains and the Great Lakes and illustrate these relationships, 

using network theory.  The first model incorporates information from annual corporate reports as 

well as shipping records available from the Lake Carriers’ Association (LCA) and the USACE 

[54], [76] to quantify bulk commodity movement through the system.  The second network 

represents consumer dependencies on steel using financial metrics to quantify supplier-customer 

relationships.  The financial network map uses supply chain and financial performance metrics 

gathered from Bloomberg and FactSet financial databases [58], [111].  These tools compile 

available information on publicly traded companies from corporate disclosures, third party 

accounting validation, and proprietary Bloomberg algorithms used to compile missing data.  We 

illustrate the directed flow network models using Cytoscape version 3.7 (San Francisco, CA).   

 

Modeling the Transportation Network 

This study modeled the supply-chain network for iron ore by representing facilities and 

transportation corridors as nodes and quantified flows (tonnage) between them as edges.  The 

movement of goods between locations (edges) is based on 2017 vessel tonnage data available 

from the USACE Lock Performance Monitoring System (LPMS) [76].  We added tonnage to 

Algoma Steel from Cleveland Cliffs’ Annual Report [64] to produce a complete record of freight 

transport on the waterway.  Figure 3.2 illustrates the connection between iron mines and steel 

mills in the U.S. and Canada to include transloading facilities.   
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Figure 3.2:  Transportation network for taconite (iron ore) on the Great Lakes  

Modeling each of the lakes and connecting channels as separate nodes allows us to assess the 

importance of each segment to commodity flows between mines and steel mills, which in turn 

imparts a risk exposure should disruptions occur.  Initial conditions in the model assume that 

flow of goods through each waterway segment (node) is unrestricted and balanced 

(inflow=outflow).  The magnitude of commodity flows (edges) reflects the relative importance 

of each node to all commodity flow.  Most pronounced is the 70-mile-long St. Marys River 

which connects Lake Superior to the northern portions of Lake Michigan and Lake Huron.  

Disruptions in this portion of the waterway would affect 90% of facilities and 70% of all iron ore 

delivered to U.S. and Canadian blast furnaces [118]. 

As shown by Haimes and Jiang, demand for goods (𝑥%) cannot exceed availability of 

resources (𝑟$) needed to produce them [88].  We assume freight transportation to be a limited 

resource where 𝑟$ represents the percent operability of node 𝑖 in the network.  Iron ore to 

individual mills (𝑥%) is then subject to Equation 3.6. 

∑𝑏$%𝑥% < 𝑟$ (3.6) 

Figure 2: Transportation network for taconite (iron ore) on the Great Lakes Waterway 
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Where 𝑏$% 	characterizes material flows to mill 𝑗 along path 𝑖.  We use iron ore tonnage to 

quantify these relationships and assume that available supply (𝑟$) may be restricted by any node 

along path 𝑖.  Disruptions in this infrastructure system may occur from failure at a dock or 

navigation lock, vessel accident or grounding in connecting channels, or other blockages such as 

bridge collapse or navigation restrictions imposed as part of emergency response [119].  We 

calculated the percent reduction in iron ore demand, and subsequent steel making, for each 

modeled steel mill (Figure 3.2) based on an assumed percent inoperability of specified nodes in 

the network over a navigation season.  We make the following simplifying assumptions in this 

analysis: 

• Disruptions affect all network flows through that node equally.   

• No substitution to alternate pellet sources.  Steel mills use taconite pellets tailored to 

specific operation of a blast furnace which strictly limits substitution [64].   

• No change to alternate transportation mode.  Mills situated along the shoreline have 

evolved operationally to receive material exclusively from port-side infrastructure.  Ability to 

transport and receive taconite via rail or truck is severely restricted without significant 

infrastructure investment [62], [63], [65].    

For example, a one-month outage of the Soo Locks during the 10-month navigation season 

would manifest as 90 percent operability for that node and impact all corresponding network 

flows equally.  The cumulative impact on firms with multiple facilities was calculated using 

Equation 3.7. 

𝑧 =
∑!-"'∑!."

∑!-"
 (3.7) 

Where 𝑥>% is planned and 𝑥?% is disrupted demand at mill 𝑗.  The perturbation for steel 

companies was adjusted to reflect the percent of the company’s operations in the Great Lakes 
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region.  For example, ArcelorMittal’s NAFTA segment accounts for 26% of revenue (see 

Appendix B) and 78% of the company’s NAFTA steelmaking capacity resides at mills included 

in our model [63].  It follows that a 10% reduction in Great Lakes facilities would yield a 7.8% 

reduction in NAFTA operations and a 2% impact to corporate financials.  The adjusted 

perturbations for all firms (𝒛∗) serve as a subsequent input to the SIIM, Equation 3.5.   

 

Modeling the Financial Network for steel consumers  

Downstream consumers are indirectly exposed to these risks of supply chain disruption as 

steel serves as input to their products.  To better assess the economic value of infrastructure to 

mitigate risk, it is necessary to consider both direct and indirect losses [120], [121].  We 

investigate economic losses due to disruption of Great Lakes infrastructure and indirect effects in 

the supply chain using a SIIM with interdependencies quantified using corporate financial data.   

We developed the financial network using supplier-customer data available through the 

Supply Chain (SPLC) module available on the Bloomberg terminal.  This module provides 

financial information on customers and suppliers estimated from a variety of sources including 

public (10-K) filings required by the Securities and Exchange Commission (SEC).  All 

transactional relationship data in the supply chain are reported as percent revenue between 

suppliers and buyers.  Data confidence is highest for relationships in which revenue streams 

account for 10 percent or more of a firm’s total sales (percent of revenue).  Reporting above that 

threshold is mandated by the SEC, but many other data are also available [74].  The Bloomberg 

terminal restricts automated download for supply chain data, and therefore information must be 

collected manually for individual firms. Supplier-customer relationship data along with percent-

of-revenue for integrated steel producers were compiled for the 2017 calendar year.  We 
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expanded the network to include sales of intermediate goods such as refined metals and 

fabricated parts.  We excluded relationships accounting for a negligible portion of revenue 

(reported as 0.00%) and those without quantified financial transactions.  This typically was the 

case for sales to foreign entities such as those from the European segments of US Steel and 

ArcelorMittal.  Few data were available on privately owned companies and those traded on the 

Canadian Stock Exchange (e.g., Algoma and Stelco steel companies).  The collection of supply 

chain data yielded 278 business entities and 492 supplier-customer relationships [75].    

In order to assess relative risk exposure for companies, we defined edge weights in the 

network using financial metrics. It was important to specify network direction to capture the 

different behaviors in supplier (out-degree connections) and customer (in-degree connections) 

relationships.  To quantify a firm’s closeness to others in the value chain, nodes (companies) and 

edges (financial relationships) in the network were weighted using inventory turnover ratios and 

percent revenue.  Five-year average inventory turnover ratios (2014-2018) were collected for all 

suppliers in the network using the FactSet financial database [58].  Typical inventory turnovers 

for automotive parts and equipment firms are on the order of 15, while ratios for commodity 

producers like iron ore and steel, which require larger inventory, are on the order of 5 [75].  

Higher ratios reflect shorter time periods to replenish inventory without impacting downstream 

consumers.  For companies with risks assessed using Equation 3.7 we assigned a node weight of 

unity.  The derivative risk exposure for firms downstream in the value chain were calculated 

using the inventory turnover ratio (𝐼) and percent sales revenue (𝑃) parameters.  Consider a 

network with suppliers (i=1, 2..., m) and customers (j=1, 2…, n).  Edge (financial relationship) 

weight describes the derivative risk via a single pathway between i and j and is calculated using 

Equation 3.8.   
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𝜔$% = 𝑛$𝐼$𝑃$,% (3.8) 

Where: 

𝜔$% is the edge weight for firm 𝑖 sales to firm 𝑗  
𝐼$ = Inventory Turnover ratio for firm i 
𝑃$% = Percent of firm i’s revenue from sales to firm j 
𝑛$ is the node weight of firm 𝑖; assigned as 1 for integrated steel companies and calculated 

for customer firms (𝑛%) using Equation 3.9 for as the sum of all incoming edges. 

𝑛% = ∑ 𝜔$%/
$01  (3.9) 

Figure 3.3 illustrates a conceptual example of downstream weight calculation.  In this 

example, we assigned an inventory turnover ratio (Ii) of either 1 or 2 and percent revenue (Pij) 

between 0.25-0.5 to demonstrate potential derivative impacts in the model.  Notably, 

downstream firms can reflect a larger node size when many in-degree (supplier) relationships 

exist.  Firms accounting for a small portion of sales would expectedly have a reduced weight 

within the network.   

 
Figure 3.3: Conceptual edge and node weight calculations Figure 3: Conceptual illustration of edge and node weight calculations throughout the network 
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By applying Equations 3.8 and 3.9, we computed edge weights for all 492 supply 

relationships in the model and calculated node size to represent the relative risk exposure to 

waterway disruptions for each downstream firm.  We illustrate the network of interdependency 

using Cytoscape’s Prefuse Force Directed Layout [122].  Major disruptions on the waterway that 

would impact supply chains can be queried for their derivative impact throughout the financial 

network. 

 

Risk Propagation of Great Lakes dependency using SIIM 

We further investigated loss perturbations (measured as percent inventory turnover) in the 

automotive sector using a SIIM [102].  This sector is prominent in the network given both 

quantity and magnitude of supplier-customer relationships.  In our application, we use corporate 

entities (firms) as independent sectors in the SIIM.  In this case, we do not explicitly know the 

production quantities for each firm but can model output using inventory turnover ratios.  Recall 

that inventory turnover may be interpreted to be the number of times held inventory is 

replenished in a reporting period.  As such, it serves as proxy for total output from each firm in 

the model and also reflects amplified risk-exposure that may result from Just-In-Time (JIT) 

logistics [123].  Let 𝑥% be the output of finished automobiles, and 𝑥$ the steel-related inputs to 

production.  If we consider a unit of production, then we can assume the consumption of all 

inputs to be proportional and quantify interdependencies using financial metrics described in 

Section 4.2.  Interdependencies between firms are calculated using Equation 3.10.   

𝑎$% = 𝐼$𝑃$,% (3.10) 

Where 𝑎$% is the unitless proportion of “inventory turnovers” required for the production of 

𝑥%.  For example, Faurecia auto specializes in automotive parts and has an inventory turnover 
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ratio of 13.58 with percent of sales to Ford and General Motors of 15% and 7%, respectively.  

Then 𝑎$% = 2.04 and 0.95 for the two firms which we assume to be inputs to the production of 𝑥%.  

We now apply Equation 3.5 to calculate the propagation of inoperability for steel companies due 

to waterway disruptions provided by Equation 3.7.   

We selected ten automotive companies with the largest weighted nodes from the network 

model.  Each supplier to the auto companies in the dataset was modeled in an NxN matrix, 𝑨 (N 

= 21).  The matrix includes the 10 auto firms and 11 suppliers of steel and intermediate goods 

derived from steel.  By adapting the approach from Guerra and Sancho [107] we develop the 

(𝑰	 − 	𝑨(𝒔)∗) matrix where 𝑨(𝒔) = 𝑨2, I is the identity matrix, and 𝒙E is the vector of planned 

output, represented as inventory turnover in our model. 

𝑨(𝒔)∗ = 𝒅𝒊𝒂𝒈(𝒙E)'𝟏𝑨(𝒔)𝒅𝒊𝒂𝒈(𝒙E)  (3.11) 

The application of Equation 3.5 predicts the cost change in output (∆𝒑) for each firm based 

on the specified perturbation (𝒛∗) which we evaluate for three scenarios.   

 

Results and Discussion 

The results shown below indicate that, as expected, the manufacturing industry exhibits 

considerable risk exposures related to integrated steel producers in the region.  This translates to 

billions of dollars in potential production loss or price adjustments that would result from supply 

chain disruption in the waterway system.  The financial network model illustrates the corporate 

ecosystem and suggests that potential losses in the automotive sector are comparable to those for 

steelmakers.  Significant economic risk exposure for automakers is revealed by the SIIM.  

Quantified interdependencies between firms using inventory turnover and percent revenue 
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provide a meaningful and practical means to extend infrastructure value estimates beyond 

transportation costs.      

 

Financial Network Model for Steel Consumers 

The weighted network model (Figure 3.4) incorporates financial metrics and calculated 

weights using inventory turnover and revenue percentage, Equations 3.8 and 3.9.  Parts 

manufacturers have relatively small node weights because they account for a marginal 

percentage of sales revenue for steel producers.  On the other hand, they contribute considerable 

downstream edge thickness due to high inventory turnover.     

 
Figure 3.4: Financial network map depicting relative risk exposure to waterway disruption by node size 

 
Figure 4: The financial network map depicts relative risk exposure to waterway disruption by node size. 
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For example, the auto parts manufacturer Faurecia has a calculated node weight of 0.08 but 

larger downstream edges given the company’s high inventory turnover (13.58) and large revenue 

percentage to automakers.  The calculated edge weight between Faurecia and Ford Motor Co. 

(15% of Faurecia’s revenue) is 0.16 which is twice the firm’s calculated node weight.  Inventory 

turnover ratios for steel producers range from 3.72-6.86 while those for parts manufacturers are 

10.12-15.20.  We interpret this feature to reflect supply chain dependencies and potential indirect 

risk exposures resulting from waterway disruptions. 

The network model further shows that domestic automotive companies have a derivative risk 

comparable to that of integrated steel producers.  Automakers exhibit a calculated node size in 

the range of 0.1-1.2 as shown in Table 3.1, which reflects their connection/dependency on the 

waterway.  This metric does not value the magnitude of financial risks or opportunity costs 

directly, but it reflects supply chain dependency and relative risks of each node.  This is 

especially important for supply chain components that have little resilience to disruptions, for 

example as the result of JIT inventory operations [123], [124].  The data indicate a higher 

exposure to waterway infrastructure for companies with primary manufacturing centers in North 

America, which source steel locally.  The financial metrics used in creating the model reflect the 

demand of the auto manufacturers for raw steel as well as for value-added products such as 

refined metal and fabricated parts.     

Table 3.1: Calculated node weights for auto manufacturers relative to unity for firms directly connected to the Great 
Lakes waterway 

Company Inventory Turnover Ratio # Modeled Suppliers Node Weight 

General Motors 10.6 11 1.20 
Ford 12.2 10 1.01 
Fiat Chrysler 7.6 8 0.78 
Volkswagen 4.5 10 0.65 
Daimler 5.0 7 0.43 
Toyota 10.0 8 0.40 
Honda 8.1 9 0.24 
BMW 6.0 7 0.20 
Hyundai 7.9 8 0.14 
Kia 5.6 5 0.08 
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Edge weights were interpreted as a proxy for supply-side risk.  As calculated, the product of 

inventory turnover and percent revenue is the ratio of revenue from a single customer to total 

inventory held by the supplier.  Larger edge weights suggest increased risk associated with 

disruptions on the supplier side.  For example, Ford Motor Co., Fiat Chrysler, and General 

Motors respectively constitute 12%, 11% and 9.9% of AK Steel’s revenue.  Given AK Steel’s 

inventory turnover of 5.26, we reason that the automakers respectively require 0.63, 0.58, and 

0.52 “inventory equivalents” in the reporting period.  A significant supply disruption for AK 

Steel would almost certainly affect operations for the automakers.   

Downstream appliance and equipment manufacturers exhibit a connection to the waterway as 

well (Table 3.2). Whirlpool, headquartered in Michigan, has the largest risk exposure mainly 

derived from their financial connection to US Steel whereas other firms exhibit a more distant 

relationship reflected in their node weight.  Further, steel companies using technologies which 

are less reliant on taconite pellets (e.g., electric arc furnace) appear in the model as consumers of 

raw or recycled materials.  As steelmaking technologies evolve, it is expected that reliance on 

quality raw materials such as hot briquetted iron (HBI) from the Great Lakes Region will 

increase.  For example, Cleveland Cliffs will open an HBI facility in Toledo, OH in 2020 to 

serve the demand for high quality iron feeding electric arc furnace (EAF) mills [64]. 
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Table 3.2: Network parameters for select metals, intermediate parts, and appliance manufacturers 

 

Supply Perturbation in the Automotive Industry Value Chain 

We considered three scenarios of waterway disruption to investigate perturbations of supply 

chain risk in the automotive sector.  Scenario 1, closure of the Soo Locks, was selected to reflect 

an upper-bound perturbation resulting from a disruption affecting nearly all integrated steel 

mills.  The other scenarios impact a subset of mills to compare perturbations originating from 

various steel suppliers. For each scenario, we specified a percent inoperability of one node within 

the transportation network and calculated percent availability (𝑟$) along each path, 𝑖.  Using 

Equation 3.6 we found the corresponding disrupted tonnage (𝑥?%) at each steel mill and the 

corresponding percent disruption (𝑧) aggregated by firm using Equation 3.7.  Finally, risk 

exposure in the automotive industry is assessed by applying Equation 3.5 using and 

interdependency matrix developed using Equation 3.10.  

 

Scenario 1:  One-month lock closure 

The Soo Locks enable ships to navigate the 21-foot elevation difference at the head of the St 

Marys River and are necessary for all commercial vessels exiting Lake Superior [54].  An 

unscheduled closure of that infrastructure would affect all maritime traffic passing between Lake 

Company Inventory Turnover Ratio # Modeled Suppliers Node Weight 

Whirlpool 6.5 4 0.22 
Deere & Co 5.3 5 0.040 
General Electric 3.9 3 0.030 
Electrolux 6.5 3 0.026 
Nucor 6.1 2 0.19 
Reliance Steel & Aluminum 4.57 6 0.16 
Steel Dynamics 5.41 3 0.10 
Worthington 7.18 5 0.10 
Faurecia 13.58 3 0.080 
Magna International 11.22 3 0.045 
Tenneco 10.5 3 0.040 
American Axle 14.34 2 0.021 
Shiloh 14.53 3 0.011 
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Superior and the lower lakes.  This scenario assumes a one-month closure of the Soo Locks at 

the beginning of the navigation season (when stockpiled taconite at steel mills is low) which 

could manifest through manmade hazard, or failure of the rail bridge spanning the approach 

channels, for example [55].  In the transportation model we asserted a 90% operability constraint 

to the St Marys River node, representing its unavailability one month of the navigation season.  

Supply of iron ore to all integrated steel making is disrupted with exception of two facilities, 

Algoma Steel on Lake Superior, and Granite City Works which receives ore via rail.  This 

requires a simplifying assumption that additional shipping capacity does not become available to 

reduce backlog during periods of operation.  Note that Algoma and Stelco steel are excluded 

from the SIIM as no customer data was available from sources used in this study.  As shown in 

Table 3.3, inoperability for integrated steel firms reflects the percent of all corporate revenue lost 

due to reduced operation at impacted facilities.   

Modeled perturbations in SIIM (∆𝒑) traditionally reflect the change in price for goods where 

monetary value is used to quantify interdependencies [102], [103].  Perturbations in our model 

reflect changes in inventory turnover ratio and potential economic loss is calculated as the 

product of revenue and the change perturbation.  Perturbations reflect the complex interaction of 

interdependencies (aij) captured in matrix 𝑨 as well as each firm’s output which is modeled as 

inventory turnover. For example, the Ford Motor Co. has modeled inputs including steel from 

AK Steel (aij = 0.63) and ArcelorMittal (aij = 0.058) as well as seven parts and steel refining 

companies who in-turn have inputs from integrated steel producers all having a derivative impact 

to Ford’s production.  Auto makers have common inputs with seemingly modest variation.  

