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ABSTRACT 

Batteries, such as Lithium-ion battery, have the advantages of high specific energy, low 

pollution and high safety, and thus have become one of the main power sources for new energy 

automobiles. The State of Health (SOH) and Remaining Useful Life (RUL) of a power battery are 

the most important performance index in the battery system. The SOH of the power battery is 

different from other battery parameters such as voltage, current, internal resistance and 

temperature in that it cannot be obtained through direct measurement by any equipment or 

instrument. Besides, these electrical parameters will degrade with the use of batteries. For this 

reason, the accurate online estimation of the SOH and RUL of the battery has become one of the 

key challenges in the battery management system.  

This dissertation focuses on investigating key battery performance indicators such as internal 

resistance, capacity and self-discharge of Ni-H2 battery and lithium battery. The research also 

concentrates on the SOH estimation of the batteries through the development of Extended Kalman 

Filter (EKF) algorithm, the online estimation strategy of Dual Extended Kalman Filter (DEKF) 

and comprehensive assessment of Particle Filter (PF) and Support Vector Regression (SVR).  

Data-driven models, such as Autoregressive Moving Average (ARMA) model, artificial neural 

network, and hybrid models are implemented to provide both the degradation analysis and 

performance prediction for NiH2 battery cells. The prediction model can also help reduce the false 

alarm rate of the existing battery online monitoring system. The long-term behavior of pressure, 

as a degradation indicator, is modeled to help understand the battery aging behavior. 
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Combining the electrochemical battery model, a state equation and an output equation for the 

SOC estimation of the lithium battery are established. Each parameter in the SOC system is 

observed by using the EKF algorithm. The system simulation results indicate that the SoC 

estimation of the lithium battery in the EKF algorithm has good precision and accuracy. 

Furthermore, to solve the problem that the initial parameters of the battery model in the online 

SOH estimation of the battery cannot be determined in advance, the DEKF algorithm is introduced. 

Two independent EKFs are established to estimate the state of battery system and the parameters, 

respectively, and mutually update their states and parameters. The film resistance and discharging 

capacity are estimated to represent battery’s SOH. The advantages of this proposed method are 

two-fold: (1) implementing physics-based models to provide physical interpretation of Lithium-

ion battery cell, and (2) utilizing dual models to maintain the long-term accuracy of estimates. 

Finally, a novel battery SOH monitoring model is built to analyze the proposed degradation 

parameters and to predict the RUL by updating its probability distribution. The Support Vector 

Regression-Particle Filter (SVR-PF) algorithm is implemented in the research work to make 

improvement over the standard PF, which has the degeneracy phenomenon. The SVR-PF shows 

improved estimation and prediction capability compared to the standard PF.  
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Introduction 

 

1.1 Background and Motivation 

With the rapid development in science and technology and the increasing awareness of 

environmental protection, the new power battery industry has gained a strong momentum of 

advancement. Power battery refers to the battery with large energy capacity and output power, 

which can be used in electric bicycles, electric vehicles, electric equipment, energy storage systems, 

etc. To meet different use characteristics, requirements and application fields, different types of 

power battery are appropriate: lead-acid battery, nickel-cadmium battery, nickel-hydrogen battery, 

lithium-ion battery and fuel cell. The factor that power batteries have become a global research 

hotspot due to the increasing number of private cars and the increasing environmental pollution. 

Therefore, the development of power batteries and electric vehicles is gaining importance. 

The remaining useful life (RUL) of a battery is defined as the effective life left on the battery 

to meet the performance requirement of operations. The RUL estimation is essential to condition-

based maintenance (CBM) and health management. It is important to find a reliable and accurate 

approach to monitor lithium-ion battery state of health (SOH) and predict the RUL. However, due 

to the complexity, safety concerns of batteries and various customer usage habits, difficulty arises 

in accurately estimating the battery energy level, e.g., the state of charge (SOC), monitoring the 

cell degradation processes, and predicting their remaining useful life.  
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To estimate the RUL, the first step is to develop a battery model that can reflect the battery’s 

characteristics. The literature of battery modeling is generally categorized into two classes: (1) 

equivalent circuit models; and (2) physics-based models built upon the knowledge of 

electrochemical reactions. The equivalent circuit models have limited usefulness for large scale 

energy applications (e.g., electric vehicles), which require higher accuracy compared to portable 

electronic applications, especially during operations involving both micro-cycling and deep 

cycling. In addition, many parameters are required to develop the equivalent circuit model and 

simulate the complete battery behavior. Furthermore, since the physics parameters are combined 

as fitting parameters in the equivalent circuit model, the intuition inside a battery is lost. On the 

other hand, physics-based electrochemical models, including more detailed electrochemical 

phenomena in modelling, can not only resolve the above-mentioned difficulties, but also improve 

the estimation and prediction performance of battery cell. Many studies have developed 

simplified electrochemical-based models that can provide the robust and efficient estimation of 

battery cell state and parameters without the loss of computational efficiency. 

 

1.2 The State of the Art 

1.2.1 Power Battery Model 

The equivalent circuit model of a battery does not require the detailed study of the chemical 

composition and reactions inside the battery. According to the characteristics of battery 

performance parameters, the equivalent circuit model describing battery system and electrical 

performance parameters is composed of resistance, capacitance, inductance, power supply and 

other circuit parameters, which are more concise than that of the electrochemical model. 
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An important aspect of battery health monitoring and diagnosis is to establish an accurate 

battery model. The model can simulate the battery behavior and assist in diagnosing the battery 

problems. The equivalent circuit model is used to calculate the attenuation of battery capacity and 

obtain the battery health status. However, the equivalent circuit modeling needs to be based on the 

availability of the large number of experimental data. Each battery life test often takes months or 

more. There are several types of battery models for the study of battery parameters. 

Rint model: Rint model is a simple internal resistance circuit model, which is composed of 

battery open circuit voltage and internal resistance Rint in series, as shown in Figure 1-1. One of 

the important indicators of battery health is internal resistance, and the diagnosis method based on 

the impedance is developing continuously. Coreytl et al. (Coreytl, 2014) proposed a single point 

impedance method to estimate the SOH of battery pack. This is the simplest basic equivalent circuit 

model of the battery. 

 

Figure 1-1 Rint equivalent circuit model 

Thevenin model: In order to model the complex electrochemical process of a battery, 

researchers try to use simplified circuit to simulate the performance of the battery. Due to the 

parallel structure of resistance and capacitance under the action of current, Liaw (Liaw, 2004) and 

Wang (Wang, 2015) proposed an equivalent circuit to establish battery model to simulate the 

dynamic and static performance of battery. Hu (Hu, 2012) listed 12 kinds of equivalent circuit 

models in the literature, and compared and analyzed these lithium battery equivalent circuit models. 
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In the past 20 years, researchers have established many equivalent circuit models, all of which use 

voltage, internal resistance and capacity to simulate battery performance. Compared with Rint 

model, Thevenin model has the advantages of being able to write equations and easily identify the 

parameters of the model. 

 

Figure 1-2 Thevenin equivalent circuit model 

Combined with the electric equivalent circuit models, the goal of most models is to 

accurately estimate the state of charge. However, capacity decline, thermal effect and energy 

density change constantly. Most of the time, the model ignores the influence of these factors on 

the state of charge. As shown in Figure 1-3, the model includes the runtime model and RC network 

model, which is similar to the equivalent circuit model. Chen and other scholars (Chen, 2008; 

Bharath, 2008) proposed that the available capacity of the battery in the model was no longer 

regarded as a constant, but a function of the number of cycles, battery temperature and storage 

time. Because the open circuit voltage is a function of SOC, the voltage value can be adjusted 

according to SOC, but the model is limited in predicting SOH and self-renewal parameters. 
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Figure 1-3 Combined with the electronic equivalent circuit model 

Electrochemical model: Physics-based electrochemical models include more detailed 

electrochemical phenomena. The overall chemical reaction for Li-ion battery formula (Smith, 

2010)is given by   

𝐿𝑖𝐶𝑜𝑂 + 𝐶 ↔ 𝐿𝑖 𝐶𝑜𝑂 + 𝐿𝑖 𝐶

     
                   (1-1) 

which can be derived into two electrode reactions.  

For positive side, Li+ ions are extracted from LiCoO2 by oxidation during charging and are 

inserted into LiCoO2 by reduction during discharging. 

𝐿𝑖𝐶𝑜𝑂 ↔ 𝐿𝑖 𝐶𝑜𝑂 + 𝑘𝐿𝑖 + 𝑘𝑒
                     

(1-2) 

For negative side, Li+ particles are inserted into LikC by reduction during charging and are 

extracted from LikC by oxidation during discharging. 

𝑘𝐿𝑖 + 𝐶 + 𝑘𝑒 ↔ 𝐿𝑖 𝐶
                        

(1-3) 

More details of electrochemical models are discussed in Chapter 3. 

 

1.2.2 Battery SOH 

The battery SOH refers to the specific characteristics and health status of the used battery 

compared to the new battery of the same model (Xing, 2011). The battery health degree SOH refers 

to the ratio of the capacity that the battery can discharge to the rated capacity of the battery under 

certain conditions. Typically in electric vehicle applications, if the capacity of the battery is less 
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than 80% of its rated capacity, the user may consider the battery is near the end of life (Meissner, 

2005). The SOH of a battery is not only determined by the capacity of the battery, but also by 

different characteristics of the battery, such as internal resistance and active particle concentrations. 

The literature of power battery SOH estimation and prediction mostly focuses on battery 

capacity degradation and failure mechanism. Kroeze et al. (Kroeze, 2008) and Lee (Lee, 2014) 

reviewed many popular models and algorithms. The electrochemical behavior of batteries is 

completely different under different conditions, which brings difficulties to the health monitoring 

and diagnosis of batteries. First of all, it is difficult to estimate the electrochemical reaction in 

batteries due to the scarce measurement data obtained by common sensor technology. Secondly, 

the observable data of battery are normally limited to voltage, current and temperature. Finally, 

the operating profile of battery is much more dynamic than that of mechanical systems. For 

example, battery in plug-in hybrid electric vehicles is dominated by driving behavior, electronic 

equipment and operating environment. Other factors affecting the performance and degradation of 

batteries include capacity degradation caused by aging, capacity imbalance and self-discharge. 

Therefore, the uniqueness of power battery system must be considered in the health diagnosis of 

lithium-ion battery. 

Because it is difficult to directly measure the complex electrochemical process inside the 

battery, most battery health monitoring methods are based on the parameters measured during 

dynamic operation to understand the chemical reactions inside the battery. Under stable conditions, 

the battery is placed in a set test program, and the diagnostic model is established by using the 

measured and collected parameters in the experimental cycles. These parameters include voltage, 

current, internal resistance and battery temperature, ambient temperature and operating time. This 

method can avoid the noise interference when collecting data and the influence of battery behavior 
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uncertainty when charging and discharging. The main disadvantage of this method is that it cannot 

be implemented online when the battery is in operation. 

In most practical applications, an effective and simple way to monitor the battery behavior is 

to observe the battery voltage, current, temperature and pressure in some cases. These parameters 

are more suitable for on-line measurement, the measurement process does not need to interrupt the 

operation of the equipment. Due to the problems of noise, other interference and low quality, online 

monitoring method can also lead to inaccurate estimation of SOH. Another reason is that the 

parameter estimation also depends on the accuracy of the sensor. At the same time, the battery 

management system needs to respond to the output power in milliseconds or even microseconds 

to avoid the loss of important data. Therefore, the data acquisition system should record the 

original data with high frequency, otherwise small errors will accumulate with time, which will 

have a negative impact on the estimation accuracy of battery health. 

 

1.2.3 SOH Estimation and Prediction 

Commonly used methods by scholars for SOH prediction of power battery include artificial 

neural networks, Kalman filters and support vector machine. Starting from the state parameters 

such as voltage, current, temperature, internal resistance, SOC or capacity of lithium battery, the 

SOH prediction is realized by the method based on data-driven technology (Li, 2015). Artificial 

neural networks (ANN) has the characteristics of self-organization and self-learning, which is a 

nonlinear estimation method in battery SOH estimation algorithm. Artificial neural network is a 

kind of intelligent network system, which is connected by many interconnected neuron elements. 

The experimental data of battery life indicates that the battery performance declines with time. 

