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Abstract 

The stomach and the brain interact closely with each other. Their interactions are central 

to digestive functions and the “gut feeling”. The neural pathways that mediate the stomach-brain 

interactions include the vagus nerve and the thoracic nerve. Through these nerves, the stomach can 

relay neural signals to a number of brain regions that span a central gastric network. This gastric 

network allows the brain to monitor and regulate gastric physiology and allows the stomach to 

influence emotion and cognition. Impairment of this gastric network may lead to both gastric and 

neurological disorders, e.g., anxiety, gastroparesis, functional dyspepsia, and obesity. However, 

the structural constituents and functional roles of the central gastric network remain unclear.  

In my dissertation research, I leveraged complementary techniques to characterize the 

central gastric network in rats across a wide range of scales and different gastric states. I used 

functional magnetic resonance imaging (fMRI) to map blood-oxygen-level-dependent (BOLD) 

activity synchronized with gastric electrical activity and to map brain activations induced by 

electrical stimulation applied to the vagus nerve or its afferent terminals on the stomach. I also 

used neurophysiology to characterize gastric neurons in the brainstem in response to gastric 

electrical stimulation.  

My results suggest that gastric neurons in the brainstem are selective to the orientation of 

gastric electrical stimulation. This electrical stimulation can also evoke neural activity beyond the 

brainstem and drive fast blood oxygenation level dependent (BOLD) activity in the central gastric 

network, primarily covering the cingulate cortex, somatosensory cortex, motor cortex, and insular 

cortex. Stimulating the vagus nerve – the primary neural pathway between the stomach and the 
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brain, can evoke BOLD responses across widespread brain regions partially overlapped with the 

brain network evoked by gastric electrical stimulation. BOLD activity within the gastric network 

is also coupled to intrinsic gastric activity. Specifically, gastric slow waves are synchronized with 

the BOLD activity in the central gastric network. The synchronization manifests itself as the phase-

coupling between BOLD activity and gastric slow waves as well as the correlation between BOLD 

activity and power fluctuations of gastric slow waves. This synchronization is primarily supported 

by the vagus nerve and varies across the postprandial and fasting states. 

My dissertation research contributes to the foundation of mapping and characterizing the 

central and peripheral mechanisms of gastric interoception and sheds new light on where and how 

to stimulate the peripheral nerves to modulate stomach-brain interactions. 
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Chapter 1 Introduction 

Summary 

The stomach and the brain are two major organs in mammals and have tonic interactions 

with each other (Furness and Stebbing, 2018). Their bi-directional interactions (Carabotti et al., 

2015) are important for maintaining gastric function (Holtmann & Talley, 2014). Impaired 

stomach-brain interactions can lead to both gastric and brain disorders, such as gastroparesis (Ali 

et.al, 2017; Camilleri et al., 2018), functional dyspepsia (Tack et al., 2004; Talley & Ford, 2015), 

and anxiety (Haug et al., 2002; Klarer et al., 2014). So far, gastric electrical stimulation (GES) 

(Abell et al., 2003; Cigaina, 2002) and vagus nerve stimulation (VNS) (Paulon et al., 2017; Pardo 

et al., 2007) are two promising techniques that have the potential to modulate the stomach-brain 

interaction for treatment of drug-refractory gastric or neurological disorders. The therapeutic 

effects of GES and VNS, however, are variable across individuals and conditions, due to the lack 

of functional characterization of the stomach-brain interaction. 

Current knowledge about the structural pathways between the stomach and the brain has 

been increasingly complete (Browning & Travagl, 2011; Levinthal & Strick, 2020). There are two 

major neural pathways connecting the brain and the gut: the vagus nerve and the great thoracic 

splanchnic nerve (Furness et al., 2020). Both pathways send afferent signals to the brain and 

convey efferent commands to the stomach. In the brain, the dorsal vagal complex consists of the 

nucleus of the solitary tract (NTS) and the dorsal motor nucleus of the vagus (DMV). NTS and 

DMV are the major nuclei that monitor and control gastric functions. The NTS neurons integrate 

signals from the stomach. The DMV neurons send commands back to the stomach (Travagli & 
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Anselmi, 2016). The dorsal vagal complex projects to and receives inputs from many other brain 

regions within and beyond the brainstem (Browning & Travagli, 2011). These connections may 

be responsible for interacting with cognitive processes and other visceral functions (Craig, 2009; 

Mayer, 2011; Van Oudenhove et al., 2004). However, anatomical mapping does not readily reveal 

the functional interactions along the peripheral and central pathways. 

Given the current understanding about the stomach-brain neuroaxis, my dissertation aimed 

to assess the effects of VNS and GES on the stomach-brain interaction and to decode the 

information flow between the stomach and the brain within and beyond the brainstem. Specifically, 

we aimed to apply GES and VNS, assess the neural response in the brainstem and beyond, and 

evaluate their effects on gastric motility. We also aimed to map neural activity in the brain coupled 

to intrinsic gastric activity. In particular, we focused on gastric motility, or the peristaltic 

contraction of the stomach, in terms of the frequency and amplitude, and to assess how such 

mechanical features were coded and relayed by vagal nerve signaling and how they were processed 

and represented by the brain. For these aims, we used anesthetized rats in preclinical studies. 

Anatomy and function of the stomach-brain neuroaxis 

Anatomy and function of the stomach 

The stomach is an essential organ in the digestive system (Furness et al., 2014; Furness and 

Stebbing, 2018; Lacy & Weise, 2005). It has three compartments, including the fundus (sometimes 

referred to the forestomach for rats), corpus, and antrum (Figure 1-1). The fundus can change its 

luminal volume for food storage. The corpus and the antrum can generate gastric contractions for 

food grinding and mixture (Boeckxstaens et al., 2016). These functions are carried out by two 

muscular sheets, running in the longitudinal and circular directions. In the fundus, gastric smooth 

muscles maintain the luminal volume through the regulation of contraction and relaxation. In the 
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corpus and the antrum, smooth muscles are electrically coupled to propagate contractions like a 

wave with a temporal frequency around three cycles per minute (CPM) in humans and 4-6 CPM 

in rats. The stomach contains thousands of interstitial cells of Cajal (ICC) and an intrinsic nervous 

system to support the coordinated contractions, named the enteric nervous system (ENS) (Hansen, 

2003). ICCs can generate spontaneous oscillations, serving as a clock to orchestrate gastric smooth 

muscles (Sanders et al., 2006). In the meantime, gastric motor neurons in the ENS modulate gastric 

smooth muscles to achieve specific patterns of contractions. 

 
Figure 1-1 Anatomical compartments of the rat stomach 

 

Stomach-brain interaction 

The stomach is not an isolated organ but extends neural connections to the brain. The 

stomach sends gastric information to the brain and receives commands from the brain (Furness et 

al., 2014, Rogers et. al., 1995), to form bi-directional interactions. The interaction is supported by 

the vagus nerve (i.e., parasympathetic pathway) and the great thoracic splanchnic nerve (i.e., 

sympathetic pathway) (Furness et al., 2020) and is critical in maintaining the normal gastric 

function (Van Oudenhove et al., 2004). 65% of gastric motor neurons receive inputs from the vagal 

efferents and can be directly modulated by the dorsal vagal complex in the brainstem (Berthoud et 

al., 1990). The stomach-brain interaction also helps the brain monitor gastric activity. In contrast 

forestomach
corpus

antrum

longitudinal direction

circular directionesophagus

pylorus



 4 

to the vagal efferent fibers, 70-80% of the vagus nerve are afferents (the percentage varies across 

species) (Patterson et al., 2002). In healthy physiological conditions, the stomach-brain interaction 

plays a critical role in supporting basic gastric reflexes, such as the esophago-gastric reflex that 

relaxes the forestomach with triggers of esophageal distension (Rogers et al., 1999), enterogastric 

reflex that weakens gastric motility given stretches in the duodenum (Schapiro & Woodward, 

1959), and gastrocolic/gastroileal reflex that promotes colic and ileal contractions after the 

presence of food in the stomach (Malone & Thavamani, 2020). Impairment in the stomach-brain 

interaction can lead to changes in gastric sensation, visceral hypersensitivity, unregulated gastric 

motility, and delayed gastric emptying (Ali et.al, 2017; Camilleri et al., 2018; Tack et al., 2004; 

Talley & Ford, 2015).  

Vago-vagal reflex 

There are two major pathways connecting the stomach and the brain: the vagus nerve and 

the great thoracic splanchnic nerve (Furness et al., 2014, Rogers et. al., 1995). Results from 

histological studies suggest that the vagus nerve is more important in sensing and modulating the 

gastric motility, whereas the great thoracic splanchnic nerve dominates the sensation and control 

of vasoconstriction (Brookes et al., 2013; Furness et al., 2014). Because gastric motility is more 

important for the function of food grinding and emptying (Camilleri et al., 1985; Ehrlein & 

Schemann, 2005; Horowitz et al., 1994), most studies target the vagus nerve when studying the 

role of stomach-brain interactions in digestive functions (Payne et al., 2019).  

Sensory receptors of vagal afferents include the intra-ganglionic laminar endings (IGLEs), 

intramuscular arrays (IMAs), and mucosal arbors (Brookes et al., 2013; Powley et al., 2019). 

Among these receptors, IGLEs co-occur with the ganglia of the myenteric plexus and likely serve 

as tension receptors. IMAs lay in parallel to gastric smooth muscles and likely serve as stretch 
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receptors. Gastric mucosal arbors sit in the mucosal or submucosal layer and respond to different 

contents in gastric chyme. All receptors connect to the nucleus tractus solitarius (NTS) through 

the vagus nerve, with cell bodies sitting in the nodose ganglia. Neurons in NTS receive gastric 

inputs through the vagus nerve and directly project to the dorsal motor nucleus of the vagus (DMV) 

(Rogers et al., 1995; Travagli & Anselmi, 2016). DMV neurons send vagal efferents to innervate 

the ganglia in the myenteric plexus between gastric smooth muscle layers. Efferent vagal terminals 

selectively target nitrergic and cholinergic ganglionic cells to regulate the contraction and 

relaxation of gastric smooth muscles, respectively (Powley et al., 2019; Travagli et al., 2006). The 

vagal afferents and efferents, together with interconnections between NTS and DMV, underlies 

the vago-vagal reflex. 

One classic vago-vagal reflex is gastric accommodation (Harper et al., 1959; Tack et al., 

2002; Takahashi & Owyang, 1997). The reflex starts once food gets into the stomach. Gastric 

sensory receptors in the antrum detect gastric chyme and send signals to NTS. The information is 

further relayed to DMV. DMV sends motor commands back to the stomach and dilate the fundus 

to accommodate the incoming food. This process continues during meal consumption and allows 

the stomach to expand appropriately to match the food volume. Failure in this reflex can restrict 

gastric distension, cause high gastric pressure, delay gastric emptying, and lead to 

gastroesophageal reflux (Tack et al., 1998). 

Neural connections in the central gastric network 

NTS and DMV are the central nuclei in the brainstem and form the dorsal vagal complex 

as the relay station between the stomach and the forebrain (Rogers et al., 1995; Travagli et al., 

2003). As illustrated in Figure 1-2, NTS neurons project to many other nuclei (Browning & 

Travagli, 2011). The parabrachial complex (PBC) and periaqueductal gray (PAG) are primary 
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targets along the pathway from NTS to the forebrain. PBC is essential to integrating gustatory and 

gastrointestinal sensory information. It projects to the thalamus, striatum, insular cortex, amygdala, 

and hypothalamus, and receives projections from the insular cortex, medial prefrontal cortex, 

striatum, amygdala, and hypothalamus. PBC also directly projects back to NTS and DMV to 

regulate the vagal activity. In contrast, PAG is more critical to autonomic processing and 

integrating autonomic and emotional information. PAG projects to the anterior cingulate cortex, 

medial prefrontal cortex, amygdala, and hypothalamus, and receives projections from the 

amygdala and hypothalamus. PAG is more directly involved in sympathetic regulation. Moreover, 

the cerebellum is also involved in the central gastric network. It receives inputs from other gut-

related nuclei and projects to NTS and DMV directly. Most recent histological studies also 

uncovers that the somatosensory and motor cortex and the insular cortex interact with the stomach 

through the sympathetic and parasympathetic pathways, respectively (Levinthal & Strick, 2020), 

and the hippocampus is partially engaged in the gastric network through the striatum (Suarez et 

al., 2018).  



 7 

 
Figure 1-2 Stomach-brain neuroaxis. For peripheral and central circuits, red lines illustrate 
afferent and ascending pathways; blue lines illustrate efferent and descending pathways.   

 

Current understanding of the stomach-brain interaction 

Functional characterization of the stomach-brain interaction remains largely unclear. Most 

studies focus on structural connections between the stomach and the brain rather than functional 

representation and information processing. Many histological studies have identified different 

sensory receptors on the stomach wall as well as their ultrastructural phenotypes (Brookes et al., 

2013; Furness et al., 2014; Powley et al., 2019). The functional roles of those receptors remain 

largely speculative. Limited knowledge is available as to how the brain processes gastric 

information. One may generate hypotheses about how the brainstem processes gastric information 

given existing knowledge about the neural connections between the dorsal vagal complex and 

other nuclei (Browning & Travagl, 2011). However, the connections beyond the brainstem and 
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toward the forebrain are complex and involve many regions central for a wide range of cognitive 

and emotional functions (e.g., the insula, striatum, cingulate cortex, medial prefrontal cortex, 

amygdala (Browning & Travagli, 2011; Farmer et al., 2018; Levinthal & Strick, 2020).  

Besides the histological studies, some functional studies use external stimulation to study 

the stomach-brain interaction (Ladabaum et al., 2001; Min et al., 2011; Wang et al., 2008). In those 

studies, a balloon is inserted into the stomach; the volume of the balloon can be modulated using 

fluid infusion to stretch the stomach wall. The mechanical distention can mimic different volumes 

of the food content to study how the brain responds to a varying stomach volume. However, the 

balloon-based stimulation has limitations. First, the extended balloon stretches the stomach in a 

way different from naturalistic gastric distension given food intake. It does not involve nutrient 

handling alongside gastric accommodation. Second, the balloon stimulation only provides static 

stretching but does not involve peristaltic contractions (Camilleri et al., 1985; Ehrlein & Schemann, 

2005). Thus, most understanding is through non-physiological probing of the system. 

Diseases related to the impaired stomach-brain neuroaxis 

Gastric disorders 

Functional gastrointestinal disorders (FGIDs) are in part related to the impaired gut-brain 

interaction. FGIDs refer to dysregulations in different segments of the gastrointestinal (GI) tract. 

Depending on the specific locations, FGIDs can be specified as functional dyspepsia, nausea and 

vomiting disorders, irritable bowel disease, functional diarrhea, and functional constipation. Each 

of these diseases has at least one of the following chronic symptoms: heartburn, delayed gastric 

emptying, early fullness, nausea, vomiting, bloating, abdominal pain, diarrhea, or constipation 

(Drossman, 2016). FGIDs are commonly. According to a recent study, more than 40% of people 

suffer from FGID worldwide (Sperber et al., 2021). A major cause of FGIDs is the impairment in 
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the interaction between the gut and the brain. This impairment can originate from the GI tract, the 

central autonomic nervous system, or the nervous or endocrine connections between the GI tract 

and the brain (Drossman, 2016). None of these impairments is associated with tumors or local 

inflammation. FGID is often hard to diagnose with existing clinical exams, such as CT, X-ray, and 

endoscopy. The diagnosis of FGID relies on repeated doctor visits to rule out other potential GI 

diseases. 

Functional dyspepsia is one of the FGIDs related to the stomach. One of the major causes 

of functional dyspepsia is that the stomach fails to accommodate the food, likely reflecting a failure 

in the vago-vagal reflex that controls the distension of the stomach (Enck et al., 2017; Tack et al., 

2004; Talley & Ford 2015). The impairment of gastric accommodation causes a high luminal 

pressure (Tack et al., 1998). The high pressure leads to many gastric symptoms, such as early 

fullness (satiety), nausea, belching, bloating, and slow emptying. Functional dyspepsia is a 

common disorder that affects nearly 20% of the general population worldwide and causes a big 

financial burden to individuals and the society (Ford et al., 2020; Lacy et al., 2009; Stanghellini, 

2016; Talley & Ford, 2015).  

Gastroparesis is another gastric disorder related to the impaired stomach-brain interaction. 

Gastroparesis refers to the paralyzed stomach that cannot empty normally, thus causing various 

gastric symptoms, including delayed gastric emptying, early fullness, bloating, nausea, and 

vomiting (Ali et al., ,2007; Camilleri et al., 2018; Lacy & Weiser, 2005). There are three types of 

gastropareses, including diabetic gastroparesis, post-surgical gastroparesis, and idiopathic 

gastroparesis. Both the diabetic and post-surgical gastropareses are caused by damage to the 

stomach-brain neuroaxis due to either high blood glucose or structural damage during a surgery. 

Idiopathic gastroparesis has unknown causes but is possibly related to epilepsy or migraine 
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induced dysregulation of the central and/or autonomic nervous system. The population affected by 

gastroparesis shares the similar symptoms with other gastric disorders (functional dyspepsia). 

According to an early study, gastroparesis affect one out of two thousand people in the US (Jung 

et al., 2009). However, this number is likely under-estimated, because of the high relevance 

between diabetes and gastroparesis. Based on the population of diabetic patients, an estimation 

suggests that there are more than 1.5 million people suffering from severe gastroparesis in the US 

alone (Gastroparesisclinic.org, 2014). 

Brain disorders 

Anxiety and depression are also associated with the impaired stomach-brain interaction. 

Previous studies have identified a significant association between FGIDs and anxiety/depression 

symptoms (Drossman et al., 1999; Haug, et al., 2002; Haug et al., 2002; Levy et al., 2006; Mayer, 

2000). Patients with FGIDs have greater hospital anxiety and depression scale (HADS) scores than 

healthy ones (Aro et al., 2009; Hartono et al., 2012). The percentage of anxiety and depression in 

FGID patients is much higher than the general population (Kani et al., 2019; Woodhouse et al., 

2017). The association between anxiety or depression and gastric disorders is not surprising since 

the central gastric network includes many regions associated with emotion regulation, including 

the amygdala, medial prefrontal cortex, cingulate cortex, and periaqueductal gray (Browning & 

Travagli, 2011). An animal study also reports that rats without vagal innervation to the gut can 

develop anxiety-like behavior (Klarer et al., 2014). 

Treatments for repairing the stomach-brain neuroaxis 

Gastric electrical stimulation (GES) 

GES is an FDA-approved therapy for drug-resistant gastroparesis of diabetic and idiopathic 

etiology (Abell et al., 2003; U.S. Food and Drug Administration, 2000). It is initially designed to 
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pace gastric contractions, with high-amplitude long-duration currents (pulse width, 10-600ms, 

current, ~5mA) to entrain contractions. Gastric pacing has not become widely accepted because 

of its high-power consumption and inconsistent effects on gastric emptying (Yin & Chen, 2008). 

As an alternative, high-frequency and short-duration pulses (pulse width, ~0.3-3ms; inter-pulse 

duration, ~0.07s; stimulation pattern, 0.1s-ON-5s-OFF) are used in the commercial stimulator 

known as Enterra (Gonzalez and Velanovich, 2010; McCallum et al., 2010, 2013). Enterra therapy 

(Medtronic, Minneapolis, MN, USA) may be effective in relieving nausea and vomiting. Its 

efficacy is still variable across patients (Lal et al., 2015; Levinthal & Bielefeldt, 2017). This 

inconsistency is likely due to the unclear working mechanism of GES. One hypothesis about the 

mechanism is related to the stomach-brain neuroaxis. That is, GES can relieve discomforts and 

promote gastric emptying through its ascending signaling to the central nervous system (CNS) 

(Mayer et al., 2006; Payne et al., 2019). GES may activate multiple central nuclei, including the 

NTS (Qin et al., 2005) and the paraventricular nucleus of the hypothalamus (Tang et al., 2006). 

However, it remains largely unclear how to parameterize GES to activate CNS and whether and 

how the CNS activations with GES depend on the location, orientation, amplitude, and frequency 

of GES. Addressing these questions may help improve the efficacy and reliability of GES. 

Vagus nerve stimulation (VNS) 

VNS is a promising technique for modulating visceral organs, including the gut (Paulon et 

al., 2017; Payne et al., 2019). The vagus nerve is the primary neuronal pathway that connects the 

brain with the stomach (Carabotti et al., 2015, Furness et al., 2020). Stimulating the vagus nerve 

can directly affect the stomach through the efferent pathway (Schemann & Grundy, 1992) and 

alter the neural activity in the brain through the efferent pathway (Hachem et al., 2018). Whereas 

VNS often requires surgical implantation of a device, transcutaneous stimulation applied to the 
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neck or the ear may activate the vagus nerve non-invasively (Farmer, 2020; Gottfried‐Blackmore 

et al., 2020; Weinkauf et al., 2005). This noninvasive technique makes VNS an inexpensive and 

accessible alternative therapy for a larger patient population. It may bring more treatment options 

for patients with gastric disorders. However, VNS is still explored mostly in preclinical studies. 

The working hypothesis is that VNS can activate gastric centers in the brain and trigger descending 

motor commands to modulate gastric physiology (Payne et al., 2019). It is thus of interest to map 

the VNS response in the brain in comparison with the central gastric network. 

Assessing the intrinsic stomach-brain interaction 

Assessing neural activity in the brain 

Functional magnetic resonance imaging (fMRI) is the primary technique used here to 

measure brain activity and map functional brain networks. FMRI measures T2*-weighted signals, 

reflecting the blood-oxygen-level-dependent (BOLD) fluctuations (Ogawa et al., 1990a, 1990b, 

1992). The active vasodilation feeds more oxygenated blood to over-compensate for the metabolic 

consumption of oxygen by neural activity (Hillman, 2014; Logothetis & Wandell, 2004). This 

makes the BOLD signal as a hemodynamic surrogate of neural activity. Neural activity can 

increase regional cerebral blood flow and volume, leading to a net increase in the BOLD signal. 

The relationship between neural activity and the BOLD signal is often modeled as the 

hemodynamic response function (HRF). It describes the neurovascular coupling as the transfer 

function of a linear system, of which the output is the BOLD response given an impulse input 

(neural activity). HRF is similar to a double-gamma function, with a peak delay of 5~6s in humans 

(Buxton et al., 2004; Ogawa et al., 1998) and ~3s in rodents (Martindale et al., 2003; Weber et al., 

2004). In summary, fMRI measures BOLD activity, which is a slow signal accompanying neural 

activity. 
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In this study, multi-unit activity (MUA) recordings were also used to directly measure 

neural activity. When a neuron fires, ions (e.g., sodium, potassium, and calcium) flow across the 

cell membrane, triggering an action potential. Occurrences of action potentials induce extracellular 

changes of the field potential, named spikes, which can be captured by the penetrating electrodes, 

such as the Michigan and Utah arrays (Bean, 2007; Gold et al., 2006). Depending on the distance 

between neurons and electrodes, one recording electrode can capture spikes from multiple neurons, 

named MUA recordings. MUA recordings allow the assessment of neural activity with high 

throughput but yield low specificity to individual neurons. This drawback can be solved with a 

post-processing technique, named spike sorting, which utilizes shape differences of spikes from 

different neurons. The shape of each spike depends on the distance and orientation of the recording 

electrode with respect to the activated neuron (Buzsáki, 2004). As such, the shape features of 

individual spikes can be sorted to identify neurons that generate the spikes, and the spike timing 

of individual neuron can be generated to represent the single-unit activity (SUA) (Lewicki, 1998). 

Assessing gastric activity 

Gastric myoelectrical activity (GMA) reflects the electrical activity of smooth muscles as 

well as that of interstitial cells of Cajal (ICCs) that innervate the smooth muscles. GMA measures 

the electrical potential on the serosal layer of the stomach (Abell & Malagelada, 1988; Code & 

Marlett, 1975). It is a mixture of gastric slow waves and myoelectrical activity from gastric smooth 

muscles. Gastric slow waves are rhythmic activity initiated by ICC and propagating from the 

corpus to the antrum. The normal frequency of gastric slow waves is around three cycles per 

minute (CPM) in humans and 4-6 CPM in rats. The frequency of gastric slow waves can be slower 

(bradygastria) or faster (tachygastria) (Chen et al., 1995). It serves as a clock and sets the frequency 

of muscle contractions. Importantly, gastric smooth muscles are modulated by motor neurons in 
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the enteric nervous system (Furness et al., 2020). The changes in the contractile amplitude is 

presumably correlated with the power fluctuation of GMA with a higher power corresponding to 

a stronger contraction. Therefore, GMA is closely related to gastric contractions. Its phase is 

coupled to muscle contraction. Its power co-fluctuates with the strength of muscle contraction. 

Electrogastrogram (EGG) is a noninvasive measurement of gastric electrical activity 

(Parkman et al., 2003). The electrical current running on the stomach causes far-field changes in 

electrical potential observable on the body surface (Du et al., 2010; Wolpert et al., 2020; Smout et 

al., 1980). Similar to GMA, EGG also reflects gastric slow waves and gastric contractions. EGG 

can be decomposed into phase, amplitude, and frequency fluctuations, reflecting contraction cycle, 

contraction strength, and slow-wave frequency, respectively (Chen J, McCallum RW, 1991). EGG 

recording is noninvasive, thus allowing easier translational studies on humans. 

Combining techniques to study the stomach-brain interaction  

My study combined brain fMRI with EGG/GMA to study the stomach-brain interaction. 

EGG reflects gastric electrical activity coupled to gastric motility (Smout et al., 1980; Yin & Chen, 

2013), and fMRI measures the BOLD fluctuations related to neural activity throughout the brain 

(Fox & Raichle, 2007). EGG-fMRI allows us to investigate the intrinsic coupling between the 

stomach and the brain, without applying external stimulation to the stomach, such as the balloon 

extension as commonly used in previous studies (Ladabaum et al., 2001; Wang et al., 2008).  

Contents of this dissertation 

This dissertation summarizes findings from my studies aimed to delineate the functional 

activity in the stomach-brain interaction with external stimulation and during intrinsic gastric 

conditions.  
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Chapter 2 focuses on GES and introduces a new stimulating strategy targeting one type of 

gastric sensory receptors of the vagus. The effects of stimulation was assessed with multi-unit and 

single-unit activity in the nucleus tractus solitaries (NTS) in rats. The stimulation paradigm was 

optimized to maximize neural activity in NTS.  

In Chapter 3, the effects of GES were further evaluated in the forebrain regions using fMRI 

in rats. The feasibility of using fMRI to map the GES evoked response was first confirmed. Then 

fMRI was used to map the central network activated with gastric stimulation.  

The study in Chapter 4 also combined peripheral stimulation with fMRI mapping. The 

stimulation was applied to the vagus nerve, the primary neural pathway between the stomach and 

the brain. The effects of the vagus nerve stimulation were assessed by applying model-free analysis 

to the fMRI signals for mapping brain activations with VNS.  

Studies in Chapters 5 & 6 mapped neural activity in the brain in response to intrinsic gastric 

activity. Gastric activity measured as either EGG or GMA was recorded simultaneously with brain 

fMRI in rats. The gastric representation in the brain was evaluated in terms of the phase-coupling 

and power correlation between the EGG/GMA and fMRI signals. The intrinsic relationship 

between the brain and the stomach was assessed in both postprandial and fasting states and with 

or without vagotomy to test whether and how the stomach-brain interactions were dependent on 

the gastric state or the vagal signaling. 
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Chapter 2 Neurons in the Nucleus Tractus Solitarius are Selective to the Orientation of 

Gastric Electrical Stimulation 1 

Summary  

Gastric electrical stimulation (GES) is a bioelectric intervention for gastroparesis, obesity 

and other functional gastrointestinal disorders. In a potential mechanism of action, GES activates 

the nerve endings of vagal afferent neurons and induces the vago-vagal reflex through the nucleus 

tractus solitarius (NTS) in the brainstem. However, it is unclear where and how to stimulate in 

order to optimize the vagal afferent responses. To address this question with electrophysiology in 

rats, we applied short electrical currents to two serosal hotspots on the distal forestomach with 

dense distributions of vagal intramuscular arrays that innervated the circular and longitudinal 

smooth muscle layers. During stimulation, we recorded neurophysiological responses in NTS and 

evaluated the dependence of the recorded responses on the stimulus orientation and amplitude. We 

found that NTS neuronal responses were highly selective to the stimulus orientation for a range of 

stimulus amplitudes. The strongest responses were observed when the applied current flowed in 

the same direction as the intramuscular arrays in parallel with the underlying smooth muscle fibers. 

