
Facilitating Location and Use of Socio-economic
Data with Minimal User Intervention

by

Jie Song

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Computer Science and Engineering)

in The University of Michigan
2021

Doctoral Committee:

Professor Hosagrahar V. Jagadish, Chair
Research Professor George Alter
Associate Professor Michael J. Cafarella
Assistant Professor Danai Koutra

Jie Song

jiesongk@umich.edu

ORCID iD: 0000-0002-3433-4522

© Jie Song 2021

ACKNOWLEDGEMENTS

First, I am thankful for the support of my advisor, Professor H. V. Jagadish,

who has been guiding me through the PhD years to turn from a practical engineer

with little research experience to a professional with research mind. He tailored the

training to my background and personality and patiently directed me to grasp research

knowledge and academic writing and communication skills little by little. When I

encountered the biggest challenge in my life at the start of the third year of PhD study,

he did much more than what an academic advisor could do and helped me through

the time unconditionally. Other than academic achievements, I regard him as a role

model to learn from. I will always remember his way of teaching young researchers,

leading research teams, supporting women researchers and treating students equally

with willingness to give them opportunities regardless of their background.

I would also thank my parents for supporting me through not only the PhD period

but my whole life the entire time. They always value my physical health and mental

happiness as the first priority. When I look back, they are always there patiently

listening to my achievements and confusions as best friends and kindest parents.

I am honored to have the opportunity to work with my committee members,

Professor George Alter, Professor Danai Koutra and Professor Michael Cafarella.

Professor George Alter is like the second advisor of mine for the past several years.

He has been dedicated to the research at ICPSR and I really enjoyed working with

him and meet with him weekly. Professor Danai Koutra is always open to discuss

new ideas with me and I appreciate her introducing me to other opportunities in the

ii

community. Professor Michael Cafarella is one of the kindest person I have ever met.

He is optimistic, humour and smart. I love taking his class EECS 485 and working

with him.

I am fortunate to work with Luna Dong and Xian Li at Amazon during internship

in 2017, and Yeye He and Surajit Chaudhuri at Microsoft Research in 2019. They

broaden my horizon to the research life in the industry and introduced me to apply

research to cutting edge problems.

I would like to thank Alex Mueller, Yoko Nagafuchi, Zerui Wei, Ruidong Liu,

Tianji Cong, Yin Lin, Zhongjun Jin and other student researchers who have con-

tributed their efforts to the projects in this thesis. Structured Data Transformation

Language (SDTL) and the software applications in the C2Metadata workflow were

produced by a large team of researchers and developers. I wish to thank the dedi-

cated teams at Colectica (leads Dan Smith and Jeremy Iverson), Metadata Technology

North America (leads Jack Gager and Pascal Heus), the Norwegian Centre for Re-

search Data (lead Ørnulf Risnes), and ICPSR (lead George Alter). I am also grateful

to my friends, especially Yining Shi, Yingchao Zhong, Jingjing Cao, Xiaojing Du and

Mengyang Wang, who are always there together with me through the ups and downs

in life.

I am grateful for fellowship support from the National Science Foundation’s Data

Infrastructure Building Blocks (DIBBs) program under “Continuous Capture of Meta-

data” NSF ACI-1640575 for work on the C2Metadata Project and SDTA, and Div

Of Information & Intelligent Systems (IIS) program under NSF IIS-1250880 for work

on GeorAlign.

iii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . ii

LIST OF FIGURES . vii

LIST OF TABLES . ix

ABSTRACT . x

CHAPTER

I. Introduction . 1

1.1 Challenges and Strategies . 3
1.1.1 User Input in Data Integration 3
1.1.2 Lossy Metadata Information 4
1.1.3 Search Over Integrated Datasets and Metadata from

Heterogeneous Sources 5
1.2 Summary of Contributions 6
1.3 Outline of the Dissertation 6

II. Research Background . 8

2.1 Automatic Data Integration 8
2.2 Data Interpolation . 8
2.3 Statistical Data Transformation 11
2.4 Dataset Search . 13

2.4.1 Query Languages 13
2.4.2 Query Handling . 14
2.4.3 Query Result Generation 14

III. GeoFlux: Joining Tables Automatically leveraging Join Key
Knowledge . 16

3.1 Introduction . 16

iv

3.2 Problem Statement . 21
3.2.1 Preliminaries . 21
3.2.2 The Integration Problem 23

3.3 System Overview . 24
3.4 Datatidy & Transformation 25

3.4.1 Tidying Challenges 26
3.4.2 Datatidy Approach 27
3.4.3 Transformation Approach 28

3.5 Geogroup Evaluation . 29
3.5.1 Variable Role Identification by Classification 29
3.5.2 Geographic Entity Matching 30
3.5.3 Geogroup Selection by Learning to Rank 32

3.6 Target Geo-Type Selection 34
3.7 Crosswalk with GeoAlign . 36
3.8 Experimental Evaluation . 37

3.8.1 GeoFlux Prototype Evaluation 38
3.8.2 GeoAlign Evaluation 44

3.9 Conclusions and future work 44

IV. GeoAlign: Interpolating Aggregates over Unaligned Partitions 46

4.1 Introduction . 46
4.2 Problem Statement . 51

4.2.1 Preliminaries . 51
4.2.2 The Aggregate Interpolation Problem 52

4.3 Aggregate Interpolation by GeoAlign 54
4.3.1 GeoAlign preliminaries 54
4.3.2 GeoAlign Assumptions 57
4.3.3 Disaggregation Matrix 59
4.3.4 GeoAlign Algorithm 61

4.4 Experimental Evaluation . 64
4.4.1 Experimental Setup 64
4.4.2 GeoAlign Effectiveness 67
4.4.3 GeoAlign Efficiency and Scalability 68
4.4.4 GeoAlign Robustness 70

4.5 Conclusions and Future Work 74

V. SDTA: Standardizing Statistical Data Transformation by a
Structured Algebra . 76

5.1 Introduction . 76
5.2 Design Considerations . 81
5.3 Generic Data Model . 84
5.4 Generic Transformation Model 90
5.5 Standard Data Transformation Algebra (SDTA) 91

v

5.5.1 Add, Drop, Keep And Order Rows and Columns . . 92
5.5.2 Column Aggregation and Row Aggregation 94
5.5.3 Join . 95
5.5.4 Metadata Manipulation 96

5.6 Standard Data Transformation Language (SDTL) 97
5.7 Use Cases . 99

5.7.1 Automatic Data documentation of Statistical Trans-
formation by C2Metadata 99

5.7.2 Language Translation 103
5.8 Conclusion . 103

VI. FluxSearch: Searching Datasets Leveraging Both Metadata
and Data Content . 105

6.1 Introduction . 106
6.2 Problem Definition . 118
6.3 System Overview . 122
6.4 Metadata Enrichment for Search 125

6.4.1 Metadata Field Type Importance 125
6.4.2 Schema Mapping between Data and Metadata . . . 127
6.4.3 Enrich Metadata with Data 129

6.5 Data Enrichment for Integration 131
6.5.1 Virtual View of Metadata Enriched Data 133
6.5.2 Generate join index and union index 136
6.5.3 Candidate Integration Pair Generation 138
6.5.4 Ranking . 139

6.6 Experiments . 141
6.6.1 The Data . 141
6.6.2 Enriched Data Quality 142
6.6.3 Query Result Relatedness 145
6.6.4 Efficiency . 147

6.7 Conclusion . 149

VII. Conclusion . 151

7.0.1 Future Work . 151

BIBLIOGRAPHY . 155

vi

LIST OF FIGURES

Figure

3.1 (Part of) Hierarchy Diagram of Census Geographic Types from US
Census Bureau . 19

3.2 GeoFlux System Flow Diagram . 24
3.3 Correctness of join and runtime performance of pre-join modules. . 40
4.1 Join two tables for steam consumption (mg) and per capita income

($) in New York State together by county 47
4.2 Examples of units in the partial map of New York State for aggregate

interpolation: (a) zip code units (source units), (b) zip code and
county intersection units and (c) county units (target units). 51

4.3 Realign population histogram in two sets of age intervals by trans-
forming aggregates from (a) narrow bins to (c) wide bins. The dotted
lines separate the age range into a set of tentative intersection units
as in (b). 55

4.4 GeoAlign interpolation for the objective steam consumption data in
Figure 4.1 from zip codes to counties using two reference attributes:
population and accidents, in three steps: weight learning, disaggre-
gation and re-aggreagtion. 58

4.5 GeoAlign prediction performance (NRMSE) compared with dasy-
metric methods. Since a better prediction yields a lower NRMSE,
GeoAlign is making comparable or better predictions than the dasy-
metric methods for tests in New York State and the Unite States. . 65

4.6 GeoAlign runtime scales linearly with respect to the number of units
in source level and target level . 69

4.7 When noises are introduced in references, the prediction deviation is
evaluated as the ratio of the RMSE using the perturbed references
to the RMSE using the original references. The closer the ratio is to
1, the more invariant GeoAlign is to reference noises. For up to 50%
level of noise, most experiments have the prediction deviation around
1 indicating the robustness of GeoAlign to noisy references. 71

4.8 GeoAlign is robust to the choice of reference attributes. Though
extra reference attributes do not create any loss, reference attributes
with higher correlation with the objective are preferred. 73

vii

5.1 ICPSR Data Downloads by Format (September 4, 2015 to March
4. 2016). Tab- or comma-delimited ASCII files may be analyzed in
other statistical packages or other types of software, like relational
databases. 77

5.2 An example of pivoting table using functionally equivalent commands
in Stats, SQL Server and R . 78

5.3 Meta Table, the Generic Data Model for Statistical Data Transfor-
mation . 85

5.4 A Meta Table illustration of the pivoting table example in Fig. 5.2 . 87
5.5 workflow . 100
5.6 SDTL Parser Components . 100
5.7 An example of dataset level transformation lineage visualization and

codebook level variable derivation 102
5.8 Language translation using SDTL as the bridge 103
6.1 Part of XML-based DDI Schema Tag Library, version 2.1 107
6.2 ICPSR Studies (Datasets) by metadata granularity (March 24. 2021) 110
6.3 A motivating example for the search of integrated datasets 114
6.4 FluxSearch System Pipeline . 123
6.5 An example of schema mapping between data table and metadata . 128
6.6 An example of the virtual view of metadata enriched data table . . 132
6.7 Histograms of the number of tables in a dataset (left) and the number

of variable in a table (right) for 654 datasets with variable- and table-
level metadata . 142

6.8 Precision vs. Recall for Metadata Enrichment with 10% fields take-out143
6.9 Runtime for 125 queries inBq ordered by ascending runtime of FluxSearch

148

viii

LIST OF TABLES

Table

3.1 Monthly HELP (Highway Emergency Local Patrol) Assists: Begin-
ning 2010 . 17

3.2 Registered Lobbyist Disclosures: Beginning 2007 17
3.3 State Park Annual Attendance Figures by Facility: Beginning 2003 22
3.4 Quarterly Census of Employment and Wages Quarterly Data: Be-

ginning 2000. (Mo.=Month) . 34
3.5 Independent Module Effectiveness Indicators 38
4.1 Notations in §4.2 and 4.3 . 60
5.1 Meta Table Metadata Access Syntax 89
5.2 SDTA Operators . 92
5.3 Major transform commands supported by SDTL 98
6.1 Average precision and recall by field take-out ratio 143
6.2 Search queries with relevant datasets returned by ICPSR search engine144
6.3 Relatedness evaluation for 125 queries in benchmark Bq 145

ix

ABSTRACT

Multitudes of data sets are available today on almost every topic imaginable.

However, given a particular information need, it is not easy to find the right data

sets best suited to satisfy the need. Most current dataset search tools perform a

keyword search over schema and published metadata. While such searches are easy

to specify, they are also very blunt. Many potential data sets are often returned, from

which the user has to choose the ones desired. The situation is worse when the user’s

question can only be answered by combining two or more data sets. A technically

proficient user with knowledge of database schema could specify their information

need precisely. However, in our scenario, we have to deal with both limited technical

expertise and lack of schema knowledge.

In this dissertation, we attempt to facilitate data set location and use by people

with little technical proficiency. Our goal is to let the user be “hands-off”, providing

as little direction as possible. While our techniques are broadly applicable, we partic-

ularly focus on datasets with socio-economic data. Specifically, we address two major

challenges a user may face: 1) a single dataset is not enough for the task, and 2) the

available metadata is inadequate to evaluate the fitness of a dataset for a particular

task. To tackle the former challenge, we complement individual dataset search with

automatic data integration based on both metadata and data content (FluxSearch)

for both special-purpose geospatial data (GeoFlux) by a multiple reference-based

interpolation method (GeoAlign), and for more generalized data in a data portal

using union and join. For the latter challenge, we consider ancillary information

by automatically incorporating data provenance in terms of standardized statistical

x

transformation (SDTA and SDTL) into metadata (C2Metadata).

xi

CHAPTER I

Introduction

The consumption of data continues to grow by leaps and abounds. It has been

predicted that the Big Data analytics market will soon surpass $200 billion with a

compound annual growth rate of 11.7% [52]. With the launch of shared data via

open data portals and scientific repositories in addition to traditional data markets,

general public, once neglected, as the potential consumer of Big Data has recently

drawn more attention of research forces in the field. Answering important socio-

economic questions, for instance, is no longer the concern of merely professional data

users such as policymakers and data scientists, but also the general public getting

more engaged in the game of data.

To gain value from this ocean of data requires the ability to find and make sense

of datasets as a first step before data analysis for specific tasks. This pre-analysis

step is generally known as dataset search. Searching for datasets in principled ways

has been researched for decades. Nowadays, dataset search is largely keyword-based

over published metadata, within a single data source or over multiple data sources.

While such searches are easy to specify, they are also very blunt. Many potential

datasets are often returned as ranked results, from which the user has to choose the

ones desired.

There are several problems with this approach due to the disconnect between

1

what datasets are available, what dataset a user needs, and what datasets a user can

find and use. Though many communities, particularly in social science and medicine,

enforce publishing data with metadata, a large fraction of datasets from other sources

such as Web Tables lack metadata. The quality of available metadata also varies. For

instance, knowing the original purpose for collecting the data aids interpretation and

analysis; while understanding the processing performed before the release of a dataset

affects later use of the data (machine learning for example). Available metadata may

thus not encompass the actual information a user needs to assess whether the dataset

fits a given task as many unique dataset properties are not fully utilized.

The situation is worse when the user’s question can only be answered by com-

bining two or more datasets. Firstly, even identifying the datasets can be difficult.

Even the datasets are found, they must be integrated through a series of tedious

integration steps to obtain a new dataset that meets the desired information need.

The representations of datasets and metadata vary from source to source, making the

integration process even more complicated.

Though many tools have been developed to facilitate dataset search and data in-

tegration respectively, general users with limited or no technical proficiency could not

easily use these tools designed for professionals. Moreover, users often need to switch

between tools targeting specific sub-steps of search and integration, complicating the

use of data even further.

This dissertation studies various aspects of dataset search and preparation to

enable users with little technical proficiency to find proper datasets for specific use.

To make the problem more tractable, we limit our scope to socio-economic datasets, a

large and important class of data concerning general users. Such datasets are generally

presented as data tables with or without metadata. Tables in such datasets do not

have primary key-foreign key relationships commonly defined in relational databases.

Our techniques can be generalized to a broader scope. Specifically, we seek answers

2

to the following two questions:

• When no single dataset is a proper fit for a specific search task, how could we

integrate data from different sources to form a new dataset in an automatic

fashion?

• How can we improve metadata quality by including additional aspects of data

to effectively evaluate a dataset’s fitness for a particular use?

We present key technical challenges and general strategies to address the questions

above. We then conclude with the key contributions and outline the work presented

in the rest of the dissertation.

1.1 Challenges and Strategies

1.1.1 User Input in Data Integration

Despite extensive research on tools to assist users, data integration remains hard,

particularly for users with limited technical proficiency. A large fraction of the tools

requires intervention from technical aspects, such as schema alignment, record linkage,

and data fusion. Such ability general users often lack. The integration is even more

complicated for data from different sources suffering from semantic heterogeneity,

integrity constraints, and data-level heterogeneity. A normalization of such data is

needed to transform data into a canonical form before integration.

To address this barrier, we study how much we can do with no user guidance.

Our vision is that the user should merely specify two input datasets to be integrated

and get a meaningful integrated result. In general, there are many different ways one

could combine two relational tables.

To make the problem tractable, we only consider socio-economic data, typically in

tabular form aggregated on a selected segment of the population in some geographic

3

area and/or time interval. An intuitive way to integrate two such datasets is to join

on the geographic unit column, thereby allowing the user to compare information

from the two datasets for corresponding geographic units, one per row.

While this sounds easy in principle, there are many obstacles to overcome: (1)

data values are not always organized in a standardized way; (2) data may be re-

ported in numerous types of standard geography and there does not always exist a

straightforward relationship between any two types; and (3) data can be reported as

aggregated data at population level and at individual level.

Leveraging the geographic join key information, we have developed learning-based

and heuristic-based methods tackling each of the obstacles above. These methods

compose the modular architecture of a systematic approach for automatic data inte-

gration for socio-economic datasets. The system can be further extended for joining

based on other domain knowledge and other integration operations such as union for

more generalized integration scenarios.

1.1.2 Lossy Metadata Information

The common theme of current dataset search strategies, both on the web and

within the boundaries of a repository, is the reliance on dataset publishers tag-

ging their data with appropriate information in the correct format. Because current

dataset search only uses metadata view of a data, it is imperative that these metadata

descriptions are correct and maintained.

Three major disparities arise from this assumption in reality. First, datasets are

not always published with metadata. Though many communities are pushing towards

this end, the majority of datasets available lack metadata. Even if published with

metadata, there is no universal standard for mandatory information in metadata

documentation. Moreover, the correctness of the metadata, or metadata quality,

could not be guaranteed.

4

Here we focus on improving the quality of metadata by documenting the data

provenance information in terms of data transformation before data publish. These

transformation operations are generally performed by various statistical transforma-

tion tools. To eliminate manual documentation, we propose to create a system to

automatically update (or create) metadata with this transformation information in a

standard representation.

1.1.3 Search Over Integrated Datasets and Metadata from Heteroge-

neous Sources

In addition to heterogeneous data representations, metadata from different sources

follow various standards. Metadata descriptions according to standards such as

DCAT [70], defines attributes such as title, description, language or license, while

“CSV on the Web” documents data types and formats for validation purpose [95].

Moreover, not all datasets are shared with metadata information. Even if they have

metadata, the quality of metadata vary. We also noted that there is no universal

agreement on how to create (or integrate) metadata for dataset parties involved in

data integration. Even if integrated metadata is created, it lacks information regard-

ing the integrated dataset itself.

We created a joint signature for both metadata and data content of the integrated

dataset for dataset search over such datasets where no single dataset satisfies the

search task. These signatures are precomputed during the offline stage. During

the online stage, we efficiently search for data-enhanced metadata using techniques

from information retrieval and integrate metadata-enhanced datasets using techniques

from the database community. The integrated datasets with metadata documenting

the respective metadata of member datasets and the integration process are further

evaluated for their relatedness to the search query and the richness of information.

5

1.2 Summary of Contributions

This dissertation studies the challenges in facilitating the location and use of socio-

economic datasets in a hands-off manner for users with little technical proficiency.

We limit user contributions to non-technical aspects and address the problem from

different perspectives.

To efficiently integrate datasets when no single dataset fits the search purpose, we

propose an automatic data integration system that joins datasets leveraging join key

knowledge. The system transforms input datasets in a canonical form, identifies the

proper join key maximizing data quality, matches entries referring to the same real-

world entity before the actual integration. When the aggregation level of datasets

differs, we propose an adaptive multi-reference interpolation method that realigns

aggregates of respective datasets into a common level to permit further integration.

For metadata not representing the dataset fully in a way a user needs to assess the

dataset for a specific search task, we enhance existing metadata with data provenance.

For provenance consideration, we standardize the derivation of the dataset in terms of

transformational information in a canonical way and automatically updating exiting

published metadata with this information in a pipelined system.

Lastly, we developed a dataset search system leveraging the benefit of both sys-

tems. We adopt a keyword-based search strategy over automatically integrated

datasets with provenance-updated metadata to take advantage of both data content

and metadata for a better search.

1.3 Outline of the Dissertation

The rest of the dissertation is organized as follows. In Chapter II, we survey

related dataset search techniques and data preparation techniques concerning auto-

matic data integration. In Chapter III, we propose GeoFlux as an automatic data

6

integration system leveraging join key information. In Chapter IV, we propose an

adaptive multi-reference interpolation algorithm GeoAlign for realigning aggregates

over unaligned partitions. In Chapter V, we propose two standard representations

SDTA and SDTL for statistical data transformation, and a system C2Metadata that

automatically updates existing metadata with provenance information in terms of

statistical data transformation. GeoAlign won the best paper runner-up award at

EDBT 2018, and SDTA won the best paper award at SSDBM 2021. In Chapter VI,

we propose a dataset search system FluxSearch that operates over automatically

integrated datasets with provenance-aware metadata. In Chapter VII, we conclude

the thesis with potential future work.

7

CHAPTER II

Research Background

2.1 Automatic Data Integration

Data integration has long been recognized as an important problem and much

progress has been made to address it but it still remains a challenge [114, 46]. It has

been broken down into sub problems, such as data cleaning [87], schema mapping [7],

entity matching [60], etc., each of which has been studied extensively. Tools have also

been developed to facilitate the usability of database for data integration [85, 24, 9,

73]. Nevertheless, a majority of the data integration work is still conducted manually

by hand [51].

Our system limits the scope of data and the scope of integration operations to

provide truly completely automatic data integration.

2.2 Data Interpolation

In the GIS community, spatial interpolation has advanced from isoline mapping

in cartography to data realignment in different units or grids for multivariate analysis

in geographic research [62, 8, 76]. Realignment, crosswalk, or regridding, is commonly

used today as a preprocessing step before further data analysis in physics and socioe-

conomics to interpolate spatial or temporal data distribution from one grid to another

8

[59]. Since these data are either point or areal based, two categories of methods are

proposed for these two types respectively.

Areal interpolation is a subset of the spatial interpolation problem that realigns

aggregates. Early methods built upon point-based interpolation, such as point-in-

polygon method, do not follow the volume-preserving property such that reconstruc-

tion of exactly the original aggregates of each source unit with the transformed value

of each target unit is not possible [62, 90]. It has been shown that these methods

are not comparable in approximation efficiency with those that do have the property

[101, 62]. Later methods thus introduce the property and turn over to the area-

based areal interpolation instead [28]. These approaches depend highly on the spatial

properties of the data collection area and thus different forms of ancillary data are

introduced ever since.

Areal weighting method, one of the early area-based areal interpolation method,

makes use of the area ancillary data available in the form of disaggregation partitions

between source and target units [72, 29]. This method is widely available in GIS

software for general users nowadays. However, it assumes even distribution within

units (homogeneity) whereas this assumption hardly stands in reality. Areal weighting

has been extended by referring to other single known reference attributes, called

dasymetric weighting [3, 89, 74, 42]. These methods are restricted by the assumption

of proportionality of the objective attribute to the single reference attribute. Hence

the selection of the reference attribute is vital to the prediction accuracy and the

methods are not adaptive to different objective attributes.

The regression methods are later introduced as extensions to the dasymetric meth-

ods allowing for multiple auxiliary variables. In general, the regression methods in-

volve a regression of the source level data of the objective attribute on the values of the

references in target units. For this track of methods, more advanced techniques such as

EM algorithm, Monte Carlo simulation, smoothing techniques[62, 97, 107, 25, 23, 94],

9

etc., are introduced later in the literature. However, they make different assumptions

of density distribution within units, some of the mostly used ones are Poisson distri-

bution and binomial distribution, and their performances are rather assumption de-

pendent [61] and auxiliary variable dependent. Recently, more complicated regression

models [78, 77, 69] are developed based on domain knowledge such as spatial correla-

tion. However, they lack general applicability to heterogeneous target attributes and

are hard to implement for practitioners.

These approaches can also be categorized as extensive or intensive approaches

based on their approximation target. Extensive approaches approximate asto while

intensive ones approximate f sto . Most approaches for solving the areal interpolation

problem are intensive approaches that build spatial statistical models for f sto in the

disaggregation step. These approaches, mostly developed in 2-D space, can be ex-

tended to higher dimensions, though these extensions are typically non-trivial. Other

major limitations of intensive approaches include narrow scope of application and low

robustness to heterogeneous objective attributes.

Current intensive approaches for areal interpolation are not generally applicable

for aggregate interpolation due to three main reasons. First, integration of f sto is

computable in 2-D, however, it is computationally intensive in high dimensions with

complex f sto . Second, shape files are indispensable for intensive approaches, and the

probability density function for each intersection unit, f sto [k], is associated with the

shape files of source and/or intersection units. Further, attributes in plain tables

without handy shape files of target units typically fail re-aggregation. Even if shape

files are available, some of them constantly change over time, resulting in approxima-

tion inaccuracies. Last but not least, these approaches are not easily approachable

for general users, especially those with little technical proficiency in mathematics,

statistics and GIS. The f̂ sto model is built upon the spatial knowledge of the objective

attribute; however, this knowledge is not available for all users. Further, implemen-

10

tations of intensive approaches are not publicly available, making them even harder

to use.

Another limitation of intensive approaches is that they are not adaptive to new

attributes. f̂ sto models are attribute dependent since the true f sto models for two

attributes can be very different. Another point to note is that these approaches make

many assumptions of f̂ sto . For instance, the distribution model of each intersection

unit, the choice of parameters for these distributions and so on. Any change in these

assumptions may dramatically influence the accuracy of approximation in some target

unit. What is worse, there is no efficient verification of whether they are appropriate

or not.

Extensive approaches are more generally applicable than the intensive ones: they

can be easily extended to high dimensions, need no unit shape files, and are easy to

implement. However, existing extensive approaches make use of a single reference

attribute and are still limited in robustness. When the objective attribute and the

reference attribute does not share similar spatial distribution, the approximated result

can differ substantially from the true aggregates in target units. Further, since they

use the same reference attribute irrespective of the objective attribute, they are not

adaptive to different objective attributes with heterogeneous spatial distributions.

2.3 Statistical Data Transformation

There is no shortage of algebras for statistical data transformation. Thus in this

section, we first broadly discuss related work regarding data transformation in rela-

tional databases and statistical data, before further discussion of a common language

representation for statistical data transformation.

Though many tools have been developed to facilitate data transformation for users

with different technical backgrounds in the database community, they are not well-

aligned with, and supportive of, statistical data transformation. SQL, for instance,

11

is the most widely used data manipulation language for databases. In spite of its

extending support of limited data transformations and analytic in recent years, it

is primarily used for answering queries regarding data in situ where data can be

highly normalized. More recent tools like Potter’s Wheel [88], Wrangler [58], Foofah

[56] provide an interactive interface for users with less technical proficiency for more

specific transformation needs such as data wrangling, data warehousing and data

cleaning. However, their emphasis are more on the syntactic transformation than on

the preparation for statistical analysis.

More targeted tools are well adopted in the data science community over the

past half century. Statistical packages like SPSS® , Stata® , SAS®, R(by packages

like dplyr [106], tidyverse [105] and reshape2 [103]) and Python are more popular

for statistical data transformation for tabular data. Though simple data conver-

sion (opening data file written in one language by another language using tools like

Stat/Transfer[14]) is straightforward, the transformation syntax conversion between

these languages is not easily realizable. Attempts for embedding one language in

other programming languages is not new for statistical data. Major commercial sta-

tistical software such as SAS[54] and SPSS[17] include a built-in interface for calling

R. Other attempts [44] have been made to communicate data and results interactively

in language interfacing. These attempts, however, are tailored to the characteristics

of languages involved, and are often between statistical languages and a more general

programming language for possible operation decomposition.

Standard representations of statistical data transformation has been proposed

regardless of the actual transformation engine used. The Validation and Transfor-

mation Language (VTL) [91] is such a standard language that defined the validation

and transformation rules for statistical data at the abstract level. It primarily sup-

ports exchange of data validation rules for data quality specification and validation

purposes accounting for part of the data transformation purpose but not all. VTL

12

could not serve as the bridging language for inter-conversion of statistical languages

as information losses during conversion.

2.4 Dataset Search

Dataset search involves the discovery, exploration, and return of datasets to an end

user. Dataset search has not emerged in isolation, but has built on foundatinal work

from other related areas including structured database, keyword based IR, semantic

web and tabular search.

A general approach to providing search over datasets is to model the user interface

over existing keyword based information retrieval search systems where a user poses

a query and a ranked list of existing datasets is returned. Indeed, a majority of

data repositories provide this form of interface. The dataset search problem can be

addressed at various levels. Services such as Google Dataset Search [41] and DataMed

[6] crawl across the web and facilitate global search across all distributed resources.

These approaches use tags found in schema.org or DCAT [70] to structure and identify

the metadata considered important for datasets. However, the problem also exists at

a local level, including open government portals such as data.gov.uk, organizational

data lakes, scientific repositories such as Elsevier’s [27] and data markets. Across all

these systems, users are attempting to discover and assess datasets for a particular

purpose.

Here we explore a few aspects of dataset search related to the work in this thesis,

namely query languages, query handling, and query results.

2.4.1 Query Languages

Web search has long been a hot topic in the information retrieval community.

Web search engines have been used for document, image and video searches. When

it comes to searching for structured data such as web tables, relational tables, open

13

datasets, etc., users have to be technical proficient in structured query languages

such as SQL and SPARQL and, at the same time, learn the schema of the data

sources to formulate valid query for the search. More recently, to reduce the learning

time of users, efforts have been made to enable search queries in more relaxed formats

including keyword based, entity based and tabular based query languages. Additional

filters may compliment the search query for more specified search. For instance, a

query may narrow down the search scope to datasets published before 2012.

2.4.2 Query Handling

Putting our focus on keyword queries, we discuss further related work in the han-

dling of query and data. Most dataset searches operate over the dataset’s metadata

by building index over the metadata. However, Many datasets have no metadata.

[80] pointed out that the quality of the metadata largely affects the discovery and the

consumption of the datasets within Open Data Portals. Works like [98, 80, 50] tackles

the quality issue of metadata. There are some other efforts [96, 83, 43, 110] that aim

to facilitate the search over the data or over the summary profiles or annotations

generated from the data to promote the understanding of the datasets for the search

engine and the end users.

2.4.3 Query Result Generation

Many of the current dataset search engines evaluates datasets, more specifically

their metadata, against the search query and return a ranked list of datasets by

different criteria.

