
Complex Crystallization Pathways Analyzed in a

Continuous Feature Space

by

Bradley Dice

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Physics and Scientific Computing)

in The University of Michigan
2021

Doctoral Committee:

Professor Sharon C. Glotzer, Chair
Assistant Professor Bryan Goldsmith
Associate Professor Xiaoming Mao
Assistant Professor Ashwin J. Shahani
Associate Professor Kai Sun

Bradley Dice

bdice@umich.edu

ORCID iD: 0000-0002-9983-0770

© Bradley Dice 2021

Dedicated to my family,
David, Pam, Jacob, Carman, my grandparents,

and the many educators and mentors who have supported me
in finding my way to (and through) graduate school.

ii

ACKNOWLEDGEMENTS

During the course of performing research and writing this dissertation, I have

received immeasurable personal and professional support from my advisor Sharon

C. Glotzer, colleagues, mentors, friends, and family. I offer my sincere thanks to all

who have helped me take each step in this journey.

First, I would like to recognize my advisor Sharon C. Glotzer. Your scientific

vision and enthusiasm for discovery have inspired me to pursue hard questions and

push boundaries in all of my endeavors. It has been a true privilege to work with you

and share in the multitude of ideas that have shaped both my research and personal

growth through my doctoral studies. I additionally thank the thesis committee,

Bryan Goldsmith, Xiaoming Mao, Ashwin Shahani, and Kai Sun, for their time and

support in reviewing this dissertation.

I have been fortunate to have amazing colleagues and mentors within the Glotzer

group. I would like to thank Carl Simon Adorf, Vyas Ramasubramani, Rose Cer-

sonsky, Matthew Spellings, James Antonaglia, Brandon Butler, Chrisy Du, Kelly

Wang, Corwin Kerr, Tommy Waltmann, and Tobias Dwyer for your support as

peers, co-authors, and friends. To Shannon Moran, I offer special appreciation for

your extensive mentorship in scientific communication and many career chats along

the way. To Joshua Anderson, Jens Glaser, Timothy Moore, Julia Dshemuchadse,

and Domagoj Fijan, I thank you for your leadership as research scientists and post-

doctoral researchers, and the numerous contributions you made to my development

iii

as a computational scientist. Karen Coulter, your support keeps our lab afloat, and

I have been thankful for your guidance along every part of my journey at U-M.

Thanks also to Yezhi Jin for her amazing work as an undergraduate mentee in the

early stages of my crystallization pathways research.

Special thanks go to the team with whom I have collaborated on the signac project.

In addition to members of the Glotzer group Carl Simon Adorf, Vyas Ramasubra-

mani, Brandon Butler, Tim Moore, and Pengji Zhou, it has been a privilege to work

with Alyssa Travitz, Mike M. Henry, and Google Summer of Code mentee Hardik

Ojha as each of you have brought so much of yourselves to the project. It is amazing

to work with a team like this, where a common passion has enabled us to build a

community of scientists with many talents and a shared commitment to helping one

another.

Thanks to the many friendly physicists who I’ve gotten to know during my (pre-

pandemic) time in Ann Arbor – Noah Steinberg, Harry Liu, Elizabeth Drueke,

Matthew Day, Alec Kirkley, Dan McCusker, and Torben Purz, it has been a joy

to share living spaces, lunchtimes, and band practices with you. Adarash Mishra

and Annie Murphey, your friendship made every day in Ann Arbor exciting, and I

am thankful to have you in my life. I thank the optiMize staff and fellows, the DJs

of MEMCO, the band (Funktorial!/Local Optimist Club), and the REACT team for

opportunities to learn, grow, and play within caring communities.

I offer my gratitude to my mentors from William Jewell College: Patrick Bunton,

Maggie Sherer, Blane Baker, Jason Morrill, Lori Wetmore, Erin Martin, Azadeh

Rafizadeh, and Landon Young, all of whom saw potential in me and helped me to

develop as a scientist, scholar, and citizen throughout my undergraduate studies.

Finally, I thank Rosemary Camp and Ken Kramme, who sparked in me a passion for

iv

the intersection of physics and chemistry that has inspired every one of my academic

endeavors since.

During my PhD, I have been supported by two fellowships, first by National

Science Foundation Graduate Research Fellowship Grant DGE 1256260 (2016–2019),

and subsequently by a Molecular Sciences Software Institute Investment Fellowship

(2019–2021), from the National Science Foundation under ACI 1547580, S212: Impl:

The Molecular Sciences Software Institute [1, 2]. I thank the staff of the Molecular

Sciences Software Institute, particularly Doaa Altarawy, Jessica Nash, and Daniel

G. Smith, for their guidance on professionally designing and building community

around the open-source scientific software projects freud and signac. I also thank

the University of Michigan’s Michigan Institute for Computational Discovery and

Engineering (MICDE) for fellowship funding that provided computing resources used

in this research.

v

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGEMENTS . iii

LIST OF FIGURES . ix

LIST OF APPENDICES . xvi

ABSTRACT . xviii

CHAPTER

I. Introduction . 1

1.1 Why Simulations? . 1
1.2 What is a Pathway? . 2

II. Crystallization Pathways: Theory and Methods 6

2.1 Structural Descriptors and Order Parameters 10
2.2 Minkowski Structure Metrics . 12

2.2.1 Steinhardt Order Parameter ql, wl 13
2.2.2 Averaged Steinhardt Order Parameter ql, wl 14
2.2.3 Minkowski Structure Metrics q′l, w

′
l 15

2.2.4 Properties of Minkowski Structure Metrics 16
2.3 Order Parameters Using Machine Learning 17

2.3.1 The Descriptor Reduction Paradigm 18
2.3.2 Feature Engineering . 19
2.3.3 The Importance of Model Architecture 20
2.3.4 Machine Learning Methods for Structure Detection 20
2.3.5 Choosing Neighbors, Features, and ML Models 24

2.4 The Continuous Topological Order Parameter (CTOP) 27
2.5 UMAP Dimensionality Reduction . 29

2.5.1 Data Density on the CTOP Manifold 30
2.5.2 Mathematical Foundations of UMAP 31
2.5.3 Example: UMAP Applied to MNIST Images 33

III. Crystallization Pathways: Results . 35

3.1 Self-Assembly of Hard Polyhedra . 35
3.1.1 Hard Particle Monte Carlo Simulation Protocol 35

vi

3.1.2 Self-Assembly of Hard Polyhedra into fcc 36
3.1.3 Self-Assembly of Hard Polyhedra into bcc 40
3.1.4 Self-Assembly of Hard Polyhedra into sc 42

3.2 Self-Assembly of Complex Structures . 43
3.2.1 A15 Structure (cP8-Cr3Si) . 45
3.2.2 Diamond (cF8-C) . 48
3.2.3 σ Phase (tP30-CrFe) . 51
3.2.4 Decagonal Quasicrystal . 53
3.2.5 β-Mn Structure . 55

3.3 Comparisons of Pathways . 57
3.3.1 Monte Carlo and Molecular Dynamics Reveal Similar Paths 58
3.3.2 Comparing fcc, bcc, and sc Structures 59
3.3.3 Solid-Solid Transitions . 60
3.3.4 Comparing Many Pathways . 61

3.4 Outlook and Future Directions . 64
3.4.1 Experimental Applications of the CTOP Method 64
3.4.2 Local Symmetry Analysis with Point Groups 65
3.4.3 Applications to 2D Systems . 66
3.4.4 Handling Particle Shape with Set Voronoi Constructions 66
3.4.5 Minkowski Tensors and Continuous Morphometric Measures 67
3.4.6 Alternate Unsupervised Machine Learning Approaches 70
3.4.7 E3 Equivariant Neural Networks 71

IV. Predicting Properties of Photonic Crystals with Machine Learning 72

4.1 Photonic Materials and Machine Learning 72
4.1.1 Electromagnetic Waves in Heterogeneous Macroscopic Media . . . 73
4.1.2 Eigensolver Methods for Computing Photonic Bands 74

4.2 Past Approaches to Photonic Structure Design 74
4.3 Designing Convolutional Neural Networks for Predicting Photonic Properties 75

4.3.1 Data Preprocessing and Augmentation 75
4.3.2 Building a Scalable Model . 77
4.3.3 Iterations on CNN Model Architecture 79

4.4 Computing the Photonic Density of States 81
4.4.1 E3 Equivariant Models with Graph Convolutional Networks 84

4.5 Database of Photonic Crystal Structures . 86
4.6 Outlook and Future Directions . 87

V. The freud Library for Particle Analysis . 89

5.1 Introduction . 89
5.2 Library Design and Features . 90
5.3 Machine Learning Pipelines . 93
5.4 Performance and Real-Time Visualization . 93
5.5 Wide-Ranging Applications of Data Analysis in Particle Systems 94
5.6 Outlook and Future Directions . 95

VI. The signac Framework for Data Management and Workflow Automation 97

6.1 Introduction . 97
6.2 Data Model and Integration with Scientific Applications 98
6.3 HDF5 Data Stores . 100
6.4 Improving Performance and Scalability . 102
6.5 signac-dashboard: Visualizing Research Data 105

vii

6.5.1 Dashboard Features . 105
6.6 Outlook and Future Directions . 108

VII. Conclusions . 110

APPENDICES . 115

BIBLIOGRAPHY . 162

viii

LIST OF FIGURES

Figure

2.1 Visualization of the Voronoi polyhedra for an fcc system. The Voronoi cells of this
noisy fcc structure are slightly distorted rhombic dodecahedra. This rendering uses
plato [3] and pythreejs [4]. 15

2.2 Overview of machine learning algorithms. Figure adapted from the documentation
of scikit-learn [5]. 17

2.3 Many machine learning approaches for quantifying order in particle systems follow
a paradigm where a high-dimensional feature space is constructed through the com-
putation of descriptors for each particle and then reduced into a low-dimensional
representation such as a class identifier. 18

2.4 Common neighbor definitions for the particle shown in red. Neighbors are shown
in green. Figure from Ref. [6] with permission. (a) The Voronoi polygon for the
particle is shaded red. The edges in bold red define which particles are neighbors.
The blue bonds form the dual of the Voronoi diagram, called the Delaunay graph.
(b) Neighbors found using the Voronoi diagram. Note that the furthest neighbor
has a small edge in the Voronoi diagram in (a), so its neighbor weight is small. (c)
Neighbors found using a cutoff radius rmax. (d) Neighbors found using k-nearest
neighbors, k = 6. 25

2.5 The variants of the Continuous Topological Order Parameter (CTOP). 27

2.6 The CTOP order parameter is a continuous function of particle positions, and can
be mapped continuously into a low-dimensional representation using UMAP. . . . 29

2.7 (a) Sample 28 × 28 pixel images of digits 3, 1, 4 from the MNIST data set. (b)
UMAP embedding of the MNIST data set into two dimensions. (c) UMAP embed-
ding of the MNIST data set into three dimensions. Visualization generated using
Plotly [7]. 34

ix

3.1 (a) A 2D UMAP embedding of the 6-dimensional CTOPq self-assembly pathway
of 15,625 hard icosahedra crystallizing from a fluid into the fcc structure cF4-Cu.
Each point in the scatter plot corresponds to the CTOPq embedding for one of the
particles at a given point in time. Color indicates simulation time, as the system
progresses from fluid (purple and dark blue-green) to solid (light green and yellow).
Solid circles show the mean of the data over time. (b) A 2D UMAP embedding of
the 6-dimensional CTOPq as shown in (a), colored by a reference analysis method,
Polyhedral Template Matching, computed by OVITO [8, 9]. This demonstrates
that clusters of the CTOPq embedding correspond to local environments, with the
one side of the image predominantly marked as “Other” (fluid particles) while the
other side is predominantly marked as fcc (solid particles). The hcp defects, shown
in red, cluster in an area slightly away from the fcc part of the manifold, because
hcp particles share many (but not all) symmetries with fcc particles. (c) The
reference analysis method, Polyhedral Template Matching, shows the emergence of
particles in an hcp local environment, followed by the formation of a predominantly
fcc phase. The black vertical line indicates the step at which the target packing
fraction of φ = 0.52 was reached. See (b) for the structure corresponding to each
color. (d) Snapshot of the final frame of the simulation. Particles are colored by
their environment type (fcc-like in green, hcp-like in red, bcc-like in blue). The
simulation protocol is described in Section 3.1.1. The system is slowly compressed
to a target packing fraction over the course of the simulation. 37

3.2 (a) The CTOPq embedding of icosahedra self-assembling fcc at a target packing
fraction of φ = 0.54. (b) The CTOPqw embedding shows three clusters: two fcc
clusters and one hcp cluster. (c) The self-assembly progress as a function of time.
Note that zero particles show fluid-like order in their second shell in the final frame.
This demonstrates how the addition of second-shell order can assist in separating
solid and fluid phases in feature space. (d) Snapshot of the final frame of the
simulation, which shows hcp stacking faults in the fcc crystal. 39

3.3 (a) A 2D UMAP embedding of the 6-dimensional CTOPq self-assembly pathway
of 15,625 hard cuboctahedra crystallizing from a fluid into the bcc structure cI 2-
W. Each point in the scatter plot corresponds to the CTOPq embedding for one
of the particles at a given point in time. Color indicates simulation time, as the
system progresses from fluid (purple and dark blue-green) to solid (light green and
yellow). Solid circles show the mean of the data over time. (b) UMAP embedding
of CTOPq, colored by a reference analysis method, Polyhedral Template Matching,
computed by OVITO [8, 9]. Here, the particles identified as fcc and hcp environ-
ments persist into the final frame shown in (d). (c) The reference analysis method,
Polyhedral Template Matching, shows the emergence of particles in an hcp local
environment, followed by the formation of a predominantly fcc phase. The black
vertical line indicates the step at which the target packing fraction of φ = 0.63 was
reached. See (b) for the structure corresponding to each color. (d) Snapshot of
the final frame of the simulation. See (b) for the structure corresponding to each
color. The simulation protocol is described in Section 3.1.1. The system is slowly
compressed to a target packing fraction over the course of the simulation. 41

3.4 (a) Number of particles in each cluster of the CTOPq feature space. The trend
for environment 0 (blue) closely follows the number of bcc-like particles identified
by Polyhedral Template Matching in Figure 3.3(c). (b) A rendering of the final
simulation frame, colored by clusters in the CTOPq feature space. The particles in
environment 1 (orange) correspond to the same regions as the fcc, hcp, and “other”
particles seen in Figure 3.3(d). 42

x

3.5 Self-assembly of cubes into a simple cubic structure at a packing fraction of 0.61.
(a) UMAP embedding of CTOPq, colored by Polyhedral Template Matching. (b)
UMAP embedding of CTOPqw, colored by Polyhedral Template Matching. (c)
Counts of all particles in the solid cluster of (b), and counts of the largest contiguous
cluster of solid-like particles. See text for details. (d) Snapshot of the final frame
of the simulation. 43

3.6 (a) UMAP embedding of the 9-dimensional CTOPqw self-assembly pathway of
15,625 particles crystallizing from a fluid into the A15 structure cP8-Cr3Si. Each
point in the scatter plot corresponds to the CTOPqw embedding for one of the
particles at a given point in time. Color indicates simulation time, as the system
progresses from liquid (purple and dark blue-green) to solid (light green and yellow).
Solid circles show the mean of the data over time. Each type of local environment
present in the final structure (Cr-like and Si-like) appears as a cluster in the embed-
ding. (b) Snapshot of the final frame of the simulation. The inset shows the A15
unit cell [10]. Particles are colored by their environment type cluster, shown in (c)
(Cr-like in blue, Si-like in orange). The defect and liquid-like particle environments
(colored green) form a grain boundary. (c) Clustering by CTOPqwqw readily shows
the dominant clusters’ local environments. The inset shows the CTOPqwqw feature
space. (d) This shows the counts of each cluster in CTOPqwqw as a function of
time. The Cr and Si environments appear at the same time, and are in roughly a
3:1 proportion as is expected from the chemical formula of the prototype structure. 45

3.7 (a) UMAP embedding of the 18-dimensional CTOPqwqw self-assembly pathway of
15,625 particles crystallizing from a fluid into the diamond structure cF8-C. Each
point in the scatter plot corresponds to the CTOPqwqw embedding for one of the
particles at a given point in time. Color indicates simulation time, as the system
progresses from liquid (purple and dark blue-green) to solid (light green and yellow).
Solid circles show the mean of the data over time. (b) Snapshot of the final frame
of the simulation. Particles are colored by their environment type cluster, shown in
(c). The dominant environment 0 particles have not crystallized to the cF8-C local
structure, described further in the text. The diamond-like environment 1 is colored
orange. The fluid-like particle environment 2 is colored green. (c) Clustering by
CTOPqwqw readily shows the dominant clusters’ local environments. The inset
shows the CTOPqwqw feature space. (d) This shows the counts of each cluster in
CTOPqwqw as a function of time. The Cr and Si environments appear at the same
time, and are in roughly a 3:1 proportion as is expected from the chemical formula
of the prototype structure. 48

3.8 (a) 3D UMAP embedding of the 18-dimensional CTOPqwqw self-assembly pathway
of 15,625 particles crystallizing from a fluid into the diamond structure cF8-C. Each
point in the scatter plot corresponds to the CTOPqwqw embedding for one of the
particles at a given point in time. Color indicates simulation time, as the system
progresses from liquid (purple and dark blue-green) to solid (light green and yellow).
Visualization generated using Plotly [7]. (b) Another view of the embedding in (a). 50

xi

3.9 (a) UMAP embedding of the 9-dimensional CTOPq self-assembly pathway of 15,625
particles crystallizing from a fluid into the structure tP30-CrFe. Each point in the
scatter plot corresponds to the CTOPq embedding for one of the particles at a
given point in time. Color indicates simulation time, as the system progresses from
liquid (purple and dark blue-green) to solid (light green and yellow). Solid circles
show the mean of the data over time. (b) Snapshot of the final frame of the sim-
ulation. Particles are colored by their environment type cluster, shown in (c) and
described in the text. (c) Clustering by CTOPqwqw readily shows the dominant
clusters’ local environments. The inset shows the CTOPqwqw feature space. (d)
This shows the counts of each cluster in CTOPqwqw as a function of time. 52

3.10 (a) UMAP embedding of the 12-dimensional CTOPqw self-assembly pathway of
15,625 particles crystallizing from a fluid into the structure tP30-CrFe. Each point
in the scatter plot corresponds to the CTOPq embedding for one of the particles
at a given point in time. Color indicates simulation time, as the system progresses
from liquid (purple and dark blue-green) to solid (light green and yellow). Solid
circles show the mean of the data over time. (b) Snapshot of the final frame of the
simulation. Particles are colored by their environment cluster. Solid-like particles in
environment 0 are blue. Fluid-like and defect particles in environment 1 are orange.
(c) Clustering by CTOPqw distinguishes fluid from solid, but cannot identify the
Wyckoff positions or their local symmetries. (d) The CTOPq embedding previously
shown in Figure 3.9, colored by clusters in the CTOPqw space. (e) The counts of
each cluster in CTOPqw as a function of time, showing the fluid to crystal transition
with only a small number of fluid-like particles remaining as defects in the crystal
structure shown in (b). 54

3.11 UMAP embedding of a decagonal quasicrystal self-assembling. Simulation data
provided by Kelly Wang. 55

3.12 (a) Snapshot of the self-assembled β-Mn structure formed by 15,625 truncated
dodecahedra. Particles are colored arbitrarily for high contrast. The bond order
diagram in the upper left and radial distribution function in the lower left confirm
that the obtained structure is β-Mn. (b) UMAP embedding of the 18-dimensional
CTOPqwqw self-assembly pathway of 15,625 particles crystallizing from a fluid into
the β-Mn structure. Each point in the scatter plot corresponds to the CTOPqwqw

embedding for one of the particles at a given point in time. Color indicates simu-
lation time, as the system progresses from liquid (purple and dark blue-green) to
solid (light green and yellow). Solid circles show the mean of the data over time.
(c) The CTOPqwqw UMAP embedding, colored by Polyhedral Template Matching. 56

3.13 A co-embedding of four different simulations transitioning between fluid and fcc
structures. The simulation times are normalized such that the dark purple color is
the initial state and light yellow is the final state. (a) UMAP of the hard icosahedra
compressed to φ = 0.52, previously shown in Figure 3.1. (b) UMAP of the hard
icosahedra compressed to φ = 0.54, previously shown in Figure 3.2. (c) UMAP
of WCA spheres at kT = 0.03. WCA self-assembly simulation data provided by
Allen LaCour. (d) A simulation of hard spheres initialized in a close-packed fcc
structure and slowly expanded, allowing the solid to melt into a fluid. Note that
the color scheme is reversed for this simulation because it begins in an fcc solid
(dark purple) and melts to the fluid (yellow). 58

xii

3.14 A co-embedding of three different simulations in the CTOPq feature space. The
simulation times are normalized such that the lighter color is the initial state (fluid)
and the darker color is the final state (solid). Colors are chosen arbitrarily to
help identify the data in the co-embedding. (a) UMAP of the hard icosahedra
compressed to φ = 0.52, previously shown in Figure 3.1. (b) UMAP of the hard
cuboctahedra compressed to φ = 0.63, previously shown in Figure 3.3. (c) UMAP
of the hard cubes compressed to φ = 0.61, previously shown in Figure 3.5. (d) The
co-embedding with all simulations shown on the same axes. 59

3.15 A co-embedding of three different simulations in the CTOPqw feature space. Color
schemes are chosen arbitrarily to help identify the data in the co-embedding. The
average UMAP value for each frame is shown in a series of circles colored by the
frame time. (a) UMAP of the hard icosahedra compressed to φ = 0.52, previously
shown in Figure 3.1. (b) UMAP of the hard cuboctahedra compressed to φ = 0.63,
previously shown in Figure 3.3. (c) UMAP of a solid-solid phase transition (fcc
to bcc). Data provided by Chrisy Xiyu Du [11]. (d) The co-embedding with all
simulations shown on the same axes. The UMAP averages of each trajectory form
a triangle for the fluid, fcc, and bcc states. 60

3.16 A co-embedding of 10 different simulations in the CTOPq feature space. The
subfigures show the pathway embeddings of 8 of the simulations (selected as rep-
resentative trajectories of the whole). Clockwise from top, the embedding shows
local environments from the A15 (cP8-Cr3Si), σ-CrFe (tP30-CrFe), fcc (cF4-Cu)
and hcp (hP2-Mg), bcc (cI 2-W), sc (cP1-Po), clathrate-I (cP54-K4Si23), and di-
amond (cF8-C) crystal structures. Color schemes are chosen arbitrarily to help
identify the data in the co-embedding. Some trajectories shown were provided by
Carl Simon Adorf, Sangmin Lee, and Allen LaCour. 62

3.17 Illustration of the linearly independent Minkowski tensors. (a) In two dimensions,
there are four linearly independent Minkowski tensors. (b) In three dimensions
there are six. Taken from Ref. [12] with permission. 68

4.1 The flow of data from an input crystal structure to a predicted photonic band
structure. The dielectric image ε(r) is generated from the input crystal structure
and processed by a deep neural network (the figure shows a simplified model) to
predict the band frequencies ωn(k, ε(r)) for each band number n in the first 20
bands and each wavevector k in the band path over the Irreducible Brillouin Zone
(IBZ). 76

4.2 Benchmark on Summit (Oak Ridge National Laboratory) for scaling the training
of a deep CNN machine learning model. Shown is time to train our model for 1
epoch vs. number of nodes. The strong scaling is nearly ideal, up to the tested
limit of 1024 nodes (6144 NVIDIA V100 GPUs in total). 77

4.3 The MPB calculated photonic band structure (left) compared with the band struc-
ture prediction of our trial ML model, labeled cnn2 (right). The band structure
above was predicted after training the model on the XSEDE Bridges GPU-AI par-
tition for 50 epochs on a dataset consisting of only 127 sample structures using 10
random rotations. The dielectric structure is diamond (cF8-C) with particles at the
lattice sites having a radius of 0.2 times the length of a unit cell. The trial model
learns curvature near the gamma point, but otherwise converges to the average
band frequency value over all k vectors. 79

xiii

4.4 Densities of states computed for two crystal structures exhibiting band gaps. (a)
The band structure and density of states for the diamond structure (cF8-C) with
dielectric sphere radius r = 0.24. (b) The band structure and density of states for
the β-cristobalite structure (cF24-SiO2) with dielectric sphere radius r = 0.24. . . 83

4.5 Histogram of ωmax for the 2,400 crystal structures in space group 227 whose den-
sities of states were computed. 83

4.6 Screenshots of the photonics database online, produced to accompany Ref. [13]. . 86

5.1 Common Python tools for simulation analysis at varying length scales. The freud li-
brary is designed for nanoscale systems, such as colloidal crystals and nanoparticle
assemblies. In such systems, interactions are described by coarse-grained models
where particles’ atomic constituents are often irrelevant and particle anisotropy
(non-spherical shape) is common, thus requiring a generalized concept of particle
“types” and orientation-sensitive analyses. These features contrast the assumptions
of most analysis tools designed for biomolecular simulations and materials science. 91

5.2 Overview of data visualization tools that can be coupled with the freud library. (a)
Interactive visualization of a Lennard-Jones particle system, rendered in a Jupyter
notebook using plato [3] with the pythreejs backend [4]. (b) Hard tetrahedra col-
ored by local density, path traced with fresnel [14]. (c) A crystalline grain identified
using freud’s LocalDensity module and cut out for display using OVITO [9]. The
image shows a tP30-CrFe structure formed from an isotropic pair potential opti-
mized to generate this structure [15]. 93

5.3 Cluster analysis of buildings in three American cities, revealing different levels of
city “crystallinity.” Figure reproduced from Ref. [16] under the Creative Commons
Attribution International 4.0 License. 94

6.1 Overview of the signac framework. Users first create a project, which initializes a
workspace directory on disk. Users define state points which are dictionaries that
uniquely identify a job. The workspace holds a directory for each job, containing
JSON files that store the state point and job document. The job directory name
is a hash of the state point’s contents. Here, the init.py file initializes an empty
project and adds one job with state point {"a": 1}. Next, users define a workflow
using a subclass of signac-flow’s FlowProject. The workflow shown has three
operations (simulate, analyze, visualize) that, when executed, produce two new
files results.txt and plot.png in the job directory. Special thanks to Kelly
Wang for contributing the design and concept of this figure. 99

6.2 Aggregation, groups, and bundling allow users to build complex workflows. The
features are orthogonal, and can be used in any combination. Aggregation enables
one operation or group to act on multiple jobs. Groups allow users to combine
multiple operations into one, with dependencies among operations resolved at run
time. Bundling helps users efficiently leverage HPC schedulers by submitting mul-
tiple commands in the same script, to be executed in serial or parallel. 103

6.3 An example of signac-dashboard showing the image viewer modules with data
collected for Chapter III. 106

6.4 Additional examples of signac-dashboard. (a) Custom job titles are shown for
each job, generated by a overridden job title function. (b) The StatepointList

module shows the keys and values for the job state point in the upper left. 108

xiv

7.1 “Dependency” by Randall Munroe. Alternate text: “Someday ImageMagick will
finally break for good and we’ll have a long period of scrambling as we try to
reassemble civilization from the rubble.” Reproduced under a Creative Commons
Attribution-NonCommercial 2.5 License. Source: https://xkcd.com/2347/ 112