Modeled inputs (aij) to Ford and GM are generally within 10% of each other with exception for 

Faurecia (2x higher for Ford), Shiloh (5x higher for GM) and an additional input to GM from US 
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Steel (aij = 0.34).  Recall that the magnitude of these interdependencies is influenced by sales 

revenue as well as the size of held inventory.  For a constant revenue, as inventory decreases the 

inventory turnover ratio would increase which will impart a greater perturbation on downstream 

consumers in the model.      

The model indicates a 3 percent impact to GM and a 2 percent perturbation to Ford.   For 

comparison, ArcelorMittal’s inoperability is also 2 percent.  Steel companies exhibit 

perturbations nearly equal to their specified inoperability (|∆𝑝 − 𝑧| 	< 	10'3) which reflect few 

modeled inputs to their production.  ArcelorMittal has two inputs from Nucor and Shiloh 

industries with interdependencies of 0.05 and 0.04, respectively, conveying a minimal affect to 

its overall perturbation.  Losses estimated by the model may manifest as the price change of 

intermediate and finished goods, loss of revenue due to production shortages, or more likely 

some combination.    

Scaling the results by annual revenue for each firm shows that significant economic impacts 

extend to the indirect users of the waterway.  Losses within the steel sector account for less than 

10% of the total estimate and 83% is observed in six automakers with manufacturing centers in 

North America.  This is explained by the network of supplier-customer relationships and 

illustrates the magnitude of supply chain dependency auto firms have to integrated steel 

production and taconite transportation on the waterway (Figure 3.3).  
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Table 3.3: Inoperability of integrated steel making and cost perturbation to industry given 1-month closure of Soo 
Locks 

Company # Facilities 
Impacted 

Inoperability 
(z) 

Perturbation 
(∆𝑝) 

2017 Revenue 
($B) 

Potential Loss 
($B) 

ArcelorMittal 6 0.020 0.020 68.7 1.4 
US Steel 3 0.057 0.057 12.3 0.7 
AK Steel 2 0.050 0.050 6.1 0.3 
Ford Motors -- 0 0.020 156.8 3.1 
General Motors -- 0 0.031 145.6 4.5 
Fiat Chrysler -- 0 0.025 125.1 3.2 
Volkswagen -- 0 0.030 260.2 7.9 
Daimler AG -- 0 0.019 185.4 3.5 
BMW -- 0 0.007 111.3 0.7 
Toyota -- 0 0.010 265.1 2.6 
Honda -- 0 0.007 138.6 1.0 
Hyundai -- 0 0.005 85.3 0.4 
Kia -- 0 0.004 47.4 0.2 
Faurecia -- 0 0.001 22.8 0.03 
Gestamp Automoc -- 0 0.001 9.3 0.01 
Shiloh Industries -- 0 0.0002 1.0 0.0002 
Tenneco Inc -- 0 0.001 9.3 0.01 
Nucor -- 0 0.0 20.3 0.0 
Reliance Steel& Al. -- 0 0.009 9.7 0.09 
Steel Dynamics -- 0 0.0 9.5 0.0 
Worthington Ind. -- 0 0.003 3.0 0.01 

 

Scenario 2:  Structural Failure of Bridge over Mackinac Straits 

 The Straits of Mackinac connect Lake Michigan and Lake Huron and are spanned by a 

suspension bridge overpassing the maritime corridor.  Failure of the bridge would likely block 

vessel traffic, affecting all freight moving in and out of Lake Michigan.  This hypothetical 

scenario assumes a two-month closure of this corridor which we modeled with an 80% 

operability constraint to the Lake Michigan node.  This scenario would impact all mills situated 

along the Indiana shoreline, three of which are owned by ArcelorMittal and one by US Steel.  

These mills represent more than 50% of the integrated steelmaking capacity in the U.S. by 

tonnage [60] and taconite disrupted in this scenario would be approximately equal to that in 

Scenario 1.  Inoperability estimates for ArcelorMittal and US Steel are nearly equal to those in 

Scenario 1 because roughly half of their capacity resides in their Indiana mills (see Appendix A).  

AK Steel experiences minimal disruption because their mills are situated in other segments of the 
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waterway (Figure 3.2).  Despite nearly equivalent losses in the steel sector, predicted indirect 

losses are much lower in this scenario which is explained by the interdependencies built into the 

model.   

As previously described, automakers are more reliant on supplier-customer relationships with 

AK Steel than with other steelmakers.  ArcelorMittal supplies all ten automakers with inputs to 

production in the range 0.01-0.15 whereas US Steel provides input of 0.05-0.35 to only four auto 

firms.  As reflected in the resultant perturbation, GM, Daimler AG, and Volkswagen exhibit the 

largest steel purchases from ArcelorMittal and US Steel.  Additional downstream losses from 

this scenario would surely occur but are outside the subset of 21 companies included in this 

model for the automotive sector.  

Table 3.4: Inoperability of integrated steel making and cost perturbation to industry given 2-month restriction in 
Mackinac Straits 

Company # Facilities 
Impacted 

Inoperability 
(z) 

Perturbation 
(∆𝑝) 

2017 Revenue 
($B) 

Potential Loss 
($B) 

ArcelorMittal 3 0.026 0.026 68.7 1.8 
US Steel 1 0.06 0.06 12.3 0.74 
AK Steel 0 0.0 3e-5 6.1 0.0002 
Ford Motors -- 0 0.002 156.8 0.3 
General Motors -- 0 0.014 145.6 2.1 
Fiat Chrysler -- 0 0.002 125.1 0.3 
Volkswagen -- 0 0.001 260.2 2.9 
Daimler AG -- 0 0.007 185.4 1.2 
BMW -- 0 0.001 111.3 0.2 
Toyota -- 0 0.0004 265.1 0.1 
Honda -- 0 0.0005 138.6 0.07 
Hyundai -- 0 0.001 85.3 0.1 
Kia -- 0 0.0002 47.4 0.01 
Faurecia -- 0 0.0003 22.8 0.006 
Gestamp Automoc -- 0 3e-5 9.3 0.0002 
Shiloh Industries -- 0 0.0001 1.0 0.0001 
Tenneco Inc -- 0 2e-5 9.3 0.0002 
Nucor -- 0 0.0 20.3 0.0 
Reliance Steel& Al. -- 0 0.006 9.7 0.09 
Steel Dynamics -- 0 0.0 9.5 0.0 
Worthington Ind. -- 0 0.002 3.0 0.006 
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Scenario 3:  Failure at ore loading docks in Lake Superior 

 The ore dock in Duluth, MN loaded more than 6.5 M tons of taconite onto vessels in 

2017 representing 13.5% of all ore moved on the waterway that year [76].  As with other docks, 

the facility stockpiles material from mines, hoists taconite into an elevated dock and loads 

vessels with a series of conveyor belts that deliver ore into the ship’s hold [57].  The complex 

system of infrastructure requires deliberate operation and investment to ensure sustained 

operations.  This scenario assumes a reduction in Duluth Dock node performance to 60%.  In this 

scenario, downstream impacts are less resultant from geographic factors and more from supplier-

customer relationships to provide taconite for specified blast furnaces.  This primarily affects 

mills owned by ArcelorMittal and AK Steel.  While three of US Steel’s facilities are impacted, 

the de minimis tonnage delivered to those facilities from Duluth limits the firm’s inoperability.   

 Losses within the steel sector are roughly half that observed in the previous two 

scenarios, yet calculated perturbations are 70% higher than predicted for Scenario 2.  As before, 

more than 85% of losses are attributed to six automakers as shown in Table 3.6.  These firms 

exhibit high demand for specialty steel expressed in the model through interdependencies.  For 

example, AK Steel’s input to Ford, GM and Fiat Chrysler respectively is 0.63, 0.52, and 0.58 

which is far greater than relationships modeled for other steelmakers.  Losses for ArcelorMittal 

are five times that of AK Steel in this scenario, but downstream impacts to production are 

amplified by high inventory turnover and percent revenue parameters along supply-chain paths 

originating from AK Steel.  Furthermore, as automakers require specialty grades of steel for 

production, steelmakers demand taconite pellets tailored to each blast furnace which places 

shared risk in the disruption of nodes along the commodity flow path.  The modeled 

interdependencies between firms reveals a more complete estimate of losses originating from a 
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single piece of waterway infrastructure.  Comparing risk at harbors and channels throughout the 

waterway, which is beyond the scope of this study, would yield valuable insight to the derivative 

risk in this manufacturing sector.        

Table 3.5:  Inoperability of integrated steel making and cost perturbation to industry given 60% operation at Duluth 
Ore Dock 

Company # Facilities 
Impacted 

Inoperability 
(z) 

Perturbation 
(∆𝑝) 

2017 Revenue 
($B) 

Potential Loss 
($B) 

ArcelorMittal 3 0.015 0.015 68.7 1.0 
US Steel 3 0.010 0.011 12.3 0.13 
AK Steel 1 0.033 0.033 6.1 0.2 
Ford Motors -- 0 0.013 156.8 2.0 
General Motors -- 0 0.014 145.6 2.1 
Fiat Chrysler -- 0 0.016 125.1 2.1 
Volkswagen -- 0 0.017 260.2 4.5 
Daimler AG -- 0 0.011 185.4 2.0 
BMW -- 0 0.004 111.3 0.5 
Toyota -- 0 0.007 265.1 1.8 
Honda -- 0 0.005 138.6 0.7 
Hyundai -- 0 0.003 85.3 0.2 
Kia -- 0 0.003 47.4 0.1 
Faurecia -- 0 0.0008 22.8 0.02 
Gestamp Automoc -- 0 0.0006 9.3 0.006 
Shiloh Industries -- 0 8e-5 1.0 8e-5 
Tenneco Inc -- 0 0.007 9.3 0.006 
Nucor -- 0 0.0 20.3 0.0 
Reliance Steel& Al. -- 0 0.003 9.7 0.03 
Steel Dynamics -- 0 0.0 9.5 0.0 
Worthington Ind. -- 0 0.001 3.0 0.004 

 

Model Application and Future Work 

The Great Lakes waterway is crucial to manufacturing industries and the North American 

economy as demonstrated here with focus on the automotive industry [53]. Decision makers 

require an improved understanding of how operational efficiency and tail risk events impact the 

financial performance, opportunity cost and ultimately the economic competitiveness of the 

region [17], [85].  This analysis utilized data from the 2017 reporting period, but the methods we 

present are readily adaptable to any year or quarterly period for which data is compiled, making 

this approach flexible to changes as the corporate ecosystem and trade activities continue to 

evolve.   
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This work investigated these relationships using public data available through financial 

databases which accounted for 65% of revenue for AK Steel, 29% for ArcelorMittal, and 14% 

for US Steel.  In the SIIM, unaccounted revenue is treated as exogenous demand which preserves 

the accuracy of the interdependency matrix.  Future work may develop more complete supply 

chain data including attribution to specific facilities, including Canadian integrated steel mills, 

that more precisely predicts perturbations from specified waterway segments. Such trade 

relationships are highly complex but can be visualized and quantified using network models that 

serve as inputs to risk management decision tools, or for consideration in trade policy.   

In this analysis we tested the hypothesis that disruptions in the delivery of iron ore would 

result in the loss of production capacity.  Delays due to weather or vessel congestion in ports are 

not uncommon and stockpiled material is able to sustain consistent production under most 

conditions.  In extreme cases, as those presented in the scenarios, persistent disruptions may 

cause steelmakers to exhaust operational stockpiles, cease production, and idle blast furnaces 

[62], [63], [65].  Idling blast furnaces results in months of operational downtime and tens of 

millions of dollars in repair and lost labor as experienced during extreme ice cover on the Great 

Lakes in 2014 [125], [126].  We provide a quantitative approach to estimate the indirect 

economic impacts of extreme waterway disruptions that more broadly accounts for value in the 

system.  

 Future work will investigate factors impacting transportation efficiency and the effect 

that waterway conditions have on financial risks to steel producers.  For example, low water 

levels that reduce ship carrying capacity directly impacts shippers [41] and rationally affects 

freight pricing and transportation fuel costs for steel producers.  Additionally, dredging and 

water quality concerns (e.g., algal blooms) have been problematic in some regions, impacting 
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delivery times and cost.  As further consideration is given to dredging budgets and project 

prioritization [85], decision makers may consider the full value of harbor maintenance to 

adjacent industries.  This emphasizes those entities with close financial proximity in addition to 

geographic vicinity to harbors.    

Investment for maintenance and upgrades of Great Lakes water infrastructure is 

predominantly funded from federal and state resources [127].  The current capital allocation 

practices take into account benefit-cost analysis of transportation cost savings to prioritize 

projects but could be amended to consider user opportunity costs or broader industry-related 

economic risk factors [24], [128].  Corporate finance indicators across the value chain enable the 

techniques presented herein and are useful to quantify potential losses that may influence public 

investment decisions or options to structure innovative alternative financing.   

 

Conclusion 

This study investigated the interdependencies for steel consumers as they relate to the Great 

Lakes waterway.  We apply corporate financial metrics to measure interdependencies between 

firms and test their sensitivity to assumed disruptions in the waterway which impact delivery of 

iron ore to integrated steel mills.  The cascading effects of waterway disruption are estimated 

through network mapping and the supply-driven inoperability input-output model (SIIM).  The 

novel application of corporate financial metrics such as inventory turnover ratios to quantify 

interdependencies promotes extended application of the SIIM to manufacturing and production.  

Such metrics are publicly available through financial tools such as the Bloomberg terminal and 

FactSet, but future analyses may be enriched with more complete data that approaches 100% of 

total revenue.  Robust data for corporate revenue and inventory turnover offer a practical means 



 49 

to quantify interdependencies and assess the fiscal perturbations from waterway disruption.  

These data also provide a meaningful way to map material flows and weight network 

relationships. Future work investigating transportation efficiency and waterway investment 

strategies may consider approaches that illustrate value and risk for both public and private 

entities.    
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CHAPTER 4 

A Data Fusion Approach to Predict Shipping Efficiency for Bulk Carriers 

 
This chapter is published in the International Journal Transportation Research Part E. 
 
Sugrue, D., Adriaens, P. 2021. “A Data Fusion Approach to Predict Shipping Efficiency for 
Bulk Carriers.” Transportation Research Part E. 149. https://doi.org/10.1016/j.tre.2021.102326 
 

 
Introduction 

Maritime shipping is the largest contributor to freight movement around the world and plays 

a vital role in connecting economies.  The maritime transportation system annually delivers more 

than 11 billion tons of materials and finished products worldwide with a projected annual growth 

of 4-6% [129].  Ports and harbors serve as critical infrastructure for efficient freight 

transportation within this system and are essential to economic trade.  Concurrently, the industry 

is balancing multiple objectives to reduce the environmental impacts of maritime shipping [130].   

In consideration of these objectives, emphasis has been placed on improving transport efficiency 

[131], [132].  Practitioners and researchers face the challenge of meeting demand while reducing 

the industry’s environmental footprint which requires upgrades to improve efficiency [82]. 

Access to, and insights from, big data shows promise to enhance awareness of performance 

and produce objective measures of efficiency which are needed to inform decisions for capital 

outlay.  Research into big data sources and advanced analytics provide novel insight to shipping 

and port performance [133].  The Automatic Identification System (AIS) is a source of big data 

that has garnered attention from researchers and practitioners.  These data have the primary 
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purpose to improve vessel safety but also have practical research applications, for example, 

investigation of port and waterway performance and measurement of voyage times [134].  The 

AIS data have been used to measure travel times to assess performance of inland waterways in 

the U.S. [37], [38].  Kruse et al. presented techniques to measure vessel time spent at anchorage 

and in berth for coastal ports using AIS to quantify “port fluidity”, which they define as the 

reliability of port turnaround time [39].  Zhang et al. investigated ship traffic volumes in 

Singapore using AIS to identify operational bottlenecks and navigational safety concerns [135].       

While AIS data provide meaningful insight to maritime performance, they have clear 

limitations with respect to cargo volumes and tonnage.  Kruse et al. identify the need for 

expanded statistical metrics to quantify port and waterway performance to better reflect freight 

costs, which requires knowledge of vessel load [39].  Jia et al. presented a technique to estimate 

payload from AIS draught data, but note that actual payload information is virtually non-existent 

and AIS alone may be inadequate to comprehensively assess system performance [136].  As AIS 

records do not include vessel tonnage or volumes, it is necessary to pursue other data sources to 

discern efficiency of bulk or containerized goods movement.  There is a knowledge gap to 

quantify efficiency in freight movements with integrated payload and time performance.  This is 

particularly relevant for inland waterway systems or coastal ports with highly variable tides 

restricting available draft.  For example, Ahadi et al. showed that decisions for dredging of 

inland waterways may be improved by giving consideration to commodity flows and reactive 

maintenance budgeting [85].  Objective, data-driven measures of efficiency and performance 

have the potential to inform operations and maintenance decisions as well as fleet deployment. 

This study investigates transport efficiency of dry bulk carriers in the Great Lakes waterway 

and makes three fundamental contributions.  We model vessel payload to water levels, which 
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affords managers greater predictability over seasonal changes.  Second, we present travel time 

statistics collected from AIS which provides time-based performance metrics in the Great Lakes.  

The techniques we present here effectively capture statistics in a non-linear system.  Finally, we 

propose a data fusion approach that integrates payload and travel time information from 

disparate sources to express maritime transport efficiency. 

The authors focus on iron ore carriers which are principally employed in short sea shipping 

in the Great Lakes [137], [138].  Cumulative impacts of inefficiency are more pronounced over 

short sea shipping routes where vessels make repeated calls to few ports [139].  The Great Lakes 

waterway is host to a network of inter-dependent deep sea ports that primarily transport dry bulk 

goods such as iron ore, coal, and aggregate [53], [54].  Given its characteristic vessel patterns, 

variable water depth, and prominent navigation lock infrastructure, this waterway serves as an 

exemplary application case to investigate data-driven efficiency measures.   

 

The Great Lakes Waterway 

The Great Lakes, on the border between the United States and Canada, comprise the largest 

freshwater system in the world and serve as a vital maritime highway for dry bulk commodities 

[50]–[52].  The system contains more than 100 U.S. and Canadian ports situated along 11,000 

miles of coastline [53].  The Great Lakes waterway is distinct from other inland systems in that it 

accommodates deep draft vessels (rather than barge traffic) to transport bulk commodities such 

as iron ore [51], [54].  The waterway connects to overseas markets through the St. Lawrence 

Seaway, but the majority of goods remain within the system transported between domestic ports 

[54].  The network of interdependent ports, harbors, connecting channels, and locks annually 
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carry more than 150 million tons of bulk commodities for U.S and Canadian manufacturing 

centers [53]. 

Steel producers generate nearly half of the demand for freight movement, primarily iron ore 

from mining operations along Lake Superior to steel mills situated throughout the lower Great 

Lakes.  These maritime shipping routes are at the core of the manufacturing supply chain in the 

U.S. and Canada.  Sugrue et al. demonstrated the waterway’s importance to automotive and 

related manufacturing industries through financial network modelling, and quantified the 

economic impact of shipping disruptions on the supply chain [138].  Vessels annually move 

approximately 45 million tons of processed taconite pellets, commonly classified as iron ore in 

the North American Industry Classification System (NAICS code 1011) to Great Lakes steel 

producers [54].  All U.S. iron mines are situated in northern Minnesota and Michigan and 

transload ore through five iron docks situated on Lake Superior [68].  Iron ore vessels traverse 

the St Marys River and the navigation locks in Sault Ste Marie, MI, owned and operated by the 

U.S. Army Corps of Engineers (USACE) [55].  