Using the rated capacity of the previous cycle to predict the capacity of the next cycle, Ondrej and 



 

8 

other scholars (Ondrej, 2009) trained the input model of voltage and current at three connection 

times T, T-1, T-2, and ambient temperature. Charkgard et al. (Charkgard, 2009) applied radial basis 

function to neural network, with the voltage at T-1, SOC and current at t as input.. Mohammad 

and other scholars (Mohammad, 2010) used the capacity of a single battery as the sample, 

established the battery capacity estimation model by using the neural network method, and the 

prediction method had good one-step prediction performance. 

Bai, et al. (Bai, 2014) combined adaptive neural network with extended Kalman Filter to 

estimate the battery SOH, trained the terminal voltage of the battery by adaptive neural network, 

and then combined with double extended Kalman filter to estimate the SOC and battery capacity. 

Compared with the equivalent circuit model, the proposed method was more accurate and efficient 

in SOC and capacity estimation. Han (Han, 2013) proposed to use the fuzzy neural network system 

modeling, through the influence of various parameters in the battery equivalent circuit model, to 

estimate the battery health, so as to solve the problem of on-line monitoring of battery deterioration. 

Marcol et al. (Marcol,2015) proposed two estimation methods to calculate the SOH of lithium 

battery. In the first method, according to the capacity decline and battery characteristic curve, and 

considering the battery operating environment conditions, the fuzzy algorithm was used to 

calculate the battery health. The second method used neural network to calculate health. Both 

methods did not rely on electrochemical model, but needed high computing power. The test results 

showed that both systems had good performance. 

 

1.3  Research Gap and Challenges 

Power battery is a complex electrochemical system and the reliable estimation of the SOH and 

RUL is still of challenge. Its failure mode is affected by many factors, such as the temperature of 
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the environment, the depth of discharge, the charging and discharging processes and so on. It is 

very difficult to accurately estimate the health status of the battery by relying on the pure charge 

and discharge data. The state of health (SOH) of a battery is a measure of battery condition that is 

affected by time-variant and time-invariant factors. However, most SOH modeling methods only 

considered time-invariant factors. Besides, researchers commonly rely linearized battery models 

to implement their developed algorithms, which affects the model accuracy.  

 

1.4 Research Objectives and Framework 

The purpose of this research is to develop novel methodologies that can predict the battery’s 

SOH and RUL with high accuracy and robustness. The research will focus on (1) combining 

physics-based model and data-driven model for the estimation of SOH and RUL of a battery even 

if the battery has unknown degradation properties, and (2) improving the RUL prediction result 

even the system and noise have non-linear characteristics. The specific research objectives are 

summarized as follows: 

1. Study the data-driven methods for battery RUL prediction when the battery properties 

and usage environment are relatively stable. 

2. Monitor battery SOH by implementing the dual model structure with unknown 

degradation related parameters. 

3. Develop predictive methodologies to improve the accuracy and robustness of RUL 

prediction while facing system nonlinearity and noise nonlinearity. 

This dissertation is organized as follows. In Chapter 2, a data-driven method is developed to 

predict the remaining useful life of Ni-H2 battery. Some physical properties of battery degradation 

process are considered to improve the prediction accuracy. In Chapter 3, a method is developed to 
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estimate both the SOC and long-term cell parameters of the battery by integrating a simplified 

electrochemical battery model and Dual Extended Kalman Filter technique. In Chapter 4, novel 

battery SOH monitoring models are proposed to analyze the degradation parameters and develop 

a new approach to predict the RUL by updating its probability distribution. Moreover, the Support 

Vector Regression-Particle Filter (SVR-PF) algorithm is implemented in the research work to 

make improvement over the standard PF, which has the degeneracy phenomenon. Chapter 5 

provides the conclusion and proposes possible topics for future research work.  

A flowchat of the research development and contribution is shown in Figure 1-4 below. 

 

Figure 1-4 Research development and contribution flowchat 
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Data-Driven Predictive Health Monitoring and Prognostics Model for Nickel-

Hydrogen Battery 

 

2.1 Abstract 

Nickel-hydrogen (NiH2) battery plays an important role as an energy storage and support 

device in applications that require high reliability and long cycle life. The characterization of the 

battery degradation process with proper health indicator is of importance to the prognostics and 

health management of the battery system. This chapter investigates data-driven models, such as 

autoregressive-moving-average (ARMA) model, artificial neural network, and hybrid models to 

provide both degradation analysis and performance prediction for NiH2 battery cells using voltage 

and pressure measurements. The prediction model is designed to reduce the false alarm rate of the 

existing battery online monitoring system. The accuracy of these methods is compared. The long-

term behavior of pressure, as a degradation process indicator, is modeled to help understand the 

battery aging behavior.
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2.2 Introduction 

The nickel-hydrogen battery is a rechargeable electrochemical battery that is widely used for 

its high energy density, excellent overcharge tolerance, long cycle life and high reliability 

(Smithrick, 1996). The electrochemical reactions during the charging-discharging cycles in the 

NiH  battery are given below.  

2NiOOH + H ↔ 2Ni(OH)                            (2-1) 

Generally, nickel-hydrogen batteries degrade over time due to aging, environmental impacts, 

and dynamic loading (Hollandsworth, 2002). Therefore, it is desirable to develop the capability of 

health monitoring and detection of potential failure risks thus preventing catastrophic failure from 

occurring in the remote applications such as satellites. In addition to health monitoring and real-

time fault detection, it is also valuable to understand how a battery cell degrades and how soon it 

will reach a performance threshold. To address these two different research issues, various 

prognostics, and health management (PHM) techniques have been developed in the domain of 

battery system management (Francisco, 1997). 

In recent years, with the emerging development of Lithium-ion battery in automotive and 

electronics industries, battery State of Charge (SOC) and State of Health (SOH) estimation and 

health monitoring techniques have garnered significantly increasing attention in the research 

community. However, the NiH  battery has received relatively less attention in the development 

of health monitoring and prognostics methods. 

The characterization of battery performance condition, such as the SOC estimation and health 

prognostics (RUL prediction) can be generally classified into two categories: data-driven method 

and physical model-based method. Many approaches of health monitoring and prognostics for 

Lithium-ion battery cells have been investigated (Goebel, 2008). However, in comparison to 
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Lithium-ion battery’s application domains, NiH  batteries are usually used in remote aerospace 

applications that are inaccessible using sensor technologies resulting in the scarcity of data for 

analysis. Most available monitoring data collected from NiH  battery is discrete-time values such 

as voltage, current, temperature and pressure. Other challenging issue for the performance 

degradation analysis is the limited understanding of the long-term cycling-based aging effects such 

as capacity loss, self-discharge, etc. Therefore, the uniqueness of the NiH  battery system and 

limited data availability need to be considered for the development of appropriate methodologies 

for NiH  battery health monitoring and prognostics. 

To precisely monitor and predict battery’s performance and health, it is essential to determine 

the appropriate performance indicators to characterize the health condition of the battery cells. In 

a battery system, voltage is usually one of the widely used observable states and indicator of a 

battery current performance. A typical NiH2 battery voltage varies from 1.5V to 1.25V, when it is 

discharged from full capacity to nearly empty capacity (Zimmerman, 2008; Zhang, 2011). The 

voltage change of one discharge-charge cycle is shown in Figure 2-1. It is necessary to track the 

cell voltage behavior to detect any abnormal conditions and even failures during its operation life. 

If battery follows a predetermined working load, its voltage change during the long run can be 

predicted and the predicted value can be further used as a reference to detect abnormal condition. 

Besides voltage, the battery inner pressure is also a very robust battery performance indicator. 

The chemical reaction in Eqs. (2-1 and 2-2) shows that the produced oxygen and hydrogen gas 

will result in proportional relationship between cell pressure and remaining capacity (Zimmerman, 

2008). In other words, a maximum pressure during a discharge-charge cycle can present the end-

of-charge cell pressure, which is also the maximum pressure during a cycle. A mean value of the 

pressures in a discharge-charge cycle can reflect the discharged capacity. Hence, we can use the 
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maximum pressure and mean pressure to reflect a cell’s health and performance from different 

perspectives. Considering the complication of the degradation mechanism of the NiH  battery, 

we need to investigate both to analyze the degradation process.  

Comparing to the end-of-charge voltage (Francisco, 1997), charging and discharging 

efficiency (Zimmerman, 2008), and other features, it is known that the vessel pressure growth in 

nickel-hydrogen cells is one of the most direct degradation indicators. The nickel sinter in the 

nickel electrodes will generate hydrogen gas due to its corrosion during the whole battery life cycle. 

Besides, the pressure increases as well as other corrosion related degradation process, always 

involve a nearly linear increment during battery’s life cycle. Based on loading condition and 

manufacturing variation, the pressure growth rates, and growth pattern can vary significantly from 

cell to cell. Figure 2-2 shows a pressure growth pattern of a typical Independent Pressure Vessel 

(IPS) nickel-hydrogen cell. In this chapter, we focus on the pressure growth for the prognostics of 

a single cell, not the growth variation among different units. 

Though pressure is a meaningful indicator, special attention needs to be paid since in most 

experiment, strain gauges are attached to the cells to measure cell pressure, and during the long 

run the strain gauge may drift (Zimmerman, 2008). Without correct gauge installation and drifts 

analysis, such cell pressure indications can be used for information only. To indicate the correct 

pressure of cell, the bonding condition between gauge and cell should be properly verified and 

controlled to avoid rapid drift. Such measurements have been taken for some nickel-hydrogen cells 

after long-term life testing and it is not unusual to find a 100-200 psi drift in the strain gauge 

pressure reading after 10 or more years of cell operation. However, in our experiment, we have 

verified the measurement and collected the correct data. 

Self-discharge (SD) rate is another important indicator of NiH2 battery performance 
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(Purushothaman, 2012). A typical vessel may suffer 5-10% capacity loss per month if the battery 

is placed above 0℃  in an open circuit state (Iwakura, 1989). The SD process is an interesting 

phenomenon to be investigated and studied. There are research works done to build the SD 

physical model (Purushothaman, 2012) to determine the SD rate at any time and temperature.  

In this chapter, we develop data-driven methods using available past time series data for two 

different purposes: (1) real-time fault detection; and (2) the prognostic prediction of long term cell 

performance using time series data. 

 

2.3 NiH2 Experiment Description 

NiH2 battery is widely used in aerospace and this experiment simulates a low earth orbit (LEO) 

environment and corresponding workload for NiH2 battery life testing. The temperature will be 

kept between -10℃ and 0℃. A similar repeated one-day working pattern was implemented on a 

battery pack of 27 identical Independent Pressure Vessels (IPV) connected in series.  

The total experiment had been run for 3.5 years and each one year was divided into 5 segments: 

idle time, operating season 1, idle time, operating season 2, and idle time. Every year, there were 

two battery operation seasons and during the season the battery was charged and discharged once 

per day for about 44 days. The discharging proceeded within 2 to 5 hours to simulate the operation 

situation when a satellite was in the earth shade. The depth of discharge varied from 10% to 80%, 

which increased the derogation process (Iwakura, 1989). After discharging, the battery was 

charged back to its full capacity by 4A constant current, while the end-of-charge process was 

terminated by a voltage trigger when voltage reached 41V. Thereafter during the idle time, the 

battery was charged by a 0.4A current to compensate for the self-discharge effect. The 

demonstration of 1 day measurements [current (I), voltage (V), pressure (P), and temperature (T)], 
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and pressure of 352 battery operating days is shown in Figure 2-1. 

 

Figure 2-1 NiH2 battery one day measurements: current (I), voltage (V), pressure (P), and 

temperature (T) 

 

Figure 2-2 NiH2 battery pressure measurements in time series 

 

2.4 Description of Methodologies 

 

2.4.1 Autoregressive Moving Average Model (ARMA) for time series analysis 

Time series analysis and prediction based on stochastic process theory and mathematical 
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statistics have been widely applied in signal processing, intelligent information analysis and PHM. 

Among these tools, autoregressive moving average (ARMA) model is a widely used tool for 

understanding data properties and predicting future values of this time series. The ARMA model 

aims to explain data by using time series data on its past values and uses linear regression to make 

predictions. 

The “AR” in ARMA stands for autoregression, indicating that the model uses the dependent 

relationship between current data and its past values. In other words, it shows that the data is 

regressed on its past values. Stationarity is assumed for time-series data, which is made “stationary” 

by subtracting the observations from the previous values. 