A.1 Common Python tools for simulation analysis at varying length scales. The freud li-
brary is designed for nanoscale systems, such as colloidal crystals and nanoparticle
assemblies. In such systems, interactions are described by coarse-grained models
where particles’ atomic constituents are often irrelevant and particle anisotropy
(non-spherical shape) is common, thus requiring a generalized concept of particle
“types” and orientation-sensitive analyses. These features contrast the assumptions
of most analysis tools designed for biomolecular simulations and materials science. 117

A.2 Comparison of runtime for neighbor finding algorithms in freud and SciPy for
varied system sizes. See text for details. 121

A.3 Histogram of the Steinhardt Q6 order parameter for 4000 particles in simple cubic,
body-centered cubic, and face-centered cubic structures with added Gaussian noise. 124

A.4 UMAP of particle descriptors computed for simple cubic, body-centered cubic, and
face-centered cubic structures of 4000 particles with added Gaussian noise. The
particle descriptors include Ql for l ∈ {4, 6, 8, 10, 12}. Some noisy configurations of
bcc can be confused as fcc and vice versa, which accounts for the small number of
errors in the support vector machine’s test classification. 127

A.5 Interactive visualization of a Lennard-Jones particle system, rendered in a Jupyter
notebook using plato with the pythreejs backend. 128

A.6 Hard tetrahedra colored by local density, path traced with fresnel. 130

A.7 A crystalline grain identified using freud’s LocalDensity module and cut out for
display using OVITO. The image shows a tP30-CrFe structure formed from an
isotropic pair potential optimized to generate this structure [15]. 132

B.1 Overview of the signac framework. Users first create a project, which initializes a
workspace directory on disk. Users define state points which are dictionaries that
uniquely identify a job. The workspace holds a directory for each job, containing
JSON files that store the state point and job document. The job directory name
is a hash of the state point’s contents. Here, the init.py file initializes an empty
project and adds one job with state point {"a": 1}. Next, users define a workflow
using a subclass of signac-flow’s FlowProject. The workflow shown has three
operations (simulate, analyze, visualize) that, when executed, produce two new
files results.txt and plot.png in the job directory. Special thanks to Kelly
Wang for contributing the design and concept of this figure. 136

B.2 Aggregation, groups, and bundling allow users to build complex workflows. The
features are orthogonal, and can be used in any combination. Aggregation enables
one operation or group to act on multiple jobs. Groups allow users to combine
multiple operations into one, with dependencies among operations resolved at run
time. Bundling helps users efficiently leverage HPC schedulers by submitting mul-
tiple commands in the same script, to be executed in serial or parallel. 147

xv

LIST OF APPENDICES

Appendix

A. Analyzing Particle Systems for Machine Learning and Data Visualization with freud 116

A.1 Abstract . 116
A.2 Introduction . 117

A.2.1 Data Pipelines . 119
A.3 Performance and Integrability . 120
A.4 Machine Learning . 123
A.5 Visualization . 126

A.5.1 plato . 128
A.5.2 fresnel . 129
A.5.3 OVITO . 131

A.6 Conclusions . 132
A.7 Getting freud . 133
A.8 Acknowledgments . 133

B. signac: Data Management and Workflows for Computational Researchers 135

B.1 Abstract . 135
B.2 Introduction . 136
B.3 Structure and Implementation . 138
B.4 Applications of signac . 140
B.5 Overview of New Features . 142

B.5.1 Data Archival . 142
B.5.2 Improved Data Storage, Retrieval, and Integrations 143
B.5.3 Data Visualization and Integrations 144
B.5.4 Performance Enhancements . 145
B.5.5 Improved User Output . 146
B.5.6 Enhanced Workflows . 146

B.6 Executing Complex Workflows via Groups and Aggregation 147
B.6.1 Groups . 149
B.6.2 Aggregation . 150
B.6.3 Bundling . 151
B.6.4 Cluster Templates . 152

B.7 Synced Collections: Backend-Agnostic, Persistent, Mutable Data Structures 153
B.7.1 Motivation . 153
B.7.2 Summary of Features . 154
B.7.3 Applications of Synced Collections 155

B.8 Project Evolution . 157
B.9 Conclusions . 159

xvi

B.10 Installing signac . 159
B.11 Acknowledgments . 160
B.12 Author Contributions . 160

xvii

ABSTRACT

The ability to engineer the kinetic and thermodynamic processes by which nanopar-

ticles and colloids form crystals would open new possibilities for materials design.

Simulations, coupled with data science and machine learning, can open new frontiers

towards obtaining this kind of control over matter at the nanoscale. We need novel

approaches in theory and computation to bridge the perspectives of forward design

(predicting the properties of a material from its components and their interactions)

and inverse design (predicting components and interactions that produce a desired

set of material properties). In Chapter I, I provide background about materials

design via self-assembly and outline the questions I address in this dissertation.

In Chapter II, I present mathematical and physical motivation for a new struc-

tural descriptor, the Continuous Topological Order Parameter (CTOP), for analyz-

ing crystallization pathways during self-assembly from a microscopic (particle-local)

perspective. The CTOP is comprised of Minkowski Structure Metrics and captures

continuous deformations in particles’ local environments, which we express as a high-

dimensional feature space. This space is coupled with the topology-preserving Uni-

form Manifold Approximation and Projection (UMAP) dimensionality reduction al-

gorithm to produce a continuous mapping from particles’ local environments into

interpretable self-assembly pathways.

In Chapter III, I apply the CTOP method to a wide range of nanoparticle systems

undergoing self-assembly. I directly investigate the CTOP manifold to illuminate as-

xviii

pects of the crystallization process in many types of simple and complex crystals.

Hard Particle Monte Carlo and molecular dynamics simulations of pair potentials are

analyzed, resulting in a diverse array of self-assembled crystal structures with unit

cells ranging from one to 54 particles. I apply unsupervised learning methods to the

pathways revealed by the CTOP method, enabling identification of particles’ local

environments in self-assembling systems including Frank-Kasper phases and decago-

nal quasicrystals. Next, I show comparisons of pathways with this method, including

solid-solid phase transitions. The chapter closes with a discussion of this method’s

implications for the study of self-assembly, and an outlook on how continuous feature

spaces may inspire future analyses and engineering applications.

Chapter IV presents a study of machine learning applied to photonic crystals

developed in an effort to accelerate photonic materials design. I discuss the develop-

ment of convolutional neural networks and equivariant neural networks for predicting

photonic properties. I conclude with a discussion of photonic densities of states and

equivariance in physics-based machine learning, which may provide further insight

on this challenging problem.

Chapter V covers my contributions as a core developer and maintainer of the

freud library, an open-source software package used for data analysis in this disser-

tation. I describe the use of the freud library in machine learning pipelines and data

visualization, and summarize publications using freud (33 to date) across the fields

of soft matter, statistical mechanics, and particle-based simulation.

In Chapter VI, I discuss my contributions as a core developer and maintainer

of the open-source signac data management framework, which helps researchers

execute reproducible computational studies, scaling from laptops to supercomputers

and emphasizing portability and fast prototyping. I describe the framework’s data

xix

model, HDF5 data stores for large numerical arrays, enhancements to performance

and scalability, and the signac-dashboard application for data visualization.

Finally, I conclude with a summary of the work presented in this dissertation and

insights for future research in the field of self-assembly pathways, photonics, and

software designed for computational researchers.

xx

CHAPTER I

Introduction

1.1 Why Simulations?

The ability of scientists and engineers to create new materials drives advances in

many fields. As humanity’s scientific understanding of the universe around us has

increased, so has our ability to control matter at every length scale. This level of

control comes from a fusion of theoretical, computational, and experimental knowl-

edge. Within computational materials science, there are several key frontiers being

explored. One such frontier is that of system size, which is key to understanding nu-

anced statistical behaviors of complex systems and the dynamics of systems where

microscopic and macroscopic phenomena are interdependent, such as in large macro-

molecules. In the space of particle simulations, we have seen computational power

progress from Fermi et al. performing molecular dynamics of 64 particles in 1954 [17]

to the present day, where massive supercomputers have enabled simulations of a bil-

lion atoms [18]. The power of simulation and computational methods has grown by

so many orders of magnitude because of combined advances in hardware, software,

theory, and algorithms (so much that our ability to generate new data sometimes

exceeds our ability to analyze it).

Another frontier is that of computational materials design: we must bridge the

1

gaps between forward design (predicting the properties of a material from its compo-

nents and their interactions) and inverse design (predicting components and interac-

tions that produce a desired set of material properties). Handling high-dimensional

design spaces is challenging, though approaches for inverse design and machine learn-

ing have shown promise in this area [19, 15, 20]. For example, there are a huge number

of problems in the study of materials that can be phrased in terms of optimization,

opening opportunities for emerging tools from data science and machine learning. As

a result, machine learning algorithms complement standard tools of the field, with

adoption of machine learning rapidly increasing across the physical sciences.

Overall, computational power in the form of massive simulations, data analysis,

and machine learning allows us to uncover patterns in the makeup of both every-

day and exotic substances. While simulations do have limitations, they also allow

scientists to enter a world where the laws of physics can be studied in a pure form

– frictionless, idealized, and precise models that allow us to reduce the real world

into a frame where the most important effects can be measured, interactions can

be tweaked at any time, and the ruling truths can be derived from mathematical

foundations.

1.2 What is a Pathway?

The study of phase transformations encompasses some of the broadest questions in

physics and materials science. The diversity of ordered crystal phases covers many

orders of length scales, with particles ranging from atoms to molecules to macro-

molecules to nanoparticles to colloids. At the atomic scale, metal alloys freeze into

solid crystals. Water molecules typically form hexagonal layers called ice Ih, but un-

der the right temperature and pressure conditions can exist in many other crystalline

2

forms. However, there are many ways to achieve interesting crystal structures with-

out low temperature and high pressure conditions. Consider larger building blocks:

for example, proteins and other biomolecules can be crystallized in solution. At the

nanometer and micron scale, nanoparticles and colloids can self-organize into a wide

range of complex crystalline structures.

The key commonality among all of these phase transformations is that the in-

dividual components interact with one another to collectively produce an ordered

phase with lower free energy. However, we have yet to uncover a comprehensive

microscopic theory of precisely how these building blocks arrange to form ordered

structures. Systems of particles seem to coordinate a complex sequence of motions,

driven by fluctuations that allow them to locally explore their phase space. Macro-

scopic theories such as Classical Nucleation Theory (CNT) help to explain some

first-order phase transitions, but there are still many phenomena that are not well

described by CNT [21]. By zooming in on microscopic processes, we hope to provide

new perspectives on the kinetic and thermodynamic factors that influence crystal-

lization, uncovering pathways that can one day be engineered.

In this dissertation, we specifically focus on a few questions pertaining to micro-

scopic understandings of the pathways by which crystalline solids form:

• What happens at the level of individual atoms or nanoparticles when they self-

organize from a fluid into a crystal?

• What – and how many – unique local environments (or motifs) emerge along

the kinetic pathway from liquid to crystal?

• How can we find the important local motifs in real time without prior knowledge

of what to look for?

3

We will also explore comparisons between crystallization pathways:

• Do atoms and nanoparticles that form the same crystal structure do so in the

same way? If not, how many different kinetic pathways are there for a given

crystal structure, and in what ways do they differ?

• Do large unit cell crystals, whether atomic or colloidal, follow kinetic pathways

that are more “complex” (in some way) than simple crystals’ pathways?

We begin to investigate these questions via the analysis of hundreds of particle-

level simulations of crystallization pathways, across a wide range of interaction types

and crystal structures. We present an approach applying unsupervised machine

learning for dimensionality reduction and manifold learning through the use of the

Uniform Manifold Approximation and Projection (UMAP) technique [22]. The man-

ifold we explore is a novel structural descriptor developed for this work, called the

Continuous Topological Order Parameter (CTOP), which is composed of a set

of features called Minkowski Structure Metrics [6] that capture continuous changes

in particles’ local environments. UMAP produces a low-dimensional embedding of

the high-dimensional descriptor data (features) while preserving its topological struc-

ture. We show that the CTOP analysis method can be applied in an autonomous and

parameter-free way to characterize crystallization in a variety of single-component

and multi-component, simple and complex, self-assembling colloidal systems. This

method is designed from the ground up with a focus on understanding microscopic

dynamics, building on particle-local descriptors commonly used for identifying equi-

librium structures. We expand the theoretical and practical utility of past work in

analyzing equilibrium structures by emphasizing the use case of analyzing fluid-to-

solid phase transitions and crystal formation with physically-motivated design of the

4

high dimensional feature-space and its topology. Finally, we will discuss how the

topology and geometry of the structural descriptor’s high-dimensional feature space

offer insight about generalizing the study of crystal formation and comparing order

across crystal structures.

5

CHAPTER II

Crystallization Pathways: Theory and Methods

In this chapter, I discuss the field of crystallization pathways and motivate the

use of a structural descriptor, the Continuous Topological Order Parameter (CTOP),

that can be applied in an autonomous and parameter-free way to characterize crys-

tallization.

Designed for use in an unsupervised setting, the CTOP and its UMAP embed-

ding permit the discovery of local environments along the crystallization pathway

without having to know what to look for a priori, revealing information pertinent

to microscopic processes. This is critical since in most cases we do not know a reac-

tion coordinate or an order parameter for the phase transition. As an unsupervised

method, UMAP gives us the ability to consider the manifold structure of the features

without the need to build and classify a training set of data. This makes the UMAP

ML approach fundamentally different from many current uses of supervised ML in

the context of crystallization and self-assembly. Our approach reveals how fluctua-

tions change local structures by sampling a continuous, high dimensional manifold

and mapping out precisely how local environments change over that manifold. With

this information in hand, we have a detailed, microscopic understanding of how a

variety of systems – primarily nanoparticles and colloids in the scope of this chapter,

6

but potentially extending to atomic or biomolecular systems – assemble into a crystal

from a liquid, across the entire kinetic pathway.

This approach complements and can be used alongside rare-event sampling (ad-

vanced sampling) methods used for the calculation of macroscopic quantities rele-

vant for crystallization like nucleation rates and free energy barriers. First, we aim

to study crystallization processes particle-by-particle, to discover the time-dependent

sequence of microscopic processes that moves a system along the crystallization path-

way from disorder to order. We seek the local particle environments (motifs) along

the pathway, without assumptions as to what these motifs might look like. Our

goal is to identify pathway “fingerprints” unique to the microscopic pathway a given

system takes during self-assembly. By comparing fingerprints among many systems

forming the same structure via different interactions, we can offer new insight on the

fundamental questions enumerated above and hopefully offer hints towards a gen-

eral, microscopic theory of self-assembly. It is also a necessary step for the rational

development of design rules that can guide the synthesis of new nanomaterials by en-

gineering both the nanoparticle building blocks and their kinetic assembly pathway

simultaneously. Though there are many possible building blocks that can target a

given thermodynamic phase and crystal structure, the ability to engineer the pathway

of formation itself would enable a new level of control over self-assembly involving

both thermodynamics and kinetics.

Many published studies of crystallization and self-assembly focus primarily on a

single system (e.g., water, CaCO3, hard spheres) or a single model, where techni-

cal details of the calculations are strongly coupled to the properties of the different

phases. We show that unsupervised ML techniques can be used to describe a wide

range of particle-based models along their nonequilibrium assembly pathways, inde-

7

pendent of the details of the model. Past work has demonstrated pair potentials [15]

and particle shapes that self-assemble from fluid phases into a diversity of crystal

structures [23, 20, 24], which motivates the choices of systems that we analyze in this

chapter. This study is made possible by our group’s development of open-source soft-

ware, particularly the data management software signac [25, 26], the freud library

for analyzing particle simulations [27], and the GPU-optimized molecular simula-

tion code HOOMD-blue [28], as well as other open-source software developed by the

scientific Python community.

Previous work [29, 30] has developed unsupervised analysis methods for the analy-

sis of diverse crystal structures and the kinetic pathways by which they form. We will

build on these methods, incorporating physical invariants and tools from topological

data analysis to develop a ML framework that characterizes the manifold structure

of particle local environments. Our proposed framework has three steps:

(1) First, we compute local descriptors that can quantify local order in a contin-

uous way. Current methods for studying crystallization perform structure-specific

classification of particles (e.g., into face-centered-cubic-like and liquid-like, whether

by supervised ML or a threshold value of some structural descriptor) [29, 30, 31, 32,

33, 34, 8, 35]. Two key issues arise here: first, local descriptors computed using a

particle neighborhood defined by a cutoff distance or number of nearest neighbors

are typically discontinuous. In a fluid state, particles near the edge of a cutoff dis-

tance will enter and exit the neighbor shell, which usually causes jumps in the local

descriptor’s value. Second, classification (or thresholding values, such as choosing

particles with a Steinhardt order parameter q6 > 0.4) usually results in a sharp line

drawn between fluid-like and solid-like environments, even though those distinctions

8

are not always clear.1 Avoiding such jumps and arbitrary thresholds in local struc-

tural descriptors would be beneficial for structural analysis. Therefore, we leverage

structure-agnostic, continuous local structure descriptors, a nontrivial and different

approach that is more generalizable, more capable of distinguishing subtle differences

in local environments, and parameter-free. We will use continuous local descriptors

as features, such as Minkowski Structure Metrics (MSMs) [6] that are not only rota-

tionally and translationally invariant, but also scale invariant, generalizable to many

crystal structures, and able to quantify local disorder. MSMs can be computed effi-

ciently by using the freud analysis library, an open-source Python package [27]. We

expand this argument for continuity, and how Minkowski Structure Metrics resolve

it, in Section 2.3.5.

(2) Second, we build a vector of these continuous descriptors to represent parti-

cle local environments and distinguish between the local environments of different

crystal structures. Concatenating these descriptors into a vector produces a high-

dimensional manifold (a topological space that locally resembles Euclidean space)

where distances between two points are related to the structure of the corresponding

particles’ local environments. That is, vectors that are similar in feature space cor-

respond to particle environments that are similar in “real” space. However, making

observations about the feature space is difficult because of its high dimensionality.

This high dimensionality arises from the fact that each of the N particles in the

system is described by an f -dimensional vector, where f is the number of features,

or descriptors. Typically N � f , which is necessary for adequately sampling the

manifold.

(3) Finally, we embed the manifold in a low number of dimensions (2D or 3D),

1As far back as Lindemann in 1910, the line at which a solid melts into a fluid has been drawn, with homogeneous
bulk melting occuring when particle vibrations exceed a threshold [36].

9

preserving topological structure. We will use the Uniform Manifold Approximation

and Projection (UMAP) dimensionality reduction technique, which produces a low-

dimensional embedding of the high-dimensional data while preserving its topological

structure. The local connectedness of the manifold, derived from the descriptors’

continuity and UMAP’s topological preservation, is the key to this method’s utility.

We discuss topological preservation further in Section 2.5.

The UMAP embedding of particle descriptors carries a rich description of the

underlying particle environments and crystallization process. The most interesting

quality of this embedding space is that the changes in local symmetries caused by

particle rearrangements appear as continuous paths in this embedding space. That

is, during crystallization, particles traverse the embedded space from a fluid-like

cluster2 to a solid-like cluster, in accordance with changes in their local environment.

By computing UMAP projections of combined data from multiple simulations

(which we call co-embeddings), it is possible to directly compare motifs across as-

sembly pathways. Co-embeddings of systems forming different structures offer insight

into the manifold structure of local environments and how interparticle interactions

make some structures preferable over others. Such co-embeddings allow us to explore

the self-assembly of crystal structures in a general manner, e.g., to examine common

pathways.

2.1 Structural Descriptors and Order Parameters

We adopt the following definitions from B. Peters’ Reaction Rate Theory and

Rare Events [37] (emphasis added):

• A collective variable is any function of the full phase space coordinates.

2Note that here, a “cluster” refers to a cluster of points in the UMAP embedding, not a cluster of particles in the
fluid/solid.

10

• An order parameter is a special collective variable that clearly distin-

guishes reactants from products.

• A reaction coordinate is a special scalar order parameter that quantifies

dynamical progress along the pathway from reactants to products.

• All degrees of freedom apart from the reaction coordinate comprise the

bath.

Many structural descriptors have been developed for crystallization in various sys-

tems, including (in chronological order of publication) the bond-orientational order

parameter ql from Steinhardt [33], common neighbor analysis (CNA) [35], centrosym-

metry parameter analysis [38], bond angle analysis [39], shape matching algorithms

from Keys et al. [34], neighbor distance analysis [40], topological cluster classification

(TCC) [41], polyhedral template matching [8], and more. Some of these structural

descriptors meet the criteria of being an order parameter, depending on the charac-

teristics of the fluid and solid being studied. All of these are meant to identify crystal

structures, and typically focus on analyzing “final” structures that are in equilibrium,

though some can also be applied to measure the process of crystallization. However,

all structure descriptors in the literature have some kinds of drawbacks that make

them inapplicable to certain systems. For example, some methods struggle to distin-

guish between fcc and hcp [39], or mixtures of fcc and bcc structures [42]. Methods

relying on the topological properties of a particle’s local neighborhood (CNA, TCC)

are susceptible to misclassification when the structure has a large amount of posi-

tional noise, which led to the development of adaptive CNA [40]. Analyses that are

not robust to perturbations of the particle positions often lead to poor accuracy at

high temperature. This makes the analysis of systems like plasma crystals extremely

difficult, because of their “highly disturbed lattices” [43, 42].

11

Despite the wealth of order parameters, each with their own advantages and dis-

advantages, there are key questions left unresolved that the development of new

methods may be able to help solve. We identify the following questions that could

be addressed by novel approaches to structural descriptors. How could we distin-

guish between multiple product states? What can we use to detect and characterize

competing mechanisms, such as the “identity crisis” posed by Teich et al. [44]? What

if we do not know the appropriate structural descriptors a priori?

We choose to approach the search for a microscopic theory of self-assembly from

the perspective of these questions. In particular, the desire to distinguish multiple

product states and identify motifs without prior knowledge of the local orderings in a

fluid or crystal inspired us to seek out new descriptors. To distinguish multiple states,

we consider approaches that involve vector-based structural descriptors (or simply

a concatenation of multiple scalar descriptors into a vector). Combining multiple

order parameters is quite common, and many researchers choose 2D projections of

Steinhardt order parameters such as the q4–q6 plane to show the ordering of multiple

ordered phases [45, 46, 47].

2.2 Minkowski Structure Metrics

In this section, we present the Minkowski Structure Metrics [6], whose continu-

ity properties are unusual among structural descriptors and enable us to construct

novel unsupervised learning methods for structural analysis. We first describe the

calculation of the Steinhardt order parameter ql and commonly used variants wl,

ql, and wl, building up to the definition of Minkowski Structure Metrics q′l and w′l

as well as their neighbor-averaged values q′l and w′l. We follow with a discussion

of literature using Minkowski Structure Metrics for local structure analysis. In this

12

work, we use Minkowski Structure Metrics to map continuously from the space of

particles’ positions into the high-dimensional CTOP feature space that character-

izes local symmetries. The formulas described in this section are adapted from the

implementation and documentation of the freud library for particle analysis. The

implementation in freud owes credit to a number of developers, including Chrisy

Xiyu Du, Erin Teich, Matthew Spellings, Vyas Ramasubramani, Bradley Dice, and

Brandon Butler.

2.2.1 Steinhardt Order Parameter ql, wl

The ql order parameter described by Steinhardt et al. [33] is a rotationally invari-

ant quantity that describes the correlation between points on the unit sphere with

the spherical harmonics of order l. This can be used to obtain a measure of local

bond-orientational order for each particle in a system.

First, we describe the computation of ql(i). For a particle i, we calculate the

quantity qlm by summing the spherical harmonics between particle i and its neighbors

j in a local region:

qlm(i) =
1

Nb

Nb∑
j=1

Ylm(θ(rij), φ(rij))(2.1)

Then the ql order parameter is computed by combining the qlm in a rotationally

invariant fashion to remove local orientational order:

ql(i) =

√√√√ 4π

2l + 1

l∑
m=−l

|qlm(i)|2(2.2)

Closely related is the third-order rotationally invariant quantity wl, defined as a

weighted average over the qlm(i) values using Wigner 3-j symbols (related to Clebsch-

13

Gordan coefficients):

wl(i) =
∑

m1+m2+m3=0

 l l l

m1 m2 m3

 qlm1(i)qlm2(i)qlm3(i)(2.3)

In this work, we always apply a normalization factor to wl, redefined as follows:

wl(i) =

∑
m1+m2+m3=0

 l l l

m1 m2 m3

 qlm1(i)qlm2(i)qlm3(i)

(∑l
m=−l |qlm(i)|2

)3/2
(2.4)

2.2.2 Averaged Steinhardt Order Parameter ql, wl

The “average” variant of this order parameter takes into account qlm values from

the first and second shell combined [45]. To compute this parameter, we perform an

average over the first neighbor shell of the particle to implicitly include information

about the second neighbor shell. This averaging is performed by replacing the value

qlm(i) in the original definition by qlm(i), the average value of qlm(k) over all the

Nb neighbors k of particle i, including particle i itself (treated as index 0 in the

summation):

qlm(i) =
1

Nb

Nb∑
k=0

qlm(k)(2.5)

Then ql is computed using these averaged values:

ql(i) =

√√√√ 4π

2l + 1

l∑
m=−l

|qlm(i)|2(2.6)

The average variant wl is defined in a similar way, using qlm(i) in place of qlm(i)

while summing over the Wigner 3-j symbols:

wl(i) =

∑
m1+m2+m3=0

 l l l

m1 m2 m3

 qlm1
(i)qlm2

(i)qlm3
(i)

(∑l
m=−l |qlm(i)|2

)3/2
(2.7)

14

2.2.3 Minkowski Structure Metrics q′l, w
′
l

Figure 2.1: Visualization of the Voronoi polyhedra for an fcc system. The Voronoi cells of this noisy
fcc structure are slightly distorted rhombic dodecahedra. This rendering uses plato [3]
and pythreejs [4].

The “weighted” variant of this order parameter requires a scalar weight indicating

the contribution of each neighbor bond. The specific weighted case considered in

this section is one where the neighbors and their weights are obtained from Voronoi

polyhedra and their facet areas, an example of which is shown in Figure 2.1. Mickel

et al. terms this the morphometric neighborhood, and using this basis for computing

bond-orientational order parameters results in the Minkowski Structure Metrics [6].

We will explain how the Minkowski Structure Metrics are computed, then we will

explain why they are useful. We first define the Voronoi neighbors to be particle pairs

that share a facet in the Voronoi diagram of the particle system, with the directed

weight between two particles wij defined as

wij =
Aj∑Nb
k=1Ak

(2.8)

where Ak represents the facet area of neighbor k for the Voronoi polyhedron of

particle i. Note that we choose a different convention than Mickel et al. – these

15

weights are not symmetric, i.e., wij 6= wji, because we normalize by the surface area

of the origin particle’s Voronoi polyhedron so that
∑Nb

j=1wij = 1. Voronoi diagrams

are computed using the voro++ software [48], which is called by the freud library.