Candidate datasets for keyword based queries are evaluated for their relatedness

to the query in terms of syntactic relatedness and semantic relatedness similar to

keyword search queries in web search [111, 100, 68]. The original datasets are returned

as rank result. Entity-based query engines [4, 48, 2] have a different purpose as to

14

extend the information of the searched entity by datasets. The look up process tries

to build links between datasets, known as link discovery, which involves the classic

schema mapping and entity matching problems from the database community. The

information enriched entities are ranked before presented to the users. Search engines

using tabular queries, on the other hand, aim at searching for related datasets. These

datasets could either extend the queried table to provide fuller information for entities

in the query table by table join, or to present more entities in a similar domain to the

query table by table union. The returned result is thus an integrated table such that

the query table is enriched with information from related tables. [109, 11] defined

three types of tabular search, namely table extension [55, 109, 111], table completion

[112, 18] and attribute discovery.

15

CHAPTER III

GeoFlux: Joining Tables Automatically leveraging

Join Key Knowledge

In this chapter, we focus on the design of a hands-off data integration system for

socio-economic data minimizing user guidance, called GeoFlux. More specifically, we

emphasize joining data tables leveraging the geographic information shared among

such data. The system tackles multiple challenges user encounter in the joining

process in a systematic way.

3.1 Introduction

Social scientists, policy makers, activists, and ordinary citizens all have unprece-

dented access to a variety of socioeconomic data, with the potential to derive valuable

insights. However, in order to discover interesting results, users typically have to inte-

grate data from multiple sources. Unfortunately, data integration is hard, and require

more technical training than our target users, even with many helpful tools available

today. Our goal in this paper is to see how well we can do with data integration

without any user guidance at all. Ideally, we want the user only to identify two

datasets, and leave it for the system to compute a meaningful integrated result.

In general, there are many ways to integrate information in two tables. We focus

16

Table 3.1: Monthly HELP (Highway Emergency Local Patrol) Assists: Beginning
2010

Table 3.2: Registered Lobbyist Disclosures: Beginning 2007

on a specific class that is both large and of practical importance: joining two tables

with data aggregated by geography. Socioeconomic data are often reported in the

form of tables and 80% of them include geographic information [45] organized in

granularities (zip codes, counties, etc) driven by administrative requirements. This

geographic information has strategic importance as a link between datasets, and has

high administrative and statistical value for governments and data scientists [16].

In the simplest case, we may imagine two tables with two columns each: the first

table recording per capita income for each county and the second table recording

number of reported crimes per county. An intelligent system could join these two

tables on the county name column to get a three-column table that provides insight

about the relationship of crime and income. In practice, the tables to be joined

are much more complex and may report data in incompatible geographic units. We

describe below two real data tables selected at random from data.ny.gov, the official

website for open government data for New York State.

Motivating example. The Monthly HELP (Highway Emergency Local Patrol)

Assists data provides the number of motorists assisted by year, month and region, in

vehicles on highways since 2010. Table 3.1 is a truncated version of its first row. In

Table 3.2, we give a simplified version of a Registered Lobbyist Disclosures table, which

contains information about biennial registration and bi-monthly filings by lobbyists to

17

the New York State Joint Commission on Public Ethics since 2007. Let’s suppose that

a social scientist has some interesting hypothesis relating highway assists to lobbyists,

and joining these two tables is central to understanding it.

Table 3.1 has three dimension variables (Year, Month and In-State Region) that

describe the granularity of the data, and one measure variable (number of motorists

assisted) reported summarized with respect to these three dimensions. The Region

values are spread across columns such that each row is a combination of four assist

number observations from four regions. Table 3.2 is well formatted with each column

representing a dimension that describes attributes of filings including their lobbyist

and client geographic information for city, state and zip code levels; and each row

representing one filing as an observation. Unlike Table 3.1, which is reported at pop-

ulation level, Table 3.2 is reported at individual level with each record corresponding

to one filing.

As we saw in the example above, data values are often not organized in a standard

way. Some tables are structured such that each column corresponds to one variable

and each row is an observation; some tables use a partial two-way format in which

values of variables are spread as column names; yet other tables may use some other

structure.

Furthermore, data may be reported in numerous types of standard geography and

there does not always exist a straightforward relationship between any two types. The

United States Census Bureau defines legal, administrative and statistical boundaries

as shown in Figure 3.1, where lines depict inclusion relationships. For instance, a

census tract is defined as a finer granularity region within a single county; however,

a zip code may sit in several counties and a county may contain multiple zip codes.

Another problem is that while socioeconomic data are frequently reported as ag-

gregated data at population level to protect the privacy of individual citizens or

18

Figure 3.1: (Part of) Hierarchy Diagram of Census Geographic Types from US Census
Bureau

survey participants, it can also be collected at individual level with each record de-

scribing one observation surveyed. Data collected at different levels cannot simply be

integrated.

Motivating Example Continued. For the Monthly HELP Assists table, we may

meld the four region columns into one In-State Region column and treat region

names as its values. The observations for regions will span the new Assists column

so that each row is an observation after transformation as in Table 3.1(middle). After

we aggregate the number of assists by In-State Region, Monthly HELP Assists table

is now tidied and aggregated as in Table 3.1(right).

The Registered Lobbyist Disclosures data are collected at individual level. It is

necessary to aggregate the number of filings at some selected geographic type among

states, cities and zip codes for both lobbyists and clients. In this example, we assume

that the user chooses to aggregate the table by zip codes of lobbyists and store the

number of filings in the Count column as in Table 3.2(right).

Finally, we should join two tables by geographic information, possibly by zip code

19

or by region. However, there is no way to convert data collected from zip code units

to region units accurately or vice versa, as zip code tabulation areas and regions are

sibling types (i.e., incompatible) on two line tracts under nation in Figure 3.1. That

is, a zip code may overlap with several regions and a region may contain multiple zip

codes. In this work, we propose an approximation crosswalk algorithm to convert the

distribution of data between the two types, which enables the join.

Our approach. Our goal is to join two tables, based on geographic information,

with no user guidance. We accomplish this in three major steps. First, we represent

the given data tables in canonical form, which we define precisely in §3.2.1. Next, we

automatically identify the geographic join column(s). Finally, we “align” the type of

geographic aggregation in the join column(s) of the two tables, and then perform the

required join. Each of these steps poses its own challenges, which we address as listed

below. Our major contributions include:

• We identify a practically important class of data reported by geography, where

integration of heterogeneous tables is both feasible and of value (§3.2).

• We incorporate the method into a system, GeoFlux, that automatically joins a

given pair of tables based on geographic information, and produces a joint table

sliced along selected geographic units of target geographic type (§3.3).

• We identify two classes of data tidying transformations that can convert most

government data tables into canonical form (§3.4).

• We develop techniques, based on geographic dictionaries and data quality met-

rics, to identify the geographic join column(s) in any canonical table (§3.5), and

to select a target level of geographical aggregation (§3.6).

• We develop a novel multi-crosswalk method for estimating geographic aggre-

gates in any geographic units of chosen type (§4.3). More details are available

20

in Chapter IV.

• We experimentally evaluate our proposed approach on real government data,

and show that almost perfect results can be obtained with no user input (§3.8).

Finally, we present the conclusion in §3.9.

3.2 Problem Statement

In this section, we provide background and notations for terms, followed by a

formal definition of our problem.

3.2.1 Preliminaries

Socioeconomic data are typically reported over a target group of observational

units, such as persons and areas. Every data entry belongs to a variable, which

contains all values that measure the same underlying variable across observation units,

and an observation, which contains all values measured on the same observational unit

across variables [104].

Variables can be placed in two categories. Some describe measures, defined as

features whose values are of interest, while others are dimensions, which describe the

settings under which the measure values are measured, including in particular the

location and time period. A common analysis technique in statistics is to discover

characteristics of measures over one or more dimensions. For example, how is the

Number of Assists measure distributed in New York State over the dimension of

In-State Region in the motivating example. To compare measures from any two

such tables, dimensions are commonly used as join keys and the correlation of mea-

sures over chosen dimensions is a good starting point of analysis. In this chapter,

we choose dimensions containing geographic information as the join keys, but our

methods can be generalized to time periods and other hierarchical dimensions.

21

Table 3.3: State Park Annual Attendance Figures by Facility: Beginning 2003

Year OPRHP Region County Facility Attendance
2014 Finger Lakes Tompkins Allan Treman Marina 210,543
2013 Finger Lakes Tompkins Allan Treman Marina 292,200
...

We focus on US government data. We denote with Σ the set of geographic types

of interest as shown in Figure 3.1. In practice, this is usually a small finite set. For

every type σi ∈ Σ, i ∈ N[1,|Σ|], there exists a Ωi as the set of geographic units of

geographic type σi. Each pair of geographic types (σi, σj) ∈ Σ are either related or

not, through an inclusion relationship. If σj includes σi, then for every geographic

unit x ∈ Ωi there exists some geographic unit y ∈ Ωj that covers the area projected

by x entirely. For example, a census tract is entirely within a county. Otherwise, for

each x ∈ Ωi, it is possible that the area of x is partially overlapped with the area of

some geographic unit y ∈ Ωj. For example, a zip code can include portions of many

counties.

Let T be a flat file (SQL table) of government data. We denote the set of columns

and the set of rows in T as C and R, respectively. The set of variables in T is denoted

by V and the set of observations by O. V can be decomposed as D∪M, where D is

the set of dimensions and M is the set of measures. Let G be the set of geographic

dimensions in T such that G ⊂ D, then for every geographic dimension gi ∈ G, its

data entries are geographic units of some type σi ∈ Σ forming a subset of Ωi.

Illustrative Example. Table 3.3 shows a snippet of the government data table for

the annual attendance at state parks by facility in New York State. In this example,

the geographic domain of interest is New York State. In the complete table, there are

2820 rows in R and 5 columns in C. Each row is a facility in the state observed

in some year corresponding to an observation in O. Each column corresponds to a

variable in V for the years, the New York State Office for Parks, Recreation and

Historic Preservation (OPRHP) regions of state parks, the counties of state parks,

22

the facilities and the number of attendance summarized for facilities of some year, re-

spectively. The first four variables form the set of dimensions D and the last variable

is the only measure in M. Among all dimensions, OPRHP Region and County are

geographic dimensions in G. County has its data values covering all 62 counties in

the set of geographic units Ωi for the type of county σi ∈ Σ. Though OPRHP Region

is a geographic dimension, we won’t try to match its values with real world geographic

units as OPRHP region is not a geographic type in Σ and hence cannot be matched.

We say that a data table is tidy or in canonical form if

1. There is exactly one column for each variable. That is, V and C have a one-

to-one correspondence.

2. There is exactly one row for each observation. That is, O and R have a one-

to-one correspondence.

3. Each type of observational unit forms a table–i.e., observational units that share

the same dimension variables are categorized together to form a table.

3.2.2 The Integration Problem

The integration problem is defined for two government datasets. It assumes that

both datasets conform to the canonical form. Mathematically, we define the inputs

of the integration as two government data tables Tk, k = 1, 2.

The problem requires identification of a series of set elements associated with each

Tk. We must distinguish the measures in Mk from the dimensions in Dk and correctly

subset Mk into the set of geographic dimensions Gk and the set of non-geographic

dimensions Mk \ Gk. Tk is subject to the constraint such that Gk 6= ∅ so that

there is at least one geographic variable in each data table to permit a join based on

geographic information.

23

2

Figure 3.2: GeoFlux System Flow Diagram

To enable successful join, we must be able to match geographic dimensions to

standard geographic types in Σ and match data entries of each geographic variables

to values in Ωi corresponding to its type σi. In addition to this, we also need to

transform both data tables so that they are aggregated at a common geographic

granularity with approximation techniques. Let gt be the geographic type selected as

the proper join key type (or the target geographic type). Each input Tk, k = 1, 2 is

transformed into T ′k such that Mk are reevaluated from the source dimensions Dk to

the dimension of type gt as M′
k. Note that Mk and M′

k measure the same underlying

measures aggregated over different types of geographic units. The integrated T1∪gt T2

is a flat table Tgt following the canonical form such that

1. Tgt = T ′1 ./gt T
′
2

2. The set of measures Mgt = M′
1 ∪M′

2.

3. The set of dimensions Dgt = {gt}.

3.3 System Overview

For multiple challenges common in the process of socioeconomic data integration,

we propose automatic approaches to solve each of them respectively. Incorporating

these ideas, we build a system, called GeoFlux, with a pipelined modular architecture

that targets the data integration problem without any user intervention.

24

Figure 3.1 shows the components of GeoFlux. Each input data table is first an-

alyzed for integration in the GeoFlux Preprocessing step. The optional Datatidy

& Transformation module transforms a messy table into canonical form. The Ge-

ogroup Evaluation module then analyzes the statistical types of variables. Entries

of geographic dimensions are matched with a standard geographic library to iden-

tify the real-world geographic entity they represent before the selection of candidate

geographic join variable(s). The Target Geographic Type Selection module then deter-

mines the best target geography for the join of the two tables. Each table is aggregated

by the source geography and crosswalked to the target geography if necessary in the

Aggregation & Crosswalk module before the actual join (c.f. §3).

For efficiency of processing, all steps are carried out on individual data tables as far

as possible. The first two modules depend only on the data being processed. The third

module does depend on the pair of tables involved, but the computational complexity

is minimal. Though the fourth, aggregation and crosswalk, module depends on the

output of the third module, the actual computations are performed individually, on

one table at a time. The very last step is the actual join, requiring simultaneous

access to both tables.

The system is invoked through a simple user interface. The user merely identifies,

or provides, the two input tables, and obtains a joined table as the result. The user

optionally has access to intermediate results after each module. She can use this

capability to make corrections, and to store the intermediate results, if desired, for

later reuse (e.g., if the same table is later joined with something else). The following

sections provide more details on the individual modules.

3.4 Datatidy & Transformation

Our formal problem statement calls for tables in canonical form, but many data

tables in practice may not be in this form. In our examination of government data,

25

we found two common classes of structural deviation from canonical form: column

headers are values instead of variable names and multiple variables and their values

are stored in one column header. In this setion, we describe how to transform such

tables into canonical form.

3.4.1 Tidying Challenges

In the motivating example in Table 3.1, for example, the In-State Region vari-

able has seven region values as column headers of seven columns; and in the truncated

Table 3.4, employment for Month in Quarter is spread across 3 columns per Area,

one column for each month in the quarter. We call such columns messy.

In general, one can gain an automated understanding of the structure of a given

table based on the schema or the data. In our case, the latter is not likely to be useful,

since the data primarily comprise aggregate value entries for measure variables, and

the system has no knowledge of value ranges for these. Therefore, messy column

recognition has to be performed based solely on schema information, and specifically,

column names and value types.

If column names of recognized messy columns are considered entries of unstruc-

tured data, existing solutions for Multi-Sequence alignment (MSA) and List segmen-

tation [12, 13, 71] provide various techniques for solving the tidying problem as a

multi-variable extraction problem. However, these solutions require domain knowl-

edge in the form of data labels, background corpus, etc., which the system may not

have. For geographic data integration, columns involving geographic information are

critical. Luckily, there are only a finite number of geographic types of interest in any

universe of discourse. We can create a dictionary of valid geographic type names, and

values, for our universe, and use this dictionary to advantage. For each geographic

type, we have a corresponding dictionary of standard geographic names, as well as

“nicknames”, abbreviations and other alternative names, for geographic units of the

26

type. Any complications in the structure of other columns, not involving geography,

remain unresolved by this approach. Fortunately, it can usually be propagated from

input to output with no major ill-effect.

3.4.2 Datatidy Approach

When column names contain values, there will be a set of columns to represent a

(geographic) variable, one column per value. We call such a set of columns a messy

column group. A single table can have multiple messy column groups, and they can

be messy in different ways. Column names in a messy column group are both syntac-

tically and semantically similar, that is, they usually have a common naming pattern,

in terms of the order of values and variable names, and the terms and term types of

values in column headers. For example, in the motivating example in Table 3.1, the

columns broken down by region has the names of regions as column headers. They

are all values of the In-State Region variable. Whereas in Table 3.4, employment

of Month in Quarter of Albany is spread across 3 columns. Their column headers

has the following order: Albany for the name of an area, Month for the Month in

Quarter variable, number for the value of Month in Quarter, and Employment for

the number of employment variable. The first step of data tidying is to identify

messy columns sharing common naming pattern(s) and value types, and group them

together into messy column group(s). Then, we check for the number of underlying

variables in each messy column group to determine which class of messy columns it

has.

In case of the first class of deviations with one such variable, we apply a melt

transformation to turn columns into rows. We keep variables in columns that are tidy,

colvars for short, unchanged. And then convert the messy column group columns into

two new columns: one called Header (or the geographic type for messy geographic

variables, if we have been able to identify it) that contains values occurring in column

27

headers and the other called Value that contains the reconciled data entries from the

columns. We illustrate the technique again with Table 3.1. From the information

we learned from the headers and to better represent the roles of the data, Header is

renamed to In-State Region as its values are matched with regions in the region

dictionary of New York State and Value is renamed to Assists.

For the second class of deviations, with multiple underlying variables, Header is

split after melt is applied such that each variable has a column of its own. The molten

table of Table 3.4, for instance, should have a new Header column for repeated messy

column headers of month in quarter employment of some area and a new Value

column renamed to Employment for the concatenated numbers of employment. The

Header column is then split horizontally into Area and Month in Quarter columns.

3.4.3 Transformation Approach

Some input tables may include multiple messy column groups. If one messy col-

umn group is transformed and parameterised by the original colvars, the second will

be parameterised by the updated colvars: the original colvars and the new colvars

obtained from tidying the prior messy column group. The tidied table may then not

be meaningful as the variables in each messy column group is described by the orig-

inal colvars and the misplaced variables in the group, but not the variables in other

messy column groups. The underlying problem here is that the observational units

are not consistent across the transformed messy column groups.

To address this challenge, we propose to decompose the tidied dataset into multiple

subtables linked by a foreign key instead for space compression. We store the original

colvars into a new table, the colvars table, and assign a primary key Id to it. Then

for new columns created by tidying each messy column group, we have a new table

for them referencing the colvars table by the foreign key Id. As in Table 3.4, the

colvars are stored in the colvars table with an ascending id number whereas the split

28

molten table is linked to the colvars table by id.

3.5 Geogroup Evaluation

Before the crosswalk and join are possible, three main preprocessing subtasks

are needed: variable role identification, geographic entity matching, and geogroup

selection.

3.5.1 Variable Role Identification by Classification

Recall that measures are quantitative variables for features of interest and dimen-

sions are qualitative variables that characterize and parameterize the measures. First

off, we have to automatically determine which variables are dimensions and which are

measures based on their statistical characteristics. Second, among the variables that

represent dimensions, we need to identify the variables that encode geographic infor-

mation.

Variable types provide rough classification. Variables of integer and double types

are likely to be measures whereas variables of string type are dimensions. However,

this may not always be the case for numeric variables, especially for integers. NAICS

Code values in Table 3.4, for instance, are all integers, but this code should be a

dimension rather than a measure. A possible improvement is to consider the coherence

of values of the variable. Such dimensions tend to have a fixed number of digits

whereas the integer measure variables may have more variable number of digits. In

addition to these characteristics, we create a small library of words that could be

matched with variable names to further improve accuracy.

To automate the process, we formulate the role identification problem as a multi-

class classification problem. We represent each variable (e.g., zip code) with a fea-

ture vector, the creation of which is based on k values that are selected uniformly

at random from the input table. The feature vector representation consists of: (i)

29

individual-level features that are determined by majority voting, such as number of

digits, whether the value can be converted to a numeric value, etc.; and (ii) sample-

level features such as unique value rate, coefficient of variation, whether the column is

matched with a geographic level, etc. As the feature vector describes a limited num-

ber of low-cardinality categorical predictors and continuous predictors at the same

time (8 features in total), we use Random Forests [67] which handle such classification

efficiently by optimizing the parameters of the weak learner at each split node j of

trees Tr:

θ̂j = arg max
θj∈Ttj

Ij, (3.1)

such that Ij is the objective function in the form of a classical information gain of the

distributions of features. In our scenario, we trained the classifier on 159 variables

(with k = 1000), which were labeled as measures, geographic dimensions and non-

geographic dimensions, and found over 94% precision and recall per class and an

overall accuracy of 95.6% for all classes.

3.5.2 Geographic Entity Matching

Geographic entities are not always consistently represented in various government

datasets. They can be represented by conventional names, abbreviations, geographic

codes, etc. The representation of geographic entities introduces ambiguities as dif-

ferent areas may share the same name or abbreviation. Albany is the name of a

county in New York State and the name of cities in multiple states in the United

States. Given Albany in city column, we cannot decide which Albany city it is based

solely on this entry. Rather, we need to look at extra data, such as possibly the state

value entered in the next column, to decide. To ensure the accuracy of matching, this

submodule matches geographic entities in context.

30

We define geographic columns/variables describing semantically the same loca-

tion as a geogroup. When matching geographic entities, we not only consider the

geographic type of the variable but also the geogroup that contains it and the entities

in the column it belongs to. It is thus necessary for us to identify geogroups for

geographic variables before matching geographic entities.

From empirical analysis, we found geographic variables in the same geogroup tend

to have a common naming pattern. We mean that the token or token types and order

of tokens in variable names are the same. Consider the lobbyist geogroup in Table 3.2,

the column name strings of variables in the geogroup has the tokens in the following

order: the name of the geogroup Lobbyist followed by a geographic type. Another

geogroup has a similar pattern: the name of the geogroup Client followed by a

geographic type. It is natural for us to use pattern matching to group geographic

variables without additional knowledge of a geogroup.

Once geogroups are determined, we match entities of geographic variables in the

context of geogroups. For each geographic type, we define a dictionary of geographic

entities in the domain of interest with their names, abbreviations, geographic codes,

nicknames, etc as the geo value reference table. To match a geographic value with

the true area it refers to, we first match it with entities in the geo value reference

table of the type it belongs to based on text semantic similarities [75]. The entity

matching process may return multiple candidate matches if there are ambiguities

in naming or representation of the geographic value. Secondly, we verify candidate

matches by reviewing geogroup information of the geographic value and eliminate

candidates with mismatch. More specifically, if a candidate match is not in the

geographic scope defined by the other member variables of geogroup, it is eliminated.

Lastly, if a geographic value belongs to no geogroup, we estimate its geographic scope

by referring to other values in the same column. If the majority of the geographic

entities in the column fall within a certain area, we assume the entity represented by

31

this geographic value is also in the area. This is illustrated by the matching process

again with the Albany example. After matching with the geo value reference table

for cities, GeoFlux returns five cities named Albany as matching candidates. If the

city column is in the same geogroup with a state column and this Albany city is

coupled with New York state, there is one candidate left in the New York State and

this completes the matching. However, if the city column exists by itself, GeoFlux

investigates candidate matches of other geographic values in the city column and finds

out that the majority of them are in New York State, then the Albany city in New

York State will be assumed to be a better match than other Albany cities in other

states.

3.5.3 Geogroup Selection by Learning to Rank

A government table can have multiple geogroups at the same time. To perform

a join based on geographic information, we need to decide which location better

represents the geographic joining location. Not all geogroups are equally important.

We assume that the more important a geogroup is, the higher the quality of its data.

For example, in the Registered Lobbyist Disclosures data in Table 3.2, if filing by

lobbyist location is more important than by client location, then the lobbyist location

field is less likely to be left empty and thus its completeness should be higher.

Based on this intuition, we evaluate the overall quality of geogroups by five data

quality dimensions chosen from data quality assessment criteria [92, 84, 102] and

choose the one with the highest quality as the geographic joining location. These

five dimensions are intrinsic criteria in the sense that they evaluate data quality in

their own right without considering the contextual quality [102] in the context of the

joining task. These five dimensions are:

• Completeness: the proportion of stored data against 100% filling of fields.

• Validity: the proportion of data entries that conform to the syntax (format,

type, range) defined. Additionally in GeoFlux, we check for geographic entries
32

within the geographic scope, New York State, in our case.

• Uniqueness: the proportion of unique entries among all entries.

• Consistency: the degree to which the same underlying geographic unit is repre-

sented with no difference.

• Joint accuracy: the degree to which geographic data in a geogroup correctly

describes the real world location jointly with no conflict. We consider the pro-

portion of data correctly matched in the Geogroup Entity Matching submodule.

We formulate the geogroup selection problem as a ranking problem that can be

solved by learning to rank [66]. The training data consists of data tables and their

geogroups. Each table can have multiple geogroups and the importance of each

geogroup for the table joining task can vary. The importance is represented as a label

for grade evaluated from their rankings of the task. The grade is assigned as the

difference of the number of geogroups in a data table and the rank of the geogroup.

The higher grade a geogroup has, the more important it is for the task.

Suppose T is the data table set and G is the geogroup set. We further suppose

that there exists a total ordering between the grades l ≺ l − 1 ≺ ... ≺ 1 of the grade

set L = {1, 2, ..., l}. We define yi = {yi,1, yi,2, ..., yi,ni
} as the label set for the i-th data

table ti ∈ T whose geogroup set is Γi = {γi,1,γi,2, ...,γi,ni
}, where ni denotes the size

of Γi and yi. Then yi,j is the grade label representing the importance of geogroup γi,j

for the joining task of the i-th data table ti. A feature vector fi,j is created for each

data table-geogroup pair (ti,γi,j) for the five data quality dimensions. The training

set is {fi,yi}mi=1, where fi = {fi,1, fi,2, ..., fi,ni
}′.

We train a ranking model φ(t,Γ) = φ(f) that can assign scores to a given pair of

data table d and geogroups Γ based on their feature vector f for their ranking. Since

the value of grade label is not numerically meaningful by itself, we adopt the pairwise

approach that transforms the ranking into pairwise classification solved by Ranking

33

Table 3.4: Quarterly Census of Employment and Wages Quarterly Data: Beginning
2000. (Mo.=Month)

SVM [57]. New feature vectors for geogroups of the same data table are generate from

the their pairwise differences, e.g., f1 − f2 and the corresponding label is computed

as the sign of the difference, e.g., sign(y1 − y2). The training data is thus converted

to {(f ′i = (fi1, fi2), y
′
i)}mi=1 where y′i ∈ {+1, 0,−1}. Solving the problem is equivalent

to solving a Quadratic Programming problem for weights w of features such that

minw,ε
1

2
||w||2 + C

∑m

i=1
εi

s.t. yi〈w, fi1 − fi2〉 ≥ 1− εi

εi ≥ 0 for i=1, 2, ..., m

(3.2)

Due to limited access to data tables with multiple geogroups, the model is trained

with 20 data tables (with 2-5 geogroups each) labeled by 3 trained labelers (who had

high agreement, Kendall’s τ > 0.9). In the few cases of disagreement, the final labels

were obtained via majority voting. As we care for the highest ranked geogroup only,

we evaluate the mean reciprocal rank (MRR) that computes the inverse position of

the most important geogroup in our case. A 3-fold cross-validation is computed with

averaged MRR 97.6% that proves the feasibility of the model.

3.6 Target Geo-Type Selection

To integrate two datasets, we must select a target geographic type for aggregation

that can serve as the join key. The selection procedure takes the geogroup of the

highest data quality in both datasets as input and the target geographic type for

joining as output. Since each geogroup may have geographic dimensions of multiple

geographic types, this target geographic type cannot be simply determined by eye-

34

Algorithm 1: Target Geographic Type Selection
Input: Two geogroups of the highest overall quality

γk = arg maxγk,j∈Γk
ŷk,j = {γk,1, γk,2, ..., γk,nk

} from data tables Tk, where
k = 1, 2; nk is the number of geographic dimensions in γk such that nk > 0.

Output: Target geographic type gt and the pair of geographic dimensions p to be
crosswalked

1 Sst, Spc, Scr ← ∅;
2 foreach γ(1) ∈ γ1 and γ(2) ∈ γ2 do
3 if Acc(γ(1)) < α or Acc(γ(2)) < α then
4 continue;

5 else if GeoType(γ(1)) == GeoType(γ(2)) then
6 Sst.add(〈γ(1), γ(2)〉);
7 else if IsParentChild(γ(1), γ(2)) then
8 Spc.add(〈γ(1), γ(2)〉);
9 else if ExistApproxCrosswalk(γ(1), γ(2)) then

10 Scr.add(〈γ(1), γ(2)〉);

11 if Sst 6= ∅ then
12 p← arg maxpi∈Sst

Depth(pi[γ
(1)]);

13 gt ← GeoType(p[γ(1)]);

14 else if Spc 6= ∅ then
15 p← arg minpi∈Spc

|Depth(pi[γ(1)])−Depth(pi[γ(2)])|
min(Depth(pi[γ(1)]),Depth(pi[γ(2)]))

;

16 gt = GeoType(arg maxi=1,2
p[γ(i)]

(Depth(p[γ(i)]));

17 else

18 p← arg minpi∈Scr

|Depth(pi[γ(1)])−Depth(pi[γ(2)])|
Depth(pi[γ(1)])+Depth(pi[γ(2)])

;

19 gt = GeoType(p[γ(2)]);

balling. The main idea is that geographic types in lower levels in the hierarchy (Figure

3.1) are preferred and the number of dataset crosswalks should be minimized. To be

more specific, we would like to have a target geographic type with small area units

such that at most one dataset needs to be crosswalked to it. These two requirements

preserve both areal variation and statistical accuracy of the data.

Algorithm 1 describes the selection procedure for target geographic type in three

steps. For each pair of geographic dimensions from the two geogroups γ1 and γ2

selected by §3.5 from two tables T1 and T2, we first rule out geographic dimensions

with low quality, that is, variables with too many missing or unmatchable entries,

computed by the Acc(·) and constrained by the threshold α. These variables are

not taken into consideration as reliability of the data is hurt by lost measure values

35

associated with their invalid entries in propagation. We take common geographic

types in two geogroups as preemptive target geographic type candidates to avoid

possible crosswalk. Thus in the second step, we check for common geographic types

in the remaining geographic variables and prefer the one in the lowest level of the

standard geography in Fig. 3.1 with the depth of the geographic type computed by

Depth(·). If there are no such candidates, then one of the data tables has to be

crosswalked from a source geographic type to a target geographic type. In the last

step, we choose the target geographic type for such data tables. According to the areal

hierarchy of geographic types, the aggregation of data collected from lower level type

units to its ancestor type units is statistically accurate though it loses information—

the fewer the levels between types, the less information is lost. Hence crosswalk is

accurate between a pair of geographic dimensions whose types are on the same line

track of the hierarchy with the fewest links in lower level; its upper level type is

the target geographic type. However, it is possible to have no pairs on the same line

track, in which case crosswalk with approximation is needed. For pairs with crosswalk

approximation algorithms, we choose the target geographic type of the pair with the

minimal difference-over-sum objective for their levels.