Our results suggest that gastric neurons in NTS may encode the orientation-specific activity of 

gastric smooth muscles relayed by vagal afferent neurons. This finding suggests that the 

orientation of gastric electrical stimulation is critical to effective engagement of vagal afferents 

and should be considered in light of the structural phenotypes of vagal terminals in the stomach. 

 
 
1 The contents of this chapter will be submitted for review with Journal of Neuroscience (Cao et al., in submission) 
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Introduction 

The vagus is the primary neural pathway connecting the brain and the stomach. Vagal 

afferents ascend sensory signals from the stomach to the nucleus tractus solitarius (NTS). Vagal 

efferents convey motor commands from the dorsal motor nucleus of the vagus (DMV) to regulate 

gastric functions. The vagus connects the central nervous system and the enteric nervous system 

(Powley et al., 2019), mediates rapid stomach-brain interactions (Carabotti et al., 2015; Furness 

and Stebbing, 2018; Mayer, 2011), and enables reflexive control of the gastrointestinal tract (Davis 

et al., 1986; De Ponti et al., 1987; Rogers et al., 1995; Browning & Travagli, 2011; Travagli & 

Anselmi, 2016). 

Both vagal afferents and efferents innervate the stomach with extensive and specialized 

terminals in the stomach wall (Powley et al., 2019). Although there has been increasing progress 

made in describing the structural phenotypes of vagal projections to the stomach, very little is 

known about the specific gastric information transmitted to and encoded by the brain. In particular, 

it is unclear how NTS, as the first brainstem nucleus responsible for visceral sensation, represents 

and integrates gastric information relayed through vagal afferents.  

Gastric electrical stimulation (GES) is an FDA-approved therapy for drug-resistant 

gastroparesis of diabetic or idiopathic etiology (Abell et al., 2003; U.S. Food and Drug 

Administration, 2000). GES works well in relieving nausea and vomiting but yields inconsistent 

responses across patients (Lal et al., 2015; Levinthal & Bielefeldt, 2017). This inconsistency is 

likely due to the unexplained working mechanism of GES. One hypothesis of the GES mechanism 

relates to the stomach-brain neuroaxis, stating that GES can relieve discomforts and promote 

gastric emptying through its modulatory effects in the central nervous system (CNS) (Mayer et al., 

2006; Payne et al., 2019). Multiple central nuclei have been reported to respond to GES, including 
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NTS (Qin et al., 2005) and the paraventricular nucleus of the hypothalamus (Tang et al., 2006). 

However, it is unclear about effective stimulating paradigms in activating CNS neurons and 

whether the varying stimulating targets, orientations, and current evoke neural activity differently. 

It is necessary to address these questions since the well-delineated GES protocol can help achieve 

efficient and consistent therapeutic effects across patients. 

Although there is insufficient knowledge on the working mechanism of GES and the 

explicit information flow in the stomach-brain interaction, the gastric innervation has been 

increasingly mapped (Browning & Travagli, 2011; Furness et al., 2020; Powley & Phillips, 2002). 

The stomach-brain interaction is supported by the vagus nerve and thoracic spinal nerve containing 

efferent and afferent fibers. The efferents innervate neurons in NTS and the spine to modulate 

gastric secretion, blood volume in the gastric wall, and smooth muscle contractions; the afferents 

receive neural inputs from various sensory receptors and convey chemical and mechanical 

information to the brain (Brookes et al., 2013). There are five types of gastric receptors, in which 

the intramuscular array (IMA) is proposed to detect stretches of gastric smooth muscles due to its 

unique array-like structure (Powley et al., 2016). IMAs have two subtypes distinguished by their 

orientations. One lies in the longitudinal direction (i.e., longitudinal IMA); the other is in the 

circular direction (i.e., circular IMA). It is of great interest to study IMAs due to the importance of 

their hypothesized function in monitoring stretches of gastric smooth muscles. 

Here, we focused on the GES-evoked activation of IMAs. Given the unique structure of 

these receptors, we hypothesized that IMAs are selective to the stimulating orientation. To test this 

hypothesis, we chose two targets in the rat's distal forestomach with high IMA densities and 

applied stimulation over these regions with electrical currents flowing in different orientations. We 

monitored the post-stimulus spiking activity in NTS neurons to test whether NTS neurons would 
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respond to the stimulus and whether the response was orientation-selective. The orientation-

selectivity was examined using multi-unit activity (MUA) and single-unit activity (SUA) and 

confirmed at two stimulation sites with varying current amplitudes. The successful confirmation 

could yield an efficient stimulating strategy of activating IMAs and engaging the stomach-brain 

neuroaxis. 

Materials and Methods 

Subjects 

This study used seven Sprague–Dawley rats (male, weight: 250–400 g; Envigo RMS, 

Indianapolis, IN) according to a protocol approved by the Institutional Animal Care and Use 

Committee and the Laboratory Animal Program at Purdue University. All animals were housed in 

a strictly controlled environment (temperature: 21 ± 1 °C; 12 h light-dark cycle with light on at 

6:00 a.m. and off at 6:00 p.m.). Every animal received acute surgical implantation of patch 

electrodes for gastric electrical stimulation and depth electrodes for neuronal recordings in the 

brainstem. 

Electrode implantation for gastric electrical stimulation  

Every animal received an abdominal surgery to be implanted with patch electrodes on the 

serosal surface of the distal forestomach. The animal was initially anesthetized with 5% isoflurane 

mixed with oxygen (flow rate: 1 L/min). The dose of isoflurane was then reduced to 2% to keep a 

surgical plane. Then, the animal was placed in a supine position on the surgical table. Following a 

toe-pinch test, an incision was made starting from the xiphoid and moving 4 cm caudally. Skin and 

muscle layers were retracted and separated to expose the ventral forestomach.  

Patch electrodes (Microprobes, Gaithersburg, MD, USA) were sutured at two target 

locations, namely Target 1 and 2, on the serosal surface of the distal forestomach (Figure 2-1A). 
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Target 1 was on the greater curvature and about 4 mm away from the limiting ridge. Target 2 was 

on the ventral stomach, 2 mm away from the limiting ridge, and halfway in between the lesser 

curvature and the greater curvature. According to our previously mapped distributions of 

longitudinal and circular IMAs (Powley et al., 2016; Tan et al., 2021), Target 1 had a high density 

of longitudinal IMAs but a low density of circular IMAs (Figure 2-2A), whereas Target 2 had a 

high density of circular IMAs but a low density of longitudinal IMAs (Figure 2-2D). Target 1 and 

Target 2 were chosen as complementary targets selective to the “hotspots” of longitudinal and 

circular IMA, respectively. 

Each patch electrode consisted of either 1 or 2 bipolar pairs of contacts. Each contact was 

made of a Pt/Ir foil (12 mm2) on a thin perylene substrate (77 mm2) and was positioned 2 mm away 

from the center of the substrate. Each bipolar pair was oriented for current delivery along either 

the longitudinal or circular direction. We attached 2 bipolar pairs of electrodes on Target 1 for four 

animals, 2 bipolar pairs of electrodes on Target 2 for four animals, and 1 bipolar pair of electrodes 

on Target 1 for three animals (Table 2-1). We fixed the electrodes by securing the four corners of 

the substrate on the serosal layer. After electrode implantation, the muscle layer and the skin were 

closed with sutures, while the electrode wires were kept outside of the abdomen and were 

connected to a current stimulator (model 2200, A-M systems, Sequim, USA). 

For each target location, electrical current was delivered in 4 plausible orientations: 

longitudinal pointing towards the proximal (0o) or distal stomach (180o) with one pair of electrodes, 

or circular pointing toward the lesser (90o) or greater (270o) curvature with the other pair of 

electrodes (Figure 2-2B). Current stimuli were delivered as a train of rectangular pulses (pulse 

width: 0.3 ms, pulse amplitude: 0.6, 0.8, or 1 mA with alternating polarity, and inter-stimulus-

interval: 100 ms for two animals and 250 ms for the other five animals). A pulse train lasted 10 s 
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followed by a stimulus-free rest period of >20 s. Different pulse trains were configured to stimulate 

in either the longitudinal or circular direction in an order randomized and counter-balanced across 

animals. 

Table 2-1 The number and orientation of the implanted electrodes in each animal. The number 
of electrodes is specified with respect to the location (Target 1 vs. 2) and the direction (longitudinal 
vs. circular). 

Animal ID 
Target 1 Target 2 

Longitudinal Circular Longitudinal Circular 

1 2 2 0 0 

2 2 2 0 0 

3 2 2 0 0 

4 2 2 2 2 

5 2 0 2 2 

6 2 0 2 2 

7 2 0 2 2 

 

Neurophysiological recording 

To record neuronal spiking activity, we implanted a 32-channel silicon probe (Neuronexus, 

Ann Arbor, USA) in NTS for each animal. The surgery was performed by placing the animal in 

the prone position on a stereotaxic frame (Stoelting Co., Wool Dale, IL, USA). To expose the skull, 

a midline skin incision was made from the middle between the eyes to the neck. Two stainless 

steel screws were drilled into the skull above the olfactory bulb and were used as the ground and 

reference for neural recordings. A 5x5 mm2 cranial window was created at the bottom of the 

occipital bone to expose the brainstem until the obex was identifiable.  
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The silicon probe was inserted at about 0-0.8mm left and 0-0.2mm rostral to the obex 

(Figure 2-1B & C). The depth of insertion was determined by using a searching process to identify 

gastric neurons in NTS. Specifically, gastric stimulation was delivered (pulse width = 0.3 ms, 

current = 1.0 mA, pulse frequency = 1 Hz), while the probe was being inserted into NTS. The 

insertion was stopped once the stimulus-evoked spiking activity was observable in one or multiple 

channels. See Figure 2-1D & E for the responses from the identified gastric neurons given a train 

of current stimuli. The searching process was repeated about 4 times to identify different groups 

of neurons, while each time the probe was pulled out and re-inserted to different depths (from 0.5 

to 1.3 mm). At each depth of insertion, neural data was recorded from all 32 channels by using a 

broadband recording system (Tucker Davis Technologies, Alachua, USA) with a sampling rate of 

24 kHz. 

Single and multi-unit firing rate 

We applied a high-pass filter (>300 Hz) to the raw signals to extract the neuronal spiking 

activity. First, unsorted spikes were identified if they surpassed a threshold (between 50 and 100 

𝛍V) defined for each animal. The unsorted spikes were stored by channel as the multi-unit activity 

(MUA). Second, spike sorting was applied separately to each channel to extract the single-unit 

activity (SUA). The spike sorting extracted from each spike two features based on the peak-trough 

differences: the difference between the first peak and the trough (Feature 1) and the difference 

between the second peak and the trough (Feature 2). As illustrated in Figure 1F, the spike features 

were used to group every spike into distinct clusters where each cluster corresponded to a neuron. 

The clustering was based on the k-means clustering (kmeans in Matlab), where the distance 

between spikes was their Euclidean distance in the feature space. The number of clusters was 
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determined manually by visual inspection of the spike representations in the feature space. The 

sorted spikes across all channels were stored as SUA.  

Based on the SUA or MUA, we evaluated the neuronal responses to gastric electrical 

stimulation in the level of either single neurons or neuronal ensembles, respectively. For each 

neuron, the SUA response was quantified as the number of spikes within the (100 ms) post-

stimulus period in each trial of GES parameterized by its location (Target 1 & 2), direction (0o, 

90o, 180o, 270o), and amplitude (0.6, 0.8, 1 mA). The single-trial SUA response was averaged 

across repeated stimuli with the same parameters and then across animals. Similarly, the time-

averaged MUA response was quantified for each channel.  

For a given location and amplitude of GES, the time-averaged MUA response was 

compared across four stimulus orientations (0o, 90o, 180o, 270o). The orientation that resulted in 

the highest MUA response was considered as the preferred orientation for each channel under 

evaluation. Then, the MUA response was averaged across channels and then across animals, to 

obtain the group averaged NTS responses as a function of the current amplitude (0.6, 0.8, 1 mA). 

In addition to the time-averaged SUA or MUA response, we further evaluated the response 

as a function of the post-stimulus latency. The time-resolved response was based on the post-

stimulus time histogram (PSTH). Specifically, the number of spikes was calculated within a 5 ms 

sliding window stepping by one time point (1/24 kHz) until reaching 100 ms after the stimulus. 

The fire rate (i.e., the number of spikes per 5ms) was averaged across repeated trials of the same 

stimulus setting. Neurons (for SUA) or channels (for MUA) that showed their maximal PSTH less 

than 0.05 spikes per 5 ms were discarded and excluded from subsequent analyses. Further, the 

PSTH was averaged within four coarsely defined post-stimulus periods of interest: 0-13 ms, 13-

29 ms, 29-73 ms, and 73-100 ms. 
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Statistical analysis and orientation selectivity 

We used paired t-test to evaluate the statistical significance of any response difference 

given GES applied in any two different orientations. The t-test was separately performed for the 

time-averaged SUA or MUA response averaged over the (100 ms) post-stimulus period. 

Bonferroni correction was used to correct for multiple comparisons (i.e., 6 pairs of different 

orientations for comparison). The significance level 𝛼 was set as 0.05. Similarly, we also used 

paired t-test to evaluate the difference between GES applied to two different locations (i.e., Target 

1 and 2). 

We used an orientation selectivity index (OSI) to measure how a neuron (SUA) or neuronal 

ensemble (MUA) was selective to GES applied in the preferred orientation vs. other orientations. 

Specifically, let NPO be the firing rate in response to GES in the preferred orientation (e.g., 0o), and 

let Ni (i=1 to 3) be the firing rate in response to GES in the non-preferred orientations (e.g., 90o, 

180 o, 270 o). The OSI was the average difference in the firing rate between the preferred orientation 

and every non-preferred orientation, as expressed by Equation 2-1. The OSI was between 0 and 1. 

A higher value of OSI indicated that the neuron or channel under evaluation was more selective to 

the GES in one specific orientation.  

𝑂𝑆𝐼 = ∑ (#!"$##)
$%&
#%'

&
    Equation 2-1 

We used a permutation test to evaluate the statistical significance of the OSI. Specifically, 

the SUA or MUA responses were randomly shuffled into different groups defined by the stimulus 

orientation. The shuffled dataset disrupted any real response-stimulus association. After repeating 

the process for 100,000 times and at each time evaluating the OSI with the shuffled dataset, a null 

distribution of OSI was generated. The real OSI was compared against this null distribution to 

calculate the p value. 
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Results 

In 7 rats, we recorded single and multi-unit activity from gastric neurons in NTS while 

applying GES to two complementary regions of interest in the distal forestomach (Figure 2-1A): 

Target 1 with a high density of longitudinal IMA (Figure 2-1B left) and Target 2 with a high 

density of circular IMA (Figure 2-1B right). We evaluated the neuronal responses as a function of 

the orientation, location and amplitude of GES, with our special emphasis on the orientation 

selectivity of NTS.   

Orientation dependence of NTS population responses to GES 

When GES was delivered as a current pulse with a short width (0.3 ms) and a low amplitude 

(<1 mA), the stimuli were too brief and too weak to directly pace the stomach or induce muscle 

contractions (Du et al., 2009; Li & Chen, 2010; Tomita, 1966; Cheng et al., 2021). However, such 

GES could evoke population spikes (Figure 2-1D & E) observable with a 32-channel silicon probe 

inserted into NTS (Figure 2-1C). Figure 2-1D shows a typical MUA recording in NTS during a 

train of alternating currents delivered to Target 1 in two opposing directions (i.e., positive and 

negative pulses). In this example, many more spikes were observed following the negative pulses 

than following the positive pulses (Figure 2-1D). The spikes occurred shortly after each negative 

pulse (Figure 2-1E). By spike sorting (Figure 2-1F), two neurons were identified (Figure 2-1G) 

and their responses were observed mostly in the first 20 ms following the pulse (Figure 2-1H). 

This observation led us to hypothesize that gastric neurons in NTS were selective to the orientation 

of GES.  
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Figure 2-1 Experiment protocol and analysis pipeline. A shows the experimental setup to perform 
gastric electrical stimulation. B and C provide the location to record neural activity from the 
nucleus of the solitary tract (NTS) in axial view and coronal view respectively. D plots the time 
series of multi-unit activity. The detected spikes are marked with red stars. The timing of stimuli 
is plotted above the spiking activity. E is a zoom-in version of the time series. The stimulus is 
delivered at time 0. F provides an example of spikes feature domain. Each dot represents one spike. 
Yellow and blue marked the two clusters of spikes defined with the k-means cluster. The red curve 
on the lower right corner is a neural spike. The definition of spike features is illustrated in the 
spike. G plots the waveform of every spike shown in F. Grey curves are individual spikes, and red 
curves are the averaged waveform. H plots the post-stimulus time histogram (PSTH). 
 

We extended the above observation by performing quantitative comparisons across four 

orientations and two locations, which covered the non-overlapping “hotspots” of longitudinal and 

circular IMAs (Figure 2-1B). For Target 1, when a 1mA current stimulus was applied in 0o (i.e., 

flowing in the longitudinal direction towards the proximal stomach), the stimulus induced multiple 

population spikes with spike timing highly consistent across repeated trials (Figure 2-2B). For an 

example MUA recorded from one channel, one spike occurred around 10 ms; a few spikes occurred 

from 40 to 60 ms. When the current stimuli were applied in other directions, fewer spikes were 

evoked and were less consistent across trials (Figure 2-2B). Beyond this example, the population 

response in NTS, in terms of the number of spikes per 100 ms averaged across channels and 

animals, was 4.09±0.50 (mean ± sem) for GES at 0o, which was significantly higher than those for 

other orientations (2.52±0.45 for 270o; 2.26±0.37 for 180o; 1.88±0.34 for 90o), as shown in Figure 

2-2C. In summary, 1-mA GES at Target 1 evoked reliable population spikes in NTS when the 

stimulus was delivered in 0o (longitudinal towards the proximal stomach). 

Similarly for Target 2, we observed much stronger and more reliable population responses 

when 1-mA GES was applied in 270o (circular towards the greater curvature) relative to other 

orientations. Given the preferred orientation, Figure 2-2E shows an example of the population 

spikes observed from one channel. The spike timing was highly consistent across repeated trials. 

The population spikes were fewer and much less consistent given GES in non-preferred 
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orientations. The mean firing rate was 3.83±0.39 per 100 ms (mean ± sem) for GES at 270o, which 

was significantly higher than those for other orientations (1.56±0.17 for 0o; 1.99±0.25 for 180o; 

1.56±0.19 for 90o) (Figure 2-2F). 
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Figure 2-2 NTS neurons are tuned by gastric electrical stimulation at selected orientations. A 
and D show locations of target 1 and target 2 on the stomach wall, respectively. B and E provide 
four pairs of anode and cathode for stimulation. The orientations of the four types of stimulation 
are 0o, 270o, 180o, and 90o. B and E also provide examples of neural activity after the four types 
of stimulation. The data is multi-unit activity (MUA) from one recording channel, but the data 
from B and E come from different channels. The black dots mark the time when spikes are identified. 
The dots in each row come from one trail. Time 0 is when stimuli are delivered. C and F plot the 
averaged number of spikes within 100ms after stimuli at each orientation, together with standard 
error. ** means p<0.001 with Bonferroni correction, and *** means p<0.0001. 

 

Effects of the current amplitude 

We asked whether the orientation selectivity of NTS neurons observed with 1-mA GES 

was generalizable to GES with lower amplitudes. To address this question, we compared the 

neuronal population responses in NTS given GES with three different current amplitudes (0.6, 0.8, 

and 1 mA). For both Target 1 (Figure 2-3A) and Target 2 (Figure 2-3D), the time-averaged 

population responses in NTS were always greater when GES was applied in its preferred 

orientation (0o for Target 1, 270o for Target 2), despite the difference in the current amplitude used 

in this study (Figure 2-3B & E). In its preferred orientation, a stimulus with a higher amplitude 

tended to induce stronger population responses in NTS. Stimuli in other non-preferred orientations 

did not show significant amplitude-dependent effects in the resulting population responses.  

We further calculated the orientation selectivity index (OSI) as the average difference in 

the neuronal response to GES between the preferred and non-preferred orientations. For both 

Target 1 and 2, increasing the current amplitude led to more pronounced orientation selectivity 

(i.e., increasingly higher OSI) (Figure 2-3C). For Target 1, the OSI at 0.6 mA was significantly 

lower than the OSI at 0.8 mA (p<0.005) or 1 mA (p<0.001) based on a permutation test with 

Bonferroni correction. Similar observations and statistics were found for Target 2 (Figure 2-3F). 

See Table 2-2 and Table 2-3 for more statistical results. In summary, orientation selectivity was 

generalizable across different current amplitudes (0.6, 0.8, and 1 mA). 
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Figure 2-3 Effect of stimulating current on orientation tuning dependence. A and D show 
locations of target 1 and target 2 on the stomach wall, respectively. B and E provide four pairs of 
anode and cathode for stimulation. The orientations of the four types of stimulation are 0o, 270o, 
180o, and 90o. B and E also plot the averaged number of spikes, together with standard error, 
within 100ms after the stimulus with the current of 0.6mA, 0.8mA, 1mA. C and F show box plots 
of orientation-selectivity-index (OSI) for different types of stimulation. Grey dots represent 
individual samples. ** means p<0.005 with Bonferroni correction, and *** means p<0.0001. 
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Table 2-2 Difference in the mean firing rate (i.e., the number of spikes per 100 ms) given GES 
applied to Target 1 with a preferred orientation (0o) vs. other orientations (270o, 180o, 90o). Each 
row corresponds to a different current amplitude. The statistics below are based on paired t-test 
with Bonferroni correction for multiple comparisons. 

current Firing rate at 0o 0o vs 270o 0o vs 180o 0o vs 90o 

0.6mA 2.91±0.42 /100ms t(91)=3.48; p=0.0023 t(91)=0.54; p=0.59 t(91)=3.56; p=0.0018 

0.8mA 3.51±0.45 /100ms t(92)=4.74; p=2.3e-5 t(92)=7.26; p=3.7e-10 t(92)=6.32; p=2.8e-8 

1mA 4.09±0.50 /100ms t(92)=3.82; p=7.2e-4 t(92)=6.93; p=1.7e-9 t(92)=7.63; p=6.2e-11 

 
Table 2-3 Difference in the mean firing rate (i.e., the number of spikes per 100 ms) given GES 
applied to Target 2 with a preferred orientation (270o) vs. other orientations (0o, 180o, 90o). Each 
row corresponds to a different current amplitude. The statistics below are based on paired t-test 
with Bonferroni correction for multiple comparisons. 

current Firing rate at 270o 270o vs 0o 270o vs 180o 270o vs 90o 

0.6mA 2.60±0.34 / 100ms t(71)=4.62; p=5.0e-5 t(71)=4.60; p=5.4e-5 t(71)=4.57; p=6.0e-5 

0.8mA 3.72±0.40 / 100ms t(71)=7.19; p=1.6e-9 t(71)=6.98; p=3.9e-9 t(71)=7.45; p=8.3e-10 

1mA 3.83±0.39 / 100ms t(93)=7.49; p=1.2e-10 t(93)=6.39; p=1.9e-8 t(93)=7.86; p=2e-11 

 

Orientation selectivity of single-unit responses  

We further tested whether the orientation selectivity was applicable to the level of single 

neurons in NTS. We applied spike sorting to identify individual neurons activated by GES and 

analyzed their firing rates as a function of the stimulus orientation and location. In total, we 

identified 106 neurons activated by GES at Target 1 and 119 neurons by GES at Target 2. 
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Figure 2-4 Orientation tuning dependence for individual neurons. A and F show locations of 
target 1 and target 2 on the stomach wall, respectively. B and G provide four pairs of anode and 
cathode for stimulation with the orientation of 0o, 270o, 180o, and 90o. B and G also provide 
examples of neural activity after the stimulus. The data is SUA (SU) from two neurons in B and G 
respectively. The black dots mark the time when spikes are identified. The dots in each row come 
from one trial. Time 0 is when stimuli are delivered. C and H plot the averaged number of spikes 
within 100ms after the stimulus at each orientation, together with standard error. The result of the 
paired t-test is marked in the plot. ** means p<0.001 with Bonferroni correction, and *** means 
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p<0.0001. E and J show orientation tuning dependence for different groups of neurons. Neurons 
in one group share the same tuned orientation. The number of spikes within 100ms after the 
stimulus is marked for each orientation. D and I provide the box plots of the orientation-selectivity-
index (OSI) for each group. Grey dots represent individual neurons. * means p<0.05 with 
Bonferroni correction, ** means p<0.005, and *** means p<0.001. 

 
Most neurons activated by GES manifested high selectivity for one stimulus orientation. 

In Figure 2-4B, an example neuron showed reliable responses only when GES at Target 1 was in 

0o, whereas virtually no responses were observed for other orientations. In total, 67 out of 106 

neurons all shared the same preferred orientation (i.e., 0o) and showed significantly higher firing 

rates given GES in 0o than in other orientations (Figure 2-4C). Neurons that preferred other 

orientations (i.e., 270o, 180o, 90o) were not only fewer but also less orientation selective (i.e., 

significantly lower OSI) (Figure 2-4D & E). Similarly for GES at Target 2, 86 out of 119 neurons 

were highly selective to the same preferred orientation of 270o (Figure 2-4F through J). In summary, 

gastric neurons in NTS were selective to 0o (longitudinal towards the proximal stomach) for GES 

at Target 1 and were selective to 270o (circular towards the greater curvature) for GES at Target 

2.  

Orientation selectivity at different post-stimulus latencies 

It was noticeable that GES evoked stronger and more reliable neuronal responses at some 

post-stimulus latencies than others (Figure 2-1). We asked whether the orientation selectivity was 

dependent on the response latency. To answer this question, we calculated the PSTH to resolve 

SUA in time and evaluated the time dependence of orientation selectivity in the level of single 

neurons (Figure 2-5). When Target 1 was stimulated in 0o, the time-resolved firing rate (PSTH) of 

the activated gastric neurons was on average higher around 10 and 43 ms and around 20 ms, and 

at the baseline after 73 ms (Figure 2-5B). The neuronal responses to GES in other orientations did 
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not demonstrate similar time dependence, except that GES in 270o also showed a peak around 10 

ms in the evoked SUA (Figure 2-5B). 

According to the PSTH, we further divided the post-stimulus period into four periods (0-

13, 13-29, 29-73, 73-100 ms) and evaluated the orientation selectivity of individual neurons 

separately for each period. Out of 106 neurons activated by GES at Target 1, 77 neurons were 

activated from 0 to 13 ms, 65 neurons from 13 to 29 ms, 79 from 29 to 73 ms, and 48 neurons from 

72 to 100 ms. For two periods (0-13 ms and 29-73 ms), not only were more neurons activated, but 

most of the activated neurons were also selective to the same orientation (Figure 2-5C). The firing 

rate of each activated neuron manifested a stronger preference for GES in 0o during the periods of 

0-13 ms and 29-73 ms, but much less so for other periods (Figure 2-5D). These results suggest that 

gastric neurons in NTS were selective to the orientation of GES at Target 1 with respect to their 

responses at two specific delays (about 8 ms and 43 ms) relative to the stimulus onset. For GES at 

Target 2, the firing rate averaged across all activated neurons was higher when the stimulus was 

in 270o at nearly all post-stimulus latencies (Figure 2-5F). The peak responses were noticeable in 

two periods (0-13 ms and 29-73 ms). In particular, the period from 29 to 73 ms showed that 77 out 

of 119 neurons were selective to the same orientation (270o), whereas slightly lower but 

comparable orientation selectivity was also noticeable for other periods. These results suggest that 

neurons activated by GES at Target 2 showed consistent selectivity to 270o for all post-stimulus 

periods, showing a lesser degree of time dependence compared to the responses to GES at Target 

1. In summary, when Target 2 is stimulated, although more NTS neurons prefer the orientation of 

270o within 29-73ms after the stimulus.  
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Figure 2-5 Orientation-selectivity during different post-stimulus periods. A and E show locations 
of target 1 and target 2 on the stomach wall, respectively. B and F plot the averaged post-stimulus 
time histogram (PSTH) for stimulation with the orientation of 0o, 270o, 180o, and 90o, separately. 
C and G show the number of neurons with the preferred orientation at 0o, 270o, 180o, or 90o. D 
and H show the average number of spikes for each post-stimulus period. The number of neurons 
is presented together with the plots. I and J show the box plot of the orientation-selectivity-index 
(OSI) for each group. Dots represent individual clusters, and the color encodes the group to which 
dots belong. * means p<0.05 with Bonferroni correction, ** means p<0.01, and *** means 
p<0.001. 