Management of the waterway, locks, harbors, and landside port infrastructure is shared 

between public and private owners.  Private entities generally own and operate landside 

infrastructure such as cranes and transloading facilities [18].  Water-side channel and lock 

operation, as well as dredging and sediment management, is the responsibility of USACE.  A 

series of improvements over the life of the system has deepened the most restrictive points 

(connecting channels between lakes) to a nominal depth of 8.2 meters, though functional depths 

change seasonally as lake levels fluctuate impacting vessel load [41], [55].   

 The majority of ships on the Great Lakes are from U.S. and Canadian flagged fleets 

travelling inter-lake routes.  Canadian vessels are constructed to navigate the Welland Canal and 
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St. Lawrence Seaway with lock dimensions restricting vessels size to 225.5 x 23.8 meters  and 

are descriptively classified as “Seaway Max” [51].  Larger vessels, which comprise much of the 

U.S. fleet, remain above the Welland Canal and service ports on the upper four lakes [54].  The 

cost of inefficiency in the transportation system is shared between transportation companies and 

consumers of bulk commodities [114].   

The authors sought to quantify the average delivery efficiency of dry bulk carriers for iron 

ore along primary routes in the Great Lakes.  We integrate vessel load and travel times from 

distinct data sources to quantify the transport efficiency of bulk iron ore.   

 

Methodological Approach 

Vessel capacity and travel times each reveal a component of system efficiency, but we 

propose that a more meaningful expression of bulk commodity movement is mass per unit time.  

This study defines maritime transport efficiency (MTE) as load (tonnage) per voyage time and 

characterized performance over a navigation season to understand changes and predictability.  

To do this, we assessed variability in vessel carrying capacity (‘load’) for distinct voyages due to 

fluctuations in water surface elevation throughout the Great Lakes.  Next, we investigated AIS 

position data to characterize travel times for voyages across iron ore routes and within ports and 

harbors.  Finally, a metric was developed to assess overall efficiency of transporting bulk iron 

ore in the Great Lakes by integrating data sources which contain vessel load and voyage time 

information (Figure 4.1).   
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Regression of Vessel Load to Water Level 

As vessel load is naturally dependent on draft, changes in carrying capacity are controlled by 

water level in the Great Lakes.  Fleet capacity is higher in summer months and lower in the 

winter when seasonally low water levels negatively affect vessel tonnage [41].  As waterbodies 

of the Great Lakes hold large volumes of water, intra-annual autocorrelation is high and surface 

elevation changes occur gradually [140].  Although precise predictions of lake levels remain 

challenging, annual patterns yield observable trends in maritime performance that are useful for 

decision making [42], [141].  To account for seasonal changes in vessel capacity, we developed a 

predictive model to express expected vessel load for known water levels.    

Vessel load data was assembled from the USACE Lock Performance Monitoring System 

(LPMS).  The USACE collects data on all vessels utilizing navigation locks, including vessel 

name/number, origin/destination, cargo tonnage, and timestamp information which is stored in 

the LPMS [76].  Publicly available data on the USACE website is aggregated to protect 

proprietary information.  We assembled raw data from the facility in Sault Ste Marie, MI (Soo 
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Figure 4.1: Study framework and approach 
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Locks) for the period March 2005 to September 2018 which includes the origin, destination, and 

vessel tonnage data necessary for this analysis (Appendix A).  The LPMS data used in the study 

contained 55,342 records including 13,657 transits of iron ore.   

This analysis uses vessel tonnage from LPMS as the dependent variable.  The authors 

considered using the load factor (load/DWT) but noted discrepancies between values reported for 

various fleets on the waterway.  For example, M/V Stewart J Cort has a reported deadweight 

tonnage (DWT) of 58,000 [142].   Other fleets report two DWT ratings for expected changes in 

season load.  For example, M/V Burn Harbor lists 62,100 DWT at 8.38 m. draft and 80,900 tons 

for “midsummer” draft [143].  Further, some records within the LPMS data are more than the 

reported DWT.  For example, the maximum load recorded in our datasets for the Stewart J Cort 

is 66,055 tons.  For consistency across our datasets and vessels, we elected to use actual vessel 

payload as the dependent variable. Standardized water levels 𝑋456 =
(7'8)
9
	 ~𝑁(0,1) served as 

input to the model.  We used the monthly mean of standardized vessel tonnage as the response 

variable in the regression models.        

We evaluated seven regression models and selected those with the lowest calculated error on 

predicted capacity.  We considered common regression models including the Generalized Linear 

Model (GLM), Generalized Additive Model (GAM), Classification and Regression Tree 

(CART), Multivariate Adaptive Regression Splines (MARS), Random Forest, Bayesian Additive 

Regression Tree (BART), and a Neural Network [144].  We fit each of the models on two thirds 

of the data and predicted efficiency on the 33% random data holdout over 20 iterations.  We 

calculated Mean Squared Error (MSE) as 1
:
∑ (𝑦;E − 𝑦$)<:
$01  between the predicted (𝑦>$) and actual 

(𝑦$) standardized vessel tonnage to compare models.  We selected the GLM as the preferred 

regression model for this study because it exhibited slightly lower error than GAM and 
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performed significantly better than other models.  The GLM predicts the expected vessel load 

anomalies from the mean (𝐸[𝑌]) using a linear predictor (𝑿𝛽) and link function (𝑔) for each of 

the input variables [145].  

𝐸[𝑌] = 𝑔'1(𝑋𝛽) = 	𝛽= + 𝛽1𝑥1 +⋯+ 𝛽>𝑥> (4.1) 

Since Great Lakes waterbodies are highly correlated (Appendix B), we sought to simplify the 

regression model to the fewest practical water level input features (𝑥$).  Using Principal 

Component Analysis (PCA) for dimensionality reduction, the 5-feature inputs were mapped onto 

a 2-dimensional projection.  We calculated dimensionally reduced inputs from the 5 x 2 matrix 

using Equation 4.2 and utilizing  Python’s scikit-learn module [146]. 

𝒛 = 𝑾𝒙 (4.2) 

Note that 𝑾 in this case represents the first two eigenvectors of the covariance matrix 

between the five water levels.  Calculated eigenvalues for each vector showed that 97% of 

variance is explained by two principal components (84.5% and 12.5%, respectively).  We 

compared predictive accuracy of the dimensionally reduced principal components (PC1 and 

PC2) as input features to the GLM versus the actual water surface level.   

We preferentially selected input features to minimize MSE on predicted vessel load and 

considered interpretability of water level over principal component.  We evaluated seven sets of 

input features including individual lakes, PC1 and PC2, and water levels for all five lakes which 

serve as independent variable inputs in the model.  Lake Ontario was excluded from the set of 

input features as that waterbody only affects a small subset of vessels (those traversing the 

Welland Canal) and thus is not reasonably deterministic of capacity throughout the system.  Each 

set of input variables (7 total) was used to predict vessel capacity over 100 iterations using two-
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thirds of available data selected at random to train the model and fit coefficients (33% held for 

testing).   

 

Using AIS to Assess Voyage Times 

This study determined voyage time and port fluidity metrics in the Great Lakes waterway by 

extracting vessel time and position information from historical AIS data.  Historical data were 

assembled from the Marine Cadastre website [80] for Universal Transverse Mercator (UTM) 

Zones 15-18 over the period 2015-2017.  Data for each UTM Zone is available in monthly files 

which required the collation of 132 data files.  We cropped the raw data to 41.3o - 49.0o N 

Latitude and 72.3o - 92.2o W Longitude, inclusive of the Great Lakes.  To assess continuous ship 

voyages, we assembled files into a single dataset for each navigation year, defined as 25 March 

to 15 January.  This time period reflects the annually scheduled disruption when navigation locks 

and ice breaking operations cease during the winter [51], [55].  Pre-processing of AIS data was 

necessary to reduce the data to a manageable size (n = 48.8 million for years 2015-2017) [73].    

The authors further analyzed AIS data to record entry and exit timestamps for vessels in 

defined features within the waterway.  We defined 24 features (Appendix C) as geographic 

reference points, including iron loading docks, steel mills receiving harbors, and connecting 

channels between waterbodies.  Voyage times are calculated based on vessel timestamp within 

these features.  For example, voyage time from Superior, Wisconsin to Burns Harbor, Indiana 

may be calculated as the difference between entry to Burns Harbor and exit from Superior.   

We selected vessels active in the iron ore trade by querying the LPMS data for all ships with 

more than 30 iron ore voyages over the three-year period.  The Soo Locks (which populates 

LPMS data) is the single passage point for commercial vessels between Lake Superior and the 
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lower lakes, providing a near complete record of ore movement.  For each of the vessels 

(Appendix D), we assembled records for timestamps at each of the defined features.  Let A be the 

original AIS data and let B be the subset of records for vessel 𝑖 within geographic feature	𝑗.  Let 

T be the set of contiguous timestamps representing each voyage of vessel 𝑖	through feature	𝑗 and 

let	𝑡 be each unique timestamp within T.  Equation 4.3 was used to create a subset of timestamps 

for each vessel within the defined features.   

𝐵$% = {(𝐴 ∩ 𝑉$) ∩ 𝐺%      (4.3) 

We reduced this to a single timestamp (the minimum) for each voyage through the defined 

features using Equation 4.4.  Note that in the application to Great Lakes short sea shipping, it is 

common for vessels to make multiple calls to the same port, typically 6-9 days apart.     

𝑏$%5
?∈A⊆C

: = {(𝑣, 𝑔, 𝑡/$:)	|(𝑣 ∈ 𝑉$	)	⋀ 	(𝑔 ∈ 𝐺%	)	⋀ 	(𝑡/$: ∈ 𝑇	)} (4.4) 

It was necessary to identify contiguous timestamps which represent a single voyage.  For 

ports and navigation locks, we also recorded exit timestamps (𝑡/E!) for voyages.  We calculated 

voyage times and fluidity for ports and locks as the time delta between individual vessel 

timestamps (Equation 4.5) by adapting the approach developed by Kruse et al. which measured 

vessel time at port and anchorage as the difference between entry and exit timestamps in the AIS 

[39].    

∆𝑡 = 𝑡$ − 𝑡$'1   (4.5) 

The full algorithm for collection of voyage time statistics from the AIS is below.   

1. Subset A for vessel i.  Let 𝐵$ ⊆ 𝐴 
2. Subset 𝐵$ in geographic feature, Gj.  Let 𝐵$% ⊆ 𝐵$ 
3. Select 𝑡/$: for each unique date or any consecutive dates, record as vessel	𝑖 arrival to 
feature j, 𝑏$%5 
4. IF feature j is a harbor or lock, select 𝑡/E! for each unique date or any consecutive dates, 
record as departure from feature j, 𝑏$%5 
5. Calculate time elapsed between features for each vessel 
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Maritime Transport Efficiency 

The current study takes a data fusion approach which combines vessel load data from the 

LPMS and voyage times from AIS to assess operational efficiency in ports and transport 

efficiency along major ore routes.  The selection of this dataset enabled a granular analysis which 

enhances insight to vessel and port efficiency. For example, Shetty and Dwarakish compared 

correlations between port productivity and indicators such as Turn Around Time and Average 

Output per Berth-day [147].  In the current study, we apply data fusion to integrate turnaround 

time and vessel payload to express a more comprehensive indication of performance which may 

be correlated to productivity.  We integrate such metrics on a per vessel basis, as identified in 

Section 3.2., using vessel voyage information from AIS and payload data from LPMS using the 

algorithm below.  The merged dataset contains timestamp information as well as position, origin, 

destination, cargo, and tonnage.     

1. Subset A for vessel 𝑖.  Let 𝐵$ ⊆ 𝐴 
2. Subset 𝐵$ in geographic boundaries (46.5<Lat<46.6, -84.4<Lon<-84.3).  Let 𝐶$,FGHI ⊆ 𝐵$ 
3. Select tmin for each unique date or any consecutive dates, record as arrival to Soo Locks 
4. Select tmax for each unique date or any consecutive dates, record as departure to Soo 
Locks 
5. For each arrival and departure date, record Origin, Destination, Cargo and Tonnage from 
LPMS 
 

Notably, timestamp entries into the LPMS are recorded by human operators and may reflect 

the time a vessel makes radio contact or when the vessel arrives at the lock [55].  We observed 

time discrepancies up to 12 hours between LPMS and AIS timestamps.  Records used in this 

study reflect the AIS timestamp which offers the best accuracy.  The resultant dataset (𝑏$%5) 

contains 42,021 records for 30 vessels.  It includes information on position, cargo, tonnage, 
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origin-destination, and the time delta from each vessel’s previous position in the dataset [73].  

This allows the direct calculation of mass per time transport efficiency for bulk iron ore.   

For each vessel 𝑖 and voyage	𝑗 along a specified route, let 𝑥 be the vessel load and 𝑡 be the 

voyage time.  Then transport efficiency along the route 𝜂 is calculated using Equation 4.6.  We 

compare statistics for transport efficiency along major routes in the waterway for loaded 

voyages.  

𝜂 =
1
𝑚k

1
𝑛k

𝑥$%
𝑡$%

:

%01

/

$01

																																																																							(4.6) 

 We assessed the overall efficiency to include roundtrip voyage times which include time 

spent under ballast.  Many iron ore voyages (approx. 85%) originate from a southern port, travel 

empty under ballast into Lake Superior and return full [138].  For example, the vessels Stewart J 

Cort and Burns Harbor are 305 m. x 32 m. freighters with predictable service primarily between 

Superior, Wisconsin and Burns Harbor, Indiana.  We calculated average annual efficiency for the 

vessels which include upbound voyages under ballast using Equation 4.7.  Let 𝑗 represent laden 

voyage and 𝑗 − 1 be time under ballast   

𝜂$ =
1
𝑛k

𝑥$,%
𝑡$,% + 𝑡$,%'1

:

%01

																																																																							(4.7) 

We extended this to assess transport efficiency to individual ports where annual average 

transport efficiency is calculated using Equation 4.8 for all vessel calls, 𝑘. 

𝜂>GJ5 =
∑𝑥I ∗ 𝜂I
∑𝑥I

																																																																							(4.8) 

The average annual port efficiency serves as a useful baseline for performance and offers 

insight into the relative performances between similar infrastructures. 
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Results and Discussion 

 This study produced three types of results.  First, we show that vessel capacity in the 

Great Lakes waterway can be modeled by using a linear relationship with water levels on Lake 

Michigan-Huron.  This allows managers to better account for seasonal changes in water surface 

levels.  Second, we present travel time statistics for bulk carriers on the waterway observed 

through historical AIS data which extends the body of knowledge from earlier works.  

Techniques presented here are effective in capturing travel time statistics in a non-linear 

interconnected system.  Finally, we propose a maritime transport efficiency metric that integrates 

vessel load and time, attainable through data fusion of lock and AIS sources. 

       

Vessel Capacity Modeled by Water Level 

The regression of vessel capacity to water surface elevation showed that a simplified linear 

model serves as a useful proxy to predict vessel load in the waterway.   Standardized water 

surface elevations for each lake serve as model inputs (Figure 4.2) along with the principal 

components calculated as described.  Notably, the period of record used in this analysis is 

inclusive of record low water levels in 2013 and near-record high water levels in 2017 [40] 

which makes the model broadly applicable. 
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Figure 4.2: Water level anomalies from mean (left) and standardized vessel tonnage (right).  

 The results from multiple input regressions and PC analysis for water level prediction are 

shown in Figure 4.3.  A GLM model with the single input of Lake Michigan-Huron water levels 

has similar predictive errors as the Principal Components (PC) analysis and marginally higher 

error than a robust model with five feature inputs.  The various input features produced MSE 

estimates in the range 0.11-0.35 with the least error observed in the model with all five water 

level inputs.  The PC model, which is a mathematical projection accounting for 97% of variance 

in water levels, produced average error only 0.04 higher.  Results from the PC model produced 

Figure 4.3: Compared predictive accuracy with varied input features.  Calculated MSE over 100 iterations. 
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better average predictions than any single waterbody but had a marginally lower error than the 

regression on Lake Michigan-Huron and greater variance as illustrated in Figure 4.3.  A paired t-

test did not reject the hypothesis that those two means are equal (Ho: 𝜇1 = 𝜇<	) when tested with 

a 95% confidence level.  A significant drawback to the PC analysis is difficulty with interpreting 

the model for practitioners.  As a result of this assessment, we elected to compare the 5-feature 

model to that using only Lake Michigan-Huron water level as input.  A robust predictor of vessel 

capacity given water surface elevations for all 5-features is expressed below: 

𝐸[𝑌] = −572.5 +

⎣
⎢
⎢
⎢
⎡
1.98
−1.50
1.15
2.40
−0.86⎦
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⎥
⎥
⎥
⎤
 

Predictions based on Lake Michigan-Huron levels offer comparable results.  

𝐸[𝑌] = −373.2 + 	2.12𝑥N$HO'PLJ 

We compared predictive skill for the two models evaluated as the area under the Receiver 

Operating Characteristic (ROC) curve [148].  The Area Under Curve (AUC) is calculated as 

∫ 𝑦(𝑥)𝑑𝑥1
= , where True Positive Rate is 𝑦(𝑥) and False Positive Rate is 𝑥 over all 𝜏.  As shown 

Figure 4.4: ROC comparing predictive skill of the 5-input GLM and linear regression on Lake Michigan-Huron 
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in Figure 4.4, we observed a marginally lower AUC for the Michigan-Huron model (0.91) 

compared to the more robust predictor (0.95).   

Both the five-feature and single input model demonstrate reasonable prediction of vessel load 

as a function of water surface elevation.  This is further illustrated in Figure 4.5 which depicts 

the actual vessel load compared to a linear prediction based on Lake Michigan-Huron and the 5-

feature model.  Computational approaches to predict vessel payload can be used to develop risk 

hedging strategies such as the financial instruments proposed by Meyer et al. [41], [42]. 

Vessel capacity for each port in the figure generally follows expected trends of increasing 

load with higher water level, but several ports diverge from expectations under high water 

scenarios.  The model overpredicts expected tonnage (above 176.5 m) to Dearborn and Toledo 

Harbors as well as traffic to Quebec.  Depth restrictions in the series of locks through the 

Welland Canal, connecting Lake Ontario, control vessel draft on those routes and limits the 

application of this model to ports on the upper four lakes.  Hence, route-specific depth 

constraints along a ship’s voyage are likely part of the explanation, in addition to the deployment 

of smaller vessel sizes providing service to specific ports.  For example, four vessels in the study 

travel routes to Dearborn, MI and have maximum drafts between 8.2-8.5 meters, which limits 

additional load capacity when water levels are abnormally high.   
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Figure 4.5: Model prediction of iron ore vessel capacity per destination port.  

 

Statistics on Voyage Duration 

 By observing vessel patterns, we identified key features in the waterway including 

harbors, locks, and natural bottlenecks in the connecting channels.  For example, Figure 4.6 

depicts two weeks of traffic in the Duluth-Superior Harbor and clearly shows vessel paths.  We 
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defined outer boundaries of geographic features to separate the open water approach and 

anchorage areas as vessels await entry to harbors and locks as shown in the figure.   

 

Figure 4.6: Sample AIS data viewed in ArcGIS for Duluth-Superior Harbor.  