3.7 Crosswalk with GeoAlign

Once a target geographic unit has been selected, as described above, we must

convert one or both tables to represent aggregates at the desired level, through a pro-

cess of reaggregation before finalizing the join. If individual level data are available,

they can be reaggregated directly; if the target geographical type is an ancestor of

the source type in Figure 3.1, then we can simply aggregate the data in hand appro-

priately, with the assistance of the hierarchical geographic relationship files publicly

available[99]. In general, if neither of these two situations holds, we have to estimate

values for the measure variables at the desired target level of aggregation. For ex-

36

ample, if one table is aggregated by county and another by zip code, they cannot be

joined as the boundaries of these two sets of units rarely coincide. For such incom-

patible geographies, the approximation of aggregated data from the source geography

to the target geography, also called crosswalk or interpolation, is an inevitable task

to permit a successful join.

To better discuss the problem, in Chapter IV, we define the interpolation problem,

present the challenges, and finally propose the GeoAlign crosswalk algorithm that

outperforms the state-of-the-art methods.

3.8 Experimental Evaluation

We experimentally evaluated our current implementation of GeoFlux. The system

is developed in Python with embedded MySQL DBMS version 14.14 used for data

storage. All experiments were performed on a 2.3 GHz Intel Core i7 with 8 GB

memory and a 7200 rpm SATA disk.

We evaluated the feasibility of the system from two crucial aspects: whether the

system can correctly complete the join of two tables based on geographic information

in an automated manner (effectiveness), and whether the runtime of the system is

fast enough (efficiency). We also studied the performance of individual modules since

their performances are inter-dependent. Finally, we report on additional experiments

that examined the performance of specific components with special considerations:

the Datatidy & Transformation and Geogroup Evaluation modules at the front-end,

and the GeoAlign algorithm in the Aggregation & Crosswalk module at the back end.

37

Table 3.5: Independent Module Effectiveness Indicators

Dataset
Datatidy

ACC

Geogroup Pre-join
Data Entity
Correctness

Mea. & Dim.
ACC

Geo. & Non-geo.
Dim. ACC

Geo. Dim.
Geo. Entity Matching ACC

Unique Match Nonunique Match
NYC Asian Subgroups Population 1 1 1 borough 1 1 1
DYCD After-school Programs 1 1 1 borough community 1 1 1
State Park Facility 1 1 1 county 0.83 0.95 0.95

Health Coalitions 1 1 1
city 0.48 0.65 0.65
state 1 1 1
zip code 1 1 1

Public Determinations on Judicial Conduct 1 1 1 county 1 1 1

Sporting License Issuing Agents 1 1 1

county 0.04 0.05 0.05
city 0.11 0.13 0.13
state 1 1 1
zip 1 1 1

Adult Care Facility 1 0.86 1 county 1 1 1
School Progress 1 0.75 0.93 county name 0.97 0.97 0.97
BUSNET Operator 1 1 0.80 city 0.06 0.20 0.14

Quarterly Census Employment and Wages 1 0.91 1
state fips 1 1 1
county fips 0.98 0.97 0.97
county name 0.97 0.97 0.97

Index Crimes 1 1 1 county 0.98 0.98 0.98
DSNY Graffiti 1 0.83 1 borough 1 1 1
Hospital Inpatient Prevention Quality 1 1 1 patient zip code 1 1 1

Oil and Gas Production 1 0.94 1
county 0.97 1 1
town 0.95 1 1
county 0.74 0.99 1

Spill Incidents 1 0.95 0.84
zip code 0.95 0.09 0.09

3.8.1 GeoFlux Prototype Evaluation

3.8.1.1 Workload Selection

Users may join any pair of tables and synthetic data may not cover unknown

problematic conditions worth understanding. Therefore, it is important to test the

effectiveness of the system over real datasets. We worked with OPEN-NY, which is

the web platform for up-to-date open government data for New York State covering

socioeconomic topics. As of July 20th, 2016, there were 1977 datasets available on

OPEN-NY and 1752 of them were in tabular format. We chose 40 tabular datasets

randomly; Of these 40 tables, 21 had no geographic information and 4 had geographic

types not known to GeoFlux. The remaining 15 datasets each had at least one

geographic type maintained by GeoFlux. The size of these data files ranges from

1KB to 99 MB and the number of columns they contain ranges from 7 to 23.

The evaluation was performed on 105 joins using every pairing of the selected

datasets in CSV format.

38

3.8.1.2 Overall Effectiveness

When we consider overall effectiveness of the join, we care about whether data en-

tries are correctly represented for both types of variables in the join result: geographic

dimensions and measures. Among all geographic dimensions in each input dataset,

one is selected as the source geographic type before joining with the other dataset

after possible crosswalk. In each record, if the entry of the variable of the source ge-

ographic type is correctly matched with a geographic entity in the corresponding geo

value reference table, the measure entries of the record can be successfully realigned

via crosswalk to its target geographic unit. We report the entity matching quality of

entries of the selected geographic variable of the source type and the proportion of

measure entries that can be realigned for each input.

We computed an indicator of overall correctness of the joined result as the product

of results from the pre-join evaluation metric that computes data entry correctness

for each input table. We defined the metric as the sum, over all measure entries, of

correctly identified measure entries whose geographic value of the source geographic

type is correctly matched standard geographic entity. By correctly identified measure

entries, we mean data entries of true positive measures, which are measure variables

correctly identified as measures, in the classification of measures and dimensions. The

range of the overall join correctness indicator is between 0 and 1. As shown in Fig-

ure 3.3(a), if the overall join correctness (p-value) increases, the number of pairwise

joins whose overall join correctness is greater or equal to p-value will gradually de-

crease until it drops dramatically around p-value= 0.91. We found that 91 out of 105

pairwise joins has an overall join correctness over 0.91. In other words, for 91/105

pairs, GeoFlux produced a join result that was more than 91% correct, demonstrating

its overall effectiveness.

39

(a) Pairwise joins with overall join correctness ≥ p-value.

(b) Log-log plot of runtime of pre-join modules over dataset size

(c) Datatidy & transformation runtime over number of at-
tributes.

Figure 3.3: Correctness of join and runtime performance of pre-join modules.

3.8.1.3 Independent Module Effectiveness

We further investigate the effectiveness of Datatidy & Transformation and Ge-

ogroup Evaluation modules and their contributions to the overall join correctness.

40

We computed accuracy (ACC) of binary classification tests [93] as the indicator of

effectiveness. A binary classification test defines two outcomes, positive if examples

belong to a class and negative otherwise. ACC calculates the sum of the number of

correctly recognized class examples (true positives) and the number of correctly rec-

ognized examples that do not belong to the class (true negatives), over all examples.

The detailed results are listed in Table 3.5.

Datatidy & Transformation Effectiveness. This module checks and tidies mis-

structured columns when necessary to place the table in canonical form. We define the

outcome of mis-structured column identification as positive (classifying the columns

as in need of tidying) or negative (classifying the columns as in no need of tidying).

For all 15 datasets, GeoFlux accurately recognized them as not in need of tidying.

In addition, we conducted a standalone test for another 6 datasets that require

data tidying. 155 out of 157 messy columns in these datasets were correctly identified

and tidied, among which 149 are misplaced values of geographic variables. Two of

them raised false negative errors due to the lack of information for conventional regions

that are not formally defined by Census Bureau. One of the geographic areas that

we failed to recognize is Long Island, which is not a standard geographic unit and

comprises four counties: Kings, Queens, Suffolk and Nassau. Local people sometimes

colloquially use it to refer to the latter two counties exclusively. Terms like this are

not encoded in GeoFlux, and even if they are, their meaning is undetermined without

extra knowledge. In short, the two classes of messy problems we defined covered every

example we found in our datasets.

Geogroup Evaluation Effectiveness. In this module, variables, defined as columns

after possible transformation in Datatidy & Transformation module, are tested for

effectiveness in terms of accuracy (ACC) in three tasks: classification of variables

41

into measures and dimensions, classification of dimensions into geographic and non-

geographic variables, and entity matching result of geographic entities.

The overall accuracy of the task for 218 variables in all test datasets was 93.6%.

The accuracy showed high dependence on data types and success in variable name

pattern matching. GeoFlux assigns any variable that contains qualitative, discrete

information (for example, fields where the values are strings and Boolean values) to

dimensions unless it has domain knowledge to suggest that the variable is measures.

Variable names including Month, for instance, are recognized as dimensions in most

cases. However, GeoFlux failed in classifying Months in Production in the Oil and

Gas Production dataset. The variable is actually a measure that describes the number

of months spent in the production of the merchandise. Another example is that the

Grade variable, whose values are letter grades as strings in the School Process

dataset, should be a measure rather than a dimension if considered in context.

In the test of geographic dimension classification effectiveness, the overall accuracy

for 144 dimensions in all test datasets was 96.5%. Failure of classification in this task

is also restricted by variable name pattern matching ability of the system with limited

domain knowledge. As an example, the Spill Incidents dataset has low accuracy in

this task as street 1, street 2 and locality are misclassified as non-geographic

variables. This is because GeoFlux has not learned that street and locality key-

words refer to geographic areas.

We also evaluated the entity matching quality of data entries of geographic vari-

ables in 15 datasets. For each geographic variable, we consider the matching quality

in terms of the rate of correctly matched unique geographic entities. Among 24

matchable geographic variables, 18 of them have roughly 95% unique values correctly

matched with real world geographic entities. We further investigate datasets with low

correctness rate. There are two major reasons for mismatches: geographies change

over time and the data itself can be incorrect or inconsistent. Geographies don’t stay

42

the same. Counties, as an example, are created and deleted or altered in boundaries

by U.S. Census Bureau to adapt to modern data collection challenges. GeoFlux can

not recognize geographic entities defined earlier if they do not exist in the 2010 Census

Bureau Geography reference tables. Data quality is the other factor that influences

matching quality. A common mistake in government data is that data entities does

not match the geographic type setting of a variable. The Sporting License Issuing

Agents dataset, for instance, has a county variable with 814 unique values in 1197

records, whereas only 30 of the unique values are actually counties in 61 records and

the rest are halmets, villages, towns, etc.

3.8.1.4 GeoFlux Efficiency

Recall from Figure 3.2, the join operation itself is just a standard relational join.

The special processing performed by GeoFlux is pre-join, and applied to one table at

a time. Since the standard join remains unchanged, our focus is on the cost of the

pre-join operations we perform on each table.

Figure 3.3(b) shows the log-log plot of runtime in seconds (y-axis) of pre-join

operations over the file size of test datasets in MB (x -axis). The execution time of

Import File and Geogroup Evaluation are both roughly proportional (note that the

slopes of the trend lines for both modules are about to be 1 in the log-log plot) to the

size of the file instances to be imported. This is intuitively obvious for Import File as

its performance is dominated by the time it takes to read through files and to create

tables to store files in database, which are both proportional to file size. In Geogroup

Evaluation, the system scans over all geographic data entries in the table to match

them with standard geographic entities. For a given dataset, let n, ncol and ngeocol be

the number of data entries, number of columns and number of geographic variables

respectively. The execution time for geographic entity matching is O(n × ngeocol

ncol
) or

O(n), when ncol = ngeocol in the worst case. As for Datatidy & Transformation, the

43

runtime is not related to the file size but rather to the number of variables in each

instances as depicted in Figure 3.3(c).

3.8.2 GeoAlign Evaluation

We used county and zip code as the two geographic types of interest to evaluate

the performance of GeoAlign from two perspectives: effectiveness and efficiency. We

further consider the scalability and robustness of the algorithm as real datasets can

be large and erroneous. The details of the evaluation are discussed in Chapter IV.

3.9 Conclusions and future work

In this chapter, we introduced GeoFlux as an automatic data integration system

that joins government data tables based on geographic information. We showed that

high quality automated data integration is possible, at least for some limited contexts,

still of great practical importance. We also introduced a GeoAlign crosswalk algo-

rithm that presents better performance than state-of-the-art crosswalk algorithms, of

which more details are discussed in Chapter IV.

Our central vision is to have the system automatically figure out how to com-

bine information from two different tables identified by the user. For a focused, but

practically important, class of applications, involving government data reported over

geographic regions, we have realized our vision.

We recognize our approach of performing automatic integration is limited in the

sense that the approach is domain-knowledge dependent. Prior knowledge of geo-

graphical level hierarchy and entities for each geographical level, for instance, are

essential for performing target geo-type selection and crosswalk. Also, a quantified

quality indicator for the integrated data is not visible to the end user and user input

is voided in the entire pipeline. In this sense, our proposed integration might not

satisfy user intentions. The user may prefer integrated data joined on county level

44

while the system reckon joining on zip code level as more statistically meaningful.

Instead of complete automation, we may minimize user input in technically intense

tasks while providing recommendations for non-technical tasks by suggesting a ranked

list of options for user to choose.

We believe that our methodology can be extended to apply to other applications,

such as tables with temporal information. Our next goal is to generalize our solution

to work in a broader context.

45

CHAPTER IV

GeoAlign: Interpolating Aggregates over

Unaligned Partitions

In this chapter we introduce GeoAlign, a novel multi-reference crosswalk algo-

rithm that estimates aggregates in desired target units. This crosswalk algorithm

helps realigning aggregate values from one set of units to another in an adaptive

manner, permitting the joining of aggregated columns when the aggregation levels

are incongruent with each other.

4.1 Introduction

Data are often found in silos, created independently. For example, administra-

tive agencies and governments collect a great deal of data about their domain, most

of which are then published in aggregate form. The primary purpose of the data

collection is administrative, and the choice of data representation and structure is

made by each agency for its own purpose. These data can be invaluable for un-

derstanding many social issues, particularly in conjunction with other data sources.

However, most administrative agencies are not concerned with interoperability with

other agencies, therefore standardization is unlikely. On the other hand, agencies

value the privacy of individual citizens, and do not want any benefits from public

46

Figure 4.1: Join two tables for steam consumption (mg) and per capita income ($)
in New York State together by county

data release to hurt their primary administrative mission. Therefore, in many cases,

they will release data only in aggregate form. Similar reasoning applies in many other

contexts as well. For example, Google Trends data is aggregated by geographical unit

and time period, to avoid disclosing information about individual queries.

Data integration [65, 47] has been extensively studied, since there is often great

benefit from joining multiple datasets. The bulk of the work on this topic addresses

structural discrepancies, through schema mapping [5, 86, 49], and identification of

individuals across datasets, through entity matching [60, 37]. One challenge not ad-

dressed in data integration is the case of data reported as aggregates over incompatible

geographical/temporal units. This is a practical problem faced by government data

center, NGOs, social scientists, and the general public when trying to related socioe-

conomic data to drive decision making processes, approximately 80% of which are

related to a geographical location [30]. Even if the intention of joining such aggre-

gated data based on their spatial or temporal properties seems to be the reasonable

action of practice, these aggregates cannot easily be realigned accurately.

Motivating example. Let us consider two tables shown in Figure 4.1 – one table

47

has the steam consumption amount aggregated by zip code and the other has the per

capita income reported by county. A sociologist wants to study the correlation of en-

ergy consumption with income in order to plan for future energy supply arrangement.

Valuable insight could be obtained by joining these two tables. However, this is not

straightforward since the data are reported on incompatible aggregate units, since one

zip code may intersect several counties and one county may contain or overlap with

multiple zip codes.

This challenge can be addressed by realigning one or both datasets to a common

geographic type (target type) before performing the join. Let the intended target type

be county, by which the per capita income is already reported. However, we only know

the steam consumption amount by zip code, and have to estimate the number for each

county. This estimate is obtained as a form of interpolation. Finding a good estimate

of steam consumption per county is the challenge we need to address.

This problem of estimating aggregate values for geographic areas arises in many

contexts, and has been extensively studied. Areal Interpolation, in Geographical

Information Systems (GIS), is the process of aligning an attribute from one areal

unit system (the source type of a set of polygons) to another spatially incongruent

system (the target type of another set of polygons) [39, 64, 40, 62, 28]. It is more

commonly known as crosswalk, or the modifiable areal unit problem in socioeconomic

fields. If the attribute is uniformly distributed in space, then the interpolation can be

performed in a straightforward way based on area. For example, if 70% of the area

of a zip code lies in county A and 30% in county B, then we could estimate that 70%

of the crimes reported in the zip code occurred in county A and the remaining 30%

in B.

This uniform distribution assumption or homogeneity assumption rarely holds

in practice. If we know something about the distribution, that can be taken into

48

account in the interpolation. For example, if we know that more crimes occur in

densely populated urban areas than in sparsely populated rural areas, we can take

this into account. The mathematics can be tricky depending on exactly what we

know about the distribution of the attribute of interest, so there has been a stream of

research in the literature towards solving the problem based on different assumptions.

In the data integration scenario, we often do not know much about an attribute

of interest. Therefore, we may be unable to develop good rules for how it should be

distributed. Even so, we can do better than make an unrealistic uniformity assump-

tion, if we have access to additional data. In particular, if we can find a reference

attribute, for which we know the detailed distribution, we can use it to perform a

crosswalk from source units to target units of aggregation. For example, we may have

detailed distribution available for population, with fine granularity aggregates giving

us the population in every intersection of county and zip code. If we believe the crimes

are distributed similarly to population (or at least more similarly to population than

to area), then we can exploit our knowledge of population distribution to estimate

the desired aggregates for number of crimes. In particular, consider a zip code with a

population of 25,000 people. Suppose this zip code intersects two counties A and B,

with the population in the intersections being 10,000 and 15,000 respectively. Sup-

pose that we know there were 100 reported crimes in this zip code last year. We

can estimate that 40 of these crimes occurred in county A and 60 occurred in county

B, following the same ratio as the population. This approach makes no assumptions

about the probability distribution of the reference attribute or the attribute of inter-

est. It can work well if the attribute of interest is distributed similarly to the reference

attribute. To the extent the distributions differ, the estimates will be off.

Our goal is to solve this data alignment problem through the use of more data.

We often may have access to more than one candidate reference attribute, each with

its own distribution. We may not have domain knowledge enough to understand

49

which reference is most similar to our variable of interest. Even if we found the best

reference, its distribution may still not be close enough. Is there some way we can

combine the information in the multiple reference attributes to do better? And at

the same time, more adaptively predicts the estimates to new attributes of interest

than using a single reference.

We develop GeoAlign, a technique that does just this. The idea is to weight

their relative contributions to the final estimate so that the most similar reference

attributes have the greatest impact on the estimate.

The intellectual contributions of the chapter are as follows:

• We define the general aggregate interpolation problem over unaligned partitions

in one or more dimensions, which is an important problem in data integration

(§4.2).

• We propose GeoAlign, an adaptive multi-reference crosswalk algorithm that

solves the areal interpolation problem by realigning aggregates from source units

to target units by learning distribution similarities between the attribute of

interest and the reference attributes (§4.3). We show that GeoAlign can be used

not just in two-dimensional maps but also for spaces with arbitrary numbers of

dimensions.

• We evaluate the performance of GeoAlign against real data from data.ny.gov

and Esri data in 2-dimensional space. These experiments show that GeoAlign

outperforms the state-of-the-art single reference crosswalk approach in accuracy

(§4.4). It is, at the same time, efficient, scalable and robust to noisy references

even when limited references are available.

We conclude with future work (§4.5).

50

Figure 4.2: Examples of units in the partial map of New York State for aggregate
interpolation: (a) zip code units (source units), (b) zip code and county intersection
units and (c) county units (target units).

4.2 Problem Statement

In this section, we first introduce the terms we use throughout this chapter before

we formally define the aggregate interpolation problem in multi-dimensional space.

We then illustrate, with examples, the aggregate interpolation problem in 2-D and in

other dimensions.

4.2.1 Preliminaries

In Geometry, an n-dimensional universe Ω ⊂ Rn can be partitioned into some unit

system γy composed of a set of units Uy = {uy1, u
y
2, ...}, where ∀uyi ∈Uyuyi ⊂ Rn. Units

in Uy satisfy

∀uyi ,uyj∈Uy ,i 6ju
y
i ∩ u

y
j = ∅, (4.1)

that is any pair of units in Uy is disjoint with each other since they have no spatial

overlap in n dimensions. Suppose that an attribute of interest αx exists, then we

51

denote its aggregate vector as ayx = [ayx[1], ayx[2], ..., ayx[|Uy|]] such that ayx[i] is the

aggregate of αx in the ith unit of Uy.

As an example in 2-D space, in the universe of New York State Ω, county partitions

compose a unit system γy. They share no areal intersection such that they are

spatially incongruent with each other. Steam consumption, which is the attribute

of interest αx, has its data in Figure 4.1 collected from such a set of county units

Uy. Another possible unit system is zip code partitions. We can view the steam

consumption column in the table as its aggregate vector ayx for the county unit system.

Each entry of the vector represents the amount of steam consumption in some county.

4.2.2 The Aggregate Interpolation Problem

We define the following terms for the aggregate interpolation problem in Rn:

• U s = {us1, us2, ...}, source units of the source unit system γs in the universe Ω.

• U t = {ut1, ut2, ...}, target units of the target unit system γt in the same universe.

• aso = [aso[1], aso[2], ..., aso[|U s|]], aggregate vector of the objective attribute αo in

source units. aso[i], the ith aggregate of aso, is collected from source unit usi .

• ato = [ato[1], ato[1], ..., aso[|U t|]], aggregate vector of the objective attribute αo in

target units. ato[j], the jth aggregate of ato, is collected from target unit utj.

Given U s, U t and aso, aggregate interpolation approximates ato as âto = [âto[1], âto[2], ..., âto[|U t|]].

Aggregate Interpolation Problem in 2-D When it comes to a 2-dimensional

space R2, units are simple polygons consisting of straight, non-intersecting edges

forming a closed path by pair-wise join. A unit in 2-dimensional space can be denoted

by

ui = (Vui , Eui) where |Vui | = |Eui | = ni, (4.2)

52

where Vui is a set of vertices in R2 and Eui is a set of edges connecting the vertices

in Vui such that every vertex is shared by exactly two edges. Then, ui is the closed

area formed by connecting ni vertices in Vui by ni edges in Eui .

This problem is referred to as the areal interpolation problem in the GIS com-

munity. The 2-dimensional space is the map; and the unit system, also recognized

as feature layer in GIS, is composed of partitions delimited by boundaries of some

geographic type. Some of the most widely used geographic types in demographic

data are county, zip code, and more. For instance, as shown in Figure 4.2, U s is the

feature layer for zip code in (a); U t is the other feature layer for counties in (c). Given

the aggregates of steam consumption in zip codes aso shown in Figure 4.1 from the

motivating example, the aggregate interpolation problem in 2-D approximates the

steam consumption in counties, âto.

Aggregate Interpolation Problem in other dimensions In the 1-dimension

setting of the problem, units are intervals or line segments between two points such

that

ui = [ui1 , ui2], (4.3)

where ui1 and ui2 are two points on the real line R. We may illustrate the problem

as interpolation of population histogram aggregates for two sets of age intervals as

depicted in Figure 4.3. In this case, we can treat the set of narrow bins of age in

(a) as U s, the set of wide bins of age in (b) as U t, for the same range of age as the

universe of interest Ω. Given the population histogram for narrow age bins, aso, the

aggregate interpolation problem in 1-D predicts the population histogram for wide

age bins âto.

Unit system overlapping also exist in 3-D or higher dimensions. One example is 3-

D GIS data, such as the distribution of disease, evaluated for cubic units of different

size scales. Another example is the data collected for 4-D space (3D) and time

53

systems, such as environmental exposures, crosswalked to another system incongruent

in both space and time units. For both cases, areal interpolation is the bridge to

map the data across unit systems to enable side-by-side comparison with data from

incompatible units.

4.3 Aggregate Interpolation by GeoAlign

In this section, we first introduce some additional definitions and notations used

throughout the rest of the chapter and a general two-step solution solving the aggre-

gate interpolation algorithm. We then lay the groundwork for the assumptions made

by GeoAlign before exploring the details of the algorithm.

4.3.1 GeoAlign preliminaries

Before introducing the general steps to solve the aggregate interpolation problem,

we further define the set of intersection units for the intersection unit system γst as

U st = {ust1 , ust2 , ...}, where ∀ustk ∈Ust , ustk ⊂ Rn. Each intersection unit is a subregion

within some source unit and some target unit, that is

∀ustk ∈ U st, ∃usi ∈ U s ∧ utj ∈ U t, ustk ⊆ usi and ustk ⊆ utj. (4.4)

It can be thus deduced that |U st| ≥ max(|U s|, |U t|).

The aggregate vector of the intersection units for some attribute αx is denoted as

astx = [astx [1], astx [2], ..., astx [|U st|].

In the simplest case, the intersection units are the n-dimensional spatial intersec-

tions of source and target units. For instance, for the areal interpolation problem

in Figure 4.2, U st is the set of intersection areas between zip codes and counties in

(b); and for the histogram realignment problem in Figure 4.3, U st is the set of age

intersection intervals between source and target bins. More fine-grained partitions of

54

Figure 4.3: Realign population histogram in two sets of age intervals by transforming
aggregates from (a) narrow bins to (c) wide bins. The dotted lines separate the age
range into a set of tentative intersection units as in (b).

intersection units may be introduced if necessary when disparate spatial properties

of the attribute in these partitions are introduced by auxiliary data.

Assume that the probability density function of attribute αx for γst is a piecewise

function, denoted as

f stx (z) =

f stx [1](z) , z ⊂ ust1

f stx [2](z) , z ⊂ ust2

...

f stx [|U st|](z) , z ⊂ ust|Ust|

(4.5)

is known, then its aggregate in the source units and target units follows:

asi =
∑

∀ustk ∈Ust,ustk ⊆u
s
i

astk

=
∑

∀ustk ∈Ust,ustk ⊆u
s
i

∫
z⊂ustk

f stx [k](z)dz, (4.6)

55

and similarly

atj =
∑

∀ustk ∈Ust,ustk ⊆u
t
j

astk

=
∑

∀ustk ∈Ust,ustk ⊆u
t
j

∫
z⊂ustk

f stx [k](z)dz. (4.7)

Alternatively speaking, the aggregate in each source/target unit is equivalent to the

sum of aggregates of all intersection units within it.

Two-step Approximation. We use a two-step solution to solve the aggregate in-

terpolation problem for objective attribute αo. In our solution, we first compute the

approximate asto (asto is the aggregate vector for the intersection units). We then ag-

gregate these approximate intersection unit aggregates to determine the approximate

target unit aggregates. The two steps in our solution are described below:

1. Disaggregation: Split the aggregates in each source unit to its intersection

units. Mathematically speaking,

âsto [k] = B(aso[i], ...), s.t. ustk ⊆ usi , (4.8)

where the disaggregation function B(aso[i], ...) computes the approximated âsto [k]

of asto [k]. Note that ... denotes the ancillary data that contribute to the approx-

imation. Some of the most commonly used ancillary data are shape files of usi

and ustk , etc. More advanced approximation function may use external ancillary

data. For instance, the distribution of a reference attribute that is positively

related to the distribution of αo.

2. Re-aggregation: Aggregate the approximated intersection unit aggregates for

56

the target unit they reside in, or equivalently

âto[j] =
∑

∀ustk ∈Ust,ustk ⊆u
t
j

âsto [k]. (4.9)

General Solution Properties. Regardless of the types of ancillary data available,

some constraints are widely adopted in the existing two-step approximation solutions.

We name two of them here.

One of these constraints is the volume preserving property [97, 62]. This prop-

erty ensures that every source aggregate is preserved by the total of approximated

aggregates in its intersection units, or

aso[i] =
∑

∀ustk ∈Ust,ustk ⊆u
s
i

âsto [k]. (4.10)

The property is improving the estimation in that greater fidelity is given to the

approximation in the intersection units, which propogates to a more accurate esti-

mation in target units. It has been shown experimentally that methods following the

volume preserving property make comparatively better predictions [62].

Homogeneity is also often used to compensate for the absence of information.

Mathematically, for some attribute αx, its probability density function in a given

unit is constant. In other words, its aggregate on any sub-unit of the given unit is

proportional to the area of the sub-unit. However, the assumption of homogeneity is

rarely met in the real world [108].

4.3.2 GeoAlign Assumptions

We often have access to multiple reference attributes, no one of which perfectly

matches the objective attribute we wish to estimate. It would appear advantageous

for us to use all of them instead of using a single reference attribute as the current ex-

57

...

zip code

10001

...

10003

accidents

2

1

zip code

10001

...

10003

steam
consumption

(mg)
5,946

3,519
...

zip code

10001

...

10003

population

21,102

...

56,024

zip code\
counties

10001

...

10003

New
York

5,946

...

0

West-
chester

0

...

0

...

...

...

...

zip code\
counties

10001

...

10003

New York

21,102

...

0

Westche
ster

0

...

0

...

...

...

...

zip code\
counties

10001

...

10003

New York

21,102

...

0

West-
chester

0

...

0

...

...

...

...

zip code\
counties

10001

...

10003

New
York

2

...

0

West-
chester

0

...

0

...

...

...

...

counties

New York

...

Westchester

steam
consumption

(mg)
2

1

as
r1

as
r2

DMr1 DMr2 D̂Mo

D̂Mo

Figure 4.4: GeoAlign interpolation for the objective steam consumption data in Fig-
ure 4.1 from zip codes to counties using two reference attributes: population and
accidents, in three steps: weight learning, disaggregation and re-aggreagtion.

tensive approaches described above. To this end, we propose GeoAlign, an aggregate

interpolation algorithm that realigns aggregated data by learning from a combination

of reference attributes to best predict the actual aggregates of the objective attribute

in target units. GeoAlign leverages the advantages of extensive approaches and is, at

the same time, robust to various objective attributes.

An intuitive idea could be to model the objective attribute aggregates as a func-

tion of multiple reference attributes aggregates in source units, evaluate coefficients

with estimation methods and substitute reference attributes in target units for pre-

diction. However, this is not applicable for the aggregate interpolation algorithm

since training samples (objective attribute aggregates in source units) and test sam-

ples (objective attribute aggregates in target units) are not randomly drawn from the

same population and the test samples are constrained by the training samples.

To address the linkage between two sets of samples and to account for the scale

variations of reference attributes, in GeoAlign, the realignment of the objective at-

tribute is related to that of the reference attributes through a statistical model for

re-aggregation. In order to make the problem tractable, we assume that different

58

attributes are independent across source units, and that every attribute is correlated

in its distribution between source and target units. We will loose the independence

assumption of references later as shown in experiments in §4.4.4.2.