 

C

D

A
Antrum

Corpus

Forestomach

Target 1

80 100
Time (ms)

0

0.04

0.08

0.12

0.16

0.2

N
um

be
r o

f s
pi

ke
s /

5m
s

40 600 20

0o

270o

180o

90o

B

number of spikes 
/5ms

0o

90o

180o

270o

0
0.06

0.12
n=77

0o

90o

180o

270o

0
0.06

0.12
n=65

0o

90o

180o

270o

0
0.06

0.12
n=79

0o

90o

180o

270o

0

0.12
0.06n=48

0

20

40

60

80

N
um

be
r o

f n
eu

ro
ns

0-13ms 13-29ms 29-73ms 73-100ms

0o 270o 180o 90o

G

H

E

Antrum

Corpus

Forestomach

Target 2

80 100
Time (ms)
40 600 20

0

0.02

0.04

0.06

N
um

be
r o

f s
pi

ke
s /

5m
s

0o 270o 180o 90oF

number of spikes 
/5ms

0o

90o

180o

270o

0
0.03

0.06
n=67

0o

90o

180o

270o

0
0.03

0.06
n=74

0o

90o

180o

270o

0
0.03

0.6
n=106

0o

90o

180o

270o

0

0.06
0.03n=91

n=77

0

40

80

120

N
um

be
r o

f n
eu

ro
ns

0-13ms 13-29ms 29-73ms 73-100ms

0o 270o 180o 90o

n=27
n=39 n=44

n=45n=51
n=30

n=15

13ms

29ms

73ms

13ms
29ms 73ms

n=23

n=13

n=14

n=10

n=7

n=13 n=10 n=18



 36 

Compare neural responses after the stimulus on different targets 

We further asked whether stimulating different locations could activate the same neurons 

within NTS, and if yes, whether their responses were distinctive and dependent on the stimulus 

location. To answer these questions, we implanted electrodes to both Target 1 and Target 2 in four 

rats (Figure 2-6A). When applying 1-mA current stimuli in the preferred orientation (0o for Target 

1 or 270o for Target 2), we identified the single units that responded to either or both of the 

locations.  

In total, 100 neurons were identified: 88 for Target 1, 63 for Target 2 stimulation, and 51 

for both. On average, the single-unit firing rate per 100 ms was 1.72±0.15 (mean ± standard error) 

for Target 1 and 0.91±0.10 for Target 2. For the 51 neurons responsive to both targets, their average 

firing rate was 2.12±0.21 for Target 1 and 0.92±0.10 for Target 2. The time-averaged neuronal 

responses were significantly higher for Target 1 than for Target 2 (paired t-test: t=7.35, p=1.7e-9, 

dof=50). Only 7 neurons showed higher responses to Target 2, whereas the majority showed higher 

responses to Target 1 (Figure 2-6C).  

We further resolved the single-unit firing rate in time and averaged the response across the 

51 neurons responsive to both targets. Figure 2-6B shows the firing of a single neuron across 

repeated stimuli. In this example, the neuron fired at different times in response to the stimulus at 

Target 1 vs. Target 2. Activation with Target 1 was mostly between 30 and 60 ms, whereas 

activation with Target 2 was later, especially around 80 ms (Figure 2-6B). We averaged the firing 

rate across neurons, and found that the average neuronal response was higher for Target 1 for the 

first 60 ms, whereas it was higher for Target 2 between 65 and 100 ms (Figure 2-6D).  

These results suggest that gastric electrical stimulation selectively applied to longitudinal 

or circular IMAs at different locations may activate a common group of neurons in NTS but at 
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different times. This group of neurons is more responsive to stimulation applied to the longitudinal 

IMAs on the greater curvature at early times (within 60 ms) but is more responsive to the circular 

IMAs at later times (after 65 ms). 

 
Figure 2-6 One neuron can respond to gastric electrical stimulation on different targets. A shows 
the locations of the two stimulating targets together with their orientation. B plots the post-stimulus 
time histogram (PSTH) from a single neuron. The upper plot is PSTH after the stimulus on Target 
1, and the lower plot is PSTH after the stimulus on Target 2. C plots the changes in the number of 
spikes after the stimulus on different targets for all neurons identified in this experiment. The 
number of spikes is normalized for each neuron. Each line represents the change from each neuron, 
and the corresponding scale is the left axis. Grey bars represent the averaged numbers of spikes, 
and the corresponding scale is on the right. D plots averaged PSTHs for both targets. The black 
curve is PSTH for Target 1, and the grey curve is PSTH for Target 2. The black dot means that, at 
that time point, the number of spikes is significantly higher for Target 1, and the grey dot means 
that the number of spikes is significantly higher for Target 2, according to paired t-test with 𝛼 = 
0.05. 
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Discussion 

In this paper, we studied GES-evoked neural spiking activity in NTS and tested whether 

the neural activity was orientation-selective to gastric stimuli. We found that NTS neurons could 

respond to stimulation on the distal forestomach and be selectively activated by the specific 

orientation of electrical currents. The orientation-selectivity was generalizable for stimulation on 

different regions in the forestomach, but the preferred orientation depended on the layout of nearby 

IMAs. With the carefully designed orientation, the stimulus might selectively activate longitudinal 

or circular IMAs, and the same neuron in NTS would respond to stimuli on both targets. 

Stimulus with the specified orientation can activate IMAs 

IMA is a type of vagal afferent terminal on the stomach (Powley et al., 2016; Powley et al., 

2019; Powley and Phillips, 2002). It is an elongated, narrow, and nearly-planar array with an 

average length of 4.3 mm, in conjunction with nearby smooth muscle fibers. Given this unique 

morphology, IMAs are hypothesized to detect the stretch of smooth muscle (Powley et al., 2016). 

Individual IMAs can either run longitudinally in the longitudinal smooth muscle layer or run 

circularly in the circular smooth muscle layer. This orientation property determines that individual 

IMAs can be activated by stretches in either direction. Stretch-induced activation can be sent to 

NTS, in which neurons can process such information and relay them to downstream nuclei. In this 

study, we observed that spiking activity in NTS could be modulated stimuli delivered to gastric 

regions with high IMA density. This stimulus-evoked spiking activity indicates that vagal 

innervated gastric receptors, likely IMAs, are modulated by GES and transmit the modulatory 

effect to NTS neurons. 

NTS neurons selectively respond to different orientations of GES. More specifically, 

spiking activity in NTS is more likely to occur after one of the four GES orientations applied to 
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the stomach. The orientation-selectivity can be observed when the stimulus was delivered on two 

different sites. The first site, Target 1, is on the greater curvature and with a high density of 

longitudinal IMAs and a low density of circular IMAs (Powley et al., 2016). When the stimulus is 

on Target 1, most NTS neurons prefer the stimulation orientation paralleling to longitudinal IMAs. 

The second stimulating site, Target 2, is on the ventral forestomach and with a high density of 

circular IMAs and a low density of longitudinal IMAs (Powley et al., 2016). For Target 2 

stimulation, the preferred orientation of most neurons aligns with the circular IMAs. In summary, 

the preferred stimulation orientation always follows the layout of IMAs, suggesting that the 

activation of IMAs dominates the stimulus-evoked neural activity and is also selective to the 

orientation of stimuli. 

The orientation-selected spiking activity is not evoked by the activation from other sources 

Because stimulating electrodes are placed on the serosal surface of the stomach, the electrical 

current can influence gastric smooth muscle, gastric branches of the vagus nerve, and different 

gastric sensory receptors other than IMAs. Here, we would like to argue that the IMA activation 

dominates the post-stimulus spiking activity in NTS. 

Although the stimulating current can run through gastric smooth muscles, the stimulation 

parameter used in this study may not be sufficient to activate smooth muscles. Activating smooth 

muscles requires the stimulus to have a pulse width longer than 1ms (Du et al., 2009; Li & Chen, 

2010; Tomita, 1966). Given the low pulse width (0.3ms) used in this study, smooth muscle cells 

are unlikely to respond to these stimuli directly.  

The stimulus-evoked activation in gastric vagal branches should not be the primary cause 

of the stimulus-evoked spiking activity in NTS. This conclusion is because the preferred 

stimulation orientation observed in this study (i.e., Target 2 stimulation) is more likely to block 
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the ascending propagation of action potentials along the vagus nerve. This blocking effect is the 

anode blockade, meaning that the stimulus can block the propagation of action potentials across 

the anode. In this study, the anode is on the side of the lesser curvature and in the ascending vagal 

pathway for the preferred orientation of Target 2 stimulation. This anode location makes action 

potentials hard to propagate to the brain. The contradiction between the outcome of stimulus-

evoked vagal nerve activation and our observations suggests that gastric stimuli may not activate 

vagal branches directly. 

We also argue that the spiking activity in NTS is dominated by stimulus-evoked responses 

from IMAs but not other gastric sensory receptors. The key evidence is that the preferred 

stimulation orientation changes with the distribution of IMAs and depends on the layout of IMAs 

(Powley et al., 2016). The varying orientation-selectivity is also independent of distributions from 

other sensory receptors. Therefore, the orientation-selected IMA activation is likely to be the major 

contributor to the stimulus-evoked spiking activity in NTS. 

NTS neurons encodes the orientation of gastric smooth muscle activity 

The orientation-specific electrical stimulation is highly likely to activate IMAs with the 

same orientation. This phenomenon can be utilized to selectively activate IMAs and illustrate how 

NTS neurons encode IMA activation, which represents the orientation of gastric smooth muscle 

activity. By selectively activating the longitudinal and circular IMAs, we observed that a single 

NTS neuron can respond to stimuli on different targets. Specifically, if one NTS neuron responds 

to the 0o stimulus on Target 1 (targeting longitudinal IMAs along the greater curvature), the same 

neuron may still respond to the 270o stimulus on Target 2 (targeting circular IMAs on the ventral 

stomach). This finding suggests that NTS neurons are not grouped based on their receptive fields 

in the stomach or orientations of their receptive IMAs. Instead, single NTS neurons may receive 
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inputs from IMAs at different gastric regions and targeting different orientations, thus integrating 

gastric sensory information from different IMAs at different locations. This integrating strategy is 

likely to be encoded by synaptic connections between the vagus nerve and NTS neurons. It can 

facilitate an overall sensation of gastric volume and promote efficient regulation of the digestive 

process but requiring a small number of neurons. These speculations align with the current 

understanding that individual gastric subnuclei of NTS do not have a precise topographic mapping 

of the stomach but receive and process both chemo and mechanical inputs parallelly, such that the 

vago-vagal reflex can be executed efficiently (Rogers et al., 1995; Travagli & Anselmi, 2016).  

Although single NTS neurons could encode both longitudinal and circular IMAs, smooth 

muscle activity in longitudinal and circular directions might modulate the neural activity 

differently. Our result reveals that the firing rate of SUA is higher after the stimulus targeting 

longitudinal IMAs on the greater curvature than that targeting circular IMAs on the ventral 

stomach, suggesting that smooth muscle activity in the longitudinal directions have a more 

substantial impact on neural activity in NTS. Also, given the observation in PSTHs, stimulating 

longitudinal IMAs can evoke stronger neural activity within 60ms after the stimulus, while 

stimulating circular IMAs can evoke more vigorous neural activity after 60ms. Taken together, we 

presume that NTS neurons respond to gastric smooth muscle activity stronger and faster in the 

longitudinal direction and weaker and slower in the circular direction. This conclusion is in line 

with the volume changes of the forestomach. The forestomach has more distortion in the 

longitudinal direction than circular direction during volume changes (Schulze-Delrieu, 1983). 

Activity of the longitudinal IMAs can be a better indicator of gastric volume, while circular IMAs 

may play a facilitating role in sensing the stomach volume. 
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The clinical significance of the study 

This study focuses on a new GES strategy, targeting a specific type of vagal terminals on 

the stomach, the IMA. This strategy requires the electrical current to run in a specific orientation 

based on the morphology and layout of targeted IMAs. With the carefully designed orientation, 

NTS neurons can effectively respond to stimuli innervated by prior-chosen IMAs. For example, 

the stimulation can be designed in the longitudinal direction and pointing to the proximal stomach 

if we need to activate longitudinal IMAs. Similarly, the stimulation should be in the circular 

direction and point to the greater curvature if circular IMAs are stimulating targets. This 

phenomenon is likely to make GES selective in activating IMAs and modulating spiking activity 

in NTS. In other words, the orientation-selected IMA activation sheds light on the precision control 

of GES. 

Another potentially beneficial phenomenon is that single NTS neurons might respond to 

stimuli in various gastric regions. This observation indicates that a single-target stimulation is 

likely to modulate NTS neurons innervating different IMAs at different regions, thus achieving 

modulatory effects similar to the multi-target stimulation. In other words, instead of implanting 

multiple electrodes and delivering GES on multiple targets, a well-designed single-target 

stimulation has the potential to provide a comparable modulatory effect. This widespread 

stimulating effect could benefit clinical applications of GES since it can achieve sufficient 

responses and require fewer electrodes. Therefore, the proposed orientation-specific stimulation is 

propitious for clinical applications in various aspects. 

It is also worth noting that stimulation targets in this study are not commonly used in 

clinical settings. The commonly used GES targets are within the corpus or antrum (Abell et al., 

2003; Hasler, 2009). This choice can be traced back to early GES studies in the 1960s using direct 
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current (DC) for pacing gastric contractions (Kelly & La Force, 1972). Although yielding efficient 

modulatory effects, the DC stimulation has not been widely used due to its high-power 

consumption (Hasler, 2009; Yin, & Chen, 2008). Nowadays, given the new GES hypothesis 

involving the gut-brain neuroaxis, it is of interest to reconsider the stimulation target. New targets 

can be defined according to the anatomical distribution of gastric receptors innervating the brain 

and sensory neurons in the enteric nervous system. 

Future steps 

This study reveals that GES with specific orientation may activate IMAs and further 

modulate spiking activity in NTS neurons. Going beyond this study, it is of interest to compare the 

effect of electrical stimulation with gastric distention, which is a well-studied model for gastric 

volume changes (Carmagnola et al., 2005). The comparison between electrical and volumetric 

modulation will describe the similarity between the two in modulating IMAs and help design 

optimal stimulation paradigms for GES to activate NTS neurons and engage the stomach-brain 

neuroaxis efficiently. 
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Chapter 3 Gastric Electrical Stimulation Drives Fast and Strong fMRI Activity in the 
Brain 2 

Summary 

Functional magnetic resonance imaging (fMRI) is commonly thought to be too slow to 

capture any neural dynamics faster than 0.1 Hz. However, recent findings demonstrate the 

feasibility of detecting fMRI activity at higher frequencies beyond 0.2 Hz, whereas the origin, 

reliability, and generalizability of fast fMRI responses are under debate and remain to be confirmed 

through animal experiments with fMRI and invasive electrophysiology. Here, we acquired single-

echo and multi-echo fMRI, as well as local field potentials, from anesthetized rat brains given 

gastric electrical stimulation modulated at 0.2, 0.4 and 0.8 Hz. Such gastric stimuli could drive 

widespread fMRI responses at corresponding frequencies from the somatosensory and cingulate 

cortices. Such fast fMRI responses were linearly dependent on echo times and thus indicative of 

blood oxygenation level dependent nature (BOLD). Local field potentials recorded during the 

same gastric stimuli revealed transient and phase-locked broadband neural responses, preceding 

the fMRI responses by as short as 0.5 sec. Taken together, these results suggest that gastric 

stimulation can drive widespread and rapid fMRI responses of BOLD and neural origin, lending 

support to the feasibility of using fMRI to detect rapid changes in neural activity up to 0.8 Hz. 

 
 
2 Formatted for dissertation from the article published in NeuroImage. (Cao et al., 2019) 
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Introduction 

Functional magnetic resonance imaging (fMRI) detects the blood oxygenation level 

dependent (BOLD) signal (Ogawa et al., 1990a, b) as a surrogate measure of neural activity 

(Bandettini et al. 1992; Kwong et al. 1992; Ogawa et al. 1992). Despite its wide use for cognitive 

sciences, fMRI is commonly recognized to only be sensitive to very slow (<0.2 Hz) fluctuations 

in neural activity. Faster neural signals are left undetected due to slow image acquisition and/or 

slow neurovascular coupling. As technical advances enable fMRI acquisition at increasingly 

higher sampling rates (<1 s), the bandwidth of the neural activity detectable by fMRI is primarily 

limited by the mechanism by which neural activity induces hemodynamic changes. Recent studies 

with fast sampling for fMRI have shown that the BOLD response can follow changes in neural 

activity as fast as 0.75 Hz (or even higher) either in the resting state (Lee et al., 2013) or given 

visual stimulation (Lewis et al., 2016, 2018). Although encouraging, the fast fMRI responses 

reported in those studies are barely above the noise level and maybe susceptible to artifacts from 

data acquisition or processing (Chen et al., 2017; Glover et al., 2000; LeVan et al., 2017). It 

remains controversial whether fast (>0.2Hz) fMRI responses are reliable across brain regions or 

states, or indeed indicative of neural activity. Addressing these questions is necessary for proper 

interpretation of relatively high-frequency fMRI signals in a broader range of imaging studies for 

cognitive and psychological sciences.   

Here, we cast these questions in a new scenario - when the brain responds to electrical 

stimulation applied to the gut. The gut, unlike any other organ-system, contains the enteric nervous 

system (ENS) with complete neural circuits for complex and reflexive control of the digestive 

system (Furness and Stebbing, 2018). Being often referred to the “second brain”, the ENS interacts 

with the central nervous system (CNS) through reciprocal gut-brain communications, which 
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maintains gastrointestinal homeostasis and regulates emotion, motivation and intuition (or crudely 

coined as “gut feelings”) (Farmer et al., 2018; Naliboff et al., 2006; Mayer, 2011). As such, the 

gut-brain interaction is continuous and spontaneous to affect neural activity in CNS, regardless of 

the behavioral or cognitive state (Rebollo et al., 2018). Stimulating the gut can modulate a variety 

of CNS functions, including autonomic control, motivation and reward, emotional arousal, and 

affective behaviors (Mayer et al., 2009; Al Omran and Aziz, 2014). Thus, the gut is an intrinsic 

source of fluctuation that in part drives the brain’s spontaneous activity, and a potent target for 

visceral stimulation that may drive widespread neural responses across sensory, emotional, 

cognitive, and affective systems (Tillisch et al., 2018).  

Furthermore, sensory information about the gut is encoded by afferent neurons, endocrine 

cells, or immune cells, and is transmitted to the brain through cranial nerves or circulating 

bloodstream (Furness et al., 2013). Neuronal signaling travels through peripheral vagal and spinal 

nerves and continues through central pathways, allowing the gut to rapidly communicate with the 

brain (Powley et al., 2011, 2014, 2015). Endocrine or immune-related signaling is relatively slower, 

since it primarily relies on systematic circulation (Psichas et al., 2015). These mechanisms of 

brain-gut interaction impose distinctive time scales, from milliseconds to seconds to minutes or 

even longer, by which the brain may respond to sensory or nutritional stimuli applied to the gut. 

Separating the gut-induced fMRI activity in frequency (reversely related to time scale) holds the 

potential to disentangle the CNS signature of gastric sensation transmitted through different 

mechanisms. We speculate that high-frequency responses arise from neuronal signaling, whereas 

low-frequency responses arise from endocrine or immune-related signaling.  

Additionally, with the recent upsurge in attempts to identify optimal locations for 

electroceutical interventions for visceral disorders, considerable effort has been directed towards 
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comparing stimulation at different sites along nerves and in target tissues to locate particular loci 

for stimulation that maximize on-target effects and minimize off-target side effects.  In the case of 

stomach disorders, local stimulation on the stomach wall is an obvious candidate, though 

conceivably such manipulations may be “too close” to the target.  Specifically, local gastric 

stimulation might not only engage vagovagal reflex, but also, concomitantly, have unintended 

consequences involving other visceral afferent or sympathetic effects.  Determinations of the 

central consequences of stimulation at particular sites are an obvious means of assessing the neural 

consequences of electroceutical manipulations. 

The above considerations motivated us to investigate the frequency characteristics of the 

fMRI response to gastric stimulation. We focused on pushing the upper limit of the fMRI-

detectable response spectrum, given our primary interest of probing the brain response to vagal or 

spinal neuronal input arising from the stomach. Specifically, we used anesthetized rats as a model 

for in vivo fMRI, gastric stimulation and neural recording. Gastric electrical stimulation (GES) 

was applied to the forestomach wall at a site known to be densely innervated by vagal sensory 

terminals that relay sensory information from the gut to the brain (Powley et al., 2016). When GES 

was modulated periodically with an increasing frequency (ranging from 0.2 to 0.8 Hz), the 

resulting fMRI and neural responses were recorded in separate sessions and analyzed for 

comparison. The data were used to address the following questions: 1) could GES evoke reliable 

fast (>0.2 Hz) fMRI responses in the brain; 2) if yes, were the evoked responses BOLD; 3) if 

further yes, what was the neurophysiological correlate to the response.  
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Materials and Methods  

Subjects 

A total of 14 Sprague–Dawley rats (male, weight: 250-400g; Envigo RMS, Indianapolis, 

IN) were used according to a protocol approved by the Purdue Animal Care and Use Committee 

(PACUC) and the Laboratory Animal Program (LAP). All animals were housed in a strictly 

controlled environment (temperature: 21±1°C; 12 h light-dark cycle with lights on at 6:00 AM and 

off at 6:00 PM). All animals were electrically stimulated at the forestomach, during which nine 

animals were scanned for fMRI and the other five animals were recorded for neural signals. In 

fMRI experiments, all of the nine animals went through single-echo EPI acquisition, eight of them 

went through multi-echo EPI acquisition.  

Surgical implantation of stimulating electrodes 

All animals underwent an abdominal surgery for implantation of a patch electrode on the 

forestomach.  Each animal was briefly anesthetized with 5% isoflurane for 5 minutes, followed by 

2% isoflurane to maintain a surgical plane of anesthesia. Following a toe-pinch test, a ~3 cm 

incision was made starting at 1 cm caudal to the xiphoid and moving 3 cm caudally. After 

separating and retracting the skin and muscle layers, the ventral stomach was exposed such that 

the intersection of the greater curvature and the limiting ridge could be identified. A pair of 

electrodes (Microprobes, Gaithersburg, MD, USA), which consisted of Pt/Ir foils adhered to a thin 

perylene substrate (a rectangular shape of 4mm-by-2mm size and 0.015 mm thickness), was 

directly sutured onto the forestomach wall. This patch electrode was placed along the greater 

curvature at about 4mm proximal to the limiting ridge (see Figure 3-1A). Next, the muscle and 

skin layers at the incision site were closed with sutures. The leads of the implanted electrodes were 

either routed out of the abdomen (for acute experiments with neural recording) or were tunneled 
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subcutaneously to the back (for chronic experiments with fMRI). The animals that underwent 

chronic experiments were allowed at least 1 week for post-surgical recovery. To minimize pain 

and inflammatory responses after the surgery, all animals were given Baytril (BioServ, Flemington, 

NJ) (one tablet per day, 2 mg/Tablet) two days before the surgery and buprenorphine hydrochloride 

(0.01 mg/kg, subcutaneous) immediately before the surgery. Then, they were given 

Baytril/Rimadyl (BioServ, Flemington, NJ) (one tablet per day, 2 mg/Tablet for Baytril and 

Rimadyl) for the first three days after the surgery and then were given Baytril (one tablet per day, 

2 mg/Tablet) for the following three days.  

Gastric electrical stimulation 

For GES, the electrodes were connected to a current stimulator (model 2200, A-M Systems 

Inc, Sequim, WA, USA). The stimulator was controlled by an in-house program developed in 

MATLAB (Mathworks, Massachusetts, USA) and a Data Acquisition (DAQ) device (National 

Instruments, Austin, TX, USA). During fMRI experiments, the stimulator was placed outside of 

the MRI room and was connected to the animal through a twisted-wire cable.  

As illustrated in Figure 3-1, gastric stimuli were delivered with a “nested block-design” 

paradigm. In a longer temporal scale, the paradigm included 30s STIM periods alternating with 

30s REST periods. Stimuli were only delivered in every STIM period, whereas no stimulus was 

delivered in any REST period. However, stimuli were not continuous during each STIM period; 

instead, they were delivered as stimulus trains modulated by a periodic ON-and-OFF pattern. For 

example, a 2s-ON-3s-OFF pattern means that a 2s train of stimuli was delivered every 5s; in other 

words, the stimuli were modulated at 0.2Hz. In this study, stimuli were modulated in three periodic 

patterns: 2s-ON-3s-OFF, 1s-ON-1.5s-OFF, 0.5s-ON-0.75s-OFF, corresponding to 0.2, 0.4, and 

0.8Hz of modulation, respectively. Each stimulus was a pair of charge-balanced biphasic pulses 
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(i.e., two pulses with opposite polarity). The pulse width was 0.3ms and the pulse amplitude was 

6mA. The inter-stimulus interval was 50ms.  

 
Figure 3-1 Schematics of experiment design. Panel A shows the implantation procedure of the 
patch electrode. The electrode was implanted on the forestomach, aligning with the great 
curvature, and centered about the limiting ridge. The electrode had two contacts. Panel B 
describes the stimulation paradigm used for fast modulation. Every imaging session included ten 
30s-STIM-30s-REST blocks. The fast modulation only occurred during the 30s-STIM period. 
Three modulatory frequencies were delivered during the 20s-STIM period: 0.2 Hz (2s-ON-3s-
OFF), 0.4 Hz (1s-OF-1.5s-OFF), and 0.8 Hz (0.5s-ON-0.75s-OFF). The bipolar rectangular pulse 
was applied during the stimulation ON block (pulse width: 0.3ms, current: 6mA, inter-pulse 
interval: 50 ms). 

 
In each experimental session, the 30s-STIM-30s-REST pattern was repeated for 10 cycles, 

starting with a 20s rest period and lasted 620s in total; stimuli were modulated by the same 

frequency for every STIM period in the same session. For the fMRI experiment, every frequency 

setting was used for six sessions per animal, of which three sessions were used for single-echo 

fMRI and the other three for multi-echo fMRI (see MRI and fMRI Acquisition). For the 

electrophysiological experiment, one session was sufficient for each frequency setting since neural 

signals have higher signal-to-noise ratios than fMRI signals. 
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This paradigm was designed with our intention to balance multiple considerations. In the 

longer temporal scale, the 30s-STIM-30-REST pattern was used because it allowed us to average 

the fMRI response across multiple STIM periods. The averaged response had a higher signal-to-

noise ratio, readily allowing us to evaluate its temporal characteristics by visual inspection and its 

spectral characteristics by Fourier analysis. In the shorter temporal scale, the periodic ON-and-

OFF pattern used a similar duration for ON vs. OFF and formed a square wave with a 40% duty 

cycle. Such a square wave was intended to approximate a sinusoidal waveform, which would be 

ideal for driving the fMRI response to fluctuate at a single frequency, if this frequency is within 

the detectable bandwidth of fMRI. In practice, the square-wave modulation was much easier to 

implement than a sinusoidal modulation and provided sufficient frequency specificity. Moreover, 

the ON-and-OFF pattern was intentionally designed to keep the same number of stimuli during the 

entire 30s STIM period, regardless of the frequency (0.2, 0.4, 0.8Hz) of modulation. The varying 

frequency only affected how the stimuli were distributed in time, whereas it did not change the 

average or total number of stimuli delivered in every 5, 10, 15, 20, 25, 30s. In other words, the 

dose of stimulation was kept constant across various frequency settings, allowing us to focus our 

analysis on the effect of the modulating frequency.  