The “MA” stands for moving average model, indicating that the forecast or outcome of the 

model depends linearly on the past values. Also, it means that the errors in forecasting are linear 

functions of past errors. Note that the moving average models are different from statistical moving 

averages. 

𝐴𝑅𝑀𝐴(𝑝, 𝑑, 𝑞) × (𝑃, 𝐷, 𝑄): 

 𝛷(𝐵 )𝜙(𝐵)𝛻 𝛻 𝑦 = 𝛼 + 𝛩(𝐵 )𝜃(𝐵)𝜀                  (2-2) 

The coefficients of autoregressive terms are:  

Non-seasonal Part: 𝜙(𝐵) = 1 − 𝜙 𝐵 − ⋯ − 𝜙 𝐵  

Seasonal Part: 𝛷(𝐵 ) = 1 − 𝛷 𝐵 − ⋯ − 𝛷 𝐵  

The coefficients of moving average consist of two parts: 

Non-seasonal Part: 𝜃(𝐵) = 1 + 𝜃 𝐵 + ⋯ + 𝜃 𝐵  

Seasonal Part: 𝛩(𝐵 ) = 1 + 𝛩 𝐵 + ⋯ + 𝛩 𝐵  
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where yt is the time series data to be predicted, B is the lag operator, which is defined as 𝐵𝑦 =

𝑦  , ∇ is the difference operator, which is defined as (1 - B). Besides, p is the number of 

autoregressive (AR) terms, d is the differencing order of non-seasonal series, and q is the number 

of moving average (MA) terms. For the seasonal part, P is the number of seasonal autoregressive 

(SAR) terms, D is the number of seasonal differences, Q is the number of seasonal moving average 

(SMA) terms, h is the length of the seasonal period. 𝛼 = 𝜂(1 − 𝜙 − ⋯ − 𝜙 ) and 𝜙 = 𝐸(𝛻 𝑦 ), 

which is the expected value of the differenced data. A detailed seasonal ARMA model establishing 

procedure can be found in (Box, 1976). 

 

2.4.2 Artificial neural networks (ANN) 

ANN, which consists of various nodes and layers, is a simple imitation of human brain. It 

requires little expert knowledge in modeling complex systems and adopts a “black box” approach 

to various sources of data. Due to its simplicity in handling data in complex or even unknown 

systems, ANN has become one of the most widely used methods in complex system modeling. A 

typical neural network consists of 3 layers: an input layer, a hidden layer, and an output layer. 

Depending on the specific needs, such as the number of inputs and outputs, the number of nodes 

within different layers can be defined. The lines linking each pair of nodes are denoted as weights, 

which are mapping functions from one space to another. (Hassoun, 1995) 

 

2.4.3 ARMA+ANN Hybrid model for one step prediction and fault detection 

Traditionally, ARMA model is used as a linear stationary model for time series analysis and 

prediction. In practice, however, many time series include both linear and nonlinear 

autocorrelation properties. Therefore, it is useful to use a combined structure of both linear and 



 

19 

nonlinear models to deal with this signal.  

A hybrid nonlinear time series predictor consists of an ARMA based linear predictor and a 

nonlinear predictor using Artificial Neural Network (ANN). The design of this hybrid predictor is 

simply inspired by the existing hybrid neural predictors developed for nonlinear time series 

prediction (Dalton, 2004; Haykin, 1995). 

The ARMA model, as a linear sub-predictor, provides a base model for the time series. The 

residuals from the model are then fed into a nonlinear one-layer recurrent neural network, which 

is used as a nonlinear sub-predictor. Such integration of linear and nonlinear prediction is built as 

a hybrid model: 

𝑦 = 𝐿 + 𝑁                                   (2-3) 

where Lt is linear component obtained in an ARMA and Nt is the residual that can be estimated 

from an ANN model. 

The hybrid model consists of three main steps: 

Step 1. Develop the base model by using ARMA, obtain the linear component 𝐿 , and then 

compute the residuals: 

𝑒 = 𝑦 − 𝐿                                    (2-4) 

Step 2. Establish the ANN model by using residuals 𝑒 : 

𝑁 = 𝑒 = 𝑏 + ∑ 𝑤 𝑔 𝑏 + ∑ 𝑤 𝑒 + 𝜀                    (2-5) 

Step 3. Add 𝐿  and 𝑁  to conduct time series prediction: 

𝑦 = 𝐿 + 𝑁                                   (2-6) 

We use the hybrid model for one-step-ahead prediction and abnormal data detection. 
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2.5 Health Indication and Prediction 

 

2.5.1 One-step ahead prediction and anomaly detection 

We apply three methods to perform one-step-ahead prediction, which is used for an online 

anomaly detection process. The hybrid model provides the confidence interval of the data, so we 

develop an online approach to detect the abnormal condition of cell. First, the cell data is predicted 

one step ahead using the hybrid model, and the confidence interval is also calculated. Second, a 

new measurement is compared to the predicted confidence interval. If the new measurement is 

beyond this boundary, an abnormal point is detected. 

 

Figure 2-3 Illustration of anomaly detection 

We have the experiment data in normal condition, and the false alarm rate is type I error. The 

false alarm rates and the performance of one-step-ahead prediction by calculating the Mean 

Squared Error (MSE) among the ARMA, ANN and hybrid models are shown in Figures 2-4, 5 and 

6. There are two subplots in each figure, the upper subplot shows the general prediction results of 

each model, and the lower subplot represents the zoomed in area of the specific region of the 

general results. 

 

 



 

21 

 

 

Figure 2-4 Data in red locate outside the confidence interval of ANN model prediction 
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Figure 2-5 Data in red locate outside the confidence interval of ARMA model 
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Figure 2-6 Data in red locate outside the confidence interval of hybrid model 

We compare the performance of all three models in terms of the false alarm rate and the mean 

squared error (MSE) of the one-step-ahead prediction, as shown in Table 2-1. The result shows 

that the hybrid model provides significantly lower false alarm rate than the standard ANN model 

and standard ARMA prediction approach (by 40.57% and 66.47% improvement, respectively). In 

addition, the hybrid model provides the most accurate one-step-ahead prediction among the three 

methods with the lowest MSE value. The improvements are 36.97% and 49.45% compared with 

ANN model and ARMA model, respectively. 
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Table 2-1 Summary of accuracy and false alarm rate 

 ANN ARMA Hybrid 

False Alarm Rate 2.81% 4.98% 1.67% 

MSE 0.0660 0.0823 0.0416 

   
 
 

2.5.2 Long term pressure prediction 

As described in the introduction section, the pressure growth in nickel-hydrogen cells is the 

normal phenomenon of degradation process. We use the end-of-charge pressure in each charging-

discharging cycle for the pressure growth analysis. The end-of-charge is controlled by a voltage 

trigger such that the charging process is stopped when the voltage reaches 41V. During the battery 

life span, the capacity gradually fades, and less electricity can be charged into the battery. It can 

be assumed that if there is no pressure growth due to extra hydrogen generated, the end-of-charge 

pressure should decrease. However, from Figure 2-7, we can see that the maximum pressure 

(equivalent to the end-of-charge pressure of each working day) increases gradually. Besides, the 

pressure degradation also occurs during the idle time, but it is not of our interest since it is charged 

by a 0.4A current and during the whole period the battery will not be charged back to its full 

capacity. The pressure will not reach its maximum and hence the measurement cannot directly 

reflect its degradation. 

Besides the end-of-charge pressure, the mean pressure is also used for pressure growth 

analysis because it indicates the daily working load or discharged capacity. The lower mean 

pressure of one day means the more electricity the battery has consumed. Ideally, the pressure 

should remain the same if there is no battery degradation and capacity fade. Figure 2-7 shows the 

mean pressure throughout the 7 seasons increases gradually. The red point indicates the start of 

each season. 
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In literature, it is mentioned that the strain gauge may drift during long term. However, the 

experiment lasts only about 400 cycles in 3.5 years and we setup and controlled the gauge properly. 

Hence, the gauge drifts can be ignored in this study. The mean pressure and the maximum pressure 

are used as the degradation indicator for battery degradation prognostics.  

 

Figure 2-7 Pressure long term behavior and its maximum and mean pressure 

To investigate the pressure variation, a data driven model, ARMA with seasonality is 

developed. The model is built based upon both the maximum pressure data and the mean pressure 

data, with notation shown below: 

𝐴𝑅𝑀𝐴(𝑝, 𝑑, 𝑞) × (𝑃, 𝐷, 𝑄): 

 𝛷(𝐵 )𝜙(𝐵)𝛻 𝛻 𝑦 = 𝛼 + 𝛩(𝐵 )𝜃(𝐵)𝜀                  (2-8) 

The coefficients of autoregressive terms are:  

Non-seasonal Part: 𝜙(𝐵) = 1 − 𝜙 𝐵 − ⋯ − 𝜙 𝐵  

Seasonal Part: 𝛷(𝐵 ) = 1 − 𝛷 𝐵 − ⋯ − 𝛷 𝐵  

The coefficients of moving average consist of two parts: 

Non-seasonal Part: 𝜃(𝐵) = 1 + 𝜃 𝐵 + ⋯ + 𝜃 𝐵  

Seasonal Part: 𝛩(𝐵 ) = 1 + 𝛩 𝐵 + ⋯ + 𝛩 𝐵  
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where yt is the time series data of pressure, B is the lag operator, which is defined as 𝐵𝑦 =

𝑦  , ∇ is the difference operator, which is defined as (1 - B). Besides, p is the number of 

autoregressive (AR) terms, d is the differencing order of non-seasonal series, and q is the number 

of moving average (MA) terms. For the seasonal part, P is the number of seasonal autoregressive 

(SAR) terms, D is the number of seasonal differences, Q is the number of seasonal moving average 

(SMA) terms, h is the length of the seasonal period. 𝛼 = 𝜂(1 − 𝜙 − ⋯ − 𝜙 ) and 𝜙 = 𝐸(𝛻 𝑦 ), 

which is the expected value of the differenced data. A detailed seasonal ARMA model establishing 

procedure can be found in (Box, 1976). 

With the inspection of sample Autocorrelation Function (ACF) of original data and sample 

ACF of first differenced data in Figure 2-8, the orders of the model (p,d,q)× (P,D,Q) are initialized. 

We assume that the conditional probability distribution is Gaussian. 

The ARMA model is trained by the method of least squares. The Akaike information criterion 

(AIC) (Akaike, 1974) was used to investigate the model complexity while the t-statistics was used 

to investigate the significance of model parameters. The refined model trained by 300-day data is 

concluded in Table 2-2. The coefficients of AR(4) and MA(1) have the most impact on the system 

behavior. The insignificant coefficients have been removed from the model. 

The model also gives the minimum AIC, which is -1.532E03. Besides, the seasonality is 

waived since it increases the model complexity while the accuracy is not improved significantly. 

The false alarm rate calculated by Eq. 2-7 is based on the 95% confidence interval (CI) and mean 

square error (MSE), which is determined as: 

𝐶𝐼 = 𝑌 ± 1.96√𝑀𝑆𝐸                           (2-9) 
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Figure 2-8 Sample ACF of maximum (upper) and mean pressure (lower) and their first 

difference 

Table 2-2. Maximum pressure model: ARIMA(4,1,5)  

 

After training the model from the data of first 250 days, we predict the maximum pressure 

over the next 50 days by implementing multi-step prediction techniques. The corresponding 
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Parameter Value Error t Statistic
Constant 3.36E-03 1.55E-03 2.16
AR{2} -6.20E-01 1.61E-01 -3.86
AR{4} -5.75E-01 9.39E-02 -6.12
MA{1} -3.21E-01 4.40E-02 -7.30
MA{2} 6.46E-01 1.63E-01 3.97
MA{3} -2.60E-01 7.27E-02 -3.58
MA{4} 6.38E-01 9.83E-02 6.49
MA{5} -3.31E-01 4.96E-02 -6.67
Variance 3.24E-04 1.60E-05 20.27
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confidence interval is also calculated. We also predict the next 90 days maximum pressure value 

using 200 days measurements as training data. The results are shown in Figures 2-9 and 2-10. Both 

test results validate the accuracy and robust of our data driven model.  