4.3.3 Disaggregation Matrix

Since we study the partition of aggregates in intersection units, in the disaggre-

gation step, B(aso[i], ...) can be reformulated as

âsto [k] =
ωsto [k]

ωso[i]
aso[i]

subject to
∑

∀ustk ∈Ust,ustk ⊆u
s
i

ωsto [k] = ωso[i], (4.11)

where ωst
o [k]
ωs
o[i]

is the share of aggregate in the k-th intersection unit (ωsto [k]) over that in

the i-th source unit (ωso[i]) it resides in. Intuitively, the re-aggregation step sums up

the weighted share of all intersection units in all source units that overlap with the

target unit. Alternatively speaking,

âto[j] =
∑

∀usi ,usi∩utj 6=∅

∑
∀ustk ⊆u

s
i∩utj

ωsto [k]

ωso[i]
aso[i]. (4.12)

Rather than approximating asto in the disaggregation step, we can instead infer

ωst
o [k]
ωs
o[i]

, ωsto [k] or
∑
∀ustk ⊆u

s
i∩utj

ωsto [k]. This choice often depends on the type of ancillary

data available. The most widely used ancillary data is the true disaggregation of a

reference attribute between source and target units. For instance, for the population

reference mentioned in the introduction, the population aggregates in intersection

units of counties and zip codes. We denote the disaggregation matrix of some at-

tribute αx between two unit systems γy1 and γy2 as DMy1,y2
x , where DMy1,y2

x [i, j] is

59

Table 4.1: Notations in §4.2 and 4.3

Notation Description

Ω
an n-dimensional universe of
interest

γy
a unit system in Ω, for example γs

at source level
Uy = {uy1, u

y
2, ...} the set of units in γy

αo the objective attribute
Ar = {αr1 , αr2 , ...} the set of reference attributes
αx ∈ αo ∪ Ar an attribute of interest
ayx = [ayx[1], ayx[2],

...ayx[|Uy|]]
the aggregate vector of αx in units
of Uy

f yx
the probability density function of
αx for γy

B(aso[i], ...) the disaggregation function
ωyx the weighted share vector of αx for γy

a′yx the normalized ayx

DMy1,y2
x

the dimension matrix of αx, where
DMy1,y2

x [i, j] is the aggregate of αx
in the intersection of uy1i and uy2j

β = [β1, β2, ...β|Ar|] weights computed from Equation (4.15)

its aggregate in the intersection area of uy1i and uy2j . For γs and γt,

DM s,t
x [i, j] =

∑
∀ustk ⊆u

s
i∩utj

astx [k] (4.13)

The disaggregation matrix of the reference attribute between source and tar-

get units is often wrapped up in a crosswalk relationship file. When the disag-

gregation matrix of only one reference attribute αr is available, we can substitute∑
∀ustk ⊆u

s
i∩utj

ωsto [k] for DM s,t
r to complete the approximation of the objective attribute

in target units. This type of method is named as the dasymetric method [64, 63, 107].

A special case of it is the areal weighting method [61], using the disaggregation matrix

of area as the reference. Dasymetric methods are widely employed in socioeconomic

data realignment by general users [26].

Since we only consider the disaggregation matrix between source and target units,

60

from now on, we use DMx for DM s,t
x .

4.3.4 GeoAlign Algorithm

In the real world, the disaggregation matrix of more than one references attributes

is often available. GeoAlign is a volume-preseving method that leverages the distri-

bution similarity of the objective attribute with reference attributes at the source

level and predicts the dimension matrix of the objective as a weighted combination of

the dimension matrices of the references. We will first extend some of the notations

in Section 4.2, and then describe our proposed algorithm in detail.

Notation. Let Ar = {αr1 , αr2 , ...} be the set of reference attributes available. The

aggregate vectors of these reference attributes in source units are represented as

asr1 , a
s
r2
, . . . , asr|Ar |

, where asrk = [asrk [1], asrk [2], ..., asrk [|U s|]] for the kth reference at-

tribute. Similarly, the aggregate vectors of these reference attributes in target units

are represented as atr1 , a
t
r2
, ..., atr|Ar |

, where atrk = [atrk [1], atrk [2], ..., atrk [|U t|]].

We assume that the ancillary data available is the disaggregation matrix of all

the reference attributes. We denote the disaggregation matrix of the kth reference

attribute as DMrk .

To avoid variation in scale, we normalize the objective attribute and the references

at the source level, adjusting their values measured on different scales to a notionally

common scale. This is reasonable in two ways. First, GeoAlign is dependent on the

distribution similarity between the objective attribute and the references across source

units rather than their actual value similarity. Second, GeoAlign jointly considers the

similarity of the objective with multiple references. The magnitude of the references

should not be a contributing factor.

The normalized asrk is denoted by a′srk for k = 1, 2, ..., |Ar|, and is computed as

a′srk = asrk/maxi,i≤|Us| a
s
rk

[i], asrk [i] ≥ 0.

The aggregate vector of the objective attribute in source units aso is also normalized

61

similarly, and is denoted as a′so.

GeoAlign Steps In the disaggregation step, GeoAlign computes D̂Mo, which is the

estimated weighted dimension matrix of the objective attribute. Our intention is to

best predict D̂Mo, and at the same time, preserve its volume preserving property.

We propose

D̂Mo[i, j] =

|Ar |∑
k=1

βk×DMrk
[i,j]

|Ar |∑
k=1

βk×asrk [i]
· aso[i],

|Ar|∑
k=1

asrk [i] 6= 0

0, otherwise

(4.14)

where β = [β1, β2, ..., β|Ar|] is the learned weight vector and
∑|Ar|

i=1 βi = 1.

Our preliminary experiments lay the ground work of our assumption such that the

higher the similarity between two attributes at the source level, the more likely their

distribution in the intersection level are similar. We can thus express the objective

attribute as linearly associated with the reference attributes for both aggregate vector

in source units and disaggregation matrix. The weights are obtained by solving a

constrained linear least squares programming problem with objective function:

min
β

1

2
||Aβ − b||2

subject to
∑|Ar|

k=1
βk = 1

where βk ≥ 0, for k = 1, 2, ..., |Ar|

(4.15)

where A is the column-wise concatenation of a′srk for k = 1, 2, ...,

|Ar| and b is a′so . Instead of computing D̂Mo by directly applying the weights to

DMrks, we adapt it to the scale of reference attributes and insert back the weights to

Eq. (4.14) to get an adjusted D̂Mo.

The approximated disaggregation matrix of the objective attribute satisfies the

62

Algorithm 2: GeoAlign

Input: aggregate vectors of reference attributes in source units
asr1 , a

s
r2
, ..., asr|Ar |

; corresponding disaggregation matrices

DMr1 , DMr2 , ..., DMr|Ar |
; and the aggregate vector of the objective

attribute in source units aso.
Output: estimated aggregates of the objective attribute in target units âto

1 Step 1. Weight Learning: Compute weights, β, by solving the least
squares problem in Equation (4.15)

2 Step 2. Disaggregation: Compute the estimated weighted disaggregation

matrix of the objective attribute, D̂Mo, using Equation (4.14)
3 Step 3. Re-aggregation: Re-aggregate to estimate the aggregates of the

objective attribute in target units, âto, using Equation (4.17)

volume preserving property such that

D̂Mo[i, j] ≥ 0 and
∑|Ut|

j=1
D̂Mo[i, j] ≈ aso[i]. (4.16)

The estimated aggregates of the objective attribute in target units are computed

in the reaggregation step as

âto[j] =
∑|Us|

i=1
D̂Mo[i, j] (4.17)

Following the pseudocode in Algorithm 2, we further illustrate the algorithm by

the motivating example in Figure 4.1, with the steps depicted in Figure 4.4. Assume

that GeoAlign is crosswalking the steam consumption objective from zip codes to

counties. Moreover, assume that the aggregate vectors, asr1 and asr2 , and the disag-

gregation matrices, DMr1 and DMr2 , for two reference attributes, population and

accidents, are readily available. Maximizing the distribution similarity across units

between the normalized objective, a′so , and the normalized references, a′sr1 and a′sr2 , the

objective attribute is first optimized as a weighted combination of the references at

the source level (zip code level). The weights, β1 and β2, are then reassigned to the

disaggregation matrices of the references DMr1 and DMr2 , and adjusted to predict

63

an approximated disaggregation of the objective D̂Mo. The approximated disaggre-

gation matrix is eventually re-aggregated to derive an approximate of the objective

at the target county level (âto).

It can be easily shown that GeoAlign is applicable to any dimension since the

algorithm involves no dimension dependent information or computation. Rather, the

only information needed is the true partition of reference attributes in source and

target intersection units regardless of dimension or dimension-related information,

such as spatial correlation for geospatial data. Alternatively, if true partition of

references in finer granularity is available, the data can be aggregated to the level of

source and target intersection as a reference attribute.

4.4 Experimental Evaluation

We evaluated the feasibility of the GeoAlign algorithm from two crucial aspects:

whether the algorithm can correctly complete the realignment task (effectiveness),

and whether the runtime of the algorithm is fast enough (efficiency). Additionally,

we consider runtime scalability when larger datasets are involved and the robustness

of the algorithm when low quality or limited reference attributes present.

We compare the performance of GeoAlign with that of areal weighting method [62]

and dasymetric method [107, 64, 63] that utilizes three reference attributes separately.

4.4.1 Experimental Setup

We developed the GeoAlign algorithm in Python. All experiments were performed

on a 2.3 GHz Intel Core i7 with 8 GB memory and a 7200 rpm SATA disk.

We evaluated GeoAlign for 2-D areal interpolation. We used county and zip code

as the two geographic types of interest, and focused on data from two different uni-

verses, New York State and the United States. Most of the New York State data

ere collected from data.ny.gov, populated in tabular form. Three population level

64

0.0

0.2

0.4

0.6

0.8

A
tt
o
rn

ey
 R

e
g
is

tr
a
tio

n
D

M
V

 L
ic

e
n
se

 F
a
ci

lit
ie

s

F
o
o
d
 S

e
rv

ic
e
 I
n
sp

e
ct

io
n
s

L
iq

u
o
r
L
ic

e
n
se

s

N
ew

 Y
o
rk

 S
ta

te
 R

e
st

a
u
ra

n
ts

P
o
p
u
la

tio
n

U
S

P
S

 B
u
si

n
e
ss

 A
d
d
re

ss

U
S

P
S

 R
e
si

d
e
n
tia

l A
d
d
re

ss

datasets

N
o
rm

a
liz

e
d
 R

M
S

E

GeoAlign

dasymetric weighting by Population

dasymetric weighting by USPS Residential Address

dasymetric weighting by USPS Business Address

(a) New York State

0

1

2

3

A
cc

id
e
n
ts

A
re

a
 (
S

q
.
M

ile
s)

C
e
m

e
te

ri
e
s

P
o
p
u
la

tio
n

P
u
bl

ic
 B

u
ild

in
g
s

S
h
o
p
p
in

g
 C

e
n
te

rs

S
ta

rb
u
ck

s
U

S
A

 U
n
in

h
a
b
ite

d
 P

la
ce

s
U

S
P

S
 B

u
si

n
e
ss

 A
d
d
re

ss

U
S

P
S

 R
e
si

d
e
n
tia

l A
d
d
re

ss

datasets

N
o
rm

a
liz

e
d
 R

M
S

E

GeoAlign

dasymetric weighting by Population

dasymetric weighting by USPS Residential Address

dasymetric weighting by USPS Business Address

(b) the United States

Figure 4.5: GeoAlign prediction performance (NRMSE) compared with dasymetric
methods. Since a better prediction yields a lower NRMSE, GeoAlign is making
comparable or better predictions than the dasymetric methods for tests in New York
State and the Unite States.

65

demographic datasets have been used as reference data for the single crosswalk al-

gorithm, namely the population data from United States Census Bureau [10], the

aggregated USPS residential address data and the aggregated USPS business address

data [81]. In addition, we also selected five large individual level datasets (The New

York State Restaurants dataset is generated by selecting unique restaurants in the

Food Service Inspections dataset) with geographic information and aggregated their

number of records for the intersection area of the two geographic types to form their

disaggregation matrices [19, 20, 21, 22]. Thus we obtained a total of eight reference

datasets with accurate distributions by zip code and by county, and their disaggre-

gation matrices from zip codes to counties.

Besides the three population level Census data, which cover the entire nation

including New York State, other data for the United States were collected from Esri,

where the Maps and Data group provides publicly available geocoded GIS data. Six

individual level GIS data [32, 33, 34, 35, 31, 36] were aggregated based on their

geospatial information for zip code and county levels and their intersections using

ArcGIS Pro [53]. We also computed the area of units at these three levels, which

is later used as the reference attribute by the areal weighting method, yielding 10

datasets in total for the universe of the United States.

There are more datasets with attributes for which the aggregate vectors are avail-

able for both zip code and county for New York State or for the United States.

However, we did not use them as reference attributes due to two reasons. First, it

was not clear whether these aggregates are accurate or approximate. In §4.4.4.1, we

further discuss the impact of the reference approximates on the prediction. The other

reason is that several attributes do not have their disaggregation matrices publicly ac-

cessible and such attributes cannot be used as reference attributes. In case of limited

reference attributes, we show in §4.4.4.2 that GeoAlign makes reasonable predictions

even when the references are poorly selected.

66

Since the number of datasets with accurate disaggregation matrix is limited, we

adopted the cross-validation evaluation method that deals with the problem well. We

conducted two series of experiments, one for each universe. More specifically, for

each universe, we picked one of the datasets as the test dataset, in turn, and used

the remaining datasets to develop crosswalks in GeoAlign whose combined weighted

performance is then evaluated for the test dataset. The performance of GeoAlign

is compared with the base-line single reference crosswalk method that redistributes

by a disaggregation matrix of some known attribute. More specifically, GeoAlign is

compared with the areal weighting method and the dasymetric algorithm referencing

the three population level datasets. Note that when one of the population reference

datasets or the area dataset is used as the test dataset, the performance of both

methods referencing this dataset is not evaluated.

4.4.2 GeoAlign Effectiveness

To evaluate the effectiveness of GeoAlign, we adopted root mean square error

(RMSE) as the evaluation criterion that computes the deviation of estimated aggre-

gates from true aggregates of the attribute in counties. To ease the comparison across

datasets of heterogeneous scales, in Figure 4.5, we show the RMSE normalized by the

mean of the measured data (NRMSE).

The NRMSE of GeoAlign is compared with that of the dasymetric method using

three population level datasets and the areal weighting methods for both New York

States (Figure 4.5(a)) and the United States (Figure 4.5(b)), using eight and ten

datasets respectively. The performance of areal weighting method is not shown in

the figure since it makes poor predictions for all test datasets: over 15 times of

the NRMSE of GeoAlign for New York State experiments and over 50 times of the

NRMSE of GeoAlign for the United States experiments.

The NRMSE of GeoAlign is less then 0.13 for New York State experiments and

67

less than 0.26 for the United States experiments. Though three dasymetric methods

have comparable error on most datasets, for these datasets, GeoAlign is making equal

or better predictions. It should also be noted that no one of these three methods is

predicting uniformly well for all datasets as GeoAlign does, in whichever universe.

For instance, the dasymetric method referencing the population data presents much

higher error than the other methods when predicting for attorney registration and

USPS Business Address counts for counties in New York State; all three dasymetric

methods fail in accuracy for both area and USA uninhabited places datasets in the

United States.

Except the USPS business address dataset, the rest three are individual level

datasets with limited number of observational units that are sparsely distributed in

the universe. Also, they do not align well with demographic attributes as those in

the areal weighting and dasymetric methods. We observe that GeoAlign accounts for

sparsity and heterogeneous distributions with flexibility.

4.4.3 GeoAlign Efficiency and Scalability

We evaluated the efficiency of GeoAlign in terms of algorithm runtime. Apart

from the horizontal efficiency comparison across cross-validated tests for a given uni-

verse, we also considered the scalability of GeoAlign runtime. This is realized by

comparing GeoAlign efficiency vertically across the universes of different scales.

In addition to New York State and the United States, new universes were selected

as a set of states whose boundaries are congruent with any other state in the universe.

The selection is a greedy process that ensures the states in a universe are tightly

connected from a geospatial perspective. These four new universes include Mid-

Atlantic division and Northeast region defined by Census Bureau, states contained

entirely in the Eastern Time Zone and all states excluding the ones in the Census West

Region (non-West). They form a spatial coverage hierarchy preventing the inter-state

68

New York State
Mid−Atlantic States

Northeast States

Eastern Time Zone States

Non−West States

United States

0.00

0.05

0.10

0.15

0 10000 20000 30000
number of units

ru
nt

im
e(

s)

(a) Zip Code Level

New York State
Mid−Atlantic States

Northeast States

Eastern Time Zone States

Non−West States

United States

0.00

0.05

0.10

0.15

0 1000 2000 3000
number of units

ru
nt

im
e(

s)

(b) County Level

Figure 4.6: GeoAlign runtime scales linearly with respect to the number of units in
source level and target level

influence of randomly selected universes.

Moreover, for factor control purpose, instead of collecting more datasets for new

universes, for each universe, we subset the ten datasets covering the United States,

keeping the entries collected from units within the universe as inputs.

To avoid random error, we averaged the runtime across ten trials for the cross-

validated experiments in each universe.

69

Experimental results show that GeoAlign runtime is stable across experiments for

the same universe. This is consistent with our claim that the complexity of GeoAlign

is not related to the magnitude of the count data. The majority of the runtime, over

90%, is spent on computing the disaggregation matrix after the weights are estimated.

Note that the aggregate vectors of the objective attribute in source geographic units

has the same size for all the different datasets (the size is |U s|). Similarly the aggregate

vectors of the reference attributes in source geographic units are all of the same size

(all of size |U s|), the aggregate vectors of the reference attributes in target geographic

units are all of the same size (all of size |U t|). Further, all the disaggregation matrices

are all of the same size as well. The reason for the minor difference in GeoAlign

runtime for different datasets is because of the difference in the number of non-zero

entries in the disaggregation matrix, which is stored as sparse matrix, of reference

attributes. For the disaggregation matrix, sparse datasets, such as cemeteries, have

less non-zero entries, while dense datasets, such as population, have more non-zero

entries. Matrix operations involving sparse matrices are influenced by this factor in

SciPy package.

As for cross-universe comparison, we ploted GeoAlign runtime versus the num-

ber of zip codes (source units) and the number of counties (target units) in Figure

4.6. These two plots show that GeoAlign is fast: it runs for less than 0.15 second

even for crosswalk between 30238 zip codes and 3142 counties in the United States

universe. They also prove the linear relationship between GeoAlign runtime with

the number of units in source and target levels since the dominating disaggregation

matrix construction operation is linearly related to these two factors.

4.4.4 GeoAlign Robustness

As mentioned earlier in §4.4.1, during the reference attribute collection process,

we encountered two difficulties: the undetermined accuracy of reference attributes at

70

Shopping Centers Starbucks USA Uninhabited Places USPS Business Address USPS Residential Address

Accidents Area (Sq. Miles) Cemeteries Population Public Buildings

0 20 40 60 0 20 40 60 0 20 40 60 0 20 40 60 0 20 40 60

0.50

0.75

1.00

1.25

1.50

0.50

0.75

1.00

1.25

1.50

level of noise (%)

R
M

S
E

(p
e

rt
u

rb
e

d
)/

R
M

S
E

(o
ri

g
.)

Figure 4.7: When noises are introduced in references, the prediction deviation is
evaluated as the ratio of the RMSE using the perturbed references to the RMSE using
the original references. The closer the ratio is to 1, the more invariant GeoAlign is to
reference noises. For up to 50% level of noise, most experiments have the prediction
deviation around 1 indicating the robustness of GeoAlign to noisy references.

the source level, and the limited availability of datasets with disaggregation matrix.

We conducted two series of experiments evaluating the robustness of GeoAlign with

respect to these two problems respectively.

4.4.4.1 Inaccurate Reference Attributes

Public aggregated data can be derived in multiple ways. They can be aggregates

of individual level data, approximates derived from some crosswalk algorithm, etc.

Without the raw data and the transformation information available, the accuracy of

these aggregates are unknown. It is thus hard to determine whether the data can be

used as references.

To quantitatively evaluate the influence of the accuracy of reference attributes on

GeoAlign, we artificially introduced “noise” to the reference attributes. We define

noise as the deviation from the actual value. Noise is measured by “levels” such that

a x% level of noise for y is ±x ∗ y/100. The noise-polluted y is thus (1 + x/100) ∗ y.

For each of the ten cross-validated experiments in United States, we synthetically

generated noisy reference attributes at the source level with 1%, 2%, 5%, 10%, 20%,

71

30% and 50% degrees of noises for all references. Each experiment is replicated 20

times to account for random error due to randomness of positive or negative noises.

We quantify the prediction deviation as the ratio of the RMSE using perturbed noisy

reference attributes to the RMSE using the original reference attributes. The closer

the prediction deviation is to 1, the smaller the impact of the noises is. GeoAlign is

making better prediction with the perturbed reference attributes if the ratio is higher

than 1; whereas a less than 1 ratio indicates worse prediction with the perturbed

reference attributes.

In Figure 4.7, we show the box plot of the prediction deviation with respect to

different levels of noise. The prediction performance of GeoAlign is stable across

experiments. For each experiment, GeoAlign is making robust predictions for all

levels of noise. Though for the area and population datasets, higher levels of noise

resulted in higher prediction error, the mean prediction deviation for these levels is

still small (less than 1.1).

4.4.4.2 Limited Reference Attributes

In general, we cannot predict how many reference attributes will be available.

We may have very few, or we may have very many. In the process of reference

attribute selection, there are two questions to consider: whether GeoAlign can make

reasonable predictions with limited number of reference attributes, and how to select

the reference attributes when more than one is available.

To answer these two questions, we chose multiple subsets of reference attributes

among all reference attributes and repeated the cross-validated experiments for datasets

in the United States. The subset of reference attributes were chosen based on their

relationship with the target attribute of each test dataset. We adopted the leave-n-

out metric such that n = 1, 2 for reference attributes with the highest (or lowest)

correlation with the target attribute at the source level. The NRMSEs of these four

72

0

1

2

3

A
cc

id
e
n
ts

A
re

a
 (
S

q
.
M

ile
s)

C
e
m

e
te

ri
e
s

P
o
p
u
la

tio
n

P
u
bl

ic
 B

u
ild

in
g
s

S
h
o
p
p
in

g
 C

e
n
te

rs

S
ta

rb
u
ck

s
U

S
A

 U
n
in

h
a
b
ite

d
 P

la
ce

s
U

S
P

S
 B

u
si

n
e
ss

 A
d
d
re

ss

U
S

P
S

 R
e
si

d
e
n
tia

l A
d
d
re

ss

datasets

N
o
rm

a
liz

e
d
 R

M
S

E

leave 1 least related reference out

leave 2 least related references out

leave 1 most related reference out

leave 2 most related references out

using all references

Figure 4.8: GeoAlign is robust to the choice of reference attributes. Though extra
reference attributes do not create any loss, reference attributes with higher correlation
with the objective are preferred.

series of experiments are compared with experiments using all reference attributes in

Figure 4.8.

For 7 out of 10 tests, GeoAlign is making robust predictions regardless of the

subset of reference attributes used. As for the series of experiments leaving 1 or 2

least target-attribute-related reference(s) out, the performance of GeoAlign is almost

identical to using all reference attributes. This is in accordance with GeoAlign’s

ability of assigning little weights to reference attributes loosely related to the target

attribute.

Leaving out the most target-related attributes out can have an impact on accu-

racy. This does impact three of our attributes: area, USA uninhabited places and

USPS business address datasets. None of the references are closely related to the area

and the USA uninhabited places datasets at the source level (correlations less than

0.25). Apart from the two references left out, the rest of the references have even

lower correlation with the target attribute (less than 0.2 and 0.05 respectively). Ac-

cording to the assumption basis of GeoAlign, the distribution of the target attributes

73

is thus poorly related to the distribution of these attributes, leading to increased

prediction error. We also found that leaving out the reference most related to the

target attribute has almost no impact on the prediction for the USPS business address

dataset; while leaving out top two such references dramatically worsens the situation.

Further analysis reveals that these two references are highly correlated with each

other at the source level (≈ 96%), the weight assigned to the reference most related

to the target attribute is reassigned to the other when the former is left out. This

verifies that similar attributes at the source level are also similarly distributed in the

intersection units, as the predicted disaggregation matrix of the target attribute is

almost the same regardless of using the reference most related to the target attribute

or not.

These experiments give us more insight into GeoAlign reference attribute selec-

tion. GeoAlign prefers reference attributes highly related to the target attribute at

the source level. For reference attributes poorly related to the target variable, it is

able to weigh their contributions accordingly. The reference attributes are not nec-

essarily independent of each other and the reference attributes are not necessarily

accurate at the source level. From the user’s perspective, GeoAlign is able to make

reasonable predictions by simply given all available reference attributes.

4.5 Conclusions and Future Work

In this chapter, we formally define the problem of aggregate interpolation in multi-

dimensional space and propose GeoAlign, an adaptive multi-reference algorithm that

realigns aggregates better than state-of-the-art approaches for real socioeconomic

datasets. Unlike existing areal interpolation algorithms, GeoAlign requires no knowl-

edge of spatial properties or dasymetric maps of source and target units and is thus

generally applicable for plain aggregate tables. Our experiments show that GeoAlign

is making better predictions in a reasonably short time. Its runtime scales linearly

74

with the number of units in source and target levels, and is robust to noisy references

even when limited references are available.

There are several limitations of GeoAlign that we do not emphasize. First, the

evaluation of GeoAlign is performed on zip code and county levels due to limited

access to reference attributes. The performance of GeoAlign on other source and

target level pairs are not fully demonstrated. For an interpolation from a source level

whose units each covers a large number of units in the target level, the algorithm may

perform poorly failing the distribution assumption. The approximated distribution

of the target attribute leveraging reference attributes at the source level could not

capture the delicate distributional characteristics of it at the target level. For instance,

if two attributes distribute similarly at the state level, their distributions may vary a

lot at county level.

75

CHAPTER V

SDTA: Standardizing Statistical Data

Transformation by a Structured Algebra

In this chapter, we focus on improving the quality of metadata for better dataset

search. Here we consider for socio-economic data the provenance information in terms

of statistical data transformation in data documentation. In addition to propos-

ing two structured representations for statistical data transformation, we have also

implemented an online system to automatically update existing metadata with the

transformation in the proposed representation.

5.1 Introduction

Statistical data transformation is the process of converting statistical data from

one format or structure to another format or structure. It involves not only structural

transformation, but also statistically intensive tasks such as data checking, outlier ad-

justment, data summary for visualization. It is an inevitable step to prepare the data

for statistical analytic by data scientists, researchers, survey companies, government

or even general public to reveal the unknown value of raw data in crucial fields like

social science, marketing, health, etc. Nowadays, more data portals are asking for

publishing data with its metadata, of which the transformation information is a vi-

76

Figure 5.1: ICPSR Data Downloads by Format (September 4, 2015 to March 4. 2016).
Tab- or comma-delimited ASCII files may be analyzed in other statistical packages
or other types of software, like relational databases.

tal part for understanding problems related to data profiling, data provenance, data

integration, data reproduciblility, etc.

These data transformation operations are generally represented by domain-specific

transformation language (DSTLs) associated with transformation tools, the prefer-

ence of which varies by fields. For clinical trials data, SAS is the dominant choice.

While for social science data, users have a more balanced choice. Fig. 5.1 is such

an example showing the number of data downloads by format from Inter-university

Consortium for Political and Social Research (ICPSR). In the database community,

relational query language is largely accepted over the others [56, 58, 88].

However, no universal agreement on the representation of statistical data trans-

formation is available. Each DSTL has its own data model, semantic and syntactic

representations and respective scope of transformation operations supported. In the

classical relational database theory, a relation is a set of tuples, the ordering of which

is not defined. Statistical data tables, on the other hand, have both ordered rows and

ordered columns, which are essential for pattern tracking along the dimensions. Piv-

77

F

Total

>20

Age

20

60<20

<20 30

Gender

>20

50

M

M

F
Age GenderF

50 20

60<20 30

GenderM

>20

SQL Server using pivot

(dynamic creation):

DECLARE @Columns as VARCHAR(MAX)

SELECT @Columns =

COALESCE(@Columns + ', ','') + QUOTENAME(Gender)

FROM

 (SELECT DISTINCT Gender

 FROM TableUnpivot

) AS T

ORDER BY T.Gender

DECLARE @SQL as VARCHAR(MAX)

SET @SQL = 'SELECT Age, ' + @Columns + '

FROM TableUnpivot

PIVOT

(

 SUM(Total)

 FOR Gender

 IN (' + @Columns + ')

) AS TablePivotinform

ORDER BY Age'

EXEC(@SQL)

R using reshape2 and

data.table libraries:

dcast(data=TableUnpivot,

 formula=Age ~ paste0(“Gender”, Gender),

 value.var=“Total”)

Stata: reshape wide Total, i(Age), j(Gender)

pivot

TableUnpivot

TablePivot

Generate

pivoted column names

based off data

during runtime

Figure 5.2: An example of pivoting table using functionally equivalent commands in
Stats, SQL Server and R

78

oting data, as another example, is a common action of transformation that transposes

data from multiple rows into columns of a single row providing a better summary of

data. It is widely used for data exploration and plotting.

Motivating example. In Figure 5.2, we use three alternative DSTLs, namely Stata,

SQL Server and R, to create the identical two-dimensional pivot data TablePivot for

the number of people in four age and gender groups from TableUnpivot. Here we

display the data in tabular format.

• The embedded reshape function in Stata could easily transforms the long table

TableUnpivot into a wide one by specifying the wide keyword, the row variable

i (Age), the column variable j (Gender) and the name of the column(Total)

storing values spanning the pivot table.

• There was no corresponding command in the basic SQL. SQL Server [] intro-

duced the pivot operation in 2005. Since the unique values of the column vari-

able Gender could not be captured by the pre-defined pivot command, Columns

variable is first declared to dynamically select these values at runtime before

pivoting. Note that the new column variable values are updated as the con-

catenation of Gender with unique Gender values to align with the TablePivot

illustration in the figure.

• Unlike high level languages designed specifically for data transformation, R is

a more powerful low level general-purpose programming language with libraries

developed for data transformations and statistical manipulations. This example

leverages dcast function in reshape2 library to create a pivot table by specifying

the input data table (TableUnpivot), the cast formula (composed of Age and

Gender) and the name of the column (Total) storing values spanning the pivot

table.