MRI data acquisition 

The MRI and fMRI data were acquired with a 7-tesla small-animal MRI system (BioSpec 

70/30, Bruker, Billerica, MA, USA) using an imaging protocol adopted from our previous study 

(Cao et al., 2017). Each animal was initially anesthetized with 5% isoflurane. After the animal was 

setup in the MRI scanner and placed in a prone position, 2-3% isoflurane mixed with oxygen was 

delivered to the animal through a nose cone. The head was restricted with a bite bar and two ear 

bars to avoid head motion. A bolus of dexdomitor (15 µg/Kg, Zoetis, NJ, USA) was then 
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administered subcutaneously. The dose of isoflurane was then lowered to 0.1-0.5% as soon as the 

animal’s heart rate and respiration started to drop. About 15 to 20 minutes following the bolus 

injection, subcutaneous infusion of dexdomitor was administered at 15 µg/Kg/h, during which the 

isoflurane was maintained at 0.1-0.5%. The dose of dexdomitor was adjusted slightly every hour 

as needed to stabilize the animal’s physiology. Respiration rate, heart rate, body temperature, and 

oxygen saturation level (SpO2) were monitored in real-time and maintained throughout the 

experiment: respiratory rate from 30 to 70 breaths per minute, heart rate from 250 to 350 beats per 

minute, body temperature at 37 ± 0.5 °C, and SpO2 >96%.  

A volume coil (86 mm inner diameter) and a 4-channel surface coil were respectively used 

as the transmitter and receiver for image acquisition. After the localizer scans, T2-weighted 

anatomical images were acquired using a rapid acquisition with relaxation enhancement (RARE) 

sequence with repetition time (TR)=5804.6 s, effective echo time (TE)=32.5 ms, echo 

spacing=10.83 ms, voxel size=0.125×0.125×0.5mm3, RARE factor=8, and flip angle (FA)=90°.  

Following the anatomical scan, T2*-weighted fMRI images were acquired with a 2-D 

single-shot gradient-echo (GE) echo-planar imaging (EPI) sequence with TE=16.5 ms, in-plane 

resolution=0.5×0.5 mm2. The slice number, slice thickness, TR, and FA were set differently 

according to different stimulation frequencies to ensure that the fMRI acquisition was fast enough 

to capture the evoked response as the stimuli were modulated at an increasing frequency. 

Specifically, when GES stimuli were modulated at 0.2 or 0.4 Hz, TR=0.5 s, FA=45°, and slice 

thickness=1mm; when the stimuli were delivered at 0.8 Hz, TR=0.25 s, FA=33°, and slice 

thickness=1.5mm. In addition, multi-slice, multi-echo GE-EPI was performed to acquire fMRI 

images at four different echo times (10, 23.5, 37, 50.5 ms) with TR=0.5 s, FA=45°, in-plane 

resolution=0.5×0.5 mm2, and slice thickness=1.5 mm.  
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fMRI preprocessing 

The MRI/fMRI data were processed using FSL (Jenkinson, et al., 2012), AFNI (Cox, 1996), 

and in-house software developed in MATLAB. For single-echo fMRI data, head motion was first 

corrected by co-registering every volume to the first volume within each session (3dvolreg). Next, 

the slice timing in each volume was corrected (slicetimer). The fMRI images were then aligned 

with the anatomical images (flirt) and were further registered to a rat brain atlas (fnirt) (Valdes 

Hernandez et al., 2011). The fMRI data were spatially smoothed with a 3-D Gaussian kernel of 

0.5-mm full-width-at-half maximum and were temporally detrended.  

The preprocessing of multi-echo fMRI data was similar to that of single-echo fMRI. Image 

co-registration for motion correction and normalization to the atlas were based on the 

linear/nonlinear transformation functions estimated from the images acquired with TE=10ms, 

whereas the same functions were applied to images at other echo times. As such, the images at 

different TEs were all co-registered within and across sessions and animals.   

Mapping fast fMRI responses 

Following the preprocessing, we mapped the brain regions activated with gastric stimuli 

modulated at 0.2, 0.4 or 0.8 Hz. The analysis was done in three different levels: independent 

component, region of interest (ROI), and single voxel. Briefly, independent component analysis 

(ICA) was used to identify spatially independent functional networks in a data driven manner. This 

analysis aimed to address whether the temporal fluctuation of each identified “network” was able 

to follow a response pattern at the same frequency as was GES modulated. Similarly, the time 

series, either extracted from a single voxel or averaged across voxels within a pre-defined ROI, 

was evaluated and tested for frequency-specific fast fMRI response.   
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For the component-wise analysis, the fMRI data were separated by different frequency 

settings (i.e., 0.2, 0.4, and 0.8 Hz). For each setting, the voxel-wise time series was first demeaned 

and standardized to unit variance within every session, and then were concatenated across all 

sessions and animals. Infomax ICA (Bell and Sejnowski, 1995) was used to decompose the 

concatenated data into 40 spatially independent components (ICs). For each IC, the spatial 

distribution revealed a voxel pattern and shown as IC weights, and the temporal pattern reported 

the dynamics of that voxel pattern over the duration concatenated across all sessions and animals. 

To highlight the network (or regions) represented by each IC, its spatial pattern was thresholded 

based on the method described in (Beckmann and Smith, 2004). In brief, a two-Gaussian mixture 

distribution was modeled on the Z-statistics of each IC map: one Gaussian model representing the 

noise, the other representing the signal. The threshold was selected such that for each voxel, the 

probability of being a signal was as least three times higher than being noise.  

The component-wise signal was further segmented based on the onset of each STIM period, 

i.e. the 30-s pulse trains modulated at a specific frequency. Specifically, each segment lasted 27.5 

s, starting from 2.5 s after the onset of a STIM period (to avoid the period of transient effects) and 

ending at the offset of the same STIM period. After subtracting the mean from the signal within 

each segment, we averaged the signal across segments for each animal. As a result, the averaged 

signal indicated the animal-wise activity of each IC in response to the gastric stimuli. We further 

tested for each IC whether its averaged response showed an oscillatory pattern at the specific 

frequency as the frequency of gastric modulation, as later described in detail.  

In the voxel-wise analysis, the signal at each voxel was divided by its mean during each 

session and was represented in terms of percentage change. Then the voxel time series were 

separated into 27.5s segments based on the onset and duration of every STIM period (as described 
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in the preceding paragraph). The segmented data were further averaged across segments, yielding 

the voxel-wise evoked response separately for each animal and each frequency setting.  

In the ROI-wise analysis, multiple anatomical regions (the insula, cingulate cortex, 

somatosensory cortex, motor cortex, and thalamus), as predefined in the rat brain atlas (Papp et al., 

2014; Valdes Hernandez et al., 2011), were selected because they are presumably involved in 

brain-gut interaction (e.g., Mayer, 2011; Tillisch et al., 2018). The voxel-wise signal was converted 

to and represented as the percentage change signal and then averaged across voxels within each 

ROI. Then for each ROI, the time series was segmented and averaged across repeated STIM 

periods.  

It should be noted that the component, region, or voxel-wise time series signal was not 

filtered either before or after being averaged across repeated 30s STIM periods. For each 

component, region, or voxel of interest, the power spectral density of the evoked response was 

analyzed to evaluate the frequency specificity of the observed response. 

A linear regression model was used to test the significance of the fast-fMRI response 

extracted from each component, ROI, or voxel. Specifically, a linear regression model was defined 

as a weighted sum of a sine signal and a cosine signal, both oscillating at the same frequency by 

which the stimuli were modulated. The weights (or regression coefficients) were estimated by least 

squares estimation (LSE). The F statistic was calculated and converted to a z statistic (fift_t2z in 

AFNI), indicative of how well the model fitted the time series. The regression model was applied 

to the averaged time series extracted from each component, ROI, or voxel, separately for each 

animal. Then, a random-effects group analysis was performed by applying one-sample t-test to the 

z values obtained from every animal. For the component analysis, the statistical significance was 

evaluated based on the t statistic with false discovery rate q<0.01. For the ROI-level analyses, the 
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statistical significance was evaluated based on the t statistic with p<0.05. For the voxel-wise 

analysis, the statistical significance was based on the t statistic with p<0.05, and a cluster-wise 

significance level p<0.05 with cluster size >10 mm3 by using 3dClustSim in AFNI (Cox et al., 

2017). For those significantly activated voxels, we further averaged the voxel response to every 

cycle of stimuli and measured the peak-to-peak response amplitude in terms of percentage change. 

Multi-echo ICA 

It is established that the relative BOLD response is a linear function of echo time (TE) 

(Peltier and Noll, 2002). If an fMRI response is BOLD, it should depend linearly on TE; otherwise, 

it is unlikely to reflect any change in neural activity. Following this notion, we applied ICA to 

multi-echo fMRI data, as described in previous studies (Evan et al., 2015; Kundu et al., 2012, 

2014), to evaluate the TE dependence of the GES-evoked fMRI response. 

Specifically, TE was treated as the fourth spatial variable. In the spatial domain, the fMRI 

data at four different TEs were concatenated to expand the spatial dimension by four times. In the 

time domain, the data from different sessions and animals were concatenated after the voxel time 

series was demeaned and standardized to unit variance separately for each session. Spatially ICA 

was then applied to the concatenated data. Each of the resulting ICs was characterized by a spatial 

pattern and a time series over the duration concatenated over all sessions and animals. The time 

series was used to determine whether or not each IC was activated by GES modulated at a specific 

frequency (e.g., 0.2, 0.4, or 0.8 Hz) based on the same single-subject and group-level analyses as 

for single-echo fMRI data. The spatial pattern was used to map the activated regions and to assess 

the response dependence on TE. Specifically, the spatial pattern of each IC was separated into four 

maps, each corresponding to a specific TE. For each TE-specific IC map, the value of each voxel 

was converted to 𝛥𝑆/𝑆  by multiplying a factor, which indicated the ratio of the standard deviation 
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to the mean of the original voxel time series before it was demeaned and standardized for ICA. 

The values (𝛥𝑆/𝑆) of all voxels were averaged and weighted by the Fisher transformed component 

weights for each TE-specific IC. The component-wise 𝛥𝑆/𝑆  was modeled as a linear function of 

TE, as Equation 3-1 

𝛥𝑆/𝑆 = −𝛥𝑅'∗ × 𝑇𝐸    Equation 3-1 

where 𝛥𝑅'∗  was estimated by using least squares estimation and indicated the change in 

susceptibility-weighted transverse relaxation time. The goodness-of-fit of this model was 

evaluated for statistical significance based on the F statistic with p<0.05.  

Neural data acquisition and analysis 

Five animals were prepared for acute neural recording immediately after a patch electrode 

was implanted to the forestomach. Each animal underwent a cranial surgery for a 32-channel linear 

electrode array (NeuroNexus Technologies, Ann Arbor, MI, USA) to be inserted into the right 

primary somatosensory cortex at a site that represents the forelimb (S1FL). Specifically, the 

animal’s head was secured in the stereotaxic frame (Stoelting Co, Wood Dale, IL, USA). After 

adequate anesthesia/analgesia (2-3% isoflurane) was ensured, a midline incision was made through 

the scalp. Right S1FL was localized as anterior-posterior=0mm, medial-lateral=3.9mm relative to 

the bregma; from there, a 3x3mm2 window through the skull was drilled. The recording electrode 

was inserted through the window by ~2 mm in depth. Micro-screws were secured above the 

olfactory bulb and were used as reference and ground. The recording electrode was connected to 

a broadband recording system (Tucker Davis Technologies, Alachua, FL, USA) that amplified and 

digitized (at 25 kHz) the voltage between the recording site and the reference site (i.e. a micro-

screw secured over the olfactory bulb). The electrode localization was initially guided by the 
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stereotaxic frame and was then finalized on the basis of observable responses to electric stimuli 

applied to the left forepaw. 

Following the implantation, the animal was switched to a low-dose anesthesia with 

continuous administration of 0.1-0.5% isoflurane and subcutaneous infusion of dexdomitor at 15 

µg/Kg/h, keeping the same kind and dose of anesthesia as in fMRI experiments. Neural signals 

were recorded from S1FL while the forestomach was stimulated using the protocols described in 

the previous subsection (see Gastric Electrical Stimulation).  

The local field potential (LFP) was processed using in-house software developed in 

MATLAB. Firstly, stimulation artifacts were identified and removed; the removed data points 

were recreated by linear interpolation from the neighboring artifact-free data points. To visualize 

the GES evoked potentials over the periodically occurring ON-OFF blocks, the recorded LFP was 

segmented based on the onset/offset of every STIM period, starting from 1s before the onset of the 

STIM period and ending at 10 s following the offset of the STIM period. The segmented signals 

were averaged across segments. We also obtained the GES-evoked potential over a shorter 

duration corresponding to the stimulus train during a single ON block within the STIM period. To 

do so, the evoked potential over the longer (30s) STIM period was further segmented based on the 

onset of every ON block. A segment was defined from 0.1s before the onset of a ON block, 

included the duration of the ON block, and as well as the duration of the subsequent OFF block. 

As such, every segment covered a single cycle of the ON-OFF alternation and lasted 5s, 2.5s or 

1.25s for 0.2, 0.4, and 0.8 Hz of gastric modulation, respectively. From the segmented LFP signal 

was subtracted the pre-stimulus baseline, i.e. the average amplitude during the pre-stimulus period. 

Then the signal was averaged across all the segments with the same frequency setting, yielding the 

GES evoked potential. The evoked potential was evaluated separately for different frequency 
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settings and different animals and was further averaged across animals. Note that no filtering was 

applied in order for us to focus on the broadband neural response, while avoiding any oscillation 

that would be otherwise artificially generated by bandpass filtering.  

Results  

We sought to answer whether fMRI could report relatively fast (> 0.2 Hz) modulation of 

neural responses to gastric stimulation. To address this question, the forestomach was electrically 

stimulated through a patch electrode chronically implanted along the greater curvature in 9 rats 

(Figure 3-1A). This gastric electrical stimulation was switched ON and OFF, effectively 

modulating the stomach at 0.2, 0.4, and 0.8 Hz for 30s followed by 30s of rest. While alternating 

this pattern for 10 cycles (Figure 3-1B), the brain was continuously scanned for fMRI by using 

either single-echo or multi-echo EPI.   

Gastric stimuli induced fast fMRI responses 

The fast-fMRI responses were examined at three different levels: spatially independent 

components, predefined anatomical ROIs, and single voxels. In the component level, ICA was 

applied separately to the whole-brain fMRI data acquired with different frequencies (0.2, 0.4 and 

0.8Hz) of gastric modulation. As shown in Figure 3-2, 6 out of 40 ICs were activated at 0.2 Hz 

(FDR q<0.01), 3 out of 40 ICs were activated at 0.4 Hz (FDR q<0.01), and 4 out of 40 ICs were 

activated at 0.8 Hz (uncorrected p<0.01). Across the three frequency conditions, the activated 

components overlapped with the somatosensory cortex, motor cortex, cingulate cortex, visual 

cortex, auditory cortex, parietal association cortex, and thalamus. In particular, a large part of the 

somatosensory cortex was activated at all three frequency conditions.  
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Figure 3-2 Independent component (IC) time series shows fast fMRI fluctuation. The 
components with fast fMRI activity are presented in the figure. The time traces are the average 



 61 

time series of corresponding ICs. The statistical values are labeled for each component. For 0.2Hz 
modulation, 6 components had significant fast fMRI response (false discover rate q<0.01), 
including the visual cortex, primary and secondary somatosensory cortex, secondary motor cortex, 
auditory cortex, parietal association cortex, and cerebellum. For 0.4Hz modulation, 3 components 
had significant fast fMRI response (false discover rate q<0.01), including the primary 
somatosensory cortex, cingulate cortex, hypothalamus. For 0.8Hz modulation, 4 components were 
found to contain fast fMRI response (uncorrected p<0.01), including the primary somatosensory 
cortex (left and right side, short for L and R), piriform cortex, and auditory cortex. 

 

As a result of data-driven component analysis, the activated components were found to be 

not precisely confined into predefined anatomical partitions. In a complementary ROI-level 

analysis, we examined the fMRI signal within anatomically predefined ROIs, including the 

somatosensory cortex, cingulate cortex, motor cortex, insular cortex, and thalamus, all of which 

have been shown or hypothesized to be directly or indirectly involved in communication with the 

gut (Mayer, 2011; Tillisch et al., 2018). The response time series averaged within each ROI 

showed a varying degree of oscillation at the same frequency as that of gastric modulation (Figure 

3-3).  The selected ROIs all showed notable oscillations at 0.2 Hz; the somatosensory cortex, 

cingulate cortex, motor cortex showed apparent oscillations at 0.4 Hz; the somatosensory cortex 

and cingulate cortex showed discernable oscillations even at 0.8 Hz. The power spectral density 

further confirmed the specificity to the frequency of gastric modulation, especially at 0.2 and 0.4Hz.  
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Figure 3-3 Network exhibits fast fMRI fluctuation. The time series of percentage change in fast-
BOLD response are presented for each anatomical region of interest. The regions of interest 
include the somatosensory cortex, motor cortex, thalamus, cingulate cortex, and insula. The mask 
used to define each region of interest is shown in yellow (see both axial and coronal views). The 
time series of percentage change are shown on the right for each frequency condition (i.e. 0.2, 0.4, 
and 0.8Hz). The time series are marked with * if the fMRI signal follows the fast-modulation 
(p<0.05). The power spectrum density (PSD) averaged across all regions of interest is displayed 
at the bottom right separately for each frequency condition. The frequency of interest is highlighted 
with a red circle. 
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In addition, the voxel-wise analysis further confirmed the above finding with single-voxel 

resolution. Figure 3-4 shows the voxels that were significantly activated (cluster-wise p<0.05) 

given gastric modulation at 0.2 to 0.8 Hz. The fast-fMRI signal was mainly found in the 

somatosensory cortex, marginally present in the motor, visual, auditory, cingulate, parietal 

association cortex, as well as hippocampus, and thalamus. In response to a single train of gastric 

stimuli, the response amplitude (%) tended to be relatively lower at a relatively higher frequency. 

For example, the primary somatosensory cortex showed the peak-to-peak amplitude as high as 

0.89% at 0.2 Hz, 0.8% at 0.4 Hz, or 0.33% at 0.8 Hz.  

 
Figure 3-4 Percentage change of the fast-BOLD response. Panel A-C show the percentage 
change maps that correspond to the 3 modulatory frequency conditions. The areas that exhibited 
significant fast-BOLD response are predominantly the primary somatosensory cortex and 
cingulate cortex. As the modulatory frequency increases, fewer regions could respond to the fast 
stimulation. Panel D shows example response time series from four selected voxels in the primary 
somatosensory cortex forelimb region (S1FL). The selected voxels are marked with a small box 
and labeled ROI.  Panel E shows the averaged power spectrum density (PSD) in the responsive 
regions within each frequency condition. The frequency of interest is highlighted with a red circle. 
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Fast fMRI responses were BOLD 

We further asked whether the GES-evoked fast responses were blood oxygenation level 

dependent (BOLD) and thus likely of a neural origin. To address this question, we acquired multi-

echo EPI data and evaluated the TE-dependence of the GES-evoked response. Specifically, the 

relative response amplitude (DS/S) was evaluated as a function of echo time (TE=10, 23.5, 37, 

50.5 ms), separately for each IC obtained with multi-echo ICA (Kundu et al., 2012, 2014; Evan et 

al., 2015). As shown in Figure 3-5, when gastric stimuli were modulated at 0.4 Hz, 8 out of 40 ICs 

were found to be activated, showing an oscillatory response pattern at 0.4 Hz. For each of these 8 

ICs, the relative response amplitude (DS/S) was linearly dependent on the echo time (Figure 3-5, 

F-test, p<0.05), a signature indicative of the BOLD response (Kundu et al., 2012; Peltier and Noll, 

2002).  
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Figure 3-5 Fast fMRI response is echo-time dependent. Multi-echo independent component 
analysis was used to test the echo-time dependence of the observed fast fMRI response. The 
activation maps and time series of eight independent components containing fast fMRI fluctuation 
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are shown. These components include the primary and secondary somatosensory cortex (S1 & S2), 
cingulate cortex (Cing), hippocampus (Hipp), striatum (Stria), piriform cortex (Pir), visual cortex 
(V1), and insular cortex (IC). The map of each component is presented as the ∆S/S under different 
echo times (10, 23.5, 37, 50.5 ms), and the time series has unit variance. The linear relationship 
between the echo time and %∆S/S is also presented for each component. The grey curves represent 
results from individual fMRI sessions, and the dark line shows the overall echo-time dependency. 

 

Neural response to gastric stimuli 

To confirm the neural origin of the observed fast BOLD responses, we recorded LFP from 

the primary somatosensory cortex in five animals under gastric stimuli modulated in the same way 

as in the fMRI experiment. We chose the somatosensory cortex because it was most reliably 

activated with gastric stimuli modulated at all three frequencies: 0.2, 0.4, and 0.8 Hz. Specifically, 

the electrode was inserted to the left S1FL, the cortical area representing the left forepaw, which 

was confirmed based on observable neural responses to electrical stimuli applied to the left 

forepaw. From the recorded signals, we extracted the evoked responses to periodically modulated 

(at 0.2, 0.4, or 0.8 Hz) gastric stimuli during the entire 30-s STIM period.  

As shown in Figure 3-6A, a train of gastric stimuli only evoked a transient LFP response 

shortly after the beginning of the stimulus train, whereas no LFP response was observed for the 

rest of the stimulus train. Although the LFP response was not phase-locked to every single pulse 

of gastric stimulation, a transient LFP response was observed for every stimulus train. It was phase-

locked to the onset of the stimulus train (or the ON block), reoccurring at the same frequency as 

the stimulus train was turned ON and OFF periodically. In short, the periodically modulated gastric 

stimuli induced periodically occurring transient neural responses in S1FL.  

The transient LFP response were highly consistent across animals. See the gray lines in 

Figure 3-6B for the response in each animal. Whereas the response timing was consistent across 

different frequency settings, the amplitude of the transient LFP response was slightly lower as 
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gastric stimuli were modulated at an increasingly higher frequency: 355±154µV for 0.2Hz; 

312±132µV for 0.4Hz; 227±107µV for 0.8Hz).  

Although they were acquired in separate sessions, we further compared the neural and 

BOLD responses colocalized to S1FL. As shown in Figure 3-6C, the transient (~100ms duration) 

neural response corresponded to a much longer BOLD response, presumably reflecting the 

temporal smoothing due to neurovascular coupling. A greater amplitude in the neural response 

corresponded to a greater amplitude in the BOLD response, as observed across the different 

frequency settings.  

 
Figure 3-6  LFP and BOLD responses to gastric stimuli. Panel A shows the LFP responses at 
S1FL given gastric stimuli modulated at 0.2 Hz during the 30-s STIM block. The dark line shows 
the LFP response averaged across animals. The light gray background indicates the ON period in 
which the stimulus train was delivered. Panel B is a zoomed-in view and shows the evoked LFP 
response during a single ON period. The gray curves represent the response for individual animals. 
The response averaged across animals is shown as the dark curve. The gray background indicates 
the period of the stimulus train. The responses during 2, 1, and 0.5s ON periods correspond to the 
0.2, 0.4, and 0.8Hz modulation of gastric stimuli. In a similar format as B, panel C shows the 
average BOLD responses from S1FL given 0.2, 0.4, and 0.8Hz modulation of gastric stimuli. Scale 
bars are shown to the right. 
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Discussion 

In this study, we investigated the fMRI responses to gastric electrical stimulation in rats. 

We report that rapidly modulated gastric stimuli can drive fast fMRI responses up to 0.8 Hz in 

multiple brain regions, especially the somatosensory cortex. Such fast responses are linearly 

dependent on echo-time and are thus indicative of BOLD changes. The observed fMRI responses 

also accompany transient changes in broadband neural activity and are thus of neural origin. The 

reported findings corroborate that fMRI is capable of capturing higher frequency fluctuations in 

neural activity than is traditionally assumed or utilized. Whereas it is in line with recent studies 

with exteroceptive visual stimulation (Lewis et al., 2016, 2018), the conclusion from this study 

lends support to generalizing the feasibility of detecting fast fMRI response to interoceptive 

visceral stimulation, e.g. gastric electrical stimulation. 

Fast fMRI responses to interoceptive visceral stimuli 

Arguably, if the fast fMRI response could be used more broadly for neuroscience, its 

presence and basis need to be investigated in a broader and more diverse set of conditions, 

including visceral stimulation. It is very unusual to use gastric stimulation in fMRI studies. Gastric 

stimuli drive interoceptive sensory pathways and ascending modulatory pathways. They affect 

many brain regions in ways that are highly different from exteroceptive senses, e.g. vision, hearing, 

touch, taste. Interoceptive neural processes are always active in part for the purpose of maintaining 

homeostasis of the gut or other visceral organs, thereby contributing to spontaneous fluctuations 

of brain activity observed in the resting state (Fox and Raichle, 2007). Gastric stimulation can 

affect emotional, cognitive, and affective systems beyond activations with simple sensory stimuli 

(Van and Aziz, 2009). The profound and broad impact of gastric stimulation on the brain makes it 

a useful paradigm, distinctive from and complementary to existing sensory stimulation paradigms, 
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for investigating the characteristics of the fMRI signal beyond any single system, yet still in a 

controllable manner to address fundamental questions concerning, e.g., the feasibility and basis of 

fast fMRI signals.   

The gut, as a sensory organ, communicates with the brain through fast electrical signals 

along cranial nerves or through slow acting hormones or cytokines circulated in the bloodstream. 

Depending on the mechanism of gut-to-brain signaling, brain responses to gastric sensation, 

whether mechanical or chemical in nature, emerge in a wide range of timescales, ranging from 

milliseconds, seconds, to minutes or even longer. It implies that brain responses arising from 

different signaling pathways (neuronal, endocrine, or immune systems) are likely to manifest 

themselves in distinct and potentially separable frequency ranges. Although this hypothesis 

remains speculative and provisional, identifying the upper limit of the fMRI detectable responses 

to gastric stimuli is a necessary first step towards exploring and utilizing the frequency properties 

to separately characterize gut-brain interactions of different mechanisms.  

This study is focused on fast fMRI responses that occur within a few seconds following 

the modulation of gastric stimuli.  In this temporal scale, the responses are most likely to arise 

from neuronal signaling from the gut to the brain, instead of endocrine or immune-related signaling 

(Mayer, 2011).  Furthermore, the pattern of fMRI results indicates that the gastric electrical 

stimulation we delivered did effectively activate vagal afferent activity, thus potentially engaging 

vagovagal reflexes as well as the fast fMRI responses in the CNS.  In particular, the stimulating 

electrodes were intentionally placed on the forestomach wall at a site that has been found to have 

a high density of vagal longitudinal intramuscular arrays (Powley & Phillips, 2011; Powley et al., 

2016)—presumably a type of stretch receptor that transduces the mechanical information 

associated with eating and drinking into electrical signals propagating up the vagus to the 
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brainstem.  The fact that both the BOLD signal in the “vagal neuroaxis” (vagus – nucleus of the 

solitary tract – parabrachial nucleus – thalamus – insula, etc.) and the multi-unit responses in the 

vagal complex were activated by direct gastric forestomach stimulation (Cao et al., 2019) indicate 

that “fast” GES does indeed activate “fast” neurovascular coupling in the vagal neuroaxis. 

Though a full analysis is beyond the scope of the present investigation, the fMRI results 

also underscore the possibility that local stimulation of the stomach, i.e. forestomach, wall to 

engage vagovagal reflexes concomitantly activates dorsal root visceral afferents.  While no 

detailed maps of visceral afferent innervation appear to exist, such afferents have clearly been 

described in the stomach (Spencer et al., 2016), and the present pattern of fMRI results reinforces 

the inference that local forestomach “fast” GES directed at the longitudinal intramuscular arrays 

may simultaneously activate the visceral afferents associated with sympathetic efferent projections.  

More specifically, the BOLD signal in the dorsal root lamina of the spinal cord and the conspicuous 

effects in the somatosensory cortex both suggest (see Jänig, 2006) the possibility of an early and 

“fast” BOLD activation by dorsal root visceral afferents. 