The Steinhardt order parameter formulas are then modified as follows, replacing

qlm(i) with the weighted value q′lm(i):

q′lm(i) =
1∑Nb

j=1 wij

Nb∑
j=1

wijYlm(θ(rij), φ(rij))(2.9)

This results in the following expressions:

q′l(i) =

√√√√ 4π

2l + 1

l∑
m=−l

|q′lm(i)|2(2.10)

w′l(i) =

∑
m1+m2+m3=0

 l l l

m1 m2 m3

 q′lm1
(i)q′lm2

(i)q′lm3
(i)

(∑l
m=−l |q′lm(i)|2

)3/2
(2.11)

Combining these modifications (average, weighted, and third-order wl) can be

nontrivial. Here, we define the combination of “average” and “weighted” (used to

define the features of CTOPqw) in a way that uses weighted neighbors for the con-

struction of q′lm but does not consider neighbor weights when averaging over the

second shell of neighbors (each neighbor has equal weight regardless of the size of

the Voronoi facet).

2.2.4 Properties of Minkowski Structure Metrics

The differences between the Minkowski Structure Metrics and traditional Stein-

hardt order parameters may seem subtle, but in fact have significant implications

for robust structural analysis and for this work. The choice of neighborhood greatly

affects the magnitudes of ql values, and the morphometric neighborhood is robust to

small changes in neighbors’ positions that could remove or replace nearest neighbors

16

under the k-nearest neighbors or cutoff distance definitions [6]. We are specifically

interested in Minkowski Structure Metrics based on Voronoi neighborhoods because

their values are continuous with respect to particle positions, thereby eliminating

the discontinuities associated with changes in particle neighbors. We show this in

following sections.

2.3 Order Parameters Using Machine Learning

Figure 2.2: Overview of machine learning algorithms. Figure adapted from the documentation of
scikit-learn [5].

Molecular simulations enable the collection of long-running trajectories of self-

assembling nanoparticles, amassing terabytes of data that show a system traversing

a kinetic pathway towards a different phase. The challenge is to identify the relevant

features that describe the physics of this pathway and the microscopic processes that

comprise it. This is where machine learning can be used to further our understand-

ing: at each point in time, we can construct feature vectors containing dozens or

hundreds of values and use them in conjunction with machine learning pipelines. A

17

broad overview of machine learning approaches is shown in Figure 2.2. This study’s

approaches to machine learning primarily fit into the categories of dimensionality

reduction and clustering.

2.3.1 The Descriptor Reduction Paradigm

Figure 2.3: Many machine learning approaches for quantifying order in particle systems follow a
paradigm where a high-dimensional feature space is constructed through the computa-
tion of descriptors for each particle and then reduced into a low-dimensional represen-
tation such as a class identifier.

Most current approaches to machine learning on particle systems follow the paradigm

outlined in Figure 2.3. In this general class of models, there are two stages. The

first stage is where feature engineering plays a role, when features are computed

from the input data (typically particles’ positions and a description of a periodic

box containing them). This is imperative because particle data is represented as

vectors xi ∈ R3, which neglects periodic boundary conditions, rotational invariance,

translational invariance, and a number of other considerations. Finding neighbors

and transforming into a set of relative vectors rij ∈ R3 for each particle respects the

periodic boundary conditions and establishes translational invariance, but not rota-

tional invariance. Computing features from a particles’ neighbors allows for these

additional invariances to be described. The second stage involves the machine learn-

18

ing algorithm of choice, such as a classifier, regressor, or dimensionality reduction

algorithm. We emphasize the independence of these stages because we believe that

physics-based machine learning involves a combination of expressive and physically-

motivated features with adaptable and physically-motivated models. Next, we will

describe both feature engineering and model architecture.

2.3.2 Feature Engineering

Feature engineering is the process of selecting data representations, choosing spe-

cific transformations or analyses to perform on raw inputs, and empirically refining

those choices, resulting in a more useful form of data ready for use in machine learn-

ing algorithms or data science applications. Feature engineering is important because

the representations of data are fundamentally responsible for determining the aspects

of a system that they can adequately describe, and the study of transitions such as

complex assembly pathways can involve many representations of data. Quoting AI

researcher Andrew Ng, “Coming up with features is difficult, time-consuming, [and]

requires expert knowledge. ‘Applied machine learning’ is basically feature engineer-

ing” [49]. It is this process of feature engineering (with appropriate model selection)

that leads to domain knowledge (e.g., physical invariants) being embedded in a ma-

chine learning application.

For example, nanoparticle simulations can be represented as a series of positions

over time [29, 50] or as a movie where the particles’ positions are encoded on a

discrete grid. Crystal structures can even be represented as a graph [51], where

nodes represent particles and edges define particles’ neighbors. While all of these

representations have been used as inputs for different problems, the ability of a

machine learning algorithm to extract meaning from a data set is heavily influenced

by the representation of input data.

19

2.3.3 The Importance of Model Architecture

In addition to feature engineering, the architecture of machine learning models

has a significant effect on their utility for a given problem. Several hard problems in

artificial intelligence and machine learning have been solved (or at least established

an approach that is useful in practice) through finding the right algorithms for a

given data representation. For example, deep convolutional neural networks have

been found to be extremely successful at classifying images [52]. The architecture

of a convolutional neural network enforces translational invariance, with “filters”

acting on spatially local grid of pixels. This translation invariance helps the convo-

lutional neural network build meaningful representations for the problem, because

identifying a bicycle or cat is fundamentally the same regardless of which part of

the image contains those objects. Similarly, recurrent neural networks have been

used for text modeling [53], aided by the connection between temporal patterns in

natural language and the internal representation of the recurrent neural network.

These examples illustrate the broader idea that finding the right representation of

data provides a significant benefit to the accuracy and interpretability of machine

learning algorithms.

2.3.4 Machine Learning Methods for Structure Detection

Recent literature has used both supervised and unsupervised machine learning

methods for structure detection. Here, we focus on the features and model architec-

tures chosen, because we hope to build on these ideas. First, we will describe related

works using supervised machine learning methods for complex structures. This study

builds on the ideas presented in these works, especially those in the unsupervised

category, with added emphasis on the continuity and topology of feature space and

20

expanded applications to new complex structures and quasicrystals not previously

studied.

Supervised Methods

Machine learning methods for studying crystals have largely focused on structure

identification as a classification problem, and most commonly in a supervised setting

where reference data can be used to train a model. The classification problem can be

understood as determining the phase and crystal structure for all particles in a simu-

lation, and assigning values such as fluid, face-centered cubic, or body-centered cubic

to each particle. Some recent examples of this, which follow the paradigm shown in

Figure 2.3, can be found in Refs. [29, 54, 50, 46, 55]. For example, Boattini et al.

used neural networks for identifying binary crystals [55]. A single layer feed-forward

neural network was used with a training set of crystal structures. The features used

are Steinhardt second-shell average values, with particle neighbors found using ei-

ther a cutoff radius or the solid angle nearest neighbor (SANN) method [56]. Coli et

al. modified this approach, adding two hidden layers with 72 neurons to the neural

network and using a larger number of standard (rather than second-shell average)

Steinhardt order parameters in order to retain more information about local envi-

ronments [54]. We adopt a similar technique in this study, including both first-shell

and second-shell averaged Minkowski Structure Metrics in the features.

Looking through the lens of classification is sufficient for some problems, but it

can be difficult to use in many cases that are of scientific interest. For example,

classification requires training data for all the desired phases and thus requires addi-

tional information for systems where the local environments are not known a priori.

Training data may need to be specific to the particular system and not just the crys-

tal structures or local environments being detected. For example, thermal noise in

21

systems like plasma crystals can lead to severely distorted local environments that

are hard to identify but are nonetheless a part of a structure with long-range crys-

talline order [43, 42]. Even in the domain of colloidal and nanoparticle systems that

our group frequently examines, Hard Particle Monte Carlo simulations exhibit sig-

nificant (athermal) positional noise at lower densities because permitting exploration

of the particles’ local volume maximizes the system’s entropy (particles interacting

under pair potentials are typically held closely in place by the potential energy cost

of moving away from their equilibrium position).

There are many difficult choices to make when implementing a supervised learning

algorithm, such as which structures to include in a training set or the temperatures

used for the training data. What if the obtained structure isn’t in the training set,

or the expected structure is not known? Unsupervised methods, discussed next, can

solve some of these challenges, but sometimes also introduce new challenges.

Unsupervised Methods

Spellings and Glotzer used both supervised and unsupervised methods to analyze

the phase diagram of an oscillating pair potential parameterized by k and φ [29].

The unique feature set of spherical harmonics computed over different numbers of

nearest neighbors allows for local environments to be identified by a high-dimensional

“fingerprint.” This paper describes an unsupervised learning approach where the fin-

gerprints are reduced to 128 dimensions with Principal Components Analysis (PCA)

and a Gaussian mixture model is fit to the high-dimensional fingerprints. The pa-

per notes, “in ordered systems with well-defined shells of nearest-neighbor particles,

there is often a degeneracy in terms of which nearest-neighbor particles within the

shell the algorithm will find – for example, when looking at 5-particle neighborhoods

in the cI 2-W (BCC) structure, there are
(

8
5

)
ways to place five particles in the eight

22

vertices of the cube in the first neighbor shell, many of which are equivalent by sym-

metry.” This degeneracy, driven by the choice of features, has a significant effect on

the topology of feature space. While supervised methods can learn which features

are important and ignore the irrelevant features, unsupervised methods often do not

have that kind of discriminatory capacity.

Boattini et al. used autoencoders to generate 2D embeddings of local environ-

ments for several single-component and binary structures [31]. Like the previously

mentioned work from Boattini, this paper uses Steinhardt order parameters aver-

aged over the second neighbor shell. The use of an autoencoder results in a neural

network that is trained to compress an input vector into a low-dimensional “bottle-

neck,” or projection space, and subsequently project back into the original vector

space. This combines an “encoder” and “decoder” which are jointly optimized to

perform an identity mapping. We note that traditional autoencoders may not learn

continouous mappings into the latent space, which was one of the motivations for

the development of variational autoencoders [57].

Adorf et al. showed how unsupervised methods can be used to measure nucleation

behavior with clustering of a high dimensional feature space [30]. This paper uses a

high-dimensional feature vector to describe particles’ local environments based on the

bispectrum of the group SO(3). The unsupervised learning algorithm uses PCA to

project these vectors into a 20 dimensional space, followed by a UMAP dimensionality

reduction into 10 dimensions (and 2 dimensions for visualization). The HDBSCAN

clustering algorithm is applied in the 10-dimensional space. The resulting clusters are

visualized in the 2D UMAP projection. This method is used to characterize a number

of self-assembly simulations from Ref. [15]. Because the bispectrum descriptors are

based on a number of nearest neighbors, they are discontinuous with respect to

23

particle positions.

2.3.5 Choosing Neighbors, Features, and ML Models

The literature discussed above as well as the previous discussion of representa-

tions and models leads us to ask, what properties should be desired in a repre-

sentation of particle data useful for understanding phase transitions, nucleation, and

self-assembly? Invariance under translation, rotation, and reflection covers the three-

dimensional Euclidean group of isometries, E3. These properties are reasonable to

expect – the process of crystallization does not depend on the observer’s frame of

reference, nor do the physical laws change with respect to any of those symmetries.

However, two additional properties are important to consider.

Continuity

The first additional property is continuity with respect to particle positions. Given

a system of N particles with positions xi, we compute a local structural descrip-

tor f(xi, {xj|j ∈ NG(xi)}) that depends on the particle and its neighbors NG(xi)

(borrowing the notation from graph theory for an open neighborhood that does not

include the particle itself). Specifically, perturbing the particles with a small amount

of positional noise δi (from thermal noise in a molecular dynamics simulation or just

a small Monte Carlo move) should have only a small effect on the value of the local

structural descriptor. This is related to the (ε, δ) definition of continuity in real anal-

ysis. First, there are some common issues arising from the choice of neighborhood

when developing structural descriptors.

The most common choices of neighborhood given by NG use a cutoff distance rmax

or a fixed number of nearest neighbors (also called k-nearest neighbors). The cutoff

distance is typically chosen by looking at the radial distribution function g(r) in some

24

(a) (b)

(c) (d)

Figure 2.4: Common neighbor definitions for the particle shown in red. Neighbors are shown in
green. Figure from Ref. [6] with permission. (a) The Voronoi polygon for the particle
is shaded red. The edges in bold red define which particles are neighbors. The blue
bonds form the dual of the Voronoi diagram, called the Delaunay graph. (b) Neighbors
found using the Voronoi diagram. Note that the furthest neighbor has a small edge in
the Voronoi diagram in (a), so its neighbor weight is small. (c) Neighbors found using
a cutoff radius rmax. (d) Neighbors found using k-nearest neighbors, k = 6.

state (usually the crystalline solid) and choosing a value that falls in between two

peaks. Choosing rmax as the “trough” between the first and second peaks corresponds

to selecting the first neighbor shell. However, the value of rmax may not be so clearly

defined if the particles interact under a potential with multiple minima, if the system

is near a phase boundary between two crystals with different neighbor spacings, or if

the crystal has multiple Wyckoff positions. In those cases, particles may be expected

to enter or leave the cutoff radius, resulting in a discontinuous jump in the neighbor

subgraph NG(xi). These modes of neighbor finding are shown in Figure 2.4. For

common structural descriptors such as the Steinhardt order parameter [33], this

results in a jump in the measured values of ql(i). Similarly, a fixed number of

nearest neighbors may not be a good choice if multiple crystal structures can exist

in the same system – they cannot be easily compared using the same structural

25

descriptors. Consider analyzing structures such as face-centered cubic, which has 12

nearest neighbors. If analyzed with a neighborhood of k = 8 nearest neighbors (the

typical choice for body-centered cubic structures), the neighbor subgraph changes

dramatically as the 12 particles oscillate around their ideal lattice positions, entering

and leaving the set of the closest 8.

However, it is possible to construct neighbor subgraphs that vary continuously

with respect to particle positions. A concrete example of this is the Voronoi diagram,

which computes a convex polyhedron (or polygon in 2D) for each particle whose

facets (or edges in 2D) bisect the line segments between neighboring particles. The

resulting Voronoi regions contain the set of points that are closer to their contained

particle than any other particle. The neighbor subgraph is then augmented with

weights wj such that each neighbor j has a weight wj =
Aj∑
k Ak

where Ak is the

facet area (or edge length in 2D) of the facet between particle i and particle k. In

this definition of neighborhood, neighbor particles enter and exit the neighborhood

continuously, with their weights going to zero as the neighbor particle moves away

and rising from zero as it gets closer. For example, consider Figure 2.4(a-b). The

furthest neighbor in the upper-left contributes only a tiny amount to the Voronoi

polygon and thus has a small neighbor weight. If that particle were to drift farther

from the central particle in red, its contribution would drop to zero and it would no

longer be a neighbor of the central particle. Conversely, if it were to get closer, its

weight would grow.

In this work, the Minkowski Structure Metric (defined in Eqn. 2.10) is used with

a Voronoi neighborhood with neighbor weights set according to the Voronoi facet

areas [6]. Here, the neighborhood selection and local structural descriptor uses the

Voronoi weighted information to jointly define a descriptor that is a continuous func-

26

tion of particle positions [6].

Scale Invariance

The second property to discuss is scale invariance. While density fluctuations

(which carry an associated length scale) certainly do play a role in crystallization, this

can be characterized separately from the orientational ordering found via Minkowski

Structure Metrics [58, 59] Furthermore, the choice of using structure descriptors

that are scale-invariant means that simulations of vastly different materials with

similar local structures can be compared directly. The ordering of different systems,

whether colloids with micron length scales or nanoparticles with nanometer length

scales, can be equated more fairly if the structural descriptors are only sensitive to

the neighborhood shape, rather than the magnitude of the neighbor bond vectors.

The characteristic densities and length scales can be found by considering the inverse

of the volume of the Voronoi polyhedron (or area of the Voronoi polygon in 2D) or

the radial distribution function g(r).

2.4 The Continuous Topological Order Parameter (CTOP)

Figure 2.5: The variants of the Continuous Topological Order Parameter (CTOP).

Here we will define a new order parameter that we call the Continuous Topo-

logical Order Parameter (CTOP). This descriptor and its variants are E3 invariant,

27

scale-invariant, continuous structural descriptors. The components of the CTOP are

Minkowski Structure Metrics, described in Section 2.2 and defined in Eqn. 2.10.

The CTOP is a vector-valued quantity, and is parameter-free aside from the choice

of local symmetries (l values) to consider.

Minkowski Structure Metrics have been used for a number of recent studies in

crystallization, including both simulation and experimental data [60, 47, 46]. We

build on these past works using Minkowski Structure Metrics by treating the CTOP

feature space of multiple Minkowski Structure Metrics as a manifold and examining

its topology and embeddings in two (or three) dimensions as a means of unsupervised

local structure analysis. The topology of this manifold is significant because it reveals

pathways sampled by individual particles as they explore configurations with different

kinds of local symmetry. The CTOP and its variants are defined as:

CTOPq(i) = {q′l(i)|l ∈ {4, 5, 6, 8, 10, 12}}(2.12)

CTOPw(i) = {w′l(i)|l ∈ {6, 8, 12}}(2.13)

CTOPq = {q′l(i)|l ∈ {4, 5, 6, 8, 10, 12}}(2.14)

CTOPw = {w′l(i)|l ∈ {6, 8, 12}}(2.15)

CTOPqw(i) = CTOPq(i)⊕ CTOPw(i)(2.16)

CTOPqw(i) = CTOPq(i)⊕ CTOPw(i)(2.17)

CTOPqwqw(i) = CTOPqw(i)⊕ CTOPqw(i)(2.18)

where ⊕ represents vector concatenation. This order parameter is implemented

using the freud library [27], discussed in Chapter V. Figure 2.5 demonstrates these

variants and their definitions.

The results shown in this work use a UMAP embedding [22], which reduces the

28

high-dimensional feature space into d = 2 dimensions (or any small integer – we

choose to consider only d ≤ 3 for the purposes of data visualization). This algorithm

is chosen for several reasons, discussed in Section 2.5. We use the term “feature

space” to describe the high-dimensional manifold of CTOP vectors which describe

particles’ local environments. It is in the mapping from particles’ positions into

feature space that continuity plays a significant role. Once particles’ local environ-

ments are continuously mapped into the feature space via CTOP, we use UMAP

specifically for its topology-preserving properties, as depicted in Figure 2.6. While

the high-dimensional CTOP manifold does not always map cleanly into two dimen-

sions, it gives a good sense for the structure of the data and how particles’ local

environments evolve during the course of a simulation.

Figure 2.6: The CTOP order parameter is a continuous function of particle positions, and can be
mapped continuously into a low-dimensional representation using UMAP.

2.5 UMAP Dimensionality Reduction

Here, we introduce the Uniform Manifold Approximation and Projection (UMAP)

algorithm used for dimensionality reduction of the CTOP feature space. The general

goal of dimensionality reduction algorithms is to transform high-dimensional data

into a lower number of dimensions, while preserving some essential characteristics

29

of the higher-dimensional data. Dimensionality reduction techniques may be linear

or nonlinear. A well-known linear method of dimensionality reduction is Principal

Components Analysis, developed by Pearson in 1901 [61]. Nonlinear methods include

UMAP and t-SNE [62]. Furthermore, there are distinctions between methods that

aim to preserve pairwise distances globally, and those that prioritize the preservation

of local structure at the expense of global structure. The goal of the dimensionality

reduction dictates what kind of methods should be applied. For instance, PCA

gives the minimal squared reconstruction error for a given number of projection

dimensions.

Our choice of the UMAP algorithm for dimensionality reduction is motivated by

theoretical, empirical, and practical considerations. First, we outline the theoretical

motivations for the UMAP algorithm, and explain how these pertain to our problem.

2.5.1 Data Density on the CTOP Manifold

It is common for explorations of a new parameter space (such as the Oscillating

Pair Potential studied by Spellings et al. [29] or the space of polyhedra studied by

Damasceno et al. [23]) to result in a large number of trajectories where, prior to any

analysis, we do not know the final state or if/when a phase transition occurred. In

such cases, we also have no prior knowledge about the data density on the CTOP

manifold (or any other choice of descriptors). That is, we do not know what distri-

bution to expect for the number of samples of particles in disordered or ordered local

environments because we do not know how long the trajectory spent in fluid or solid

phases. We do know that the data distribution is affected by the number of samples

obtained from fluid-like and solid-like particles, and that it is especially sensitive to

the sampling rate during the process of crystallization.

Identifying crystal structures obtained from self-assembly typically only requires

30

analyzing the final few frames saved from a simulation. Therefore, many simulations

only save one frame for every few hours of simulation (perhaps every few million time

steps). This has historically been the norm, because of the cost of storage space and

increased processing power required to analyze large trajectory files. However, as we

begin to investigate the microscopic processes of crystallization, we demand orders

of magnitude more data to capture the fast timescales over which crystallization

can occur (especially in supercooled systems). Advanced sampling has a significant

role to play in making it easier to capture data about phase transitions, but it

remains a challenge to configure and run such simulations for arbitrary systems.3

For the purposes of studying microscopic dynamics and crystallization, we must run

simulations that save frames at a high frequency. This ensures that the resulting

trajectory data has adequately sampled the order parameter manifold and allows

for reconstruction of phase transitions and analysis of local order emerging at the

per-particle level.

2.5.2 Mathematical Foundations of UMAP

Described by McInnes et al. [22], UMAP builds on the fields of Riemannian ge-

ometry and algebraic topology. The general process involves finding approximate

nearest neighbors in a high-dimensional feature space and finding an embedding into

a lower dimensional space that preserves distances to the neighbors in the high dimen-

sional space. UMAP handles nonuniform data distributions in the high-dimensional

space, like those described above, through a locally-varying Riemannian metric. We

present a heavily simplified summary of the UMAP algorithm and refer the reader to

McInnes’ UMAP paper for further details [22]. Another description of the algorithm

3Advances in open-source software packages such as OpenPathSampling [63, 64] and SSAGES [65] are slowly
chipping away at the level of difficulty, but few tools are well-suited for colloidal self-assembly.

31

can be found in the UMAP online documentation.4 First, every data point is assigned

a custom distance metric based on its nearest neighbors, such that the local density

at each point appears to be uniform. The original data may exist in any space, not

just Rn, as long as distances can be measured (enabling the determination of near-

est neighbors). To reconcile the differences between each point’s distance metric,

fuzzy simplicial sets are constructed for each point. The construction of this metric

ensures that every point’s fuzzy simplicial set contains at least one other point, so

that their union is connected. The union of these fuzzy simplicial sets contains infor-

mation about the topology and metric structure of the high-dimensional manifold.

Next, the fuzzy topological representation must be embedded into Rd, where d is the

embedding dimension d. Finally, the cross-entropy between the high-dimensional

and low-dimensional fuzzy topological representation is minimized using stochastic

gradient descent, resulting in a low-dimensional embedding whose topology in Rd is

optimized to match that of the high-dimensional data.

Ultimately, this means that a manifold sampled in the high-dimensional space

will have a similar local connectivity, and thus a similar topological structure, in

the embedded space (assuming that the embedding dimension is high enough to

represent the topology of the original manifold). The UMAP algorithm is frequently

used to help solve the problem of visualizing high-dimensional data, and has seen

widespread usage in several fields, including molecular simulations [30] and single-cell

genomics [66].

UMAP is also highly scalable, and produces embeddings faster than most com-

peting nonlinear dimensionality reduction techniques [22]. We use a UMAP imple-

mentation from the RAPIDS cuML library [67, 68], leveraging GPU acceleration for

4https://umap-learn.readthedocs.io/en/latest/how_umap_works.html

32

the nearest neighbor computations and embedding optimization.

2.5.3 Example: UMAP Applied to MNIST Images

As an example, we can apply the UMAP algorithm to a data set of images contain-

ing handwritten digits. This data set, popularly used for supervised classification

algorithms, was modified from a National Institute of Standards and Technology

data set and is thus known as MNIST. The raw data are available online5 and can

be easily downloaded with the Python package mnist.6 The grayscale images are

28 pixels by 28 pixels, thus there are 282 = 784 pixel values in each image. This

can be imagined as a vector in R784, thereby allowing Euclidean distances to be

measured between each image. This topological space can then be embedded into a

lower number of dimensions. In Figure 2.7, we show embeddings into two and three

dimensions. The clusters that are close together in the UMAP embedding are also

close in the high-dimensional space. The embeddings in two and three dimensions,

shown in Figure 2.7(b) and (c), are able to distinguish these clusters from the 784-

dimensional manifold. The digits 8, 3, and 5 are similar in shape, and their clusters

are adjacent in 2 and 3 dimensions because the Euclidean distances between these

images in the 784-dimensional feature space are relatively small. Similarly, the digits

7, 9, and 4 are clustered together. Isolated clusters appear for the digits 0, 1, 2,

and 6. The number of pixels that differ between an 8 and a 5 is small, compared to

the number that differ between an 8 and a 7. This results in a smaller distance in

the high-dimensional feature space, causing the clusters to be close together in the

embedding space. This example demonstrates the workings of UMAP: given a high-

dimensional set of features, it finds a projection into a lower number of dimensions

that preserves the local structure and topology of the original feature space.
5http://yann.lecun.com/exdb/mnist/
6https://pypi.org/project/mnist/

33

0 10 20

0

5

10

15

20

25

(a)

0 10 20

0

5

10

15

20

25

0 10 20

0

5

10

15

20

25

10 5 0 5 10 15

5

0

5

10
0
1
2
3
4
5
6
7
8
9

(b) (c)

Figure 2.7: (a) Sample 28× 28 pixel images of digits 3, 1, 4 from the MNIST data set. (b) UMAP
embedding of the MNIST data set into two dimensions. (c) UMAP embedding of the
MNIST data set into three dimensions. Visualization generated using Plotly [7].

34

CHAPTER III

Crystallization Pathways: Results

In this chapter I will demonstrate a wide variety of self-assembling systems that

can be described by the CTOP order parameter. The range of applications includes

common crystal structures such as face-centered cubic (fcc), body-centered cubic

(bcc), hexagonal close-packed (hcp), and simple cubic (sc), as well as complex crys-

tal structures with multiple Wyckoff positions and quasicrystals. Unless otherwise

stated, all figures are rendered using Matplotlib [69] and OVITO [9].

3.1 Self-Assembly of Hard Polyhedra

First I will demonstrate the CTOP analysis method for a set of Hard Particle

Monte Carlo (HPMC) simulations, inspired by past studies of self-assembly in hard

polyhedra [23].