79

These disparities have raised the communication and manipulation barrier be-

tween languages. Given a complex transformation task, users may either compose

a series of transformations by a chosen tool or reuse existing transformation scripts.

However, it is not easy for general users to master a transformation tool since the

representations are not intuitively understandable. The learning cost in terms of time

and money is thus a non-negligible concern. The limited scopes of transformations

covered by different tools complicates the problem even further. Users may need to

use multiple tools in order to complete the task if it is not easily realizable by any one

of them, or by the ones users are familiar with. On the other hand, code reuse seems

to be a better option if there exists a solution for an identical or similar transforma-

tion task. The reuse of existing code requires the understanding of the language of

the code, the ability of which the user may lack. If there exists a conversion mecha-

nism between two languages to translate the code in the source language to a target

language that the user is familiar with, the reuse of code could then realized.

Moreover, the implementation problem is not fully emphasized by existing tools.

If a large dataset undergo a long transformation flow, the efficiency of transformation

operations cannot be neglected. For database queries, effective optimization of rela-

tional query processing relying on relational algebra has been demonstrated by past

experiences.

Is it possible to have a unified representation of statistical data transformation in

a simple yet computationally efficient way covering the majority of transformations?

Inspired by relational algebra and relational query language for databases, we tackle

these problems by developing a simple algebra, called Structured Data Transforma-

tion Algebra (SDTA), for manipulating statistical data transformation in a generic

data model; and a predominant declarative transformation language, called Struc-

tured Data Transformation Language (SDTL) [1], that works for the same data model.

Both DSTLs are realizations of a generic data transformation model defined for a

80

generic data model providing a unified view of the statistical data transformation

domain. Here we address two challenges: (i) how to define a generic data model

that is compatible with both relational data model and statistical data model, and

allows information prorogation along the transformation flow, and (ii) how to define

the operators in the algebra that could benefit from relational algebra optimization

techniques.

The intellectual contributions of the chapter are as follows:

• Based on the design considerations in §5.2, we build the fundamentals of sta-

tistical data transformation by defining a generic data model (§5.3) and trans-

formation model (§5.4) for statistical data transformation.

• We define SDTA as an algebraic realization of the transformation model and

further illustrate SDTA operators in §5.5.

• We define SDTL as a declarative statistical transformation language in §5.6.

• In §5.7, we showcase that SDTA (and SDTL) are useful in many scenarios, in-

cluding data documentation and language translation. We have developed

C2Metadata (http://c2metadata.org) as a pipelined system for automatic trans-

formation documentation as provenance-aware metadata for scientific data,

available for four major statistical languages. Using SDTA and SDTL as bridges,

we have also built a mapping between SDTL and the same statistical languages

for efficient language translation.

We finalize the chapter by a conclusion section in §5.8.

5.2 Design Considerations

The heart of relational data model is the algebraic operations over collections of

tuples, also referred to as relations (to distinguish from statistical tables), for efficient

81

bulk access and implementation. Relying on declarative queries built on top of rela-

tional algebra, the data model is receiving more popularity by putting user focus on

query needs rather on execution details.

If one is to perform bulk manipulation on statistical data, it’s intuitive to create

a relational-like algebra - considering table layout of relations analogous to that of

statistical data, and a majority of operations on relations commonly applied to sta-

tistical data. Their differences between the underlying data models and operations

over the data models, however, prevents the direct transfer of relational algebra to

an algebra for statistical data.

One key issue lies in the mathematical foundation of the data model from the two

domains. Both database relations and statistical tables are commonly represented in

tabular format as collections of rows and columns. Relational theory regards relations

as sets of tuples (often displayed as rows) without duplication or ordering. Each tuple

is uniquely identified by primary keys. Statistical data, on the contrary, have looser

constraints on duplication as in multi-sets. A multi-set extended relational algebra

as in [] is an appropriate adaption to ameliorate the difficulty by retaining duplicates.

This approach does not emphasize the orderings of rows and columns in statistical

data that are sometimes enforced properties for statistical comparison and pattern

finding. Some aggregations in groups, for instance, rely on the order of tuples in

group. Using TableUnpivot as an example, one may try to find the first entry whose

Total is greater than 30 for each Age group. In some other cases, users specify where

exactly to insert or update a row. The ordering information thus needs to propagate

through a series of data transformations. Relational operations should be extended to

preserve the ordering of result. At the same time, additional identifiers are essential

to uniquely identify duplicates without modifying the original data table.

Another key issue to note is the fundamental unit of operation and the opera-

tions performed are quite different between the two. Relational algebra operates on

82

tuples/rows. Basic relational operations are column operations working horizontally

over tuples such that a target tuple is generated from one or more source tuples.

There are more freedom in statistical data transformation. Such data sometimes

have their rows and columns manipulated alike by operations like aggregation, group,

insertion and deletion. In a more extreme case, the rows and columns in TablePivot

of Figure 5.2, both of which are realignment of values of attributes (Age and Gender)

of TableUnpivot, are semantically the same for further manipulation. Operations

could also be performed on a specific cell, on a fraction of data using operations like

loops, or on metadata of different levels.

An alternative idea is to borrow the data model and operations from a statistical

data transformation language and create an algebra for the model. Though this idea

is seemingly applicable, statistical data transformation languages differ in data model,

operation representation and scope of operations supported. None of these languages

is easily compatible with the others. A majority of these languages, such as SPSS,

SAS and Stata, are specialty languages designed for different statistical analysis needs

at different times and they themselves evolve over versions. Operations once not exist

may be defined in later versions and simple operations have more varieties for conve-

nient usage as add-ons. R is a more flexible functional programming language with

advanced statistical routines, while Python is a general purpose objected-oriented

programming language with statistical transformation functionalities (using packages

like Panda and Statsmodels). They are given more flexibility in defining new oper-

ations and accessing content of data (such as cell access and blocks of data access

using for loops).

We are thus inspired to summarize the majority of the operations for statistical

data at an structural-wise abstracted level and propose a model accordingly lever-

aging the structural constructs of relational databases and statistical languages. We

propose to construct a data model and a transformation model, both of which are

83

generic for statistical data transformation. The data model, referred to as Meta-

Table, is able to preserve the information during transformation along the workflow,

and at the same time, is compatible with data models of other DSTLs. We introduce

additional metadata as counterpart of the original data table at different levels of

abstraction. Moreover, the data model permits provenance tracking of data elements

across transformations. Operating on the generic data model is the generic transfor-

mation model permitting multiple realizations of transformations. In this chapter, we

introduce an algebraic realization SDTA and a declarative realization SDTL. We regard

the fundamental unit of operation as the table.

5.3 Generic Data Model

This section provides a logical model of the structure of the data over domains

of statistical data transformation, inspired by the data models in major DSTLs,

the data model compatibility need across languages and the empirical analysis of

transformation need on statistical data, permitting the tracking of data table elements

across transformations.

As mentioned in the previous section, database relational and statistical tables are

commonly represented in tabular format. However, there are discrepancies between

these data models across languages especially in the interpretation of the data model

roles serving for heterogeneous computations and transformations targeted. Here we

list a few common problems encountered in the empirical comparison of statistical

data models in relational DBMSs and statistical languages:

• Duplicate rows: The same row can appear no more than once in relational

model but not necessarily in statistical models.

• Anonymous columns: Every attribute need to be named and reference-able in

the relational model. An attribute in some statistical model can be unnamed.

84

has

1!!"

Table-level

Metadata

Table Identifier

is
 s

u
p

e
r-ty

p
e
 o

f

Meta Table

Data Table

…

Meta Data Point

Meta Attribute

Attribute Values

Attribute Index

Attribute Name

Attribute Identifier

Attribute Order

…

Data Point Index

Data Point Identifier

Data Point

Data Point-level

Metadata

Data Point Order

has

has

has

structured by

1!!#

1..1

0..N

0!!#

1!!"

1..1

1..1

1..1

1..1

…

1!!"

1!!#

0!!#

is
 s

u
p

e
r-ty

p
e
 o

f

1!!#

1!!"

1!!#

0!!"

0!!#

Attribute-level

Metadata

is
 s

u
p

e
r-ty

p
e
 o

f

Table Name
0!!"

Figure 5.3: Meta Table, the Generic Data Model for Statistical Data Transformation

85

• Duplicate column names: Every attribute need to have a unique name in the

relational model. Attribute names can be duplicated in some statistical model.

• Column order and row order: The order of columns is significant while that of

the rows is immaterial in the relational model. The order of columns and/or

orders are enforced in some statistical model. Columns and/or rows can be

referenced by the order index.

• Missing values: Missing values can be represented by NULL in the relational

model. In some statistical models, more than one type of missing value can be

specified and the handling of missing values in logical statements are disparate

in different statistical models.

• Metadata information: Besides the body of the table, in the relational model,

table has name and attributes have names and types, etc. Statistical models

allow more metadata information for convenient analysis. Metadata can be at

different levels with more than one instance per type and extended by user-

defined metadata, and even meta-metadata.

To tackle the compatibility issues of data models, we propose Meta Table as the

logical data model for statistical data transformation. This concept is our counterpart

to the concept of a classical statistical table, permitting the conversion between a Meta

Table and a DSTL-specific data model without information loss.

We regard the classical statistical table as a named table composed of table body

with data aligned in rows and columns. We extend the classical statistical table body

by metadata types at different levels: table-level, attribute-level and data point-level

to ensure the preservation of information during conversion. Meta Table is depicted

in Fig. 5.3.

A Meta Table is composed of a Data Table and Table-level Metadata, instances

of which include Table Identifier, Table Name, etc. A Data Table has Meta Data

86

r1

r3

r2

r4

measuredimension dimension

c2c1 c3

31 2

2

1

3

4

F

Total

>20

Age

20

60<20

<20 30

Gender

>20

50

M

M

F

TableUnpivot

Data Point

Meta
Attribute

Data Point
Order

Attribute Order

Attribute Name

3

Total

20

60

30

50

Attribute Values

M
e
ta

 D
a
ta

 P
o

in
t

c3 Attribute Identifier<>

measure Attribute Index<type>

Data Point
Identifier<>

31 2

2

1

GenderMAge

20<20

<20 60

GenderF

50

30

TablePivot

Table Name

Pivot

Table Name

r1 1 <20 30F

3

GenderM

20

601 <20 6030

1 <20 6030

Attribute Order

Attribute Name

Attribute Values

Data Point
Order

Data Point

M
e
ta

 D
a
ta

 P
o

in
t

Meta
Attribute

Figure 5.4: A Meta Table illustration of the pivoting table example in Fig. 5.2

87

Points structured by Meta Attributes. Each Meta Data Point(or Meta Attribute) is

a Data Point (or Attribute) described by Data Point-(or Attribute-) level metadata,

such as Order, Identifier, Index, etc. The instances of the metadata is subject to the

conversion need.

Motivating example continued. In Fig. 5.4, we show a Meta Table representa-

tion of the tables in the pivoting example in Fig. 5.2. In this example, Attribute/Data

Point Order can also be regarded as Attribute/Data Point Identifier. For each table,

the solid line-bordered cells coincides with the table body. The dashed line-bordered

columns left to the table body represents Data Point-level Metadata, while the dashed

line-bordered rows up to the table body represents Attribute-level Metadata.

One of the key points to notice is the reference-ability of data model roles. Instead

of requiring a name for each data model role, Meta Table references by identifiers.

At each level, at least one unique identifier is required, ensuring the provenance of

data elements over transformations. Another metadata to be noted is the Order of

Data Points/Attributes which can be viewed as a special case of the identifier. The

order information is a required metadata which is vital for validating the equality of

Meta Tables. When we compare Meta Tables, we generally compare the body of the

table, namely the Data Points and the Attributes excluding the optional metadata.

When the Order is specified, We regard Data Points/Attributes as an ordered array

rather than a set. The comparison is thus similar to list comparison for the type of

artefacts. Other types of equality comparison can be specified otherwise. All other

metadata are optional. Metadata of the same type are differentiated by names.

In Table 5.1, we show the access syntax for required and optional metadata with

examples from Meta Table TableUnpivot in Fig. 5.4.

It should be noted that Meta Table is a logical representation of datasets, not

88

T
ab

le
5.

1:
M

et
a

T
ab

le
M

et
ad

at
a

A
cc

es
s

S
y
n
ta

x

R
eq

u
ir

ed
or

O
p
ti

on
al

N
o.

of
In

st
an

ce
s

M
et

ad
at

a
R

ol
e

N
am

ed
or

N
ot

A
cc

es
s

S
y
n
ta

x
A

cc
es

s
E

x
am

p
le

(T
ab

le
U

n
p
iv

ot
in

F
ig

.
5.

4
)

L
ow

er
B

ou
n
d

U
p
p

er
B

ou
n
d

R
eq

u
ir

ed
1.

.
1

A
tt

ri
b
u
te

O
rd

er
,

D
at

a
P

oi
n
t

O
rd

er
N

o
R

ol
e:

:V
al

u
e

A
tt
ri
bu
te
O
rd
er

::
3

N
T

ab
le

Id
en

ti
fi
er

,
A

tt
ri

b
u
te

Id
en

ti
fi
er

,
D

at
a

P
oi

n
t

Id
en

ti
fi
er

Y
es

if
>

2
in

st
an

ce
s

R
ol

e〈
N
a
m
e〉

::
V

al
u
e

A
tt
ri
bu
te
I
d
en
ti
f
ie
r〈
〉:

:
c3

(o
p
ti

on
al

n
am

e
fo

r
si

n
gl

e
in

st
an

ce
)

O
p
ti

on
al

0.
.

1
T

ab
le

N
am

e,
A

tt
ri

b
u
te

N
am

e,
D

at
a

P
oi

n
t

N
am

e
N

o
R

ol
e:

:V
al

u
e

A
tt
ri
bu
te
N
a
m
e

::
T
ot
a
l

N
D

at
a

P
oi

n
t

In
d
ex

,
A

tt
ri

b
u
te

In
d
ex

Y
es

if
>

2
in

st
an

ce
s

R
ol

e〈
N

am
e〉

::
V

al
u
e

A
tt
ri
bu
te
I
n
d
ex
〈t
y
pe
〉:

:
m
ea
su
re

89

necessarily corresponding to physical datasets and physical data structures.

5.4 Generic Transformation Model

The generic data transformation model provides a user-oriented view of the def-

inition of algorithms by expressions over the generic data model for statistical data

transformation. We define Transformation as the specification of an algorithm to

derive the target Meta Table(s) from one or more source Meta Tables.

The general form of a Transformation is the following:

Tt := expression(Ts)

indicating that the outcome of the transformation expression on Meta Table(s), Ts,

in the right-hand side is assigned to the Meta Table(s), Tt, in the left-hand side. Ts

and Tt are both ordered lists of Meta Tables.

An expression can be of two types: (i) a direct transformation expression on Meta

Table(s), and (ii) a nest transformation expression that takes the return value (Meta

Table(s)) of an expression as input. A simple example of Transformation of the first

type is

Tt := TableUnpivot,

where Meta Table Tt is assigned by Meta Table TableUnpivot without changes (i.e.

copied).

An example of the second type using SDTA operators for expression is

Tt := κr(Order::1,TRUE)

(
αc(Identifier<>::c3/10,4)

(TableUnpivot)
)
.

SDTA is a realization of Transformation denoting expression as transformation oper-

90

ators (e.g. κr, αc) on operands (e.g., Meta Table(s)), to produce the intended result

following composition rules. In this example, the expression in the inner brackets

first computes a temporary Meta Table as TableUnpivot adding a fourth column as

c3 divided by 10. The result of the outer transformation dropping the first row of

the temporary Meta Table is then assigned to Tt. The details of the transformation

operators in SDTA are described in the next section.

This expression is a generic representation of transformation on Meta Table, re-

gardless of the language used as long as the language is compliant with the specifica-

tion above for statistical data transformation. In this chapter, both SDTA and SDTL

defines mathematical expressions for statistical data transformation using this model.

5.5 Standard Data Transformation Algebra (SDTA)

We formally define a set of primitive operators composing Standard Data Trans-

formation Algebra (SDTA) as the basic component of transformations on the generic

data model (defined in §5.3) focusing on the operational perspective of statistical

data transformations. The algebra is inspired by Relational Algebra and extended to

the analysis and transformation needs of general statistical operations. SDTA could

contribute to the optimization of execution depending on the execution engine and

data storage structure.

It should be noted that statistical transformation workflow and relational query

workflow do not work in the same way. A series of statistical transformations are

generally performed over the data in a pipelined workflow, using the result of the

previous step as (part of) the input of the next. The resulting data of each step are

newly created at the abstract level, if not at the physical level. Relational algebra,

however, has some of the operators read the data only, composing a Data Query

Language (DQL), and some read and write at the same time, composing a Data

Manipulation Language (DML). The write operations change the data in place.

91

Table 5.2: SDTA Operators

Component Operator Notation

Column

AddCol αc(f1,i1),(f2,i2),...,(fn,in)(T)

DropCol κc(c1,p1),(c2,p2),...,(cn,pn)(T)

KeepCol σc(c1,p1),(c2,p2),...,(cn,pn)(T)

OrderCol ωcf (T)
AggrCol c1,c2,...,cmγ

c
f1,f2,...,fn

(T)
Join S ./C,fc,fr T

Row

AddRow αr(f1,i1),(f2,i2),...,(fn,in)(T)

DropRow κr(r1,p1),(r2,p2),...,(rn,pn)(T)

KeepRow σr(r1,p1),(r2,p2),...,(rn,pn)(T)

OrderRow ωrf (T)
AggrRow r1,r2,...,rmγ

r
f1,f2,...,fn

(T)

Column
& Row

Reshape λ(str1,...,strn),(c1,...,cn),f

Metadata
InsertMeta αmRole<Name>(T)
DeleteMeta κmi (T)
UpdateMeta ρmi,v(T)

Transformation on statistical data mainly manipulates three structural compo-

nents: columns, rows and metadata. The transformation is more analytical compu-

tation intense rather than structural transformation intense. In this sense, statistical

computations manipulates structural components independently most of the time.

Alternatively speaking, it hardly make changes to multiple structural components at

the same time.

The set of basic SDTA operators focuses on four aspects: the independent manip-

ulation of (i) columns and (ii) rows, (iii) the manipulation involving the change of

the table structure (both columns and rows), and (iv) metadata manipulation. Due

to page limitation, we will give a brief introduction of the operators in the following

paragraphs.

5.5.1 Add, Drop, Keep And Order Rows and Columns

Unlike relational theory, the columns and rows of statistical tables are ordered

such that many operations on rows and columns are alike. Here we define AddCol,

92

DropCol, KeepCol and OrderCol for columns and AddRow, DropRow, KeepRow and

OrderRow for rows.

Definition V.1. AddCol (αc). Let T be the input Meta Table, fx be the statistical

functions over columns of T and ix be the column position index for x = 1, ..., n.

AddCol creates the output Meta Table R by adding n column(s) fx at position ix to

T as

R = αc(f1,i1),(f2,i2),...,(fn,in)(T).

Definition V.2. DropCol (κc). Let T be the input Meta Table, cx be a unique

identifier of the column of T and px be the drop condition predicate for x = 1, ..., n.

DropCol creates the output Meta Table R by dropping n column(s) identified by cx

when the corresponding drop condition px is true from T as

R = κc(c1,p1),(c2,p2),...,(cn,pn)(T).

Definition V.3. KeepCol (σc). Let T be the input Meta Table, cx be a unique

identifier of the column of T and px be the keep condition predicate for x = 1, ..., n.

KeepCol creates the output Meta Table R by keeping n column(s) identified by cx

when the corresponding keep condition px is true from T as

R = σc(c1,p1),(c2,p2),...,(cn,pn)(T).

Definition V.4. OrderCol (ωc). Let T be the input Meta Table, f be an ordering

function of columns of T . OrderCol creates the output Meta Table R by reordering

the columns of T by f as

R = ωcf (T).

Similarly, we define AddRow, DropRow, KeepRow and OrderRow for rows.

Definition V.5. AddRow (αr). Let T be the input Meta Table, fx be the statistical

93

functions over rows of T and ix be the row position index for x = 1, ..., n. AddRow

creates the output Meta Table R by adding n row(s) fx at position ix to T as

R = αr(f1,i1),(f2,i2),...,(fn,in)(T).

Definition V.6. DropRow (κr). Let T be the input Meta Table, cx be a unique

identifier of the row of T and px be the drop condition predicate for x = 1, ..., n.

DropRow creates the output Meta Table R by dropping n row(s) identified by cx

when the corresponding drop condition px is true from T as

R = κr(c1,p1),(c2,p2),...,(cn,pn)(T).

Definition V.7. KeepRow (σr). Let T be the input Meta Table, cx be a unique

identifier of the row of T and px be the keep condition predicate for x = 1, ..., n.

KeepRow creates the output Meta Table R by keeping n row(s) identified by cx when

the corresponding keep condition px is true from T as

R = σr(c1,p1),(c2,p2),...,(cn,pn)(T).

Definition V.8. OrderRow (ωr). Let T be the input Meta Table, f be an ordering

function of rows of T . OrderRow creates the output Meta Table R by reordering the

rows of T by f as

R = ωrf (T).

5.5.2 Column Aggregation and Row Aggregation

In statistical analysis, other than the original data, summary data information is

a primary feature achievable by aggregation functions such as MAX, AVG, MEAN.

In addition to the common vertical aggregation (column aggregation) in relational

94

algebra, horizontal aggregation (row aggregation) is also a common practice for sta-

tistical data. Here we define the two types of aggregation with an optional grouping

clause.

Definition V.9. AggrCol (γc). Let T be the input Meta Table, c1, c2, ..., cm be a list

of identifiers of columns on which to group (can be empty), fx be an column-wise

aggregation function for x = 1, ..., n. AggrCol creates the output Meta Table R by

aggregating columns of T by m aggregation functions fx over groups specified by

unique value combinations of n columns identified by cx as

R =c1,c2,...,cm γcf1,f2,...,fn(T).

Definition V.10. AggrRow (γr). Let T be the input Meta Table, r1, r2, ..., rm be a

list of identifiers of columns on which to group (can be empty), fx be an column-wise

aggregation function for x = 1, ..., n. AggrCol creates the output Meta Table R by

aggregating columns of T by m aggregation functions fx over groups specified by

unique value combinations of n columns identified by cx as

R =r1,r2,...,rm γrf1,f2,...,fn(T).

5.5.3 Join

The join operation is similar to the join in relational algebra, extended by the

ordering preservation feature. To preserve the ordering of rows in the input Meta

Tables, the join operation in SDTA is in place join with a natural ordering, if not

specified to be reordered after the join.

Definition V.11. Join (./). Let T and S be the input Meta Tables, C as a set of

identifiers of column, regarded as join keys (by default is the column intersection of

T and S), and f c and f r be the optional reordering functions of rows and columns.

95

Consider each pair of rows rt from T and rs from S by looping over rows in T and

then in S in order, if rt and rs have the same value on each of the columns specified

by C, add a row r to the output Meta Table R, where r has the same value as rt on

T and r has the same value as rs on S. The columns and rows of the output Meta

Table can be reordered by f c and f r if specified. By default, f c = (C, T\C, S\C).

The Join operation can be represented by the following equation.

R = S ./C,fc,fr T.

5.5.4 Metadata Manipulation

To manipulate the metadata of Meta Table, we define three operators: InsertMeta,

DeleteMeta and UpdateMeta.

Definition V.12. InsertMeta (αm). Let T be the input Meta Table. InsertMeta

creates the output Meta Table R by inserting metadata role Role with an optional

name Name as the identifier of the new metadata to T as

R = αmRole<Name>(T).

Definition V.13. DeletaMeta (κm). Let T be the input Meta Table. DeleteMeta

creates the output Meta Table R by deleting the metadata specified by identifier i

from T as

R = κmi (T).

Definition V.14. UpdateMeta (ρm). Let T be the input Meta Table. UpdateMeta

creates the output Meta Table R by updating the value v of the metadata identified

by i to T as

R = ρmi,v(T).

96

5.6 Standard Data Transformation Language (SDTL)

We further propose a declarative language SDTL for statistical data transformation

based on the algebraic operators defined for SDTA.

SDTL is defined by the Convention-based Ontology Generation System (COGS)

[15] information model. It offers multiple representations such as XML, JSON,

GraphQL under one specification. It supports the most basic and widely used data

transformation operations in the four main statistical languages from major data

production projects (the General Social Survey (GSS)1, the American National Elec-

tion Study (ANES)2, and the National Survey of Family Growth (NSFG)3), ICPSR,

DataOne4 and sample scripts provided to journals in conjunction with replication

datasets. Each operation is bundled with a natural language interpretation template

to better illustrate the associated operation.

The majority of SDTL commands are composite operations derived from nested

SDTA operations, providing shortcuts for commonly used transformation of statistical

data permitting the reuse and sharing of definitions. SDTL defines facilitating oper-

ators in multiple categories as an extendable function library for better statistical

manipulation. In this section, we briefly introduce SDTL. More details are available

at http://c2metadata.gitlab.io/sdtl-docs/master/.

There are two base types in SDTL: TransformBase and ExpressionBase. SDTL

Transform commands extends TransformBase and inherits general transformation

properties including the input data consumed, the output data generated, the type

of the transformation command. Expressions, on the other hand, are passed to and

evaluated by Transforms.

Currently, there are five categories of major Transform commands manipulating:

1http://gss.norc.org/
2https://electionstudies.org/
3https://www.cdc.gov/nchs/nsfg/index.htm
4https://www.dataone.org/

97

Table 5.3: Major transform commands supported by SDTL

dataset level
load, save, rename, create, merge,
match, transpose, format display

column/variable
level

recode, rename, aggregate, compute,
delete, label, sort, missing value, join

row/case level select, sort, add, delete, aggregate
cell level update, label
procedural if-then, do repeat loop

(i) input/output, (ii) data structure, (iii) data contents, (iv) change of metadata and

(v) procedural control. Here we list a few commands for each category in Table 5.3.

An important Expression in SDTL is FunctionCallExpression calling functions

defined in the function library. Current function library defines string operators,

Boolean operators, validation operators, conditional operators, statistical operators,

etc. Statistical functions span a wide variety of commonly adopted in statistical anal-

ysis used in major statistical languages. Some of them work on individual data cells,

such as missing value that convert the cell value into missing value. Aggregation

functions are generalized to make vertical and block aggregation possible, in addition

to the usual vertical aggregation in SQL. An example of the horizontal aggregation

function working on rows is row first, finding the first non-missing value among values

of a range of attributes (columns) for each row. Another set of popular statistical

function is the collapse function creating summary statistics of block data. col sd is a

simple collapse function that computes the standard deviation of multiple attributes

(columns) within group.

To permit support of functionalities not currently available, SDTL allows user-

defined commands and functions for extensibility consideration. User-defined trans-

formations or expressions should extend TransformBase or ExpressionBase type with

additional properties necessary. Statistical computation functions can be added to

the function library in a simple manner.

98

5.7 Use Cases

SDTA and SDTL are not merely simple, optimizable and extendable, they are ap-

plicable in a variety of use cases. Here we emphasize two application scenarios: data

documentation and language translation.

5.7.1 Automatic Data documentation of Statistical Transformation by

C2Metadata

As the research community responds to increasing demands for public access to

scientific data, the need for improvement in data documentation has become critical.

Accurate and complete metadata is essential for data sharing and for interoperability

[38]. However, the process of describing and documenting scientific data has remained

a tedious, manual process even when data collection is fully automated.

Researchers in many fields use statistics packages for data management as well as

analysis. These packages, however, lack tools for documenting variable transforma-

tions in the manner of a workflow system or even a database. At best, the operations

performed by the statistical package are described in a script, which more often than

not is not even available to future data users. Different statistics packages differ

in data model, transformation representation and scope of transformations covered;

thereby further complicating the understanding of the transformation process.

We have developed C2Metadata (http://c2metadata.org) as a pipelined system for

automatic transformation documentation as provenance-aware metadata for scientific

data, available for four major statistical languages: SPSS, Stata, SAS and R.

The pipelined modular architecture of C2Metadata comprising four modules, as

shown in the grey area in Figure 5.5.

The workflow in C2Metadata consists of four modules: SDTL Parser, Pseudo-code

Generator, XML Updater and Codebook Formatter.

SDTL Parser. In the Script Parser module, C2Metadata expresses data transfor-

99

Figure 5.5: workflow

Figure 5.6: SDTL Parser Components

mations in SDTL, independent of the language used. The components of the module

are shown in Figure 5.6.

Script Parser is customized for each statistical package since they each use a dif-

ferent scripting language. It takes a command script written in scripting languages as

input and uses standard compiler techniques to parse input, obtain a syntax tree, and

then generate SDTL code. The syntax Lexer transforms the raw SPSS/Stata/SAS/R

syntax code by a lexer grammar for each language into a stream of tokens. The

ANTLR-based [82] Parser then parses the token stream into an abstract syntax tree

(AST), simple or nested. The Tree Walker finally walks over the AST and refers to

a mapping between statistical languages and SDTL for SDTL translation. Below is the

translation of an example of a simple command in Stata by Stata Script Parser.

Since R is a more dynamic and open language than SPSS, Stata or SAS, we limit

our scope of translation to the set of transformation-based functions in the base and

tidyverse [105] packages.

The SDTL Translator issues an error when illegal or unrecognized commands are

100

found in inputs or intermediate steps.

Pseudocode Generator. The translatedSDTL script is then converted to human

readable text for a more user-friendly illustration of the transformations included.

XML Updater. The original metadata in DDI or EML standards are updated

with both file level and data element level transformations including the original

transformation script, the natural language description of transformations and the

SDTL equivalent in XML format. (DDI and EML are both based on XML).

Codebook Formatter. An HTML codebook is generated from the revised metadata

describing the contents, structure and layout of the revised data.

Apart from the revised metadata, C2Metadata allows tracking of the processed

transformations at four different levels: dataset level, variable level, case level and

cell level, in multiple settings and transformation representations. Figure 5.7(a) shows

the tracking of the transformation of the sample at the dataset level in a graphical

setting, where each node is a dataset after one step of transformation. Here we

present the transformation by the original SPSS representation. By clicking on the

node, the intermediate transformation result will expand for inspection. Variable-,

case-level and cell-level give more provenance information of the object of interest at

the current stage or along the transformation trace. An example of the tracking of

variable Partycare1 is shown in Figure 5.7(b) in a codebook setting. In this senario,

The transformations applied specifically to this variable are represented by the original

language (SPSS), SDTL and a human-readable natural language description.