Gut-associated brain regions 

The gut sends neuronal afferent signals to the brain through sympathetic (spinal) and 

parasympathetic (vagal) pathways. Vagal afferents project to NTS, whereas spinal afferents project 

to the lamina Ⅰ of the dorsal horn. The two pathways converge at the parabrachial nucleus, continue 

onto the forebrain or raphe nuclei and locus coeruleus, and further project to the cortex, especially 

for the cingulate cortex, insular cortex, prefrontal cortex, hippocampus, amygdala, and 

somatosensory cortex (Tillisch et al., 2018; Farmer et al., 2018). In the human brains, these regions 

interact as functional networks and have been found, at least in part, to respond to gastric 
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stimulation or exhibit brain activity correlated with spontaneous gastric activity (Mayer et al., 2009; 

Lee et al., 2016; Rebollo et al., 2018).  

To the best of our knowledge, the gut-associated regions have been rarely mapped in the 

rat brain (Han et al., 2018; Wang et al., 2008), especially in the whole-brain scale observable with 

MRI (Johnson et al., 2010; Min et al., 2011). In this study, some rat brain regions activated by 

gastric stimuli appeared homologous to the putative gut-associated regions reported in human 

studies (Tillisch et al. 2018). However, the activated regions are not precisely confined to 

structurally defined regions but appear more diffuse than those reported in humans. On the basis 

of the results obtained with component (Figure 3-2), region (Figure 3-3), and voxel-wise (Figure 

3-4) analyses, gastric electrical stimuli can activate the somatosensory cortex, cingulate cortex, 

insular cortex, as well as the motor cortex, thalamus, or even auditory cortex, in line with previous 

imaging studies in rats, e.g. (Wang et al, 2008). Speculatively, the diffuse responses are likely due 

to a widespread effect of visceral stimulation on brain activity (Cao et al., 2017).    

We observed GES-induced activation in the sensorimotor network, including the 

somatosensory and motor cortex, is consistent with previous neuroimaging studies of brain-gut 

interactions (Aziz et al., 2000; Brüggemann et al., 1997; Rebollo et al., 2018; Strigo et al., 2003; 

Wang et al., 2008). Beyond the sensorimotor regions, the activation also covers, at least in part, 

the auditory and visual cortex. This finding has been rarely reported or discussed in literature, 

except (Rebollo et al., 2018; Wang et al., 2008). In Rebollo et al., 2018, gastric activity observed 

with body surface electrogastrogram (EGG) was found to be correlated with spontaneous brain 

activity at regions associated with touch, action, vision, as well as multi-sensory integration. In a 

plausible explanation, foraging, feeding or eating behaviors, which regulate gastric physiology, 

involve multiple sensory modalities and sensorimotor coordination (Rebollo et al., 2018). 
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Moreover, the lack of report for the visual and auditory involved gastric response is likely 

due to the differences in stimulation protocols (Wang et al., 2008). However, it is unclear whether 

multi-sensory and motor areas are necessarily engaged in response to gastric stimuli even in the 

absence of any sensory input or/and when the animal is anesthetized or sedated. In an alternative 

explanation, the broad activation of sensory areas does not reflect cortical processing of the sensory 

information from the gut, or certainly not the processing of any visual or auditory information. 

Instead, it likely reflects the change in cortical arousal, because the gut-innervating vagal and 

spinal afferents in part project to raphe nuclei and locus coeruleus complex, which provide input 

to ascending monoaminergic projections to the nearly entire cortex (Hulsey et al., 2017; Dorr and 

Debonnel, 2006). 

In addition, our results reveal gastric stimulus-evoked activation in the midcingulate cortex 

and the insular cortex. The midcingulate activation includes its anterior and posterior parts. The 

insular activation, although less reliable as in a previous study (Mayer et al., 2009), is noticeable 

in the ROI analysis. Both the cingulate cortex (especially its anterior part) and the insular cortex 

are known to be involved in the gut-brain interaction, acting as the highest level of hierarchical 

homeostatic reflexes (Mayer, 2011) and regulating emotional arousal (Naliboff et al., 2006; Van 

Oudenhove and Aziz, 2009).  

Given our focus on fast fMRI responses, it is noteworthy that the GES-activated regions 

reported herein are perhaps incomplete and may or may not be generalizable across gastric stimuli 

in different ways, at different sites, or with different parameters. Some subcortical areas (e.g. those 

in brainstem, hypothalamus, amygdala) are expected to be activated but are not shown in our 

results. It may be in part because of the fast-modulation paradigm used in our study design and in 

part due to the inter-regional difference in neurovascular coupling. The current stimulation 
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paradigm and analysis pipeline focus exclusively on the fast (>0.2Hz) BOLD response. It is likely 

that other regions were also activated by GES but showed responses at lower frequencies, and such 

regions would not be revealed as “activated” given our analyses. Subcortical areas tend to be less 

vascularized and thus more challenging to be detected with fMRI, especially when the frequency 

of interest is pushed toward the upper limit.  

The origin of fast BOLD activity 

Exteroceptive sensory stimulation is often used in studies that characterize the coupling 

between neural and hemodynamic responses in animals and humans. Previous animal studies have 

shown that the sensory stimulus-evoked hemodynamic response observed with fMRI can emerge 

as soon as 0.8s (Yu et al., 2012) and reach a peak at about 2.7s (de Zwart et al., 2005). Such onset 

and peak times are much faster than those in the canonical hemodynamic response function 

(Boynton et al., 1996). Therefore, the widely-held assumption that the fMRI signal is slow and 

primarily lower than 0.1Hz should be taken with caution and be revisited in future experimental 

and modeling studies.   

However, the rapid change in impulse hemodynamic response does not necessarily lead to 

observable fMRI signal in a relatively high frequency range (e.g. 0.2 to 0.8Hz) (Hathout et al., 

1999; Janz et al., 2001). This is because neurovascular coupling is not entirely linear but depends 

on the frequency (Lewis et al., 2016; Liu et al., 2010; Zhang et al., 2008), amplitude, and duration 

of neural response (Pfeuffer et al., 2003; Yeşilyurt et al., 2008). If neural response is relatively 

weak or short (likely due to strong adaptation), its cumulative (over time) effect is less likely to 

saturate the vascular response, allowing the vasculature to remain sensitive to changes in neural 

activity and respond within its dynamic range and thus capable of following faster modulation in 

neural activity. Indeed, our results suggest that a train of gastric stimuli only induce a transient 
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neural response (Figure 6), setting the system of neurovascular coupling to operate in a linear range 

such that the fast fMRI response is more likely observable.   

Limitations and future directions 

Although we conclude that the observed fMRI response is BOLD in nature and of neural 

origin, it is non-trivial to further pinpoint its neural origin and elucidate the precise relationship 

between neural and BOLD effects as a result of gastric stimuli. It remains unclear which types of 

neural processes drive the observed fast BOLD responses. It is likely that gastric stimuli may drive 

changes in ascending neuromodulation through vagal afferents and their extension in CNS 

(Cheyuo et al., 2011). It is also likely that gastric stimuli trigger the transmission and processing 

of sensory information at various brain regions through vagal as well as spinal afferents. Such 

neural processes are likely differentiable in terms of the response profile across different cortical 

layers, or across different frequency bands. Although it is beyond the scope of this study, it is of 

great interest to disentangle the various contributors to the fast fMRI responses to gastric stimuli.  

The gut-brain circuitry is part of the autonomic nervous system. Therefore, stimulating the 

stomach could also affect the other components of the autonomic nervous system through 

projecting nerves and signaling molecules (Carabotti et al., 2015; Powley 2014). Such modulation 

of the autonomic nervous system may cause physiological variations in respiration and heart rate. 

To address the potential physiological effects on the fMRI signal, we recorded and compared the 

respiratory and cardiac activities between the stimulation ON and OFF periods but found no 

significant difference. Moreover, the fact that the observed fMRI response was found to be BOLD 

(Figure 3-4) and of neural origin (Figure 3-5) suggests that non-neuronal physiological fluctuation 

has a relatively minor contribution to the fast fMRI response to gastric stimulation. However, to 
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what extent the observed fMRI responses are specifically attributable to the gut, as opposed to the 

indirect effect on the other visceral organs, remains to be fully addressed in future studies.  

The focus of this study was primarily on the spectral characteristics of the fMRI response 

to gastric stimuli. Given this focus, gastric stimuli were modulated in a periodic ON-OFF pattern 

as a square-wave approximate of a sinusoidal input – ideal for probing the frequency-specific 

response, while using a constant stimulation dose during the 30s STIM period regardless of the 

frequency of modulation. Such a paradigm is well suited for spectral characterization of the system 

underlying the steady-state response; however, it is not the ideal design for studying the event-

related response. To note one limitation, the number of gastric stimuli during each ON period 

varied across different frequency settings (0.2, 0.4 and 0.8Hz), because the inter-stimulus interval 

was kept constant and the ON duration was longer for a lower frequency (e.g. 0.2Hz). For a single 

ON-OFF cycle, we delivered more gastric stimuli for 0.2Hz, relatively fewer for 0.4Hz, and the 

fewest for 0.8Hz. This variation might confound the direct comparison of the single-cycle response 

(peak-to-peak) amplitude across different frequency settings. Nevertheless, it should not diminish 

the single-cycle fMRI response observed at a higher frequency (e.g. 0.8Hz). Instead, it is 

reasonable to anticipate that the single-cycle response amplitude might be even higher than was 

shown in our results, if the stimulation dose with each ON period were kept constant across 

different frequency settings.  

We only recorded neural responses from S1FL. Since other regions activated with gastric 

stimuli are not as easily accessible as S1, they are excluded from the full analysis in this study. In 

future studies, we will attempt to record both neural and fMRI responses, ideally simultaneously, 

at all regions involved in gut-brain interaction. Moreover, it is of interest to record the changes in 

specific types of neurotransmitters (e.g. norepinephrine and serotonin), in addition to fMRI and 
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electrophysiological responses. However, such multimodal recordings are challenging and not 

readily feasible with our existing experimental techniques.  

Findings from this study are based on observations from anesthetized rats. All animals were 

anesthetized using dexdomitor and low-dose isoflurane (<0.5%) as in our prior study (Cao et al., 

2017). It should be noted that anesthesia may weaken the BOLD response (Liang et al., 2015; 

Williams et al., 2010) and affect neurovascular coupling (Magnuson et a., 2014). To be more 

comparable to human studies, it is of great interest to acquire fMRI and neural signals from animals 

in fully awake or un-anesthetized conditions, as increasingly advocated (Gao et al., 2017).  
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Chapter 4 Vagus Nerve Stimulation Triggers Wide-Spread BOLD Responses in the Brain 3 

Summary 

Vagus nerve stimulation (VNS) is a therapy for epilepsy and depression. However, its 

efficacy varies and its mechanism remains unclear. Prior studies have used functional magnetic 

resonance imaging (fMRI) to map brain activations with VNS in human brains, but have reported 

inconsistent findings. The source of inconsistency is likely attributable to the complex temporal 

characteristics of VNS-evoked fMRI responses that cannot be fully explained by simplified 

response models in the conventional model-based analysis for activation mapping. To address this 

issue, we acquired 7-Tesla blood oxygenation level dependent fMRI data from anesthetized 

Sprague–Dawley rats receiving electrical stimulation at the left cervical vagus nerve. Using 

spatially independent component analysis, we identified 20 functional brain networks and detected 

the network-wise activations with VNS in a data-driven manner. Our results showed that VNS 

activated 15 out of 20 brain networks, and the activated regions covered >76% of the brain volume. 

The time course of the evoked response was complex and distinct across regions and networks. In 

addition, VNS altered the strengths and patterns of correlations among brain networks relative to 

those in the resting state. The most notable changes in network-network interactions were related 

to the limbic system. Together, such profound and widespread effects of VNS may underlie its 

unique potential for a wide range of therapeutics to relieve central or peripheral conditions. 

 
 
3 Formatted for dissertation from the article published in PloS one. (Cao et al., 2017) 
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Introduction 

Since the 1800s (Gaskell, 1886; Robinson & Draper, 1912), vagus nerve stimulation (VNS) 

has been studied as a potential way to treat various diseases, including epilepsy, depression, 

tinnitus, Alzheimer’s Disease, and obesity (Ben-Menachem, 2002; Bodenlos et al., 2007; De 

Ridder et al., 2014; George et al., 2000; Peña et al., 2013; Sjögren et al., 2002). The therapeutic 

benefits apparently depend on the effects of VNS on the central neural system (CNS) mediated 

through neuroelectrical or neurochemical signaling (Henry, 2002). Studies have been conducted 

to evaluate the CNS responses to VNS with neural imaging or recording techniques. For example, 

invasive recordings of unit activity or field potentials have shown VNS-evoked neuronal responses 

in the nucleus of solitary tract (Beaumont et al., 2017), the locus coeruleus (Groves et al., 2005), 

and the hippocampus (Larsen et al., 2016). These techniques offer high neuronal specificity but 

only cover spatially confined targets. In contrast, electroencephalogram (EEG) has been used to 

reveal VNS-induced synchronization or desynchronization of neural oscillations in the 

macroscopic scale (Bartolomei et al., 2016; Chase et al., 1967), while being severely limited by its 

spatial resolution and specificity as well as its inability to detect activities from deep brain 

structures. However, sub-cortical regions are of interest for VNS, because the vagus nerves convey 

signals to the brain through polysynaptic neural pathways by first projecting to the brainstem, then 

subcortical areas, and lastly the cortex (Henry, 2002; Ressler KJ, Mayberg, 2007).  

Complementary to conventional electrophysiological approaches, functional neuroimaging 

allows the effects of VNS to be characterized throughout the brain volume. Using positron 

emission tomography (PET) or single-photon emission computerized tomography (SPECT), prior 

studies have reported VNS-evoked responses in the thalamus, hippocampus, amygdala, inferior 

cerebellum, and cingulate cortex (Garnett et al., 1992; Ko et al., 1996; Henry et al., 1999; Zobel et 
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al., 2005); but these techniques are unable to capture the dynamics of the responses due to their 

poor temporal resolution. In this regard, functional magnetic resonance imaging (fMRI) is more 

favorable because it offers balanced and higher spatial and temporal resolution. Previous human 

VNS-fMRI studies have reported VNS-evoked blood oxygenation level dependent (BOLD) 

responses in the thalamus, hypothalamus, prefrontal cortex, amygdala, and hippocampal formation 

(Bohning et al., 2001,2003; Devous et al., 2002; Sucholeiki et al., 2002; Liu et al., 2001). However, 

the reported activation patterns are not always consistent (Chae et al., 2003), sometimes 

highlighting activations in different regions or even opposite responses in the same regions 

(Devous et al., 2002; Sucholeiki et al., 2002; Liu et al., 2001). What underlies this inconsistency 

might explain the varying efficacy of VNS in treatment of individual patients, or might be 

attributed to the analysis methods for activation mapping (Chae et al., 2003). Therefore, it is 

desirable to explore and evaluate various methodological choices in the fMRI data analysis, in 

order to properly interpret the VNS evoked activations for understanding the implications of VNS 

to neurological disorders.  

Functional MRI not only localizes the CNS responses of VNS (Chae et al., 2003), it also 

reveals the patterns and dynamics of functional networks during VNS, which helps to characterize 

the network basis of VNS-based therapetutics. Findings from prior studies have shown that the 

therapeutic or behavioral effects of VNS may be compromised, when the underlying neuronal 

circuit is disrupted in terms of its critical node or receptor. For example, given a lesion in the locus 

coeruleus, VNS fails to suppress epilepsy (Krahl et al., 1998); given a blockade of the muscarinic 

receptor, VNS fails to promote perceptual learning (Nichols et al., 2001). However, how VNS 

affects the patterns of interactions among regions or networks (or functional connectivity) has 
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rarely been addressed (Fang et al., 2016), even though fMRI has become the primary tool for 

studying functional connectivity (Biswal et al., 1995; Van Den Heuvel & Pol, 2010). 

In this study, we aimed to address the BOLD effects of VNS in the rat brain. The use of a 

rat model mitigated the inter-subject variation in genetics, gender, age, weight, and health 

conditions. It provided a well-controlled setting for us to focus on comparison of different analysis 

methods for mapping the activations with VNS. Specifically, we used the independent component 

analysis (ICA) to identify brain networks, and then used a data-driven analysis to detect the VNS-

evoked activation separately for each network, as opposed to each voxel or region. In addition to 

the activation mapping, we also evaluated the effects of VNS on network-network interactions, 

against the baseline of intrinsic interactions in the resting state. As such, we attempted to address 

the effects of VNS on the brain from the perspectives of both regional activity and inter-regional 

functional connectivity.   

Methods and Materials  

Subjects 

A total of 17 Sprague–Dawley rats (male, weight: 250-350g; Envigo RMS, Indianapolis, 

IN) were studied according to a protocol approved by the Purdue Animal Care and Use Committee 

(PACUC) and the Laboratory Animal Program (LAP). Of the 17 animals, seven animals were used 

for VNS-fMRI experiments; ten animals were used for resting state fMRI. All animals were housed 

in a strictly controlled environment (temperature 21±1°C and 12 h light-dark cycle, lights on at 

6:00 AM, lights off at 6:00 PM).  

Animal preparation 

For the VNS-fMRI experiments, each animal was initially anesthetized with 5% isoflurane 

and maintained with continuous administration of 2-3% isoflurane mixed with oxygen and a bolus 
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of analgesic (Rimadyl, 5 mg/Kg, Zoetis) administrated subcutaneously. After a toe-pinch check 

for adequate anesthesia, a 2-3cm midline incision was made starting at the jawline and moving 

caudally. The left cervical vagus nerve was exposed and isolated after removing the surrounding 

tissue. A bipolar cuff electrode (Microprobes, made of platinum and with 1mm between contacts) 

was wrapped around the exposed vagus nerve. For resting-state fMRI experiments, animals were 

anesthetized with the same dose of anesthesia without the surgical procedures.  

After the acute electrode implantation (for VNS-fMRI) or the initial anesthetization (for 

resting-state fMRI), each animal was moved to a small-animal horizontal MRI system (BioSpec 

70/30, Bruker). The animal’s head was constrained with a customized head restrainer. A bolus of 

dexdomitor (Zoetis, 7.5 µg/Kg for animals gone through electrode implantation, 15 µg/Kg for 

animals without surgery) was administrated subcutaneously. About 15-20 mins after the bolus 

injection, dexdomitor was continuously and subcutaneously infused at 15 µg/Kg/h; the dose was 

increased every hour as needed (Pawela et al., 2009). In the meanwhile, isoflurane was 

administered through a nose cone, with a reduced concention of 0.1-0.5% mixed with oxygen. 

Throughout the experiment, both the dexdomitor infusion rate and the isoflurane dose were 

adjusted to maintain a stable physiological condition with the respiration rate between 40 and 70 

times per min and the heart rate between 250 and 350 beats per min. The heart and respiration rates 

were monitored by using a small-animal physiological monitoring system (Kent Scientific). The 

animal’s body temperature was maintained at 37 ± 0.5 °C using an animal-heating system. The 

oxygen saturation level (SpO2) was maintained above 96%.  

Vagus nerve stimulation 

The bipolar cuff electrode was connected to a current stimulator (model 2200, A-M system) 

placed outside of the MRI room through a twisted-pair of copper wire. Stimulation current was 
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delivered in 10s-ON-50s-OFF cycles. When it was ON, biphasic square pulses (width: 0.1 ms; 

amplitude: 1.0 mA; frequency: 10 Hz) were delivered. Each fMRI session included ten ON/OFF 

cycles. A resting (stimulation-free) period of at least one minute was given between sessions. Up 

to 4 sessions were scanned for each animal. Figure 4-1 illustrates the VNS paradigm.  

 
Figure 4-1 Experimental design for fMRI during VNS. Each rat was stimulated at the left 
cervical vagus through a cuff electrode implanted in an acute surgery. Biphasic current pulses 
were delivered during a 10s “ON” period alternating with a 50s “OFF” period for 10 cycles. 
With this block design, the rat was scanned for fMRI with a repetition time of 1s.   

 

MRI and fMRI  

MRI data were acquired with a 7-T small-animal MRI system (BioSpec 70/30, Bruker) 

equipped with a volume transmitter coil (86 mm inner diameter) and a 4-channel surface receiver 

array. After the localizer scans, T2-weighted anatomical images were acquired with a rapid 

acquisition with relaxation enhancement (RARE) sequence  (repetition time (TR)=5804.607s, 

effective echo time (TE)=32.5ms, echo spacing=10.83 ms, voxel size=0.125×0.125×0.5mm3, 
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RARE factor=8, flip angle (FA)=90°). The BOLD-fMRI data were acquired by using a 2-D single-

shot gradient echo echo-planar imaging (EPI) sequence (TR=1 s, TE=15 ms, FA=55°, in-plane 

resolution about 0.6×0.6 mm2, slice thickness=1 mm).  

Data preprocessing 

MRI and fMRI data were preprocessed by using Analysis of Functional Neuroimages 

(AFNI) and custom-built functions in MATLAB. Within each session, the fMRI data were 

corrected for motion by registering every volume to the first volume using 3dvolreg. After 

removing the first ten volumes, retroicor was used to correct for the motion artifacts due to 

respiratory and cardiac activity (Birn et al., 2006; Glover et al., 2000). Then, slicetimer was used 

to correct the timing for each slice. For each animal, we first registered the EPI image to its T2 

weighted structural images and then normalized to a volumetric template (Valdés-Hernández et 

al., 2011) using flirt. Motion artifacts were further corrected by regressing out the six motion-

correction parameters. The fMRI data were then spatially smoothed with a 3-D Gaussian kernel 

with a 0.5-mm full width at half maximum (FWHM). The fMRI time series were detrended by 

regressing out a 2rd-order polynomial function voxel by voxel.  

General linear model analysis 

We used the conventional general linear model (GLM) analysis to map the activations 

evoked by VNS as in previous studies (Bohning et al., 2001; Kraus et al., 2007, 2013; Lomarev et 

al., 2002; Nahas et al., 2007). Specifically, we derived a response model by convolving the 

stimulation block (modeled as a box-car function) with a canonical hemodynamic response 

function (HRF) (modeled as a gamma function). For each session, the fMRI signal at every voxel 

was correlated with this response model. The correlation coefficient was converted to a z-score by 

using the Fisher’s z-transform. The voxel-wise z-score was averaged across sessions and animals, 
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and the average z-score was evaluated for statistical significance with a one-sample t-test (p<0.05, 

uncorrected).  

This analysis revealed the group-level activation map with VNS given an assumed 

response model. Since the validity of this response model for VNS was not established, we 

intentionally varied the response model by assuming three different values (3s, 6s, or 9s) for the 

peak latency of the HRF. We compared the activation maps obtained with the three different 

response models, to qualitatively assess the dependence of the model-based activation mapping on 

the presumed response characteristics.  

Independent component analysis 

In contrast to the voxel-wise GLM analysis, we used ICA to map networks and characterize 

their responses to VNS in a data-driven or model-free manner. For each session and each voxel, 

the fMRI signal during VNS was demeaned and divided by its standard deviation. The resulting 

fMRI data were then concatenated across all VNS-fMRI sessions. Infomax ICA (Bell et al., 1995) 

was used to decompose the concatenated data into 20 spatially independent components (ICs). 

Each of these ICs included a spatial map and a time series, representing a brain network and its 

temporal dynamics, respectively. In the spatial maps of individual ICs, the intensities at each given 

voxel represented the weights by which the time series of corresponding ICs were combined to 

explain this voxel’s fMRI time series. The polarity of each IC was determined to ensure the 

positive skewness of its weight distribution. Such weights were converted to Z-statistics and then 

thresholded as described in a previous paper (Beckmann & Smith, 2004). The threshold was 

selected such that the false negative rate was three times as large as the false positive rate. To 

obtain the false negative and positive rates, the Z-statistics of all voxels in an IC map were modeled 



 85 

as a two-Gaussian mixture distributions: one representing the noise, the other representing the 

signal. 

Following ICA, we evaluated the VNS-evoked response separately for each IC, instead of 

each voxel. To do so, each IC’s time series was segmented according to the timing of every VNS 

block. Each segment lasted 54 seconds, starting from 3 seconds before the onset of a VNS block 

to 41 seconds after the offset of this block, while the stimulus block lasted 10 seconds. To address 

whether an IC responded to the VNS, we treated each time point as a random variable and each 

segment as an independent sample. One-way analysis of variance (ANOVA) was conducted 

against a null hypothesis that there was no difference among all the time points (meaning no 

response). The ICs that were statistically significant (p<5e-6) were considered as activated by VNS.  

For each activated IC, we further characterized its temporal response to VNS. Briefly, we 

identified the time points during or after the VNS block, where the signals significantly differed 

from the pre-stimulus baseline by using the Tukey's honest significant difference (HSD) test as a 

post-hoc analysis following the previous ANOVA test. Following this statistical test, the VNS-

activated ICs were visually classified into three types (i.e. positive, negative, and mixed) of 

responses.   

Functional connectivity analysis 

We further addressed whether VNS altered the patterns of temporal interactions among 

functional networks identified by ICA. To do so, the voxel time series was demeaned and 

standardized for each fMRI session including both VNS and resting conditions. The fMRI data 

were concatenated across all sessions and were then decomposed by ICA to yield 20 spatially ICs 

or networks, along with their corresponding time series. The first IC was removed because it was 
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identified as the global component. The time series of the rest ICs were divided into the signals 

corresponding to the VNS sessions versus those corresponding to the resting-state sessions.   

We defined the functional connectivity between networks as the temporal correlations 

between the ICs. The correlations were evaluated separately for the resting and VNS conditions 

and for every pair of ICs. Based on their temporal correlations, we grouped the ICs into clusters 

by applying k-means clustering method to ICs’ temporal correlation matrix. As a result, the 

correlations tended to be stronger within clusters than between clusters.  

We further evaluated the differences in functional connectivity between the VNS condition 

and the resting state. For this purpose, the functional connectivity between ICs was evaluated for 

each VNS session, as well as each resting-state session. Their differences between these two 

conditions were evaluated using unpaired two-sample t-test (p<0.05, uncorrected). The changes in 

functional connectivity were displayed in the functional connectogram (Irimia et al., 2012).  

Results  

Model-based VNS activations were sensitive to variation of the response model 

Seven rats were scanned for fMRI while their left cervical vagus nerve was electrically 

stimulated in a (10s-ON-50s-OFF) block-design paradigm as illustrated in Figure 4-1. The BOLD 

response phase-locked to the VNS block appeared complex and variable across regions of interest 

(ROIs). For example, the BOLD responses were notably different across three ROIs, namely the 

retrosplenial cortex (RSC), brainstem (BS), and dorsal caudate putamen (Cpu) in a functional atlas 

(Ma et al., 2016) of the rat brain (Figure 4-2A). These responses were not readily explainable by 

a typical response model derived from a canonical HRF (Figure 4-2B, top). The GLM analysis 

with three different response models (by varying the HRF peak latency with 3s increments) yielded 

almost entirely distinctive activation maps (Figure 4-2B), each of which was only marginally 
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significant (p<0.05, uncorrected). Therefore, VNS-evoked BOLD responses were too complex and 

variable to be captured by a single response model. The GLM analysis likely leads to incomplete 

and inconsistent activations with VNS, which possibly accounts for the diverging findings reported 

in the related literature (Bohning et al., 2001,2003; Devous et al., 2002; Sucholeiki et al., 2002; 

Liu et al., 2001). 

 
Figure 4-2 VNS-evoked responses varied across regions. (A) shows the response time series 
averaged within each of the three regions of interest: the retrosplenial cortex (RSC) (blue), the 
brainstem (green), and the dorsal caudate putamen (Cpu) (red). (B) shows the highly different 
activation maps based on the response models derived with the HRF, for which the peak latency 
was assumed to be 3s, 6s, or 9s. The color shows the group average of the z-transformed 
correlation between the voxel time series and the modeled response. The maps were thresholded 
with p<0.05 (one-sample t-test, uncorrected).  
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VNS induced widespread and complex network responses  

With a data-driven method, we evaluated the VNS-evoked responses in the level of 

networks, where the networks were identified as spatially ICs. It turned out that 15 out of the 20 

ICs were significantly activated by VNS (one-way ANOVA, p<5e-6, Fig 3A). Those activated ICs 

collectively covered 76.03% of the brain volume (Figure 4-3B). Among the activated regions, the 

brainstem and the hypothalamus exhibited relatively stronger responses than other areas.  