3.1.1 Hard Particle Monte Carlo Simulation Protocol

For this series of simulations, we use the Hard Particle Monte Carlo (HPMC)

method implemented in HOOMD-blue [70, 28]. A set of 19 different polyhedra

simulated by Damasceno et al. [23] were selected for self-assembly simulations. These

polyhedra were generated using the coxeter package [71] and normalized to have unit

volume. A total of 169 simulations were run in the NVT ensemble, each with different

35

shapes and target packing fractions. Each simulation started with a configuration

of 15,625 (253) particles in a dilute gas at a packing fraction of 0.05 in a cubic

simulation box. The initial configuration was compressed to a target packing fraction

φ (typically in the range φ ∈ [0.5, 0.6], based on an estimated packing fraction at

which self-assembly would occur from past studies). During the quick compression

scheme, the box volume and particle positions were first scaled down by a factor of

0.999, while keeping the box in a cubic geometry. If any particle overlaps were created

by the rescaling, Monte Carlo moves were attempted until the configuration was

relaxed to a state with no overlaps. After each box rescaling in the quick compression,

the simulation ran for an additional 100 steps. This process was repeated until the

target packing fraction φ was reached. In total, each simulation ran for approximately

2.5 million Monte Carlo steps while compressing to the target packing fraction (more

steps were needed to relax systems that had lots of overlaps during the rescaling).

Finally, the system was allowed to equilibrate at constant volume for an additional

5 million Monte Carlo steps. The simulation configuration was saved every 5,000

steps.

3.1.2 Self-Assembly of Hard Polyhedra into fcc

The fcc structure can be self-assembled by 51 of the 145 polyhedra reported by

Damasceno et al. [23]. Many of these shapes are nearly-spherical, with isoperimetric

quotients close to 1.1 The fcc phase is also readily formed by hard spheres and several

pair potentials, including the WCA and Lennard-Jones potentials. Comparisons

among multiple fcc-forming systems are performed in Section 3.3.1.

In Figure 3.1, we show the results of a simulation of hard icosahedra. This HPMC

1The isoperimetric quotient is defined as IQ = 36πV 2

S3 , and compares the volume V and surface area S of an
arbitrary shape relative to that of a sphere. A sphere has IQ = 1.

36

UMAP CTOPq

1

2

3

4

5

6

7

M
on

te
 C

ar
lo

 S
te

ps

×106(a)

UMAP CTOPq

OTHER

FCC

HCP

BCC

ICO

PT
M

 S
tru

ct
ur

e

(b)

0 2 4 6
Monte Carlo Steps ×106

0

2500

5000

7500

10000

12500

15000

PT
M

 C
ou

nt
s b

y
St

ru
ct

ur
e

(c) (d)

Figure 3.1: (a) A 2D UMAP embedding of the 6-dimensional CTOPq self-assembly pathway of
15,625 hard icosahedra crystallizing from a fluid into the fcc structure cF4-Cu. Each
point in the scatter plot corresponds to the CTOPq embedding for one of the particles
at a given point in time. Color indicates simulation time, as the system progresses from
fluid (purple and dark blue-green) to solid (light green and yellow). Solid circles show the
mean of the data over time. (b) A 2D UMAP embedding of the 6-dimensional CTOPq

as shown in (a), colored by a reference analysis method, Polyhedral Template Matching,
computed by OVITO [8, 9]. This demonstrates that clusters of the CTOPq embedding
correspond to local environments, with the one side of the image predominantly marked
as “Other” (fluid particles) while the other side is predominantly marked as fcc (solid
particles). The hcp defects, shown in red, cluster in an area slightly away from the fcc
part of the manifold, because hcp particles share many (but not all) symmetries with
fcc particles. (c) The reference analysis method, Polyhedral Template Matching, shows
the emergence of particles in an hcp local environment, followed by the formation of a
predominantly fcc phase. The black vertical line indicates the step at which the target
packing fraction of φ = 0.52 was reached. See (b) for the structure corresponding to
each color. (d) Snapshot of the final frame of the simulation. Particles are colored
by their environment type (fcc-like in green, hcp-like in red, bcc-like in blue). The
simulation protocol is described in Section 3.1.1. The system is slowly compressed to a
target packing fraction over the course of the simulation.

simulation starts in a low density fluid, and is slowly compressed to a target pack-

ing fraction of φ = 0.52. As the system is compressed, it begins to crystallize, first

showing hcp-like local environments and later a predominantly fcc phase. This sys-

tem shows how the CTOPq order parameter captures a continuous transition as the

37

system becomes more ordered, while the Polyhedron Template Matching (PTM) ref-

erence method classifies each particle discretely according to a threshold. For the

systems shown in this chapter, the PTM threshold is set to 0.15, which represents

the root mean squared deviation (RMSD) between the measured local environment

and the nearest PTM reference structure (e.g., fcc, bcc, hcp). This PTM threshold

value is chosen empirically, to reduce the number of fluid particles misclassified as a

solid structure.

We can make a few key observations about the UMAP plots in 3.1, which also

hold for the analyses that follow:

1. The embedding shows a continuous manifold. This continuity is preserved by

UMAP from the high-dimensional CTOP space. Though some topological fea-

tures present in the CTOP manifold cannot be easily embedded in 2D, we

present the data in a 2D embedding for the sake of interpretability. Some

features emerge more readily in 3D embeddings, and will be discussed where

relevant. Additionally, the apparent continuity indicates that the CTOP fea-

ture space is well-sampled: we cannot expect (and generally do not observe) a

continuous manifold if the CTOP only observes a starting frame and an end-

ing frame. This is because the construction of the UMAP embedding relies on

nearest neighbors in the CTOP space, which means that the system should be

sampled frequently during the phase transition.

2. Both the CTOP values and the reference analysis method (PTM) change from

fluid to solid around the same point in time. This gives us good evidence that

the CTOP is accurately detecting the onset of local order.

3. Points that are nearby in the UMAP embedding are also nearby in the high-

38

dimensional CTOP space. Nearby points have similar symmetries in their local

environments as measured by the Minkowski Structure Metrics.

UMAP CTOPq

OTHER

FCC

HCP

BCC

ICO

SC

PT
M

 S
tru

ct
ur

e

(a)
UMAP CTOPqw OTHER

FCC

HCP

BCC

ICO

SC

PT
M

 S
tru

ct
ur

e

(b)

UMAP CTOPqw

1

2

3

4

5

6

7

M
on

te
 C

ar
lo

 S
te

ps

×106

(c) (d)

Figure 3.2: (a) The CTOPq embedding of icosahedra self-assembling fcc at a target packing fraction
of φ = 0.54. (b) The CTOPqw embedding shows three clusters: two fcc clusters and
one hcp cluster. (c) The self-assembly progress as a function of time. Note that zero
particles show fluid-like order in their second shell in the final frame. This demonstrates
how the addition of second-shell order can assist in separating solid and fluid phases
in feature space. (d) Snapshot of the final frame of the simulation, which shows hcp
stacking faults in the fcc crystal.

Figure 3.2 shows another simulation of icosahedra, this time compressed to a

slightly higher packing fraction. In this simulation, a fraction of hcp particles persist

as a stacking fault until the final frame of the simulation, which appears as a red

cluster. In part (b) of the figure, we embed into a new descriptor space, CTOPqw.

This variant of the order parameter incorporates an average of q′l values over the

second shell of neighbors, as well as averaged values for the w′l third-order Minkowski

Structure Metrics. Part (b) shows that the addition of a second shell average splits

39

the fcc particles into a group of bulk fcc particles and fcc particles that are adjacent

to the hcp stacking fault. If the hcp layer and defects were removed, only one cluster

would remain in the CTOPqw feature space, because every particle would see the

same bulk fcc structure in its first and second neighbor shells.

We also note that part (c) of the figure shows no particles in the initial fluid

cluster at the end of the simulation. This is because all the particles, even the ones

in a local environment that is neither fcc nor hcp, have well-ordered fcc particles in

their second neighbor shell. Thus, the averaged order is nonzero when computing

the second-shell averaged Minkowski Structure Metrics q′l and w′l.

In some simulations, the second-shell order parameter may appear to be discon-

tinuous, with separate fluid and solid clusters in the embedding. This is because the

number of particles with partially ordered second neighbor shells is typically small,

resulting in incomplete sampling of that portion of the high-dimensional manifold.

For those incompletely sampled regions, the UMAP algorithm is sometimes unable

to identify that the two components should be connected. Overall, the second-shell

averaged information of CTOPqw is most useful for distinguishing fluid from solid

particles, whereas the first-shell order of CTOPqw is more powerful at describing each

particle’s local environment. Particles in the fluid phase will have little correlation

between their local environments and those of their neighbors, while solid particles

often have high correlation with their neighbors. The second-shell average captures

these correlations, leading to distinct fluid and solid signatures.

3.1.3 Self-Assembly of Hard Polyhedra into bcc

In Figure 3.3, we show the self-assembly of cuboctahedra into the cI 2-W (bcc)

structure. We show these results in the CTOPq feature space. Figure 3.3(b) shows

how the local structures identified by Polyhedral Template Matching correspond to

40

UMAP CTOPq

1

2

3

4

5

6

7

M
on

te
 C

ar
lo

 S
te

ps

×106(a)
UMAP CTOPq

OTHER

FCC

HCP

BCC

ICO

SC

PT
M

 S
tru

ct
ur

e

(b)

0 2 4 6 8
Monte Carlo Steps ×106

0

2500

5000

7500

10000

12500

15000

PT
M

 C
ou

nt
s b

y
St

ru
ct

ur
e

(c) (d)

Figure 3.3: (a) A 2D UMAP embedding of the 6-dimensional CTOPq self-assembly pathway of
15,625 hard cuboctahedra crystallizing from a fluid into the bcc structure cI 2-W. Each
point in the scatter plot corresponds to the CTOPq embedding for one of the particles
at a given point in time. Color indicates simulation time, as the system progresses
from fluid (purple and dark blue-green) to solid (light green and yellow). Solid circles
show the mean of the data over time. (b) UMAP embedding of CTOPq, colored by a
reference analysis method, Polyhedral Template Matching, computed by OVITO [8, 9].
Here, the particles identified as fcc and hcp environments persist into the final frame
shown in (d). (c) The reference analysis method, Polyhedral Template Matching, shows
the emergence of particles in an hcp local environment, followed by the formation of a
predominantly fcc phase. The black vertical line indicates the step at which the target
packing fraction of φ = 0.63 was reached. See (b) for the structure corresponding to
each color. (d) Snapshot of the final frame of the simulation. See (b) for the structure
corresponding to each color. The simulation protocol is described in Section 3.1.1.
The system is slowly compressed to a target packing fraction over the course of the
simulation.

contiguous regions of the embedding, just like in the previous example with fcc self-

assembly. Like the fcc example we investigated, there are multiple grains separated

by particles with local structures different from the bulk phase. In Figure 3.4, we

show how clusters in the CTOPq space can be used to identify these kinds of different

local environments.

41

0 2 4 6
Simulation Time ×106

0
2000
4000
6000
8000

10000
12000
14000

Nu
m

be
r o

f P
ar

tic
le

s 0

1

CT
O

P q
 C

lu
st

er
 L

ab
el

s

(a) (b)

Figure 3.4: (a) Number of particles in each cluster of the CTOPq feature space. The trend for
environment 0 (blue) closely follows the number of bcc-like particles identified by Poly-
hedral Template Matching in Figure 3.3(c). (b) A rendering of the final simulation
frame, colored by clusters in the CTOPq feature space. The particles in environment 1
(orange) correspond to the same regions as the fcc, hcp, and “other” particles seen in
Figure 3.3(d).

3.1.4 Self-Assembly of Hard Polyhedra into sc

In Figure 3.5, we show the self-assembly of cubes into the simple cubic structure,

with a target packing fraction of 0.61. In this instance, the CTOPqw order parameter

in Figure 3.5(b) exhibits two distinct clusters of fluid and simple cubic particles.

However, no explicit instructions were given to analyze simple cubic order – this

result comes directly from the CTOP manifold structure.

For the analysis in Figure 3.5(c), the cuML library was used to compute clusters

using the k-means algorithm [72, 5, 68]. From the two clusters in the CTOPqw

embedding space, we calculated the number of solid particles in each frame (without

relying on the reference data from Polyhedral Template Matching). Additionally, the

freud library was used to find the largest contiguous cluster (a cluster of particles in

real space, not feature space) of solid particles using a cutoff distance of 1.3a, where

a is the side length of the cube.

Sharma et al. have previously demonstrated that the disorder-to-order phase

42

UMAP CTOPq

OTHER

SC

PT
M

 S
tru

ct
ur

e

(a)
UMAP CTOPqw

OTHER

SC

PT
M

 S
tru

ct
ur

e

(b)

2.3 2.4 2.5 2.6 2.7
Monte Carlo Steps ×106

0

2500

5000

7500

10000

12500

15000

Nu
m

be
r o

f S
ol

id
 P

ar
tic

le
s All Solid-like

Largest Solid Cluster

(c) (d)

Figure 3.5: Self-assembly of cubes into a simple cubic structure at a packing fraction of 0.61. (a)
UMAP embedding of CTOPq, colored by Polyhedral Template Matching. (b) UMAP
embedding of CTOPqw, colored by Polyhedral Template Matching. (c) Counts of all
particles in the solid cluster of (b), and counts of the largest contiguous cluster of solid-
like particles. See text for details. (d) Snapshot of the final frame of the simulation.

transition in colloidal cubes exhibits multiple ordered domains that appear at the

same time [73]. We note that this simulation is compressed to a higher packing

fraction and has a high degree of supersaturation. Thus, the collective ordering

transition does not last very long and the ordered domains (though briefly visible)

merge quickly. Nonetheless, the process of characterizing crystallization progress

autonomously with the CTOP order parameter is applicable to many systems.

3.2 Self-Assembly of Complex Structures

In the previous section, we demonstrated how the CTOP order parameter can be

used in conjunction with a reference method, Polyhedral Template Matching. This

served as a comparison for visualization purposes, with classifications that closely fol-

43

low the CTOP manifold. However, most of the “standard” order parameters (those

not used in conjunction with machine learning) cannot be used for analyzing com-

plex crystal structures. This is partly true for historical reasons – the interest in

quantifying fcc, bcc, sc, and other simple structures is large because of the large

number of systems that form those structures, especially in atomistic materials mod-

eling. Methods designed for identifying complex unit cells and unusual symmetries

are rare, because those do not occur as frequently in commonly studied materials.

As mentioned in Section 2.3.1, recent literature has used supervised machine

learning methods, such as neural networks, to identify local structure in complex

crystals [55, 54, 29]. However, this approach requires prior knowledge of the target

structure, initial structure, and any common structures that might arise as defects

or competing motifs. In most supervised methods, researchers must configure and

run separate simulations for equilibrium states of each target structure (sometimes

for a range of temperatures or other thermodynamic variables that affect positional

disorder), load all the data, and finally train the classifier. By contrast, because

CTOP is an unsupervised method, it can be computed from a single trajectory and

identify local environments with no prior training.

Previous applications of unsupervised machine learning methods in the literature

have not explicitly considered how the choice of features influences the topology and

continuity of feature space, which in turn affects the interpretability of the mani-

fold structure via dimensionality reduction. Here, we show that selecting features

that form a continuous feature space and adhere to physical invariants can dramat-

ically simplify the analysis of many complex crystal structures. In this section, we

will apply the CTOP order parameter to a selection of complex crystals and qua-

sicrystals previously studied by the Glotzer group, demonstrating how it can provide

44

information about local structure and solidification progress.

3.2.1 A15 Structure (cP8-Cr3Si)

UMAP CTOPqw

110

115

120

125

130

135

Si
m

ul
at

io
n

Ti
m

e

(a) (b)

UMAP CTOPqw

0

1

2 CT
O

P q
w

qw
 C

lu
st

er
 L

ab
el

s
(c)

UMAP CTOPqwqw

0

1

2 CT
O

P q
w

qw
 C

lu
st

er
 L

ab
el

s

2.2 2.4 2.6 2.8
Simulation Time ×107

0
2000
4000
6000
8000

10000
12000
14000

Nu
m

be
r o

f P
ar

tic
le

s 0

1

2 CT
O

P q
w

qw
 C

lu
st

er
 L

ab
el

s

(d)

Figure 3.6: (a) UMAP embedding of the 9-dimensional CTOPqw self-assembly pathway of 15,625
particles crystallizing from a fluid into the A15 structure cP8-Cr3Si. Each point in the
scatter plot corresponds to the CTOPqw embedding for one of the particles at a given
point in time. Color indicates simulation time, as the system progresses from liquid
(purple and dark blue-green) to solid (light green and yellow). Solid circles show the
mean of the data over time. Each type of local environment present in the final structure
(Cr-like and Si-like) appears as a cluster in the embedding. (b) Snapshot of the final
frame of the simulation. The inset shows the A15 unit cell [10]. Particles are colored
by their environment type cluster, shown in (c) (Cr-like in blue, Si-like in orange). The
defect and liquid-like particle environments (colored green) form a grain boundary. (c)
Clustering by CTOPqwqw readily shows the dominant clusters’ local environments. The
inset shows the CTOPqwqw feature space. (d) This shows the counts of each cluster
in CTOPqwqw as a function of time. The Cr and Si environments appear at the same
time, and are in roughly a 3:1 proportion as is expected from the chemical formula of
the prototype structure.

Figure 3.6 shows the assembly pathway of the A15 structure cP8-Cr3Si via CTOPqw

and clustered by CTOPqwqw. This simulation data was provided by Carl Simon Adorf

with a pair potential optimized using an inverse design called Fourier-Filtered Rela-

45

tive Entropy Minimization (FF-REM) to produce the A15 structure [15]. This data

was previously analyzed by Adorf et al. using unsupervised machine learning meth-

ods [30]. See that previous paper for more information about the simulation protocol.

In this section, we demonstrate how the CTOP analysis provides an improved un-

derstanding of the particles’ local environments, with stronger ability to distinguish

between fluid-like environments and environments with icosahedral order.

Figure 3.6(a) shows the time evolution of particles’ local environments embedded

in the CTOPqw feature space.2 The Uniform Manifold Approximation and Projec-

tion (UMAP) dimensionality reduction technique produces a two-dimensional em-

bedding of the 9-dimensional CTOPqw feature vector while preserving its topological

structure. With this method, the transition pathways (e.g., between a fluid and a

crystal) form a continuous path in the embedding space. In Figure 3.6(b), we see

the final image of the crystal structure, colored by clusters found in the CTOPqwqw

descriptor space, shown in (c). The most prominent environments in the final self-

assembled structure are Cr-like (blue) and Si-like (orange), corresponding to the

dominant Wyckoff positions in the crystal. We use the second-shell descriptors for

clustering because the topology of that feature space clearly demonstrates two fea-

tures Figure 3.6(d) shows the time evolution of particles’ local environments. The

system starts as a fluid (green), and both Cr-like and Si-like environments appear at

the same time. Later, around 27 million time steps, there is an increase in the Cr-

like environment and a simultaneous decrease in the fluid environment, suggesting

that local rearrangement led to a shift in the detected environments. The clusters

colored in this figure were found by k-means clustering from the cuML library [68].

The number of clusters was chosen manually. A future direction for this research

2Nearly equivalent results can be found for embeddings in the CTOPq feature space for this structure.

46

would be to choose the number of clusters automatically, which was skipped in the

current work because of the inherent difficulties of identifying cluster boundaries in

a continuously sampled space.

Compared to the previous analysis by Adorf et al. that used bispectrum descrip-

tors, the CTOP approach has a few key differences. First, the CTOP approach does

not require any tuning for the identification of neighbor shells because it uses the

parameter-free Voronoi neighbors. Adorf et al. selected 12, 13, 24, and 26 nearest

neighbors to match the first and second neighbor shells. However, the diversity of

complex binary structures may not always fit well into an analysis paradigm that

requires a defined number of neighbors for the descriptors. The use of Minkowski

Structure Metrics in the CTOP descriptors and Voronoi neighbors (which are pa-

rameter free) reduces the number of parameters that must be chosen by hand for

each structural analysis. Second, the environments found are not the same (refer to

Figure 6 of Ref. [30]). Both the CTOP analysis and the bispectrum analysis locate

a fluid-like environment in the early stages of crystallization, but this environment

does not persist in the bispectrum analysis and does persist (at the grain boundary)

in the CTOP analysis. While the CTOP approach appears to find two crystalline

environments in the 3-to-1 stoichiometric ratio expected for the cP8-Cr3Si structure,

the bispectrum analysis appears to conflate particles in a grain boundary with the

Si-like environment. The “intermittently dominant icosahedral environment” of the

bispectrum analysis is never dominant in the CTOP analysis. Adorf et al. links

this environment to Wyckoff site a (the Si-like environment), which the CTOP anal-

ysis observes as its own cluster appearing simultaneously with Wyckoff site c (the

Cr-like environment) in an approximately 1:3 stoichiometric ratio. No temporarily

dominant environment appears during the crystallization process for any of the fea-

47

ture spaces (CTOPq, CTOPqw, CTOPqw, and CTOPqwqw) or numbers of clusters

(2 to 6) that were analyzed. We conclude that the CTOP approach differentiates

itself from past unsupervised methods by three factors: continuity in feature space,

fewer structure-specific parameters to tune, and identified clusters that align with

the expected stoichiometric proportions.

3.2.2 Diamond (cF8-C)

UMAP CTOPqwqw

130

135

140

145

150

155

Si
m

ul
at

io
n

Ti
m

e

(a) (b)

UMAP CTOPqwqw 0

1

2 CT
O

P q
w

qw
 C

lu
st

er
 L

ab
el

s

(c)

2.6 2.8 3.0 3.2
Simulation Time ×107

0
2000
4000
6000
8000

10000
12000
14000

Nu
m

be
r o

f P
ar

tic
le

s 0

1

2 CT
O

P q
w

qw
 C

lu
st

er
 L

ab
el

s

(d)

Figure 3.7: (a) UMAP embedding of the 18-dimensional CTOPqwqw self-assembly pathway of
15,625 particles crystallizing from a fluid into the diamond structure cF8-C. Each point
in the scatter plot corresponds to the CTOPqwqw embedding for one of the particles at
a given point in time. Color indicates simulation time, as the system progresses from
liquid (purple and dark blue-green) to solid (light green and yellow). Solid circles show
the mean of the data over time. (b) Snapshot of the final frame of the simulation.
Particles are colored by their environment type cluster, shown in (c). The dominant
environment 0 particles have not crystallized to the cF8-C local structure, described
further in the text. The diamond-like environment 1 is colored orange. The fluid-like
particle environment 2 is colored green. (c) Clustering by CTOPqwqw readily shows the
dominant clusters’ local environments. The inset shows the CTOPqwqw feature space.
(d) This shows the counts of each cluster in CTOPqwqw as a function of time. The Cr
and Si environments appear at the same time, and are in roughly a 3:1 proportion as
is expected from the chemical formula of the prototype structure.

48

In Figure 3.7, we show the self-assembly of another FF-REM pair potential, this

time optimized to form the cF 8-C diamond structure. This simulation data, pro-

vided by Carl Simon Adorf, offers an interesting demonstration of the CTOP method

when the system does not fully transition from fluid to solid. The simulation does

not fully self-assemble, but instead freezes into a state with some particles in a cubic

diamond environment shown in orange (cluster 1, verified by Polyhedral Template

Matching). The remainder of the particles shown in blue (cluster 0) have differ-

ent, lower symmetries that are not diamond-like but are distinguishable from the

fluid in green (cluster 2) only by their increase in second-shell order. The onset of

freezing leaves the system in a state that is out of equilibrium but changes slowly.

Figure 3.7(d) shows a slowly increasing number of diamond-like particles in clus-

ter 1. While the simulation never fully self-assembles the diamond structure, the

environments detected by CTOP reflect the expected target structure.

The smaller scale structure present in the blue cluster 0 presents us with a ques-

tion: what symmetries differentiate the regions contained in that cluster? Looking

at a 3D embedding in Figure 3.8, multiple branches emerge from the middle re-

gion previously identified as cluster 0. Investigating the raw Minkowski Structure

Metrics’ values indicates that this middle region has q′l and w′l values that are very

similar to the fluid-like cluster 2 (green), but separates itself from the fluid in this

embedding because of strong distinctions in q′l and w′l features that indicate ordering

in the second shell neighborhoods. As the system is cooled, some particles are able

to locate the target free energy minimum corresponding to the cF 8-C (diamond)

structure for which the potential was designed. However, some particles instead fall

into local minima that have less order. While looking only at first-shell descriptors

CTOPqw, we cannot distinguish the blue and green clusters we see in the CTOPqwqw

49

descriptor space, we hypothesize that the emergence of second shell order is actually

a manifestation of many particles and their neighbors finding local minima in the free

energy landscape with some level of order that is less than that of cF 8-C. Particles in

a fluid do explore local minima like these in cluster 0, but only display second-shell

order like this when the particle and its neighbors lack the thermal energy needed

to escape the minima via fluctuations.

(a) (b)

Figure 3.8: (a) 3D UMAP embedding of the 18-dimensional CTOPqwqw self-assembly pathway of
15,625 particles crystallizing from a fluid into the diamond structure cF8-C. Each point
in the scatter plot corresponds to the CTOPqwqw embedding for one of the particles at
a given point in time. Color indicates simulation time, as the system progresses from
liquid (purple and dark blue-green) to solid (light green and yellow). Visualization
generated using Plotly [7]. (b) Another view of the embedding in (a).

We also note that the diamond environment (cluster 1, orange) appears to be

nearly two-dimensional when embedded in 3D. Using Principal Components Analysis

on that cluster, we identify that the primary defining features of that submanifold

are q′10, −q′5, q′4, and q′6 along the first principal component and −q′5, −q′8, −q′4,

and −q′10 along the second principal component. While this analysis neglects that

UMAP’s clusters may have nonlinear structure, these principal components give

some sense of the geometry within the cluster. Coloring the UMAP by each of the

Minkowski Structure Metric features (not shown) indicates positive correlation along

the direction of increasing cF 8-C order for the q′10, q′4, and q′6 averaged quantities

50

in the first principal component and negative correlation with q′5 as indicated in the

PCA’s first component. Similarly, the direction orthogonal to increasing cF 8-C order

shows negative correlation with q′5, q′8, q′4, and q′10 as expected from the PCA analysis.

These observations from PCA give evidence that some qualitative conclusions can

be made about the local geometry without concern for the global nonlinearity of

the UMAP embedding, as long as the submanifold being analyzed is well sampled,

has a low-dimensional tangent space, and has low curvature, like this analysis of the

diamond environment.

3.2.3 σ Phase (tP30-CrFe)

In Figure 3.9, we show the self-assembly of a third FF-REM pair potential from

Carl Simon Adorf, optimized to form the tP30-CrFe σ phase. This simulation tests

the CTOP feature space’s ability to recognize complex structures because the alloy

σ-CrFe contains five different Wyckoff positions. These Wyckoff positions are labeled

A, B, C, D, E by Yakel [74]. Yakel describes that the B (4f) and C (8(i)(1)) posi-

tions are 15- and 14-coordinated, forming a “major skeleton.” The E (8j) positions

form secondary layers. Finally, the A (2a) and D (8(i)(2)) positions have 12-fold

icosahedral coordination.

Initially, we hypothesized that each position would have unique local symmetries

and thus result in five clusters in the UMAP embedding of the CTOP feature space.