101

(a) Graphical visualization at dataset level

(b) Cookbook setting at variable level

Figure 5.7: An example of dataset level transformation lineage visualization and
codebook level variable derivation

102

SAS

SQL

R

SPSS

SDTL

Stata

Figure 5.8: Language translation using SDTL as the bridge

C2Metadata is deployed as a Docker container since multiple collaborators con-

tribute to the development of the project using technologies including .NET, closure,

Java, XSLT, COGS, among others.

5.7.2 Language Translation

In language translation, a pivot language (or bridge language), can be used as an

intermediary language for translation between many different language pairs. Using

SDTL (or SDTA) as the bridge, we have built a mapping between SDTL and major sta-

tistical languages (SPSS®, SAS®, Stata® and R) as shown in Figure 5.8 for efficient

language translation between statistical languages. Such a translation mechanism

provides chances for multiple tasks, for instance, code reproducibility and execution

efficiency when the execution of some operations are more efficient in one language

than in another.

5.8 Conclusion

To denote statistical data transformation in a standard manner, we have presented

a generic data model and a generic transformation model for the purpose. Inspired by

relational algebra and query language, we also propose SDTA and SDTL as two language

realizations of the transformation model. SDTA has only a few operators covering

the majority of operations in statistical transformation. Both languages are simple,

103

extendable, reproducible and optimize-able. They can serve as the standard language

for documenting the provenance information of data transformation in metadata and

the intermediate language for statistical language inter-conversion.

Currently, the mappings are manually built between statistical languages and

SDTA/SDTL, which is tedious and time consuming. It is not possible to map all op-

erations with this approach, leading to a certain number of unsupported operations

not translatable to SDTA/SDTL, which degrades the power of SDTA/SDTL for trans-

formational language representation and language translation. Also, SDTA/SDTL do

not support analysis operations including ML-based model learning operations such

as regressions and classifications, and statistical testings. Since analysis operations

compose an important part of the operations on statistical data, we plan to extend

SDTA and SDTL in this direction in the future.

104

CHAPTER VI

FluxSearch: Searching Datasets Leveraging Both

Metadata and Data Content

This chapter focuses on the design of FluxSearch system that facilitates keyword

search of integrated datasets on data portals. This search is error-prone, as we will

see with prior literature. To minimize error, we will use both the data tables them-

selves and the metadata describing the dataset. To push for data sharing, many data

portals nowadays require data depositors to share data with metadata that describes

the data. These data portals often provide a dataset search engine for dataset search

or discovery, where users compose keyword queries to look for related datasets lever-

aging a query index built on metadata. However, metadata quality is often low since

metadata generation takes much manual work, and it lacks the contribution from the

depositors or the verification and curation from the data portals. Metadata can be

missing, incomplete, or not descriptive of the data, causing the search quality to be

under expectation. Even though the search engine can find datasets related to the

query, it is possible that no single dataset best fits the query. A massaged dataset

integrated from two or more datasets partly matching the query might be a better

answer. One may use schema mapping, entity matching, transformation, and inte-

gration techniques, such as union and join, from the database community to integrate

data tables in the datasets, though the integrated table has no metadata that cor-

105

rectly describes it. We identify two problems not well addressed in the current dataset

search engines to search for integrated datasets: the lack of data attention for search

using metadata and the lack of metadata attention for integration using data. By

enriching metadata with data and enriching data with metadata, FluxSearch finds

better datasets related to the query, smartly proposes the integration strategy of

datasets partly match the query, generates the integrated dataset ready to be shared,

and ranks the integrated datasets by their validity of integration and relatedness to

the query. Currently, FluxSearch focuses on the integration of two datasets.

6.1 Introduction

To generate value from data in the open data era, finding datasets suitable for

a specific task is an inevitable yet vital problem to address. Unlike web tables that

scatter around the web pages with limited ancillary information to help with its

interpretation, datasets shared on open data portals are better documented with

metadata, maintained by centralized management, and searchable by an embedded

dataset search engine. Opendatasoft, in a recent post, lists over 2600 open data por-

tals around the globe, including domain-dependent data portals for open government

data, GIS data, biomedical data, etc., and data portals host data from multiple do-

mains. Some data portals host data themselves, while others hold data from different

sources, organizing them under subsets of categories to make it easier for users to

find.

By dataset, we mean data, mainly in tabular format, with metadata that explains

the data, possibly with ancillary materials. Metadata can be categorized into three

types: descriptive metadata, structural metadata, and administrative metadata. De-

scriptive metadata is defined for dataset identification and retrieval, such as basic

information including title, author, and abstract, and in-depth information including

provenance, annotation, works citing the dataset, etc. Structural metadata docu-

106

Figure 6.1: Part of XML-based DDI Schema Tag Library, version 2.1

107

ments relationships within and among objects in the data, such as data profiling and

data schema. Some of the common granularity levels described in such datasets’ meta-

data include dataset-level, table-level, and variable-level metadata. Administrative

metadata manages information resources such as version number, archiving data, etc.

Metadata may follow different standards defining the types/categories of fields and

the structure of metadata, and possibly controlled vocabularies and name authorities

for data value standards, and data content standards guiding what values to input

into metadata fields. Metadata standards evolve from domain-specific formats such

as MARC library offering limited text-based download formats to libraries with lim-

ited standardization. The more recent libraries offer metadata with less proprietary

formats (e.g., RDF, XML, JSON) as a part of the open data initiatives. In Figure 6.1,

we show part of the Schema Tag Library of metadata standard DDI. It defined five

top-level fields for codebook <codebook>, document <docDscr>, dataset <stdyDscr>,

data table <fileDscr>, variable <dataDscr> and other materials <otherMat> in a

dataset. Metadata of the same dataset following different standards, such as JSON-

based schema.org utilized by Google Dataset Search and XML-based EML, DCAT

utilized by CKAN, contain similar information.

A large number of data portal internal search engines and external vertical dataset

search engines, such as Google Dataset Search, discover datasets by populating key-

word queries over metadata and rank datasets based on their matching score. Though

many challenges are foreseen in the field, one of the not well-addressed ones is that

no single dataset can fully answer the search query in many situations. Two, or more,

datasets may partly answer the query from different facets.

This reminds us of keyword search in RDBMS that also stores data tables. The

integration of IR and DB benefits the user to search unstructured information us-

ing keywords based on scoring and ranking over structured information in databases

without studying query languages, such as SQL and SPARQL. Existing approaches

108

leverage database schemas, mainly primary-key foreign-key references (as edges), to

build links between tuples (nodes) that contain part of the keywords in different

relations for an integrated structure covering all the keywords searched, e.g., a di-

rected/undirected graph. As for datasets shared on data portals, unlike in RDBMS,

there may not be clear relationships identified between them since these datasets are

collected individually and shared for heterogeneous purposes using different schemas

and terminologies.

To mind the gap between user search intention and the availability of datasets,

we aim to simply ask the user to express their full intention as keyword queries and

save users from the tedious work of finding relevant datasets and constructing the

best match integrated dataset from datasets partly matching. To make the problem

more tractable, we narrow our scope to datasets with one or more data tables and

semi-structured metadata and integrate data from at most two datasets to satisfy the

search query. We mainly focus on metadata in XML-based DDI format, a general

metadata standard widely adopted in the social science community. However, our

ideas equally apply to other semi-structured metadata standards following a similar

schema.

There are multiple steps in a classic dataset search model for a single dataset

lookup. Datasets are indexed offline to allow for fast online retrieval for datasets

related to the query. These datasets are then ranked for a final query result based on

their relatedness to the query. To search for integrated datasets, we emphasize three

perspectives, namely the search, the integration, and the query result generation,

which are not fully explored with current techniques for the problem we identify.

Problems with the search. Since queries are populated to the backend for search

on query indexes built on metadata of datasets, the quality of metadata largely deter-

mines whether a dataset related to the query can be found; thus affecting the quality

of the search result. Poor quality metadata can be missing or incomplete, or lack

109

Figure 6.2: ICPSR Studies (Datasets) by metadata granularity (March 24. 2021)

descriptive power.

Many datasets from the past have no metadata. They may have ancillary sum-

mary files in text, word, or pdf formats describing the data but no structured meta-

data feasible for indexing for the search. Though more and more data portals are

demanding structured metadata for recent dataset deposits, the quality of the meta-

data varies across depositors and data portals and is not guaranteed to be without

missing information. In Figure 6.2, we show the datasets from ICPSR by metadata

granularity. Approximately 70% of datasets from ICPSR have dataset- and table-

level metadata. Only around 4% of all datasets have variable-level metadata for 5.7

million variables in 6,651 tables from these datasets, the generation of which takes

more than 20 years of curation work of data depositors from ICPSR. Data portals

like ICPSR have portal-end data processors to systematically generate and validate

the metadata for a high-quality guarantee, while many other data portals, such as

Dataverse, have no such quality control mechanism. Metadata generation, either by

the depositor or by the data portal, is mostly manual work with little automation.

Many relevant data tables may be missed in this search process. A dataset may

have data entries that match the search query, but its low-quality metadata may

not match. Such a dataset is not searchable for the query with the current indexing

system. Some recent efforts have been made to provide summary annotation of data

110

as ancillary information for the search. However, the power of data is not fully

recognized in the process.

We consider both metadata and data as important components to decide whether

the dataset match (part of) the query. Intuitively, one option is to build the query

index on both data and metadata. However, structured data and semi-structured

metadata are defined for different schemas and cannot be easily indexed together.

Another option is to build two indexes on data and metadata separately and popu-

late the query to both indexes before comparably combining the matches. Through

an empirical analysis of datasets on ICPSR, we found that table names, variable

names, and variable values in data can be encoded for ease of storage and privacy

protection using short text or numbers for categories. Their true values are masked

and accessible from the metadata if documented. Among 881,626 numeric variables

with attribute representationType of field type var, 483,061 (54.8%) are categori-

cal variables whose values in the data table are encoded as numbers. An index built

on the masked values of the data is infeasible for a meaningful search. Both options

require modification to the indexing mechanism. We seek to summarize information

from data and enrich metadata with such information for more complete metadata to

index the enriched metadata for better search. This approach takes advantage of the

original indexing mechanism. As a by-product, it generates part of the metadata in

an automated way saving the effort of manual specification, which can be later used

for other analysis or research. With this idea in mind, we identify several problems

to tackle in the process.

By empirical analysis of datasets from ICPSR and Dataverse, we observe that

datasets do not usually share the same set of metadata fields. There are over 500

fields defined in the DDI standard for metadata. The fields in the DDI standard are

organized in a hierarchy. For each field, the standard defines its parent field, whether

it is mandatory or not, the cardinality, the optional attributes describing the field,

111

and a detailed description of the field. Among the five top-level metadata fields in the

DDI standard shown in Figure 6.1, a small fraction of datasets in ICPSR has high-

quality variable-level metadata which requires heavy manual curation. Only datasets

with complementary materials such as survey questionnaires and images may have

metadata defined for these materials.

To create metadata documentation, a user must first understand the fields and

field hierarchy of metadata schema and select the appropriate fields and attributes

to include for different datasets. This is not an easy task considering the scale of

the metadata schema. Also, the importance of the fields is different. We regard

mandatory fields as important fields. Many of the optional fields, however, are in-

completely documented or ignored by depositors for effort saving. The definition of

metadata field importance varies by data portals. Summary statistics documented

by field type <sumStat>, a child field of <var> for variables, for example, is at times

missing for variables in datasets with variable-level metadata from Dataverse. Data-

verse is an open data-sharing community that does not involve the level of curation

and validation that ICPSR enforces. Depositors share data from different sources,

and they have different criteria for which fields are important and when a field should

be defined. Certain types of <sumStat> with attributes such as type="mean" and

type="stdev" are defined for variable whose representationType attribute of <var>

is "numeric". While for ICPSR, the majority of numeric valued variables have the

full set of summary statistics documented for variables, including variables of number-

encoded categorical variables with representation type "code". Also, the presence of

some fields and the value of attribute depend on the presence of other fields and/or

the value of other attributes, mainly its ancestor, descendants, and sometimes sib-

lings, along the metadata schema hierarchy. The value of <labl>, for instance, is

a shorter description of the parent field, defined for multiple parent fields such as

variable <var>, category group <catgryGrp>, record group <recGrp> differentiated

112

by attribute level values "variable", "category group" and "record group",

respectively. Variables with attribute representationType="text" only have child

fields <sumStat type="vald"> and <sumStat type="invd"> for number of valid and

invalid values, while numeric variables have more types of summary statistics for

distribution-related information. The last problem to consider is what is the value of

fields and field attributes. We need to identify fields that are not accessible without

prior knowledge of how the dataset is generated. While for data and metadata-related

fields, we may systematically determine its value and attribute values based on the

context.

Problems with the Integration. The problem of finding related tables or tabular

search has been a sub-topic of dataset search, where the query is a table, and the

purpose is to manipulate and extend them with other tables. The main challenge is to

find latent links between the query table and the candidate tables. Different similarity

metrics evaluate how closely related two variables from two tables are to assess the

possibility of table integration further. These metrics consider data content mostly,

if not including variable names and table names [79, 55]. The power of metadata, not

generally available for web tables, is not fully utilized. A latent variable described

in the metadata of one table may not be considered for integration with variables in

another table. A possible integration candidate may fail to be considered in this case.

Also, there are multiple types of possible integration. Past works mostly consider

table union or table join separately, but rarely the two jointly. Table union identifies

variables from the same underlying domain to extend the table with more entities.

Table join takes one step further to identify variables from the same domain sharing

common entities to extend existing entities with richer descriptive information. The

main questions to be answered are how to choose between union and join for candidate

datasets wisely and how to rank the integrated datasets from both union and join

113

“New York State”
+ “steam consumption”
+ “income”
+ “2017, 2018, 2019”

Year State Income.

2017 Michigan …

2017 NY …

2018 Michigan …

2018 New York …

Year Steam
Consumption

2017 …

2018 …

2019 …

"@type":"Dataset",		
"name":”NYS Census	Database",		
"description":”This Data	describes	
the	steam	consumption...",
“spatialCoverage:”	”the state of	New	
York"

"@type":"Dataset",		
"name":”United States	Census	Database",		
"description":”Income data	is	
provided	 by	the	...",
“creator:”	 ”New	York	State	government”

(a) An example of search for integrated dataset

Year Crime No.

2017 …

2018 …

2019 …

"@type":"Dataset",		
"name":”NYS Census	Database",		
"description":”This Data	describes	 the	
crime ...",
“spatialCoverage:”	”the state of	New	
York"

Year Crime No. spatialCoverage

2017 … the state	of	New	York

2018 … the state	of	New	York

2019 … the state	of	New	York

(b) Metadata enriched Data for integration for the dataset on right in (a)

Figure 6.3: A motivating example for the search of integrated datasets

reasonably. For table join, [113] considers joining on one variable. However, two

datasets may share multiple variables from the same domain, including variables

from the data and latent variables from the metadata. It is necessary to discover all

shared latent variables and prioritize multi-variable join over single-variable join in

the ranking step for a more statistically valuable join.

We discuss these problems from the integration perspective with the following

motivating example.

Motivating example. Search for integrated datasets is not easy to solve due to

the lack of links between data tables from different datasets. Basically, we are given

arbitrary tables. To make the problem more tractable, we consider two tables for now.

We intend to augment data tables with richer metadata for more links to promote

reasonable or valid integration. Here we consider two integration scenarios: table

join and table union. More specifically, for table join, we join aggregated measure

variables of the two tables by their common dimension variables, also known as the

114

join keys.

To approach the problem, pairs of dimensions, one from each table, are evaluated

for their joinability as the degree of data value overlaps. Multiple existing methods

could be applied, and these methods rely on the fact that the true values of entities are

stored in the data table. However, some of the data values in tables of data portals are

encoded as surface or masked values to hide the true values. Only with the metadata

could the true value be decoded for interpretation. For instance, many attribute names

for tables collected from surveys are encoded as V1, V2, . . . such that each variable

corresponds to a survey question and values of which are answers of the question by

survey respondents. Since the survey questions are generally long to be stored as at-

tribute names, they are stored as variable-level metadata, <labl type="variable">

for instance, for each variable in the ideal case. Similarly, survey question answers

can also be encoded into categories in tables, and their true values are stored as mul-

tiple variable-level metadata <labl type="category"> for each variable. Hence, to

evaluate the joinability of variables in the dataset, we need to uncover the true values

of entities in data tables from metadata. The question to ask is then which fields

contain the true value for different data elements.

Another critical problem is that a valid join depends on the ability to discover all

common dimensions shared by the tables, whereas latent dimensions hidden in the

metadata are once neglected during the process.

Let us continue with the motivating example in Figure 6.3. With two given tables,

we first identify Year and State as dimensions and Income as measure in the first

table, and Year as dimension and Steam Consumption as measure in the second

table. As Year in both tables share many values in common, it can be regarded as the

join key or unionable variable.

Let us consider join first. An intuitive join on Year generates a joined table

should contain four attributes: Year (T1, T2), State (T1), Income (T1) and Steam

115

Consumption (T2). This is not a valid table since State is describing the Income

but not Steam Consumption. Thus State could not be regarded as the dimension of

the integrated table. An alternative approach is to aggregate measures for the join key

in each table before the join. Then Income and Steam Consumption are aggregated

for Year respectively before the aggregated tables join by Year. The joined table has

three columns: Year (T1, T2), sum(Income) (T1), sum(Steam Consumption) (T2).

This is a seemingly valid approach if we have no access to the metadata. Given the

metadata, we know that the spatial coverage of T2 is New York State. sum(Income)

for multiple states in one year is not strongly comparable with Steam Consumption

for New York state in the same year. If we take one step back, at least we need to

state the derivation processes of the joined table in its metadata for responsible data

sharing. If a user analyses the joined table, she knows the geographical coverage of

the two aggregated variables by tracing back to its source tables.

We thus seek to discover latent variables in the metadata before integratability

(unionability/joinability) evaluation. Since metadata is defined for multiple granu-

larities, such as dataset-level, table-level, and variable-level metadata, data table ele-

ments could be augmented accordingly and propagate downwards along the hierarchy.

In our motivating example, since spatial coverage is a dataset-level metadata element,

the spatial coverage constraint is likely to apply to all data tables in the dataset, which

also applies to all tuples in these tables. It can be treated as a virtually populated

dimension variable spatialCoverage with constant value “the state of New York”

as shown in T2’. Continue with join key discovery and integration, we will get a

joined table with four attributes: Year (T1, T2’), State (T1)/SpatialCoverage

(T2’), sum(Income) (T1) and sum(Steam Consumption (T2’) such that both Year

and State/SpatialCoverage are table-level dimensions jointly describing Income

and Steam Consumption.

Leveraging the unionable/joinable variable pairs Year (T1, T2) and State (T1)/

116

SpatialCoverage (T2’), We now have six integrated tables such that four join/union

on either Year (T1, T2) or State (T1)/SpatialCoverage (T2’), and two join/union

on both variables. For a given search query, the search engine need to rank these in-

tegrated tables wisely based on their relatedness to the query and the validity of the

integration.

The integrated dataset. As discussed in the motivating example, integrated

tables lack metadata description. There is no standard defining what information

should be documented in the metadata for such a table to make it a valid dataset

for sharing. To make data sharing with metadata sustainable, we find it necessary to

define the integration process in the metadata of the integrated dataset, including the

source tables and the datasets they belong to, latent variables used for integration,

integrability of variable pairs used for integration, and the integration transforma-

tions, for better understanding of the derived datasets. Provenance and metadata

manipulation techniques should be used for this purpose. Since this is not the main

focus of this chapter, we will not dive deep into this problem in detail.

Tackling the problems above, for dataset search engines using keyword-based

queries where two datasets may partly answer the query from different facets, we

developed FluxSearch to generate a constructive dataset by coupling dataset search

with data integration providing dynamic task-oriented datasets. FluxSearch en-

riches metadata with data for the search by generating missing metadata information

for important metadata fields. FluxSearch employs a fusion evaluation algorithm

that efficiently chooses between the common integration techniques, namely union

and join, for properly selected union or join variable pairs from data and metadata.

FluxSearch eventually returns a ranked list of integrated datasets with the integra-

tion process documented in the metadata by SDTL.

In the rest of this chapter, we formally define the problems we tackle (§6.2),

117

introduce the system overview of FluxSearch (§6.3), discuss the design of metadata

enriched search (§6.4) and data enriched integration (§6.5), evaluate its performance

using real data from ICPSR (§6.6), and finalize with the conclusion (§6.7).

6.2 Problem Definition

This section introduces the terminology we use in the rest of the chapter and

defines the problems we solve. We first present the notations for terms we use.

Definition VI.1 (Metadata Standard). Metadata standard S = (St, fS) defines the

schema of metadata, where St is the set of metadata field types defined for describing

different aspects of data, and fS(t), t ∈ St is the ruling function of metadata field type

t that constraints how t should be defined in the metadata by a set of rules including

where t should be defined, whether t is mandatory or optional, the cardinality of t,

the optional or mandatory attributes of t, the value ranges of t’s attributes, etc.

In this chapter, we consider semi-structured metadata (e.g. RDF, XML, JSON-

based), XML-based in particular, where fields are constrained by parent-to-child re-

lationship such that t ↑, the parent field type of t, is uniquely determined by t. We

denote t· as a sibling field of t with no ordering constraint. Note that some field

types may appear in multiple places in the metadata. For such field types, the field

type and its attribute values t∗ = (t, At) uniquely determine its parent field type. For

instance, <labl type="category"> and <labl type="variable"> are children field

types of <category> and <variable>, respectively.

Metadata is the data that describes data. The data can be a dataset, a data

table, a data entry, a variable, ancillary data, etc. Metadata of data can be in dif-

ferent formats or following different standards. The simplest metadata can be a text

description of the abstract of the data. Richer metadata may contain more informa-

tion such as descriptive metadata, technical metadata, administrative metadata, etc.

118

Here, we consider metadata that follows the same metadata standard only.

Definition VI.2 (Metadata). Metadata MS(D) = (Mf , fM) of data D, M for short,

following metadata standard S, contains a set of metadata fields Mf defined for (part

of) field types in St such that {type(f) : f ∈ Mf} ⊂ St. Mf is constrained by the

ruling function fM such that the set of rules defined for a field in Mf is more strict if

not equal to the rules defined for its field type in the metadata standard S, denoted

by fS(type(f)) ⊂ fM(type(f)), where type(f) ∈ St.

Here we distinguish metadata field type type(f) from metadata field f since meta-

data field type may have multiple instances of fields in the metadata if the ruling

function allows. Fields of the same type can have different sets of attributes with

different values.

Definition VI.3 (Dataset). A Dataset T S = (R,M, ·), or T = (R,M), is composed

of a set of tables R = {R1, R2, ...} and metadata MS(T), or M , describing the dataset

following metadata standard S and possibly a set of ancillary materials ·. Each table

Ri contains a list of column variables Vi and a list of row entities Ei. We further

define functions nametbl(Ri) for the surface table name of Ri and namevar(v) for the

surface variable name of v ∈ Vi. We denote M = Mdat ∪Mtbl ∪Mvar ∪Ment ∪Metc

as the union of metadata at different granularities including dataset-level, table-level,

variable-level (for table columns) and entity-level (for table rows) metadata, and

others respectively.

Good metadata describing a dataset should contain metadata describing the over-

all dataset and metadata describing data elements in the datasets at different granu-

larities. Unfortunately, in reality, such good metadata is not feasible and constrained

by the metadata standard chosen. DDI, for example, does not have entity-level meta-

data. Moreover, only a small set of metadata fields is required. Whether to define

a large number of optional fields and attributes in the metadata and how to define

119

them are data-dependent, domain-dependent, depositor-dependent, and data portal-

dependent. We assume that the metadata of the datasets we study are valid such that

they follow the constraints of the metadata standard defined by the ruling function.

Next, we define the problem of keyword search for integrated datasets and the

subproblems we study in later sections.

Definition VI.4 (Keyword search for integrated datasets). Given keyword search

query q = {w1, w2, ..., wn} and a large set of datasets T such that each dataset

T = (R,M) ∈ T has its metadata M following a standard S ∈ S, a search engine SE

returns a ranked list of top-k datasets T Rnkk = [TRnk1 , TRnk2 , ..., TRnkk] ordered by the

scoring function score(·) such that score(Ti) > score(Tj), Ti, Tj ∈ T Rnkk . A dataset

T ∈ T Rnkk is either a dataset from T or an integrated dataset, denoted by T ∈

T ∪T Int. T Int is the set of integrated datasets derived from tables R = ∪R∈TR in T ,

such that T Int = {generateIntegratedDataset(integrate(Rx, p)) : Rx ⊂ R}, where

p = [Rx1 = op1(Rx, ·),Rx2 = op2(Rx1, ·), ...] and opi ∈ Pi ∪ Pt. p is the integration

plan represented by an ordered list of integration operations in Pi interleaved by data

transformation operations in Pt.

In real data portals, a dataset may be described by metadata in multiple stan-

dards. The datasets on ICPSR, for instance, have metadata following the Dublin Core

standard and the DDI standard, a subset of which is also described by DATS (JSON-

based) and DCAT standards. To make our problem more tractable, we assume that

all datasets in T follow the same standard, such that |S| = 1. The integrated dataset

is derived from two tables such that |Rx| = 2. The integration operation is either

union or join, and the transformation operations are aggregation, select, and cross-

walk (discussed in Chapter IV). k is chosen as a reasonable value for user inspection

of the datasets in T Rnkk . The problem is thus defined as

Definition VI.5 (Keyword search for two-way integrated datasets). Given keyword

search query q = {w1, w2, ..., wn} and a large set of datasets T such that each dataset

120

T ∈ T has its metadata M following some standard S, a search engine SE2 returns

a ranked list of top-k datasets T Rnkk = [TRnk1 , TRnk2 , ..., TRnkk] ordered by the scoring

function score(·) such that score(Ti) > score(Tj), Ti, Tj ∈ T Rnkk . k < αk, where αk

defines the upper bound of k. A dataset T ∈ T Rnkk is either a dataset from T or an

integrated dataset, denoted by T ∈ T ∪ T Int2 . T Int2 is the set of integrated datasets

derived from integrating two tables from all tables in T , denoted byR = ∪R∈TR, such

that T Int2 = {generateIntegratedDataset(integrate(Rx, p)) : Rx ⊂ R, |Rx| = 2},

where p = [Rx1 = op1(Rx, ·),Rx2 = op2(Rx1, ·), ...], such that opi ∈ Pi ∪ Pt and · is

the ancillary information such as metadata. p is the integration plan represented an

ordered list of transformation operations in Pt finalized by an integration operation

op|p| ∈ Pi such that Pt = {aggregation, select, crosswalk} and Pi = {union, join}.

To tackle the problem of keyword search for two-way integrated datasets, we

propose to enrich metadata with data for better search and enrich data with metadata

for better integration. We define the two problems next.

Definition VI.6 (Enrich Data with Metadata). Given a dataset T = (R,M) and

a large set of datasets T from the same source as T , whose metadata follow meta-

data standard S, enrichm(M,R, T) = M+ generates an enriched metadata M+ =

(M+
f , f

+
M) following metadata standard S such that Mf ⊂M+

f and fM ⊂ f+
M .

Leveraging the data and other datasets from the same source as T , enrichm(·)

generates metadata that better describes T by defining some missing fields in the

original metadata M . It is also possible to raise an alarm for filled fields where the

proposed value of the field is different from its original value for human inspection.

Since we aim to automate the system as much as possible, we do not explore the

validation use case. In §6.4, we discuss the problem in more depth.

Definition VI.7 (Enrich Metadata with data). Given a dataset T = (R,M) and a

large set of datasets T from the same source as T , whose metadata follow metadata

121

standard S, enrichd(Ri,M, T) = R+
i , Ri ∈ R generates an enriched data table R+

i

such that the values of data elements in Ri are true values R+
i = decode(Ri,M, T)

and the set of variables in Ri is V +
i = Vi ∪ latent(Ri,M, T), where decode(·) decodes

the true value of data in Ri and latent(·) extract latent variables related to Ri from

metadata M .

Note that we do not execute enrichd(·) operation. We are presenting a virtual

view of the enriched data table. The integratability of two data tables is evaluated

based on their true values and all variables describing the data leveraging summary

statistics stored in precomputed union and join indexes. We will give a more detailed

explanation in §6.5.

6.3 System Overview

In this section, we show the pipelined workflow of FluxSearch, shown in Figure

6.4, broadly introduce the modules involved before diving deeper into major modules

next.

For efficient search result generation, FluxSearch is divided into two stages: the

offline stage for preprocessing in support of the online stage and the online stage for

runtime query search. The offline stage takes a large set of datasets with data tables

and metadata as input and produces three indexes, namely query index, join index,

and union index for efficient online search. Each pair of tables and the metadata of

the dataset it belongs to is independently preprocessed first. The table is enriched

with metadata related to it as virtual metadata enriched data table containing true

values and latent variables. The Messy Group Identification module identifies the

structural messiness of the table, which is then passed to the Transformation module

to produce tidied data table in canonical format. Variable Role Identification then

try to identify measure and dimension variables. Each table and its metadata pass

122

F
ig

u
re

6.
4:

F
l
u
x
S
e
a
r
c
h

S
y
st

em
P

ip
el

in
e

123

through the Metadata Enrichment module to generate data enriched metadata, later

used to generate query index for fields in the enriched metadata. After each table

is preprocessed individually, enriched tables are compared in pairs. Variable pairs,

one from each table in the pair, are evaluated for joinability and unionability in join

index Generation and union index Generation modules to produce the join index

and the union index, respectively. For a large number of enriched tables, optimiza-

tion techniques such as blocking approaches have been employed to reduce pairwise

comparisons in these two modules.

Both the Independent Preprocessing step and the Pairwise Preprocessing step

may run in parallel in a distributed system setting for datasets and dataset pairs,

respectively. The offline stage may run for the initial set of datasets. For newly

deposited datasets, FluxSearch may update the indexes periodically such that each

new datasets go through the independent preprocessing step whose resulted variables

then pair with variables in other enriched tables for pairwise preprocessing.

The online stage is similar to general dataset search engines composed of a frontend

interface where the users enter a keyword-based query in the search bar. The query

is then populated to the backend for query result generation, and a ranked list of

integrated datasets is returned to the frontend for user exploration. At the backend,

the Query Match module matches the search query against the query index to retrieve

enriched tables whose enriched metadata matches a subset of terms in the keyword

query. These tables are then grouped as candidate integration pairs if they share

integratable variable pairs by referring to join index and union index, the union or

join of which is scored for relatedness to the keyword query and integration validity.

The Ranking module finally returns top-k integrated datasets back to the frontend

as the final output.