The response time courses were also notably different across ICs. Figure 4-3A also 

highlights in red the time points, where the post-stimulus responses were significantly different 

from the pre-stimulus baseline (p<0.05, Tukey's HSD). It was noticeable that different ICs were 

activated at different times following VNS. The response time courses also showed different 

polarities and shapes, and could be generally classified as the positive, negative, or biphasic-mixed 

response. The negative response was shown in the amygdala, dorsal striatum, primary motor cortex, 

midbrain, left somatosensory cortex, and superior cerebellum. The positive response was shown 

mainly in the brainstem, thalamus, and hypothalamus. The mixed response was shown in the 

hippocampal formation, cingulate cortex, and prelimbic & infralimbic cortex. The ICs that 

appeared to exhibit similar responses to VNS were presumably more functionally associated with 

one another. From a different perspective, the network-wise response to VNS also seemed to be 

either stimulus-locked or long-lasting (i.e. sustained even 20-30 s after the end of VNS). The 

stimulus-locked response was most notable in the brainstem and hypothalamus, which receives 

more direct vagal projections with fewer synapses. The long-lasting response was shown in the 

hippocampal formation, prefrontal cortex, amygdala, all of which were presumably related to high-

level cognitive functions, such as memory formation, decision making, and emotion regulation. 

Speculatively, the former was the direct effect of VNS; the latter was the secondary effect. 
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Figure 4-3 VNS evoked widespread and complex responses in the brain. (A) VNS-evoked 
responses for different brain networks derived with ICA. The ICA-defined networks are labeled as: 
amygdala (Amy), caudate putamen (Cpu), hippocampus, (Hipp), cingulate cortex (Cing), 
prelimbic cortex (PrL), infralimbic cortex (IL), brain stem, hypothalamus (HTh), thalamus (Tha), 
superior colliculus (SC), cerebellum (Cb), primary and secondary motor cortex (M1, M2), and 
primary and secondary somatosensory cortex (S1, S2). For each network, the time points at which 
the responses were significant are shown in red. (B) The VNS-activated voxels cover 76.03% of 
the brain volume. The color represents the standard deviation of the voxel-wise response averaged 
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across repetitions of VNS. The locations with the greatest responses are highlighted with arrows. 
Data relevant to the VNS-evoked network responses are available in the online Supplementary 
Information.   

 

VNS altered functional connectivity 

We further evaluated the network-network interactions during VNS in comparison with 

those in the resting state. The networks were captured as the ICs obtained by applying ICA to the 

data in both VNS and resting conditions. The matrix of pair-wise (IC-IC) correlations during VNS 

was overall similar to that in the resting state (Figure 4-4A). However, their differences in 

functional connectivity reorganized the clustering of individual networks (into Group 1, 2, 3) 

(Figure 4-4A). Group 1 covered the sensorimotor cortex, and it was mostly consistent between the 

VNS and resting conditions. Relative to the resting state, VNS reduced the extent of networks for 

Group 2, but increased the extent of networks for Group 3. For a closer investigation of the network 

reorganization, we found that VNS strengthened the correlations between the hippocampal 

formation and the retrosplenial cortex, but weakened the correlations between the prefrontal cortex 

and the basal ganglia. Beyond the difference in clustering, the significant changes in functional 

connectivity (P<0.005, t-test) are all shown in Figure 4-4B. The most notable changes were all 

related to the limbic system. During VNS, the cingulate cortex was less correlated with the ventral 

striatum; the hippocampal formation formed stronger functional connectivity between its left and 

right components, and with the retrosplenial cortex. The reorganization of functional connectivity 

was not only confined to the regions within the limbic system, but also between the limbic system 

and the sensorimotor cortex. VNS strengthened the interaction across the sensorimotor cortex with 

the hippocampal formation, retrosplenial cortex, and dorsal striatum, whereas it weakened the 

functional connectivity between the sensorimotor cortex and the cingulate cortex. In short, VNS 
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reorganized the functional connectivity within the limbic system and altered the interactions 

between the limbic system and the sensorimotor cortex. 

 
Figure 4-4 VNS altered the functional connectivity among functional networks. (A) shows the 
correlations between independent components. The left shows the correlation matrix during the 
resting state (or the “control” condition). The right shows the correlation matrix during VNS (or 
the “VNS” condition). Smaller squares highlight the networks (or ICs) that were clustered into 
groups (based on k-means clustering). (B) shows the IC-IC functional connectivity that was 
significantly different between the VNS and control conditions (t-test, P<0.005). Red lines 
represent increases in functional connectivity, and green lines represent decreases in functional 
connectivity. The thickness of the lines represents the (VNS minus control) change in correlation. 
The brain maps show the spatial patterns of individual ICs. Corresponding to the squares in (A), 
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the arc lines illustrate how the ICs were clusters into groups, for the VNS condition (inner circle) 
and the control condition (outer circle).   

 

Discussion 

Here, we report a model-free analysis method for mapping and characterizing the BOLD 

activations with VNS. Findings obtained with this method suggest that the repetitive and block-

wise stimulation to the left cervical vagus nerve induces activations at widespread brain regions. 

The responses are complex and variable across regions, much beyond what can be described with 

conventionally assumed HRF. In addition, VNS also alters functional connectivity among different 

brain networks, and changes the brain’s functional organization from its intrinsic mode as observed 

in the resting state. These findings suggest widespread and profound effects of VNS on the brain’s 

regional activity and inter-regional interaction. Such effects are likely under-estimated by the 

model-based analysis in prior studies. This study also highlights the value of fMRI for addressing 

the large-scale and brain-wide effects of VNS, in order to understand and optimize its potential 

use for treatment of disease conditions in the brain or other organs, e.g. the gastrointestinal system.   

VNS evoke brain-wide responses 

A major finding in this study was that VNS evoked time-locked and widespread BOLD 

responses over most parts of the brain. This finding appeared surprising at the first glance, since 

the simulation was applied to the left cervical vagus – a seemingly narrowly-focused entry of 

neuromodulation. Nevertheless, previous studies suggest that neural activity may drive global 

fluctuations in resting-state fMRI activity (Irimia et al., 2010), and even simple (e.g., checkerboard) 

visual stimulation may evoke whole-brain fMRI responses (Gonzalez-Castillo et al., 2012). 

Common to those prior studies and this study is the notion that the brain is so densely wired and 
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interconnected that focal modulation may induce a cascade of responses through neuronal circuits. 

Such network responses may even have a global reach, if the stimulation innervates sub-cortical 

structures with distributed modulatory effects on the brain (Lee et al., 2010). 

In this regard, widespread responses to VNS may be mediated through the diffusive 

neuromodulation triggered by VNS. Vagal afferents project to the parabrachial nucleus, locus 

coeruleus, raphe nuclei through the nucleus of solitary tract (Paxinos, 2014). From the parabrachial 

nucleus, locus coeruleus, and raphe nuclei, connectivity extends onto the hypothalamus, thalamus, 

amygdala, anterior insular, infralimbic cortex, and lateral prefrontal cortex (Van Bockstaele et al., 

1999). In fact, the widespread VNS-evoked activations reported herein are consistent with the full 

picture gathered from piecemeal activations observed in prior VNS-fMRI (see reviews in Chae  et 

al., 2003), transcutaneous VNS-fMRI (Frangos & Komisaruk, 2017), and EEG-fMRI studies 

(Bartolomei et al., 2016; Chase et al., 1967). In light of those results, the extent of the VNS effects 

on the brain has been under-estimated in prior studies, likely due to the use of simplified response 

models that fail to capture the complex and variable responses across all activated regions. 

Origins and interpretation of different response characteristics 

Results in this study suggest that VNS induces a variety of BOLD responses that vary 

across regions. In addition to coarse and qualitative classification of various responses as positive, 

negative, or mixed (first negative and then positive) (Figure 4-3), the responses at various regions 

or networks also differed in terms of transient vs. sustained behaviors during and following VNS. 

For example, the responses at the brainstem and the hypothalamus showed a very rapid rise around 

2s and rapid decay around 5s following the onset of VNS. Although the generalizable origins of 

transient BOLD responses are still debatable (Renvall & Hari, 2009), we interpret the transient 

responses to VNS as a result of direct neuroelectric signaling through the vagal nerves. Nuclei in 
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the brainstem, e.g., NTS, contain neurons receiving direct projections from the vagus, and in turn 

connect to the hypothalamus. Such brain structures are thus well-positioned to respond rapidly to 

VNS. The rapid decay of the BOLD response in the brainstem and hypothalamus may indicate 

neuronal adaption, a factor of consideration for designing the duration and duty cycle of VNS. 

However, such interpretation should be taken with caution. The neurovascular coupling (modeled 

as the HRF) behaves as a low-pass filter through which the BOLD response is generated from 

local neuronal responses. Although the peak latency in HRF is 4 to 6s in humans, it is as short as 

2s in rodents (Obata et al., 2004), making it relatively more suitable for tracking transient neuronal 

dynamics.  

Another intriguing observation was the prolonged BOLD responses that sustained for a 

long period following the offset of VNS. In the striatum, hippocampus, as well as the prelimbic 

and infralimbic cortex, the VNS-evoked response lasted for 40s or even longer, while VNS only 

lasted 10s (Figure 4-3). Such prolonged responses suggest potentially long-lasting effects of VNS. 

This observation is also in line with clinical studies showing that the effects of VNS on seizure 

suppression are not limited to when stimulation is applied, but sustain during periods in the absence 

of VNS (Zabara et al., 1992). Moreover, those regions showing prolonged effects of VNS tended 

to be higher-level functional areas presumably involved in learning, decision-making, memory, 

and emotion-processing. Speculatively, it implies that the VNS-based modulation of cognitive 

functions or dysfunctions operates in a relatively longer time scale while imposing potentially 

therapeutic effects on a longer term.   

VNS alters network-network interactions 

This study highlights the importance of evaluating the effects of VNS on functional 

connectivity, which measures the degree to which regions or networks interact with each other. It 
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is widely recognized that brain functions emerge from coordination among regions (Anastassiou 

et al, 2016). However, prior studies address the effects of VNS in focal and target regions (Tian et 

al., 2010), whereas the effects of VNS on functional connectivity is perhaps more functionally 

relevant. In line with this perspective, a recent study has shown that transcutaneous VNS 

modulates the functional connectivity in the default mode network in patients with major 

depressive disorders, and the change in functional connectivity is related to the therapeutic efficacy 

across individual patients (Frangos & Komisaruk, 2017). Thus, VNS may reorganize the patterns 

of interactions among functional networks – a plausible network basis underlying VNS-based 

therapeutics.  

Our results show that VNS reorganizes the functional connectivity with respect to the 

limbic system. Relative to the intrinsic functional connectivity in the resting state, VNS increases 

functional connectivity between the retrosplenial cortex and hippocampal formation, of which the 

functional roles are presumably related to memory, learning, and monitoring sensory inputs (Bush 

et al., 2000; Vogt et al., 1992). In addition, VNS increases functional connectivity between the 

sensory cortex and the striatum, of which the functional roles are presumably the integration of 

sensorimotor, cognitive, and motivation/emotion (Balleine et al., 2007). In contrast, VNS 

decreases functional connectivity between the cingulate cortex and the ventral striatum, which 

likely affect the emotional control of visceral, skeletal, and endocrine outflow (Parkinson et al., 

2000). Collectively, these observations lead us to speculate that VNS biases the limbic system to 

shift its functional role from emotional processing to perceptual learning. Such speculation is 

consistent with the therapeutic effects of VNS in depression patients (Nemeroff et al., 2006; 

Sackeim et al., 2001) and the cortical plasticity of interest to perceptual learning and motor 

rehabilitation induced by VNS (Schwarz & Luo, 2015).  
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Model-free activation mapping in the level of networks 

Central to this study is the use of model-free and data-driven analysis for mapping 

activations in the level of networks, instead of voxels or regions. This is in contrast to conventional 

GLM analysis used in previous VNS-fMRI studies, which assumes that neural responses sustain 

in the entire period of VNS, and the BOLD effects of neural responses may be modeled with a 

canonical HRF (Bohning et al., 2001; Lomarev et al., 2002; Nahas et al., 2007; Kraus et al., 2013; 

Kraus et al., 2007). Both of these assumptions may not be entirely valid. Neural responses may 

exhibit a range of non-linear characteristics. The typical HRF model is mostly based on data or 

findings obtained from the cortex during sensory stimulation (Friston et al., 1998), whereas no 

study has modeled the HRF for VNS. Moreover, the neurovascular coupling may also vary across 

regions in the brain, especially between sub-cortical and cortical areas due to their differences in 

local vasculatures(Li & Freeman, 2010). Thus, the GLM analysis with a single and empirical 

response model most likely falls short for explaining the complex and variable responses across 

all brain regions.   

The model-free analysis allowed us to detect the VNS-evoked brain response in a data-

driven way without assuming any prior response model. A similar strategy has been used to test 

for voxel-wise BOLD responses to visual stimulation in humans (Gonzales-Castillo et al., 2012). 

What was perhaps unique in this study was the use of the model-free analysis on the activity of 

spatially independent components, rather than that of single voxels. Each IC contained a set of 

voxels (or locations) that shared a common pattern of temporal dynamics. ICA utilized the fact 

that individual voxels were organized by networks, not in isolation, to extract the network activity 

as the time series of each IC, which reflected the (weighted) average activity of all the voxels that 

belonged to each IC. As such, the signal-to-noise ratio was higher for IC-wise activity than for 
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voxel-wise activity, providing better sensitivity for detecting activations at the network level. This 

model-free analysis method is thus arguably more favorable than conventional GLM analysis, 

especially when the response characteristics are complex and unclear, e.g., given VNS.     

Potentially confounding cardiac and respiratory effects  

The BOLD signal is an indirect measure of neural activity. Therefore, it may be affected 

by non-neuronal physiological fluctuations (Kundu et al., 2013). Previous studies have shown that 

VNS causes cardiorespiratory effects, e.g., variations in the heart rate, respiration rate, and SpO2 

(Murray et al., 2001; Zaaimi et al., 2008). Such effects may potentially confound the interpretation 

of the VNS-induced BOLD responses in terms of neuronal activations. Such confounding effects 

were highlighted in a prior study, in which VNS was found to decrease the heart rate and in turn 

decrease the BOLD signal throughout the rat brain (Reyt et al., 2010). In this study, we were 

concerned about this potential confounding effect, and reduced to the pulse width of VNS to 0.1ms, 

instead of 0.5ms as in that study (Reyt et al., 2010). Such shortened pulse width largely mitigated 

the cardiac effects, as no obvious changes in heart rate were noticeable during experiments.  

Moreover, the cardiac effects would manifest themselves as the common physiological 

response observable throughout the brain. This was not the case in this study. Despite wide-spread 

activations with VNS, the responses at individual regions exhibited different temporal 

characteristics, which could not be readily explained by a common confounding source (e.g., 

respiratory or cardiac). Instead, the regions with similar response patterns formed well-patterned 

functional networks, resembling intrinsic resting-state networks previously observed in rats 

(Sierakowiak et al., 2015). For these reasons, it was unlikely that the VNS-induced activation and 

functional-connectivity patterns were the result at non-neuronal cardiac or respiratory effects. 

Similar justifications are also applicable to the confounding respiratory effects. Nevertheless, 
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future studies are desirable to fully disentangle the neuronal vs. non-neuronal effects of VNS. Of 

particular interest is using multi-echo fMRI to differentiate BOLD vs. non-BOLD effects (Kundu 

et al., 2013), and combining electrophysiology and fMRI to pinpoint the neural origin of the fMRI 

response to VNS (Viswanathan & Freeman, 2007).  
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Chapter 5 The Stomach and the Brain are Intrinsically Phase-Coupled in Rats 4 

Summary 

The stomach and the brain interact with each other intrinsically to maintain normal 

digestive function. The interaction is essential to the “gut feeling” and can influence cognition and 

emotion. However, neural circuits underlying the stomach-brain interaction remains poorly 

understood. This study aims to characterize the spontaneous stomach-brain interaction that 

manifests itself as the coupling between gastric and brain activities. We used electrogastrogram 

(EGG) to measure gastric activity and used fMRI to map brain activity. Simultaneous acquisition 

of EGG and fMRI was performed in rats in both the fasting and postprandial states. Our results 

suggest that gastric slow waves were phase-coupled with the BOLD signals from a broad set of 

brain regions, including the sensorimotor area, olfactory-related area, cingulate cortex, and insular 

cortex. The degree of phase-coupling was state-dependent, stronger in the postprandial state that 

the fasting state. Furthermore, the intact vagus nerve was central to this stomach-brain synchrony. 

These results were consistent with the finding from a recent human study (Rebello et al., 2018) 

and shed new lights on the role of the vagus in stomach-brain synchrony. 

Introduction 

The brain’s representation of the stomach is an important topic and has been investigated 

for decades. Prior studies have identified the insular cortex as the critical brain region for gastric 

interoception (Craig, 2002, 2009). Beyond the insular cortex, several functional networks are also 

 
 
4 The contents of this chapter will be prepared for submission (Cao et al., in preparation) 
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involved, including the sensorimotor network, salience network, central executive network, default 

mode network, emotional arousal network, and central autonomic network (Aziz et al., 2000; Farr 

et al., 2016; Holtmann & Talley, 2014; Mayer et al., 2019; Van Oudenhove et al., 2004). Besides, 

both preclinical and clinical evidence suggests a strong correspondence between gastric disorders 

and psychological disorders, such as anxiety and depression (Drossman et al., 1999; Haug, et al., 

2002; Klarer et al., 2014,2018; Levy et al., 2006; Mayer et al., 2000, 2001). It is increasingly 

recognized that the stomach has a profound implication to brain activity.  

Understanding the stomach-brain interaction is not only necessary for brain studies but also 

crucial for the gastric system. The impaired stomach-brain interaction can cause severe gastric 

disorders, such as gastroparesis (Ali et al., 2007; Camilleri et al., 2018; Lacy & Weiser, 2005) and 

functional dyspepsia (Enck et al., 2017; Tack et al., 1998, 2004; Talley & Ford 2015). These 

disorders affect 20% of the general population and there are limited therapeutic options (Ford et 

al., 2020; Lacy et al., 2009; Stanghellini, 2016; Talley & Ford, 2015). Therefore, it is essential to 

map the stomach-brain interaction in health and disease with the overall goal of restoring the 

regular stomach-brain interaction.   

So far, most studies utilize external stimulation to study the stomach-brain interaction. For 

example, one may apply mechanical, nutritional, and electrical stimulation to the stomach and use 

a food cue through visual stimulation. However, external stimulation is different from how the gut 

engages the brain under the intrinsic conditions. Mapping the intrinsic stomach-brain interaction 

is critical. Recent studies utilize electrogastrogram (EGG) to represent gastric activity and record 

EGG simultaneously with magnetoencephalography (MEG) or functional magnetic resonance 

imaging (fMRI) (Choe et al., 2021; Rebollo et al., 2018; Richter et al., 2017). These studies report 

that EGG is phase-coupled to neural activity, specifically in the insular cortex, visual cortex, 



 101 

sensorimotor cortex, cerebellum, and the default mode network. These studies illustrate the 

intrinsic stomach-brain interaction and introduce a new avenue to this field. However, questions 

remain. Does intrinsic stomach-brain synchrony exist in animals, e.g., rodents? Is the synchrony 

dependent on the gastric state, e.g., fed vs. fasting conditions? What is the functional circuit that 

mediates this synchrony?  

We attempted to address these questions with experiments in rats. Briefly, we recorded 

EGG and fMRI simultaneously in rats in an attempt to replicate and generalize the stomach-brain 

synchrony observed in humans (Rebollo et al., 2018). The experiment was performed in both the 

postprandial state and the fasting state to address the state dependence of stomach-brain synchrony. 

We further evaluated the effects of vagotomy to address the role of the vagus in the stomach-brain 

synchrony.   

Methods and Materials 

Subjects  

This study used eight Sprague–Dawley rats (male, weight: 300–500 g; Envigo RMS, 

Indianapolis, IN) according to a protocol approved by the Institutional Animal Care and Use 

Committee (IACUC) and the Laboratory Animal Program (LAP) at Purdue University. Animals 

were housed in a strictly controlled environment (temperature: 21 ± 1 °C; 12 h light-dark cycle 

with lights on at 6:00 a.m. and off at 6:00 p.m. at Purdue University). 

Animal training and feeding 

The animal was trained to consume a fixed quantity of palatable dietgel (DietGel Recovery, 

ClearH2O, ME, USA) following a protocol published earlier (Lu et al., 2017). The training took 7 

days. In the first 2 days, the animal was supplied with both regular rat chows and ~5g dietgel to 

accustom itself to the dietgel. In the following days, the animal was fasted for 18 hours (6PM to 
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12AM) and then fed with the dietgel only at 12AM. The animal was given 30 minutes to consume 

5 dietgel; then regular meal was supplied to the animal afterwards. After the diet training (~2 to 3 

repetitions), the animal could voluntarily consume the dietgel following overnight food restriction 

and was then used for the experiment.  

Anesthesia protocol 

The animal was anesthetized during the experiment. The animal was initially anesthetized 

with 5% isoflurane followed with 2.5% isoflurane to maintain the anesthesia depth. The animal 

was placed on a heating pad to maintain the body temperature. After a toe-pinch test, the animal 

was ready for abdominal surgery or the electrode placement. The dose of isoflurane was adjusted 

as needed to maintain the depth of anesthesia. The respiration rate, heart rate, oxygen saturation 

level (SpO2), and body temperature were monitored and maintained within the physiological range. 

The respiration rate was from 30 to 70 cycles per minute. The heart rate was from 250 to 350 

cycles per minute. SpO2 was higher than 96%. The temperature was about 37± 0.5 °C. 

For EGG and fMRI data acquisition, a different anesthesia protocol was used. Half an hour 

before data acquisition, a bolus of dexdomitor (15 µg/kg, Zoetis, NJ, USA) was administered 

subcutaneously. The dose of isoflurane was then lowered to 0.1-0.5% as soon as the animal’s heart 

rate and respiration started to drop. About 15 to 20 mins after the bolus injection, subcutaneous 

infusion of dexdomitor (0.05mg/ml) was administered at a rate of 15 µg/Kg/h, during which the 

dose of isoflurane was kept below 0.5%. The dose of dexdomitor and isoflurane were adjusted as 

needed to maintain the depth of anesthesia and keep the respiration rate, heart rate, oxygen 

saturation level (SpO2), and body temperature within the corresponding physiological range (see 

the paragraph above). 
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Brain fMRI acquisition and signal preprocessing 

The MRI and fMRI data were acquired with the 7-tesla small-animal MRI system (BioSpec 

70/30, Bruker, Billerica, MA, USA). A volume coil (76 mm inner diameter) and a single-channel 

surface coil were used as the transmitter and receiver for image acquisition. During MRI, the 

animal’s head was restrained with a bite bar and two ear bars to avoid head motion. The animal’s 

torso was gently taped to the animal holder to avoid body motion. After localizer scans, T2-

weighted anatomical images were acquired using a 2-D rapid acquisition with relaxation 

enhancement (RARE) sequence with the repetition time (TR)=5,804.6 ms, effective echo time 

(TE)=32.5ms, echo spacing=10.83ms, voxel size=0.125×0.125×0.5mm3, RARE factor=8, number 

of slices=50, and flip angle (FA)=90. Following anatomical scans, T2*-weighted fMRI images 

were acquired with a 2-D single-shot gradient-echo (GE) echo-planar imaging (EPI) sequence 

(TE=16.5ms, in-plane resolution=0.5×0.5 mm2, slice thickness=1mm, TR=1s, number of 

slices=25, and FA=55°). 

The MRI/fMRI data was pre-processed using FSL (Jenkinson, et al., 2012), AFNI (Cox, 

1996), and in-house software developed in MATLAB. Head motion was first corrected by co-

registering every volume to the first volume within each session (3dvolreg). Next, the slice timing 

in each volume was corrected by (slicetimer). The fMRI images were then aligned with the 

anatomical images (flirt) and further registered to a rat brain atlas (Valdes Hernandez et al., 2011) 

(fnirt). Lastly, the fMRI signal is spatially smoothed with a 3-D Gaussian kernel of 0.5-mm full-

width-at-half maximum (FWHM), the linear trend in time is regressed out from the fMRI signal. 

Placement of the EGG recording electrode 

For EGG recording, electrodes were placed on the abdominal surface. The fur on the 

animal’s abdomen was carefully removed to expose the abdominal skin. A multi-channel EGG 
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array was attached and sutured onto the skin. The placement of electrodes was carefully designed 

to cover the stomach (as shown in Figure 5-1A). In brief, the xiphoid was first identified as the 

reference. Then, the electrode on the second row and third column was placed on top of the xiphoid. 

The electrodes were placed as a grid with columns in parallel with animal’s central line. The 

reference electrode was attached to the skin 5mm above the xiphoid. The ground electrode was 

attached to the left hind limb. 

EGG recording 

The multi-channel body-surface EGG was recorded through a broadband recording system 

(Tucker Davis Technologies, Alachua, FL, USA). The recording electrode was connected to the 

head-stage for pre-amplification near the animal and then to the amplifier in which the DC-signal 

was also recorded to achieve broad-band acquisition. The amplifier was placed closed to the 

scanner to achieve good signal quality. The amplifier also digitized the EGG signal with the 

sampling rate of 24kHz and transmitted the digital signal to the data acquisition system outside the 

scanner room through an optical fiber. To synchronize EGG and fMRI signals in time, a TTL 

trigger, reporting the timing of MR acquisition, was recorded together with EGG. Both EGG and 

MRI trigger signals were stored for off-line analyses. The stored data was pre-processed to remove 

artifacts caused by MRI acquisition. For each channel, the signal was first demeaned and then 

detrended by regressing out the 5th-order polynomial function. Then, a low-pass filter was applied 

to the signal with the cut-off frequency at 0.45Hz. Finally, the EGG signal was down sampled to 

1s and ready for further analyses. 

Coherence analysis between EGG and fMRI signals 

Coherence was calculated to evaluate the phase synchrony between EGG and fMRI signals. 

In brief, we first ran a power spectrum analysis on EGG from the selected channel and identified 
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the dominant frequency indicative of the gastric slow wave. We then applied the cross-spectral 

analysis between EGG from the selected channel and fMRI signals from individual voxels and 

only focused on the identified frequency. The cross-spectral density at the frequency of interest 

was then normalized for each spectrum as described in the following equation, 

𝐶)*(𝑓) =
+,()(-)+

*

,(((-),))(-)
    Equation 5-1 

in which x and y represent EGG and fMRI activity from each voxel, respectively, 𝐺)* is the cross-

spectral density between x and y, G.. and G./ is the spectral density of x and y respectively, 𝐶)* 

is the coherence between x and y, and f represents the frequency. The normalized cross-spectral 

density reported the frequency-specific synchrony between EGG and fMRI activity.  

Because the dominant frequency of gastric slow waves could vary over time, the coherence 

was calculated for every ~4 min segment with respect to the dominant frequency identified in each 

segment. First, EGG signals were divided into segments with 256 and 196 time points, respectively. 

The dominant frequency of gastric slow waves was located for each data segment using the power 

spectrum analysis. Specifically, the dominant frequency was identified as the frequency with the 

highest power within 0.06-0.13Hz. Then, the coherence between each EGG segment and the 

corresponding fMRI segment was calculated at the dominant frequency. The resulting coherence 

was averaged across every segment within each animal and then across animals. 

To test the statistical significance, coherence was converted to the z-score before statistical 

tests. Specifically, EGG and fMRI signals were first shuffled in phase and then used for calculating 

the coherence. This shuffling and coherence calculation process was performed once for individual 

data segments and brain voxels. These coherences were used to build the null distribution for every 

frequency in the spectrum. According to the null distribution, coherence from each voxel and data 

segment was converted to the z-score for further statistical analyses. 
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To map coherence, we performed the one-side t-test on the voxel-wise z-score of coherence 

across animals. The statistical significance was based on p<0.01 while only keeping clusters of 

significant voxels greater than 2 mm3 (8 voxels). In the coherence analysis of regions of interest 

(ROIs), we defined 156 ROIs based on rat brain anatomy (Papp et al., 2014; Paxinos & Watson, 

2006; Valdes Hernandez et al., 2011), including both cortical and subcortical regions. Coherence 

z-scores were first averaged within each ROI for each animal. One-side t-test was then performed 

on the averaged z-scores across animals. The statistical significance was based on the t statistic 

with p<0.01 with Bonferroni correction for the number of ROIs. 