 

Figure 2-9 Upper: 50 days ahead maximum pressure prediction; Lower: 90 days ahead maximum 

pressure prediction 

 

Figure 2-10 Upper: 50 days ahead mean pressure prediction;  

Lower: 90 days ahead mean pressure prediction 

Both the maximum pressure and the mean pressure show the battery degradation process of to 

pressure growth. The maximum pressure increased by 9.5% and the mean pressure increased by 

12.5% for 3.5 years. We forecast the following 150 working days, which is about 1.5 years pressure 

performance by adapting the ARMA model. The model structure is the same as in Table 2-2.The 
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prediction results are shown in Figure 2-10. It is expected to see that the maximum pressure will 

increase to 5.07MPa and the mean pressure will increase to 4.74MPa. If the tolerated pressure is 

known, the RUL can be estimated based on our prediction. The confidence interval increases 

rapidly but can be used as early-warning of the failure caused by pressure growth. 

 

Figure 2-11 150 working days pressure prediction; maximum pressure (upper); mean pressure 

(lower) 

In addition to long term prediction, we implement one-step-ahead prediction for both mean 

and maximum pressures to examine the pressure variation of everyday. The confidence interval is 

constructed based on the corresponding degree of freedom to help detect abnormal point and 

reduce the false alarm rate. The results are shown in Figure 2-12 and Figure 2-13. 

Most abnormal points detected are at where there is a sudden change of either the original time 

series or confidence interval. The false alarm rate for maximum pressure is 11.0% (32/291) while 

the false alarm rate for mean pressure is 0.83% (2/240). 
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Figure 2-12 One-step ahead prediction for maximum pressure (upper) and mean pressure (lower) 

Most of the abnormal points monitored are related to the measurement of the maximum 

pressure. The end-of charge trigger might not work properly during the experiment and sometimes 

the battery was overcharged, which incurred the maximum pressure variation. Although those 

points of maximum pressure alarmed are false alarm, it still provides valuable information about 

pressure variation, and gives decision support of how to select the end-of-charge trigger to avoid 

large battery overcharge. Furthermore, if we combine both the mean and the maximum pressure, 

it can be concluded that there is no point lying outside both confidence intervals. Hence, the 

maximum and mean pressure can help reduce the false alarm rate to zero and give better result 

than using only one feature. 
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Figure 2-13 False alarm point monitored during sharp change for maximum pressure (upper) and 

mean pressure (lower) 

Since all data points are known to be within normal condition, any data points out of the 

confidence interval are considered as false alarms. The false alarm rate for 50 days maximum 

pressure prediction is 0%; false alarm rate for 90 days maximum pressure prediction is 2.22%; the 

false alarm rate for 50 days mean pressure prediction is 0%; and the false alarm rate for 90 days 

mean pressure prediction is 1.11%. In addition, we combine both maximum and mean pressure to 

indicate the pressure characteristics, which means an abnormal pressure state of one day (consider 

both maximum pressure and mean pressure) should be defined as having abnormal points of both 

maximum pressure and mean pressure. Then there is no point out of respective confidence intervals, 

hence the false alarm rate is further reduced and gives better results. 
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Since the test data is normal data and our prediction indicates the normal degradation trend, it 

can also be inferred that if more out-of-bound points are detected during the life cycle of battery, 

the battery performance is drifted. The reasons may include accelerated degradation process due 

to faults, sensor degradation or drifting, or system instability. Hence, the percent of detected out-

of-bound points during a period can be further used to help indicate and investigate the change of 

system. 

 

2.6 Conclusions 

We have investigated NiH2 battery performance to help develop fault detection, reduce online 

false alarm rate, and predict the degradation process. ANN, ARMA and a hybrid model have been 

used to establish the data-driven model. The ARMA-ANN hybrid model provides the most 

accurate one-step-ahead prediction results in comparison with pure ARMA and ANN models. We 

have also developed statistical confidence interval for online fault detection. Results from both 

voltage and pressure measurements show reduced false alarm rate with 95% confidence interval. 

The method can also help reduce the false alarm rate without miss detection. 

This chapter also discussed a multi-step-ahead prediction method for long-term degradation 

analysis of the NiH2 battery, by focusing on the pressure growth. The prediction results show the 

robustness and accuracy of the proposed model by comparing to the test data. In addition, further 

pressure behavior is predicted to provide health management support information. 
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Parameter Estimation of Lithium-ion Battery Degradation Using 

Electrochemistry-Based Dual Models 

 

3.1 Introduction 

Lithium-ion (Li-ion) batteries are regarded as the most promising energy storage technology 

for new generation electric vehicles. Compared to alternative battery technologies, Li-ion batteries 

have much higher energy density, exhibit no memory effect and greater durability. However, due 

to the complexity and safety concerns of Li-ion batteries and customer habit, difficulty arises in 

properly estimating the battery energy level, e.g., the state of charge (SOC), monitoring the cell 

degradation processes, and predicting their remaining useful life (Armand and Tarascon, 2008). 

These features can be analysed by model-based methods.  

The literature of Lithium-ion battery modelling is generally categorized into two classes: (1) 

equivalent circuit models (He, et al. 2012); and (2) physics-based models built upon 

electrochemical reaction (Chaturvedi, et al. 2010). The equivalent circuit models have limited 

usefulness for large scale energy applications (e.g., electric vehicles), which require higher 

accuracy compared to portable electronic applications, especially during operations involving both 

micro-cycling and deep cycling. In addition, many parameters are required to develop the 

equivalent circuit model and simulate the complete battery behaviour (Chaturvedi, et al. 2010). 

Furthermore, since the physics parameters turn into mere fitting parameters for the equivalent 
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circuit model, the intuition inside a battery is lost. Physics-based electrochemical models, 

including more detailed electrochemical phenomena in modeling, can not only resolve the above-

mentioned difficulties, but can also improve the estimation and prediction performance of battery 

cell. Many studies have developed simplified electrochemical-based models that can provide 

robust and efficient estimation of battery cell state and parameters without the loss of 

computational efficiency (Sikha, et al. 2005, Smith, et al. 2010).  

The precise estimation of SOC - a key battery indicator – is required in the electric vehicle 

applications. SOC indicates how much energy a battery has before it needs to be recharged (He, et 

al. 2012). SOC can reflect the energy level, and determine other output, such as estimated voltage. 

In addition, the SOC of a battery cell needs be determined to improve safety and efficiency during 

charging and discharging processes because accurate SOC estimation can help prevent over-

charging and over-discharging conditions, and prevent different kinds of damage to the battery, 

and eventually extending the lifetime (Cheng, et al. 2011). Several techniques have previously 

been proposed to measure or estimate the SOC of battery single cell, each having its relative 

strength and limitation, as reviewed in (Zhang and Lee, 2011, Samadani, et al. 2012). 

However, existing literature on electrochemistry-based SOC estimation focuses on single cell 

SOC estimation techniques for a short term, which could be inaccurate throughout the lifetime of 

the cell. Under different operating conditions, such as temperature, the depth of charge and 

discharge, aging effects on each individual cell can be different in terms of inner resistance, 

capacity and dynamics of chemical reactions. Besides, the driving behaviour may also cause 

different aging process among cells (Sarre, et al. 2004). All these differences may gradually 

increase over time and will be reflected by SOC divergence or the internal resistance divergence 

(Dubarry, et al. 2010). On the other hand, there are literatures showing the battery long-term 
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degradation, such as equivalent circuit based estimation to determine charge capacity fade and 

internal resistance increment as a degradation indicator (Plett, 2004); a charge-discharge capacity 

fade model based on the loss of active lithium ions due to solvent reduction reaction (Ning and 

Popv, 2004), but they were either based on simulation without real data verification, or lost most 

the actual information, which can be used to interpret the physical meaning of degradation process. 

There are few literatures showing the long-term cell degradation with electrochemistry-based 

model and verified by experimental results, hence, there is no sufficient information for an 

estimation of available energy and power and the level of cell deterioration indicated by changes 

in physical parameters over time. Therefore, for a reliable and accurate battery management system, 

the changes of SOC and parameters of a battery cell in the long term need to be accurately 

estimated for degradation monitoring. Methods have been provided, but with problems such as 

intensive computation, difficulty for online implementation in an automotive embedded system, 

and inaccuracy due to model constraints (Hu, and et al. 2012). 

This chapter proposes a method to estimate both the SOC and long-term cell parameters of 

the battery by integrating a simplified electrochemical battery model and a Dual Extended Kalman 

Filter technique. The SOC and the film resistance of a single cell over its life time are estimated. 

The advantages of this proposed method are two-fold: (1) implementing physics-based models to 

provide physical interpretation of Lithium-ion battery cell, and (2) utilizing dual models to 

maintain the long-term accuracy of estimates. The estimation result from this method can be 

further extended to battery performance prediction and health management by analysing more 

long-term related parameters. 
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3.2 Electrochemical Battery Model 

 

3.2.1 Chemical Reaction 

The electrochemical battery model has been studied in the field of electrochemistry. In this 

chapter, the model is established based on the major components of positive material Cobalt: 

LiCoO2. The overall chemical reaction for Li-ion battery formula is given by 

𝐿𝑖𝐶𝑜𝑂 + 𝐶 ↔ 𝐿𝑖 𝐶𝑜𝑂 + 𝐿𝑖 𝐶

     
                   (3-1) 

which can be derived into two electrode reactions. For positive side, Li+ ions are extracted 

from LiCoO2 by oxidation during charging and are inserted into LiCoO2 by reduction during 

discharging. 

𝐿𝑖𝐶𝑜𝑂 ↔ 𝐿𝑖 𝐶𝑜𝑂 + 𝑘𝐿𝑖 + 𝑘𝑒
                     

(3-2) 

For negative side, Li+ particles are inserted into LikC by reduction during charging and are 

extracted from LikC by oxidation during discharging. 

𝑘𝐿𝑖 + 𝐶 + 𝑘𝑒 ↔ 𝐿𝑖 𝐶
                        

(3-3) 

The 𝑚𝑜𝑙 fraction of Li+ can be considered as the critical state of charge of the Li-ion battery, 

which is the electrode-average solid concentration at the electrolyte interface and can be 

transferred into the normally called state of charge. 

 

3.2.2 Li-ion Diffusion and Concentration 

The electrochemical principles are used to construct a physics-based model of a Li-ion battery. 

The one-dimensional model of a Li-ion battery considers the dynamics along only one axis (the 

horizontal X-axis) and neglects the dynamics along the rest two axes (Y-axis and Z-axis) (Danilov, 



 

37 

2011). This approximation is applicable to most cell structures with a large cross-sectional area 

and small currents. For example, the characteristic length scale of a typical Li-ion cell along the 

X-axis is in the scale of 100μm, whereas the characteristic length scale for the remaining two axes 

is on the order of 1μm or more. To simplify the model, it is assumed that the average electrolyte 

concentration, ce, is a constant. This assumption can be verified in (Santhanagopalan and White 

2006) and is justified due to the insignificant difference (<5%) observed in the electrolyte 

concentration in the battery (Vidts, et al, 1995).   

The Li-ion diffusion in electrolyte and electrode can be descried by Fick’s first and second 

law. 

𝐽 (𝑥, 𝑡) = −𝐷
( , )

                           (3-4) 

( , )
= 𝐷

( , )
                            (3-5) 

Since the concentration in electrolyte is assumed to be constant along the x direction, the 

electrode diffusion in only one dimension is considered. By considering the material diffusion 

inside representative solid material particles for each electrode, the system from 𝑥 = 0 to 𝑥 = 𝑟 

is divided into spatial elements of the thickness ∆r. Ji is the flux of the diffusing elements at 

location 𝑥 and time 𝑡, which can be determined by current I and its corresponding locations. Di 

is the diffusion coefficient and 𝑐 (𝑥, 𝑡) is the concentration of the diffusing element i at location 

x and time t. Initial and boundary conditions have to be defined for each diffusion problem in (3-

8) and (3-9). In a linear diffusion, we have discretized form 

𝜕𝑁 = 𝐴𝐷(𝑐 − 𝑐 )/𝜕𝑥                          (3-6) 

where 𝑁 is the number of moles within the element and A is the area. Based on the spherical 

geometry, we can obtain 
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= ( 𝑐 − 2𝑐 + 𝑐 )                        (3-7) 

At the two boundaries, we have 

= (2𝑐 − 2𝑐 )                         (3-8) 

= ( 𝑐 − 𝑐 ) +                 
 
(3-9) 

Finally, the state space equation for linear diffusion is 

�̇� = 𝐴 𝑐 + 𝐵 𝐽
                            

(3-10) 

The parameters As and Bs are determined by Eq. (3-9). This approximation leads to an average 

value of the solid concentration that can be related to the definition of battery SOC. Although this 

simplified model may result in a loss of information, it is efficient in control and estimation 

applications and still maintains a connection with the physical phenomena and dimensions. 