The defined 24 features (Gj) and their geographic boundaries used to filter the AIS data are 

listed in Appendix C. The subset of data (X ∩ G) for all features is depicted in Figure 4.7 which 

illustrates the geographic proximity of iron loading docks, navigation locks, and steel mills 

which are oriented along the southern coastline.   

 Table 4.1 summarizes the 1,551 voyage times this study captured along iron ore routes for 

the three-year period.  These results expand upon earlier work by Mitchell and Scully that 
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reported 325 observations over five routes for a seven-year period (2007-2013) [37], and detailed 

fluidity metrics for the U.S. inland waterway system by DiJoseph et al. [38].  The data exhibit 

delays along certain routes, for example, voyages from Duluth to Indiana Harbor and from 

Presque Isle to Toledo are skewed toward longer times as evidenced by the 75th percentile.  This 

may be caused by mechanical limitations with port-side infrastructure, high vessel traffic 

resulting in longer wait times, or it may reflect seasonal patterns for transport [149].  This 

warrants further investigation into harbor-specific operational bottlenecks and waiting times for 

ships in the harbor discussed later in this section.      

Table 4.1:  Travel times over major routes for iron ore in the Great Lakes (hours) 

Route Mean Std Min 25% 50% 75% Max n 
Duluth, MN– Indiana Harbor, IN 114.9 102.5 58 64 70 91 495 118 
Superior, WI – Burns Harbor, IN 70.9 20.0 57 63 66 70 247 224 
Two Harbors, MN – Indiana Harbor 70.0 14.9 57 64 66 70 187 147 
Two Harbors, MN – Gary, IN 68.9 28.2 57 61 63 68 474 310 
Two Harbors, MN – Detroit, MI 64.0 29.0 38 57 59 63 337 119 
Duluth, MN – Detroit, MI 81.7 66.1 56 58 60 62 334 27 
Presque Isle, MI – Dearborn, MI 71.8 66.1 37 40 41 55 428 261 
Presque Isle, MI – Toledo, OH 124.1 102.9 39 47 61 181 413 90 
Silver Bay, MN – Cleveland, OH 87.2 79.2 45 61 65 72 477 131 
Two Harbors, MN – Conneaut, OH 71.8 10.7 63 67 69 72 137 124 

 

This analysis offers new insight into performance discrepancies within the waterway, as 

exemplified for the major routes to southern Lake Michigan. including Indiana Harbor, Burns 

Harbor, and Gary.  The mean travel time for the 800 voyages observed is 76.4 hours, consistent 

with earlier results by Mitchell and Scully [37].  However, there is a noticeable discrepancy for 

voyages from Duluth to Indiana Harbor which likely reflects delays specific to vessel traffic at 

those ports.  There is a clear disparity between the mean and median estimators of travel time.  

As voyages exhibit minimum necessary travel time and long tail delays, median values offer a 

more accurate estimator of expected duration.  Tail events, represented by the 75th percentile in 

Table 4.1, are useful in identifying inefficiencies along specific routes (e.g., Duluth to Indiana 
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Harbor and Presque Isle to Toledo), which suggest more frequent delays. 

 

Figure 4.8: Travel time distributions to Burns Harbor (left) and Dearborn (right).  

 
The profiles for voyage durations in Figure 4.8 illustrate the effect that prominent tail events 

have along some routes and the disparity between median and mean estimators.  For the two 

routes shown, we analyzed eleven unique vessels carrying 14.9 million tons to Burns Harbor and 

four vessels carrying 7.6 million tons to Dearborn.  Two vessels, M/V Stewart J Cort and M/V 

Burns Harbor (described in sections 3.1 and 3.3) accounted for 91% of voyages and 92% of 

tonnage delivered to Burns Harbor.  Consistent and predictable patterns between the two vessels 

and servicing ports likely minimizes disruptions or delays.  Tail events are more common for 

vessels accessing the port in Dearborn which requires navigation of 5 kilometers up a restrictive 

river, a possible cause for the delays.  A comparison of transit times, performance, and 

predictability is useful to identify bottlenecks in the waterway or to inform fleet deployment 

strategies.  These techniques are broadly applicable to waterways worldwide and offer insights to 

performance that informs operational management decisions.     

Travel times on open water segments, defined between connecting channels, harbor, and lock 

infrastructure, vary with weather and traffic patterns and are relatively consistent with long tails 

reflecting adverse conditions such as heavy ice [150].  The current study applies detailed AIS 
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processing to derive fluidity statistics throughout the Great Lakes waterway and expands on 

published statistics [37], [38].  Travel time statistics for open water travel are summarized in 

Table 4.2. This analysis captured more than 2,000 voyages in every part of the waterway over 

the three-year period.   

Table 4.2: Vessel travel times (hours)  

Segment Mean Std Min 25% 50% 75% Max n 
Duluth/Sup – Whitefish Bay 25.4 5.0 13.7 23.5 24.6 25.8 101.6 1,487 
Two Harbors – Whitefish Bay 24.6 6.9 19.5 22.1 23.2 24.6 145.4 1,377 
Silver Bay – Whitefish Bay 25.0 8.0 19.2 21.5 22.8 25.3 95.8 454 
Thunder Bay – Whitefish Bay 17.7 3.5 14.8 16.3 16.9 17.5 35.8 60 
Presque Isle – Whitefish Bay 9.8 4.1 7.6 8.2 8.6 10.0 55.8 207 
Mackinaw Str. – S. Lk Michigan 26.3 7.1 19.8 24.1 25.2 26.6 172.8 989 
St Marys R. – S. Lk. Huron 18.5 6.9 14.3 16.3 17.1 18.2 150.3 1,884 
Lake Erie 15.3 6.0 12.3 13.4 14.1 14.9 78.7 221 
Lake Ontario  18.4 22.2 9.5 10.6 11.4 13.4 159.9 164 
Lake St Clair and Rivers 10.6 8.5 6.6 7.3 7.8 8.9 123.8 1,296 
St Marys River incl Lock 10.7 7.7 4.2 8.1 8.9 10.4 161.5 3,892 
Soo Locks 2.8 3.0 0.18 1.8 2.3 2.8 45.3 3,792 

Open water travel on all waterbodies in the system have a similar distribution as shown in 

representative histograms (Figure 4.8).  In consideration of long tails events, the median is more 

representative of the expectant travel time than the mean and has nominal improvement in  

some of the open water segments but represents a 20% difference in the estimator for connecting 

channels.    

 

Figure 4.9: Travel time distribution for vessel voyages through the St Marys River (left) and the Soo Locks 
(right).  
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Further consideration is given to operation and efficiency transiting the Soo Locks.  The right 

side of Figure 4.9 shows the time vessels physically spend occupying the navigation lock 

chamber or being tied-up along adjacent piers.  Note that these records are inclusive of all 

vessels in the AIS data set, which contains tour boats, tugs, and other vessels not necessarily 

transiting the full waterway.  Lock times of as little as 20 minutes are possible but seldom occur 

when ships enter directly into the chamber without delay.  Extremely long lock times are often 

resultant of winter conditions when heavy ice floes accompany vessel traffic and must first be 

cleared from the lock [55].  Delays associated with the lock are observed when vessels are tied-

off at the pier or delayed from reduced speed on approach.  Vessels approaching upbound transit 

the 120 km St Marys River, and those in the down bound direction navigate 65 km through 

Whitefish Bay.  It is common practice for vessels to adjust speed and coordinate arrival time to 

the navigation lock based on expected availability [149].  These speed adjustments are evident in 

the left side of Figure 4.9 which exhibits a bimodality and suggests delays of 7-10 hours.  We 

interpret this to indicate that vessels expecting wait times of 5 hours or more will reduce speeds.  

This suggests that detailed evaluation of lock performance requires consideration of transit times 

through the entire connecting channel.  This lock delay assessment is beyond the scope of this 

study. 

Table 4.3: Vessel time spent in harbor and at the dock (hours)  

Segment Mean Std Min 25% 50% 75% Max n 
Duluth-Superior Harbor 29.1 15.5 9.1 19.0 25.6 34.3 141.2 636 
Duluth Ore Dock 16.9 8.2 5.8 11.5 14.8 20.7 52.0 307 
Superior Ore Dock 16.9 8.4 5.8 11.5 14.8 20.2 80.4 421 
Toledo Harbor 19.3 17.3 7.2 9.5 12.5 19.1 119.7 230 
Toledo Ore Dock 7.7 2.0 5.1 6.3 7.1 8.6 14.8 170 
Southern Lake Michigan 28.2 43.6 5.7 13.0 18.1 25.2 472.8 980 
Indiana Harbor Dock 17.8 10.7 5.1 10.8 14.5 20.8 98.8 354 
Gary Dock 13.4 4.4 5.0 10.9 12.9 14.8 49.4 359 
Burns Harbor Dock 27.2 13.7 5.0 21.2 23.5 29.0 118.0 264 

 



 72 

To investigate port performance, we separately assessed vessel time spent in harbor and that 

spent at berth to quantify delays attributable to the port.  As shown in Table 4.3, ships spend 

nearly as much time waiting or approaching a dock as they do actively loading/unloading.  

Recall, that this study reports a higher incidence of tail events for voyages between Duluth – 

Indiana Harbor as compared to Superior – Burns Harbor despite virtually identical voyage 

routes, suggesting inefficiency at the ports.  However, as shown in Table 4.3, Duluth exhibits 

nearly identical performance to Superior and vessel time in Indiana Harbor is 40% lower than for 

Burns Harbor.  This suggests that delays for Duluth harbor are likely attributable to navigation 

into the harbor which traverses a vehicle draw bridge, rather than to delays resulting from port-

side infrastructure.  Toledo Harbor exhibits notably long times in the harbor without being active 

at the dock.  This is likely due to the 20 km. approach channel which is dredged to maintain 

navigable depths in the shallow portion of the bay.  Restricted navigability into the harbor 

manifests in vessel delays similar to those observed in Dearborn.   

Excessive delays may result in increased costs, unnecessary fuel consumption and emissions, 

or restrictions to available freight supply.  Assemblage of statistics like those reported here 

provide a reference for managers to assess performance in near real-time.  This has applicability 

to port and harbor managers for track performance.  To fully understand these impacts we need 

to consider vessel size and tonnage delivered.   

 

 Maritime Transport Efficiency  

Integrated efficiency metrics provide a data-driven means by which operations managers can 

inform fleet deployment in near real-time.  Transport efficiency for all routes in this study ranged 

from 200 to 1,000 tons per hour (Figure 4.10), heavily influenced by the size of vessels, and the 
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route or port serviced.  For example, ports such as Cleveland, Toledo, and Dearborn are 

primarily serviced by smaller vessels with a capacity of less than 35,000 tons.  Others, such as 

Burns Harbor, are almost exclusively serviced by the largest freighters on the waterway with 

payloads in excess of 65,000 tons.  While this offers some insight to efficiency, approximately 

85% of vessels travel upbound under ballast without cargo.  A more accurate reflection of 

efficiency in this short sea shipping context requires analysis roundtrip times. For example, this 

may drive different operations decisions to maximize freight volume, and therefore revenue, 

under spot rates or minimization of operating costs under time or bareboat charter [151].    

We illustrate maritime transport efficiencies for two vessels with equivalent length and width 

dimensions travelling the same route.  Despite the predictability in voyage route, transport 

efficiency is highly variable over time (Figure 4.11).  The left side of the figure depicts each 

ship’s tonnage and roundtrip time per voyage and illustrates different payloads due to maximum 

draft of the vessels (8.5m and 9.75m, respectively).  Whereas water levels in the period evaluated 

were higher than normal, vessel draft and load were maximized by vessel 1 (8.5m draft) but 

remained seasonally variable for vessel 2.  The calculated efficiency for each voyage is depicted 

Figure 4.10: Route-specific transport efficiency of iron ore (tons/ship-hr.) for one-way travel 
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on the right side of the figure, along with average annual rates for each vessel.  Efficiency for 

vessel 1 decreased over time despite very consistent loads, being negatively impacted by longer 

voyage times.  In contrast, vessel 2 demonstrates a consistent mean delivery rate despite variable 

loads.  This is illustrative of the importance of vessel load and voyage time in assessing transport 

efficiency.  Vessel-specific analyses are useful to establish an operational baseline to assist in 

monitoring vessel or fleet performance in near real-time. 

 
Figure 4.11: Payload and roundtrip travel time (left) and transport efficiency expressed as tons/hour (right).  
Calculated for two 305 m x 32 m vessels with 8.5m (28’) and 9.75m (32’) draft travelling the same voyage route.  
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The proposed efficiency metric can be applied collectively to a fleet of vessels or to 

individual harbors as shown in Figure 4.12.  Data points in the figure represent efficiency for 

complete voyages with size reflecting tonnage carried.  As calculated using Equation 4.8, the 

annual efficiency reflects the weighted average for each harbor.  Naturally, smaller vessels have 

a lower efficiency on a per ton basis which is reflected in the performance metric.     

Transport efficiency reflects the aggregate performance of harbor infrastructure, vessel 

transit time, as well as the distribution of ship size and type providing service to each harbor.  

For example, the MTE to ports along Lake Erie were improved by increasing the fraction of 

Figure 4.12: MTE of iron ore to Great Lakes harbors (2015-2017) 
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larger vessels servicing them (in 2017), when others saw a reduced efficiency likely due to 

longer roundtrip durations (Figure 4.12).  Resource managers require metrics to guide 

commitment of finite resources that leverage the most current and comprehensive information 

[152], [153].  This analysis of transport efficiency is useful to harbor managers as well as 

shipping companies and freight consumers to increase predictability of logistics time and costs.  

Particularly in the context of short sea shipping, this approach is useful to estimate delivery rates, 

which is deterministic of available supply and should inform freight pricing for both long-term 

contracts and on the spot market [154].  Future studies that incorporate freight costs, may be used 

to assess the impact of capital expenditure in harbors and port-side infrastructure.        

 

Conclusions  

This study presents a fusion technique for AIS and lock data that yields new insights into 

maritime transport efficiency metrics which are directly applicable to short sea shipping.  This 

approach is readily adaptable to inland waterway or coastal harbors where vessel draft or load 

data is available.  Where water levels are deterministic of vessel capacity, as in the Great Lakes, 

payloads are predictable given measured water level and historical ship performance.  We 

present a linear model for vessel load based on water surface elevation for iron ore carriers in the 

Great Lakes.  When integrated with travel times this model provides a means by which to 

estimate maritime transport efficiency.  Deviations from expected transport efficiency are useful 

to operations managers and can inform decisions on fleet deployment or risk transfer 

mechanisms in near real-time.  When applied to harbors, this metric can reveal limitations in the 

opportunity costs associated with port performance and infrastructure deficiencies.  This offers 

operations managers better information to allocate funding for projects that yield the greatest 
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improvement to system performance.  This is particularly relevant to short sea shipping 

operations where improvements to efficiency have a concentrated benefit in the system.  Future 

work will explore how financial value can be realized through improvements to efficiency that 

reduce freight costs or optimize return on operations and maintenance expenditures.      
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CHAPTER 5 

Can a Port User Fee Financing Model for Harbor Maintenance Reduce Costs for Freight 
Consumers? 

 

Introduction  

Maritime transportation is the most cost effective and environmentally friendly means of 

moving freight, rendering ports and waterway infrastructure essential to trade.  American ports 

annually carry more than $5 trillion in goods worth 26% of the country’s GDP [10], [15].  

Despite its importance, there is an investment gap of $32 billion for landside projects and a $28 

billion dredging backlog which have resulted in inefficiency, delay, and lost revenues for 

waterway users [15].  This has prompted initiatives to improve allocation of public funds and 

explore alternative financing mechanisms that may accelerate and improve funding decisions 

[18].   

 Freight consumers assume the cost of harbor maintenance activities indirectly through HMT 

payments and receive a savings return on those payments resulting from decreased transportation 

costs and improved efficiency.  The correlation between freight costs and efficiency of vessel 

operations is well documented [154], [155].  Wilmsmeier et al. noted freight rate reductions 

resulting from economies of scale from larger ship volumes, irrespective of other determinants of 

transportation costs, particularly for bulk commodities [156].  Efficient shipping via larger 

vessels requires deliberate maintenance of navigable depths in channels and harbors to maximize 

the utilization of cargo capacity.  Reduced time in port also improves efficiency as well as freight 

supply over time which results from additional vessel loads over a navigation season [139].  
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However, there is an existing gap in quantifying the efficiency gained from specific investments 

and the expected reduction in transportation costs which could inform modern funding 

mechanism for this infrastructure.  This study applied new data statistics and Monte Carlo 

simulation modeling to separately investigate landside infrastructure and maintenance dredging 

to quantify the impact of investment decisions.     

 

Landside Infrastructure  

Landside port infrastructure is generally funded through private owners or port authorities 

and decisions to upgrade require a business case.  For example, decisions to upgrade cranes at a 

container terminal are based on projected increased revenue that would result from improved 

throughput [156].  For bulk commodity terminals, which are more common in the Great Lakes, 

landside infrastructure affects the rate that vessels may load or unload cargo.  Bulk carriers in the 

Great Lakes are equipped with internal machinery and articulating booms that are self-unloading 

and can deliver cargo directly onto a dock or hopper [137].  For example, Burns Harbor is an 

integrated steel mill situated along the southern shoreline of Lake Michigan.  That port receives 

iron ore via a stationary hopper from which commodities are belted to plant storage facilities at a 

maximum rate of 5,000 tons per hour (TPH) [157].  This places restrictive limits on most bulk 

carriers which can unload cargo at twice that rate (10,000 TPH).   

Landside infrastructure restricting the rate of loading or unloading negatively impacts vessel 

turnaround time, and associated freight supply.  This is amplified in the short sea shipping routes 

of the Great Lakes; however, the quantified effect is not well understood.  We investigated the 

financial return that could be realized from reduced freight costs to Burns Harbor.  This 

privately-owned facility has an annual production capacity of 5 million tons of steel product and 



 80 

receives 4.5 to 5.5 million tons of taconite each year [63].  Historically, 90 percent of this freight 

movement was handled by two vessels, the M/V Stewart J Cort and M/V Burns Harbor.  The 

Cort operates on a “bareboat charter” lease agreement under which the vessel exclusively makes 

roundtrips between Superior, WI and Burns Harbor, IN to deliver as much taconite possible in a 

navigation season [142].  The M/V Burns Harbor, owned and operated by American Steamship, 

follows a similar pattern as observed through data analytics described in Chapter 4 [73].  Both 

vessels are 305 meters (1000 ft.) long and 32 meters (105 ft.) wide.  However, the Cort has a 

maximum draft of 8.5 meters (27’11”) and maximum capacity of 58,000 tons while the Burn 

Harbor has a listed capacity of 80,900 tons at its constructed draft of 10.4 meters (34’1”) [157].  

As observed in Chapter 4, these vessels typically make between 30 and 40 roundtrips in a 

navigation season dependent on weather conditions and service times at the port.  Reduced time 

in port would maximize potential roundtrips and, therefore, the available freight supply for 

vessels delivering bulk commodities.   

Research Question: What is the expected reduction of transportation costs resulting from 

unrestricted vessel unloading at Burns Harbor?   

 

Maintenance Dredging    

The cost of dredging in the United States has increased significantly in recent years which 

calls into question the long-term sustainability of existing funding mechanisms. The U.S. Army 

Corps of Engineers (USACE) is responsible for managing the nation’s navigation infrastructure 

and  receives annual appropriations of approximately $1 billion for maintenance dredging [127].  