Functional connectivity  

We evaluated the temporal correlation between brain regions or between a seed region and 

other brain regions. In the seed-based correlation, a seed covered the left and right NTS. The 

functional connectivity to the seed region was calculated as the temporal correlations of the fMRI 

time series between NTS and other voxels. The correlation coefficient was converted to a z-score 

using the Fisher’s z-transform and then averaged within each animal. The one-sample t-test 

(p<0.05) was performed on the z-scores across animals for the group-level analysis. Similarly, the 

correlations between parcellated brain regions were evaluated.  

Results 

This study aimed to check whether gastric slow waves were synchronized with the BOLD 

activity in the brain and whether the vagus nerve was essential to the synchronization. We recorded 

EGG during brain fMRI on eight rats and assessed the phase-coupling in both the postprandial and 

fasting states and tested whether the vagus nerve mediated the synchronization. 
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Phase-coupling between gastric slow waves and fMRI signals 

Inspired by a prior human study (Rebollo et al., 2018), we hypothesized that a gastric 

network existed in the rat brain and exhibited spontaneous BOLD activity phase-locked to the 

gastric slow wave that paced the stomach for meal digestion. To test this hypothesis, we performed 

brain fMRI in eight SD rats simultaneously with EGG recording after rats consumed 5g diet gel. 

We applied coherence analysis to the fMRI and EGG signals and assessed their phase-locking 

effects at gastric phase-making frequency (4-6 CPM). According to the voxel-wised analysis, the 

BOLD signals in multiple brain regions were phase-coupled to gastric slow waves. The brain 

regions included the anterior cingulate cortex, insula, medial prefrontal cortex, sensorimotor cortex, 

visual cortex, and cerebellum (Figure 5-1C). The additional ROI-based analysis further confirmed 

the wide-spread phase-locking effects. The first 15 regions with the highest coherence were the 

left ectorhinal cortex, left and right entorhinal cortex, right hippocampal formation, left superior 

colliculus, left granular insular cortex, left olfactory ball, left cerebellum, right auditory cortex, 

right motor cortex, and right somatosensory cortex barrel region and hind limb region (Figure 5-

1E). This result confirms the phase-coupling between gastric pace-making activity and BOLD 

activity in the rat brain, suggesting that the stomach and the brain are intrinsically synchronized. 
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Figure 5-1 The coherence between gastric slow waves and fMRI signals in the postprandial 
state. A shows the placement of the skin-surface EGG electrodes. The one selected for analysis is 
marked with darker blue. B provides an example of EGG and fMRI signals. C & D show the voxel-
wised and ROI-wised phase-coupling map in the brain, respectively. The color encodes t statistics 
with p<0.005. E lists the top 15 regions with the highest coherence between EGG and fMRI signals. 

 

Phase-coupling between the stomach and the brain is state-dependent  

The previous section confirmed the intrinsic phase-coupling between the stomach and brain 

in the postprandial state. Here, we assessed whether the phase-coupling also existed in the fasting 

condition. To answer this question, we repeated the experiment with five rats to simultaneously 

record EGG and fMRI after fasting the animal.  As shown in Figure 5-2, the stomach-brain 

synchrony was also observable but covered fewer regions. At the fasting stage, the phase-coupling 

was more pronounced in the prelimbic cortex, anterior cingulate cortex, insular cortex, striatum, 

olfactory ball, primary somatosensory cortex, visual cortex, amygdala, and cerebellum (Figure 5-

2AC). The overlap between the fed and fasting conditions was only partial, in the anterior cingulate 

cortex, striatum, primary motor cortex, visual cortex, and amygdala etc. (Figure 5-2B). The phase-
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coupling at the fasting stage was also weaker than that at the fed stage. Most brain regions showed 

stronger phase-coupling at the fed stage (Figure 5-2E). The top-ten regions with the most notable 

difference included the right nucleus of the solitary tract, right dorsolateral orbital cortex, right 

auditory cortex, right parabrachial complex, left frontal association, right posterior parietal cortex, 

the left and right primary somatosensory cortex (hind limb and trunk regions), and left ventral 

thalamus. In particular, the difference was significant in the left primary motor cortex, left primary 

somatosensory cortex, left olfactory ball, left ventral thalamus, right insular cortex, and septal 

nucleus (Figure 2-2D, p<0.05). This result confirms that the phase-coupling exists in the fasting 

condition but it is weaker than in the fed stage, suggesting that the stomach-brain synchrony is 

dependent on the gastric state. 

Comparing the fed and fasting conditions revealed the lateralization in the phase-coupling 

between the stomach and the brain. In the primary somatosensory cortex, motor cortex, and insular 

cortex, brain regions in the left hemisphere had higher coherence than the right hemisphere (Figure 

2-3). This preference was more pronounced in the fed stage for the somatosensory cortex and 

motor cortex and was more pronounced in the fasting stage for the insular cortex. Similarly, the 

striatum in the right hemisphere had higher coherence than the right hemisphere, and this 

preference was more observable in the fed stage. The preference for one hemisphere could also be 

observed in the brainstem nuclei. In the nucleus of the solitary tract (NTS) and parabrachial 

complex (PBC), the right nuclei were more synchronized with the gastric slow wave than the left 

nuclei at the fed state (Figure 2-4D). This lateralization in phase-coupling suggests different 

engagement of the left vs. right hemispheres in the stomach-brain synchronization. 
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Figure 5-2 The coherence comparison between the postprandial (fed) and fasting stages. A & C 
shows the fasting-state voxel-wised and ROI-wised phase-coupling map in the brain, respectively. 
The color encodes t statistics with p<0.01. B highlights the overlaps in the voxel-wised phase-
coupling map between the fed and fasting states. The color represents the difference of coherence 
Z-score between the fed and fasting states. D provides the phase-coupling comparison between 
the fed and fasting states according to the ROI-based coherence z-score. The color gives t statistic 
with p<0.05. E also shows the phase-coupling comparison, but the color represents the difference 
in coherence z-score between the fed and fasting states. F plots the first ten brain regions with the 
highest coherence difference between the two conditions. 
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Figure 5-3 Coherence different between the left and right hemispheres. The eight plots show the 
coherence difference between the left and right brain regions in the fed and fasting conditions. 
These plots include the regions in the somatosensory cortex, motor cortex, insular cortex, and 
striatum.  

 

Functional connectivity in the gastric network 

To understand the information exchange within the gastric phase-coupling network, we 

further investigated the information flow involving the nucleus of the solitary tract (NTS), the 

essential relay between the stomach and the brain. We defined left and right NTS as two regions 

of interest and applied seed-based correlation and parcel correlation to map the functional 

connectivity between NTS and the rest of the brain. The functional connectivity was compared 

between the fasting and fed states to demonstrate its condition dependency. At the fasting state, 

both the left and right NTS-seeded functional network involved the periaqueductal gray, 
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somatosensory cortex, motor cortex, medial prefrontal cortex, and insular cortex (Figure 5-4AE). 

In contrast, the NTS-seeded functional network largely diminished at the fed state. The left-NTS-

seeded network did not show significant involvement in the forebrain, and the right-NTS-seeded 

network only engaged the anterior cingulate cortex, medial prefrontal cortex, and insular cortex 

(Figure 5-4BE). The difference between the fasting and fed states was more significant in the 

somatosensory cortex, motor cortex, and insular cortex in the left-NTS seeded functional network 

(Figure 5-4C). In summary, NTS has stronger functional connectivity with the forebrain in the 

fasting state than the fed state. Also, the left and right NTS connect to the forebrain differently in 

the fed state. 

 
Figure 5-4 Functional connectivity between NTS and the forebrain. A shows the seed-based 
correlation at the fasting state with the seed as the left and right NTS separately. B shows the seed-
based correlation at the fed state and the seed as the left and right NTS. C shows the difference in 
the seed-based correlation between the fasting and fed conditions. D plots the coherence z-score 
in the left and right NTS and PBC at both the fed and fasting conditions. E plots the parcel 
correlation at both the fasting and fed conditions and correlation difference between the two 
conditions. In all the maps and plots, color encodes t-statistic. 
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Phase-coupling is partially mediated by the vagus nerve 

As mentioned in the previous section, NTS was the critical relay between the stomach and 

the brain. Here, we hypothesized that the vagus nerve, as the parasympathetic nerve innervating 

NTS, played an essential role in mediating the stomach-brain synchrony. We repeated the 

simultaneous EGG-fMRI recording experiments at the postprandial condition on five rats after 

bilateral cervical vagotomy. We applied the coherence analysis to assess the phase-coupling after 

cutting the vagus nerve and compared the coherence to the group with the intact vagus nerve. As 

illustrated in the voxel-wised analysis, only a few brain regions preserved after cutting the vagus 

nerve (Figure 5-5A), including a small portion of the somatosensory cortex, motor cortex, and 

insular cortex, with a slight overlap with phase-coupling map from the vagus nerve intact group in 

the primary somatosensory cortex, hindlimb and forelimb regions (Figure 5-5B). The coherence 

in the vagotomy group was also weaker than the group with the vagus nerve intact (Figure 5-5D). 

The difference was most significant in the right insular cortex, septal nucleus, thalamic nuclei, 

motor cortex, and visual cortex (Figure 5-5C). However, a few regions showed stronger coherence 

after vagotomy. The first six regions were the right primary somatosensory cortex (jaw region), 

left and right perirhinal cortex, left primary somatosensory cortex, right posterior thalamic nucleus, 

and right agranular insular cortex (Figure 5-5E). These results suggested that the vagus nerve is 

the primary, but not only, pathway that mediates the stomach-brain synchrony. 
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Figure 5-5 The role of vagus nerve in maintaining the phase-coupling at the postprandial (fed) 
stage. A shows the voxel-wised phase-coupling map at the fed condition after bilateral cervical 
vagotomy. The color encodes the t statistic with p<0.01. B highlights the overlapped region 
between the vagotomy group and the group with the vagus nerve intact. The color encodes the 
difference in coherence z-score between the vagal-intact and vagotomy groups. C highlights the 
ROIs with the coherence z-scores significantly higher in the vagal-intact group than the vagotomy 
group. The color encodes the t statistics with p<0.05. D maps the difference in the coherence z-
scores in all ROIs. The color encodes the coherence difference between the vagal-intact and 
vagotomy groups. E plots the first six regions in which the coherence is higher in the vagotomy 
group than the group with vagus nerve intact. 

 

Discussion 

This study reported a gastric network, in which BOLD activity was phase-coupled to 

gastric pace-making activity. The gastric network was state-dependent, with a more extensive 

brain coverage and stronger coherence in the postprandial state than the fasting state. Within the 

gastric network, NTS, as the primary relay between the stomach and the brain, had a significant 

BOLD correlation with the somatomotor and prefrontal area. This correlation also showed state-

dependency, with a higher correlation at the fasting state. Last, the gastric network was primarily 

mediated by the vagus nerve, with diminished phase-coupling after bilateral vagotomy. 
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The wide-spread coverage of different regions 

Anatomical evidence 

Anatomical connections between the stomach and brain have been increasingly mapped. 

Two major neural pathways connect the stomach with the central nervous system, including the 

vagus nerve and thoracic nerve (Browning & Travagli, 2011; Furness et al., 2014, 2020; Rogers 

et al., 1995). The thoracic nerve connects to the spinal cord, which further projects to the several 

brain nuclei, including the amygdala, lateral hypothalamus, periaqueductal gray, parabrachial 

complex, and nucleus of the solitary tract. The vagus nerve mainly connects to the nucleus of the 

solitary tract and further projects to the forebrain relayed by parabrachial complex and 

periaqueductal gray. Therefore, many brain regions are connected with the stomach within three 

or four synapses and form a central gastric network. These regions include the insular cortex, 

striatum, amygdala, medial prefrontal cortex, anterior cingulate cortex, hypothalamus, thalamus, 

and hippocampus (Browning & Travagli, 2011; Suarez et al., 2018). Recent studies also report that 

the somatomotor cortex and hippocampus are engaged in the gastric network through the thoracic 

nerve and the striatum, respectively (Levinthala and Strick, 2020; Suarez et al., 2018). This 

knowledge of neuronal connections provides anatomical support for most brain regions in the 

gastric phase-coupling network reported in this study. 

The involvement of visual and auditory cortex 

This study reveals that BOLD activity in the visual and auditory cortex is phase-coupled 

with EGG. A similar result is also reported in the EGG-fMRI study conducted in humans (Rebollo 

et al., 2018). However, the involvement of the visual and auditory cortex is hard to be explained. 

One speculation is that the visual cortex is essential in food-seeking (Rebollo et al., 2018). It 

logically makes sense but is with limited literature support. One indirect support is the motion 
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sickness that a specially designed visual stimulation can cause nausea and vomiting. The motion 

sickness experiment suggests a functional relationship between the visual system and the stomach 

(Griffin & Newman, 2004; Kennedy et al., 2010). 

The involvement of the insular cortex 

The insular cortex is the well-recognized region in the stomach sensation, but the previous 

studies on the synchronization between EGG and brain activity do not strongly support the 

synchronization in the insular cortex (Choe et al., 2021; Rebollo et al., 2018). Unlike what has 

been reported in the human literature, this animal study suggests that BOLD activity in the insular 

cortex is phase-coupled with EGG. In this result, the insular cortex is not primarily involved, only 

with engagement of the right agranular insular cortex (AI), right dysgranular insular cortex (DI), 

and left granular insular cortex (GI) at the postprandial state. Although different from human 

studies, this occurrence of the insular cortex is consistent with the hypothesis that the right insular 

cortex is the stomach region of the interoceptive cortex (Craig, 2003, 2009). Besides, the magneto-

encephalographic study reports a similar finding that the amplitude of neural activity in the right 

insular cortex is coupled with EGG. Therefore, it is likely that there is an involvement of the right 

insular cortex in the gastric phase-coupling network. 

The state-dependency of the gastric network 

This study reveals that the phase-coupling between the stomach and brain is gastric-state-

dependent. Dynamics of the stomach-brain interaction are essential to regulate gastric activity and 

form gastric sensations given different physiological conditions. For example, during the fasting 

state, the stomach has continuous gastric slow waves but lacks regular gastric contractions. In 

contrast, during the postprandial state, the corpus and antrum have regular rhythmic contractions, 

with stronger contractions occurring once a while for gastric emptying. Given significant dynamics 
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of gastric activity, the brain may respond to the stomach differently. Yet, not many studies target 

the dynamics of the stomach-brain interaction. The study with EGG and fMRI allows us to perform 

experiments under varying gastric phases and provides an opportunity to assess the dynamics of 

the stomach-brain interaction. State-dependency in the phase-coupling serves as a piece of solid 

evidence that the intrinsic stomach-brain interaction changes with gastric conditions. 

Asymmetry in the gastric phase-coupling network 

The gastric phase-coupling network reported in this study is asymmetric for both the 

postprandial and fasting states. Asymmetric networks have been reported in other gastric studies. 

For example, in the gastric network revealed by EGG-fMRI simultaneous recording in humans, 

only the right primary somatosensory cortex is found to be phase-locked to EGG (Rebollo et al., 

2018). Similarly, in a rewarding study conducted on rodents, only the right vagal ascending 

pathway is involved in the gut-induced reward pathway (Wenfei Han et al., 2018). Lateralization 

is also commonly occurred in other functional systems, such as the visual system and somatomotor 

system. Speculatively, lateralization may also exist in the interoceptive system, hypothetically 

stating that the right insula is associated with energy expenditure and arousal. In contrast, the left 

insular cortex is associated with energy nourishment and appetitive behavior (Craig, 2009, 2014). 

Thus, different functions of the insular cortex in two hemispheres are likely to cause lateralized 

phase-coupling with gastric slow waves. 

Causality in the stomach-brain interaction 

Based on the prior knowledge of the stomach-brain interaction, it is more likely that the 

brain listens to the stomach. This stomach-to-brain ascending direct direction is supported by 

anatomical and functional evidence (Sanders et al., 2006). In brief, the gastric slow waves originate 

from the ICC network, a network of pace-making cells in the stomach. Gastric slow waves 
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propagate in the stomach, allowing the stomach to contract in a coordinated fashion. The gastric 

rhythms always exist even after cutting the neural connection with the brain. Therefore, the 

monitoring position of the brain is highly possible for the gastric phase-coupling. 

However, it is also possible that the brain can adjust gastric rhythm. Efferent projections 

can be found targeting ICC cells, making the downstream regulation of gastric rhythm possible. 

The downstream regulation is also supported by functional evidence. For example, patients with 

brain death, injury, comma, or Parkinson’s disease show alternated gastric rhythms (Bor et al., 

2016; Krygowska-Wajs et al., 2000; Naftali et al., 2005; Thor et al., 2003;). Besides, visually 

induced motion sickness can cause gastric dysrhythmia (Cheung & Vaitkus, 1998). Furthermore, 

dysrhythmic activity can also be improved through deep brain stimulation (Krygowska-Wajs et al., 

2016). Taken together, it is possible that the brain plays a supportive role in regulating gastric 

rhythms.  

Limitation and the future direction 

This study focuses on skin surface recording of gastric slow waves, which is a rough 

representation of gastric slow waves. In the actual scenario, gastric slow waves from different 

stomach segments are not perfectly synchronized. Single-channel EGG cannot well delineate the 

spatial information of gastric slow waves from various stomach segments, thus cannot fully reveal 

the phase-coupling between the stomach and the brain. Besides, EGG as the skin surface potential 

can be affected by other physiological signals, such as respiration, heart rats, and intestinal activity. 

Therefore, it is of great interest to investigate the stomach-brain synchronization with gastric slow 

waves recorded on the stomach wall.  
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Chapter 6 Gastric Myoelectrical Activity is Synchronized with BOLD Activity in the Brain 
at the Intrinsic State 5 

Summary 

The stomach-brain interaction is critical in maintaining normal gastric activity. Recent 

studies tackle this problem and use the simultaneous recording of electrogastrogram (EGG) and 

functional magnetic resonance imaging (fMRI) to assess the problem and report the 

synchronization between the stomach and brain. However, EGG is not a direct measurement of 

gastric activity and can be confounded by various issues, such as high noise level, geometry of the 

stomach, and stomach fullness. It is of interest to reassure the stomach-brain synchronization with 

a more direct measurement of gastric activity. In this study, we implanted wire electrodes on the 

serosal surface of the stomach in rats and recorded gastric myoelectrical activity (GMA) 

simultaneously with fMRI. We confirmed the phase-coupling between the stomach and the brain 

and found that the corpus has stronger phase-coupling with BOLD activity compare to the antrum. 

Besides, the phase-coupling showed lateralization in the brain, with the corpus showing stronger 

phase-coupling with the right hemisphere and the antrum showing stronger phase-coupling with 

the left hemisphere. Besides the rhythmic activity, GMA power was also correlated with BOLD 

activity in the brain. Power of GMA in the corpus showed more significant correlation with BOLD 

activity at gastric pace-making frequency (5 cycles per minute) and low frequency (3.5 cycles per 

minute), while antrum correlated with BOLD activity only at the low frequency (3.5 cycles per 

 
 
5 The contents of this chapter will be prepared for submission (Cao et al., in preparation) 
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minute). This study confirms the phase-coupling between the brain and different segments of the 

stomach and reports the brain representation of gastric contractional power for the first time. 

Introduction 

The brain intrinsically interacts with the stomach to maintain the daily gastric function 

(Furness et al., 2014, Rogers et al., 1995). The impaired interaction yields both gastric and brain 

disorders, such as functional dyspepsia (Enck et al., 2017; Tack et al., 2004; Talley & Ford 2015), 

gastroparesis (Ali et al., 2007; Camilleri et al., 2018; Lacy & Weiser, 2005), anxiety, and 

depression (Drossman et al., 1999; Haug et al., 2002; Haug et al., 2002; Levy et al., 2006; Mayer, 

2000). Gastric stimulation is often used to study the stomach-brain interaction, that requires a 

balloon or an infusion line to be inserted into the stomach to deliver pressure or nutrient stimuli 

(Ladabaum et al., 2001; Min et al., 2011; Wang et al., 2008). These stimuli can cause unpleasant 

sensations and may not trigger normal neural responses in the brain. Therefore, it is of great interest 

to study the stomach-brain interaction without external stimuli. 

In the past few years, the intrinsic stomach-brain interaction has become a topic of interest. 

Unlike traditional study design requiring external stimulation to activate the gastric network, the 

new study paradigm uses electrogastrogram (EGG) to represent gastric activity and assess the 

relationship between EGG and the functional activity in the brain (Cheo et al., 2021; Rebollo et 

al., 2018; Richter et al., 2017). Given this new study design, the gastric phase-coupling network is 

reported in both humans (Choe et al., 2021; Rebollo et al., 2018) and animals (Chapter 5). However, 

EGG is a noninvasive measurement of gastric activity and can be contaminated by noise. It is of 

great interest to investigate the stomach-brain interaction with a direct measurement of gastric 

activity. 
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Besides the functional mapping, the neural anatomy has been better mapped in recent years. 

The vagus nerve is the primary pathway connecting the stomach and the brain, with the left gastric 

vagal branch innervating the ventral stomach and the right gastric vagal branch innervating the 

dorsal stomach (Furness et al., 2014, 2020; Rogers et. al., 1995). The left and right vagus nerve 

further project to the left and right nucleus of the solitary tract (NTS), respectively. However, the 

stomach does not have a clear topographic organization in NTS (Rogers et al., 1995; Travagli & 

Anselmi, 2016). NTS further projects within and across hemisphere and connects to forebrain 

regions (Browning & Travagli, 2011; Levinthal & Strick, 2020; Suarez et al., 2018). The 

complicated connection leaves the gastro-topic mapping largely unknown.  

To address these questions, we implanted electrodes on the stomach surface and recorded 

gastric myoelectrical activity (GMA) simultaneously with brain fMRI. We focused on gastric 

activity at two different locations on the stomach (i.e., corpus and antrum) and further verified the 

stomach-brain synchrony given GMA from the corpus and antrum separately.  

Methods 

Subjects  

This study used four Sprague–Dawley rats (male, weight: 300–500 g; Envigo RMS, 

Indianapolis, IN) according to a protocol approved by the Institutional Animal Care and Use 

Committee (IACUC) at University of Michigan. All animals were housed in a strictly controlled 

environment (temperature: 21 ± 1 °C; 12 h light-dark cycle with lights on at 5:00 a.m. and off at 

5:00 p.m.). Animals underwent surgical implantation of wire electrodes for gastric myoelectrical 

activity recording.  
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Animal training and feeding 

The animal was trained to consume a fixed quantity of palatable dietgel (DietGel Recovery, 

ClearH2O, ME, USA) following an established training protocol (Lu et al., 2017). The training 

process took 7 days. In the first 2 days, the animal was supplied with both regular rat chows and 

~5g dietgel to accustom itself to the dietgel. In the following days, the animal was fasted for 18 

hours (6PM to 12AM) and then fed with the dietgel only at 12AM. The animal was given 30 

minutes to consume 5 dietgel; then regular meal was supplied to the animal afterwards. After the 

diet training (~2 to 3 repetitions), the animal was able to voluntarily consume the dietgel following 

overnight food restriction and was ready for participating the experiment.  

Anesthesia protocol 

The animal was anesthetized during the experiment. The animal was initially anesthetized 

with 5% isoflurane followed with 2.5% isoflurane to maintain the anesthesia depth. The animal 

was placed on a heating pad to maintain the body temperature. After a toe-pinch test, the animal 

was ready for other procedures including the surgery and electrode implantation. The dose of 

isoflurane was adjusted during the procedure to maintain the depth of anesthesia. Throughout the 

procedure, the respiration rate, heart rate, oxygen saturation level (SpO2), and body temperature 

were monitored and maintained in the safe range, in which respiration rate was from 30 to 70 

breaths per minute, heart rate was from 250 to 350 beats per minute, SpO2 was higher than 96%, 

and the body temperature was within 37± 0.5 °C. 

During the data acquisition, a different anesthesia protocol was applied to minimize the 

effects of isoflurane on homeostasis. Half an hour before the recording, a bolus of dexdomitor (15 

µg/Kg, Zoetis, NJ, USA) was administered subcutaneously. The dose of isoflurane was then 

lowered to 0.1-0.5% as soon as the animal’s heart rate and respiration start to drop. About 15 to 
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20 minutes following the bolus injection, subcutaneous infusion of dexdomitor was administered 

with the dose of 15 µg/Kg/h, during which the dose of isoflurane is maintained below 0.5%. The 

dose of dexdomitor and isoflurane were adjusted throughout the experiment to maintain the depth 

of anesthesia as needed. Respiration rate, heart rate, oxygen saturation level (SpO2), and body 

temperature were monitored and maintained in the safe range as described in the previous 

paragraph. 

Brain fMRI acquisition and signal preprocessing 

The MRI and fMRI data were acquired with the 7-tesla small-animal MRI system (Agilent, 

Varian medical system, Palo Alto, CA, USA). A 90 mm volume coil and a four-channel surface 

coil were respectively used as the transmitter and receiver for image acquisition. During the 

scanning, the animal’s head was constrained with a bite bar and two ear bars to avoid head motion, 

and the animal’s torso was gently taped to animal holder to avoid body motion. Localizer scans 

were first applied to locate the animal’s brain. After localizer scans, T2-weighted anatomical 

images were acquired using a rapid acquisition with fast spin echo sequence (TR=6500ms, 

effective TE=33.35ms, echo spacing =11.12ms, voxel size=0.125×0.125×0.5mm3, RARE 

factor=8, and flip angle (FA)=90°). Following anatomical scans, T2*-weighted fMRI images were 

acquired with a 2-D single-shot gradient-echo (GE) echo-planar imaging (EPIP) sequence 

(TE=18ms, in-plan resolution =0.5×0.5 mm2, slice thickness=1mm, TR=1.2s, and FA=90°).  

The MRI/fMRI data was pre-processed using FSL (Jenkinson, et al., 2012), AFNI (Cox, 

1996), and in-house software developed in MATLAB. For single-echo fMRI data, head motion 

was first corrected by co-registering every volume to the first volume within each session 

(3dvolreg). Next, the slice timing in each volume was corrected by (slicetimer). The fMRI images 

were then aligned with the anatomical images (flirt) and further registered to a rat brain atlas 
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(Valdes Hernandez et al., 2011) (fnirt). Lastly, the fMRI signal was spatially smoothed with a 3-

D Gaussian kernel of 0.5-mm full-width-at-half maximum (FWHM), the linear trend in time was 

regressed out from the fMRI signal. 

Implantation of recording electrodes 

To record the gastric myoelectrical activity (GMA) on the stomach wall, the electrode was 

chronically implanted prior to the experiment. The animal was fasted 18 hours before the surgery. 

To start the surgery, the fur on the animal’s abdomen was shaved to expose the skin. A ~3 cm 

incision was made starting at the xiphoid and moving 3 cm caudally. The skin and muscle were 

retracted to expose the ventral stomach. The liver covering the stomach was gently pushed away 

until the greater curvature, the corpus, and the antrum were clearly identified. Two pairs of 

electrodes were sutured onto the serosal layer of the stomach wall along the stomach (as illustrated 

in Figure 6-1A). Leads of the implanted electrode were routed to the back of the animal, and 

connectors at the end of leads were exposed outside for future connection with the recording 

system. Next, the muscle and skin layers at the incision site on the abdomen were closed with 

sutures. The animal was given at least one week to recover from the surgery. After recovery, the 

animal was ready for the diet training and recording experiment. To minimize pain and 

inflammatory responses after the surgery, the animal was given Baytril (BioServ, Flemington, NJ, 

USA) (one tablet per day, 2 mg/Tablet) two days before the surgery and Rimadyl (5 mg/Kg, SC, 

Zeotis, Parsippany, NJ, USA) immediately before the surgery. Then, the animal was given 

Baytril/Rimadyl (one tablet per day, 2 mg/Tablet for both Baytril and Rimadyl, BioServ, 

Flemington, NJ, USA) for the first three days after the surgery and then was given Baytril (one 

tablet per day, 2 mg/Tablet) for the following three days.  
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GMA recordings 

GMA was recorded through an EGG recording system (MP160, Biopac Systems, Inc., 

Goleta, CA, USA). Each pair of recording electrodes was first connected to the RF filter and then 

to differential amplifiers (EGG100C, Biopac Systems, Goleta, CA, USA). Signals were band-pass 

filtered with the low and high cutoff as 0.005 Hz and 1 Hz. The filtered signal was sampled at 100 

Hz, and the digitized signal was stored in the hard disk for offline analysis. Together with GMA, 

Z-gradient from the MR scanner was also recorded to synchronize GMA and fMRI signals in time. 