124

6.4 Metadata Enrichment for Search

There are a considerable amount of datasets in a data portal, of which the amount

of metadata is substantial in size. It takes more effort to generate the metadata than

to generate the data for large datasets. A large fraction of the datasets from the old

days are published with little to no metadata. The quality of the metadata varies as

data portals have limited maintenance over the metadata. In reality, metadata may

follow different standards. In this section, we identify a few problems presented in

keyword search over such metadata and propose solutions to improve the quality of

metadata by enriching metadata by data.

To save the effort of metadata generation, FluxSearch aims to automatically

enrich metadata by extracting descriptions from data. Given a pool of datasets with

metadata, FluxSearch selects the important fields to include in metadata, matches

the granularity levels between fields in metadata and structural elements in data, and

performs updates in metadata for enriched metadata.

6.4.1 Metadata Field Type Importance

Given metadata standard S with a set of field types St and a pool of datasets T

with data and metadata following the standard, we claim that not all fields in the

metadata are equally important. The importance of metadata fields is data portal-

dependent. One field commonly documented in datasets from one data portal may

hardly be defined in metadata from another portal. We aim to narrow down metadata

fields to a subset of important fields and consider possible metadata enrichment for

important fields only.

For well-documented metadata, the presence of field type t is conditional on the

presence of its parent field and parent attribute values. We thus define the importance

of a field type t to T as the maximum of the conditional probability of the presence

of t on the presence of its parent t ↑ and the parent’s attribute values At↑.

125

Algorithm 3: getImportantFields
Input: metadata standard tree S with root t0, a set of metadata M = {M |M ∈ T } and

importance parameter αImp
Output: A set of important fields result

1 result← ∅;
2 if T 6= ∅ then
3 foreach t ∈ t0.getChildren() do
4 ns, ds = {}, {};
5 M′ ← ∅;
6 foreach M ∈M do
7 ds[M.getAttributesV alues()]+ = 1;
8 foreach child ∈M.getChildren() do
9 if child.getType() == t then

10 ds[M.getAttributesV alues()]+ = 1;
11 break;

12 M′ ←M′ ∪M
13 imp = 0;
14 foreach x ∈ ns.keys() do
15 if ns[x]/ds[x] > αImp then
16 imp = ns[x]/ds[x];

17 if imp > αImp then
18 result.add(t);

19 result.add(getImportantF ields(t,M′, αImp));

20 return result;

Definition VI.8 (Metadata Field Type Importance). Given metadata field type

t ∈ St from metadata standard S = (St, fS) and a pool of datasets T whose set of

metadata is MT , the importance of t with respective to T is

ImpT (t) = maxx∈At↑P (t|t ↑, x)

=
∑

M∈MT

of co-occurrence of t, t ↑ and x in M

of co-occurrence of t ↑ and x in M
.

For an importance threshold αImp ∈ (0, 1], We regard field t such that ImpT (t) >

αImp as an important field. In reality, in some data portals, many of the fields are

not included due to lack of documentation even though they are relatively important.

We may choose a smaller αImp for a reasonable set of important fields to consider for

enrichment. In Algorithm 3, we show function getImportantF ields() for retrieval of

126

important fields of S for a truncated metadata standard S ′ including important fields

only.

6.4.2 Schema Mapping between Data and Metadata

FluxSearch performs a descriptive schema mapping from the schema of datasets

T to the truncated metadata standard S ′ which includes only important fields. This is

similar to the traditional schema mapping but not entirely the same as we are looking

for field types in the metadata standard that describes corresponding data elements

and data-related statistics. We select a subset of datasets T ′ whose metadata fields

cover a majority of fields in the truncated metadata standard, constrained by the

coverage threshold αCov.

Instead of simple value-based mapping, we want to accommodate the structural

relation between data elements for disambiguity, more specifically the parent-to-

child linkage between data elements such as dataset-table, table-variable, table-entity,

variable-variable, variable statistics (such as min, max, mean, variance, standard devi-

ation, occurrence, etc.) and entity-entity value statistics. We thus define a simplified

DTD schema S0 for these relationships and translate each data table R in T ′ to this

schema using M0 = translate(D,S0). Basically, we are manually generating meta-

data based solely on the data available. We then build the mapping from S0 to S ′ in

a top-down manner leveraging the source-to-target tree binding constrained by the

parent-to-child relationship and the sibling relationship. Suppose a field type t ∈ S0

is mapped to field type t′ ∈ S ′, a child field type t ↓ of t is either mapped to some

descendant field type of t′ or some descendant field type of the root such that the

path from the root to the mapped field type is clear of mapped field types. A sibling

field type t· of t could map to any field types in S ′ other than the field types on the

path from the root to t nor t’s descendants, the path from the root to whom may

only contain mapped field types of t’s ancestors. The mapping between t and t′ is

127

F
ig

u
re

6.
5:

A
n

ex
am

p
le

of
sc

h
em

a
m

ap
p
in

g
b

et
w

ee
n

d
at

a
ta

b
le

an
d

m
et

ad
at

a

128

determined by the conjunctive match score of datasets in T ′, defined as the expected

Jaccard similarity of value matching, denoted by

scoreMap(t, t′,M0,M) = E[
U(t,M0) ∩ U(t′,M)

U(t,M0) ∪ U(t′,M)
] (6.1)

, where U(t,M0) is the set of unique values of field type t in M0 and U(t′,M) is the set

of unique values of field type t′ in M for each dataset (D,M) ∈ T ′. Here we evaluate

the syntactic value matching. In more advanced settings, alternative approximated

semantic value matching or embedding-based field matching can be adopted.

In Figure 6.5, we present the conversion from data tables in study 33502 to the

simplified schema and how it is further mapped to the truncated DDI schema. For

the top-down mapping, we start from top-level field dataset, considering jointly with

other tables in T ′ whose data tables are converted to S0. Say we have 100 datasets,

the Jaccard similarity of value matching between dataset type in S0 and IDNo in S ′ is

0.97, which is the highest among all matchings for dataset. Suppose that dataset is

mapped to IDNo, we move on to table where two tables F0001 and F0002 exist in the

dataset. We repeat the mapping process for the descendants of IDNo or other branches

of codebook. We colored the field and the corresponding mapping search space of

the field (dotted area) by the same color. Note that we could not find a mapping for

the row, but we could for table stats which may document the number of rows and

columns in the table as mapped to caseQnty and varQnty in DDI schema.

6.4.3 Enrich Metadata with Data

For metadata field types in S ′ that are important but not documented initially

in S0, we inspect the schema description of the descendant fields under the mapped

fields of table in S0. For fields that can be computed from the original data, we

define statistical equations and conditional constraints as rules for field value evalua-

129

tion to enrich metadata. Note that attribute values of some fields depend on domain

knowledge of the data, which may not be available without user inspection of ancil-

lary materials in the same dataset. If such ancillary materials are not available, we

could not derive a concrete interpretation. For example, a variable with integer val-

ues may have attribute representationType value equals to "code" or "numeric".

Without referring to the survey questionnaire for the survey question corresponding

to this variable, it is hard to decide the value of representationType. Since we are

making FluxSearch an automatic system and trying to enrich metadata with our

best effort, we take advantage of profiling information such as the value distribution

of the variable and the values’ format for further prediction. Datasets in data portals

have portal-dependent characteristics. ICPSR has a large number of datasets from

surveys such that integer variables are often encoded categorical variables, whereas

dataverse has many datasets from biomedical domains with scientific data such that

integer variables have a larger probability of being true values. We thus consider

the likelihood of attribute values leveraging the population of attributes in a similar

condition from the same data portal.

Recall that not all fields are presented in all metadata. Field presence and at-

tribute values in metadata are related to its ancestors’ presence and attribute values

(mostly the parent), the siblings of the same or different types, and the descen-

dants. <sumStat type="vald"> and <sumStat type="invald">, for instance, are

sibling fields of the same type that often occur together as compliments. <sumStat>

and <cargry> are also sibling fields, but of different types that often occur together

jointly, providing summary and details information about variable value distribution.

We thus regard field presence and their attribute values as the target and the re-

lated features as its context and evaluate the co-occurrence of the target and the

features by a log-linear regression model for each important field for a large sample

of metadata in T . The presence of field is regarded as a binary feature while each

130

field attribute is a multi-class feature, the number of classes of which depends on the

number of values present in the sample and the presence of the attribute. For a large

number of features, we use the latent class model, a feature reduction approach from

PCA adapted for categorical features, to combine a small set of initial features that

captures a large proportion of total variance optimally. Then for each metadata in T ,

for each important field and its attributes, we test the likelihood of the target with

given context features to decide whether to enrich the metadata with the field or the

field attribute before performing the actual enrichment.

An important problem to consider is that a field or attribute can be missing due

to lack of documentation (the true missing) or not applicable, which we could not tell

due to a large amount of lack of documentation in real data portals. To overcome the

obstacle, we choose a well-curated sample of metadata for training and validation,

assuming no missing metadata fields exist in the training data.

6.5 Data Enrichment for Integration

In a general dataset search system using keyword queries, the query is populated

to the backend at online query time and matches with the query index for fast re-

trieval of datasets relevant to the query. Now with data enriched metadata, a better

query index is built for better quality search. While for the search of integrated

datasets, these datasets are further evaluated for integration possibility or integrata-

bility, and the integrated datasets are re-evaluated for their relevance to the query.

Instead of performing all the comparisons and evaluation tasks at the online stage,

we precompute the join index and the union index for variable pairs from two tables

at the offline stage to facilitate online time integration. This section explores the

techniques adopted for Join Index Generation and Union Index Generation modules

at the offline stage and Candidate Integration Pair Generation and Ranking modules

at the online stage.

131

F
ig

u
re

6.
6:

A
n

ex
am

p
le

of
th

e
v
ir

tu
al

v
ie

w
of

m
et

ad
at

a
en

ri
ch

ed
d
at

a
ta

b
le

132

6.5.1 Virtual View of Metadata Enriched Data

As the last modules of the preprocessing step of the offline stage, pairs of tables

with enriched metadata are fed to the join index and union index generation modules

for a fast online query search. Both modules take pairs of data variables, one from

each table in the table pair, as input. In this subsection, we first illustrate how the

data tables are virtually enriched with metadata to derive a virtual view of variables

with true values and latent variables available before presenting the derivation of the

two indexes.

If we look at only data tables in datasets, there are two major problems we identify

here during integration. First, since the metadata is describing the data, metadata

may contain descriptive information that is not shown in the data. Latent attributes

derived from metadata may serve as join keys or unioned with other attributes in

other tables for integration. We have also shown in the introduction that it is nec-

essary to identify all possible join keys between data tables for a more statistically

meaningful join. It is thus an inevitable task to retrieve latent variables from meta-

data. Secondly, we find that data encoding is common in real-world datasets for

reasons like space saving and privacy protection. All table elements, namely, dataset

name, table name, attribute name, and attribute value can be encoded. Without re-

ferring to the metadata for their true values, it is not possible to identify whether two

variables from two data tables are from the same domain or contain similar values for

union or join. In Figure 6.6, we show an example of a dataset, which is synthesized

based on a real dataset from ICPSR, including part of the metadata for all levels and

table F0001, and the virtual view of the attributes in the metadata enriched table.

According to the metadata, we know that dataset 33502 is related to household and

automobile ownership according to the keyword. This information, however, is not

clear when looking at the data only. We know from the metadata that this data

table with encoded name F0001 contains summary records according to fileName.

133

Similarly, its attribute names and the values of attribute STATE are also encoded.

To tackle the two problems, we identify latent variables from metadata and decode

true values of data elements for a metadata enriched table. Instead of performing the

operation physically, we present a virtual view of such a table to facilitate integration

next. Intuitively, we regard table-level metadata fields as propagatable to the corre-

sponding table such that these fields can be treated as latent variables to be added

to these tables. However, dataset-level metadata fields are not equally propagatable

to all data tables in the dataset. Some dataset-level metadata fields are strongly

describing some tables in the dataset, while weakly describing others. We define the

descriptivity of metadata field to data elements of a table as the correlation between

the metadata field value and the values of data elements in the table. Descriptivity

measures how likely a metadata field and its value can be added to a table as its

variable and values.

Definition VI.9 (Descriptivity). Given a large pool of datasets T , we denote P Ttf ,te =

{(x, y) : x ∈ M, y ∈ Ri, Ri ∈ R, T = (R,M), T ∈ T } as the set of pairs of metadata

field of type tf and data element of te from the same dataset in T . The descriptivity

of a metadata field f to a data element e from the same dataset T ∈ T is

scoreDscrT (f, e, T) =
∏

wi∈Wf ,wj∈We

pTtf ,te(wi, wj)
2

pTtf (wi)pTte(wj)
, (6.2)

where Wf is the set of words in f and We is the set of words in e.

pTte(w) =
|{x : w ∈ x, x ∈ P Tte }|

|P Tte |
and pTty(w) =

|{y : w ∈ y, y ∈ P Tty }|
|P Tty |

(6.3)

such that P Ttm is the set of metadata fields (or data elements) of type tm in P Ttf ,te where

134

m ∈ {f, e}, and

pTtf ,te(wi, wj) =
|{(f, e) : wi ∈ f, wj ∈ e, (f, e) ∈ P Ttf ,te}|

|P Ttf ,te|
(6.4)

Note that descriptivity is only applicable to (f, e) pair where the granularity of

the data that f describes is higher than the granularity of the data element e and f

describes e. That is, table-level metadata can describe a variable in the corresponding

table but not a variable in another table.

For data enrichment, we only need to compute the descriptivity score for dataset-

level metadata types to data tables. We precomputed an offline index for pTtf and pTte

for a sample of datasets from T and built an inverted index on it as the descriptivity

index.

Recall that in 6.4, we identify metadata fields for different levels. These fields

can be viewed as latent variables to enrich data tables in the dataset such that the

attribute name is the path from the root to the field, and the attribute values are

equivalent to the value of the field. Note that we only care for string-valued fields.

Fields with numeric values are mostly used for the documentation of statistics. As for

encoded data elements, we decode the true values from corresponding fields based on

domain knowledge. In Figure 6.6, we show the virtual view of an enriched data table.

We identify fileName, var↓ labl and var↓ category↓ labl as fields containing

true value of table names, attribute name and attribute value, respectively. The

table is enriched by latent variables from keyword, title fields. Since there are

two dataset-level <keyword> fields, we evaluate the descriptivity of their values to

F0001 and show the descriptivity score in the enriched columns corresponding to

these variables. This table is more related to “automobile ownership” compared to

“household.” We perform the same evaluation for two <geoCoverage> fields.

135

6.5.2 Generate join index and union index

We define metadata enriched table R+ of table R with variables V + = V ∪ V ′,

where V is the set of variables from R and V ′ is the set of latent variables from

the metadata M . For each pair of enriched data tables R+
1 and R+

2 , we perform the

joinability and unionability evaluation for pairs of variables from them during offline

preprocessing.

Two variables are unionable if their values are retrieved from the same domain.

We consider three types of variable unionability, namely syntactic unionability, se-

mantic unionability, and natural language unionability, based on their syntactic value

overlap, semantic value overlap leveraging ontologies, and semantic value similarity

even if their syntactic or semantic values do not overlap, respectively. The ensemble

unionability takes the highest score computed from the three metrics for the best

possible unionability. The definition of table unionability inspires this idea in [79].

Since variables from the same domain may be encoded differently, we refer to the

true value of variables in metadata to perform syntactic unionability and semantic

unionability evaluation using YAGO ontology. We further perform a natural language

unionability evaluation on relevant metadata of variables. We choose to adopt GloVe

to generate weighted word embedding vectors for selected metadata fields describing

variable v including variable values and related metadata including descendant fields

of the corresponding var denoted by Satt, table-level metadata of the corresponding

table R denoted by Stbl and dataset-level fields Sdat of the corresponding dataset

T , eliminating statistical metadata fields. As not all variables are equally related to

a table, especially latent variables, we model the relatedness of a latent variable to

the data table as its descriptivity score and use it as the weight for word embedding

vector computation.

Similarly, two variables are joinable if they are from the same domain and their

values have a large number of overlaps. If variables are syntactically or semantically

136

unionable, they are syntactically or semantically joinable. We thus use the same

metric to evaluate syntactic and semantic joinability and unionability. The ensemble

method for joinability evaluation takes the higher score between the two metrics as

the output.

Instead of comparing all variable pairs in V +
1 and V +

2 , we take several optimization

techniques to reduce the number of comparisons. We define V ′1(t) as the set of latent

variables in V ′1 derived from metadata fields of type t in truncated metadata standard

S ′. Then V ′1∩2 = ∪t∈S′,V1(t) 6=∅,V2(t)6=∅V
′
1(t) is the set of latent variables in V ′1 such that

there exists latent variables in V2 derived from the same type of metadata in S ′. The

latent variables derived from metadata fields whose type is exclusive to V ′1 is denoted

by V ′1\2. Naturally, latent variables V1(t)
′ and V ′2(t) derived for the same type of field

t have a one-to-one mapping for domain matching as each field of metadata defines

the domain of the corresponding latent variables. Then for variable unionability

evaluation, we extract variable pairs from V1 × V2, V1 × V ′2\1 and V2 × V ′1\2. As for

joinability evaluation, we evaluate variable pairs from V1 × V2, V1 × V ′2\1, V2 × V ′1\2
and V ′1\2 × V ′2\1.

For syntactic and semantic value overlap, we evaluate the unionability/joinability

using Jaccard Similarity. While for natural language unionability, we use the Cosine

similarity of the mean vectors of variables’ embedding vectors. To process a large

number of variable pairs, we construct an LSH index over minhash of the true values

of variables and the class annotations of variables to approximate syntactic and se-

mantic value overlap and filter out variables with few overlaps. For natural language

unionability, we apply simhash LSH to variable pairs to find variable pairs with high

Cosine similarity. We take data enriched metadata documenting the true values, the

cardinality of values, and ancillary information of variables as input for the evalu-

ation, saving the effort of another round of data scan. We may process the three

indexes for selected variable pairs in a distributed system and map indexes for the

137

same variable pairs for ensemble unionability and ensemble joinability computation.

We store variable pairs with ensemble unionability and ensemble joinability higher

than the union threshold αUno and join threshold αJoi in union index and join index,

respectively.

6.5.3 Candidate Integration Pair Generation

During online query phase, a keyword query q = {w1, w2, ..., wn} is populated

to the backend Query Match module to first retrieve a set of related data tables

R = {R1, R2, ...} by getMatchedTables(q, T) ranked by their relevance to the query

by rlvScr(R, q, T) for data table Ri ∈ R in T . We use a traditional web search

engine applying tf-idf for ranking and index generation on metadata enriched data

tables such that

tf(wi, Rj) =
frequency of w ∈ Rj

|{w|w ∈ Rj}|
(6.5)

idf(wi,R) = log
|R|

|{R ∈ R : wi ∈ R}|
(6.6)

tfidf(wi, Rj,R) = tf(wt, Rj)× idf(wi,R). (6.7)

Other more advanced techniques for ranking such as [55] can be adopted for key-

word search for tables specifically. We will not dive into details since this is not the

contribution of our work.

Suppose that getMatchedTerms(R, q) returns the set of keywords that R matches

in q as qi. We want to find top-k integrated data tables. An integrated table can be

individual tables R ∈ R or a joined or unioned table from two tables R1, R2 ∈ R.

Since we aim to find integrated tables matching as many keywords as possible, we

formulate this as a Maximum Coverage Problem (MCP) such that we select at most

m = 2 tables from R such that the maximum number of keywords in q are covered.

Note that during integration, keywords covered in source tables may no longer exist

138

Algorithm 4: generateIntegratedDatasets
Input: Two data tables X and Y , the integration method m ∈ {U, J}, the integration

index Im ∈ {Iu, Ij}, the target number of matched term n0, the number of top
integrated datasets k, the ranking threshold αRnk, the query q and the query
index Iq

Output: A list result of lists of the ranking score and integrated dataset (score,R+)
whose index is the number of terms in query q matched in R+

1 result← [];
2 foreach hc ∈ cAlgns(X, Y,m, Im, q, Iq) do
3 scoreupper = scrUpper(X, Y, hc,m, Im, q, Iq);
4 if scoreupper > αRnk and (|result[n0]| < k or

scoreupper >= minScr(result[n0])) then
5 n0true, R

+, score = integrate(X, Y, hc,m, Im, q, Iq);
6 result[n0true].append((score, R)).top(k);

in the integrated table. Thus we first approximate the upper bound of the number

of keywords covered in an integrated table by the number of keywords in the merged

keywords set covered by the pair of tables before computing the true keyword coverage

after integration. The MCP problem is NP-hard. It can be approached by a greedy

algorithm such that at each stage, choose a data table that contains the largest number

of uncovered keywords. We optimize alternatively since we have a small m = 2 and

an upper bound for the number of result k. Since we are looking for top-k integrated

tables, we start by searching for candidate integration pairs whose keyword coverage

upper bound is n as Pn, evaluate the true keyword coverage of the integrated table,

compute the ranking score of the integrated tables that covers n keywords and add to

the rank result ordered by descending ranking score. Next, for candidate integrated

pairs whose keyword coverage upper bound is n−1, we repeat the previous procedure

until k integrated tables are found.

6.5.4 Ranking

After a pair of candidate integration tables R1, R2 ∈ R are retrieved, we need

to decide how to integrate it and evaluate its relevance to the keyword query. For

table union and table join, given the unionability/joinability of variable pairs from

139

two tables computed at the offline stage, we need to determine a one-to-one mapping

for a subset of variables among the two tables before performing the integration on

these variables.

[79] proposed the idea of c-alignment such that for the set of variablesX, Y , there is

a one-to-one mapping hc : X ′ → Y ′ such that X ′ ⊂ X, Y ′ ⊂ Y, and |X ′| = |Y ′| = c.

We briefly review their idea here. Since there might be multiple alignment for some

c, the set of all c-alignment is denoted by Ac(X, Y). The unionability score of a

c-alignment hc : X → Y is the joint unionability of variable pairs in the alignment

U(X, Y, hc) =
∏

i∈[1,c] U(Xi, hc(Xi)), where Xi ∈ X and U(Xi, h(Xi)) is the variable

unionability of Xi and Xi’s mapping Yj ∈ Y . The c-unionability of X, Y, denoted by

U+
c (X, Y), is the maximum unionability for all c-alignment between X and Y.

Similarly, we define the c-joinability of table pairs J+
c (X, Y) as the maximum join-

ability of their c-alignment for variable join. Note that for table join, we evaluate the

c-joinability on dimension variables only, identified by the Variable Role Identifica-

tion Module during offline preprocessing. The aligned variables serve as join keys.

During the actual join, measure variables are aggregated by join key for each data

table before the actual join.

We regard the integrated relevance score of an integrated table as dependent on

the validity of union/join and the relevance of the integrated table to the query. We

define the integrated relevance score of the integrated table to query q covering n0

words in q as the maximum product of the unionability/joinability mc and relevance

of the integrated table integratemc for all c-alignment hc of all c ≤ αc through a

integration method m ∈ {U, J} as

scoreRnkn0,m
((X, Y), q, T) =

max{mc(X, Y, hc)× score(integratemc (X, Y, hc), q, T) :

|matchTrms(integratemc (X, Y, hc)| == n0, c <= αc, hc ∈ Hc}

140

, where Hc is the set of c-alignment using integration method m and αc is the upper

bound for the number of variables in a c-alignment.

To compute the relevance score for integrated tables, we could easily retrieve the

unionability and joinability score of aligned variable pairs from the join index or union

index in O(1) time. To save the effort of integrating all c-alignment of a table pair, we

approximate its upper bound and only compute the true score when needed. Recall

that we are using tf-idf for relevance score evaluation. For a unionable pair of tables,

the upper bound of term frequency for a word w ∈ q in a table unioned from X, Y by

c-alignment hc is
∑

i∈[1,c] tf(w,Xi) + tf(w, hc(Xi)). Similarly, for a joinable pair of

tables, the upper bound of term frequency is
∑

i∈[1,c] tf(w,Xi)× tf(w, hc(Xi)). Since

term frequencies are also available in query index, we can easily compute the upper

bound of relevance score of a candidate integration pair and eliminate those whose

relevance score is below αRlv.

6.6 Experiments

Since there is no closely related previous work tackling the problem for datasets

with metadata following a well-defined semi-structured schema, we evaluate the per-

formance of FluxSearch for the search and integration separately.

6.6.1 The Data

We have crawled 16,191 datasets from ICPSR, among which 11,264 datasets have

well-curated dataset- and table-level metadata documented in XML-based DDI for-

mat. These are publicly available metadata. We requested variable-level metadata

from ICPSR with restricted access due to privacy protection reasons. It covers 5.7 mil-

lion variables in 6,651 tables from 645 datasets. Each variable-level DDI file contains

variable-level metadata for one table. ICPSR has a plan of releasing variable-level

metadata, which requires further privacy-related masking. By merging the metadata

141

Figure 6.7: Histograms of the number of tables in a dataset (left) and the number of
variable in a table (right) for 654 datasets with variable- and table-level metadata

for each dataset, we generated one DDI file per dataset with all metadata informa-

tion. In Figure 6.7, we show the distribution of the number tables in a dataset and

the number of variables (columns) and entities (rows) in a table for 645 datasets with

full metadata. For these 645 datasets, a dataset has 8.7 tables on average and a max-

imum of 413 tables, while a table has 232 variables and 28,102 entities on average and

a maximum of 31,941 variables and 17,873,828 entities. If we consider all datasets

from ICPSR, the size of a dataset can be over 200GB. For dataset and data tables

at this scale, it is hard to manually generate table-level and variable-level metadata

manually and curate without automation.

6.6.2 Enriched Data Quality

We specifically evaluate the quality of data enriched metadata which is indexed for

searching. We assume that the 645 datasets with all levels of well-curated metadata

as the golden standard benchmark, denoted by Bm. Given αImp = 0.25, among 158

field types defined in the metadata of these datasets, FluxSearch identified 58 as

important. We inspected these fields and defined derivation rules for 34 of them

whose values are computed from data and other fields to the best of our knowledge

142

Figure 6.8: Precision vs. Recall for Metadata Enrichment with 10% fields take-out

Table 6.1: Average precision and recall by field take-out ratio

take-out ratio avg. precision avg. recall

10% 0.875 0.812
20% 0.867 0.807
30% 0.845 0.793

without referring to other ancillary materials possibly in the datasets. For other data

fields that may require domain knowledge or more advanced techniques or more labor

efforts to specify, we may send an alarm to the curator for further inspection. Since

this is not the contribution of our work, we focus on data-related fields only.

We randomly selected 40% of the datasets as the training data Bm
train. To generate

the testing data Bm
test, for each field type, we randomly selected 10%, 20% and 30% of

all fields of the type in the rest 60% datasets of the benchmark and eliminated these

fields from the corresponding metadata. We evaluate whether FluxSearch could

correctly decide the presence of a field and its attribute value leveraging information

of the other datasets and its co-occurrence with other fields, their attributes, and

data in terms of precision and recall. In Figure 6.8, we show the precision and recall

143

Table 6.2: Search queries with relevant datasets returned by ICPSR search engine

Data Track Name/ID query

TREC

Federated Web Search Track

detroit riot

Asian culture

earthquake

reinforcement learning

severed spinal cord

salmonella

causes of the cold war

constitution of italy

cat movies

weather in nyc

Web Track

game theory

fidel castro

identifying spider bites

benefits of running

Entity Track

NCAA

Astra Zeneca

British Royal Monarchy

United Parcel Service (UPS)

National Book Foundation

INEX

2007 Ad Hoc iTrack

travelling

fuel efficient cars

home heating solar panels

food additives physical health risk
grocery/store labels

Ad Hoc + Multimedia Track
motor car

Hurricane satellite image

classic furniture design chairs

144

Table 6.3: Relatedness evaluation for 125 queries in benchmark Bq

Search engine No result No relevant result
With relevant result (avg. relatedness
for top-k results k=3, 5, 10)

ICPSRsyn 9 98 26(0.590/0.469/0.338)
FluxSearch 6 47 72(0.866/0.789/0.743)

plot for 10% fields taken out. It occurs that there exist fields/variables for all three

levels with precision = 1.0 and recall= 1.0. This is intuitive as some fields for these

levels always present, for instance, the root field for the three levels. The prediction

of variable-level field/attribute is the most accurate, while the prediction of dataset-

level field/attribute is the least accurate. Since table-level and variable-level fields

often co-occur with other fields of the same type, they are likely to be program

generated and thus consistent in presence patterns. This matches what we observe

in the data. Dataset-level metadata, however, largely depends on the data collector

and the depositor. The collection methods, for instance, are not always deposited

together with the data, making it hard for the data curators at ICPSR to define

metadata for the corresponding field.

In Table 6.1, we show the precision and recall averaged for all fields by take-out

ratio during Btest generation. The average precision and recall drop slightly as the

take-out ratio increase. Through a careful analysis of the data, we found that the

take-out ratio does not affect variable-level and table-level metadata much when the

take-out ratio is relatively small, as they are systematically defined. It is much harder

to predict dataset-level metadata the definition of which varies by dataset.

6.6.3 Query Result Relatedness

It is not easy to select a set of keyword queries for testing FluxSearch. In the ideal

case, we can collect such queries from real-world user query logs. With no easy access

to such data, we leverage INEX and TREC data widely adopted as golden standards

145

for information retrieval evaluation. It is not guaranteed that ICPSR datasets and

these queries are from the same domain. Many queries may have no results returned.

We thus compare the relative performance of a synthesized ICPSR search engine,

denoted by ICPSRsyn and FluxSearch, especially for queries where both return

related results for a subset of 5,000 datasets from the crawled datasets smaller than

10GB in sizes. The original ICPSR search engine is built on top of Solr/Lucene such

that Solr index is built on metadata and text layer streamed from documentation

files in PDF format. In ICPSRsyn, we built the index on metadata only, eliminating

additional information not accessible to FluxSearch.

For tracks related to web search and data discovery, we randomly selected 25

queries per track from 3 TREC tracks: Federated Web Search Track, Web Track, and

Entity Track; and 2 INEX tracks: 2007 Ad Hoc iTrack and Ad Hoc + Multimedia

Track. This benchmark, denoted by Bq, includes 125 queries, which are used for

query result relevance evaluation. For each query, we populate the query against the

search engine on ICPSRsyn and evaluate the relatedness of the top-10 dataset to

the query on a 0-1 scale. We have two primary labelers who are experienced with

socio-science data and data analytics are involved in scoring the relatedness. When

they do not agree on the relatedness of a dataset to a query, the scoring result from a

secondary labeler is regarded as the relatedness score. Among 125 queries, 9 of them

return no results, 98 return no relevant datasets, while 26 return at least one relevant

dataset, among which one query has only three results. In Table 6.2, we show the 26

queries with relevant datasets from ICPSRsyn search results.