Since 1990, the average unit cost of dredging in the U.S. has increased approximately 250 

percent (adjusted for inflation), which places additional strain on limited financial resources 
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[158], [159].  Several factors contribute to the increased costs, including dredging methods, 

distance to placement sites, restrictive time windows, and project size [159], [160].  

Improvement of waterway infrastructure investment and maximization of benefits from public 

funding decisions is impeded by a knowledge gap on the correspondence between maintenance 

spending and maritime transportation costs.  

Decisions to allocate funds for the improvement and maintenance of harbor infrastructure are 

based on estimates to achieve design dimensions and do not necessarily reflect variable demand 

or performance.  Policymakers use benefit-to-cost ratios (BCR) to compare the expected benefits 

(transportation cost savings) to the cost of dredging when determining appropriate design 

dimensions for navigation channels [161].  Channel dimensions (including depth) are passed into 

law under a project authorization which becomes the basis for maintenance and funding needs.  

The allocation of O&M funds for channel maintenance requires Congressional appropriation 

from previous HMT collections and generally does not consider variations in project use (i.e. 

demand variability) which may impact the annual return-on-value for dredging [43].  In the 

current model, dredging is always desired by shippers irrespective of demand level because 

reduced depths negatively impact vessel payload and efficiency, but not HMT payments 

determined by the value of goods.  Alternative funding mechanisms for harbors that maximize 

benefits from public funding decisions are impeded by a knowledge gap on the correspondence 

between maintenance dredging spending and maritime transportation costs.   

We hypothesize that maintenance funding allocations in the Great Lakes waterway can be 

improved by applying expected Maritime Transport Efficiency (MTE) metrics for bulk 

commodities.  This metric reflects the average rate [mass/time] of maritime transport and has 

been used to compare shipping routes and port activities in the Great Lakes [162].  The 
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integration of MTE with shipping demand and fuel price provides a means by which to assess 

transportation cost savings in comparison with maintenance dredging expenditures.  In the Great 

Lakes, the value gained from reduced transportation costs from harbor dredging varies with 

natural occurring water level and vessel traffic.  Capital improvements over the life of the Great 

Lakes system have deepened the most restrictive segments to a nominal depth of 8.2 meters (27 

feet), though functional depths change with seasonal variations in water surface levels [55].  

Costs to transport goods on the Great Lakes waterway depend both on maintenance dredging as 

well as natural water surface levels that exhibit both annual and seasonal variations. Low water 

levels restrict vessel draft which results in light-loading, reduced revenue for shipping 

companies, and increased cost to move goods [41]. Conversely, water levels above normal may 

offer opportunities to amend dredging practices to reduce the total costs of using and maintaining 

the waterway.  However, current allocation of funds to harbor maintenance projects assumes a 

depth of channel maintenance irrespective of variations in water levels.  The integration of MTE 

with shipping demand and fuel price provides a means by which to assess transportation cost 

savings in comparison with maintenance dredging expenditures.  

Meyer et al. developed hydrology-based hedging instruments to insulate shippers from 

extreme conditions in the Great Lakes and evaluated tradeoffs between financial (insurance) and 

physical (dredging) risk mitigations [41], [42].  This issue was most pronounced from 2005-2013 

when historic low water levels coincided with a dredging backlog [40].  Legislation in 

consideration as of this writing would increase minimum spending to 12% of national allocations 

to Great Lakes projects [163].  This study considers the cost impact to freight consumers under 

abnormally high-water levels that naturally allow deeper drafts.  Decisions to delay or forego 

dredging have potential to reduce total costs which we investigate for Toledo, OH.      



 83 

Toledo Harbor, in northwest Ohio, is situated where the Maumee River empties into Lake 

Erie.  Maumee Bay, in western Lake Erie, is naturally shallow and requires maintenance 

dredging to allow vessels access to the harbor.  The federally authorized project includes seven 

miles of channel within the Maumee River and an 18-mile approach through Maumee Bay 

maintained at 8.2 and 8.5 meters depth, respectively [164].  Typical dredging requirements are 

800,000 cubic yards per annum, the highest in the Great Lakes, and contracted separately for the 

inner and outer harbor areas which have distinct physical and chemical profiles [165].  Funding 

for harbor dredging has been between $4.7 and $7.6 million since 2009  [166].  Primary 

commodities moving through the port include iron ore, grain, and cement with tonnage ranging 

from 8.4 to 11.3 million tons since 2009 [167].   

Research Question: Can flexible dredging expenditure reduce the total cost of transportation and 

maintenance for Great Lakes harbors? 

 

Funding Harbor Maintenance   

The maintenance of America’s harbors is funded through a Harbor Maintenance Tax (HMT) 

which has been the subject of debate since its inception.  In 1986 the U.S. Congress established 

the ad valorem fee which collected 0.04% of cargo value [47], [168]. Congress increased the tax 

to 0.125% in 1990 with intent to cover 100% of O&M costs and relieve the burden of 

maintenance costs from the General Treasury [47], [169].  A value-based fee is unique to the 

United States.  Other countries fund harbor maintenance from the General Treasury or directly 

through port user fees [44], [45].  Since the HMT is value-based, the U.S. Supreme Court has 

ruled it a tax rather than a user fee and determined it in violation of the Export Clause of the 

Constitution [46].  As a result of this decision, since 1998 the tax is collected on imported goods 
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and domestic shipments but excludes U.S. exports.  The collection of taxes applied only to 

imports has been the subject of consultation under the General Agreement on Tariffs and Trade 

(GATT) which today is governed by the World Trade Organization (WTO) and remains a 

contentious issue for international trade [48], [170].   

There have been several recommendations to amend, replace, or eliminate the HMT.  The 

Clinton administration pursued several alternatives including replacement with a user fee and a 

return to expenditures from the General Treasury, but neither was taken up by the 106th Congress 

[47].  Kumar proposed a user fee structure based on tonnage, vessel draft, and time-in-harbor 

which would pass the constitutionality test and better adhere to principles set forth in the GATT 

[45].  Skalberg noted several persisting problems with the tax including its disproportionate 

collection on high-value goods and the inequity in regional maintenance requirements [171].  For 

example, naturally deep ports with high-value import cargo generate much of the HMT revenue 

but require little funding for maintenance [163].  Other systems, like the Great Lakes waterway, 

have higher maintenance needs but handle relatively low-value bulk commodities, such as iron 

ore and coal [137].  McIntosh and Skalberg expanded on the user fee model originally proposed 

by Kumar and developed weights for cost factors that would most equitably replace the tax [45], 

[49].  They later investigated various alternatives including a fee based on tonnage alone, 

abolishment with expense reverting back to the General Treasury, and replacement with a fuel 

excise tax [48].  Each option necessarily shifts the burden of payment and would likely have 

divided opposition and endorsement.  Sentiment favors a user fee model based on objective data 

reflecting maintenance needs, but data availability to support such a model have been limited to 

date [49].   
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Today, big data and sensor technology provide improved insight to vessel and port usage that 

could drive a modern and equitable user fee for harbor infrastructure.  The comprehensive use of 

AIS in commercial and passenger vessels provides a means by which fund managers can assess 

fees based on actual vessel draft and time in port.  This would have the added benefit of 

informing harbor deepening decisions.  In the current model, funds from the HMTF are limited 

to maintenance activities.  Harbor improvement projects, such as channel deepening, are funded 

from the general treasury at a maximum federal share of 65 percent for harbors up to 15.25 

meters (50 ft.) and 40 percent for deeper projects.  The remainder of funds are provided by a 

project sponsor.  A recent series of harbor deepening decisions faced the U.S. after the Panama 

Canal Expansion gave way to increased vessel sizes [172].  Charleston Harbor is the latest major 

deepening project, but access to the harbor has lagged Panamax completion by more than five 

years.     

 The Charleston Harbor is managed by the South Carolina port authority and is scheduled 

to complete a deepening project increasing the maximum depth from 13.7 to 15.9 meters (45 to 

52 ft.) [173].  In 2012 the South Carolina General Assembly set aside $300 million for the non-

federal project contribution [174].  The project was authorized by Congress in 2015 and first 

received federal funds in 2017.  Federal allocations in successive years from 2017 to 2020 were 

$ 17.5M, $49M, $41.4M, and $138M [174].  Dredging began in 2018 and is scheduled to 

complete in 2021, nine years after state funds were available and five years following the 

opening of the third locks of the Panama Canal [172].  The prolonged appropriations process 

resulted in years of inaccessibility by post-Panamax vessels and millions of dollars in lost 

opportunity costs.  We discuss the potential for a harbor user fee model to accelerate capital 
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outlay for improvement projects using increased fees offsetting project finance offered through a 

Harbor Maintenance Bank.   

 

Methods 

This study applied a series of Monte Carlo simulations using detailed vessel statistics 

reported in Chapter 4 to determine changes in shipping efficiency.  Expected Maritime 

Transportation Efficiency (𝐸[𝜓]) serves as a proxy to value transportation costs.  In this section 

we first describe the Efficiency Simulation Model.  Then we apply it to assumed conditions 

changes at Burns Harbor and Toledo Harbor, described separately in the following sections.    

  

Efficiency Simulation Model  

We determined expected Maritime Transportation Efficiency (𝐸[𝜓]) using Monte Carlo 

simulation integrating estimates for vessel load and voyage duration.  In Chapter 4 we showed 

that vessel capacity in the Great Lakes waterway is effectively predicted from water surface 

elevations in Lake Michigan-Huron, central to the system.  Historical monthly change in water 

level, available from 1918 to present, were used as inputs to the simulation model [40]. Monthly 

changes were calculated and were used to develop empirical cumulative distribution functions, 

F(x), for each month.  The simulation begins with a specified March water level for Lake 

Michigan-Huron.  Changes in water level for subsequent months were randomly generated by 

taking the inverse transform of that month’s density function from a uniform variate (Equation 

5.1) and monthly levels calculated using Equation 5.2. 

	∆𝐻 = 𝐹2(𝑢$)				𝑤ℎ𝑒𝑟𝑒	𝑢$~𝑈(0,1)	 (5.1) 

𝐻5 = 𝐻5'1 + ∆𝐻 (5.2) 
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We modeled normalized vessel capacity using the empirical regression (Equation 5.3) 

developed in the previous Chapter.  Individual vessel load was calculated using Equation 5.4 and 

the mean and standard deviation of that vessel’s performance over the period 2005-2018 was 

based on USACE data [73].  Then 𝑉$,5 is the modeled payload for vessel 𝑖 in month 𝑡.  Appendix 

A includes a table of the vessels included in this simulation and their constructed dimensions.  

𝑍5 = 2.12 ∗ 𝐻5 − 	373.2 (5.3) 

𝑉$,5 = �
𝑍5 ∗ 𝜎$ + 𝜇$									𝑤ℎ𝑒𝑟𝑒	𝑀𝑎𝑥	𝐷𝑟𝑎𝑓𝑡 ≤ 𝐻5
𝑉$,/E!																			𝑤ℎ𝑒𝑟𝑒	𝑀𝑎𝑥	𝐷𝑟𝑎𝑓𝑡 > 𝐻5

 (5.4) 

 Voyage times also affect vessel efficiency and available supply over time.  Vessels in the 

Great Lakes often make round trips between a small set of ports.  This is particularly true for iron 

ore carriers in the Great Lakes [138].  The impact of sailing time and time at port has a 

significant cumulative effect on vessel freight supply in short sea shipping [139].  The number of 

possible voyages within a shipping season, along with vessel payload, are deterministic of freight 

supply.  We modeled the voyage times as the sum of random variates for distinct waterway 

segments as follows.  A segment may be an open waterbody, port, or connecting channel 

between lakes.  We developed cumulative density functions from travel time statistics in each 

waterway segment and generated random variates for each segment to model travel times of a 

vessel’s route (Equation 5.5).  Voyage times were then calculated as the sum of segments along a 

specified route with 𝑛 segments (Equation 5.6).  We assumed continuous operation throughout a 

navigation season, defined as 25th of March to 15th of January in the Great Lakes [55].  The 

number of voyages (𝑚) within a navigation season, and each month therein, is finally determined 

by a vessel’s cumulative voyage time.  

𝑡4MS/M:5 = 𝐹4MS/M:5'1 (𝑢)			𝑤ℎ𝑒𝑟𝑒	𝑢~𝑈(0,1) (5.5) 

𝑡TG#ESM = ∑ 𝑡$,4MS/M:5:
$01  (5.6) 
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The annual transport efficiency for individual bulk carriers (Equation 5.7) is calculated as the 

average of voyages payload per transit time and has units of mass per time.   

𝜓$ =
1
/
∑ U"

5",$%&'()
/
%01  (5.7) 

 

Variance Reduction 

 For the largest vessels on the Great Lakes, the model produced estimates of annual 

efficiency in the range of 350±40 tons per hour for ore carriers. We specified an acceptable level 

of accuracy of +/- 1% and applied validation techniques first developed by Balci and Sargent to 

determine the minimum model replications (𝑁) to achieve it [175].  Let �̅� be the mean of 𝑁 

simulation results with variance 𝑆<.  For a 95% confidence level (a=0.05) the confidence interval 

(𝐶𝐼) is calculated as 𝐶𝐼 = 	�̅� ± 𝑡V'1,	1'*+
∗ �𝑆< 𝑁� .  We found that a sample size of 400 

replications achieved the specified level of accuracy for each set of inputs and reduced 

computational time from 26 hours (for 10,000 iterations) to 2 hours.  We calculated the transport 

efficiency for each vessel (𝑖) as the mean over 400 replications (Equation 5.8).  

𝐸[𝜓$] =
1
W==

∑ ( 1
/
∑ U"

5",$%&'()
)/

%01
W==
%01     (5.8) 

Note that 𝑚 varies for each replication based on the cumulative voyage time within the 

navigation season.  A representative simulation for two vessels is shown in Appendix F (Figure 

F.4).  The model calculates expected efficiency for individual vessels using March water depths 

and travel time statistics as described earlier.   

 To assess the overall transport efficiency to the various ports, we apply a weighting to each 

of the vessels based on percentage of total tonnage delivered to these ports over a three-year 

period (2015-2017).   The expected maritime transport efficiency for ports (𝐸[𝜓]) is calculated 
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using Equation 5.9, where 𝐸[𝜓$] is the simulated expected efficiency for vessel	𝑖 and 𝑉$,% is the 

observed payload for vessel	𝑖 on voyage	𝑗.   

𝐸[𝜓] = ∑
∑ U,,"
-
"./

∑ ∑ U,,"-
"./

0
,./

𝐸[𝜓$]:
$01  (5.9) 

Expected efficiency under varied simulated conditions are used to assess changes in Burns 

Harbor and Toledo Harbor and associated changes to freight costs as described below.   

 

Landside Investment at Burns Harbor 

 To investigate transportation cost savings from landside port investment at Burns Harbor we 

applied the weighted port efficiency metric calculated using Equation 5.9 to estimate the change 

in transportation costs.  We assess efficiency for two initial conditions (𝐻=) of 176.0m and 

176.6m which represent the 25th and 75th percentile for Lake Michigan-Huron, respectively 

[176]. The simulation for Burns Harbor includes 16 unique vessels (n=16).  Voyage times were 

calculated for each vessel using empirical cumulative distributions for waterway segments along 

the route between Superior, WI and Burn Harbor, IN.  We compared time-in-port for two 

adjacent harbors owned by a single firm.  Burns Harbor exhibited a median time-in -port of 23.5 

hours whereas Indiana Harbor was 14.5 hours as described in Chapter 4.  Indiana Harbor is able 

to receive material directly onto its dock which allows vessels to unload at an unrestricted rate 

[157].  We assume that replacement of the existing conveyor belt at Burns Harbor would remove 

rate restrictions, and vessels servicing that port would exhibit a time distribution like that of 

Indiana Harbor.  Other time segments in the route remain unchanged between simulation runs. 

 We validated model consistency over 20 iterations, each calculated as the mean of 400 

repetitions as described for Equation 5.8.  We tested the difference between means using a paired 

t-test [177].  Under a null hypothesis that the true mean difference is zero, we calculated a two 
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sided p-value using Python’s Scipy Stats module [178].  Statistical significance was assessed at 

the 90% level and we used a Bonferroni corrected significance level of 0.005 for m=20 pairs 

(𝛼>X = 𝛼 𝑚⁄ ) [179].  

 We calculated relative transportation costs from the change in ship-hours necessary to meet 

a specified demand.  Let 𝑇 be required ship hours to deliver demand 𝐷, calculated as 𝑇 = 𝐷 ⁄

𝐸[𝜓].  Freight pricing is negotiated for long-term contracts and fuel costs are reimbursed by the 

consumer [149].  That is, a change in expected ship-hours will not directly affect freight price but 

will impact fuel consumption and liability to the freight consumer.  Fuel costs are calculated as 

𝐶 = 𝑝Y𝑘𝑇 where 𝑝Y is fuel price (US $ / ton) and 𝑘 is the fuel consumption rate for vessels. The 

rate of fuel consumption (𝑘) is dependent on traveling speed and engine rating, which varies 

significantly from ship to ship.  We estimate fuel consumption rates to be 62 and 48 tons per day 

which corresponds to estimates for laden and ballast bulk carriers, respectively, with a cruising 

speed of 13 knots [180].  We assume fuel price to be $300 +/- 100 per ton which is reflective of 

normal market volatility [181].   

 

Flexible Dredging Practices in Toledo Harbor 

The methodology to investigate potential cost savings from flexible dredging practices in the 

Great Lakes followed a three-step process (Figure 5.1).  First, we evaluated dredging costs 

nationwide to assess trends and quantify cost savings realized through economies of scale.  We 

express transportation costs as a function of Maritime Transport Efficiency [162] which we 

predict over a navigation season for changing water surface levels using the Efficiency 

Simulation Model. Finally, we estimate transportation costs using the Expected Transport 
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Efficiencies and compare the total spending under current practices with more flexible 

management practices that could defer dredging decisions.  

 

Figure 5.1 Methodology to assess impact of flexible dredging practices 

 
Contracted Dredging Trends 

Trends in commercial dredging from 1990 to 2020 show that funding for dredging projects 

has been robust over the past two decades, but the amount of material moved has decreased over 

time.  Hence, unit costs have risen more than 250% (Figure 5.2), which places additional strain 

on limited financial resources [158], [159].  Data available from the USACE Navigation Data 

Center contains 5,138 records from 1990 to 2018 and offers the most complete information on 

dredging in the U.S. [81].  Within the dataset, 3,895 entries contain information on cost and 

volume of dredged material with partial reporting available for 2018. Dredging data for fiscal 

years 2019 and 2020 are published separately and contain 240 records [182], [183].  We 

calculated the unit cost of dredging as the contract price divided by volume of material moved.  

All monetary values are adjusted to 2020 equivalents using a constant inflation rate of 2%.  We 

removed one data point thought to be in error where, reportedly, 156 million cubic yards of 

Assess National and Regional dredging trends
• Quantify cost increase over time
• Quantify relationship between price and project volume

Estimate Transportation Costs
• Simulate expected transport efficiency
• Estimate vessel operating costs and fuel expenses over range of 
efficiency ratings

Test total cost savings in flexible maintenance model
• Calculate transportation costs given demand, fuel price, and 
shipping efficiency

• Compare aggregate of transportation and dredging costs.
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material was dredged in a single contract in the Ohio River.  This is an order of magnitude higher 

than the next largest dredging requirements which are present along the Gulf Coast.   