However, we discovered through the CTOP analysis that this is not the case. An

important piece of background knowledge for this analysis is that in real CrxFe1− x

alloys that form this crystal, the occupancy of each site may be either Cr or Fe. That

is, iron or chromium atoms are distributed randomly over the Wyckoff positions [10,

74]. This suggests that there is significant similarity in behavior between the two

species, which makes it less surprising that a single-component system with the

51

UMAP CTOPq

120

125

130

135

140

145

Si
m

ul
at

io
n

Ti
m

e

(a) (b)

UMAP CTOPq

0

1

2

3

CT
O

P q
w

qw
 C

lu
st

er
 L

ab
el

s

(c)

2.4 2.6 2.8 3.0
Simulation Time ×107

0
2000
4000
6000
8000

10000
12000
14000

Nu
m

be
r o

f P
ar

tic
le

s

0

1

2

3 CT
O

P q
w

qw
 C

lu
st

er
 L

ab
el

s

(d)

Figure 3.9: (a) UMAP embedding of the 9-dimensional CTOPq self-assembly pathway of 15,625
particles crystallizing from a fluid into the structure tP30-CrFe. Each point in the
scatter plot corresponds to the CTOPq embedding for one of the particles at a given
point in time. Color indicates simulation time, as the system progresses from liquid
(purple and dark blue-green) to solid (light green and yellow). Solid circles show the
mean of the data over time. (b) Snapshot of the final frame of the simulation. Particles
are colored by their environment type cluster, shown in (c) and described in the text.
(c) Clustering by CTOPqwqw readily shows the dominant clusters’ local environments.
The inset shows the CTOPqwqw feature space. (d) This shows the counts of each cluster
in CTOPqwqw as a function of time.

FF-REM optimized potential can form this complex structure.3 While there are

5 crystallographically distinct Wyckoff positions, the local symmetries are similar

between some of these environments, resulting in only three clusters in the CTOP

feature space shown in Figure 3.9.

Visually inspecting the unit cell of the crystal and comparing with slices of the

self-assembled structure allows us to confirm which Wyckoff positions appear in each

cluster. Environment 0 (blue) corresponds to the C (8(i)(1)) and E (8(j)) sites. En-

3We note there is also a single-component atomic crystal, β-U, that is claimed to form the same structure [10, 74].

52

vironment 1 (orange) can be clearly identified with the A (2a) and D (8(i)(2)) sites,

separately confirmed with Polyhedral Template Matching, which shows icosahedral

order in this cluster (no other sites had an identifiable structure in the Polyhedral

Template Matching analysis). Environment 2 (green) is the B (4(f)) site. Finally, en-

vironment 3 (red) appears in boundary regions where the crystal is not fully formed,

and is the dominant environment in the fluid before crystallization occurs, along

with some of environment 2. This appears to be a conflation of fluid and solid by the

clustering algorithm – we believe the true environment 2 should contain far fewer

“fluid” particles but it is difficult to form sharp cluster boundaries when the data are

distributed continuously and the ideal data density is not known a priori. However,

we will show that the fluid-solid distinction is made clear when looking only at the

CTOPqw second-shell average feature space.

We observe in Figure 3.10 that the CTOPqw descriptor space, which contains

only second-shell averaged Minkowski Structure Metrics, can easily distinguish fluid

from crystal environments, but cannot distinguish between crystalline environments

because averaging over the second neighbor shell destroys the important information

from the local environment about which site is represented by a feature vector. The

construction of the second-shell average order parameters incorporates some similar

information to the solid-liquid order parameter used in previous simulation studies

of nucleation, which helps to explain why the second-shell descriptors are able to

clearly distinguish fluid and solid particles [75, 76].

3.2.4 Decagonal Quasicrystal

Figure 3.11 shows the self-assembly of a decagonal quasicrystal from a single seed.

This simulation data was provided by Kelly Wang as part of a study of self-healing

behavior in quasicrystal grains [77]. The CTOPqwqw features for the particles are able

53

UMAP CTOPqw

120

125

130

135

140

145

Si
m

ul
at

io
n

Ti
m

e

(a) (b)

UMAP CTOPqw

0

1 CT
O

P q
w
 C

lu
st

er
 L

ab
el

s

(c) UMAP CTOPq

0

1 CT
O

P q
w
 C

lu
st

er
 L

ab
el

s

(d)

2.4 2.6 2.8 3.0
Simulation Time ×107

0
2000
4000
6000
8000

10000
12000
14000

Nu
m

be
r o

f P
ar

tic
le

s 0

1

CT
O

P q
w
 C

lu
st

er
 L

ab
el

s

(e)

Figure 3.10: (a) UMAP embedding of the 12-dimensional CTOPqw self-assembly pathway of 15,625
particles crystallizing from a fluid into the structure tP30-CrFe. Each point in the
scatter plot corresponds to the CTOPq embedding for one of the particles at a given
point in time. Color indicates simulation time, as the system progresses from liquid
(purple and dark blue-green) to solid (light green and yellow). Solid circles show
the mean of the data over time. (b) Snapshot of the final frame of the simulation.
Particles are colored by their environment cluster. Solid-like particles in environment
0 are blue. Fluid-like and defect particles in environment 1 are orange. (c) Clustering
by CTOPqw distinguishes fluid from solid, but cannot identify the Wyckoff positions
or their local symmetries. (d) The CTOPq embedding previously shown in Figure 3.9,
colored by clusters in the CTOPqw space. (e) The counts of each cluster in CTOPqw

as a function of time, showing the fluid to crystal transition with only a small number
of fluid-like particles remaining as defects in the crystal structure shown in (b).

54

Figure 3.11: UMAP embedding of a decagonal quasicrystal self-assembling. Simulation data pro-
vided by Kelly Wang.

to distinguish between fluid-like and solid-like particles, as well as identify a number

of unique environments present in the structure. These local environments appear

to correspond to decagonal centers (purple), decagonal edges (blue), pinched motifs

(green), edge defects (red), and fluid environments (yellow-orange). This simulation

is the largest single trajectory we analyze, with 500,074 particles and a file size of

3.32 GB. These clusters are selected by hand, rather than with k-means clustering,

due to difficulties with software compatibility and large data size.

3.2.5 β-Mn Structure

In Figure 3.12, we show the self-assembly of hard truncated dodecahedra into the

β-Mn crystal structure. This simulation, run alongside the other hard polyhedra

55

(a)

(b) (c)

Figure 3.12: (a) Snapshot of the self-assembled β-Mn structure formed by 15,625 truncated dodec-
ahedra. Particles are colored arbitrarily for high contrast. The bond order diagram
in the upper left and radial distribution function in the lower left confirm that the
obtained structure is β-Mn. (b) UMAP embedding of the 18-dimensional CTOPqwqw

self-assembly pathway of 15,625 particles crystallizing from a fluid into the β-Mn struc-
ture. Each point in the scatter plot corresponds to the CTOPqwqw embedding for one
of the particles at a given point in time. Color indicates simulation time, as the system
progresses from liquid (purple and dark blue-green) to solid (light green and yellow).
Solid circles show the mean of the data over time. (c) The CTOPqwqw UMAP em-
bedding, colored by Polyhedral Template Matching.

simulations discussed in Section 3.1, is an example of a complex crystal formed

solely by entropy [23]. In this simulation, the CTOPqwqw order parameter identifies

56

changes in the particles’ local environments that correspond to the onset of crystalline

order that cannot be detected through the Polyhedral Template Matching shown in

Figure 3.12(c). Many particles in the solid are labeled as “other” by the Polyhedral

Template Matching algorithm, or are misclassified as hcp if the RMSD tolerance of

the Polyhedral Template Matching algorithm is increased. However, the CTOPqwqw

demonstrates a clear separation between fluid and solid, and additionally shows

a wide spread among the solid particles’ local environments. This wide spread is

expected from past results, because it corresponds to two Wyckoff positions discussed

below.

A similar shape and density has previously been studied in Chapter V of Ref. [78].

This previous study indicated that the two Wyckoff positions of the structure have

different local volumes, and in particular that the Mn1 position appears to have a

higher local density (smaller Voronoi volume) and is closer to an ideal icosahedral

environment. Similarly to the past study, we observe some particles in icosahedral

environments, but there is no clear spatial ordering among the icosahedral particles

identified by Polyhedral Template Matching. The wide spread of solid-like local

environments represents both of these Wyckoff positions, because they have similar

local symmetries and thus their distributions in the embedding overlap with one

another.

3.3 Comparisons of Pathways

In this section, we demonstrate how the CTOP and UMAP methods can be

combined to compare the pathways of different simulations. We call the embedding

of multiple pathways in a single UMAP a “co-embedding.” The previous UMAP

embeddings were generated by computing the CTOP order parameter for particles in

57

each frame of the simulation, then concatenating the data and computing the UMAP

embedding of those CTOP vectors over all time. Similarly, we can concatenate the

CTOP data from multiple trajectories before computing the UMAP to produce a

co-embedding.

3.3.1 Monte Carlo and Molecular Dynamics Reveal Similar Paths

(a)

fluid

fcc

hcp

(b)

fluid

fcc

hcp

(c)

fluid

fcc

hcp

(d)

fluid

fcc

hcp

Figure 3.13: A co-embedding of four different simulations transitioning between fluid and fcc struc-
tures. The simulation times are normalized such that the dark purple color is the
initial state and light yellow is the final state. (a) UMAP of the hard icosahedra com-
pressed to φ = 0.52, previously shown in Figure 3.1. (b) UMAP of the hard icosahedra
compressed to φ = 0.54, previously shown in Figure 3.2. (c) UMAP of WCA spheres
at kT = 0.03. WCA self-assembly simulation data provided by Allen LaCour. (d)
A simulation of hard spheres initialized in a close-packed fcc structure and slowly ex-
panded, allowing the solid to melt into a fluid. Note that the color scheme is reversed
for this simulation because it begins in an fcc solid (dark purple) and melts to the fluid
(yellow).

In Figure 3.13, we show a co-embedding of four systems. These four systems all

start or end in an fcc phase, but the simulations are performed in very different

ways. The embeddings in parts (a) and (b) are from hard icosahedra. Part (c) shows

a molecular dynamics trajectory with particles interacting via the Weeks-Chandler-

Anderson potential to form the fcc structure. Part (d) shows a hard sphere simulation

that is melting into a fluid, rather than undergoing self-assembly into a solid. This

shows a combination of molecular dynamics and Monte Carlo simulation methods,

as well as both self-assembly (freezing) and melting trajectories.

Overall, we see that the paths in these simulations are similar. However, we can

make several more detailed observations about the CTOP approach from this co-

58

embedding. First, we note that the melting simulation in (d) starts in a “perfect”

close-packed fcc phase of hard spheres. The shape of the co-embedding places those

particles at the farthest point, because the symmetries are the most ideal and least

fluid-like. As the system gets less dense (but remains stable in the fcc phase), the

noise in particles’ environments makes the local environments’ symmetries less per-

fect and thus the particles move towards the fluid phase at the bottom, long before

melting. This shows that the CTOP feature space can be used to study local distor-

tion or deformation in the Voronoi polyhedra due to noise (which may be thermal

noise or simply hard particles exploring the nearby free volume of the system).

Second, we see that the structures in part (b) and (c) show a dominant hcp peak,

while this is not seen as clearly for the embedding in part (a), at least in the final time

in yellow, and not at all for (d). This is because of the present of hcp layer defects in

both (b) and (c), while hcp environments only appear for a short time in (a) before

annealing out. The melting simulation in (d) does not have any significant number

of hcp environments appear during or after melting from its original fcc phase.

3.3.2 Comparing fcc, bcc, and sc Structures

(a)

fluid

fcc

(b)

fluid

bcc fcc

(c)

fluid

sc

(d)

fluid

sc

bcc fcc

Figure 3.14: A co-embedding of three different simulations in the CTOPq feature space. The simu-
lation times are normalized such that the lighter color is the initial state (fluid) and the
darker color is the final state (solid). Colors are chosen arbitrarily to help identify the
data in the co-embedding. (a) UMAP of the hard icosahedra compressed to φ = 0.52,
previously shown in Figure 3.1. (b) UMAP of the hard cuboctahedra compressed to
φ = 0.63, previously shown in Figure 3.3. (c) UMAP of the hard cubes compressed to
φ = 0.61, previously shown in Figure 3.5. (d) The co-embedding with all simulations
shown on the same axes.

59

In Figure 3.14, we show the comparison of three different crystal structures self-

assembling from hard polyhedra. The fluid region is shared among all the simulations,

because the isotropic fluid state shows no local symmetries. Each crystal structure

occupies a unique region of the embedding according to the local environments’

symmetries. The small number of fcc-like environments in the simulation shown in

(b) are also visible in Figure 3.3.

Importantly, this figure establishes that the CTOPq feature space is in fact a

manifold with a topological structure that captures the progression of local environ-

ments during self-assembly in a way that can be compared across different types of

structures. We are able to co-embed multiple simulations that self-assemble different

structures and observe the formation of many unique types of local order with no

training data or prior knowledge of the local environments. This type of generality in

the ability to characterize microscopic details of changing local environments across

many structures is a novel feature of the approach presented here.

3.3.3 Solid-Solid Transitions

(a)
fluid

fcc

hcp

(b)
fluid

bcc

(c)
fluid

bcc

fcc

hcp

(d)
fluid

bcc

fcc

hcp

Figure 3.15: A co-embedding of three different simulations in the CTOPqw feature space. Color
schemes are chosen arbitrarily to help identify the data in the co-embedding. The
average UMAP value for each frame is shown in a series of circles colored by the frame
time. (a) UMAP of the hard icosahedra compressed to φ = 0.52, previously shown in
Figure 3.1. (b) UMAP of the hard cuboctahedra compressed to φ = 0.63, previously
shown in Figure 3.3. (c) UMAP of a solid-solid phase transition (fcc to bcc). Data
provided by Chrisy Xiyu Du [11]. (d) The co-embedding with all simulations shown
on the same axes. The UMAP averages of each trajectory form a triangle for the fluid,
fcc, and bcc states.

60

Solid-solid transitions, such as the martensitic transition [79], permit diffusionless

changes between crystal structures. Here, we show that the manifold structure of

CTOP has nontrivial cycles formed by the connections between solid phases and the

disordered fluid phase. Figure 3.15 shows fcc and bcc self-assembly simulations (re-

sults gathered in the Hard Particle Monte Carlo simulations of polyhedra described

in Section 3.1) compared to an fcc-bcc phase transition from a study by Du et al. of

particles whose shapes are optimized to undergo solid-solid phase transformations as

pressure changes [11]. The particles’ local environments during this transition break

some symmetries while gaining others. Looking at the co-embedding of this fcc-bcc

transition with two self-assembly simulations forming the fcc and bcc phases from a

disordered fluid, we see that the local environments of the solid-solid transition do

not resemble those of the disordered fluid. These three distinct pathways exist in the

“local structure space” implied by the manifold embedding, and form a triangular

shape shown in part (d). While this set of pathways can be embedded into 2D, adding

more transitions between solid phases would likely require additional projection di-

mensions to adequately represent the manifold. Graphs have planar embeddings if

they do not contain the subgraphs K5 or K3,3, but we have observed that real data

in a UMAP may have more complicated geometries that are not easy to embed into

the plane.

3.3.4 Comparing Many Pathways

In Figure 3.16, we show a collection of many pathways from the compiled data

sets, which showcase a broader picture of the CTOPq manifold than what was pre-

viously shown in Figure 3.14. In this embedding, all of the self-assembly pathways

emerge from a common fluid origin. We observe that even before self-assembly be-

gins, particles’ local environments begin to weakly display some symmetries of their

61

Figure 3.16: A co-embedding of 10 different simulations in the CTOPq feature space. The subfigures
show the pathway embeddings of 8 of the simulations (selected as representative tra-
jectories of the whole). Clockwise from top, the embedding shows local environments
from the A15 (cP8-Cr3Si), σ-CrFe (tP30-CrFe), fcc (cF4-Cu) and hcp (hP2-Mg),
bcc (cI 2-W), sc (cP1-Po), clathrate-I (cP54-K4Si23), and diamond (cF8-C) crystal
structures. Color schemes are chosen arbitrarily to help identify the data in the co-
embedding. Some trajectories shown were provided by Carl Simon Adorf, Sangmin
Lee, and Allen LaCour.

final structure, causing the distribution of fluid-like particles to shift slightly in the

direction of the final structure before the solid forms with long-range crystalline or-

der. Nearby points in the embedding have similar symmetries. Some structures,

such as A15 and σ-CrFe, appear to have some local environments with similar local

symmetries.

Additionally, once a co-embedding of many simulations like this one is generated,

it can be used to embed new trajectories and observe their pathways. If the trajec-

tory’s particles have local symmetries that have been seen before, their corresponding

CTOP vectors will be close to points that already exist in the UMAP embedding.

For example,

Figure 3.16 reveals the broader structure of the CTOPq embedding space, when

considering some of the diverse types of crystal structures where local environment

analysis can be applied. However, many questions remain. For example, Du et al.

62

successfully designed particles that exhibit pressure-driven solid-solid phase trans-

formations from fcc to bcc and bcc to simple cubic – both of which appear to be

“close” in the UMAP embedding shown here. However, it is unclear whether the

embedding reflects meaningful distances in structure space: is it possible to design

structures that transition from fcc to diamond, which appear to be further apart in

this embedding?

While some of these questions can be solved through further investigation of the

CTOPq manifold, the manifold is not yet a perfect tool for identifying all crystal

structures. For example, the β-Sn structure (tI 4-Sn) is difficult to distinguish from a

fluid state because its local symmetries are not well captured by the CTOPqw set of

descriptors. This is because β-Sn is a distorted form of the diamond structure, and

appears somewhere between the fluid and diamond structure in the UMAP embed-

ding. However, its “squashed” form of diamond breaks most of the local symmetries

that the CTOPq method relies on to distinguish the diamond structure, and offers

no strong signatures of other local symmetries observed in the CTOPq feature space.

Detecting this structure reliably may require other continuous order parameters (pos-

sibly extensions of the Minkowski Structure Metrics) that can identify stretched or

sheared symmetries. Similarly, the local order formed by hard tetrahedra appears to

be close to the fluid state in the CTOPqw descriptor space, which was also observed

by van Damme et al. with a different set of Minkowski Structure Metrics visualized

with PCA dimensionality reduction [46]. Most of these challenging structures can

be easily identified as solid-like by taking a second-shell average and looking at the

CTOPqw feature space. However, improvements in the descriptors are necessary to

achieve the goal of detecting microscopic local (first neighbor shell) order for these

structures. Next, we will discuss potential improvements to the descriptor space,

63

machine learning models, and other aspects of the problem that could extend on

the novel aspects of this method while solving some remaining issues that limit the

method’s generality.

3.4 Outlook and Future Directions

I plan to incorporate the CTOP method into the open-source Pythia library4,

which contains a number of methods for generating features from particle systems

that are useful for machine learning applications. The CTOP method, like other

methods in Pythia, is implemented using features from freud and can be extended

and customized for users’ needs.

The CTOP analysis method successfully identifies ordered local structures in a

wide range of self-assembling systems. In this section, I describe a number of ex-

tended approaches and alternative choices that I hypothesize could be used to im-

prove the method. Extensions of the CTOP method could come in a variety of

forms, such as increasing the classes of systems whose local environments can be dis-

tinguished from one another. The essential finding that all of these future directions

builds on is that continuity in feature space significantly influences what methods

are best suited to explore the microscopic origins of self-assembly.

3.4.1 Experimental Applications of the CTOP Method

Real-time imaging approaches like in situ X-ray tomography (XRT) are enabling

experimental acquisition of particle-level information at atomic length scales [80].

Particle-level information is already being used at the colloidal scale, with some ex-

periments computing Minkowski Structure Metrics from the acquired 3D particle

tracks to characterize local environments in fcc and bcc crystal structures [60]. Be-

4https://github.com/glotzerlab/pythia

64

cause the CTOP method presented here only requires the computation of Minkowski

Structure Metrics from particle positions, it is possible to compute the CTOP and its

UMAP embedding from this information. Analyzing the progress of phase transfor-

mations and characeterizing local environments in experimental data can be acceler-

ated through this method, because of its applicability to a wide range of crystalline

systems that are of experimental interest. Finally, comparisons of particles’ local

environments between experimental data and simulation data may be useful to un-

derstand aspects of real systems that are not captured effectively by simulations, or

to explore pathways engineering with high-throughput experiments.

3.4.2 Local Symmetry Analysis with Point Groups

A recently developed method by Engel et al. [81] may present another way to

understand the local environments of particles undergoing self-assembly. The CTOP

method presented herein, based on Minkowski Structure Metrics, provides a “con-

tinuous fingerprint” that can be used to identify many types of local environments.

However, as noted above, there are some structures that are difficult to detect using

the Minkowski Structure Metrics. Instead, another way of looking at local environ-

ments would be to measure the level of point group symmetry around each particle

for a set of desired point groups. It may be possible to continuously classify the

types of local symmetries for each particle in a way that builds on the hierarchical

structure of point groups. Achieving a feature space that is continuous with respect

to particles’ positions, like the CTOP feature space, may be possible through the use

of Voronoi neighbors as is done for Minkowski Structure Metrics.

65

3.4.3 Applications to 2D Systems

In this work, we use 3D Minkowski Structure Metrics. However, a two-dimensional

form of the Minkowski Structure Metric exists as well, using circular harmonics

(instead of spherical harmonics). This approach could be used to characterize local

structure in 2D simulations, such as hard polygons which have shown diverse phase

behavior including continuous KTHNY hexatic transitions [82], plastic crystals [83],

and complex host-guest structures [84].

Just as 3D Minkowski Structure Metrics closely resemble the Steinhardt order

parameters, 2D Minkowski Structure Metrics resemble the hexatic order parame-

ter (or k-atic order parameter). The k-atic order parameter is implemented in the

freud library and can be defined as:

ψk (i) =
1

Nb

Nb∑
j=1

eikφij(3.1)

In 2D, we can obtain the Voronoi polygon of each point and compute its edge

lengths, which are used as weights just like the facet areas in the 3D case. As with

the 3D Minkowski Structure Metrics, we modify the formula to incorporate Voronoi

edge weights wij as follows:

ψ′k (i) =
1∑Nb

j=1wij

Nb∑
j=1

wije
ikφij(3.2)

3.4.4 Handling Particle Shape with Set Voronoi Constructions

The Voronoi construction used in this work treats all particles as points. This is

reasonable for the molecular dynamics simulations shown in this work, where par-

ticles have isotropic interactions defined by their potential V (r). However, treating

66

particles as isotropic objects may not be a good model for highly anisotropic par-

ticles such as the cubes shown in Figure 3.5. The Set Voronoi diagram [85] has

been proposed as a way to account for anisotropy in the context of Voronoi dia-

grams. The resulting Set Voronoi diagrams reduce to traditional Voronoi diagrams

when used with points or monodisperse spheres, but are able to more accurately

capture the local volumes occupied by each particle in a packing, whether disordered

or ordered. The software package Pomelo [86] has been developed to compute Set

Voronoi diagrams, and could be used to analyze anisotropic shapes. We note that the

Minkowski Structure Metrics, which are currently computed by the freud library,

could no longer be computed in the same way (according to the facet areas of neigh-

bor bonds), due to the added complexity of having arbitrary surfaces whose facets

are not strictly related to the “bonds” of the system (the dual of the usual Voronoi

diagram, the Delaunay triangulation, can be trivially mapped onto freud’s concepts

of neighbor bonds because both structures can be handled as weighted graphs). The

Minkowski Structure Metrics on these arbitrary surfaces would have to be computed

according to the more general formulas used for Minkowski Tensors, described below.

3.4.5 Minkowski Tensors and Continuous Morphometric Measures

Mickel et al. notes that while the construction of the Minkowski Structure Metrics

(q′l) used in this work are closely related to Steinhardt order parameters (ql), they also

correspond to Minkowski tensors [6]. These and related concepts are sometimes called

“morphometric” approaches [6]. For example, the Minkowski Structure Metric q′2 is

related to a quantity β0,2
1 defined as the ratio of the smallest and largest eigenvalues of

the second-rank Minkowski tensor W 0,2
1 . The derivation of the Minkowski Structure

Metrics used in this work from Minkowski tensors is thoroughly described in the

doctoral theses of Kapfer (Chapter 9) [87] and Mickel (Chapter 7) [88]. We re-derive

67

the essential results in this section to provide a firm mathematical grounding for the

extensive use of Minkowski Structure Metrics in this work. Another relevant paper by

Schröder-Turk et al. [12] discusses the algorithms used to compute Minkowski tensors

and their applications in spatial data extending beyond the realm of particulate

matter into microphases seen in polymers and fibrous materials.

(a) Two-dimensional bodies

W 2, 0
0 – moment tensor solid W 2, 0

1 – moment tensor hollow

W 2, 0
2 – moment tensor wireframe W 0, 2

1 – normal distribution

(b) Three-dimensional bodies

W 2, 0
0 – moment tensor solid W 2, 0

1 – moment tensor hollow

W 2, 0
2 – moment tensor wireframe W 2, 0

3 – moment tensor vertices

W 0, 2
1 – normal distribution W 0, 2

2 – curvature distribution

Figure 3.17: Illustration of the linearly independent Minkowski tensors. (a) In two dimensions,
there are four linearly independent Minkowski tensors. (b) In three dimensions there
are six. Taken from Ref. [12] with permission.

The Minkowski tensors are denoted W a,b
ν and shown in Figure 3.17. The rank 0

and 1 Minkowski tensors for solid bodies correspond to properties such as volume,

surface area, center of mass, mean curvature, and Gaussian curvature. For a solid

body K (a compact set with non-empty interior) in R3, the rank 2 Minkowski tensors

are defined as:

W 2,0
0 (K) =

∫
K

r2dV(3.3)

W a,b
ν (K) =

1

3

∫
∂K

Gνr
anbdA(3.4)

68

where vectors taken to powers use the tensor product (e.g., r2 = r ⊗ r) and the

functions Gν are defined using the principal curvatures k1, k2 on ∂K:

G1 = 1(3.5)

G2 =
k1 + k2

2
(3.6)

G3 = k1k2(3.7)

For this work, we specifically use quantities related to W 0,l
1 (we relabel the index l

to foreshadow its relationship to the Minkowski Structure Metric q′l obtained below).