The SOC is determined by the stoichiometry value 𝜇i in Eq. (3-11) and (3-12) (Domenico, 

2010), where 𝑐  is the average solid concentration and 𝑐  is the maximum solid concentration. 

Here, we assume that the maximum solid concentration is constant along the battery life cycle. 

𝑆𝑂𝐶(𝑡) =
( )

( )
                         (3-11) 

𝜇 =                              (3-12) 

 

3.2.3 Butler-Volmer Current, Overpotential and Voltage Computation 

The overall battery terminal voltage V is constructed in Eq. (3-13) by battery’s open circuit 

voltage (OCV, Eocv), overpotential (η), electrostatic potentials (φ), and film resistance (Rf) on the 
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electrodes surface. The details can be found in Danilov, 2011 . We also applied the average model 

in developing the electrochemical mechanism. 

 𝑉 = 𝐸 − 𝐸 = (𝐸 , + 𝜂 + 𝜙 ) − (𝐸 , + 𝜂 + 𝜙 ) − 𝐼𝑅           (3-13) 

The OCV can be determined based on empirical correlation described in (Doyle and Fuentes, 

2003). The overpotential can be determined by Butler-Volmer current density while the 

electrostatic potentials are determined by the thickness of electrodes and separator. By substituting 

Eq. (3-14 through 3-18) into (3-13), we can develop the battery voltage. 

𝜙 − 𝜙 =                           (3-14) 

𝐸 , = 𝑣 + 𝑣 𝜃 + 𝑣 𝜃 . + 𝑣 𝜃 + 𝑣 𝜃 . + 𝑣 𝑒 + 𝑣 𝑒             (3-15) 

𝐸 , = 𝑢 + 𝑢 𝜃 + 𝑢 𝜃 + 𝑢 𝜃 + 𝑢 𝜃 + 𝑢 𝜃 + 𝑢 𝜃 + 𝑢 𝑒            (3-16) 

𝜂 − 𝜂 = 𝑙𝑛                            (3-17) 

𝑗 = 𝑐 (𝑐 ()                            (3-18) 

J0 is the referenced current density determined by Li+ concentrations at different stage (Vidts, 

et al. 1995). a is the Active surface area per electrode unit volume, and v and u are the coefficients 

for empirical correlation. Besides, δ is the thickness of electrode and separator. R is the inner 

resistance, Rf is the film resistance, A is the electrode plate area, and keff is the effective electrolyte 

phase diffusion conductivity (Domenico, et al, 2008). 

Thus, the average Butler–Volmer current considers a representative solid material particle 

somewhere along the negative (n) and positive (p) electrodes. This simplified model has 

similarities with the “single-particle” model introduced in (Danilov, 2011). The diffusion 
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dynamics are approximated with a state space equation of first order ordinary differential equation, 

which has been described in above section, Eq.(3-10). Furthermore, in the electrode-average model, 

the cell voltage depends, through 𝐸  and 𝐸 , on the solid-electrode concentration instead of the 

average single-particle bulk concentration.  

 

3.3 Extended Kalman Filter (EKF) 

Extended Kalman filtering (EKF) is widely used to estimate system state and parameters for 

non-linear cell models by using a linearization process at every time step. The EKF method can 

automatically compute the dynamic battery cell “state” and its error bounds in real time based on 

real-time measurements. Usually, battery voltage, current, and temperature are measured with 

sensor noise. In this study, instead of deriving the SOC as the system state in EKF model directly, 

we use the solid concentration at the electrodes (ces) as the system state to be determined. Solid 

concentration ces is determined by the approximation analysis of Li-ion diffusion process in the 

previous section. The electrochemical model involves both system noise and sensor noise, w, and 

v, which are assumed to be zero-mean, Gaussian noises, respectively. 

In section 3.2.2, the voltage is found to be a nonlinear function of Li-ion concentration. We 

use the voltage as the output in the EKF model. The EKF can then be implemented as: 

�̇� = 𝐴𝑥 + 𝐵𝑢 + 𝐿(𝑦 − 𝑦)                        (3-19) 

𝑦 = 𝑉(𝑥, 𝑢)                               (3-20) 

where V(x, u) is determined by the solid concentration x (cse) of the final segment in Eq. (3-

13). A and B are the same matrix in Eq. (3-10). The procedure for Kalman gain calculation is 

shown below (Plett, 2004).  
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Initial condition ( k = 0): 

𝑥 = 𝑥  

𝛴 , = (𝑥 − 𝑥 )(𝑥 − 𝑥 )  

For k = 0, 1, 2, 3 … 

Time update: 

State: 𝐿 = ∑ 𝐶 [𝐶∑ 𝐶 + ∑ ]  

Error covariance: ∑ , = 𝐴 ∑ , 𝐴 + ∑  

Kalman: 𝐿 = ∑ , 𝐶 [𝐶 ∑ , 𝐶 + ∑ ]  

Measurement update: 

State: 𝑥 = 𝐴𝑥 + 𝐿 [𝑦 − (𝐴𝑥 + 𝐵𝑢 )] 

Error covariance: ∑ , = (1 − 𝐿 𝐶 )∑ ,  

Here, ∑w and ∑v are the covariance of noise w from system, and noise v from sensor. And 

the matrix Ck for the nonlinear system is shown below. The full derivation is not presented due to 

the equation complexity. 

𝐶 = |
                             

(3-21) 

𝐶 =
, ,( )

=
, ,( )

−
,

,

, ,( )
                 

(3-22) 

Figure 3-1 illustrates the discrete time EKF model. x and 𝑦 are the estimated state and output, 

respectively. The input u is the current density in this case. For software computation 

implementation, the system is further transformed into discrete time form, which is shown below. 
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Figure 3-1 Discrete Time System with EKF 

 

3.4 Dual Extended Kalman Filter (DEKF) 

The state of charge (SOC), as one of the descriptive quantities of the present system state 

changes rapidly, while others may change slowly with time, such as inner resistance and cell 

capacity, which might change as little as 30% during 1000 cycles (Ning and Popov, 2004). These 

parameters decaying over time are often used to describe the state-of-health, and are important for 

cell degradation analysis and remaining useful life estimation. 

The DEKF method is employed here to help estimate the values of state and parameters 

simultaneously, where two Kalman filters are implemented in the system shown below. The 

structure of the dual model is also described in Figure 3-2. 

𝑦 = 𝑔(𝑥 , 𝑢 , 𝜃 ) + 𝑣                   (3-23) 

𝑧 = 𝑔(𝑥 , 𝑢 , 𝜃 ) + 𝑒                     (3-24) 

In this model, a critical cell parameter, cell film resistance, is tracked. The first system is 

described in 3.3, the second system in the discrete time form is determined below. Eq. (3-23) is the 
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same equation as Eq. (3-13), based on the concentration. 

                 𝜃 = 𝑅 ,                               (3-25) 

    𝑅 , = 𝑅 , + 𝑟                           (3-26) 

        𝑧 = 𝑔(𝑥 , 𝑢 , 𝑅 ) + 𝑒                       (3-27) 

Eqs. (3-25) and (3-26) show that the film resistance is generally time invariant, but it may 

vary slowly during long term due to gradual cell degradation during cycling. The process is 

modeled by rk as the small degradation step. The output equation for the state-space model of true 

parameter dynamics is the cell output voltage estimate plus the estimation error ek. Hence, in the 

dual model, voltage is the measurement for output update. 

 

Figure 3-2 Discrete Time System with DEKF 
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3.5 Experiments and Discussion 

In this section, we present the experiments1 of the LiCoO2 battery cell test and estimation 

results based on the proposed DEKF model. A single cell was tested in a climate chamber for 450 

cycles. The battery temperature was maintained between 20°C and 29°C, while most of the time, 

the temperature is kept at 22°C. Due to the small variation, the temperature change has insignificant 

effect on the battery performance. The battery nominal voltage is 3.6V and for each discharging 

cycle, the battery was discharged from 4.1V (terminal voltage) to 2.5 V (terminal voltage), with a 

constant 1.5A current. For each charging cycle, the constant current constant voltage (CCCV) 

method was applied to protect battery from high voltage and overcharging damage. During the 

cycle, the battery was charged back to 4.2V (terminal voltage) by using constant 1.5A current and 

then was kept at constant voltage by reducing the current. To see the degradation effects over 

multiple cycles, we plot the battery measurement in the 1st cycle and the 401st cycle, as well as the 

SOC estimation in Figures 3-3 and 3-4. During the experiment, the current of discharging or 

charging processes were both recorded as positive values. High accuracy measurement sensors 

were applied to record the voltage and current. 

From Figure 3-3, it is shown that at 401st cycle, the discharging time was reduced by 21%. 

This discharging capacity fading phenomenon can be viewed as one of the main indications of 

battery aging effect. Furthermore, the nominal voltage for the 401st cycle was also smaller than the 

 

1 This research is funded by NSF Industry & University Cooperative Research Program (I/UCRC) for Intelligent 

Maintenance Systems (IMS) at the University of Michigan. The authors would like to thank IMS center at the University of 

Cincinnati for providing experimental data. 
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one for the 1st cycle. This phenomenon can be physically described by film resistance increment 

on the surface of electrode particles. The long-term capacity fade and film resistance increment 

will be further discussed later. 

 

Figure 3-3  Short Term Voltage Estimation 

 

Figure 3-4  Short Term SOC Estimation 

The results of short-term voltage and SOC estimation in one discharging cycle are shown in 

Figures 3-4 and 3-5. In Figure 3-4, the estimated voltage by using the DEKF is compared with the 

measurement. It can be observed that the estimate converges to the measurement and the noise 

variation is reduced by implementing Kalman Filter. In Figure 2-5, the SOC estimation is further 

compared with coulomb counting (CC) method. It can be observed that the estimated SOC 

converges to the CC results. During our experiment, the current was precisely controlled at 1.5A 
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and the SOC determined by the CC method is a linear line with no noise. We noted that the noise 

of SOC estimated by the DKEF is introduced by measured voltage. Here, we use the CC method 

conducted in ideal experimental environment to verify the DEKF method. It can be inferred that 

when there is noise in the current measurement in real applications, the DKEF SOC estimation 

will be more effective than the CC SOC estimation due to its noise filtering capability. 

The discharging capacity for each cycle determined based on the CC methods and DEKF SOC 

changes are shown in Figure 3-5  Long-Term Capacity Fade Estimation. Though some large battery 

capacity recoveries are observed due to experimental interruption and variants, it can be concluded 

that the discharging capacity determined based on the DEKF is valid and effectively monitors the 

degradation process. 

 

Figure 3-5  Long-Term Capacity Fade Estimation 

To understand the cell degradation effects on the film resistance, we use the DEKF to estimate 

the long-term film resistance change. Since there is no way to directly measure the film resistance, 

an alternative method, film growth rate method (FGRM) (Moura, 2011) based on a first-principle 

battery model, is used to compare and verify the estimation performance of the proposed DEKF 

method. FGRM has been considered as the most efficient method in determining the film growth 

at solid electrolyte interphase (SEI), which is one of the main contributors to capacity fade and 
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battery age (Doyle, 2003). The single cell film resistance growth is determined by 

 𝑅 (𝑥, 𝑡) = 𝑅 +
( , )

                       (3-28) 

( , )
= −𝛼𝐽(𝑥, 𝑡)                         (3-29) 

where RSEI, κ and α are the battery parameters. δ is the thickness of the layer. The comparison 

of per unit area film resistance determined by the DEKF and the FGRM is shown in Figure 3-7. 

The film resistance is averaged in each cycle to better demonstrate our result. In Figure 3-7, we 

observe that the film resistance growth estimates have similar values and same pattern as the 

FGRM. However, there is limitation by applying the FGRM to verify our simplified battery model 

due to some assumptions in the simplified electrochemical model. It is assumed that the maximum 

solid concentration is constant over the battery life cycle and the SOC is determined based on the 

1st cycle of the battery. Due to the degradation effects, the speed of voltage drop during discharging 

will increase along its life cycle. The voltage-drop effects involve several parameter changes 

including film resistance, diffusion coefficient, material thickness and lithium concentration 

changes, but only the film resistance is considered in our simplified electrochemical model. 