 
Figure 5.2: Dredging statistics and trends in the U.S.  (Data Source: USACE Institute for Water Resources) 

Increased costs may be attributed to material handling requirements, limited contract 

competition or restrictive time windows [159], [160].  Unit costs are correlated to volume of 

dredged material for contracted projects.  This is to be expected as mobilization and 

administrative costs account for a greater portion of total expense on smaller projects.  For 

example, nine contracts removed less than 1,000 cubic yards of material and exhibited unit costs 

more than twice the average.  We compared unit cost to the volume of material dredged and 

modeled the relationship using a least squares regression.  Using Equation 5.10 where 𝑃 is 

contract price (2020 equivalent) and 𝑉 is volume of dredge material (cubic yards), we fit 

parameters to estimate the contract costs from dredged volume. 

ln �Z
U
� = 	𝛽 ∗ ln(𝑉) + 𝜀  (5.10) 
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While dredged volume is not singularly deterministic of cost, a portion of cost variability 

may be explained by this factor which we assess at national and regional levels.  The linear 

model provides an estimation of explained variance in unit costs which this study assesses using 

the coefficient of determination (𝑟< = 1 − [KK
\KK

).  This cost model is used to estimate changes in 

contract price given project volume.      

 

Transportation Saving Resulting from Dredging 

 Transportation savings from harbor dredging are often assumed to be linear for individual 

vessels, but the benefits depend on the constructed dimensions of the ship.  Vessels in the Great 

Lakes report a “Tons Per Inch” (TPI) characteristic which reflects the incremental payload for 

each inch of draft [157].  Vessel dimensions determine variable payload with depth, which is 

maximized at a ship’s constructed draft, generally ranging from 8.2 to 10.4 meters (27 to 34 feet) 

in the Great Lakes.  A ship with maximum draft less than available water depth will reach its 

maximum (Deadweight) capacity, as illustrated in Figure 5.3.   

 
Figure 5.3: Vessel payload relative to available water depth 
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In the Great Lakes, available vessel draft is determined by dredging as well as naturally 

available water level.  Authorized project dimensions are based on the low water datum (LWD) 

in accordance with the International Great Lakes Datum (IGLD-85).  The LWD for Lake 

Michigan-Huron is 176.0m and 173.5m for Lake Erie [176].  We assume that water levels above 

the LWD add available draft.  Increasing water depth above a vessel’s maximum draft has 

diminished returns which can be assessed for a fleet of vessels with varied dimensions.  For bulk 

commodities, such as iron ore, the variable payload (a function of draft) directly correlates to 

revenue per voyage.  Freight consumers in the Great Lakes commonly pay a per-ton price for 

bulk commodities along with reimbursable fuel expenses [149].   

 From a freight consumer’s perspective, the total cost of shipping includes the per-ton rate, 

reimbursable fuel expenses, as well as dredging costs which are paid indirectly through the HMT 

(𝐶𝑜𝑠𝑡 = 𝑃𝑒𝑟	𝑡𝑜𝑛	𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑒𝑑	𝑝𝑟𝑖𝑐𝑒 + 𝐹𝑢𝑒𝑙 + 𝐷𝑟𝑒𝑑𝑔𝑖𝑛𝑔).  By considering these costs 

together, it is possible to optimize fund allocations to minimize total costs.  Freight pricing for 

bulk commodities in the Great Lakes is negotiated using long term contracts [56].  Prices reflect 

expected operating costs of shipping companies which vary with waterway conditions (i.e., low 

water levels).  Financial risks associated with variations in performance over a navigation season 

reside with shipping companies, but can be mitigated through insurance instruments and 

included in freight pricing [41].  For this study, contracted freight pricing was assumed to be 

consistent over a navigation season, even though they are subject to increases as shipping 

companies shift risks associated with increased operating costs.  The increases are assumed to be 

proportionate to the average time to deliver bulk commodity orders.     

 Aggregated fuel costs vary with vessel payload which, in turn, determines the number of 

ship voyages necessary to meet contracted demand.  The number of voyages is primarily 
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determined by water depth and available draft.  Psaraftis and Kontovas showed fuel consumption 

as a function of vessel speed and payload 𝑓(𝑣$% , 𝑤$%) where 𝑣 is velocity and 𝑤 is payload 

between ports	𝑖 and	𝑗 [180].  Fuel costs are approximated as 𝑝𝑓(𝑣$% , 𝑤$%)𝑡$%, where 𝑝 is the price 

of fuel and	𝑡	is sailing time between ports.  We model total voyage time as the ratio of demand to 

transport efficiency (𝐷 ⁄ (𝐸[𝜓]).  In this study, the average vessel payload is reflected in the 

efficiency term, and velocity is assumed to be 13 knots, representing typical cruising speed 

observed by way of the Automatic Identification System (AIS) data [162].  At 13 knots, we 

estimate fuel consumption to be 62 and 48 metric tons (m.tons) per day for loaded and ballast 

(empty) bulk carriers [180].  We averaged the fuel consumption (55 m.tons/day) by assuming 

that bulk iron ore carriers travel down-bound loaded and return under ballast in typical patterns 

[138].  Fuel consumption is weighted by the percentage of time vessels spend at sea and in port, 

which we estimate using AIS data.  For example, the AIS data for vessel traffic from 2015-2017 

indicate a median one-way travel time between Presque Isle and Toledo Harbors of 61 hours.  In 

addition, respectively 24 and 12 hours are spent at each port during offloading processes [73].  

We determined that 77 percent of the total voyage time is at sea and 23 percent at port for this 

common iron ore route, expressed as 𝑃4ME	and 𝑃>GJ5, respectively.  Fuel costs are calculated using 

Equation 5.11, where 𝐷 is the specified annual demand for bulk iron ore, 𝐸[𝜓] is the expected 

transport efficiency, and 𝑝Y is the price of fuel [US $/m.ton].   

𝐹𝑢𝑒𝑙	𝐶𝑜𝑠𝑡𝑠 = 	 ]
	R[_]	

∗ 855	𝑃4ME + 3	𝑃>GJ59 ∗ 𝑝Y (5.11) 

The efficiency of moving bulk goods can be determined from vessel payload and voyage 

time and is expressed as mass per time.  The actual performance is vessel-specific and 

challenging to predict discretely for fleets of vessels and various shippers providing service to 

bulk customers.  For example, in the 2017 navigation season, 14 distinct vessels delivered 3.3 
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million tons of iron ore to Toledo Harbor, combined over 103 voyages [76].  The costs 

associated with individual voyages is knowable post-delivery but challenging to predict ex ante 

when it would be most useful to inform dredging decisions.   

 Deepening activities of navigable waterways are considered to be economically beneficial 

when the savings of reduced transportation costs and fuel consumption exceed the costs of 

dredging.  Many vessels realize diminished returns from increased available draft if it exceeds 

constructed ships dimensions.  This is illustrated in Figure 5.4 for two vessels delivering iron ore 

to Toledo Harbor between 2012 and 2018.  The M/V Victory has a maximum draft of 6.8 meters 

(22.3 feet) and exhibits seasonal fluctuations in load but does not realize gains from increasing 

water levels since 2013.  On the other hand, the M/V H. Lee White (max draft 9.1 m) exhibits 

increased payloads commensurate with rising water levels.          

 
Figure 5.4: Seasonal fluctuations in water level and their impact on vessel load 

This study produced ex ante estimates of transportation efficiency using water surface 

elevations at the beginning of the navigation season (March).  We use 𝐸[𝜓] to calculate expected 

ship-hours necessary to deliver a specified demand for bulk iron ore and estimate its costs by 
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combining Equations (5.9) and (5.12) inclusive of operating costs other than fuel (𝑂𝐶).  These 

costs include crew salaries, stores, and insurance, for example.  Total transportation costs are 

calculated using Equation 5.12 with assumptions listed below.    

𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑎𝑡𝑖𝑜𝑛	𝐶𝑜𝑠𝑡𝑠 = 	 ]
	R[_]	

∗ [8𝐹4ME𝑃4ME +	𝐹>GJ5𝑃>GJ59 �
1	6E#
<W	OGLJ

� ∗ 𝑝Y + 𝑂𝐶]    (5.12) 

𝐷 = bulk commodity demand [tons] 
𝐸[𝜓] = Expected maritime transport efficiency to port [tons/hr] 
𝐹 = Fuel consumption rate at sea / in port, assumed to be 55 and 3 [tons/day] 
𝑃	= Percent of voyage time spent at sea / in port, calculated to be 77% and 23% 
𝑝Y = fuel price, assumed to be 300 +/- 100 [$/m.ton] 
𝑂𝐶 = Vessel Operating Costs other than fuel, assumed to be 250 [US $/hour] 

Actual fuel and operating expenses vary by vessel type and size.  For example, crew size and 

company overhead expenses determine actual operating costs.  Fuel price and market 

fluctuations are different for diesel and low-sulfur bunker fuel.  We make simplifying 

assumptions for pricing in accordance with average industry estimates [161], [184]. 

 

Cost Comparison for a Dredging Decision Model 

 We compare current dredging practices to a hypothetical model that allows contract deferral 

when predicted cost savings are below a threshold level.  We apply this to Toledo Harbor using 

historical appropriations, water surface levels, and demand.   

 Toledo Harbor, in northwest Ohio, is situated where the Maumee River empties into Lake 

Erie.  Maumee Bay, in western Lake Erie, is naturally shallow and requires maintenance 

dredging to allow vessels access to the harbor.  The federally authorized project includes seven 

miles of channel within the Maumee River and an 18-mile approach through Maumee Bay that 

are maintained at 8.2 and 8.5 meters depth, respectively [164].  Typical dredging requirements 

are 800,000 cubic yards per annum, the highest in the Great Lakes, and are contracted separately 

for the inner and outer harbor areas which have distinct physical and chemical profiles [165].  
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Funding for harbor dredging has ranged from  $4.7 to $7.6 million since 2009  [166].  Primary 

commodities moving through the port include iron ore, grain, and cement with load delivery 

ranging from 8.4 to 11.3 million tons since 2009 [167].   

 We simulated the shipping efficiency between Presque Isle, MI and Toledo, OH which is 

the most common route for iron ore to the harbor.  In a typical year, 1 to 3 million tons of ore 

delivered by 50 to 100 vessels move along this route.  The Toledo ore dock is situated on the 

outer edge of the harbor which requires vessels to navigate the deepened approach channel in the 

Maumee Bay, but not the inner harbor area.  We utilized historical dredging, shipping, and water 

level data from 2008-2020, available from USACE data centers, to investigate the potential for 

cost savings between transportation and harbor maintenance requirements [40], [76].   

 We assessed increased transportation costs from deferred dredging using Equation 5.12 and 

by adjusting the estimated transport efficiency commensurate with decreased draft.  The 

available draft is not perfectly correlated with water surface level since sedimentation occurs in 

the channel over time.  We make a simplifying assumption that the channel is maintained to 

authorized dimensions given annual appropriations but would accumulate one meter of sediment 

in a non-maintained navigation season, reducing draft by the same amount.  This is consistent 

with bathymetric surveys within the most restrictive portions of the navigation channel [185].  

We assume that any deferred dredging is resumed the following year at the combined volume.  

However, we discount dredging costs based on the unit cost relationship to volume (Equation 

5.11).  For example, assume $5 million is appropriated in two consecutive years and deferred in 

the first year.  In this case, we assess zero dredging costs in the first year and $10 million, 

discounted using regression parameters, in the second year.  This is described in greater detail in 
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the Results and Discussion section.  Total costs in each year are calculated as the sum of 

transportation and dredging.   

    

Results and Discussion 

Landside improvements for Burns Harbor 

Unrestricted cargo unloading at Burns Harbor would result in an Expected Transport 

Efficiency increase of approximately 5 percent.  For lower water levels (𝐻==176.0m) the 

modeled estimated efficiency improvement from 340 to 357 tons per hour following landside 

improvements.  Higher water levels (𝐻==176.6m) resulted in efficiency improvement from 363 

to 382 tons per hour.  The calculated mean for model iterations varied slightly.  However, we did 

not reject that null hypothesis (H0: 𝜇1 = 𝜇1) as the paired t-test over 20 iterations produced p-

values in the range of 0.012-0.99.  None of the tests met the Bonferroni corrected threshold for 

statistical significance at the 90% confidence level (p < 0.005).  The corresponding change in 

total ship hours for given demand and efficiency is summarized in Table 5.1.   

Table 5.1: Transport efficiency improvement and total transit time change 

 
 𝐻1=176.0m (25th Percentile) 𝐻1=176.6m (75th Percentile) 

Demand ∆𝐸[𝜓] 
(tons/hr.) 

∆𝑇 
(ship-hrs.) 

∆𝐸[𝜓] 
(tons/hr.) 

∆𝑇 
(ship-hrs.) 

4.5 17 630 19 616 
5.0 17 700 19 685 
5.5 17 770 19 754 

 
It is interesting to note that higher efficiency gain is apparent for higher water levels, 

however, total travel time exhibits lower returns.  This is attributable to vessel loads that are 

increased during high water periods and require fewer roundtrips to meet demand.  Put 

differently, decreased vessel capacity increases the number of shiploads necessary to meet 

demand and the value return from reduced time-in-port. Figure 5.5 illustrates the impact of time 
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savings over the range of uncertainty in fuel price and consumptions rates.  Each line in the 

figure represents an assumed fuel price and depicts uncertainty over the range of fuel 

consumption.   

    
Figure 5.5: Cost impact of time savings 

 
Cost savings vary substantially over typical uncertainty ranges for model inputs which is 

illustrative of the complexity in valuing landside port improvements.  The low estimate of time 

saving (∆𝑇= 613 hours) would yield cost savings in the range of $252,000 to 651,000 per annum.  

The upper estimate (∆𝑇= 770 hours) produced savings of $308,000 to 795,700.  Results are most 

sensitive to fuel price, which is an external variable not controlled for in this study.  Still, these 

results illustrate the enhanced insight gained from highly granular data applied through 

simulation modelling.  This further supports the value of a Maritime Transport Efficiency metric 

in the Great Lakes as a proxy measure for freight costs and value return on project investments.  

The cost estimates developed here for Burns Harbor reflect fuel costs only, which account for 

approximately 60 percent of vessel costs [154].  These costs are directly attributed to freight 

consumers and most directly affect decisions for landside port improvements.  Decisions for 
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publicly funded projects should also consider daily fixed costs for vessels, which is discussed 

further for Toledo Harbor.    

 

Flexible Dredging in Toledo Harbor 

Unit costs are correlated to volume of dredged material for contracted projects.  This is to be 

expected as mobilization and administrative costs account for a greater portion of total expense 

on smaller projects.  As shown in Figure 5.6, considering nationwide data, the single independent 

variable (volume) explains 44 percent of variance in unit costs (as expressed by the coefficient of 

determination).  Hence, maximizing the volume of material dredged on a single contract can 

reduce the overall costs of dredging.  This could be achieved by reducing dredging frequency by 

combining contracts.   

 
Figure 5.6: Unit cost of dredging as a function of dredged volume (1990-2020)   
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For example, assuming an average annual requirement of 500,000 cubic yards, contracted 

costs could be reduced if managed in 2-year intervals versus annually, even if material 

requirements remain unchanged.  We solve the regression equation to calculate an expected 

contract price (𝐶𝑃) as a function of volume (𝑉), 𝐶𝑃 = 10<.b1 ∗ 𝑉(1'=.3c).  Two contracts to 

remove 500,000 cubic yards would have a total cost of $6.33 million whereas the expected price 

for a single contract to remove 1 million cubic yards would be $4.90 million, a 23% decrease.  

Such a change in practice could alleviate spending, or make funds available for enhanced 

sediment management practices, such as habitat enhancement and coastal resiliency [186].   

The quantified relationship between unit price and project volume is consistent for most 

regions, with exception of the Great Lakes.  Competition for dredging contracts is geographically 

constrained for normal maintenance dredging as mobilization costs between coasts are 

prohibitively expensive.  Using the same assumptions from the example above where 𝐶𝑃 =

101.d< ∗ 𝑉(1'=.1c),  the total cost of two contracts would be $7.10 million and $6.31 million on a 

single contract, an 11% decrease.  The coefficient of determination is much lower for Great 

Lakes contracts (r2=0.13).  This suggest that changes in dredging costs in this region may be less 

dependent on project volume and driven more by other factors as described above.  Analysis of 

Toledo Harbor exhibits a stronger correlation where 𝐶𝑃 = 101.bd ∗ 𝑉(1'=.<3) (r2=0.25) for 

dredging contracts since 2005.  We use this relationship to investigate potential savings within 

the harbor from reduced dredging frequency.     

Decisions to forego dredging would likely meet resistance within the shipping community 

and, indeed, may be more costly unless conditions exist that limit increased transportation costs.  

Opportunities to limit dredging activity are apparent in periods of abnormally high-water levels, 

or during weakened demand for freight.  Reduced fuel consumption and emissions are correlated 
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to increased shipping efficiency which reduces costs.  However, as discussed for the Great 

Lakes, variable water levels present an opportunity to amend dredging and budgeting practices to 

be responsive to changing lake levels.   

A series of simulations on shipping efficiency for the Port of Toledo show diminishing 

returns on dredging where available draft exceeds 9 meters (29.5 feet) with de minimis returns 

beyond 9.3 meters (30.5 feet) as illustrated in Figure 5.7.  This corresponds to the dimensions of 

vessels accessing the port.  Expected efficiency levels in this simulation are specific to iron ore 

delivery, but proportionately apply to other commodities as well assuming comparable vessel 

dimensions.  That is, increasing the available draft from 8.5 to 9.0 meters yields an expected 

efficiency increase of 12% whereas depth increases from 9.0 to 9.5 meters only produce a 5% 

improvement.  We simplify the relationship between available draft and lake levels which varies 

seasonally and as sedimentation occurs in the channel.  Scaling used in Figure 5.7 reflects 

authorized project dimensions and normal water level difference of 2.3 meters between Lakes 

Erie and Huron.    
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Figure 5.7: Simulated MTE as a function of available water depth. 

 The expected MTE is used to estimate vessel operating costs which are determined by their 

time in operation.  Figure 5.8 illustrates changes in operating costs for three assumed levels of 

demand.  These estimates use a fixed operating cost of $250 per hour and per-ton fuel prices of 

$300 +/- 100 which reflect recent market volatility for marine fuels [184], [187]. As discussed in 

the previous section, fuel expenses comprise a significant share of total costs.  Actual fuel prices 

vary by type, geographic market, and normal volatility, which is substantial for marine grades.  

Uncertainty in fuel prices is represented by shaded regions.  As expected, transportation costs 

scale linearly with demand and cost savings are realized as efficiency increases.  A 34% cost 

savings is observed over the full range but diminishes in the upper range.  As previously 

discussed, this is due to the increasing number of vessels that realize their maximum draft with 

increasing water depth, because of their constructed dimensions.    
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Figure 5.8: Estimated vessel operating costs with assumed fuel price of $300 +/- 100 per ton 

 
Decisions to defer dredging would result in decreased transport efficiency and higher 

shipping costs.  The magnitude of the cost impact varies with the level of demand and fuel prices 

as illustrated in the figure.  Table 5.1 shows historical water levels and iron ore demand with 

MTE and transportation costs calculated using Equations 5.11 and 5.12, respectively.  The 

dredging costs listed reflect actual contracted amounts in those years.  Total cost is the sum of 

transportation and dredging costs but recall that these are separate in the existing system.  