This tensor captures the distribution of normal vectors on the surface of the body

K, shown in Figure 3.17(b) as W 0,2
1 . We take K to be the Voronoi polyhedron of

a particle. We take the Cartesian tensor W 0,l
1 and consider its decomposition into

irreducible spherical tensors W 0,l
1 |lm. For simplicity, we use Mickel’s naming conven-

tion and drop some indices, calling these tensors W1|lm. Following Mickel’s equation

(7.29) [88], we define the following with a normalization factor and then transform

the integral into a summation over the facets of the convex Voronoi polyhedron K:

W1|lm(K) =

∫
∂K

dA

√
4π

2l + 1
Y l
m(n)(3.8)

=

√
4π

2l + 1

∫
∂K

Y l
m(n)(3.9)

=

√
4π

2l + 1

Nb∑
j=1

AjY
l
m(n)(3.10)

where Nb is the number of facets of the polyhedron K. Note that this is very nearly

the same construction as Eqn. 2.9. Applying the facet weight normalization from

Eqn. 2.8, wij =
Aj∑
j Aj

and rewriting this as a second-order rotational invariant (a

69

bilinear form), we get precisely the Minkowski Structure Metrics q′l:

W1|lm(K) =

√
4π

2l + 1

Nb∑
j=1

AjY
l
m(n)(3.11)

q′l(i) =
1∑
j Aj

√√√√ l∑
m=−l

|(W1|lm)|2(3.12)

The third-order rotational invariant (3-form) w′l can be constructed in a similar

way [88]. However, there is nothing that limits us to consider only W 0,l
1 in our anal-

ysis. Other ways to characterize Minkowski tensors include the anisotropy measures

βa,bν , defined as a ratio of the smallest and largest eigenvalues of the corresponding

Minkowski tensor [89, 90]:

βa,bν (K) =
λmin(W a,b

ν (K))

λmax(W a,b
ν (K))

(3.13)

Another approach involves reducing the rank-4 tensor W 0,4
1 to a 6 × 6 symmet-

ric matrix (in continuum mechanics, a similar reduction is often performed on the

rank-4 stiffness tensor). The six eigenvalues of that matrix (denoted ς1 . . . ς6) have

also been used as rotationally invariant quantities to identify and characterize local

environments [91, 43].

3.4.6 Alternate Unsupervised Machine Learning Approaches

I have shown many ways to project the Minkowski tensors into scalars such as the

Minkowski Structure Metrics q′l, anisotropy measures βa,bν , or eigenvalues ς1 . . . ς6.

One possible machine learning approach for incorporating the tensors directly as

structural descriptors would be to train a model such as an autoencoder (as in

Ref. [31]) that uses an E3 equivariant neural network [92, 93] with the Minkowski

tensors as features. The tensor networks in the e3nn package are able to learn

weights for different ranks of tensors to mix with one another through rotationally-

equivariant interactions. An autoencoder model architecture could include several

70

interaction layers allowing for mixing between representations of different ranks,

with an encoding space containing only low-rank quantities (e.g., 2-3 scalars). Such

a model might be able to learn the relevant symmetries of the Minkowski tensors

while exhibiting E3 equivariance.

3.4.7 E3 Equivariant Neural Networks

The recent development and application of equivariant neural networks to particle-

like data embedded in 3D Euclidean space is one example where a combination of

carefully chosen data representations and novel neural network architectures have

led to new possibilities such as fast approximations of quantum mechanical force

fields [94] and the prediction of phononic bands for a range of atomic crystals [95].

It may be possible to use supervised machine learning with E3 equivariant neural

networks to achieve some of the same characteristics of this study, namely learned

order parameters that respect local symmetries and continuity (perhaps through the

use of continuous activation functions in the neural network).

71

CHAPTER IV

Predicting Properties of Photonic Crystals with Machine
Learning

4.1 Photonic Materials and Machine Learning

In this chapter, I will discuss the design of materials with photonic properties.

Photonic crystals exhibit a photonic band gap, a range of frequencies of light that

are fully reflected by the materials. Photonic band gaps (PBGs) can be directional

(only certain incident directions are reflected) or omnidirectional. For this chapter,

I consider omnidirectional photonic band gaps in 3D materials. PBGs result in

many fascinating phenomena in nature, such as the iridescent scales of the beetle

Lamprocyphus augustus [96]. Furthermore, PBGs allow for the design of materials

with applications in optics, such as waveguides [97].

Recently published work by R. Cersonsky, J. Antonaglia, B. Dice, and S. Glotzer

describes our findings of three-dimensional photonic band gaps in a wide range of

crystal structures [13]. High throughput analyses powered by the signac frame-

work [15] enabled the computation of the first twenty photonic bands in over 130,000

crystal structures. First, I will describe the physical origins of photonic band gaps.

Then, I will motivate the use of machine learning models for predicting photonic be-

havior as a route towards optimization of material properties. Finally, I will discuss

a series of machine learning model designs applied to this problem. While no model

72

has shown convergence to the desired results, I present these designs and the data

used to train them in hopes of advancing future efforts on photonic materials design.

4.1.1 Electromagnetic Waves in Heterogeneous Macroscopic Media

The material models we consider in this chapter are crystal structures with spheres

of radius r and dielectric constant ε placed on each lattice position, with void space

filled with a dielectric constant of ε0. We make a simplifying assumption that the

dielectric constant is independent of frequency. This can be used to represent systems

such as nanoparticles or colloids that self-assemble a crystal structure. We also

consider so-called inverse structures, where the spheres have dielectric constant ε0

and the void space is filled with a dielectric constant of ε. Inverse structures can be

formed by methods such as colloidal crystal templating, where structures composed

of polymer spheres are filled with a fluid that solidifies, followed by calcination or

solvent extraction to remove the original polymer spheres [98].

The dispersion relations of a photonic system can be computed using Maxwell’s

Equations. We start from Jackson Eqn. 6.6 [99]:

∇ ·D(r, t) = ρ(4.1)

∇ ·B(r, t) = 0(4.2)

∇×H(r, t) = J(r, t) +
∂D(r, t)

∂t
(4.3)

∇× E(r, t) +
∂B(r, t)

∂t
= 0(4.4)

Following the derivation in Joannopoulos Chapter 2 [100], we consider only linear

and lossless media. Through harmonic mode analysis, we obtain the master equation:

73

∇×
(

1

ε(r)
∇×H(r)

)
=
(ω
c

)2

H(r)(4.5)

4.1.2 Eigensolver Methods for Computing Photonic Bands

The master equation (Eqn. 4.5) can be treated as an eigenvalue / eigenvector

problem, which allows the application of a wide range of computational tools [100].

In this problem, the eigenvalue is the frequency
(
ω
c

)2
and the eigenvector is the field

H(r). The MIT Photonic Bands software [101] implements an eigensolver acting in

the frequency domain, which was used for calculations in Ref. [13] and this chapter.

The inputs to a photonic band calculation are the periodic box vectors, dielectric

geometry contained within the periodic box, material properties corresponding to

each geometry object, a set of k vectors, and the number of bands to compute. The

periodic dielectric structure ε(r) is discretized into a number of voxels. For each k

vector, the MPB code computes eigenvalues (frequencies) of electromagnetic plane

waves interacting with the material, and the corresponding fields H(r). However,

this computation can take considerable time, with evaluation of 2744 (143) k vectors

(for a density of states calculation) taking around 10 minutes when split across 128

cores, or nearly equivalent to a full day if computed on a single core.

4.2 Past Approaches to Photonic Structure Design

Past work in applying machine learning to photonic crystal design has focused

on 2D systems and simple 3D structures with a small number of degrees of freedom

in a constrained geometry [102, 103]. These models saw a speedup of between 104

and 106 when comparing the evaluation time of the neural network to the evalua-

tion time of the MIT Photonic Bands computation. Another relevant work is that

74

of Men et al. [104], which performs 3D optimizations of a dielectric structure repre-

sented as voxels to increase the size of a photonic band gap. While this work presents

a powerful method for structural optimization, this approach is considerably more

computationally expensive than a single evaluation. The ability to perform faster

photonic band computations through approximation with a neural network would be

useful in the context of materials design, where photonic band gaps could be eval-

uated in real time for guiding simulations towards structures with desired photonic

properties.

4.3 Designing Convolutional Neural Networks for Predicting Photonic
Properties

This section’s work on CNN design and training was performed in collaboration

with Thomas Waltmann. The first approach taken for this study was to build a

convolutional neural network (CNN) acting on three-dimensional images of the pe-

riodic dielectric structure. The model accepted a 3D image ε (r) and a reciprocal

vector k as input. We used the ASE Python package [105] to compute the irre-

ducible Brillouin zone (IBZ) and band path for each structure. The k vectors used

for training/validation/testing were sampled from this IBZ band path. The target

output was the frequency of the first 20 bands (ω1, . . . , ω20) for that crystal structure,

dielectric sphere radius, and k vector.

4.3.1 Data Preprocessing and Augmentation

Because of the large number of Bravais lattices in the input data set, we could not

assume that the 3D input image would be cubic. Instead, we adopted a strategy seen

commonly in CNN training: data augmentation, through multiplying the training set

by adding many copies of an input image that are rotated or translated. One of the

75

purposes of data augmentation is to train the model to generalize over (or be invariant

to) various transformations. For instance, an algorithm being trained to identify

objects in an image might include data augmentation that accounts for changes in

the lighting conditions, by adding images that are artificially made brighter, darker,

or more saturated. For our data, we wished for the resulting model to be invariant to

rotation and translation of the crystal structure and thus augmented the data with

examples of such transformations. To build the rotational invariance of the band

structure into our model, we augmented the dataset with 10 random rotations for

each combination of structure and particle radius in the dataset.

The high spatial resolution required for distinguishing geometric features in the

3D images (100x100x100 voxels) meant that the full data set of all crystal structures

(130,000) and augmentations (10 per structure) was too large to save to disk, and

instead had to be generated on the fly. To train the neural network, we used the

Summit supercomputer with the TensorFlow library [106] and IBM Watson Compute

Environment software. We used TensorFlow features for distributed memory paral-

lelism and GPU acceleration, specifically optimized for use with Summit’s compute

nodes containing six NVIDIA V100 GPUs each.

Figure 4.1: The flow of data from an input crystal structure to a predicted photonic band structure.
The dielectric image ε(r) is generated from the input crystal structure and processed
by a deep neural network (the figure shows a simplified model) to predict the band
frequencies ωn(k, ε(r)) for each band number n in the first 20 bands and each wavevector
k in the band path over the Irreducible Brillouin Zone (IBZ).

76

The preprocessing steps and model architecture are shown in Figure 4.1. I built

a new feature for the freud library called SphereVoxelization for efficiently com-

puting 3D voxelized representations of crystal structures with spheres on each lattice

site, shown in the second image of Figure 4.1. These voxelizations could be per-

formed on the fly, with input data processed on the CPU while GPUs were used to

train the model. This image generation code had to be heavily optimized to ensure

that it could be completed quickly and would not become a bottleneck for the GPUs

training the model.

4.3.2 Building a Scalable Model

Figure 4.2: Benchmark on Summit (Oak Ridge National Laboratory) for scaling the training of a
deep CNN machine learning model. Shown is time to train our model for 1 epoch vs.
number of nodes. The strong scaling is nearly ideal, up to the tested limit of 1024 nodes
(6144 NVIDIA V100 GPUs in total).

To take advantage of the Summit hardware and distribute our training across

multiple GPUs and GPU nodes, we integrated our TensorFlow training code with

Horovod [107]. Horovod utilizes an MPI-like interface exposing rank, size, local

rank, and local size to the programmer. While training, we first randomly split all

the data into three parts: training, validation, and testing. Each rank trains on a

77

randomly selected subset of the training data. We selected the batch size and epoch

size to optimize for performance and distributed training efficiency. Each batch

of data is pre-processed on the CPU, and the optimal batch size was determined

empirically to optimize performance (considering the trade-off of CPU compute,

GPU compute, and memory bandwidth). Typically, one “epoch” is defined as one

training pass over all data, but here one epoch is defined as a training pass over

10% of all the training data. The epoch size was chosen to be a fraction of the total

training data size to boost distributed training efficiency, since the ranks broadcast

their learned weights’ gradients at the end of each epoch. This ensures that the

gradients will converge to the results expected from a single-node training, while

enabling massive parallelism. TensorFlow takes advantage of GPU hardware through

the cuDNN deep neural network package which provides libraries for specific deep

neural network routines like convolution, pooling, and activation layers. We scale

TensorFlow to multiple GPUs and GPU nodes using Horovod with MPI support

provided by OpenMPI.

After developing this model with TensorFlow and Horovod, we benchmarked its

performance and achieved good strong scaling behavior shown in Figure 4.2. This

model was capable of predicting 555 band structures per hour on a single V100

GPU, which we computed would provide around a 30x speedup compared to the

MPB calculation running on a CPU. This would have been fast enough to couple to

simulations that aim to optimize materials for photonic properties. However, experi-

ments with each of the model architectures described below showed poor convergence

on both training and validation data sets.

78

Figure 4.3: The MPB calculated photonic band structure (left) compared with the band structure
prediction of our trial ML model, labeled cnn2 (right). The band structure above
was predicted after training the model on the XSEDE Bridges GPU-AI partition for 50
epochs on a dataset consisting of only 127 sample structures using 10 random rotations.
The dielectric structure is diamond (cF8-C) with particles at the lattice sites having a
radius of 0.2 times the length of a unit cell. The trial model learns curvature near the
gamma point, but otherwise converges to the average band frequency value over all k
vectors.

4.3.3 Iterations on CNN Model Architecture

Several iterations on the model were attempted. The convolutional portion of

the network ranged from 3 to 6 convolutional layers with 8 to 16 filters and relu

activation functions. Next, the convolution outputs were fed to a series of 4 dense

layers that reduced in size from 160 to 20 neurons. The size of the last dense layer is

20, because it is the number of band frequencies that the model predicts. One of the

challenges faced was how to combine the 3D information of the crystal structure with

the information contained in the k vector. In all models, the k vector was rotated

to match the random rotation of the dielectric structure. The first model iteration

used a four-channel dielectric image, where each channel of the 100x100x100 image

contained the scalar values (ε(r),kx,ky,kz). That is, every voxel contained the same

values for the components of k and a spatially varying value of ε(r). The predicted

79

band structure from this model showed some variation near the Γ point (k = 0) but

not away from it; instead, the model simply predicts the average frequency value

when away from the Γ point. A second model iteration used a single-channel 3D

image containing only ε(r) and the components of the k vector were used as an

additional input to each dense layer. A third model used a separate 3D image with

the function <
[
eik·r

]
, in an attempt to carry the k vector’s information into the same

3D space as the crystal structure. A final model architecture inspired by Ref. [108]

used a diffraction pattern computed for a plane orthogonal to the incident radiation.

Initially we hoped to find some model architecture and set of hyperparameters that

converged, which we could then fine-tune in order to improve the model’s accuracy.

However, none of the models appeared to converge. To predict the full band structure

and predict the location of any photonic band gaps, we evaluated the network at each

wavevector in the band path along the IBZ. Sample predictions for the second model

are shown in Figure 4.3.

We tried to reduce the size of the training data set, and narrow its scope to

only include a small number of closely related crystal structures from the same space

group. We hypothesized that reducing the complexity of the full dataset and allowing

the model to see examples of the same inputs many times while training could help

with convergence (training for a full epoch of the entire data set took a long time,

and thus each example was not seen very many times for a given number of compute

hours spent training). However, this did not help with convergence towards the

desired outputs.

There were two primary challenges with this approach that we sought to resolve.

First, the primary goal of computing the photonic bands as a function of k was to

identify photonic band gaps (frequencies where ω(k) has no real solutions). The

80

computation of ω(k) isn’t strictly necessary if the density of states is known as

a function of ω, because photonic band gaps simply correspond to places where

DOS(ω) = 0. While the density of states had not been calculated for the training set

of crystal structures, that quantity could be computed. Second, the CNN approach

of using images led to a number of undesirable parameters. We wanted the voxelized

images to contain multiple repetitions of the unit cell, so that the periodic structure

could be learned and used to help predict the band frequencies. However, unit

cells with large aspect ratios or angles different from 90◦ (which account for a large

portion of the data) were hard to fit into this paradigm. We would need a variant

of CNN designed specifically for analyzing data in a triclinic periodic box. Also,

choosing an appropriate spatial resolution (here, 100x100x100) that could be applied

to structures with different dielectric sphere radii was difficult. Using too high of a

resolution means that the model is extremely difficult to train, while too low of a

value prevents the model from accurately capturing the 3D geometry.

4.4 Computing the Photonic Density of States

With these challenges in mind, I sought to try a different approach that could

solve the problems faced with the CNN model. Recent work by Chen et al. [95]

on the problem of phononic materials design has shown successful high-throughput

predictions of the phononic densities of states for a wide range of atomic crystal struc-

tures. While some important aspects of the physics are different between phononic

and photonic bands, there are also key similarities. For example, both involve the

computation of eigenmodes as a function of a reciprocal wavevector. Both band func-

tions are constrained by crystallographic symmetries and suffer from similar issues

with data scarcity (both types of band structures are computationally difficult to

81

generate). Although photonic bands obey the macroscopic laws of electromagnetism

and phononic bands relate to thermal and vibrational motion, we saw an opportunity

to try again.

In addition to the differences in physics, our photonics data set differs in a few

ways. For example, we consider dielectric spheres with a provided radius and di-

electric constant, whereas Chen et al. consider atomic elements. Additionally, there

is no reference data set of photonic densities of states: our recently published work

with Cersonsky et al. in Ref. [13] is, to our knowledge, the largest computational

study (and largest data set) of three-dimensional photonic crystals to date. The key

advantage to using the density of states as a target, rather than the band structure

as in the previous CNN model, is that the dependence on the wavevector k is inte-

grated out. Additionally, phenomena like band crossings do not need to be explicitly

considered if all the bands are integrated, rather than indexed individually. Thus,

the physics being learned is vastly simpler in principle, with no need to learn the

complex relationships between 3D geometry and a reciprocal space vector.

We undertook calculations on the Bridges-2 cluster that expand on the results

of Cersonsky et al. by computing a larger number of bands and integrating over

the first Brillouin Zone to get the photonic density of states for each structure as

a scalar function of frequency. To accomplish this, we adapted the MATLAB and

Scheme code of Boyuan Liu et al., published in Ref. [109]. We ported this MPB

code and its corresponding Gilat-Raubenheimer integration method [110] to Python,

which is available as an MIT-licensed code on GitHub.1 This code can be used to

compute the photonic density of states for a provided 3D structure. Importantly,

this code can be used with MPB’s Python interface, meaning that it can be called

1https://github.com/boyuanliuoptics/DOS-calculation

82

from any Python application. Moreover, this code is easier to parallelize for large

computations, because the MPB computations can be split so that each core takes a

subset of the k vectors to be evaluated, then all results can be combined at the end.

We observed that this was a very efficient approach to parallelization and was simple

to implement with mpi4py [111], without needing to use MPB’s own MPI interface

(which we found somewhat difficult to build from source).

(a) (b)

Figure 4.4: Densities of states computed for two crystal structures exhibiting band gaps. (a) The
band structure and density of states for the diamond structure (cF8-C) with dielec-
tric sphere radius r = 0.24. (b) The band structure and density of states for the
β-cristobalite structure (cF24-SiO2) with dielectric sphere radius r = 0.24.

Figure 4.5: Histogram of ωmax for the 2,400 crystal structures in space group 227 whose densities
of states were computed.

We computed photonic densities of states only for structures in space group 227,

the space group of the diamond structure (cF 8-C). Example densities of states are

shown in Figure 4.4. The density of states is truncated at the lowest frequency across

k space for the highest band number (40 bands were calculated), which we label ωmax.

83

The distribution of these truncation frequencies is shown in Figure 4.5.

4.4.1 E3 Equivariant Models with Graph Convolutional Networks

We developed a new model architecture that could be trained on the results

of the density of states calculations. We use the package e3nn [93] to implement

an E3 equivariant model. This approach is driven by several motivations. First,

this package was used in the work of Chen et al. for phononic density of states

calculations, which is the closest machine learning model we are aware of for handling

arbitrary 3D geometry and predicting band structures. Second, we know that the

results of our model (the density of states) must be E3 invariant. That is, the

photonic density of states for a given crystal structure should not vary if the system

is rotated, translated, or reflected – the outputs should be invariant with respect to

the Euclidean group E3. Thus, it makes sense to use E3 equivariant operations in the

model’s hidden layers. Point groups and space groups are subgroups of E3, which

motivates this choice from the perspective of crystallographic symmetry constraints

on the learnable functions. Last, the e3nn approach is data efficient and capable of

learning from less training data than some other model architectures [94].

The e3nn is based on graph convolutional neural networks, which perform convolu-

tions that combine information from nodes and edges of a graph. Features belonging

to nodes or edges can be scalars, vectors, pseudovectors, or other types of tenso-

rial quantities with a known irreducible representation (irrep) that includes its order

l >= 0 and parity p = ±1. On each convolution, nodes’ features are scattered to each

edge, then an E3 equivariant tensor product is performed among the desired edge

features. This tensor product can include arbitrary irreps, potentially with weighted

paths that can be learned by the network. The resulting edge features are scattered

back to the nodes, and summed. Then the convolution may be repeated. Other layer

84

types, such as linear layers or gated activations, can also be applied. The resulting

predictions may be quantities of any irrep. Following Chen et al., we predict 51 scalar

values (with parity p = 1 to allow inversion symmetry) corresponding to frequencies

in the range [0, ωmax].

Here, we describe the preprocessing for this model. Following the approach in

Chen et al. [95], we aim to predict the values of the density of states for the fre-

quency range ω ∈ [0, ωmax], with 51 values of ω evenly spaced in that range. We

choose a truncation frequency ωmax from the distribution of frequencies shown in

Figure 4.5 and drop all structures with densities of states that do not reach that fre-

quency. Here, we chose a value of ωmax = 0.5. However, many structures in the data

set have interesting behavior above this frequency. We must truncate at a lower fre-

quency because we cannot exceed the frequency range at which the density of states

integration over k space is valid. Gathering band data for higher frequencies involves

the calculation of more bands with the MPB eigensolver, which becomes very com-

putationally expensive as the desired frequency range grows. Since the density of

states goes like ω2, the photonic bands are more dense at higher frequencies, making

it quadratically more difficult (on average) to expand the frequency range computed

for a given structure.

A set of features is computed for each particle, which include the dielectric sphere

volume, radius, and dielectric constant. Edge features include an edge length em-

bedding, which is used by a radial layer (this is a common approach, related to the

work of Behler and Parrinello [112]) and edge spherical harmonics Y m
l (θij, φij) for a

range of irreps l.

Early experiments with this model architecture did not converge to the desired

results. The network appears to learn the general quadratic form of the density

85

of states as an average over all the input data, but does not incorporate band gaps

(where the density of states is zero) and does not account for the changes in dielectric

filling fractions that appear to change the quadratic coefficient of the DOS curve. In

future work, we may wish to explore improvements to the model architecture, input

data quality, and additional training time.

4.5 Database of Photonic Crystal Structures

Figure 4.6: Screenshots of the photonics database online, produced to accompany Ref. [13].

As a part of the work done for Ref. [13], I designed a web-accessible database of

the crystal structures obtained in that study. Using the signac data management

framework and Sphinx documentation generator for Python, I created a searchable

static website that is hosted on our group’s webserver.2 The website, shown in

Figure 4.6, contains a list of all structures found to have photonic band gaps. The

data can be sorted by gap size, point group, space group, or the band numbers
2https://glotzerlab.engin.umich.edu/photonics/

86

where the gap exists. The website contains information about each structure that

was found to have a band gap, including the lattice vectors, space group, point group,

data source, and Digital Object Identifiers (DOIs) for related publications where the

structure or its photonic properties have been previously studied.

4.6 Outlook and Future Directions

Despite the challenges of training machine learning models for this problem, I

can make some conclusions about what I have learned in the process. For example,

in both this project and the CTOP analysis method demonstrated in Chapters II

and III, I see that machine learning models are most capable when model and feature

invariants/equivariants align with the physics being learned. Additionally, I find that

data augmentation is not an efficient or robust replacement for model architectures

that can capture the physics innately – and it’s not easy to know when “brute force”

(in the form of extensive data augmentation and longer training times) can make up

for it. I believe that new model architectures like e3nn hold promise for future work

on this and related problems in physics-based machine learning.

Additionally, I made improvements to open-source tools during the course of this

work that will benefit future research in the field. These include an open-source

(MIT licensed) Python implementation of the photonic density of states solver by

Boyuan Liu3, the SphereVoxelization feature of freud, and improved software

packages on conda-forge for MPB and its companion tool Meep (a time-domain

electromagnetic solver package that also supplies the Python interface for MPB).4

Using these tools to simplify the computation of photonic densities of states may

enable other applications. For example, electronic density of states have been used

3https://github.com/boyuanliuoptics/DOS-calculation
4https://github.com/conda-forge/pymeep-feedstock/pull/56

87

to train a machine learning model called DOSnet that accurately predicts adsorption

energy for a range of surfaces and adsorbates [113]. In that work, the density of states

was an input to the model, rather than an output being used to characterize band

gaps as described in this chapter. The robust and computationally efficient pipeline

developed for calculating photonic densities of states for this study would be valuable

in a model like DOSnet that aims to predict other material properties from photonic

densities of states.

88

CHAPTER V

The freud Library for Particle Analysis

5.1 Introduction

The open-source freud Python library1 provides a simple, flexible, powerful set

of tools for analyzing trajectories obtained from molecular dynamics or Monte Carlo

simulations. High performance, parallelized C++ is used to compute standard tools

such as radial distribution functions, correlation functions, order parameters, and

clusters, as well as original analysis methods including potentials of mean force and

torque (PMFTs) and local environment matching. The freud library supports many

input formats and outputs NumPy arrays [114], enabling integration with the scien-

tific Python ecosystem for many typical materials science workflows.

During my PhD, I have been a core developer and maintainer of the library, col-

laborating closely with Vyas Ramasubramani on extensive improvements to the code

base driven by research needs for fast computations of order parameters, data visu-

alization, and support for the many data formats used in molecular sciences. This

joint work with Ramasubramani resulted in two co-authored publications: Rama-

subramani et al. [27] about the library design and feature set, and Dice et al. [115]

about the use of the freud library for machine learning and data visualization in the

molecular sciences. As release manager for the software, I produced 23 releases since

1https://github.com/glotzerlab/freud/

89

2017, from version 0.6.4 to 2.6.2, including two major versions (the second of which

is discussed further in this chapter). Crucially, my work on freud’s algorithms,

APIs, and software features enabled the methodological development and results

discussed in Chapters II and III. Among the core features I have contributed are

improved neighbor finding in periodic boxes, Voronoi diagrams using the voro++

library [48], improved Steinhardt order parameters including the computation of

Minkowski Structure Metrics discussed in Chapter II, and a new algorithm for com-

puting particle clusters that greatly improved computation time for the Solid-Liquid

order parameter [116]. It has enabled many research projects within our group and

beyond, already resulting in 33 citations of the software (Ref. [27]) since the pa-

per’s publication in September 2020 (less than a year at the time of writing this).

The library has 41 code contributors according to GitHub.2 The freud library is

available from the Python Package Index3 and conda-forge4, as well as in Docker

and Singularity prebuilt images that users can execute on Mac, Linux, and HPC

clusters.5

In this chapter, I will describe my contributions to the freud library and discuss

machine learning pipelines, data visualization, and recently published research using

features from freud for wide-ranging analyses of particle systems. Some contents

of this chapter are adapted from Dice et al. [115], under the Creative Commons

Attribution License. The full contents of that paper are reproduced in Appendix A.