Therefore, the film growth rate estimated upon the assumption might overestimate the film 

resistance. It is also shown that the estimation by the DKEF has larger values than that by the 

FGRM. One possible reason is that the first dynamic model embedded in the DKEF involves many 

parameters other than film resistance. Some of the parameters will also change through the cell 

life time, instead of keeping constant in the present model. This simplification could affect the 

accuracy of estimated parameters.  

One advantage of the proposed DEKF over the FGRM is that DEKF can also be applied to 

estimate other cell parameters, even if we don’t know the parameter aging mechanism, such as 
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lithium ions concentration reduction (Hu, et al. 2012). In other words, this comparison 

demonstrates that the DKEF is a useful technique for parameters tracking in the long run 

throughout the cell aging process, especially when the fundamental aging mechanisms of the 

parameters are not clearly understood. 

 

Figure 3-6  Long-Term Film Resistance Estimation 

 

3.6 Conclusions and Future Work 

This chapter proposed a method for estimating both the state of charge and cell parameters of 

a Li-ion battery cell over its lifetime using the Dual Extended Kalman Filters. To determine the 

state of charge accurately, the electrochemical model is developed to represent the cell dynamics, 

which is more advanced than equivalent circuit model. The experimental and simulation results 

show an efficient estimation and quick convergence of the SOC and robust estimation of 

parameters changing in the long run. The experimental and estimation results also show that the 

discharging capacity and film resistance determined based on the DEKF is valid and effectively 

represent the degradation process. It can also be inferred that if there is noise in the sensor 

measurement and battery system itself, the estimations based on the DEKF will be more accurate 
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than that based on the CC method due to the noise filtering capability and long-term parameter 

tuning function. 

Comparing to the research done by Plett, (Plett, 2004), and Hu, (Hu, 2012), the DEKF with 

electrochemical model provide in-depth study of battery aging process as well as higher estimation 

robostness and accuracy. 

Future work might investigate more cell parameters other than the film growth rate, if we 

have a better understanding of complicated aging effects on different parameters. A future study 

might also consider abrupt changes of parameters for accurate battery performance prognostics. 

The accuracy of the battery state and parameters estimation by applying the DKEF can be further 

improved at the cost of increased model complexity and computational effort.  
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NOMENCLATURE 

Symbol Description Unit 

a Active surface area per electrode unit volume cm-1 

ci Li-ion concentration mol cm-3 

n Particle coefficient − 

r Particle radius cm 

A Area cm2 

D Diffusion coefficient − 

E Open circuit voltage V 

F Faraday’s constant C mol-1 

I Current A 

J Butler–Volmer current density A cm-3 

Kef Effective electrolyte phase diffusion conductivity cm2 s-1 

L Kalman Gain − 

R Gas constant J K-1 mol-1 

Rf Film resistance Ω 

T Temperature K 

α Change transfers coefficients − 

δ thickness cm 

η Overpotential V 

𝜇           Stoichiometry value − 

φ Potential V 

∑ Covariance − 
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Li-ion Battery Prognostics with Non-linear Degradation  

 

4.1 Introduction 

With the growth in battery-powered electric vehicle development, the lithium-ion battery 

plays a critical role in the reliability of vehicle systems. In order to provide timely maintenance 

and replacement of battery systems, it is necessary to develop a reliable and accurate battery health 

management system that takes a prognostic approach. Therefore, this chapter focuses on two main 

methods to determine a battery's health with non-linear degradation: (1) Battery State-of-Health 

(SOH) monitoring and (2) Remaining Useful Life (RUL) prediction. Both of these are calculated 

by using a filter algorithm known as the Support Vector Regression-Particle Filter (SVR-PF). 

Models for battery SOH monitoring based on SVR-PF are developed with novel capacity 

degradation parameters introduced to determine battery health in real time. 

Many research papers in the field of battery remaining useful life (RUL) prediction are 

principally based on the development of prognostics tools. (Liu et al. 2011) applied a regularized 

auxiliary particle filter algorithm on battery SOH estimation and RUL prediction, and made 

comparisons to an auxiliary particle filter. (Eddahech et al. 2011) used battery electrochemical 

impedance spectroscopy (EIS) data to predict Lithium-ion battery RUL. (Nuhic et al. 2013) 

developed an algorithm based on Support Vector Machine (SVM) to estimate the SOH and RUL 

of lithium-ion batteries. A simplified electrochemical model was developed by (Prasad et al. 2013) 
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to identify the key aging parameters of a lithium-ion battery. (Widodo et al. 2011) applied both 

SVM and Relevance Vector Machine (RVM) on battery health monitoring and prognostics. They 

compared the results between these two kernel machines, thereby demonstrating that RVM had 

better predictive capability than SVM. (He et al. 2011) estimated battery health condition first by 

using the Particle Filter (PF), where the initial states for the PF were provided by Dempster-Shafter 

theory, then the parameters reflecting battery health condition generated from monitoring battery 

SOH were used to predict the battery RUL. A dual filter consisting of a Kalman Filter and 

Unscented Kalman Filter (UKF) was introduced by (Andre et al. 2011) to estimate lithium-ion 

battery State-of-Charge (SOC) and SOH. (Chiang et al. 2011) established an adaptive control 

approach to model a lithium-ion battery by calculating both the Open-Circuit Voltage (OCV) and 

internal resistance to estimate the battery SOC and SOH. (Chen et al. 2013) analyzed lithium-ion 

battery SOH through a Genetic Algorithm (GA), the temperature influence was also considered in 

their research work to improve the robustness and precision of SOH estimation.  

(Schmidt et al. 2010) developed an online approach for estimating the residue power and 

capacity of a lithium-ion battery during operation. (Plett, 2004) published a series of papers on the 

Extended Kalman Filter (EKF) based battery management system for a hybrid electric vehicle 

battery. (Wang et al. 2013) developed a prognostic method to estimate the SOH and RUL of 

lithium-ion batteries based on Relevance Vector Machine (RVM) using an offline algorithm. (Saha 

et al. 2009) focused on monitoring battery SOH and RUL prediction by using the RVM and PF. 

Research work of (Takeno et al. 2004) showed that the linear correlation between capacity and 

impedance of Lithium-ion battery, and the correlation was largely unaffected by the degree of 

charge. (Orchard et al. 2013) presented a lithium-ion battery SOC prediction method based on PF. 
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Miao et al. predicted Lithium-ion battery RUL by using Unscented Particle Filter (UPF) and 

analyzing both predicted RUL and its distribution. 

In the light of the previous works, we address two issues: 

(1) Above literature reviews showed the battery capacity degradation was correlated with 

impedance data extracted from EIS, moreover, (Saha et al. 2009, Takeno et al. 2004) claimed 

the correlation was linear and used a linear regression algorithm to estimate it. We discovered 

that impedance data extracted from EIS could provide us new parameters to analyze battery 

degradation. These degradation parameters should be estimated through an online process 

such that the real time battery health condition can be monitored. Similar parameters are 

estimated by the linear regression algorithm in (Saha et al. 2009, Takeno et al. 2004) 

(2) Several researchers predicted the battery RUL probability distribution by estimating 

parameters with run to failure test. However, the RUL prediction is a multi-step ahead process, 

the parameters distribution is not updated. 

In this chapter, we build novel battery SOH monitoring models to analyze the proposed 

degradation parameters and develop a new approach to predict the RUL by updating its probability 

distribution. Moreover, the Support Vector Regression-Particle Filter (SVR-PF) algorithm is 

implemented to make improvement over the standard PF, which has the degeneracy phenomenon. 

The results show that together with the aging parameters (Saha et al. 2009) the degradation 

parameters accurately reflect the real time health condition of the battery and insure that an 

accurate RUL prediction can be calculated, and the SVR-PF shows improved estimation and 

prediction capability than the standard PF. The percentage of nominal capacity is considered as 

the parameter that reflects the battery SOH. 
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4.2 Particle Filter and Support Vector Regression-Particle Filter 

 

4.2.1 Particle Filter 

Particle Filter (PF) is a general algorithm based on the recursive Bayesian estimation 

(Sorenson, 1971), which uses the idea of the Monte Carlo method to draw samples (also called 

particles) from posterior distribution and assigns a weight to each particle (Carpenter et al. 1999). 

Compared to the Kalman Filter, which only focuses on linear systems and Gaussian noise 

(Kalman, 1960), a particle filter focuses on a more general situation where the system can be 

nonlinear, and the noise distribution can be non-Gaussian. The system state space model for PF is: 

𝑥 = 𝑓(𝑥 , 𝑣 )

𝑧 = ℎ(𝑥 , 𝑛 )
                               (4-1) 

where 𝑥  represents the system states and 𝑧  represents either the measurements or the 

system outputs, 𝑣  and 𝑛  are system noise and measurement noise, respectively, and both 

can be either Gaussian or non-Gaussian. 

Suppose we know the prior distribution 𝑝(𝑥 : |𝑧 : )
 

and have already drawn N samples 

from the posterior distribution from system (4-1). The approximation of the posterior distribution 

is: 

             𝑝(𝑥 : |𝑧 : ) ≈ ∑ 𝑤 𝛿 𝑥 : − 𝑥 :                  (4-2) 

where {𝑥 } represents the samples (i.e., the particles), {𝑤 } represents the sample weights 

and ∑ 𝑤 = 1. A higher weight indicates a higher probability. 𝛿()is the Dirac-Delta function. 
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Because it is hard to sample directly from a posterior distribution, we use another technique 

known as Importance Sampling, which draws samples from the importance distribution and has 

this form: 

𝑞(𝑥 : |𝑧 : ) ≈ ∑ 𝛿(𝑥 : − 𝑥 : )                        (4-3) 

If we substitute the importance distribution (4-3) into (4-2), the weight update is given by: 

𝑤 =
( : | : )

( : | : )

                       

(4-4) 

If the importance distribution (4-2) can be decomposed to: 

𝑞(𝑥 : |𝑧 : ) = 𝑞(𝑥 |𝑥 : , 𝑧 : )𝑞(𝑥 : |𝑧 : )                  (4-5) 

We can have the weight renewal equation based on Bayesian estimation: 
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                 (4-6) 

where 𝑝(𝑧 𝑥 )
 

is the likelihood function, 𝑝(𝑥 𝑥 )
 

is the state transfer distribution, if 

the system (4-1) follows the Markovian process, we can simplify the weight renewal equation (4-

6) to 

𝑤 = 𝑤
( ) ( )

( . )
                         (4-7) 

And if we choose state transfer distribution to be the importance distribution: 

𝑞(𝑥 𝑥 , 𝑧 ) = 𝑝(𝑥 𝑥 )                           (4-8) 
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The weight update equation can be simplified to (4-9), in which the likelihood function 

𝑝(𝑧 𝑥 )
 

and the prior weights are used to update the new weights: 

𝑤 = 𝑤 𝑝(𝑧 𝑥 )
                              

(4-9) 

Resampling is used to avoid the problem of degeneracy of the PF algorithm. Without 

resampling, after a few iterations, some of the particle weights will tend toward zero, so efforts for 

calculating these weights becomes unnecessary. This condition is known as the degeneracy 

phenomenon (Saha et al. 2009). 

The standard approach for the degeneracy phenomenon is to remove the small weight 

particles, and duplicate large weight particles to renormalize the distribution and set the weights 

of all the particles to 1/𝑁 (𝑁 is the number of particles). This is the resampling algorithm of the 

standard PF. 

The threshold of resampling is defined as effective sample𝑁 , and is calculated by: 

𝑁 =
( )

≈
∑ ( )

                            

(4-10) 

 

4.2.2 Support Vector Regression-Particle Filter (SVR-PF) 

The standard PF algorithm for avoiding the degeneracy phenomenon by eliminating small 

weight particles and duplicating large weight particles will cause the loss of particle diversity, this 

may result in most particles gathering around the larger weighted ones, and therefore the 

degeneracy phenomenon will still exist. In order to avoid this problem, a new resampling algorithm 

is introduced to rebuild a posterior distribution (4-1), and is known as SVR (Bishop, 2006), which 

can avoid the degeneracy phenomenon and keep the diversity of particles. (Jiang et al. 2009) 
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introduced a basic algorithm on SVR-PF and applied it to nonlinear systems. (Kabaoglu, 2009) 

applied SVR-PF to the problem of direction-of-arrival multiple target tracking. (Zhu et al. 2005) 

improved the efficiency of visual tracking system by SVR-PF, the basic algorithm was also 

introduced in their research work. 