In the preprocessing step, the stored GMA data went through a 0.45Hz low-pass filter and down-

sampled to 0.833 Hz to match the sampling rate of fMRI signals. 

Coherence analysis between GMA and fMRI signals 

Coherence was used to evaluate the phase synchrony between GMA and fMRI signals. In 

brief, we first ran a power spectrum analysis on GMA from the selected channel and identified the 

dominant frequency representing gastric slow waves. We then applied the cross-spectral analysis 

between GMA from the selected channel and fMRI signals from individual voxels and only 

focused on the frequency of gastric slow waves identified previously. The cross-spectral density 

at the frequency of interest was then normalized for each spectrum as described in the following 

equation, 

𝐶)*(𝑓) =
+,()(-)+

*

,(((-),))(-)
    Equation 6-1 

in which x and y represent GMA and fMRI activity from each voxel, respectively, 𝐺)* is the cross-

spectral density between x and y, G.. and G./ is the spectral density of x and y respectively, 𝐶)* 

is the coherence between x and y, and f represents the frequency. The normalized cross-spectral 

density was coherence and could describe the phase-synchrony between GMA and fMRI activity 

quantitatively.  
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Because the dominant frequency of gastric slow waves could vary over time, the coherence 

was calculated for every ~4 min segment to match the varying frequency. First, GMA signals were 

divided into segments with 256 and 196 time points, respectively. The dominant frequency of 

gastric slow waves was located for each data segment using the power spectrum analysis. 

Specifically, the highest peak within 0.06-0.13Hz was identified in the spectrum, and the 

corresponding frequency was the dominant frequency of gastric slow waves. Then, the coherence 

between each GMA segment and the corresponding fMRI segment was calculated at the dominant 

frequency. Coherences from all the segments were averaged within each animal, followed by 

statistical analysis across animals. 

Coherence was converted to the z-score before statistical tests. Specifically, GMA and 

fMRI signals were first shuffled in phase and then used for calculating the coherence. This 

shuffling and coherence calculation process was performed once for individual data segments and 

brain voxels. These coherences were used to build the null distribution for every frequency in the 

spectrum. According to the null distribution, coherence from each voxel and data segment was 

converted to the z-score for further statistical analyses. 

To map the voxel-wised coherence network, we performed the one-side t-test on coherence 

z-scores across animals. The statistical significance was based on the t statistic with p<0.01, and a 

cluster-wise error correction was executed to remove any cluster less than 2 mm3 (8 voxels). In 

the coherence analysis of regions of interest (ROIs), we defined 156 ROIs based on rat brain 

anatomy (Papp et al., 2014; Paxinos & Watson, 2006; Valdes Hernandez et al., 2011), including 

both cortical and subcortical regions. Coherence z-scores were first averaged within each ROI and 

for each animal. One-side t-test was then performed on the averaged z-scores across animals. The 
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statistical significance was based on the t statistic with p<0.01 with Bonferroni correction for the 

number of ROIs. 

Relationship between fMRI and power of GMA 

The relationship between GMA power and BOLD activity was also confirmed in this study. 

GMA power was calculated using the wavelet analysis, with the wavelet containing 9 ripples at 

the dominant frequency of GMA. The time series of GMA were then convolved with the 

predefined wavelet, and the power fluctuations were the squared value after convolution. The 

power fluctuations were then used to assess the relationship with BOLD activity. A general linear 

model was built to describe the relationship between GMA power and fMRI signals in each voxel, 

as shown in the following equation. 

𝑦 = 𝑝⨂ℎ + 𝜖     Equation 6-2 

in which y represents fMRI time series, p is the GMA power fluctuations, h is the hemodynamic 

response function, and 𝜖 is the noise. The hemodynamic response function was estimated with two 

gamma functions, with the training data from three animals. The estimated hemodynamic response 

function was then used to estimate the fMRI activity from the other animal (i.e., testing dataset). 

The correlation between the estimated fMRI and real fMRI in the testing dataset was used to 

evaluate whether estimation of the hemodynamic response function was successful or not. This 

estimation process was repeated four times with different selection of the testing and training 

dataset and generated four correlation maps. The correlation was converted to z scores using fisher 

z transform function. For voxel-wised analysis, z scores from individual voxels were tested for 

statistical significance using one-sample t-test with one-side p<0.05 and a cluster-wise error 

correction to remove any cluster less than 2 mm3 (8 voxels). For ROI-wised analysis, z scores were 

first averaged within each ROI and then applied t-test with one-side p<0.05. 
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Results 

This study aimed to check whether the gastric slow waves recorded on the stomach surface 

could still demonstrated the stomach-brain synchronization and whether gastric slow waves on 

different segments of the stomach synchronize with the brain differently. Four rats were 

implemented with two pair of recording electrodes on the stomach wall with one pair in the corpus 

and the other pair in the antrum. We recorded GMA during brain fMRI to simultaneously monitor 

gastric pace-making activity and BOLD activity in the brain. We assessed the synchronization 

between gastric pace-making activity and fMRI signals at both the postprandial and fasting stages. 

Stomach-brain coherence validated with gastric myoelectrical activity recording 

Previous studies demonstrated that gastric slow waves recorded through electrogastrogram 

were phase-coupled with the BOLD activity in the rat brain. In this study, we further validated the 

phase-coupling but with the gastric slow waves directed recorded from the stomach surface. 

Besides, due to the different functional roles of the proximal and distal stomach, we hypothesized 

that different stomach segments were phase-coupled with the brain differently. To test this 

hypothesis, we recorded gastric myoelectrical activity (GMA) from both corpus and antrum on 

four rats simultaneously with brain fMRI acquisition at both the postprandial (fed) and fasting 

states. We calculated the coherence between fMRI signals and GMA from corpus and antrum 

separately and compared the coherence at the two locations. As shown in Figure 3‑1ABEF and 

Figure 6‑2ABFG, both the ROI-wised and voxel-wised analyses revealed stronger phase-coupling 

between GMA and fMRI signals at both the fed and fasting conditions in various brain regions, 

including the somatosensory cortex, motor cortex, visual cortex, auditory cortex, insular cortex, 

striatum, thalamic nuclei, and nucleus of the solitary tract. The coherence was stronger with GMA 

in the corpus than antrum (Figure 6‑1D & H and Figure 6‑2) for both the fed and fasting conditions. 
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In particular, as illustrated in the ROI-based analysis, the difference was significant in the left 

parabrachial complex, right entorhinal cortex, posterior cingulate cortex, and bilateral pretectum 

at both the fed and fasting conditions. The right agranular insular cortex was significant only at 

the fasting condition (Figure 6‑1C & G). A few exceptions also existed, including the left primary 

somatosensory cortex (for both the fed and fasting states) and right primary visual cortex (for the 

fed states), in which the difference was significant in the right primary visual cortex (p<0.05). The 

voxel-wised analysis revealed a similar difference. As shown in Figure 6‑2DEIJ, at both the fed 

and fasting states, fewer voxels were involved in the voxel-wised network for the coherence with 

antrum than corpus. The averaged coherence z-score was also weaker for the phase-coupling with 

antrum than corpus. In summary, GMA further demonstrates the phase-coupling with fMRI 

activity in the brain. Also, the corpus, the origin of the pace-making activity, has stronger 

synchrony with the brain than the antrum. 
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Figure 6-1 ROI-wised phase-coupling between brain fMRI and gastric myoelectrical activity 
(GMA) in the corpus and antrum separately. A & B show the ROI-wised phase-coupling between 
fMRI and GMA at the fasting state in the corpus and antrum respectively. The color encodes the 
coherence z-scores with Bonferroni correct p<0.01. C highlights the regions with significant 
different coherence between the corpus and antrum. The color encodes the difference in coherence 
z-score between the corpus and antrum with p<0.05. D plots the coherence difference for all ROIs. 
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Red lines mark the ROIs with coherence higher in the corpus; blue lines mark the ROIs with 
coherence lower in the corpus. EFGH show similar results at the fed state. 

 

 
Figure 6-2 Voxel-wised phase-coupling between brain fMRI and gastric myoelectrical activity 
(GMA) in the corpus and antrum separately. A & B show the fasting-state voxel-wised phase-
coupling map between fMRI and GMA in the corpus and antrum, respectively. The color encodes 
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the coherence z-score with p<0.0005. C highlights the regions having big coherence difference. 
The color encodes the coherence z-score. D illustrates the number of voxels with significant 
coherence between fMRI and GMA signals in the corpus and antrum separately. E plots the 
averaged coherence z-score for corpus and antrum separately.  FGHIJ show similar results at the 
fed state. 

 

Lateralization in the phase-coupling involving the corpus and antrum 

The previous section illustrated the coherence difference with GMA from the corpus and 

antrum. Because of the different functional roles for corpus and antrum, we hypothesized that 

gastric slow waves in corpus and antrum were synchronized with BOLD activity in different brain 

regions. In particular, we assessed whether the literalization existed for the phase-coupling with 

GMA from the corpus and antrum. To answer this question, we identified 77 brain regions 

covering both the left and right hemispheres and calculate the coherence difference between the 

two hemispheres. The same dataset from the previous section was used here. As shown in Figure 

6-3B & F, GMA from the corpus had stronger coherence with the brain regions from the right 

hemisphere, particularly in the insular cortex, striatum, olfactory ball, and hypothalamus for both 

the fasting and fed states. The regions with the largest difference between the right and left 

hemispheres included the primary somatosensory cortex trunk region, agranular, dysgranular, and 

granular insular cortex, posterior cingulate cortex, and superior colliculus for both gastric 

conditions (Figure 6-3DH). In contrast, GMA from the antrum had generally stronger coherence 

with the left hemisphere (Figure 6-3A & E). This lateralization was most observable in the 

somatosensory cortex, motor cortex, entorhinal cortex, and nucleus of the solitary tract. For both 

gastric conditions, the regions with the largest difference between the two hemispheres included 

the primary somatosensory cortex shoulder region, nucleus of the solitary tract, perirhinal cortex, 

parietal association cortex, posterior cingulate cortex, dorsal lateral and caudal entorhinal cortex, 

and inferior colliculus (Figure 6-3C & G). To summarize, GMA in the corpus has stronger phase-
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coupling with the right hemisphere, particularly for the insular cortex and striatum. In contrast, 

GMA in the antrum is more phase-coupled with the left hemisphere, particularly for the 

sensorimotor cortex, parahippocampal regions, and nucleus of the solitary tract.  

 
Figure 6-3 Lateralization in the phase-coupling with gastric myoelectrical activity (GMA) from 
the corpus and antrum. A & E show the coherence different between the left and right hemisphere 
given GMA from antrum at the fasting and fed states respectively. The color encodes difference of 
the coherence z-score between the left and right hemispheres. C & G plot the first ten regions with 
the largest coherence difference across hemisphere with GMA from antrum for the fasting and fed 
states respectively. B & F show the coherence difference between the right and left hemisphere 
give GMA from corpus at the fasting and fed states respectively. The color encodes difference of 
the coherence z-score between the right and left hemispheres. D & H plot the first ten regions with 
the largest coherence difference across hemisphere with GMA from corpus for the fasting and fed 
states respectively. 
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Gastric-condition-dependency of the phase-coupling between the stomach and brain  

In the study described in chapter 5, we observed that the stomach-brain synchrony 

depended on gastric states. This section further investigated this state-dependency given gastric 

slow waves from the antrum and corpus separately. We first chose GMA from the antrum and 

calculated its coherence with fMRI signals at both the fed and fasting states. The coherence 

difference was presented for individual voxels and ROIs separately. With GMA from the antrum, 

the coherence was stronger at the fed state than the fasting state. According to the voxel-wised 

comparison, the difference was strongest in the left primary motor cortex, left somatosensory 

cortex, left lateral thalamus, right amygdala, left auditory cortex, and a small portion of the striatum 

(Figure 6-4A). The ROI-based comparison revealed similar results (Figure 6-4C), with the largest 

difference observed in the left somatosensory cortex (shoulder, forelimb, and jaw regions), right 

visual cortex, right interpeduncular nucleus, left frontal association cortex, right bed striatum, and 

right parietal association cortex (Figure 6-4E). We also chose GMA from the corpus and applied 

the same analysis. With GMA from the corpus, the coherence was generally weaker at the fed state 

than the fasting state, such as the anterior cingulate cortex, right lateral thalamus (as shown in 

Figure 6-4B), but with exemptions in the left primary motor cortex and a small portion of striatum 

having stronger coherence at the fed state, same with the coherence with antrum. Regions with the 

largest coherence difference included the right nucleus of the solitary tract, right primary and 

secondary visual cortex, posterior cingulate cortex, bilateral perirhinal cortex, right lateral 

geniculate thalamus, and medial parietal association cortex (Figure 6-4F). In general, GMA from 

the antrum has stronger phase-coupling with fMRI signals at the fed state, while the corpus has 

stronger coherence at the fasting state, suggesting an opposite state-dependency with the brain. 
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Figure 6-4 State-dependency of the phase-coupling between the stomach and the brain. A & B 
show the coherence difference comparing the fed state with the fasting state at voxel and ROI level 
respectively with gastric myoelectrical activity from the antrum. C & D show similar results but 
with gastric myoelectrical activity from the corpus. For ABCD, the color encodes the difference 
of coherence z-score. E & F plot the first ten regions having the largest coherence difference 
between the fed and fasting states with gastric myoelectrical activity from the antrum and corpus 
respectively. 
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we extracted the power fluctuations of GMA using wavelets with the frequency at 5CPM and 

assessed the correlation between the power fluctuations with fMRI signals to map the gastric 

power networks. As illustrated in Figure 6-5AF, the power fluctuated over time at both the fasting 

and fed states but with distinct patterns. Besides, the power fluctuation did not match well given 

GMA from the corpus and antrum, either. The gastric power networks also covered different brain 

regions. At the fed state, the network generated by GMA in the corpus covered a broad brain region, 

including the somatosensory cortex, motor cortex, insular cortex, anterior cingulate cortex, 

hippocampal formation thalamus, and visual cortex (Figure 6-5GI, p<0.05). In contrast, the gastric 

power network with GMA in the corpus covered fewer regions at the fasting state, including only 

the motor cortex and a small portion of the visual cortex (Figure 6-5BD, p<0.05). Compared with 

corpus, gastric power networks with GMA in antrum only involved a small portion of the motor 

and somatosensory cortex at both the fasting and fed states and covered part of the hippocampal 

formation and parietal cortex at the fasting state (Figure 6-5CEHJ, p<0.05). In summary, the power 

fluctuations from the corpus have a larger impact on BOLD activity in the brain, especially at the 

postprandial state. 
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Figure 6-5 Gastric power networks at the pacing-making frequency. A & F plot an example the 
GMA power fluctuations over time with the frequency ranging from 1.5 CPM to 12 CPM at the 
fasting and fed states respectively. The color encodes the power. B & C show the voxel-wised 
gastric power networks at the fasting state given gastric myoelectrical activity (GMA) from the 
corpus and antrum respectively. D & E highlight the regions with significant correlation between 
power of GMA and fMRI signals given GMA from the corpus and antrum respectively. For BCDE, 
the color encodes t statistics with p<0.05. GHIJ show the same result at the fed state 

 
Occurrence of dysrhythmia in GMA is also an essential feature of gastric function with 

clinical relevance with nausea and vomiting. In this section, we further hypothesized that the brain 

fMRI signals were correlated with the power fluctuations of GMA at lower and higher frequencies. 

We repeated the same power analysis but used wavelets with frequencies of 3.5 CPM (low 

frequency) and 8 CPM (high frequency) to generate the gastric power networks. The gastric power 

networks covered limited brain regions with the power at 8CPM (Figure 6-6CDGH and Figure 6-

7CDGH). This limited coverage held true for both the fasting and fed states and with GMA from 

both the corpus and antrum. In contrast, more brain regions responded to the power at 3.5CPM as 

the lower frequency for GMA. Broad coverage in the gastric power network could be observed 

with GMA in the corpus at the fasting state (Figure 6-6AE, p<0.05). The network included the 

somatosensory cortex, motor cortex, insular cortex, thalamus, visual cortex, and auditory cortex. 

The same network covered fewer regions at the fed state but still included the thalamus, 

somatosensory cortex, periaqueductal gray, and hippocampus (Figure 6-7AE, p<0.05). Like 

corpus, the gastric power network generated with GMA in antrum also showed extensive brain 

coverage but only at the fed state (Figure 6-6BF and Figure 6-7BF, p<0.05). The network at the 

fed state involved the somatosensory cortex, motor cortex, thalamus, hippocampus, and 

periaqueductal gray. In summary, BOLD activity in the brain is more sensitive to low-frequency 

activity but not high-frequency activity. Also, the low-frequency activity in the antrum has a more 
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significant impact on the brain at the fed state, and the low-frequency activity in the corpus has a 

more significant impact on the brain at the fasting state. 

 
Figure 6-6 Fasting-state gastric power networks for dysrhythmic gastric activity. ABCD 
highlight brain regions having significant correlation between GMA power and fMRI signals at 
the fasting state with GMA from the corpus and antrum and with frequency at 3.5CPM and 
8CPM respectively. EFGH show the fasting-state gastric power networks with GMA from the 
corpus and antrum and with frequency at 3.5CPM and 8CPM respectively. The color encodes t 
statistic with p<0.05. 
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Figure 6-7 Fed-state gastric power networks for dysrhythmic gastric activity. ABCD highlight 
brain regions having significant correlation between GMA power and fMRI signals at the 
postprandial (fed) state with GMA from the corpus and antrum and with frequency at 3.5CPM 
and 8CPM respectively. EFGH show the fed-state gastric power networks with GMA from the 
corpus and antrum and with frequency at 3.5CPM and 8CPM respectively. The color encodes t 
statistic with p<0.05. 
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in the brain, with the right hemisphere more phase-coupled to the corpus and the left hemisphere 

more phase-coupled to the antrum. The phase-coupling was also gastric-state-dependent. At the 

fed state, the phase-coupling was stronger with the antrum and weaker with the corpus. Beyond 

the phase-coupling, BOLD activity in the brain was also correlated with the power fluctuations of 

GMA. Compared to the antrum, power fluctuations in the corpus more significantly impacted 

BOLD activity at 5CPM (phase-making frequency) and 3.5CPM (low frequency). The power 

correlation also showed gastric-state-dependency, with the antrum having a more extensive 

influence on the brain at the fed state. 

Biological meaning of gastric myoelectrical activity 

GMA is a mixture of gastric slow waves and myoelectrical activity from gastric smooth 

muscles. Gastric slow waves are initiated by ICC cells as a highly sinusoidal signal (Hansen, 2003; 

Sanders et al., 2006). They can set the basic rhythm for gastric contractions, with the onset 

corresponding to the starting point of a smooth muscle contraction. Gastric myoelectrical activity 

sits on top of gastric slow waves and make occurrences of smooth muscle contraction visible in 

GMA. When a strong contraction occurs, the power of GMA becomes larger. In contrast, if there 

is no contraction, the power of GMA is smaller. Beside the normal condition, the frequency of 

GMA can also be lower or higher, named bradygastria and tachygastria. The dysrhythmic activity 

is associated with abnormal gastric condition, such as nausea and vomiting (Chen et al., 1995). 

Therefore, results shown in this study can be interpreted given the physiological meaning of GMA. 

The phase-coupling between GMA and BOLD activity suggest that the gastric activity and neural 

activity in the brain are synchronized with each other, likely in the case that the brain follows the 

gastric rhythm. Besides, the correlation between GMA power and BOLD activity indicates that 

the brain keeps track of the contractional power of the stomach. Last, the correspondence between 
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GMA power at abnormal frequency support that the brain monitors gastric dysrhythmic activity 

constantly. 

Difference between the antrum and corpus 

Our results suggest different behavior of the antrum and corpus when interacting with the 

brain. The corpus is the main body of the stomach, with the primary function of grinding and 

mixing food (Boeckxstaens et al., 2016). The corpus also initiates gastric slow waves, which 

propagate to the antrum and drives gastric contractions. The antrum receives gastric slow waves 

and incorporates with its own rhythm to generate contractions. The contractions in the antrum are 

much stronger than corpus and help to mix food and empty the stomach. The corpus and antrum 

are also different anatomically (Boeckxstaens et al., 2016). The corpus has more IGLEs, which are 

vagal afferent terminals on the stomach and have close contacts with the enteric neurons (Powley 

et al., 2019). The antrum has more intramuscular arrays (IMAs), which are also vagal afferent 

terminals but presumably to be stretch receptors (Powley et al., 2019). Our result reveals that 

antrum and corpus are phase-coupled with different brain regions, suggesting a functional 

difference in cooperating with the brain. of the phase-coupling. The stronger phase-coupling with 

the corpus suggests that the brain care more about the initiation of gastric slow waves and may 

regulate gastric slows in corpus. Based on the anatomical evidence that more IGLEs presents in 

corpus, suggesting that the phase-coupling is likely relayed by IGLEs. 

Compared with the corpus, contraction in antrum is an important feature for the stomach. 

The strong contractions in antrum can better grinding the food and empty the stomach. However, 

our result suggest that the brain is less correlated with GMA power in the antrum. The lack of 

correlation is likely due to the less variation of GMA power. Based on the result, power 

fluctuations in the corpus are more dynamic and vary a lot in time. Monitoring the power 
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fluctuations in corpus is more meaningful. Besides, stronger contractions are often initiated in the 

corpus and propagate to the antrum. To follow the strong contractions, it is efficient to have a 

single point monitor, and the monitored point is better to be corpus. 

Lateralization in the gastric network 

This study reports lateralization of the phase-coupling between BOLD activity and gastric 

activity from the antrum and corpus. The antrum tends to have stronger phase-coupling with 

BOLD activity in the left hemisphere, while the corpus has stronger phase-coupling with the right 

hemisphere. The lateralization is a common phenomenon in the CNS organization, such as the 

visual system, sensorimotor system, with one hemisphere being more engaged in a functional role 

(Kapreli et al., 2016; Tomasi & Volkow, 2012; Tucker, 1981). In the stomach-brain neuroaxis, the 

lateralization is clear between the stomach and dorsal vagal complex. The left vagus nerve 

innervates the ventral stomach and the right vagus nerve innervates the dorsal vagus nerve. 

However, the knowledge of the lateralization becomes less clear going beyond the dorsal vagal 

complex. Presumably, the right insula is more relevant to energy expenditure and arousal, and the 

left insula is more engaged in energy nourishment and appetite behavior (Craig, 2009, 2014). 

Speculatively, the lateralization observed in this study is based on the function of antrum and 

corpus. the corpus initiates gastric slow waves and interact more with the right hemisphere. The 

antrum is more semi-automatic and interacts more with the left hemisphere. 

Limitation and the future direction 

This study reports the stomach-brain synchronization from the aspect of phase-coupling 

and amplitude correlation, which represent a few aspects of the gastric activity. Other features are 

also important in terms of the stomach-brain interactions, such as the effects of different nutrients. 

It is necessary to investigated whether different nutrients have significant impacts on the brain at 
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the intrinsic manner.  Besides, gastric activity induces a broad effect on brain activity. It is of great 

interest to predict the neural activity in the brain with gastric activity and see how much the gastric 

activity can explain the neural activity in the brain. 

 
 



 145 

Chapter 7 Conclusion 

Summary of this dissertation 

This dissertation focuses on the functional activities along the stomach-brain neuroaxis 

during electric modulations and intrinsic gastric conditions.  

Firstly, the study in Chapter 2 proposes a new parameter, the orientation of current flow, 

for gastric electrical stimulation (GES) and confirms that neural responses in the brainstem are 

selective to stimulation orientation. With a carefully designed stimulation protocol, GES can also 

evoke the central gastric network beyond the brainstem. This stimulation drives the fast blood-

oxygen-level-dependent (BOLD) activity in the brain, primarily covering the somatosensory 

cortex, motor cortex, insular cortex, cingulate cortex, and thalamus (as described in Chapter 3). 

These regions match well with the central gastric network identified with histological mapping, 

suggesting the efficient modulatory effect of GES on the stomach-brain interaction. 

Then, the study in Chapter 4 targets the stimulation on the vagus nerve (VNS), which is 

the primary neural pathway connecting the stomach and the brain. As illustrated in the result, VNS 

triggers widespread BOLD responses in the brain and regulates the functional connectivity across 

various brain regions, within and beyond the central gastric network. This result suggests that VNS 

has the potential to regulate the stomach-brain interaction but yield nonspecific stimulating effects. 

The following two chapters further discuss the functional role of the stomach-brain 

interaction during intrinsic gastric conditions. The stomach-brain interaction is assessed with the 

simultaneous recording of gastric slow waves and fMRI signals. Within the gastric network, 

BOLD activity is phase-coupled with gastric rhythms and follows the power of gastric contractions. 



 146 

This relationship depends on gastric conditions, with different BOLD activity at the postprandial 

and fasting states. Besides, the functional activity within the gastric network is primarily mediated 

by the vagus nerve and largely attributed to the gastric activity in the corpus. This result indicates 

that the brain interacts with the stomach continuously and monitors gastric activity from various 

aspects.  

These findings provide a systematic assessment of the central gastric network and build a 

foundation for functional mapping of the central gastric network, thus allowing more systematic 

investigations of the stomach-brain neuroaxis in the future. 

Future directions 

Moving forward, more studies can be down to further delineate the stomach-brain 

interaction.  

This study primarily focuses on the mechanical activity of the stomach within the stomach-

brain interaction. The hormonal signaling is another important feature associated with the digestive 

process and plays an essential role in the communication between the stomach and the brain 

(Psichas et al., 2015). For example, the lateral hypothalamus and area postrema (Browning & 

Travagli, 2011), as part of the gastric network, consistently monitor hormones in the blood stream 

and respond directly to alter neural activity in the central gastric network. Therefore, it is necessary 

to incorporate the hormonal signaling when delineate neural activity at various gastric conditions.  

Sexual difference is another critical point given the concept of the stomach-brain 

interaction. Based on previous studies, 70-80% of patients with functional dyspepsia and 

gastroparesis are females (Ford et al., 2020; Lacy et al., 2009; Stanghellini, 2016; Talley & Ford, 

2015). This sexual bias suggests the fundamental differences between male and female subjects. 

For example, the hormonal changes in females may disrupt the stomach-brain interaction and alter 
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normal gastric function. Therefore, it is important to investigate the stomach-brain interaction in 

female subjects and to identify the sexual differences. A clear understanding of the sexual 

differences may facilitate to discover a better understanding of disease conditions and potential 

therapeutical strategies to repair the stomach-brain interaction. 

Last but not least, it is of great interest to fully delineate the gastric component of the 

resting-state neural activity in the brain. There is increasing discussion that the interoceptive signal 

shapes the brain and determines how we think and feel (Craig, 2008; Underwood, 2021). The 

stomach, as one of the internal organs, can make a great contribution to the interceptive feeling. If 

we can acquire the gastric activity, it might be possible to predict a significant part of the resting 

state neural activity. This prediction requires a clear understanding of gastric activity and how the 

gastric activity being represented as neural activity in the brain. The successful prediction will not 

only help the understanding of normal and abnormal stomach-brain interaction, but also open a 

new revenue in studying the cognition and emotion. 

Conclusion  

In conclusion, studies in this dissertation reveal a widespread coverage of the central gastric 

network during GES, VNS, and intrinsic gastric conditions. Specifically, mediated by an 

orientation-specific GES, gastric neurons in the brainstem are selective to the orientation of muscle 

activity relayed through intramuscular arrays. The orientation-specific GES can modulate BOLD 

activity beyond the brainstem and drive a fast BOLD activity in the central gastric network. The 

GES-evoked functional network is partially overlapped with the VNS-evoked network and can be 

explained by the intrinsic stomach-brain synchronization, supported by the phase-coupling and 

power correlation between gastric slow waves and BOLD activity in the brain. These findings 

provide a systematic assessment of the central gastric network, laying the foundation of mapping 
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and characterizing the central and peripheral mechanisms of gastric interoception and shedding 

new light on where and how to stimulate the peripheral nerves to modulate stomach-brain 

interactions. 
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