Transportation costs are paid by shippers and dredging expenditures are maintained by the 

government, having already been paid through the HMT. 
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Table 5.2: Assessed costs under existing practices 

Year March Water 
Level (m) 

Demand 
(M Tons) 

Fuel Price 
($/m.ton) 

MTE 
(Tons/Hr.
) 

Transportation 
Cost ($M) 

Dredging Cost 
($M) 

2016 176.61 0.70 200 269 1.59 7.37 
2017 176.53 3.29 150 265 6.45 5.91 

2018 176.76 2.5* 200 279 5.45 6.12 
2019 176.86 2.5* 250 282 6.19 4.68 

2020 177.20 2.5* 300 284 4.16 6.55 
* Tonnage estimates in these years was incomplete or unavailable.  We assumed average demand levels of 2.5 
million tons.   

 

We assessed the change in total costs for deferred dredging in years 2016 and 2018 when 

demand was atypically low (2016), and water levels were high, above the 75th percentile.  Under 

the assumption that deferred dredging in a season would result in a reduced depth of one meter 

within the channel due to sedimentation, we assessed an efficiency loss for those years and 

recalculated transportation costs as shown in Table 5.2.  Transportation costs increased by 30 

percent in those years with a calculated increased cost of US $2.12 million to shipping 

customers.  This is outweighed by potential cost savings resulting from combined dredging 

contracts in 2017 and 2019.  Combined appropriations with applied discount from economies of 

scale reveals potential savings of 1.94 and US $1.57 million in those years, respectively.   

Under existing management practices this hypothetical change would be opposed by shippers 

who would incur increased transportation costs but would pay the same level of HMT, as shown 

in Figure 5.4.  However, adoption of a port user fee based on vessel requirements, to replace the 

HMT, would operationalize decisions to optimize dredging based on vessel demand [48].  In 

consideration of national and regional regressions (Figure 5.5) for the port of Toledo, the range 

of plausible savings in maintenance dredging costs in the two periods are US $1.46 - 2.97 and 

$1.18 - 2.40 respectively.  Flexible management practices could reduce total costs of 

transportation and dredging over the four-year period.  This is illustrated in Figure 5.9 where 
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spending under traditional practices is depicted on the left for each year and flexible dredging 

expenditures are shown on the right.   

 
Figure 5.9: Combined transportation and dredging costs comparison for current and flexible decision models 

These savings could be leveraged to dredge additional material in the channel, or to offset 

costs for enhanced management practices, such as placement for coastal resiliency or shallow 

wetland creation.  By extension, typical appropriations of $50 to 70 million for dredging in the 

Great Lakes region could yield $3 to 4 million (6%) in savings annually.  These results point to 

greater efficiencies that are possible through harbor funding mechanisms that are performance 

driven (i.e., determined by vessel draft).        

 

Potential for Demand Driven Harbor Maintenance 

This study applied predictions of Maritime Transport Efficiency (MTE) to estimate changes 

in transportation costs resulting from maintenance dredging and natural variations in water level 
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throughout the Great Lakes navigation system.  As navigation dredging is intended to increase 

available vessel draft and shipping efficiency, this study quantified the tradeoffs in spending for 

dredging and associated freight costs.  We demonstrate that transportation cost savings from 

dredging are diminished where available depth exceeds fleet dimensions, observed when water 

levels exceed the 75th percentile.  Funding allocations for maintenance dredging should consider 

the array of vessels (and draft requirements) as well as reduced ship traffic during periods of low 

freight demand.  Transportation cost estimates are improved by application of MTE predictions 

which this study achieved using Monte Carlo simulation.   

Changes to status quo maintenance and funding procedures are necessary to address industry 

requirements under fiduciary constraints.  Fundamental to this problem is the disunion between 

funding for dredging through a value-based tax and federal appropriations to meet authorized 

depths without regard to changing conditions.  A funding mechanism based on vessel draft and 

time-in-port would operationalize maintenance dredging decisions and as is a direction of future 

research.  Further development of a user fee model is needed before policymakers can replace 

the harbor maintenance tax with an improved demand-driven fee structure.       

The disconnect between HMT payments and maintenance requirements needs remedied 

before the adoption of alternative practices becomes practical.  Consider two vessels, one 

drafting 6.5 meters carrying automotive parts from Ontario, and the other drafting 8.8 meters 

loaded with iron ore from Presque Isle.  Both vessels arrive at Toledo and are subject to the 

HMT, but higher payments apply to the auto parts given the value of that cargo, despite the 

lower maintenance needs of that vessel to access the harbor.  A more egalitarian model would 

levy user fees based on vessel requirements, depth and time spent in port.  A user fee model has 
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previously been proposed, but data availability and sensor technology at the time limited its 

feasibility [48], [49]. 

The wealth of sensor technology and data analytics in today’s environment provides 

opportunity to renew financing models for harbor infrastructure.  Geolocation data via AIS is 

ubiquitous on commercial vessels as it is required on all vessels larger than 300 gross tons and 

real-time monitoring is in place [188].  Data from the AIS are readily adaptable to provide 

information on actual draft and time in port which could drive a user fee model.  Consider three 

ports as a basis for such a fee structure, Toledo, Los Angeles, and Charleston.  A vessel carrying 

40,000 tons of iron ore to Toledo Harbor (depth 8.5m) with taconite price of $100 per ton will 

pay $5,000 in Harbor Maintenance Tax.  In 2019, the Port of Los Angeles (depth 16.2 m) 

received 1,867 vessels and handled $267 billion in cargo [189].  Those cargos vary greatly but 

allow that on average each vessel exchanges $143 million in cargo and pays $178,750 in Harbor 

Maintenance Tax.  Finally, the Port of Charleston reported $75 billion in cargo (47.7 billion 

imports) carried on 1,700 vessels [190].  Based on imported cargo only, we estimated $35,000 in 

HMT per vessel accessing that harbor.  Charleston Harbor has had maximum depths of 13.7 

meters (45 ft) until its deepening to 15.9 meters (52 ft) scheduled to complete in 2021.        

Figure 5.10 depicts these payments against a hypothetical draft-based user fee model in 

which vessels would pay proportionately to their required draft.  Within the same harbor, a 

vessel requiring 8 m. draft would pay a higher fee than one requiring 6 m. regardless the value of 

its cargo.  It logically follows that shippers would make operational decisions to minimize total 

costs, weighing the tradeoffs between increased cargo and higher fees.  Calibration of this user 

fee model to match maintenance requirements and generally mirror the current geographic 

distribution of payments is necessary, but outside the scope of this study.  Adoption of the fee 
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model would bring U.S. harbor funding practices in line with international standards as it would 

apply equally to imports and exports and it would meet the constitutionality test [45].   

 
Figure 5.10: Hypothetical Harbor User Fee Model (	𝛼=4, 𝛽=2, 𝜀=0) 

 
Such a fee structure could also inform harbor deepening decisions given market pressures.  

Post Panamax vessel dimensions have prompted deepening of U.S. harbors to accommodate 

increasing vessel size, particularly on the Atlantic Coast [172].  Economic impetus to deepen 

harbors under the proposed model would be driven by vessel traffic and willingness to incur 

higher port user fees.   

 We apply this hypothetical fee structure to Charleston Harbor.  Using AIS data collected for 

UTM Zone 17 for all of calendar year 2017 (N=9,042,612) and processing algorithms described 

in Chapter 4.  We removed non-cargo vessel codes from the dataset such as tugs, pleasure craft, 

and research vessels to limit the dataset to cargo, tanker, and cruise ships (N=2,950,756).  We 

further subset the data around the six port terminal boundaries (listed in Appendix E) as 
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illustrated in Figure 5.11.  The right side of that figure depicts the first subset of AIS data in blue 

and the subset for vessels at port in orange (N=2,373,988).    

 

 

Figure 5.11: Charleston Harbor terminal map (left) AIS data for terminal (right) (Map Source: SCPA [190]) 

 From the AIS data, we identified vessel calls in the six terminal boundaries based on the 

duration of contiguous timestamps each vessel exhibited. The time-in-port was calculated for 

each vessel as the difference between timestamps entering and exiting the features.  We 

established a minimum threshold of 3 hours to remove vessels transiting through features 

without accessing the port which resulted in 1,789 port calls made by 699 unique vessels.  The 

distribution of vessel time-in-port is depicted in Figure 5.12 for Charleston Harbor port calls in 

2017.    
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Figure 5.12:  Distribution of vessel time in port for Charleston Harbor 

Of the 1,789 identified vessel calls, 1,202 (67%) had draft registered in the AIS data.  This 

feature in the AIS data typically reflects the maximum draft of the vessel and is entered manually 

by the operator and not necessarily updated in real time [136].  However, it could easily be 

adapted for this purpose, and likely would, if it were determinate of user fee.  In this study we 

make a simplifying assumption that vessels would access the harbor at their constructed draft 

when available.  The distribution shown in Figure 5.13 indicate that 675 (47%) of vessels have a 

constructed draft in excess of available depths in the harbor.  The vertical dashed line indicates 

the existing navigation channel depth of 13.7 meters (45 ft) before deepening.  It may be 

assumed that those vessels were light-loaded in order to access the harbor.    
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Figure 5.13: Vessel draft according to AIS data for Charleston Harbor 

The sum of user fees ∑(2 ∗ 𝑇𝑖𝑚𝑒 ∗ 𝐷𝑟𝑎𝑓𝑡W)	over the set of vessels with listed draft 

(n=1,202) was calculated as $45.5 million before deepening (max draft 13.7 meters) and $51.8 

million after.  If we assume the distribution of vessel draft to apply to the full set of vessel calls 

(n=1,795) those estimates increase to $66.9 and 76.2 million, respectively.  For comparison, we 

estimated $59.6 million HMT exacted on the $47.7 billion imported to Charleston in 2019.  This 

is not intended as a true calibration of the user fee model.  However, it illustrates how such a 

model could drive decisions to deepen a harbor based explicitly on willingness to pay.  As 

discussed for Toledo Harbor, it would also inform maintenance decisions in periods of low 

demand, such as the economic recession in 2008 and COVID pandemic in 2020.   

We compare the proposed user fee to previous models considered for harbor maintenance 

using five key performance indicators.  Models are evaluated on (1) their conformance to 

international standards, (2) Constitutionality in accordance with the Export Clause, (3) Relief of 

burden on the General Treasury, (4) Basis of fee connected to maintenance requirements (e.g., 
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depth), (5) Readily attained from existing data streams.  We compare the existing HMT model to 

that proposed under the Clinton administration calling for a Harbor Service Fund (HSF) with 

fees based on cargo type and number of port calls [47].  Models advanced by Kumar, McIntosh 

and Skalberg weight a user fee based on Tonnage, Berth-Days, and Draft [45], [49].  The two 

studies proposed different weighting to the inputs and noted the correlation between tonnage and 

draft, which may render either unnecessary.  We identify the use of tonnage as problematic to a 

user fee.  While it is useful to compare vessels with uniform commodity types, it would 

inconsistently apply to various finished goods, dry bulk, bulk liquid, and passenger vessels.  

Further, it is likely unnecessary given granular data on vessel draft and time in port, available via 

AIS.  A likely criticism of the proposed fee based on draft (and not cargo type) is the effect it 

would have making bulk cargo more expensive to transport and finished goods generally less 

expensive.  This could be addressed with a fee structure calibrated for each cargo type, as 

intended under the HSF.    

Table 5.3: Comparison of Harbor Fee models 
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Harbor Maintenance Tax  ✓ ✓  ✓ 
Harbor Services Fund ✓ ✓ ✓  ✓ 
Revert to General Treasury Expense ✓ ✓    

User fees based on  
Tonnage, Berth-Days, Vessel Draft ✓ ✓ ✓ ✓  

User fee based on  
Draft and Time in Port ✓ ✓ ✓ ✓ ✓ 
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Conclusions 

This study demonstrates that granular performance data provide valuable insight to 

investment decisions for landside and in-harbor improvements.  As exemplified for Burns 

Harbor, projected return on investment is possible through simulation modeling using Maritime 

Transport Efficiency (MTE) to assess changes in transportation costs in the Great Lakes.  While 

these estimates exhibit large uncertainty due to fuel prices, they produce a compelling business 

case for investment to privately-owned port infrastructure which impacts vessel performance.  

As discussed, freight consumers ultimately bear the cost of inefficiencies in the system, either 

directly or indirectly.  The tradeoffs in spending for dredging and transportation cost savings are 

quantified and assessed to diminish where water surface levels exceed the 75th percentile.  

Funding allocations for maintenance dredging should consider the array of vessels (and draft 

requirements) as well as reduced ship traffic during periods of low freight demand.  

Transportation cost estimates are improved by application of MTE predictions which this study 

achieved using Monte Carlo simulation.   

Changes to status quo maintenance and funding procedures are necessary to address industry 

requirements under fiduciary constraints.  This study demonstrates that transportation cost 

savings from dredging are limited where available depth exceeds vessel draft.  This is evident for 

changing water levels in the Great Lakes but applies to coastal harbors as well which receive 

vessels of diverse dimensions.  Fundamental to this problem is the disconnect between funding 

for dredging through a value-based tax and federal appropriations to meet authorized depths.  A 

funding mechanism based on vessel draft and time-in-port would create market forces that 

balance transportation and infrastructure spending.  A user fee model offers additional benefits in 

consideration of harbor deepening projects, as demonstrated for Charleston Harbor.  
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Fundamental to these outcomes is a system of payment and maintenance expenditure that is 

responsive to user demand for infrastructure, principally draft in this study.  Further calibration 

of a user fee model is needed before policymakers can replace the harbor maintenance tax with 

an improved demand-driven fee structure.       
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CHAPTER 6 

Conclusions and Future Recommendations: 
Big Data and the Next Generation of Harbor Infrastructure Financing 

 
 

Data analytics applied in this dissertation yielded novel insight to the value (opportunity cost) 

of waterways infrastructure, its associated risks, and performance that reveals opportunities for 

improved revenue streams to update and maintain waterway infrastructure.  These insights 

inform the development of innovative financing models that connect public and private capital 

which is necessary to address growing infrastructure needs.   

Government spending alone will not close the infrastructure spending gap.  Over the course 

of this dissertation, the U.S. federal deficit grew by 37 percent to $27.8 trillion (from $20.2 

trillion in 2017) [191].  Unfortunately, the portion of the federal budget directed to non-defense 

discretionary accounts (e.g. transportation) is decreasing and trends indicate that investment as a 

percentage of GDP has actually declined and is well below historically sustained levels [192].  

Experts estimate that $2 trillion is needed by 2025 to avoid major shortfalls in system 

performance [193].  In its latest infrastructure report card, ASCE estimates a $15.5 billion 

funding gap in America’s ports which threatens the efficient movement of goods comprising 

26% of the nation’s GDP [10].  The integration of public and private capital is necessary to 

address the need.     

The imperative to deploy more private capital to infrastructure is reflected in the distribution 

of available capital, which currently favors the private sector. Tens of trillions of dollars in assets 

reside in pension and insurance funds with risk-and-return expectations that are well matched to 
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the long-duration and relatively low volatility of infrastructure investments [194].  In fact, 

estimates as of 2017 indicate that more than $137 billion in private capital sits undeployed in 

infrastructure-focused private equity funds [195].  These “dry powder” accounts could initiate an 

upsurge in new investment, particularly if leveraged at as equity against borrowed funds wherein 

project revenues meet debt service obligations.  This is common practice in the private sector but 

not feasible for governments without a private partner.  Private capital has been slow to enter the 

realm of public infrastructure in part due to uncertainty surrounding revenue streams and asset 

performance, and internal rates of return (IRR) that do not meet investor expectations.  It is vital 

to balance the necessary revenues and risks for parties involved in PPP agreements [14].  Ports 

and waterways have an oversized impact and value to the economy, but revenue streams can be 

volatile. 

Revenues for ports and harbor maintenance come from freight consumers and shipping 

companies, either in the form of user fees or harbor maintenance tax.  Operating income for port 

authorities is generated from tariffs or user fees which support cargo handling, berth operation, 

security, and other operating costs.  These fees vary substantially based on the individual port’s 

cost of delivering services and other market forces.  The cost to maintain navigable depths also 

varies between ports and can be improved by connecting it to market demand as discussed in 

Chapter 5.  This was impractical when the HMT was first established because of limited access 

to data and the perceived burden of administering user fees.  Today, data accessibility and the 

digital economy have reduced barriers to a user fee model and offer increased opportunity for 

alternative financing.    
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Big Data to the Rescue? 

This dissertation demonstrates the application of data to reveal a more comprehensive 

valuation strategy for waterway infrastructure and illustrates a set of use cases for better 

allocation of risks from degraded performance and corporate opportunity cost.  We developed 

and applied techniques to convey quantifiable, objective, and therefore more meaningful 

performance measures used to model and predict the value returns of system improvements.  

These measures are applied to evaluate the expected return on investment decisions for ports in 

the Great Lakes from the resultant savings in transportation costs, which would provide real 

returns to freight consumers.    

 Risks associated with failing or underinvested infrastructure in the Great Lakes are better 

understood because of the systemic insights developed in this work.  The propagated effects of 

waterway disruption are estimated through financial network mapping and the supply-driven 

input-output inoperability model (SIIM) as described in Chapter 3.  The application of corporate 

financial metrics (e.g., inventory turnover ratios) to quantify and propagate interdependencies in 

the SIIM allowed me to tie infrastructure performance to manufacturing and production 

segments in the supply chain.  This technique improves upon earlier studies of insulated supply 

chain disruption stemming from held inventory [98].  The availability of corporate revenue and 

inventory turnover data offers a practical means to quantify interdependencies and assess 

perturbated risks from disruption of individual nodes or pathways in a network.  These data also 

deliver a meaningful way to map material flows and weigh network relationships.  

Objective and precise measures of port and waterway performance are shown to be possible 

through data analysis techniques developed in this dissertation.  A major contribution of this 

work was the design of a big data informed Maritime Transport Efficiency (MTE) metric, which 
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is useful to assess, at a highly granular level, the effective rate of s shipping from harbor to 

harbor over time. This approach is readily adaptable to inland waterways or coastal harbors 

where vessel draft or load data is available.  We achieve precise measurement of MTE through 

fusion of granular datasets (e.g., AIS and LPMS) that integrate vessel payload and timestamp 

information. When applied to harbors, this metric can reveal limitations and opportunity costs 

associated with port performance and infrastructure deficiencies.  This offers operations 

managers improved and near real time information to allocate funding for projects that yield the 

greatest improvement to system performance. Historical AIS and LPMS data enabled robust 

statistics and baseline performance metrics for infrastructure in the Great Lakes waterway.  

Applications of AIS data in waterways logistics continue to expand into research areas that 

evaluate infrastructure performance [196].  The potential for these data in real-time monitoring to 

inform real-time monitoring of vessel traffic that allows us to transform revenue streams for 

harbor maintenance through user fee structures informed by port and vessel needs.  This is a 

future research direction arising from this work.    

As water levels in the Great Lakes are deterministic of vessel capacity, payloads are 

predictable given measured water surface level and historical ship performance.  We evaluated 

an array of machine learning tools to model maximum vessel payload based on water levels and 

determined that a Generalized Linear Model (GLM) is most accurate as a predictive tool.  When 

integrated with travel times, this model provides a means by which to estimate the MTE.  