The fundamental idea that rebuilds posterior distributions by SVR is known as an 

optimization problem using a regularized functional with constraints (Vapnik, 1995), which has 

the following form: 

𝛺 = (𝑓, 𝑓)

s.t.𝑠𝑢𝑝|𝐹(𝑥) − 𝐹 (𝑥)| = 𝑠𝑢𝑝 𝐹 (𝑥) − ∫ 𝑓(𝑡)𝑑𝑡 = 𝜎 < 𝜀
          

(4-11) 

where 𝛺 = (𝑓, 𝑓)  is the regularized function defined in Hilbert space and is generated by 

𝜎 . 𝜎  is the error or distance between distribution function 𝐹(𝑥) and its estimation 𝐹 (𝑥). 𝜀 is 

the constraint. 

𝑓(𝑥) is the probability density function (PDF) of estimate distribution 𝐹 (𝑥). We only need 

to consider points 𝑥 (𝑖 = 1,2, … , 𝑚) in the particle set, thus (4-11) can be simplified to: 

𝑚𝑎𝑥 𝐹 (𝑥) − ∫ 𝑓(𝑡) 𝑑𝑡 = 𝜎 < 𝜀
                 

(4-12) 

If we describe the PDF 𝑓(𝑥) by kernel functions: 

𝑓(𝑥) = ∑ 𝛽 𝐾(𝑥 , 𝑥)
                        

(4-13) 

𝐾(𝑥 , 𝑥) = 𝜑 (𝑥 )𝜑(𝑥) is the kernel function, which satisfies Mercer’s condition (Ferreira, 

2009). Then we can get the regularized function: 

𝛺(𝑓) = (𝑓, 𝑓) = ∑ ∑ 𝛽 𝛽 𝐾(𝑥 , 𝑥 )

                 
(4-14) 
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The posterior distribution estimation problem can be described as a constraint optimization 

problem: 

𝑚𝑖𝑛 𝑊 (𝛽) = ∑ ∑ 𝛽 𝛽 𝐾(𝑥 , 𝑥 )

s.t.𝑚𝑎𝑥 𝐹 (𝑥) − ∑ 𝛽 ∫ 𝐾(𝑥 , 𝑡)𝑑𝑡 = 𝜎

             

(4-15) 

set 𝑦 = 𝐹 (𝑥 ), 𝑤 = [𝛽 , 𝛽 , … , 𝛽 ] , 𝑧 (𝑥) = ∫ 𝐾(𝑥, 𝑡)𝑑𝑡 , 𝑧 =

(𝑧 (𝑥 ), 𝑧 (𝑥 ), … , 𝑧 (𝑥 )) , 𝜉  and 𝜉∗

 are non-negative slack variables, Eq. (4-15) can be 

transferred to a quadratic programming problem: 

⎩
⎪
⎨

⎪
⎧𝑚𝑖𝑛 𝐽 (𝑤, 𝜉 , 𝜉∗) = 𝑤 𝑤 + 𝐶(∑ 𝜉 + ∑ 𝜉∗)

s.t 𝑤 𝑧 − 𝑦 ≤ 𝜎 + 𝜉

𝑦 − 𝑤 𝑧 ≤ 𝜎 + 𝜉∗

𝜉 , 𝜉∗ ≥ 0, 𝑖 = 1,2, … 𝑚

                        

(4-16) 

where C is the penalty coefficient. By introducing Lagrange coefficients 𝑎 , 𝑎∗

 to (4-16), 

we get: 

𝑚𝑎𝑥 𝑊 (𝑎 , 𝑎∗) = − ∑ ∑ (𝑎∗ − 𝑎 )(𝑎∗ − 𝑎 )(𝑧 𝑧 ) − 𝜎 ∑ (𝑎∗ + 𝑎 ) + ∑ 𝑦 (𝑎∗ − 𝑎 )

s.t. ∑ (𝑎∗ − 𝑎 ) = 0,0 ≤ 𝑎 , 𝑎∗ ≤ 𝐶, 𝑖 = 1,2, … , 𝑚
   (4-17) 

Now we derive the solution of (4-17) as follows: 

𝛽 = ∑ (𝑎∗ − 𝑎 )𝑧 (𝑥 )
                            

(4-18) 

In (4-18), 𝑥  is the Support Vector and is the corresponding parameter of non-zero 

coefficients 𝑎∗, 𝑎 . Substituting (4-18) into (4-13), we can transform the solution of the 

optimization problem to a posterior distribution estimation. 

From the discussion above, the new PF algorithm can be modified by incorporating SVR and 

can be described as follows: When the effective sample 𝑁
 
falls below the threshold, a 

resampling of the posterior distribution using the SVR algorithm occurs. The two training pairs 
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are particle 𝑥  and its corresponding weight 𝑤 = 𝐹 (𝑥 ). These pairs are used to rebuild the 

resampling posterior distribution. The procedure for the SVR-PF method is shown in Figure 4-1.

 and  represent the rebuilt particles and weights respectively. 
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Figure 4-1 Fundamental illustration of SVR-PF 

 

4.3 Circuit Model for a Lithium-ion Battery  

This chapter uses battery capacity and impedance data, which are collected from second 

generation, Gen 2, 18650-size lithium-ion cells produced by Idaho National Laboratory (Goebel, 

2008). The experiment ran at room temperature (24 degree Celsius). Charging was carried out in 

a constant current (CC) mode at 1.5A until the battery voltage reached 4.2V and then continued in 

a constant voltage (CV) mode until the charge current dropped to 20mA. Discharge was carried 

out at a constant current (CC) level of 2A until the battery voltage fell to 2.7V, 2.5V and 2.2V for 

batteries 5, 6 and 7, respectively. Impedance measurement were carried out through an 



 

60 

electrochemical impedance spectroscopy (EIS) frequency sweep from 0.1Hz to 5kHz. Repeated 

charge and discharge cycles resulted in accelerated aging of the batteries while impedance 

measurements provided insight into the internal battery parameters that changed as aging 

progresses. The experiment stopped when the battery reached its End-of-Life (EOL). The EOL 

threshold for each battery was different. In this experimental study the EOL threshold for batteries 

5 and 6 was 70% of nominal capacity, while for battery 7 it was set at 74.5% nominal capacity. 

Impedance data extracted from EIS is a good indicator for determining battery SOH. When a 

battery ages its impedance degrades as a function of time (Goebel, 2009; Zhang et al. 2000; 

Eddahech, 2012). Extracted impedance data can be analyzed based on the equivalent circuit for a 

single cell as shown in Figure 4-2. The major impedance data we need for RUL estimation are 𝑅  

and 𝑅 , which are electrolyte resistance and charge transfer resistance respectively (Goebel, 

2009). 

CDL

Rct

RW Re

 

Figure 4-2 Equivalent circuit for single cell of battery impedance (Goebel, 2009) 

The battery capacity (Ah) and impedance (Ohm) over cycle number are shown in Figure 4-3. 

The capacity of all three batteries decreases over charge-discharge cycles while battery impedance 

𝑅  and 𝑅  increase over cycles in a similar pattern. 
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Figure 4-3 Battery Capacity and Impedance versus Cycle Number 

 

4.4  Models for Battery SOH Monitoring 

The battery SOH monitoring method is processed online and reflects the real time battery 

health condition using: (1) aging parameters (Saha, 2009) that provide the impedance aging trend 

versus time; and (2) degradation parameters that reflect battery capacity degradation through the 

impedance data. 

The method is composed of three processes: (1) estimating the aging parameters and 

smoothing of the data, (2) developing the battery degradation model to estimate the proposed 

degradation parameter, and (3) detecting battery capacity degradation. Process (3) operates in 

parallel with processes (1) and (2) and provides a terminate signal when the battery SOH degrades 

below the RUL threshold value. The battery RUL threshold value in this chapter is defined as the 

percentage of battery nominal capacity and is set at a percentage of nominal capacity that is greater 

than the EOL threshold. SOH monitoring stops and RUL prediction begins when battery capacity 

degrades below the RUL threshold. 

The processes of battery SOH monitoring are shown in Figure 4-4. 
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Figure 4-4 Diagram of battery SOH monitoring 

 

4.4.1 Model for Battery Aging Parameter Estimation 

The time dependent aging of impedance is observed by (Goebel, 2009; Zhang et al. 2000; 

Eddahech, 2012), it is modeled by an exponential function (Saha, 2009): 

𝑅=𝑅0𝑒𝑥𝑝(𝜆𝑅𝑡)                       (4-19) 

where 𝑅  represents 𝑅  or 𝑅 , 𝑅 is a constant, 𝜆 is the aging parameter, which is 

estimated through the PF. 

Taking advantage of equation (4-19), we build a novel battery state space model using the 

SVR-PF in order to estimate the battery aging parameters. Besides, the experimental impedance 

data is also recursively smoothed: 

⎩
⎨

⎧
𝑥 , = 𝑥 , + 𝑣 ,

𝑥 , = 𝑥 , + 𝑣 ,

𝑥 , = 𝑥 , 𝑒𝑥𝑝( 𝑥 , 𝛥𝑘) + 𝑣 ,

𝑥 , = 𝑥 , 𝑒𝑥𝑝( 𝑥 , 𝛥𝑘) + 𝑣 ,

 

𝑧 , = 𝑥 , + 𝑛 ,

𝑧 , = 𝑥 , + 𝑛 ,

                              

(4-20) 
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where 𝑥 ,  
and 𝑥 ,  

represent the aging parameters 𝜆
 

and 𝜆 ,
 

respectively, which are 

to be estimated. 𝑥 ,  
and 𝑥 ,  

represent the impedance 𝑅  and 𝑅 , respectively, which are to 

be smoothed. 𝑣 , , 𝑣 , , 𝑣 ,  
and 𝑣 ,  

denote the state noise. 𝑧 ,  
and 𝑧 ,  

are outputs or 

measurements. 𝑛 ,  
and 𝑛 ,  

are output noise. 

Data estimating and smoothing results for model (4-20) are now applied so that a degradation 

model parameter can be estimated in the following section. 

 

4.4.2 Degradation Model – Degradation Parameters Estimation 

The purpose of degradation model is to reflect the battery SOH. Based on the analysis in 

(Goebel, 2009), the capacity C degradation is linearly correlated with the sum of the impedance 

𝑅 + 𝑅 , and can be modeled by: 

𝐶 = 𝛼(𝑅 + 𝑅 ) + 𝛽                             (4-21) 

where C represents the capacity, 𝛼 and 𝛽 are degradation parameters. 

From equation (4-21), we can now determine the battery degradation model: 

𝛼 = 𝛼 + 𝑣 ,

𝛽 = 𝛽 + 𝑣 ,
 

𝐶 = 𝛼 (𝑅 + 𝑅 ) + 𝛽 + 𝑛

                       

(4-22) 

In this model, states 𝛼  and 𝛽  are degradation parameters, 𝐶  represents battery 

capacity,
 

𝑅
 

and 𝑅
 

are the smoothed impedance from the model (4-20), 𝑣 , , 𝑣 .  and 𝑛  

are noise. 
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4.5 Battery Remaining Useful Life Prediction 

The prediction of RUL is based on the real-time battery health condition. When the RUL 

threshold value criterion is met, the SOH monitoring method stops, and the current battery health 

condition parameters are recorded. Refer to the analysis in the previous section, the battery 

capacity degradation is linearly correlated with the sum of the impedance (eq. (4-22)), therefore 

the impedance is predicted first to provide basic trend of the capacity degradation, the battery 

capacity is then predicted to calculate the RUL. 

The aging parameters are used to predict the impedance. Suppose the RUL criterion is met 

at cycle N, the battery RUL given in cycle is L and 𝑅 , 𝑅  represent predicted impedance, we 

have: 

𝑅 , = 𝑅 , 𝑒𝑥𝑝( 𝜆 , 𝑚). 𝑚 = 1, … , 𝑀. 𝑀 ≥ 𝐿                (4-23) 

 𝑅 , = 𝑅 , 𝑒𝑥𝑝( 𝜆 , 𝑚). 𝑚 = 1, … , 𝑀. 𝑀 ≥ 𝐿               (4-24) 

In these equations, 𝑅 , , 𝑅 ,  are smoothed impedance at cycle N and 𝜆 , , 𝜆 ,  are 

estimated aging parameters at cycle N. 