5.2 Library Design and Features

The freud Python package offers a unique feature set that targets the analysis

of colloidal systems. The library avoids trajectory management and the analysis of
2https://github.com/glotzerlab/freud/
3https://pypi.org/project/freud-analysis/
4https://anaconda.org/conda-forge/freud
5https://github.com/glotzerlab/software

90

biomolecules
MDAnalysis*

MDTraj*
pytraj*

atomic
crystals
pymatgen*

atomic scale

coarse
grained
models

colloidal
crystals

nanoparticles

molecular scale
nanoscale

mesoscale

*existing codes

Figure 5.1: Common Python tools for simulation analysis at varying length scales. The freud li-
brary is designed for nanoscale systems, such as colloidal crystals and nanoparti-
cle assemblies. In such systems, interactions are described by coarse-grained models
where particles’ atomic constituents are often irrelevant and particle anisotropy (non-
spherical shape) is common, thus requiring a generalized concept of particle “types”
and orientation-sensitive analyses. These features contrast the assumptions of most
analysis tools designed for biomolecular simulations and materials science.

chemically bonded structures, which are the province of most other analysis platforms

like MDAnalysis [117] and MDTraj [118] (see Figure 5.1). In particular, freud excels

at performing analyses based on characterizing local particle environments, which

makes it a powerful tool for tasks such as calculating order parameters to track crys-

tallization or finding prenucleation clusters. Among the unique methods present in

freud are the potential of mean force and torque, which allows users to understand

the effects of particle anisotropy on entropic self-assembly [24, 119, 120, 121, 82], and

various tools for identifying and clustering particles by their local crystal environ-

ments [44]. All such tasks are accelerated by freud’s extremely fast neighbor finding

routines and are automatically parallelized, making it an ideal tool for researchers

performing peta- or exascale simulations of particle systems. The freud library’s

scalability is exemplified by its use in computing correlation functions on systems of

over a million particles, calculations that were used to illuminate the elusive hexatic

phase transition in two-dimensional systems of hard polygons [82].

91

The freud 2.0 design changed the user interface (APIs) for the library, to reflect

a much more general approach to analysis. For example, virtually all analysis meth-

ods can be performed between two disjoint sets of coordinates, called points and

query points. Neighbor bonds always go from a query point to a point. This al-

lows for the construction of asymmetric neighbor configurations, such as k-nearest

neighbors, as well as the computation of quantities like partial radial distribution

functions between two types A and B as gAB(r). This conceptual model is distinct

from the approaches commonly used in packages for biomolecular simulations, where

macromolecular topology (e.g., bonds between carbon and oxygen atoms) and easily

distinguishable atomic identities provides a shared basis for neighbor finding. In

nanoparticle self-assembly, however, simulations often involve monodisperse building

blocks of the same type. The 2.0 design of freud allows for multiple paradigms of

analysis, defined by NumPy indexing instead of fixed atomic type identifiers, which

can be useful for nanoparticles, polymers, and coarse-grained models of many kinds.

These ideas and implementations are discussed further in Ramasubramani et al. [27].

Other major changes in the 2.0 release included 4x faster performance through

on-the-fly neighbor finding, integration with Jupyter notebooks [122] for inline data

visualization and plotting, support for 25+ file formats through integrations with

MDAnalysis [117], OVITO [9], HOOMD-blue [28], and file readers such as GSD6

and garnett7, and support for the Windows operating system in addition to Linux

and macOS.
6https://github.com/glotzerlab/gsd/
7https://github.com/glotzerlab/garnett/

92

5.3 Machine Learning Pipelines

As previously shown in Figure 2.3, many approaches for machine learning analysis

of particle systems involve the computation of features that form a high-dimensional

feature space, followed by the application of a machine learning algorithm to that

high-dimensional feature space. The freud library can be used as part of these data

generation pipelines for machine learning (ML) algorithms used to analyze particle

simulations. Among Python packages used in the computational molecular sciences,

freud offers a unique set of analysis methods designed for nanoscale simulations.

5.4 Performance and Real-Time Visualization

(a) (b) (c)

Figure 5.2: Overview of data visualization tools that can be coupled with the freud library. (a)
Interactive visualization of a Lennard-Jones particle system, rendered in a Jupyter note-
book using plato [3] with the pythreejs backend [4]. (b) Hard tetrahedra colored by local
density, path traced with fresnel [14]. (c) A crystalline grain identified using freud’s
LocalDensity module and cut out for display using OVITO [9]. The image shows a
tP30-CrFe structure formed from an isotropic pair potential optimized to generate this
structure [15].

Computational researchers are often scientists first and programmers second. As

a consequence, it is imperative that scientific software is designed with its users in

mind. One design requirement identified for the freud analysis library was that it

must be possible to integrate with real-time visualization applications. In Figure 5.2,

93

we show examples of such visualization applications. Over time, the focus of this

design requirement shifted from in-house software using a Qt GUI (platoviz) to the

popular OVITO application [9]. The OVITO software uses pipelines wherein data

passes from one stage to another, starting with a file input and resulting in the

data shown on screen. For example, pipeline stages may perform analysis, select

particles, and add or delete properties corresponding to particles, bonds, types, or

other attributes. The technical requirement that this imposes on freud developers is

that simulation trajectory playback should be “real time,” capable of rendering on

the order of 30 frames per second. Following from that, any pipeline stages using

freud must compute their target quantities in roughly 10-30 milliseconds. The ability

to use freud as a “real time” library, rather than an expensive postprocessing step

for each simulation, offers a high degree of flexibility to users.

5.5 Wide-Ranging Applications of Data Analysis in Particle Systems

Figure 5.3: Cluster analysis of buildings in three American cities, revealing different levels of city
“crystallinity.” Figure reproduced from Ref. [16] under the Creative Commons Attri-
bution International 4.0 License.

Among the citations of the freud library are some highly interesting applications

94

of statistical physics beyond the nanoparticle regime. These kinds of use cases are

enabled by the high level of generality that freud offers, with few assumptions about

the types of input data. In this section, we highlight two such recently published

papers using freud. The first, by Ryan Rusali and Gerald Wang, applies meth-

ods from molecular simulation to analyze “urban textures,” clusters of buildings in

U.S. cities including Pittsburgh, Los Angeles, and New York City. The study uses

freud to calculate quantities such as the radial distribution function, g(r), the 2-fold

order, ψ2, and clusters of buildings using data from Geographic Information Systems

(GIS). This analysis is shown in Figure 5.3. Another such analysis is that of Teich et

al. [123], which uses freud’s environment matching module (originally contributed

by Teich) to analyze structurally homogeneous regions of white matter in the human

brain. These interdisciplinary applications of methods from materials physics and

statistical mechanics in domains such as urban planning and neuroscience indicate

the value of designing algorithms in a way that is neutral to their applications, en-

coding as few assumptions as possible, and encouraging interaction with the broader

ecosystem of scientific Python tools.

5.6 Outlook and Future Directions

In this chapter, we have described library design principles, machine learning ap-

plications, and integrations with data visualization tools. We see future goals for

the library in a few key areas, such as diffraction and scattering calculations, where

there are few modern tools capable of handling the diversity of input formats and

generalized assumptions (e.g., generic particles, not strictly atoms) that freud aims

to handle. Additionally, we hope that newly developed methods for symmetry de-

tection and other techniques applicable to nanoparticle self-assembly can be incor-

95

porated into the feature set of the library. The architecture of the library has been

solidified, with high standards for code quality and performance. We anticipate that

the standardization efforts on freud 2.0 will aid future developers significantly, as the

code now provides a wide range of types of calculations that can serve as examples

for future feature development.

96

CHAPTER VI

The signac Framework for Data Management and Workflow
Automation

6.1 Introduction

The data collection and computational workflow of the projects described in Chap-

ters II, III and IV were managed with the signac framework. Since 2017, I have

been a core developer and maintainer of the signac framework, along with a team of

7 other committers and maintainers. In this chapter, I will discuss my contributions

to the signac data management framework and the novel scientific applications en-

abled by its use. Some of the contents of this chapter are reproduced from Dice et

al. [124] under the Creative Commons Attribution License. The full contents of that

paper are reproduced in Appendix B.

The signac data management framework helps researchers execute reproducible

computational studies, scaling from laptops to supercomputers and emphasizing

portability and fast prototyping. With signac, users can track data and metadata

for file-based workflows (such as large molecular simulations) with features for search-

ability, collaboration, and archival. The companion package signac-flow automates

workflow submission on high performance computing clusters. The architecture of

signac is specifically aimed at research, where questions change rapidly, data mod-

els are always in flux, and computing infrastructure varies widely from project to

97

project. The signac framework is a NumFOCUS affiliated project, is available for

Python 3.6+ via pip or conda, and is licensed BSD-3. To date, over 45 people have

contributed code to the signac framework.

The signac framework has been cited 59 times, according to Google Scholar, and

has been used in a range of scientific fields with various types of computational work-

flows. Some of these studies include quantum calculations of small molecules [125],

4,480 simulations of epoxy curing (each containing millions of particles) [126], in-

verse design of pair potentials [15], identifying photonic band gaps in 151,593 crystal

structures [13], benchmarking atom-density representations for use in machine learn-

ing [127], simulating fluid flow in polymer solutions [128], design of optical metama-

terials [129], and economic analysis of drought risk in agriculture [130]. These diverse

applications of the software show the generality of its approach to data management

and computational workflows. Much of the software design and development has

been carried out in conjunction with the Molecular Simulation Design Framework

(MoSDeF) [131], a National Science Foundation Cyberinfrastructure for Sustained

Scientific Innovation (CSSI) effort.

6.2 Data Model and Integration with Scientific Applications

Here, we present an overview of the signac data model and signac-flow workflow

paradigm, shown in Figure 6.1. The core signac package provides a database (called

a project) that is managed on the file system, containing jobs. Jobs are identified by

their state points, key-value stores encoded as JSON. In a signac project’s workspace

directory, each job has a directory named according to a hash of its state point. Users

of scientific research codes typically have file-based workflows, executing specialized

software (often designed for HPC systems) that generates output files in a particular

98

Run simulation
13 @Project.operation
14 def simulate(job):
15 # Run simulation

Analyze data
25 @Project.operation
26 def analyze(job):
27 # Make results.txt

Visualize data
71 @Project.operation
72 def visualize(job):
73 # Make plot.png

s i g n a c

signac (core)

signac-flow

WORKSPACE

project.py

JOB
signac_statepoint.json

signac_job_document.json

results.txt

plot.png

JOB JOB

JOB JOB JOB

JOB

JOB
signac_statepoint.json

signac_job_document.json

Initialize jobs
 9 pr = signac.init_project("MyProject")
10 pr.open_job({"a": 1}).init()

init.py

Figure 6.1: Overview of the signac framework. Users first create a project, which initializes a
workspace directory on disk. Users define state points which are dictionaries that
uniquely identify a job. The workspace holds a directory for each job, containing JSON
files that store the state point and job document. The job directory name is a hash of
the state point’s contents. Here, the init.py file initializes an empty project and adds
one job with state point {"a": 1}. Next, users define a workflow using a subclass of
signac-flow’s FlowProject. The workflow shown has three operations (simulate, ana-
lyze, visualize) that, when executed, produce two new files results.txt and plot.png

in the job directory. Special thanks to Kelly Wang for contributing the design and
concept of this figure.

format. In the signac paradigm, these files are then stored on disk in a job workspace

directory corresponding to the state point parameters that were used to generate the

data.

The companion package signac-flow provides tools for users to write reproducible

workflows that can be executed on local machines (such as a laptop) and scale all

the way up to large HPC clusters such as Oak Ridge’s Summit. The design of

signac-flow involves a FlowProject that builds on top of signac’s Project class

to provide the tools needed for a conditional workflow. These include operations

that act on jobs, labels that provide status information to the user, and precondi-

99

tions/postconditions that indicate when operations should run. With these tools,

users can check the status of a workflow, run operations locally, and submit opera-

tions to a cluster running a SLURM, PBS, or LSF scheduler. On top of these basic

workflow tools, signac-flow also presents advanced workflow capabilities described

below in Figure 6.2. The operations in a workflow may be Python functions or shell

commands, providing users the ability to call external programs such as simulation

tools or other programming languages besides Python.

6.3 HDF5 Data Stores

Many modern scientific applications can be used as libraries, such as the freud li-

brary discussed in Chapter V and the new design of HOOMD-blue version 3. In

these application designs, typically driven by Python or another scripting language,

the software cedes control to the user to perform most actions involving file in-

put/output. As a result, scientific applications that act as libraries often handle

data from existing objects in memory, eliminating the need for reading data from or

writing data to disk. Objects such as NumPy arrays [114] provide a transparent and

nearly-universal format for numerical arrays in memory. Having intermediate data

in a common memory layout that can be accessed efficiently is crucial for analyzing

large data sets, and is thus essential to modern computational scientific work.

The HDF5 format is designed to store numerical arrays like those described above.

For my research, I developed an integration layer between signac and HDF5 data

stores, enabling users to quickly save and load numerical arrays and minimizing the

complexities of serializing binary data to disk. The h5py software [132] provides APIs

for reading and writing HDF5 files in Python, which we use to handle the interactions

between signac and the underlying HDF5 files. For example, in the research shown

100

in Chapter III, I used HDF5 files extensively to cache results computed by the

freud library. This allowed for rapid iteration on other parts of the data pipeline

such as tuning the UMAP dimensionality reduction and plotting code, without the

need to recompute data from freud for every change in the data pipeline. The

freud library has no direct support for saving its results to disk, and instead relies

on the scientific Python ecosystem for saving its NumPy arrays. Thus, the integration

of h5py and HDF5 with signac provides a convenient mechanism for storing output

data of computational libraries that have no native methods for data storage.

The choice of the HDF5 format has both advantages and disadvantages. One

advantage of the format is its hierarchical nature, allowing users to store nested

keys and values in the same way that signac handles the job document (which is a

JSON file). This is well suited for the types of data and metadata that signac users

often wish to store. Additionally, the core HDF5 library is commonly found in

HPC contexts. The h5py library greatly simplifies the usage of HDF5, making it

user-friendly and mostly transparent to users who are accustomed to the behavior

of NumPy arrays. Furthermore, the use of HDF5 files allows for binary data like

floating point numbers to be directly stored, rather than performing expensive and

lossy serialization of those values as text. A significant disadvantage of the format is

its inability to recover space in the file when deleting datasets (the file size can only

grow unless the user runs a repacking program). However, in practice many HDF5

stores are written once and read many times, which mitigates this to some extent.

When designing this feature, I found that the performance, flexibility, and long

history of stability of the HDF5 format made it a strong choice for both convenience

in the short term and archival over the long term.

The signac library offers a few ways to utilize HDF5 Data Stores. Users create

101

a context manager that contains all of the input/output actions to be performed,

which ensures the file is opened and closed safely. The Job object has two attributes,

job.data and job.stores, that respectively refer to a specific data store named

signac data.h5 and a dictionary of stores whose keys correspond to file names, e.g.,

job.stores["my data"] corresponds to the file my data.h5 in the job workspace.

Likewise, the Project class has attributes project.data and project.stores for

holding project-wide data.

6.4 Improving Performance and Scalability

In this section, I discuss improvements to the scalability of the signac and signac-

flow packages. These changes enabled the study undertaken in Chapter IV, which

contained more than 100,000 jobs representing different crystal structures and sphere

radii. The serverless design of signac’s data model imposes limitations relating

to disk I/O and filesystem latency that cannot be easily concealed from the user

(e.g., via asynchronous transactions). In the past study of Cersonsky et al., which

also handled this large number of photonics computations, a hierarchical model of

signac subprojects nested within a parent signac project was used. However, this

approach made workflows and HPC submission cumbersome, compared to what can

be done with a typical single-level project with signac-flow. By focusing on al-

gorithmic efficiency, minimizing system calls, and improving data access patterns

throughout the signac framework, I was able to extend the framework’s scalability,

solving a challenge for my own research as well as enabling larger computational

studies for future users of signac.

The signac-flow package supports a number of complex patterns affecting the

execution and submission of jobs and operations, summarized in Figure 6.2. In

102

Use groups to combine associated
operations into a single submission.

simulate(job)
Submit...

analyze(job)
Submit again...

visualize(job)
Submit again...

process(job)

simulate(job)
analyze(job)
visualize(job)

Submit once, run all.

Use aggregation to operate on
multiple jobs.

Use bundling to submit scripts that
execute multiple operations.

12 CPUs3 CPUs

3 CPUs

6 CPUs

@aggregator.groupby(...)
def make_chart(*jobs):
 # Plot grouped data

jobA1
jobA2
jobA3
jobA4
jobB1
jobB2
jobB3
jobB4
jobC1
jobC2
jobC3
jobC4

A

B

C

Figure 6.2: Aggregation, groups, and bundling allow users to build complex workflows. The features
are orthogonal, and can be used in any combination. Aggregation enables one operation
or group to act on multiple jobs. Groups allow users to combine multiple operations
into one, with dependencies among operations resolved at run time. Bundling helps
users efficiently leverage HPC schedulers by submitting multiple commands in the same
script, to be executed in serial or parallel.

summer 2020, Google Summer of Code student Hardik Ojha worked with me and

other mentors from the signac team to implement a feature called “aggregation,”

allowing users to submit and execute operations acting on more than one job at a

time. This new feature solves a common request from users, who want to be able to

plot data from multiple jobs (perhaps grouped by a common state point parameter)

or execute complex parallel operations on large supercomputers (particularly Oak

Ridge National Laboratory’s Summit system) with MPI communicators split among

multiple jobs.

As a part of the redesign of signac-flow to support aggregation, I refactored a

large portion of the internal workings of the package in January 2021. The core

functions of signac-flow (status, run, and submit) shared common algorithms but

103

had disparate implementations, some of which were aware of groups or aggregation,

but often handled nontrivial groups (groups with more than one operation) or non-

trivial aggregates (aggregates with more than one job) in a separate and inefficient

manner. The result was a significant improvement, with more shared logic among

the core features of signac-flow and fewer unique code paths to test and maintain.

Now, most internal functions call a single generator (coroutine) that yields pairs of

aggregates and groups along with their execution eligibility and/or scheduler status

information. While undertaking this redesign, I profiled the code extensively using

Python’s cProfile module, identifying and refactoring internal methods that scaled

poorly with the number of jobs or were making unnecessary function calls that could

be eliminated through restructuring the flow of data. The improved evaluation of

operation eligibility and data preparation steps common to all core functions led to

a speedup of approximately 4x for a sample workflow with 1000 jobs, 3 operations,

and 2 label functions (comparing version 0.12.0 with version 0.11.0).

At the same time, the process of profiling signac-flow also pointed to inefficiencies

within the core signac package. For instance, creating an instance of the Job class

(which is created O(Njobs) times for most signac-flow commands) always loaded the

state point from disk, even if the user had opened the job by its id (unique hash) and

not yet accessed the statepoint attribute. I refactored the core Job and Project

classes to load data lazily (on request), cache internal properties, and initialize data

on access rather than pre-emptively. These modifications were somewhat difficult to

do while maintaining the database invariants required (or assumed) by signac’s data

model, especially under circumstances that could involve race conditions in parallel

workflows on HPC clusters. Once completed, these refactorings of the data access

patterns to minimize disk I/O resulted in much faster access for large data spaces.

104

On a solid-state disk, these changes cumulatively created a 4x to 7x speedup for

large projects (tested with 100,000 jobs, comparing version 1.6.0 with version 1.5.0).

The simultaneous development of new code for “synced collection” objects by Vyas

Ramasubramani and Google Summer of Code student Vishav Sharma served as a

helpful validation of these optimizations, which we confirmed could be implemented

safely without compromising the validity of the signac data model.

Prior to this work, the signac framework was quite difficult to use with large

numbers of jobs, because basic actions like checking a workflow status or submitting

jobs to an HPC cluster could take a long time. The measured “user time” for these

operations is very important, because long wait times to check job status negatively

impact research productivity and users’ ability to understand the current state of

their work.

6.5 signac-dashboard: Visualizing Research Data

While performing an early stage research project, I found that I needed a high-

throughput way to review data generated in a signac project for hundreds of jobs.

To address this need, I designed the signac-dashboard application for web-based

data visualization of signac projects. This application can be used to view job state

points, job documents, images, text, video, file lists, and other types of content held

in a signac data space. An example of the project used with the data presented in

Chapter III is shown in Figure 6.3.

6.5.1 Dashboard Features

The dashboard can be broken into a few components. Modules generate one or

more cards for each job in the signac project. Modules can be enabled or disabled

by the user at run time, to condense or expand the amount of information shown.

105

Figure 6.3: An example of signac-dashboard showing the image viewer modules with data col-
lected for Chapter III.

For example, the ImageViewer module generates a card for each PNG, JPG, or GIF

image present in the job workspace. These cards are titled according to the file name

being displayed, and display a thumbnail image that can be clicked to expand the

image size. The modules currently included with signac-dashboard are shown in

Table 6.1. Users can write custom modules with Python. Custom modules can also

include JavaScript that can be served alongside the dashboard for interactive content.

For example, the Notes and DocumentEditor modules include JavaScript code that

allows data to be submitted to the dashboard server dynamically (without reloading

the full page), when users click “Save” next to a text box in the web interface.

106

DocumentEditor Provides an interface to edit the job document.
DocumentList Displays the job document.
FileList Lists files in the job workspace with download links.
FlowStatus Show job labels from a flow.FlowProject.
ImageViewer Displays images in the job workspace that match a glob.
Notes Displays a text box that is synced to the job document.
StatepointList Displays the job state point. (See Figure 6.4(b).)
TextDisplay Render custom text or Markdown in a card.
VideoViewer Displays videos in the job workspace that match a glob.

Table 6.1: List of signac-dashboard modules.

The class signac dashboard.Dashboard provides the basic infrastructure for con-

figuring a dashboard, connecting it to a signac project, and choosing modules. The

configuration includes options for the host and port where the web server will be

run, as well as options for debugging, profiling the application, and managing web

site security. Most users only need to use a few of the methods of this class, such

as defining a function job title(job) that returns a string of a human-readable

name for the given job (e.g., a name based on its state point keys and values) – see

Figure 6.4(a) for an example.

The dashboard has two main viewing modes: list view and grid view. In list view,

users are simply shown a list of job titles. This view does not show any of the cards

generated for each job until the user clicks on the job title to see that job’s page. The

grid view shows cards generated for all jobs on the page (by default, the dashboard

shows 25 jobs per page).

The dashboard’s search feature works the same way as the signac command line

interface’s signac find command, allowing users to type queries in “simple syntax”

like pressure 10 to match jobs that have a key “pressure” with value 10 in their state

point. The full JSON syntax for finding jobs is also supported, like {"pressure":

10}.

107

(a) (b)

Figure 6.4: Additional examples of signac-dashboard. (a) Custom job titles are shown for each
job, generated by a overridden job title function. (b) The StatepointList module
shows the keys and values for the job state point in the upper left.

6.6 Outlook and Future Directions

The signac data management framework offers a comprehensive set of tools for

computational researchers to manage and scale file-based workflows with virtually

any combination of scientific applications, machine learning pipelines, or data pro-

cessing tools. The features I developed for the framework have improved its ability

to handle and store binary data, scale up to larger data spaces, and enable rapid

visualization of computed results.

As the framework continues to grow in popularity among computational researchers,

I also hope to see the framework adopted by experimental users. Essentially all ex-

perimental apparatuses include complex sensors, cameras, detectors, and/or robots

108

interfaced with computers and programmed for data collection. Enabling these types

of devices to store their file-based data in a signac project through hardware inter-

faces controlled by Python would allow for reproducible analyses to be run directly

from the device outputs.

109

CHAPTER VII

Conclusions

In this dissertation, I have discussed applications of physics-informed machine

learning to two important problems in materials design, as well as developed two

major software packages that will accelerate future discoveries through powerful data

analysis and reproducible workflows.

First, I developed and applied the Continuous Topological Order Parameter, a

novel method using unsupervised machine learning for the characterization of crys-

tallization in self-assembling colloidal systems. I hope that this analysis method and

the motifs it reveals can be used for engineering applications, such as identifying

the connections between local motifs and the quality or yield of the crystal being

formed. Though engineering crystallization pathways is a major challenge, having

a better understanding of the microscopic processes underlying crystallization is an

important step.

I began this dissertation with a few questions about the microscopic behaviors of

particles that lead to their crystallization pathways. While these questions are likely

to remain a challenge for the near future, the progress shared in this dissertation

may be a helpful step towards answering them. In particular, the CTOP and UMAP

approach enables us to autonomously detect local motifs in many types of ordered

110

structures, including simple crystals, Frank-Kasper phases, quasicrystals, and solid-

solid phase transitions, whether simulated with molecular dynamics or Monte Carlo

methods, or performed with isotropic pair potentials or anisotropic hard particles.

The pathways traversed by particles in these simulations can be directly analyzed

in the CTOP manifold, and pathways may be compared against one another with

no need for constructing separate training data. I hope that this method can be

coupled with other tools such as transition path sampling, to enable efficient and

autonomous explorations of new phase diagrams, the measurement of energy barriers

and nucleation rates in crystal formation, and engineering of material properties

through the direct manipulation of kinetic pathways.

Next, I discussed the application of machine learning for predicting photonic prop-

erties of crystal structures. I designed a convolutional neural network with Tensor-

Flow and deployed it on Oak Ridge National Laboratory’s Summit supercomputer.

While the convolutional neural network’s predictive capability was limited, I have

begun exploration of using densities of states and equivariant neural networks that

may be able to improve on these results. From both the crystallization pathways and

photonics projects, I conclude that the complex challenges of physics-based machine

learning can be addressed through the selection of features and model architectures

that are well-motivated for the physics of the problem. The challenge lies in finding

those representations suitable for a given question, and to extend those representa-

tions for use in related problems.

I summarized my contributions to the development of a suite of powerful, efficient,

and flexible analysis tools for particle systems in the freud library. The freud library

is already heavily used by the soft matter community and its capabilities have shown

to be essential for the kinds of large-scale, data-driven simulations that I hope become

111

commonplace in the field. Moreover, its general approach to the computations found

in materials physics have shown to be useful in interdisciplinary applications.

Lastly, I have enabled scalable workflows through the signac framework for data

management and workflow automation. The signac framework has found a wide

user base from several fields of science and engineering, and continues to find new

applications driven by the complex needs of computational researchers.

I will conclude with a discussion of scientific software and its role in advancing

computational research.

Figure 7.1: “Dependency” by Randall Munroe. Alternate text: “Someday ImageMagick will finally
break for good and we’ll have a long period of scrambling as we try to reassemble
civilization from the rubble.” Reproduced under a Creative Commons Attribution-
NonCommercial 2.5 License. Source: https://xkcd.com/2347/

Scientific software is a key infrastructural component of computational research.

Packages such as freud and signac take a combination of technical skills, project

vision, and teamwork to develop and maintain. As the field of materials science

112

strives to answer questions through computation, we rely more and more on a tree

of complex software packages built upon one another (see Figure 7.1). Combining

machine learning and data science tools with molecular simulations quickly ascends

this tower of complexity – for instance, freud has 31 software dependencies, while

cuML (which I used for its GPU-accelerated UMAP algorithm in Chapter III) has

88. However, the benefits of easily usable, freely available, and open-source software

dramatically exceed the costs. With well-developed software that includes documen-

tation, examples, and tests, computational research can be heavily accelerated.