Through Monte Carlo simulations, we assessed the expected MTE over a navigation season 

(March-January) which can be applied to individual ports or along key shipping lanes.  The 

model uses March water levels and historical travel time statistics (developed in Chapter 4) to 

determine expected MTE over a navigation season. Deviations from expected transport 
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efficiency are useful to operations managers and can inform decisions on fleet deployment or 

risk transfer mechanisms in near real-time.   

We simulated the return on investment from improvements to landside infrastructure at 

Burns Harbor.  Predictions of return on investment are possible through the application of 

statistics and simulation modeling.  These estimates produce a business case for investment into 

privately-owned port infrastructure.  As discussed in Chapter 5, the aggregated impact of 

landside investment to vessel performance results in transportation cost savings.  As previously 

discussed, freight consumers ultimately bear the cost of inefficiencies in the system, either 

directly through freight or fuel pricing or indirectly through opportunity cost.  Investments that 

improve system performance and efficiency yield returns in reduced transportation costs as well 

as social benefit from emissions associated with transportation.     

The simulation model was further applied to evaluate flexible dredging and spending 

practices in the Great Lakes.  We demonstrated that transportation cost savings from dredging 

are limited where available depth exceeds vessel draft which manifests when Great Lakes water 

levels exceed the 75th percentile.  Innovative maintenance and funding practices that tailor 

spending decisions to market conditions are necessary to prioritize port requirements under fiscal 

constraints.  Amended dredging practices become practical under an infrastructure banking 

model, as described in greater detail below.  We note the mismatch between harbor maintenance 

collections (based on cargo value) and allocation of funds to meet authorized depths irrespective 

of variable demand or vessel traffic.  We posit that a more sustainable and egalitarian model 

would match harbor fees to maintenance requirements for the types of vessels it accommodates.  

It follows that user fees based on required depth, as others have proposed [45], [48], would best 

match revenues to maintenance needs. 
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A user fee model based on vessel draft and time in port to fund harbor maintenance would 

operationalize decisions that minimize the total transportation costs.  Such a fee is presented 

conceptually.  Future research is needed to calibrate this fee structure to nationwide vessel traffic 

obtainable from historical AIS data.  This funding mechanism would benefit project managers by 

optimizing allocations for dredging based on demand.  This could be achieved through a Harbor 

Infrastructure Banking (HIB) structure that lends funds for harbor maintenance which are paid 

through higher, draft-based, fee collections.   

 

Harbor Infrastructure Banking 

We introduce the idea of HIB as a more efficient financing mechanisms for the maintenance 

and improvement of ports.  A model for such a system exists in State Infrastructure Banks (SIBs) 

which operate as revolving funds with matching government contributions.  States have 

successfully administered these revolving funds since the 1990s and have demonstrated 

enhanced investment levels up to $7 for every dollar of federal commitment [197], [198].  One of 

the conditions necessary for such a fund is seed money which already exists for harbor projects 

in the unspent balance of the HMTF, $9.5 billion as of this writing [163].  Rather than depleting 

the balance through increased status quo spending, bank managers would use the balance to 

make low-interest loans for port and harbor improvements and recover funds from the increased 

user fees or directly from borrowers resulting from savings realized in lowered transportation 

costs, like those demonstrated for Burns Harbors.  The availability of funds would accelerate 

investments in port infrastructure and naturally prioritize projects with the greatest return on 

value under market-driven conditions.   
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Government appropriations can be minimized through contributions to the HIB similar to 

existing programs such as the Transportation Infrastructure Finance and Innovation Act (TIFIA).  

The TIFIA program was established in 1998 to accelerate investment in surface transportation 

projects and is administered by the Department of Transportation.  Loans made through the 

TIFIA program encourage capital outlay by lowering financing risk for private partners through 

low borrowing rates, term length, and repayment flexibility [199].  If adapted for harbor 

improvements, government contributions to HIB would replace commitments from the general 

treasury for port deepening or construction.  In the current model, expenditures from the general 

treasury are made in increments on the federal cost share of projects, as described for Charleston 

Harbor in Chapter 5.  In 2012 the South Carolina General Assembly set aside $300 million for 

the non-federal project contribution [174].  The project was authorized by Congress in 2015 and 

first received federal funds in 2017.  Federal allocations in successive years from 2017 to 2020 

were $ 17.5, $49, $41.4, and $138 million [174].  Under the HIB, funds would have been 

available immediately following project authorization in 2015.  Upfront availability of funds 

would concurrently reduce construction costs and provide benefits years earlier than the current 

model.  Increased user fees (resulting from deeper depths) would be directed to service the debt 

on the loan paid back into the HIB and made available to other projects.  Detailed development 

of an HIB structure is a third future research direction identified in this dissertation. 

The insight to infrastructure valuation, risk analysis, and project performance developed 

through data analytics in this dissertation uncover opportunities for innovative project financing.  

New financing models, such as infrastructure banking, are possible under renewed demand-

driven funding mechanisms based on draft and time in port.  Implementation of a new harbor 

user fee model and HIB would require legislation that replaces the HMT with draft-based user 
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fees and authorizes the use of those funds for both maintenance and construction projects.  Public 

funds from the general treasury would be committed into the HIB for disbursement through loans 

rather than annual appropriations for specific projects.  This seems bold and aggressive, but far-

reaching initiatives are needed to transform existing mechanisms into more sustainable 

infrastructure financing models.    
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APPENDIX A 
 

Iron Ore Mines, Steel Mills and Transloading Facilities in the Great Lakes  
 
 

 
Table A.1: Iron ore mines in the United States 

Mine Name Mining Range Owning Company Common Name Production 
Capacity (M Tons) 

Tilden Mine Marquette Cleveland Cliffs Tilden 8.0 
Empire Mine1 Marquette Cleveland Cliffs Empire inactive 
Northshore Mining Mesabi Cleveland Cliffs Northshore 6.0 
Mt. Iron Mesabi US Steel MinnTac 16.0 
Minorca Mesabi ArcelorMittal Minorca 2.8 
United Mine Mesabi Cleveland Cliffs UTac 5.4 
Keewatin Mesabi US Steel KeeTac 6.0 

Hibbing2 

 

 
Mesabi 

62% ArcelorMittal 
23% Cleveland Cliffs 
15% US Steel 

HibTac 
 

9.1 
 

1 Empire Mine has been idled since 2016.  CLF maintains operational control and mineral rights; 2 Hibbing 
operates under a cooperative agreement, with co-owners guaranteed a percentage of production 

 
 
 

Table A.2: Transloading facilities for iron ore 

Facility Name Location Owning Company 
Silver Bay Silver Bay, MN Cleveland Cliffs 
CN Two Harbors Two Harbors, MN CNI 
CN Duluth Dock Duluth, MN CNI 
BNSF Railway Dock 5 Superior, WI BNSF 
Toledo Ore Dock Toledo, OH CSX 
Pinney Dock, Ashtabula Ashtabula, OH Norfolk Southern 
Pittsburgh & Conneaut Dock Conneaut, OH CNI 
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Table A.3: U.S. and Canadian integrated steel mills 

Facility Name Location Owning Company Production 
Capacity (M Tons) 

Indiana Harbor Indiana Harbor, IN ArcelorMittal3 6.4 
Riverside Works Riverside, IL ArcelorMittal3 1 
Gary Works Gary, IN US Steel 7.5 
Burns Harbor Burns Harbor, IN ArcelorMittal3 5 
Granite City Works Granite City, IL US Steel 2.8 
Dearborn Works Dearborn, MI AK Steel2 3 
Great Lakes Works Ecorse, MI US Steel 3.8 
Middletown Works Middletown, OH AK Steel2 3 
Ashland Works Ashland, KY AK Steel2 --1 

Cleveland Works Cleveland, OH ArcelorMittal3 3.8 
Mon Valley Works  Braddock, PA US Steel 2.9 
Algoma Steel Sault Ste. Marie, ON Algoma Steel 4 
Lake Erie Works Nanticoke, ON Stelco 2.5 
Dofasco  Hamilton, ON ArcelorMittal3 5 
Long Products Montreal, QC ArcelorMittal3 2 

1 AK Steel indefinitely idled production at their Ashland Works facility in 2018 [62]. 
2 Cleveland Cliffs (CLF) acquired AK Steel in March 2020, thereafter consolidating reports under CLF [200]. 
3 Cleveland Cliffs (CLF) acquired the North American operations of ArcelorMittal in December 2020.     
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APPENDIX B 

 
US Flagged Vessels in the Great Lakes 

 
 

Table B.1: U.S. flagged vessels in the Great Lakes 

Vessel Name Fleet Length 
(feet) 

Beam 
(feet) 

Per-Trip Carrying 
Capacity (tons) 

Capacity per foot 
of Draft (tons) 

American Century American Steamship Co. 1,000 105 68,880 3,192 
Indiana Harbor American Steamship Co. 1,000 105 68,757 3,192 
Walter J McCarthy Jr. American Steamship Co. 1,000 105 68,757 3,192 
American Integrity American Steamship Co. 1,000 105 68,320 3,168 
Burns Harbor American Steamship Co. 1,000 105 71,120 3,192 
American Spirit American Steamship Co. 1,000 105 66,080 3,180 
St. Clair American Steamship Co. 770 92 44,308 2,136 
American Mariner American Steamship Co. 730 78 35,583 1,704 
H. Lee White American Steamship Co. 704 78 34,247 1,644 
John J. Boland American Steamship Co. 680 78 32,772 1,584 
American Courage American Steamship Co. 635 68 26,992 1,284 
Sam Laud American Steamship Co. 635 68 26,216 1,284 
Samuel De Champlain / Innovation Andrie Inc. 536 70 17,600 888 
Gary . Ostrander/Integrity Andrie Inc. 530 70 17,600 888 
Joseph L. Block Central Marine Logistics 728 78 41,664 1,704 
Edward L. Ryerson Central Marine Logistics 730 75 30,800 1,524 
Wilfred Sykes Central Marine Logistics 678 70 24,080 1,320 
Edwin H. Gott Great Lakes Fleet 1,004 105 69,664 3,204 
Edgar B Speer Great Lakes Fleet 1,004 105 69,552 3,204 
Presque Isle Great Lakes Fleet 1,000 104 58,240 3,096 
Roger Blough Great Lakes Fleet 858 105 50,305 2,616 
John G. Munson Great Lakes Fleet 768 72 28,616 1,560 
Arthur M. Anderson Great Lakes Fleet 767 70 28,336 1,524 
Philip R. Clarke Great Lakes Fleet 767 70 28,336 1,524 
Cason J. Callaway Great Lakes Fleet 767 70 28,336 1,524 
Great Republic Great Lakes Fleet 635 68 27,183 1,296 
Alpena Inland Lakes Management 520 67 17,097 1,044 
Paul R. Tregurtha Interlake Steamship Co. 1,013 105 69,580 3,216 
James R. Barker Interlake Steamship Co. 1,000 105 67,475 3,168 
Mesabi Miner Interlake Steamship Co. 1,000 105 67,465 3,168 
Stewart J. Cort Interlake Steamship Co. 1,000 105 64,690 3,096 
Hon. James L. Oberstar Interlake Steamship Co. 806 75 35,280 1,752 
John Sherwin Interlake Steamship Co. 806 75 35,280 1,752 
Lee A. Tregurtha Interlake Steamship Co. 826 75 32,884 1,644 
Herbert C. Jackson Interlake Steamship Co. 690 75 27,776 1,416 
Kaye E. Barker Interlake Steamship Co. 767 70 29,008 1,548 
Dorothy Ann / Pathfinder Interlake Steamship Co. 699 70 23,800 1,344 
Undaunted/Pere Marquette 41 Pere Marquette Shipping 494 58 5,750 636 
St. Marys Conquest Port City Marine Services 437 52 9,529 638 
St. Marys Challenger Port City Marine Services 538 56 12,656 972 
Commander Port City Marine Services 495 71 14,453 971 
Joyce VanEnkevort / GL Trader VanEnkevort Tug & Barge 845 78 39,766 1,812 
Joseph Thompson Jr.  VanEnkevort Tug & Barge 707 71 23,744 1,344 
Clyde S. VanEnkevort / Erie Trader VanEnkevort Tug & Barge 8/45 78 39,766 1,812 
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 Table B. 2:  Prominent iron ore carrier dimensions. (Data source: Greenwood [157]) 

𝒊 Vessel Gross 
Tonnage 

Length 
(feet) 

Width 
(feet) 

Draft 
(feet) 

TPI 
(ton / inch) 

1 American Century 33,535 1,000 105 34 266 
2 American Integrity 35,652 1,000 105 34 264 
3 American Spirit 34,569 1,004 105 28 265 
4 Buffalo 11,619 635 68 26’6” 107 
5 Burns Harbor 35,652 1,000 105 34 266 
6 Cason J Callaway 12,309 767 70 26’4” 127 
7 CSL Assiniboine 19,205 740 78 30’4” n/a 
8 CSL Laurentien 19,865 740 78 31’4” n/a 
9 CSL Niagara 19,824 740 78 30’7” n/a 
10 Edgar B Speer 34,620 1,004 105 32’1” 267 
11 Edwin H Gott 35,592 1,004 105 32’1” 267 
12 Herbert C Jackson 12,292 690 75 27’ 118 
13 Hon James L Oberstar 16,285 806 75 27’10” 146 
14 James R Barker 34,729 1,004 105 29’1” 264 
15 John G Munson 15,179 768 72 26’8” 130 
16 Joseph L Block 14,956 728 78 30’11” 142 
17 Joyce L Vanenkevort* 16,522 740 78 30’ 151 
18 Kaye E Barker 11,949 767 70 27 129 
19 Lee A Tregurtha 14,672 826 75 28’1” 137 
20 Mesabi Miner 34,729 1,004 105 29’1” 264 
21 Philip R Clarke 12,341 767 70 27 127 
22 Presque Isle 22,621 1,000 105 28’7” 258 
23 Roger Blough 22,041 858 105 27’11” 218 
24 RT Hon Paul J Martin 19,830 740 78 31’4” n/a 
25 Sam Laud 11,619 635 68 28 107 
26 Stewart J Cort 32,930 1,000 105 27’11” 258 
27 Thunder Bay 24,430 740 78 29’6” n/a 
28 Clyde S Vanenkevort** 15,823 740 78 30’10” 151 
29 Victory 505 140 43’1” n/a n/a 
30 Walter J McCarthy Jr 35,923 1,000 105 34’1” 266 

* Tug is paired with barge Erie Trader.  Cargo dimensions reported here are for the barge. 
** Tug is paired with barge Great Lakes Trader.  Cargo dimensions reported here are for the 

barge. 
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APPENDIX C 
 

Correlation Between Lake Water Levels 

 

Water surface elevations are highly correlated, especially for waterbodies above the Detroit 

River, which includes Lake Superior, the St. Marys River, Lake Michigan-Huron, and Lake St. 

Clair.  These tables were developed using Panda’s correlation matrix in Python and the Pearson 

correlation method [178]. 

𝜌!,# = 𝑐𝑜𝑟𝑟(𝑥, 𝑦) =
𝐸[(𝑥 − 𝜇!)8𝑦 − 𝜇#9]

𝑆!𝑆#
 

 
Figure C.1: Correlation matrix for Great Lakes water levels 
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Monthly changes in water level result from the difference in basin precipitation and 

continuous outflow from the system, known as net basin supply [201]. Changes from one month 

to the next have a low correlation and are treated as independent variables in this research.   

 
Figure C.2. Correlations between monthly change in water level  
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APPENDIX D 
 

Sample Data from Lock Performance Monitoring System (LPMS) and 
Automatic Identification System (AIS) 

 

LPMS data (N=55,342) 2005-2017 

 
Figure D.1:  Sample Lock Performance Monitoring (LPMS) data 

 

AIS data (N=48,828,206) 2015-2017 filtered for 24 geographic features 

 
Figure D.2: Sample historical Automatic Identification System (AIS) data 
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Merged dataset (N=42,021) 

 
Figure D.3:  Sample merged dataset from fusion of LPMS and AIS data  
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APPENDIX E 
 

Geographic Features (Gj) Used to Subset AIS Data 
 

 
Table E.1:  Geographic boundaries for Great Lakes waterway features 

j Feature West East North South 
1 St Marys R. and Whitefish Bay -84.996 -83.955 46.770 46.107 
2 N. Boundary St Clair River -82.466 -82.375 43.015 43.009 
3 S. Detroit River -83.219 -83.062 42.075 42.064 
4 W. Lake Erie nav lane -82.671 -82.572 42.057 41.406 
5 Welland Canal -79.261 -79.182 43.220 42.868 
6 Mackinaw Straits -84.753 -84.725 45.857 45.766 
7 S. Lake Michigan -87.548 -86.847 41.750 41.743 
8 E. Lake Ontario -76.599 -76.592 44.274 43.421 
9 Thunder Bay, ON -89.267 -89.092 48.476 48.311 
10 Silver Bay, MN -91.277 -91.199 47.292 47.239 
11 Two Harbors, MN -91.713 -91.601 47.064 46.958 
12 Duluth-Superior Harbor -92.160 -91.852 46.926 46.633 
13 Presque Isle, MI -87.395 -87.357 46.582 46.561 
14 Indiana Harbor, IN -87.496 -87.429 41.682 41.641 
15 Gary, IN -87.329 -87.319 41.628 41.609 
16 Burns Harbor, IN -87.153 -87.144 41.647 41.634 
17 Zug Island (Detroit, MI) -83.110 -83.106 42.281 42.278 
18 Dearborn, MI -83.161 -83.153 42.307 42.297 
19 Toledo, OH -83.543 -83.333 41.769 41.460 
20 Cleveland, OH -81.725 -81.663 41.514 41.460 
21 Ashtabula, OH -80.804 -80.781 41.919 41.878 
22 Conneaut, OH -80.598 -80.540 42.008 41.951 
23 Nanticoke, ON -80.054 -80.029 42.802 42.766 
24 Hamilton, ON -79.780 -79.802 43.262 43.303 

 
Table E.2: Geographic boundaries for Charleston Harbor terminals 

j Feature West East North South 
1 Tanker Terminal -79.935 -79.931 32.827 32.824 
2 Wando Welch Terminal -79.894 -79.888 32.839 32.829 
3 Veterans Terminal -79.894 -79.932 32.867 32.847 
4 Hugh K Leatherman Terminal -79.934 -79.929 32.844 32.835 
5 Union & Columbus Terminals -79.934 -79.923 32.804 32.791 
6 North Charleston Terminal -79.967 -79.951 32.910 32.896 
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APPENDIX F 
 

Preliminary Results from Monte Carlo Simulation for Efficiency 
 

 
Figure F.1: Cumulative Distribution Functions for monthly water level change on Lake Michigan-Huron 

Water surface elevations over a navigation season are simulated from initial conditions, 

defined as water surface elevations on Lake Michigan-Huron in March (beginning of the 

navigation season).  Figure F.2 illustrates 50 simulation iterations for a navigation season.   
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Figure F.2: Simulated water surface elevations (n=50) over a navigation season 

Vessel payload is calculated for each month within a navigation season based on historical 

payload data using Equations 5.5 and 5.6.  This is illustrated for two vessels in Figure F.3. 

 

 
Figure F.3: Modeled vessel payload based on simulated water surface elevation 
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Travel time for each ship voyage is randomly generated using Equations 5.7 and 5.8 and 

average annual efficiency for each vessel is calculated using Equation 5.9.  This is illustrated for 

two vessels over a single iteration in Figure F.4.   

 

 

 
Figure F.4: Simulated vessel payload and voyage time (left) trip and annual efficiency (right) 
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