The degradation parameters are embedded in the model to predict the battery capacity with 

the SVR-PF algorithm. Because the prediction is a multi-step ahead process, the estimated 

particles weights at the last cycle of SOH monitoring are not able to reflect the distribution of 

RUL at latest time step. This model is also built for updating the RUL distribution, which is: 
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⎩
⎪
⎨

⎪
⎧

𝜆 ,
∗ = 𝜆 ,

∗ + 𝑣 ,
∗

𝜆 ,
∗ = 𝜆 ,

∗ + 𝑣 ,
∗

𝑅 ,
∗ = 𝑅 ,

∗ 𝑒𝑥𝑝( 𝜆 ,
∗ 𝛥𝑘) + 𝑣 ,

∗

𝑅 ,
∗ = 𝑅 ,

∗ 𝑒𝑥𝑝( 𝜆 ,
∗ 𝛥𝑘) + 𝑣 ,

∗

𝐶∗ = 𝛼 (𝑅 ,
∗ + 𝑅 ,

∗ ) + 𝛽

 

𝑅 , = 𝑅 ,
∗ + 𝑛 ,

∗

𝑅 , = 𝑅 ,
∗ + 𝑛 ,

∗                              (4-25) 

In this model, parameters with * represent predicted parameters. 𝛼 , 𝛽  are estimated 

degradation parameters at cycle N. Model measurements 𝑅 , 𝑅  are predicted impedance from 

(4-23) and (4-24). Initial states particles are the recursively calculated results at the last cycle of 

SOH monitoring method. Prediction starts at time step 𝑘 = 𝑁. 

The capacity prediction process stops when the EOL threshold criterion is met, and the RUL 

is then calculated. The results provide not only the estimation value, but also the approximate 

probability distribution. Suppose the EOL threshold is met at cycle 𝑁 , 𝐿∗ is predicted RUL, 

𝐿∗  are the estimated RUL particles, which has the number of Q and {𝑤∗ } are the particle 

weights. We have the RUL value and distribution: 

 𝐿∗ = ∑ 𝑤∗ 𝐿∗ = 𝑁 −                            (4-26) 

 𝑃(𝐿∗) = ∑ 𝑤∗ 𝛿(𝐿∗ − 𝐿∗ )                             (4-27) 

 

 

 

 

 



 

66 

Including the SOH method, the whole process is illustrated in Figure 4-5: 

Experimental Battery Data 

Estimating and Smoothing

Degradation Model Development

Terminate Signal?

Record:

(1) Aging Parameter 

(2) Degradation Parameter
R , ,,

e ctN R N 
,N N 

Predict  ,e ctR R

RUL Prediction

Capacity Degradation 
Detection

Aging Parameters:

Smoothed Impedance:

,
e ctR R 
,e ctR R

Degradation Parameters: , 

Terminate Signal 
When RUL 

Threshold Reached

Online

Offline

Y

N

 

Figure 4-5 Flow chart of battery SOH monitoring and RUL prediction 
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4.6 Results – Comparing SVR-PF to PF 

For the purpose that develops an online SOH monitoring method and avoids using post-

processed data, the data of battery 6 is processed beforehand by using curve fitting algorithm to 

provide initial state of PF and SVR-PF, and the data of batteries 5 and 7 is applied in simulation. 

 

4.6.1 Battery SOH Monitoring 

Set the RUL threshold value of battery 5 to 80% nominal capacity, and 85% for battery 7. 

The battery SOH monitoring is calculated by SVR-PF and standard PF as shown in Figure 4-6. 

The mean squared error (MSE) of the results is shown in Table 4-1. 
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Figure 4-6 (a) Battery 5 and (b) battery 7 smoothing results from SVR-PF and PF 
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Table 4-1 Mean Squared Error of SVR-PF and PF Smoothed Performance 

 Battery 5 Battery 7 

 eR  ctR  eR  ctR  

SVR-PF 62.47 10   44.58 1 0   63 .05 10   46.15 10   

PF 65 .81 10   46.36 10   65 .27 10   48 .96 10   

 

To evaluate the performance of the SVR-PF method, we also apply the standard PF algorithm 

on the same set of batteries. By comparing the results from SVR-PF data tracking with PF data 

tracking, we observe that SVR-PF more accurately track results than PF because Mean Squared 

Errors (MSE) are much smaller, as shown in Table 4-1. 

 

4.6.2 Remaining Useful Life Prediction 

Next we investigate the battery RUL prediction. Set the RUL threshold value to 80% nominal 

capacity for battery 5, and to 85% for battery 7. The predicted battery capacity and RUL 

distribution for batteries 5 and 7 are shown in Figure 4-7 and Figure 4-8, respectively. Because we 

use random variables to generate initial particles, the simulation is repeated three consecutive times. 
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Figure 4-7 SVR-PF and PF predicted capacity and RUL distribution of battery 5 
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Figure 4-8 SVR-PF and PF predicted capacity and RUL distribution of battery 7 
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Table 4-2 shows the predicted mean value of EOL and RUL of the algorithm SVR-PF and 

PF. 

Table 4-2 Predicted Mean Value of RUL/EOL (Unit: Cycle) 

Simulation 
Label 

Battery 5 Battery 7 
SVR-PF PF SVR-PF PF 

  RUL EOL RUL EOL RUL EOL RUL EOL 
1 60 161 83 184 78 163 67 152 
2 62 163 52 153 80 165 71 142 
3 57 158 82 183 76 161 105 190 
Measured 
Value 

RUL: 61  EOL: 162 RUL: 75  EOL: 160 

 

The results show that the SVR-PF algorithm has robust performance when using random 

initial particles and random samples on posterior distributions. 

 

4.6.3 Effects of RUL Threshold Value on Prediction 

To study the effects of RUL threshold value on the prediction performance, we change the 

RUL threshold value to 85% of nominal capacity for battery 5 and 90% for battery 7. The 

prediction results for SVR-PF and PF are shown in  
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Figure 4-9. The predicted RUL and EOL mean values are shown in Table 4-3. 

 

 

 

Figure 4-9 Predicted battery RUL distribution at different RUL thresholds 
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Table 4-3 Predicted RUL/EOL value at different RUL thresholds (Unit: Cycle) 

 Battery 5 Battery 7 

 RUL EOL RUL EOL 

SVR-PF 89 168 96 162 

PF 122 201 115 181 

Measured Value 83 162 94 160 

 

The prediction results of the proposed SVR-PF method are more accurate than that of the PF 

method. Moreover, the performance of the PF method deteriorates more quickly than the SVR-PF 

method as the given data points become fewer. Therefore, the SVR-PF algorithm can provide more 

robust and accurate prediction of battery RUL. 

 

4.7 Conclusion 

In this chapter, we explore an improved method for battery SOH monitoring and RUL 

prediction. We derive a battery degradation model based on the results of (Goebel, 2009). The 

main contributions of this research can be summarized as: (1) an accurate model for battery SOH 

monitoring is developed, which provides a good foundation for multi-step ahead prediction. (2) 

Battery degradation parameters are extracted to provide accurate RUL prediction together with the 

aging parameter. (3) The RUL probability distribution is updated over time by a new RUL 

prediction approach. (4) The battery capacity depletion is analyzed using the novel SVR-PF 

algorithm. With the experimental data we validate the robustness of the SVR-PF algorithm for 

battery RUL prognostics and compare its predictive capability to the standard PF algorithm. 
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Comparing to the research done by Goebel, (Goebel, 2009) and Orchard, (Orchard, 2013), 

SVR-PF method overcomes the degeneracy phenomenon. The SVR-PF shows improved 

estimation and prediction capability compared to the standard PF. 
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Conclusions and Future Work  

 

5.1 Conclusions 

This dissertation conducts systematic research on the power batteries’ SOH and RUL. The 

major achievements of this dissertation include combining physics-based model and data-driven 

model for the estimation of SOH and RUL of a battery even if the battery has unknown degradation 

properties, and (2) improving the RUL prediction result even the system and noise have non-linear 

characteristics.  

In chapter 2, we have investigated NiH2 battery performance to develop fault detection, 

reduce online false alarm rate, and predict the degradation process. ARMA and a hybrid model 

have been used to establish the data-driven model. The hybrid model provides more accurate one-

step ahead prediction results compared with traditional ARMA models. Results from both voltage 

and pressure measurements show reduced false alarm rate with 95% confidence interval. A multi-

step ahead prediction method is also developed for long-term degradation analysis of the NiH2 

battery, by focusing on the pressure growth. The prediction results show the robustness and 

accuracy of the proposed model by comparing to the test data. In addition, further pressure 

behavior is predicted to provide health management support information.  

In Chapter 3, a method is also preposed for estimating both the state of charge and cell 

parameters of a Li-ion battery cell over its lifetime using the Dual Extended Kalman Filters. To 
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determine the state of charge accurately, the electrochemical model is developed to represent the 

cell dynamics, which is more advanced than equivalent circuit model. The experimental and 

simulation results show an efficient estimation and quick convergence of the SOC and robust 

estimation of parameters changing in the long run. The experimental and estimation results show 

that the discharging capacity and film resistance determined based on the DEKF is valid and 

effectively represent the degradation process. It can also be inferred that if there is noise in the 

sensor measurement and battery system itself, the estimations based on the DEKF will be more 

accurate than that based on the Coulomb counting method due to the noise filtering capability and 

long-term parameter tuning function. 

In chapter 4, an improved method for battery SOH monitoring and RUL prediction is explored. 

We derive a battery degradation model based on the results of (Goebel, 2009). The main 

contributions of this research can be summarized as: (1) an accurate model for battery SOH 

monitoring is developed, which provides a good foundation for multi-step ahead prediction. (2) 

Battery degradation parameters are extracted to provide accurate RUL prediction together with the 

aging parameter. (3) The RUL probability distribution is updated over time by a new RUL 

prediction approach. (4) The battery capacity depletion is analyzed using the novel SVR-PF 

algorithm. With the experimental data we validate the robustness of the SVR-PF algorithm for 

battery RUL prognostics and compare its predictive capability to the standard PF algorithm. 

 

5.2 Scientific Contribution 

The  scientific  contributions  of  the  research  are  summarized  as  follows: 

1. Study the data-driven methods ARMA and ANN for battery RUL prediction when the 

battery properties and usage environment are relatively stable. 
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2. Monitor battery SOC and long-term cell parameters of the battery by integrating a 

simplified electrochemical battery model and Dual Extended Kalman Filter technique. 

3. Develop predictive methodology Support Vector Regression-Particle Filter (SVR-PF) 

algorithm to improve the accuracy and robustness of RUL prediction while facing system 

nonlinearity and noise nonlinearity. 

 

5.3 Future Work 

The future work may include the use of new methodologies such as Unscented Kalman Filter 

and Particle Filter (UPF) for more accurate battery prognosis. The Extended Kalman Filter (EKF) 

has been used as the standard technique for performing recursive nonlinear estimation. The EKF 

algorithm, however, provides only an approximation to optimal nonlinear estimation. We point 

out the underlying assumptions and flaws in the EKF and present an alternative filter with 

performance superior to that of the EKF. This algorithm, referred to as the Unscented Kalman 

Filter (UKF), was first proposed by Julier et al., (Julier, 1995) and further developed by Wan and 

van der Merwe (Wan, 2000). The basic difference between the EKF and UKF stems from the way 

Gaussian random variables (GRV) are represented for propagating through system dynamics.  

Julier and Uhlman demonstrated the substantial performance gains of the UKF in the context 

of state estimation for nonlinear control. Several theoretical results were also derived (Julier, 1997). 

They reviews this work and presents extensions to a broader class of nonlinear estimation problems, 

including nonlinear system identification, training of neural networks, and dual estimation 

problems. Additional methedology includes the development of an Unscented Kalman Smoother 

(UKS), the specification of efficient recursive square-root implementations, and a novel use of the 

UKF to improve particle filters. 
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 Besides, the particle filter is a sequential Monte Carlo method that allows for a complete 

representation of the state distribution using sequential importance sampling and resampling. 

Whereas the standard EKF and UKF make a Gaussian assumption to simplify the optimal recursive 

Bayesian estimation, particle filters make no assumptions on the form of the probability densities 

in question; that is, they employ full nonlinear, non-Gaussian estimation. A method that utilizes 

the UKF to augment and improve the standard particle filter, specifically through the generation 

of the importance proposal distribution can be considered.  
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