In Table 6.3, we show the number of queries and the average relatedness score

for each case, if not 0. Among 9 queries for which ICPSRsyn returns no result,

FluxSearch returns result for 3 of them. This is contributed by enriching data with

metadata as some keywords are matched with data in these datasets once not con-

tained in the metadata. After examining the 6 queries that both engines systems

146

could not handle, we found that they are either not in English or from a domain not

covered by the data available. It is also possible that relevant information is available

from ancillary materials of datasets which is not accessible to the search engine yet.

These materials can be in heterogeneous formats, including pdf and images, some of

which are of low resolution from more than 40 years ago, that can not be processed

easily. For queries (98) that ICPSRsyn returns no relevant result, FluxSearch re-

turns relevant results for more than half of them (51). There are cases where both

systems fail. Queries like “images of tsunami”, though some of the keywords are

covered by a dataset returned, are not related to the semantic meaning of the query.

The top results returned by both engines cover “tsunami”, “image” or “tsunami im-

age,” but are not close to the image of a tsunami. This kind of query needs natural

language interpretation or additional constraints on the search.

FluxSearch returns relevant results for more queries than ICPSRsyn (72:26), and

the average relatedness of the returned results is much higher (0.743:0.338) for top-

10 results. Metadata enrichment contributes to finding keywords from data for this

experiment. For queries like “types of bridges vehicles water ice”, FluxSearch finds

more individual datasets whose data match part of the keywords, “bridges vehicles”

and “water ice,” for instance. The integration process then generates integrated

datasets that cover more keywords in the query. Both steps return more datasets

that cover more keywords than ICPSRsyn.

6.6.4 Efficiency

Additionally, we evaluate the efficiency of offline query index, union index and

join index generation, and online time query result generation.

To build a query index, we first enrich metadata with data. Since only 645 out

of 11k dataset has variable level metadata, the majority of time for metadata enrich-

ment is spent on reading data (5TB) for variable metadata generation. Instead of

147

Figure 6.9: Runtime for 125 queries in Bq ordered by ascending runtime of
FluxSearch

enriching metadata for all variables not documented yet, we enrich for non-numeric

variables. We first read the top-N (N=100) value of each variable to predict its type

before performing the actual enrichment. We spend seven hours enriching metadata

and build the query index in a distributed setting. During offline union index and

join index building, we use LSH indices that bucketize variables into highly union-

able/joinable pairs. Variables do not appear in the same bucket are assumed to have

no unionability/joinability. This can be used as a blocking scheme so that we only

compute variable pair unionability/joinability for variables in the same index bucket.

We took a similar approach to compute table unionability during the online stage.

It took us five hours of parallel computation to compute the union and join index.

The majority of time is spent on unionability/joinability distribution estimation using

100,000 randomly selected table pairs with around 3M variable pairs.

During the online stage, ICPSRsyn generates top-10 query results for all queries

in less than 1s, taking advantage of Lucune of Solr index. The query result genera-

tion time of FluxSearch varies by query with the mean of 1.971s and the standard

148

deviation of 1.038s. In Figure 6.9, we depict the runtime efficiency of FluxSearch

and ICPSRsyn ordered by ascending FluxSearch runtime. For queries with fewer

keywords and a small number of candidate integration pairs, its runtime is compara-

ble to ICPSRsyn. The majority of time is spent on performing the actual integration

and storing the data back to the database.

6.7 Conclusion

In this chapter, we proposed FluxSearch as a system performing a keyword-based

search for the integrated dataset from a data portal for data with semi-structured

metadata following a predefined schema. FluxSearch complements metadata by data

for the search and complements data by metadata for the integration, saving the effort

of manual data integration for finding better data that match the query. Through an

experimental evaluation using real socioeconomic datasets with metadata defined in

DDI format, we demonstrate the feasibility of using FluxSearch for an effective and

efficient search of top-k integrated datasets covering as many keywords in the query

as possible.

There are several limitations of FluxSearch. The quality of metadata is low in

the real world for most data portals without portal-side amendment. Many datasets

have missing metadata fields that should be defined. Making a training set of datasets

with high-quality metadata for metadata field recommendation requires human effort

for metadata generation. Also, in metadata enrichment, we reckon the set of im-

portant metadata fields defined for the data portal as the scope of metadata fields

to consider for enrichment assuming a single-domain data portal. However, for a

multi-domain data portal, the fields and attributes in metadata included in a dataset

are also domain-dependent, which is not considered in the current implementation of

FluxSearch. For integrated dataset generation, we currently consider two tables for

integration using join or union. In reality, more tables might be integrated leveraging

149

both join, union, and other transformations. Lastly, we find that some datasets have

multiple tables with identical schema collected for entities of the same dimensions,

which is often reflected in table titles. These tables can be easily unioned as a long

table. There are also wide tables chunked for ease of storage as smaller tables in a

dataset. Such in-dataset table relationship is not considered in FluxSearch.

150

CHAPTER VII

Conclusion

In this thesis, we introduced the problem of the search and use of socio-economic

data for users with limited technical proficiency. We presented SDTL/SDTA and C2Metadata

to improve metadata quality for better search in a hands-off manner. By defining

a standard representation for statistical data transformation in SDTL/SDTA, we de-

veloped C2Metadata that automatically integrates data transformation information

in the metadata. For the use of datasets, we presented GeoAlign, GeoFlux, and

FluxSearch to permit the search of integrated datasets. GeoAlign algorithm and

GeoFlux system lay the foundation of automatic data integration leveraging geo-

graphical information. On top of these works, FluxSearch offers keyword query

search over datasets integrated by join or union. The work presented in this thesis

contributes to making datasets more viable to users looking to find more and better

datasets without user intervention. It aims to shrink the gap between data and the

general public to make data more usable.

7.0.1 Future Work

There are several possible directions to pursue as future steps of this thesis. To

make dataset search and use more applicable for users with little to no technical pro-

ficiency, we expect more high-quality datasets with metadata that could satisfy user

151

expectations. Here we identify three directions we consider valuable in this sense: i) to

present a unified view for datasets across different sources by standardizing both data

and metadata, ii) to promote high-quality metadata generation minimizing human

effort in the tedious process, and iii) to extend FluxSearch with a human-in-the-loop

interactive integration feature. All three directions tackle different perspectives of

effort-saving dataset search and use as they consider the scope, the quality, and the

understanding of datasets for both dataset creators and dataset explorers.

Similar to unified data in the database, we find it necessary to create a unified view

of metadata and data for datasets from different sources to make more datasets search-

able. Instead of schema, metadata of datasets follow diverse metadata standards with

a defined thesaurus. The choice of the metadata standard to follow depends on the

community of the data collection and the preference of the data creators. It also de-

pends on the community of the data collection and the preference of the data creators.

Many socio-science data repositories have adopted the Data Documentation Initia-

tive (DDI) standard for microdata, and statistical organizations use Statistical Data

and Metadata eXchange (SDMX), which is more suited to aggregate data. Ecological

Metadata Language (EML) is one of several standards used for ecological research

data, and the biomedical community has several standards, including Observational

Medical Outcomes Partnership (OMOP) and Fast Healthcare Interoperability Re-

sources (FHIR). They each define a different set of fields. Also, different metadata

standards have different values, named as thesaurus, for the same or similar fields.

The United States in the thesaurus of CollectionLevel field of one standard may

be represented by USA in the thesaurus of GeographicCoverage of another stan-

dard. Though the two fields may represent a similar set of real-world entities in their

respective thesaurus, their syntactic representations are different. Even if they are

semantically similar, in the data, they may be coded differently. Without referring to

the metadata, one could hardly find the true value. In addition to applying existing

152

techniques from schema mapping and entity matching, leveraging the definition of

metadata standards and their hierarchical field structure could better promote the

mapping and matching quality. With the popularization of the standardization of

statistical data transformation using SDTL and SDTA, we realize the urge to define a

unified standard for metadata and data standards and a conversion mechanism to

convert datasets represented in one standard to another. Datasets following differ-

ent standards could thus be virtually or physically transformed to the standard to

broaden the scope of datasets to search.

With a unified view of the datasets, we then consider the generation of datasets

following the standard. Currently, data creators are the main contributor to the

metadata. However, in many circumstances, they are passively generating metadata

per requests of data sharing for publication. For data hubs with no metadata vali-

dation, such as dataverse, the quality of metadata is very low. For data hubs with

metadata verification mechanisms, such as ICPSR, data processors from the data hub

is manually viewing the deposited data and complementary materials to generate the

metadata before asking the data depositor to verify the correctness of the metadata.

There are different teams of data processors responsible to fill in the information of

different fields. For instance, some data curators classify the topics of the datasets

while some others look up related publications. The process can take up to weeks

to fully describe a dataset with high-quality metadata. Our work of C2Metadata has

automated the generation of data transformation in metadata, the other parts of the

metadata, however, remain manually generated. We consider the development of a

dataset deposit interface for data depositors with metadata field value recommenda-

tion and data value standardization so that data depositors could verify the metadata

and data during deposit in an interactive setting. We identify error detection and

privacy protection for data preparation, field tagging, and bibliography generation

as four major steps of such an interface. Each of them leverages different learning

153

techniques based on past rules/values defined for these steps.

Lastly, given more and better datasets for search, how can we manipulate these

datasets for more valuable results through integration? FluxSearch eliminates hu-

mans in the process as we consider users as the general public without much techni-

cal background. Also, we are considering data integration for unionable or joinable

datasets. Richer massaged datasets can be obtained by the union and join mixture

integration for more than two datasets. There are many ways of combining union and

join for candidate integration datasets, the choice of which can be system decision or

user decision depending on user intention. Given the user feedback stream, we could

model user preference by a probabilistic model and learn to optimize in candidate

integration dataset generation and integration rank scoring.

154

BIBLIOGRAPHY

155

[1] G. Alter, D. Donakowski, J. Gager, P. Heus, C. Hunter, S. Ionescu, J. Iverson,
H. Jagadish, C. Lagoze, J. Lyle, et al. Provenance metadata for statistical data:
An introduction to structured data transformation language (sdtl). IASSIST
Quarterly, 44(4), 2020.

[2] S. Auer, L. Bühmann, C. Dirschl, O. Erling, M. Hausenblas, R. Isele,
J. Lehmann, M. Martin, P. N. Mendes, B. van Nuffelen, C. Stadler, S. Tramp,
and H. Williams. Managing the Life-Cycle of Linked Data with the LOD2 Stack.
In The Semantic Web – ISWC 2012, pages 1–16. Springer, Berlin, Heidelberg,
Nov. 2012.

[3] B. Bajat, N. Krunić, and M. Kilibarda. Dasymetric mapping of spatial distri-
bution of population in timok region. In Proceedings of International confer-
ence Professional practice and education in geodesy and related fields, Klavodo-
Djerdap, Serbia, 2011.

[4] K. Balog, E. Meij, M. De Rijke of the 3rd international semantic search, and
2010. Entity search: building bridges between two worlds. dl.acm.org.

[5] Z. Bellahsene, A. Bonifati, E. Rahm, et al. Schema matching and Mapping,
volume 20. Springer, 2011.

[6] bioCADDIE. Datamed biomedical data search engine. https://datamed.org/,
2018.

[7] A. Bonifati and Y. Velegrakis. Schema matching and mapping: From usage to
evaluation. In EDBT/ICDT, pages 527–529. ACM, 2011.

[8] P. A. Burrough, R. McDonnell, R. A. McDonnell, and C. D. Lloyd. Principles
of geographical information systems. Oxford University Press, 2015.

[9] M. J. Cafarella, A. Halevy, and N. Khoussainova. Data integration for the
relational web. Proc. VLDB Endow., 2(1):1090–1101, Aug. 2009. ISSN 2150-
8097.

[10] U. S. Census. 2010 census data [data file]. Available from https://

www.census.gov/2010census/data/, 2010. Accessed: 2014-08-14.

[11] A. Chapman, E. Simperl, L. Koesten, G. Konstantinidis, L.-D. Ibáñez-Gonzalez,
E. Kacprzak, and P. Groth. Dataset search: a survey. arXiv.org, Jan. 2019.

[12] X. Chu, Y. He, K. Chakrabarti, and K. Ganjam. TEGRA - Table Extraction
by Global Record Alignment. SIGMOD Conference, 2015.

[13] S.-L. Chuang, K. C.-C. Chang, and C. Zhai. Context-Aware Wrapping - Syn-
chronized Data Extraction. VLDB, pages 699–710, 2007.

[14] I. Circle Systems. Stat/transfer (version 14), 2015. URL https://

stattransfer.com.

156

[15] Colectica. Convention-based ontology generation system (cogs) 1.0. http:

//cogsdata.org/docs/, 2017.

[16] M. Craglia and H. Onsrud. Geographic Information Research: Transatlantic
Perspectives. Taylor & Francis, 2004. ISBN 9780203211397.

[17] C. Dalzell. Calling r from spss, 2013. URL https://developer.ibm.com/
tutorials/ba-call-r-spss/.

[18] A. Das Sarma, L. Fang, N. Gupta, A. H. P. o. the, and 2012. Finding related
tables. dl.acm.org.

[19] N. O. Data. Nys attorney registrations (attorney registration) [data
file]. Retrieved from https://data.ny.gov/Transparency/NYS-Attorney-
Registrations/eqw2-r5nb, 2013. Accessed: 2017-05-01.

[20] N. O. Data. Facilities licensed by the department of motor vehicles (dmv license
facilities) [data file]. Retrieved from https://data.ny.gov/Transportation/
Facilities-Licensed-by-the-Department-of-Motor-Veh/nhjr-rpi2,
2013. Accessed: 2017-05-01.

[21] N. O. Data. Food service establishment inspections: Beginning
2005 (active) (food service inspections) [data file]. Retrieved from
https://health.data.ny.gov/Health/Food-Service-Establishment-
Inspections-Beginning-2/2hcc-shji, 2013. Accessed: 2014-08-14.

[22] N. O. Data. Liquor authority quarterly list of active licenses (liquor licenses)
[data file]. Retrieved from https://data.ny.gov/Economic-Development/
Liquor-Authority-Quarterly-List-of-Active-Licenses/hrvs-fxs2,
2013. Accessed: 2014-08-14.

[23] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from
incomplete data via the em algorithm. Journal of the royal statistical society.
Series B (methodological), pages 1–38, 1977.

[24] H.-H. Do and E. Rahm. Coma: A system for flexible combination of schema
matching approaches. In VLDB, pages 610–621. VLDB Endowment, 2002.

[25] C. L. Eicher and C. A. Brewer. Dasymetric mapping and areal interpolation:
Implementation and evaluation. Cartography and Geographic Information Sci-
ence, 28(2):125–138, 2001.

[26] C. L. Eicher and C. A. Brewer. Dasymetric mapping and areal interpolation:
Implementation and evaluation. Cartography and Geographic Information Sci-
ence, 28(2):125–138, 2001.

[27] Elsevier. scientific repository. https://datasearch.elsevier.com/, 2018.

157

[28] R. Flowerdew and M. Green. Developments in areal interpolation methods and
GIS, pages 73–84. Springer Berlin Heidelberg, Berlin, Heidelberg, 1993. ISBN
978-3-642-77500-0.

[29] R. Flowerdew, M. Green, and S. Fotheringham. Areal interpolation and types
of data. Spatial analysis and GIS, 121:145, 1994.

[30] C. Franklin. An introduction to geographic information systems: Linking maps
to databases. Database, 15(2):12–21, Apr. 1992. ISSN 0162-4105.

[31] E. A. Gallery. Starbucks [map]. Retrieved from https://

services.arcgis.com/nzS0F0zdNLvs7nc8/arcgis/rest/services/
Starbucks/FeatureServer, 2014. Accessed: 2017-10-02.

[32] E. A. Gallery. Accidents reported to national highwat traffic
safety administration in 2011 (accidents) [map]. Retrieved from
http://services.arcgis.com/0TU5BETrBlnIhvOx/ArcGIS/rest/services/
NHTSAAccidents2011/FeatureServer, 2017. Accessed: 2017-10-02.

[33] E. A. Gallery. Usa cemeteries (cemeteries) [map]. Retrieved from http://

www.arcgis.com/home/item.html?id=5b08fa8bb5a64ea7848dc5188e47994a,
2017. Accessed: 2017-10-02.

[34] E. A. Gallery. Usa public buildings (public buildings) [map].
Retrieved from http://www.arcgis.com/home/item.html?id=
d5d5b513a40145ffa60b67d9c7ab9680, 2017. Accessed: 2017-10-02.

[35] E. A. Gallery. Us shopping centers 2015 (shopping centers) [map].
Retrieved from https://services1.arcgis.com/6kyLQ3wRvoPKn52I/arcgis/
rest/services/US Shopping Centers 2015/FeatureServer, 2017. Accessed:
2017-10-02.

[36] E. A. Gallery. Usa uninhabited places [map]. Retrieved from http://

www.arcgis.com/home/item.html?id=5f0a5776cbaf4b34b9600809bf791d69,
2017. Accessed: 2017-10-02.

[37] L. Getoor and A. Machanavajjhala. Entity resolution: theory, practice & open
challenges. Proceedings of the VLDB Endowment, 5(12):2018–2019, 2012.

[38] B. Glavic and K. R. Dittrich. Data provenance: A categorization of existing
approaches. In BTW, volume 7, pages 227–241, 2007.

[39] M. F. Goodchild, N. S. N. Lam, and U. of Western Ontario. Dept. of Geography.
Areal interpolation: a variant of the traditional spatial problem. London, Ont.:
Department of Geography, University of Western Ontario, 1980.

[40] M. F. Goodchild, L. Anselin, and U. Deichmann. A framework for the areal
interpolation of socioeconomic data. Environment and planning A, 25(3):383–
397, 1993.

158

[41] Google. Blog: Google dataset search. https://developers.google.com/
search/docs/data-types/dataset, 2018.

[42] I. Gregory. The accuracy of areal interpolation techniques: standardising 19th
and 20th century census data to allow long-term comparisons. Computers,
Environment and Urban Systems, 26(4):293–314, 7 2002. ISSN 0198-9715.

[43] S. Gupta, P. Szekely, C. A. Knoblock, A. Goel, M. Taheriyan, and M. Muslea.
Karma: A system for mapping structured sources into the semantic web. In
Extended Semantic Web Conference, pages 430–434. Springer, 2012.

[44] E. Haghish. Seamless interactive language interfacing between r and stata. The
Stata Journal, 19(1):61–82, 2019.

[45] S. Hahmann, D. Burghardt, and B. Weber. “80% of all information is geospa-
tially reference” towards a research framework: Using the semantic web for (in)
validating this famous geo assertion.

[46] A. Halevy, A. Rajaraman, and J. Ordille. Data integration: The teenage years.
In VLDB, pages 9–16. VLDB Endowment, 2006.

[47] A. Halevy, A. Rajaraman, and J. Ordille. Data integration: the teenage years.
In Proceedings of the 32nd international conference on Very large data bases,
pages 9–16. VLDB Endowment, 2006.

[48] T. Heath and C. Bizer. Linked Data - Evolving the Web into a Global Data
Space. Synthesis Lectures on the Semantic Web, 2011.

[49] M. A. Hernández, R. J. Miller, and L. M. Haas. Clio: A semi-automatic tool
for schema mapping. ACM SIGMOD Record, 30(2):607, 2001.

[50] P. Heyvaert, P. Colpaert, R. Verborgh, E. Mannens, and R. Van de Walle.
Merging and enriching dcat feeds to improve discoverability of datasets. In
European Semantic Web Conference, pages 67–71. Springer, 2015.

[51] E. Hovy, J. L. Ambite, and A. Philpot. Addressing a bottleneck in data inte-
gration using automated learning techniques.

[52] I. D. C. (IDC). Worldwide semiannual big data and analytics spending guide.
https://www.idc.com/getdoc.jsp?containerId=IDC P33195, 2018.

[53] E. Inc. Arcgis pro 2.0 [computer software]. Available from https://

pro.arcgis.com/en/pro-app/, 2017.

[54] S. I. Inc. Calling functions in the r language, 2016. URL https://

support.sas.com/rnd/app/studio/statr.pdf.

[55] C. J, HalevyAlon, and KhoussainovaNodira. Data integration for the relational
web. Proceedings of the VLDB Endowment, Aug. 2009.

159

[56] Z. Jin, M. R. Anderson, M. J. Cafarella, and H. V. Jagadish. Foofah - Trans-
forming Data By Example. SIGMOD Conference, 2017.

[57] T. Joachims. Training linear SVMs in linear time. KDD, 2006.

[58] S. Kandel, A. Paepcke, J. M. Hellerstein, and J. Heer. Wrangler - interactive
visual specification of data transformation scripts. CHI, 2011.

[59] K. Kemp. Encyclopedia of geographic information science. Sage, 2008.

[60] H. Köpcke and E. Rahm. Frameworks for entity matching: A comparison. Data
& Knowledge Engineering, 69(2):197–210, 2010.

[61] N. S.-n. Lam. An evaluation of areal interpolation methods. In Proceedings,
Fifth International Symposium on Computer-Assisted Cartography (AutoCarto
5), volume 2, pages 471–479, 1982.

[62] N. S.-N. Lam. Spatial interpolation methods: A review. The American Car-
tographer, 10(2):129–150, 1983.

[63] M. Langford. Obtaining population estimates in non-census reporting zones:
An evaluation of the 3-class dasymetric method. Computers, environment and
urban systems, 30(2):161–180, 2006.

[64] M. Langford, D. J. Maguire, and D. J. Unwin. The areal interpolation prob-
lem: estimating population using remote sensing in a gis framework. Handling
geographical information: Methodology and potential applications, pages 55–77,
1991.

[65] M. Lenzerini. Data integration: A theoretical perspective. In Proceedings of
the twenty-first ACM SIGMOD-SIGACT-SIGART symposium on Principles of
database systems, pages 233–246. ACM, 2002.

[66] H. LI. A Short Introduction to Learning to Rank. IEICE TRANSACTIONS
on Information and Systems, E94-D(10):1854–1862, Oct. 2011.

[67] A. Liaw and M. Wiener. Classification and regression by randomforest.

[68] LiJian and DeshpandeAmol. Ranking continuous probabilistic datasets. Pro-
ceedings of the VLDB Endowment, Sept. 2010.

[69] X. H. Liu, P. C. Kyriakidis, and M. F. Goodchild. Population-density estimation
using regression and area-to-point residual kriging. Int. J. Geogr. Inf. Sci., 22
(4):431–447, Jan. 2008. ISSN 1365-8816.

[70] F. Maali, J. Erickson, and P. Archer. Data catalog vocabulary (dcat). W3c
recommendation, 16, 2014.

[71] I. R. Mansuri and S. Sarawagi. Integrating Unstructured Data into Relational
Databases. ICDE, 2006.

160

[72] J. Markoff and G. Shapiro. The linkage of data describing overlapping geo-
graphical units. Historical Methods Newsletter, 7(1):34–46, 1973.

[73] H. A. Maurer and R. Mehmood. Merging image databases as an example for
information integration. CEJOR, 23(2):441–458, 2015.

[74] J. Mennis and T. Hultgren. Intelligent dasymetric mapping and its application
to areal interpolation. Cartography and Geographic Information Science, 33(3):
179–194, 2006.

[75] R. Mihalcea, C. Corley, and C. Strapparava. Corpus-based and knowledge-based
measures of text semantic similarity. In AAAI, pages 775–780, 2006.

[76] L. Mitas and H. Mitasova. Spatial interpolation. Geographical information
systems: principles, techniques, management and applications, 1:481–492, 1999.

[77] A. S. Mugglin, B. P. Carlin, and A. E. Gelfand. Fully model-based approaches
for spatially misaligned data. Journal of the American Statistical Association,
95(451):877–887, 2000.

[78] D. Murakami and M. Tsutsumi. A new areal interpolation method based on
spatial statistics. Procedia-Social and Behavioral Sciences, 21:230–239, 2011.

[79] F. Nargesian, E. Zhu, K. Q. Pu, and R. J. Miller. Table union search on open
data. Proceedings of the VLDB Endowment, 11(7):813–825, Mar. 2018.

[80] S. Neumaier, J. Umbrich, and A. Polleres. Automated quality assessment of
metadata across open data portals. Journal of Data and Information Quality
(JDIQ), 8(1):2, 2016.

[81] O. of Policy Development and R. P. . R). Hud usps zip code crosswalk
files [data file]. Available from https://www.huduser.gov/portal/datasets/
usps crosswalk.html, 2010. Accessed: 2014-08-14.

[82] T. J. Parr and R. W. Quong. Antlr: A predicated-ll (k) parser generator.
Software: Practice and Experience, 25(7):789–810, 1995.

[83] R. Pimplikar and S. Sarawagi. Answering table queries on the web using column
keywords. Proceedings of the VLDB Endowment, 5(10):908–919, 2012.

[84] L. L. Pipino, Y. W. Lee, and R. Y. Wang. Data quality assessment. Commu-
nications of the ACM, 45(4):211–218, 2002.

[85] L. Qian, M. J. Cafarella, and H. V. Jagadish. Sample-driven schema mapping.
In SIGMOD, pages 73–84, New York, NY, USA, 2012. ACM.

[86] E. Rahm and P. A. Bernstein. A survey of approaches to automatic schema
matching. The VLDB Journal, 10(4):334–350, 2001. ISSN 0949-877X.

161

[87] E. Rahm and H. H. Do. Data cleaning: Problems and current approaches.
IEEE Data Engineering Bulletin, 23:2000, 2000.

[88] V. Raman and J. M. Hellerstein. Potter’s Wheel - An Interactive Data Cleaning
System. VLDB, 2001.

[89] M. Reibel and M. E. Bufalino. Street-weighted interpolation techniques for
demographic count estimation in incompatible zone systems. Environment and
Planning A, 37(1):127–139, 2005.

[90] Y. Sadahiro. Accuracy of count data estimated by the point-in-polygon method.
Geographical Analysis, 32(1):64–89, 2000. ISSN 1538-4632.

[91] SDMX. Validation and transformation language (vtl), 2018. URL https:

//sdmx.org/?page id=5096.

[92] F. Sidi, P. H. S. Panahy, L. S. Affendey, M. A. Jabar, H. Ibrahim, and
A. Mustapha. Data quality: A survey of data quality dimensions. In In-
formation Retrieval & Knowledge Management (CAMP), 2012 International
Conference on, pages 300–304. IEEE, 2012.

[93] M. Sokolova and G. Lapalme. A systematic analysis of performance measures
for classification tasks. Information Processing & Management, 45(4):427 – 437,
2009.

[94] G. Q. Tabios and J. D. Salas. A comparative analysis of techniques for spa-
tial interpolation of precipitation. JAWRA Journal of the American Water
Resources Association, 21(3):365–380, 1985. ISSN 1752-1688.

[95] J. Tennison. CSV on the web: A primer. Http://www.w3.org/TR/2016/NOTE-
tabular-data-primer-20160225/, 2016.

[96] P. Thomas, R. Omari, and T. Rowlands. Towards searching amongst tables. In
Proceedings of the 20th australasian document computing symposium, page 8.
ACM, 2015.

[97] W. R. Tobler. Smooth pycnophylactic interpolation for geographical regions.
Journal of the American Statistical Association, 74(367):519–530, 1979.

[98] J. Umbrich, S. Neumaier, and A. Polleres. Quality assessment and evolution of
open data portals. In 2015 3rd International Conference on Future Internet of
Things and Cloud, pages 404–411. IEEE, 2015.

[99] United States Census Bureau. Geographic Relationships Between Entity Types
[Data File]. Available at https://www.census.gov/geo/Maps-data/data/
relationship.html.

[100] G. Van, de RijkeMaarten, and KanoulasEvangelos. Neural Vector Spaces for
Unsupervised Information Retrieval. ACM Transactions on Information Sys-
tems (TOIS), June 2018.

162

[101] P. R. Voss, D. D. Long, and R. B. Hammer. When census geography doesn’t
work: Using ancillary information to improve the spatial interpolation of de-
mographic data.

[102] R. Y. Wang and D. M. Strong. Beyond Accuracy - What Data Quality Means
to Data Consumers. J. of Management Information Systems, 1996.

[103] H. Wickham. Reshaping data with the reshape package. Journal of Statistical
Software, 21(12):1–20, 2007. URL http://www.jstatsoft.org/v21/i12/.

[104] H. Wickham. Tidy data. The Journal of Statistical Software, 59, 2014. URL
http://www.jstatsoft.org/v59/i10/.

[105] H. Wickham. tidyverse: Easily Install and Load the ’Tidyverse’, 2017. URL
https://CRAN.R-project.org/package=tidyverse. R package version 1.2.1.

[106] H. Wickham, R. François, L. Henry, and K. Müller. dplyr: A Grammar of Data
Manipulation, 2018. URL https://CRAN.R-project.org/package=dplyr. R
package version 0.7.6.

[107] J. K. Wright. A method of mapping densities of population: With cape cod as
an example. Geographical Review, 26(1):103–110, 1936.

[108] Y. Xie. The overlaid network algorithms for areal interpolation problem. Com-
puters, environment and urban systems, 19(4):287–306, 1995.

[109] M. Yakout, K. Ganjam, K. C. P. o. t. 2012, and 2012. Infogather: entity
augmentation and attribute discovery by holistic matching with web tables.
dl.acm.org.

[110] S. Zhang and K. Balog. Ad hoc table retrieval using semantic similarity. In
Proceedings of the 2018 World Wide Web Conference, pages 1553–1562. Inter-
national World Wide Web Conferences Steering Committee, 2018.

[111] S. Zhang, K. B. P. o. t. . w. w. w. conference, and 2018. Ad hoc table retrieval
using semantic similarity. dl.acm.org, .

[112] S. Zhang, K. B. P. o. t. t. I. A. SIGIR, and 2017. Entitables: Smart assistance
for entity-focused tables. dl.acm.org, .

[113] E. Zhu, D. D. 0001, F. Nargesian, and R. J. Miller. JOSIE - Overlap Set Simi-
larity Search for Finding Joinable Tables in Data Lakes. SIGMOD Conference,
2019.

[114] P. Ziegler and K. R. Dittrich. Conceptual Modelling in Information Systems
Engineering, chapter Data Integration — Problems, Approaches, and Perspec-
tives, pages 39–58. Springer, 2007. ISBN 978-3-540-72677-7.

163