Since the signac framework was created in 2015, our group has seen many PhD

students pass down projects to newer students, where the organizational strategy of

the framework has made it easier to understand the inner workings of the project

and its core scientific aims. This has been seen in other labs using signac as well.

Matthew Thompson, a signac user from Vanderbilt University, said, “signac has

revolutionized the way we use molecular simulations for scientific research. It allows

us to focus our efforts on the scientific objectives and not worry about where our

data is, how our data is structured, how to submit thousands of jobs to a cluster, or

if our future selves can remember what a simulation was meant to focus on.” Mike

Henry, a signac user who has become a maintainer of the software, said, “I needed

to pull some data from a project that another grad student did. Because they used

signac, it was easy to use the commands $ signac schema and $ signac find

to find exactly what I needed.” He added, “No one will be able to find/figure out

the stuff I did before I used the signac framework.” Tools like the freud library

and signac framework form a foundation upon which scalable workflows can be

built, enabling researchers to generate reproducible and ready-to-share data. The

continually expanding number of users (and citations) of these software packages

113

indicates their utility and underscores the wide range of problems they can help to

solve. I look forward to seeing these and other related tools continue to grow in their

capabilities and usage, which reflects the scientific progress and discoveries that they

enable.

114

APPENDICES

115

APPENDIX A

Analyzing Particle Systems for Machine Learning and Data
Visualization with freud

This appendix is reproduced from Dice, B., Ramasubramani, V., Harper, E., Spellings,

M., Anderson, J., and Glotzer, S. (2019). Analyzing Particle Systems for Machine

Learning and Data Visualization with freud. Proceedings of the 18th Python in

Science Conference, 27–33. DOI: 10.25080/Majora-7ddc1dd1-004. This is an open-

access article distributed under the terms of the Creative Commons Attribution

License.

A.1 Abstract

The freud Python library analyzes particle data output from molecular dynamics

simulations. The library’s design and its variety of high-performance methods make

it a powerful tool for many modern applications. In particular, freud can be used

as part of the data generation pipeline for machine learning (ML) algorithms for

analyzing particle simulations, and it can be easily integrated with various simula-

tion visualization tools for simultaneous visualization and real-time analysis. Here,

we present numerous examples both of using freud to analyze nano-scale particle

systems by coupling traditional simulational analyses to machine learning libraries

and of visualizing per-particle quantities calculated by freud analysis methods. We

116

include code and examples of this visualization, showing that in general the introduc-

tion of freud into existing ML and visualization workflows is smooth and unintrusive.

We demonstrate that among Python packages used in the computational molecular

sciences, freud offers a unique set of analysis methods with efficient computations

and seamless coupling into powerful data analysis pipelines.

A.2 Introduction

biomolecules
MDAnalysis*

MDTraj*
pytraj*

atomic
crystals
pymatgen*

atomic scale

coarse
grained
models

colloidal
crystals

nanoparticles

molecular scale
nanoscale

mesoscale

*existing codes

Figure A.1: Common Python tools for simulation analysis at varying length scales. The freud li-
brary is designed for nanoscale systems, such as colloidal crystals and nanoparticle
assemblies. In such systems, interactions are described by coarse-grained models
where particles’ atomic constituents are often irrelevant and particle anisotropy (non-
spherical shape) is common, thus requiring a generalized concept of particle “types”
and orientation-sensitive analyses. These features contrast the assumptions of most
analysis tools designed for biomolecular simulations and materials science.

The availability of “off-the-shelf” molecular dynamics engines (e.g., HOOMD-

blue [133, 134], LAMMPS [135], GROMACS [136]) has made simulating complex

systems possible across many scientific fields. Simulations of systems ranging from

large biomolecules to colloids are now common, allowing researchers to ask new ques-

tions about reconfigurable materials [137] and develop coarse-graining approaches to

access increasing timescales [138]. Various tools have arisen to facilitate the analysis

of these simulations, many of which are immediately interoperable with the most

popular simulation tools. The freud library is one such analysis package that differ-

117

entiates itself from others through its focus on colloidal and nano-scale systems.

Due to their diversity and adaptability, colloidal materials are a powerful model

system for exploring soft matter physics [139]. Such materials are also a viable

platform for harnessing photonic [137], plasmonic [140], and other useful structurally-

derived properties. In colloidal systems, features like particle anisotropy play an

important role in creating complex crystal structures, some of which have no atomic

analogues [23]. Design spaces encompassing wide ranges of particle morphology [23]

and interparticle interactions [15] have been shown to yield phase diagrams filled

with complex behavior.

The freud Python package offers a unique feature set that targets the analy-

sis of colloidal systems. The library avoids trajectory management and the anal-

ysis of chemically bonded structures, which are the province of most other anal-

ysis platforms like MDAnalysis and MDTraj (see also Figure A.1) [117, 118]. In

particular, freud excels at performing analyses based on characterizing local par-

ticle environments, which makes it a powerful tool for tasks such as calculating

order parameters to track crystallization or finding prenucleation clusters. Among

the unique methods present in freud are the potential of mean force and torque,

which allows users to understand the effects of particle anisotropy on entropic self-

assembly [24, 119, 120, 121, 82], and various tools for identifying and clustering

particles by their local crystal environments [44]. All such tasks are accelerated by

freud’s extremely fast neighbor finding routines and are automatically parallelized,

making it an ideal tool for researchers performing peta- or exascale simulations of

particle systems. The freud library’s scalability is exemplified by its use in comput-

ing correlation functions on systems of over a million particles, calculations that were

used to illuminate the elusive hexatic phase transition in two-dimensional systems

118

of hard polygons [82]. More details on the use of freud can be found in Ref. [27].

In this paper, we will demonstrate that freud is uniquely well-suited to usage in the

context of data pipelines for visualization and machine learning applications.

A.2.1 Data Pipelines

The freud package is especially useful because it can be organically integrated

into a data pipeline. Many research tasks in computational molecular sciences can

be expressed in terms of data pipelines; in molecular simulations, such a pipeline

typically involves:

1. Generating an input file that defines a simulation.

2. Simulating the system of interest, saving its trajectory to a file.

3. Analyzing the resulting data by computing and storing various quantities.

4. Visualizing the trajectory, using colors or styles determined from previous

analyses.

However, in modern workflows the lines between these stages is typically blurred,

particularly with respect to analysis. While direct visualization of simulation tra-

jectories can provide insights into the behavior of a system, integrating higher-order

analyses is often necessary to provide real-time interpretable visualizations in that

allow researchers to identify meaningful features like defects and ordered domains

of self-assembled structures. Studies of complex systems are also often aided or

accelerated by a real-time coupling of simulations with on-the-fly analysis. This si-

multaneous usage of simulation and analysis is especially relevant because modern

machine learning techniques frequently involve wrapping this pipeline entirely within

a higher-level optimization problem, since analysis methods can be used to construct

objective functions targeting a specific materials design problem, for instance.

119

Following, we provide demonstrations of how freud can be integrated with pop-

ular tools in the scientific Python ecosystem like TensorFlow, Scikit-learn, SciPy,

or Matplotlib. In the context of machine learning algorithms, we will discuss how

the analyses in freud can reduce the 6N -dimensional space of particle positions and

orientations into a tractable set of features that can be fed into machine learning

algorithms. We will further show that freud can be used for visualizations even

outside of scripting contexts, enabling a wide range of forward-thinking applications

including Jupyter notebook integrations, versatile 3D renderings, and integration

with various standard tools for visualizing simulation trajectories. These topics are

aimed at computational molecular scientists and data scientists alike, with discus-

sions of real-world usage as well as theoretical motivation and conceptual exploration.

The full source code of all examples in this paper can be found online.1

A.3 Performance and Integrability

Using freud to compute features for machine learning algorithms and visualiza-

tion is straightforward because it adheres to a UNIX-like philosophy of providing

modular, composable features. This design is evidenced by the library’s reliance on

NumPy arrays [141] for all inputs and outputs, a format that is naturally integrated

with most other tools in the scientific Python ecosystem. In general, the analyses

in freud are designed around analyses of raw particle trajectories, meaning that the

inputs are typically (N, 3) arrays of particle positions and (N, 4) arrays of particle

orientations, and analyses that involve many frames over time use accumulate meth-

ods that are called once for each frame. This general approach enables freud to be

used for a range of input data, including molecular dynamics and Monte Carlo sim-

ulations as well as experimental data (e.g., positions extracted via particle tracking)

1https://github.com/glotzerlab/freud-examples

120

in both 3D and 2D. The direct usage of numerical arrays indicates a different usage

pattern than that of tools, such as MDAnalysis [117] and MDTraj [118], for which

trajectory parsing is a core feature. Due to the existence of many such tools which

are capable of reading simulation engines’ output files, as well as certain formats like

gsd2 that provide their own parsers, freud eschews any form of trajectory manage-

ment and instead relies on other tools to provide input arrays. If input data is to be

read from a file, binary data formats such as gsd or NumPy’s npy or npz are strongly

preferred for efficient I/O. Though it is possible to use a library like Pandas to load

data stored in a comma-separated value (CSV) or other text-based data format, such

files are often much slower when reading and writing large numerical arrays. Decou-

pling freud from file parsing and specific trajectory representations allows it to be

efficiently integrated into simulations, machine learning applications, and visualiza-

tion toolkits with no I/O overhead and limited additional code complexity, while the

universal usage of NumPy arrays makes such integrations very natural.

0 1000 2000 3000 4000 5000
Number of points N

0.0

0.5

1.0

1.5

2.0

Ru
nt

im
e

fo
r 1

00
 it

er
at

io
ns

 (s
)

Neighbor finding for 12 average neighbors
scipy v1.3.0 cKDTree
freud v1.1.0 AABBQuery
freud v1.1.0 LinkCell

Figure A.2: Comparison of runtime for neighbor finding algorithms in freud and SciPy for varied
system sizes. See text for details.

2https://github.com/glotzerlab/gsd

121

In keeping with this focus on composable features, freud also abstracts and di-

rectly exposes the task of finding particle neighbors, the task most central to all

other analyses in freud. Since neighbor finding is a common need, the neighbor

finding routines in freud are highly optimized and natively support periodic sys-

tems, a crucial feature for any analysis of particle simulations (which often employ

periodic boundary conditions). In Figure A.2, a comparison is shown between the

neighbor finding algorithms in freud and SciPy [142]. For each system size, N par-

ticles are uniformly distributed in a 3D periodic cube such that each particle has

an average of 12 neighbors within a distance of rcut = 1.0. Neighbors are found for

each particle by searching within the cutoff distance rcut. The methods compared

are scipy.spatial.cKDTree’s query ball tree, freud.locality.AABBQuery’s

queryBall, and freud.locality.LinkCell’s compute. The benchmarks were per-

formed with 5 replicates on a 3.6 GHz Intel Core i3-8100B processor with 16 GB

2667 MHz DDR4 RAM.

Evidently, freud performs very well on this core task and scales well to larger

systems. The parallel C++ backend implemented with Cython and Intel Threading

Building Blocks makes freud perform quickly even for large systems [143, 144].

Furthermore, freud supports periodicity in arbitrary triclinic volumes, a common

feature found in many simulations. This support distinguishes it from other tools

like scipy.spatial.cKDTree, which only supports cubic boxes. The fast neighbor

finding in freud and the ease of integrating its outputs into other analyses not only

make it easy to add fast new analysis methods into freud, they are also central to why

freud can be easily integrated into workflows for machine learning and visualization.

122

A.4 Machine Learning

A wide range of problems in soft matter and nano-scale simulations have been

addressed using machine learning techniques, such as crystal structure identifica-

tion [29]. In machine learning workflows, freud is used to generate features, which

are then used in classification or regression models, clusterings, or dimensionality re-

duction methods. For example, Harper et al. used freud to compute the cubatic or-

der parameter and generate high-dimensional descriptors of structural motifs, which

were visualized with t-SNE dimensionality reduction [145, 62]. The library has also

been used in the optimization and inverse design of pair potentials [15], to compute

fitness functions based on the radial distribution function. The open-source pythia3

library offers a number of descriptor sets useful for crystal structure identification,

leveraging freud for fast computations. Included among the descriptors in pythia

are quantities based on bond angles and distances, spherical harmonics, and Voronoi

diagrams.

Computing a set of descriptors tuned for a particular system of interest (e.g., using

values of Ql, the higher-order Steinhardt Wl parameters, or other order parameters

provided by freud) is possible with just a few lines of code. Descriptors like these

(exemplified in the pythia library) have been used with TensorFlow for supervised

and unsupervised learning of crystal structures in complex phase diagrams [29, 106].

Another useful module for machine learning with freud is freud.cluster, which

uses a distance-based cutoff to locate clusters of particles while accounting for 2D or

3D periodicity. Locating clusters in this way can identify crystalline grains, helpful

for building a training set for machine learning models.

To demonstrate a concrete example, we focus on a common challenge in molecular

3https://github.com/glotzerlab/pythia

123

sciences: identifying crystal structures. Recently, several approaches have been de-

veloped that use machine learning for detecting ordered phases [146, 29, 147, 33, 45].

The Steinhardt order parameters are often used as a structural fingerprint, and are

derived from rotationally invariant combinations of spherical harmonics. In the ex-

ample below, we create face-centered cubic (fcc), body-centered cubic (bcc), and

simple cubic (sc) crystals with added Gaussian noise, and use Steinhardt order pa-

rameters with a support vector machine to train a simple crystal structure identifier.

Steinhardt order parameters characterize the spherical arrangement of neighbors

around a central particle, and combining values of Ql for a range of l often gives a

unique signature for simple crystal structures. This example demonstrates a simple

case of how freud can be used to help solve the problem of structural identification,

which often requires a sophisticated approach for complex crystals.

0.00 0.25 0.50 0.75 1.00
0

200

400

600

800 sc
bcc
fcc

Figure A.3: Histogram of the Steinhardt Q6 order parameter for 4000 particles in simple cubic,
body-centered cubic, and face-centered cubic structures with added Gaussian noise.

In Figure A.3, we show the distribution of Q6 values for sample structures with

4000 particles. Here, we demonstrate how to compute the Steinhardt Q6, using

124

neighbors found via a periodic Voronoi diagram. Neighbors with small facets in the

Voronoi polytope are filtered out to reduce noise.

import freud

import numpy as np

from util import make_fcc

def get_features(box, positions, structure):

Create a Voronoi compute object

voro = freud.voronoi.Voronoi(

box, buff=max(box.L)/2)

voro.computeNeighbors(positions)

Filter the Voronoi NeighborList

nlist = voro.nlist

nlist.filter(nlist.weights > 0.1)

Compute Steinhardt order parameters

features = {}

for l in [4, 6, 8, 10, 12]:

ql = freud.order.LocalQl(

box, rmax=max(box.L)/2, l=l)

ql.compute(positions, nlist)

features['q{}'.format(l)] = ql.Ql.copy()

return features

Create a freud box object and an array of

3D positions for a face-centered cubic

structure with 4000 particles

fcc_box, fcc_positions = make_fcc(

nx=10, ny=10, nz=10, noise=0.1)

structures = {}

structures['fcc'] = get_features(

fcc_box, fcc_positions, 'fcc')

... repeat for all structures

Then, using Pandas and Scikit-learn, we can train a support vector machine to

identify these structures:

Build dictionary of DataFrames,

labeled by structure

structure_dfs = {}

for i, struct in enumerate(structures):

df = pd.DataFrame.from_dict(structures[struct])

df['class'] = i

structure_dfs[struct] = df

Combine DataFrames for input to SVM

df = pd.concat(structure_dfs.values())

df = df.reset_index(drop=True)

from sklearn.preprocessing import normalize

from sklearn.model_selection import train_test_split

125

from sklearn.svm import SVC

We use the normalized Steinhardt order parameters

to predict the crystal structure

X = df.drop('class', axis=1).values

X = normalize(X)

y = df['class'].values

X_train, X_test, y_train, y_test = train_test_split(

X, y, test_size=0.33, random_state=42)

svm = SVC()

svm.fit(X_train, y_train)

print('Score:', svm.score(X_test, y_test))

The model is ~98% accurate.

To interpret crystal identification models like this, it can be helpful to use a di-

mensionality reduction tool such as Uniform Manifold Approximation and Projection

(UMAP) [22], as shown in Figure A.4. The low-dimensional UMAP projection shown

is generated directly from the Pandas DataFrame:

from umap import UMAP

umap = UMAP()

Project the high-dimensional descriptors

to a two dimensional manifold

data = umap.fit_transform(df)

plt.plot(data[:, 0], data[:, 1])

A.5 Visualization

Many analyses performed by the freud library provide a plot(ax=None) method

(new in v1.2.0) that allows their computed quantities to be visualized with Mat-

plotlib. Additionally, these plottable analyses offer IPython representations, allowing

Jupyter notebooks to render a graph such as a radial distribution function g(r) just by

returning the compute object at the end of a cell. Analyses like the radial distribution

function or correlation functions return data that is binned as a one-dimensional his-

togram – these are visualized with a line graph via matplotlib.pyplot.plot, with

the bin locations and bin counts given by properties of the compute object. Other

classes provide multi-dimensional histograms, like the Gaussian density or Potential

126

15 10 5 0 5 10 15

4

2

0

2

4

sc
bcc
fcc

Figure A.4: UMAP of particle descriptors computed for simple cubic, body-centered cubic, and
face-centered cubic structures of 4000 particles with added Gaussian noise. The particle
descriptors include Ql for l ∈ {4, 6, 8, 10, 12}. Some noisy configurations of bcc can be
confused as fcc and vice versa, which accounts for the small number of errors in the
support vector machine’s test classification.

of Mean Force and Torque, which are plotted with matplotlib.pyplot.imshow.

The most complex case for visualization is that of per-particle properties, which

also comprises some of the most useful features in freud. Quantities that are com-

puted on a per-particle level can be continuous (e.g., Steinhardt order parameters) or

discrete (e.g., clustering, where the integer value corresponds to a unique cluster ID).

Continuous quantities can be plotted as a histogram over particles, but typically the

most helpful visualizations use these quantities with a color map assigned to particles

in a two- or three-dimensional view of the system itself. For such particle visualiza-

tions, several open-source tools exist that interoperate well with freud. Below are

examples of how one can integrate freud with plato4, fresnel5, and OVITO6 [9].

4https://github.com/glotzerlab/plato
5https://github.com/glotzerlab/fresnel
6https://ovito.org

127

A.5.1 plato

Figure A.5: Interactive visualization of a Lennard-Jones particle system, rendered in a Jupyter
notebook using plato with the pythreejs backend.

plato is an open-source graphics package that expresses a common interface for

defining two- or three-dimensional scenes which can be rendered as an interactive

Jupyter widget or saved to a high-resolution image using one of several backends

(PyThreejs, Matplotlib, fresnel, POVray7, and Blender8, among others). Below is

an example of how to render particles from a HOOMD-blue snapshot, colored by the

density of their local environment [133, 134]. The result is shown in Figure A.5.

import plato

import plato.draw.pythreejs as draw

import numpy as np

import matplotlib.cm

import freud

from sklearn.preprocessing import minmax_scale

7https://www.povray.org
8https://www.blender.org

128

snap comes from a previous HOOMD-blue simulation

box = freud.box.Box.from_box(snap.box)

positions = snap.particles.position

Compute the local density of each particle

ld = freud.density.LocalDensity(

r_cut=3.0, volume=1.0, diameter=1.0)

ld.compute(box, positions)

Create a scene for visualization,

colored by local density

radii = 0.5 * np.ones(len(positions))

colors = matplotlib.cm.viridis(

minmax_scale(ld.density))

spheres_primitive = draw.Spheres(

positions=positions,

radii=radii,

colors=colors)

scene = draw.Scene(spheres_primitive, zoom=2)

scene.show() # Interactive view in Jupyter

A.5.2 fresnel

fresnel9 is a GPU-accelerated ray tracer designed for particle simulations, with

customizable material types and scene lighting, as well as support for a set of common

anisotropic shapes. Its feature set is especially well suited for publication-quality

graphics. Its use of ray tracing also means that an image’s rendering time scales

most strongly with the image size, instead of the number of particles – a desirable

feature for extremely large simulations. An example of how to integrate fresnel is

shown below and rendered in Figure A.6.

Generate a snapshot of tetrahedra using HOOMD-blue

import hoomd

import hoomd.hpmc

hoomd.context.initialize('')

Create an 8x8x8 simple cubic lattice

system = hoomd.init.create_lattice(

unitcell=hoomd.lattice.sc(a=1.5), n=8)

Create tetrahedra, configure HPMC integrator

mc = hoomd.hpmc.integrate.convex_polyhedron(seed=123)

mc.set_params(d=0.2, a=0.1)

vertices = [(0.5, 0.5, 0.5),

(-0.5,-0.5, 0.5),

(-0.5, 0.5,-0.5),

(0.5,-0.5,-0.5)]

9https://github.com/glotzerlab/fresnel

129

Figure A.6: Hard tetrahedra colored by local density, path traced with fresnel.

mc.shape_param.set('A', vertices=vertices)

Run for 5,000 steps

hoomd.run(5e3)

snap = system.take_snapshot()

Import analysis & visualization libraries

import fresnel

import freud

import matplotlib.cm

from matplotlib.colors import Normalize

import numpy as np

device = fresnel.Device()

Compute local density and prepare geometry

poly_info = \

fresnel.util.convex_polyhedron_from_vertices(

vertices)

positions = snap.particles.position

orientations = snap.particles.orientation

box = freud.box.Box.from_box(snap.box)

ld = freud.density.LocalDensity(3.0, 1.0, 1.0)

130

ld.compute(box, positions)

colors = matplotlib.cm.viridis(

Normalize()(ld.density))

box_points = np.asarray([

box.makeCoordinates(

[[0, 0, 0], [0, 0, 0], [0, 0, 0],

[1, 1, 0], [1, 1, 0], [1, 1, 0],

[0, 1, 1], [0, 1, 1], [0, 1, 1],

[1, 0, 1], [1, 0, 1], [1, 0, 1]]),

box.makeCoordinates(

[[1, 0, 0], [0, 1, 0], [0, 0, 1],

[1, 0, 0], [0, 1, 0], [1, 1, 1],

[1, 1, 1], [0, 1, 0], [0, 0, 1],

[0, 0, 1], [1, 1, 1], [1, 0, 0]])])

Create scene

scene = fresnel.Scene(device)

geometry = fresnel.geometry.ConvexPolyhedron(

scene, poly_info,

position=positions,

orientation=orientations,

color=fresnel.color.linear(colors))

geometry.material = fresnel.material.Material(

color=fresnel.color.linear([0.25, 0.5, 0.9]),

roughness=0.8, primitive_color_mix=1.0)

geometry.outline_width = 0.05

box_geometry = fresnel.geometry.Cylinder(

scene, points=box_points.swapaxes(0, 1))

box_geometry.radius[:] = 0.1

box_geometry.color[:] = np.tile(

[0, 0, 0], (12, 2, 1))

box_geometry.material.primitive_color_mix = 1.0

scene.camera = fresnel.camera.fit(

scene, view='isometric', margin=0.1)

scene.lights = fresnel.light.lightbox()

Path trace the scene

fresnel.pathtrace(scene, light_samples=64,

w=800, h=800)

A.5.3 OVITO

OVITO is a GUI application with features for particle selection, making movies,

and support for many trajectory formats [9]. OVITO has several built-in analysis

functions (e.g., Polyhedral Template Matching), which complement the methods in

freud. The Python scripting functionality built into OVITO enables the use of

freud modules, demonstrated in the code below and shown in Figure A.7.

import freud

def modify(frame, input, output):

131

Figure A.7: A crystalline grain identified using freud’s LocalDensity module and cut out for
display using OVITO. The image shows a tP30-CrFe structure formed from an isotropic
pair potential optimized to generate this structure [15].

if input.particles != None:

box = freud.box.Box.from_matrix(

input.cell.matrix)

ld = freud.density.LocalDensity(

r_cut=3, volume=1, diameter=0.05)

ld.compute(box, input.particles.position)

output.create_user_particle_property(

name='LocalDensity',

data_type=float,

data=ld.density.copy())

A.6 Conclusions

The freud library offers a unique set of high-performance algorithms designed to

accelerate the study of nanoscale and colloidal systems. These algorithms are en-

abled by a fast, easy-to-use set of tools for identifying particle neighbors, a common

first step in nearly all such analyses. The efficiency of both the core neighbor find-

ing algorithms and the higher-level analyses makes them suitable for incorporation

132

into real-time visualization environments, and, in conjunction with the transparent

NumPy-based interface, allows integration into machine learning workflows using it-

erative optimization routines that require frequent recomputation of these analyses.

The use of freud for real-time visualization has the potential to simplify and acceler-

ate existing simulation visualization pipelines, which typically involve slower and less

easily integrable solutions to performing real-time analysis during visualization. The

application of freud to machine learning, on the other hand, opens up entirely new

avenues of research based on treating well-known analyses of particle simulations as

descriptors or optimization targets. In these ways, freud can facilitate research in

the field of computational molecular science, and we hope these examples will spark

new ideas for scientific exploration in this field.

A.7 Getting freud

The freud library is tested for Python 2.7 and 3.5+ and is compatible with Linux,

macOS, and Windows. To install freud, execute

conda install -c conda-forge freud

or

pip install freud-analysis

Its source code is available on GitHub10 and its documentation is available via

ReadTheDocs.11

A.8 Acknowledgments

Thanks to Jin Soo Ihm for benchmarking the neighbor finding features of freud against

SciPy. The freud library’s code development and public code releases are sup-

ported by the National Science Foundation, Division of Materials Research under a
10https://github.com/glotzerlab/freud
11https://freud.readthedocs.io

133

Computational and Data-Enabled Science & Engineering Award # DMR 1409620

(2014-2018) and the Office of Advanced Cyberinfrastructure Award # OAC 1835612

(2018-2021). B.D. is supported by a National Science Foundation Graduate Research

Fellowship Grant DGE 1256260. M.P.S acknowledges funding from the Toyota Re-

search Institute; this article solely reflects the opinions and conclusions of its authors

and not TRI or any other Toyota entity. Data for Figure A.7 generated on the Ex-

treme Science and Engineering Discovery Environment (XSEDE), which is supported

by National Science Foundation grant number ACI-1053575; XSEDE award DMR

140129.

134

APPENDIX B

signac: Data Management and Workflows for
Computational Researchers

This appendix is reproduced from Dice, B. D., Butler, B. L., Ramasubramani, V.,

Travitz, A., Henry, M. M., Ojha, H., Wang, K. L., Adorf, C. S., Jankowski, E., and

Glotzer, S. C. (2021). signac: Data Management and Workflows for Computational

Researchers. Proceedings of the 20th Python in Science Conference, 23-32. DOI:

10.25080/majora-1b6fd038-003. This is an open-access article distributed under the

terms of the Creative Commons Attribution License.

B.1 Abstract

The signac data management framework (https://signac.io) helps researchers

execute reproducible computational studies, scales workflows from laptops to super-

computers, and emphasizes portability and fast prototyping. With signac, users

can track, search, and archive data and metadata for file-based workflows and au-

tomate workflow submission on high performance computing (HPC) clusters. We

will discuss recent improvements to the software’s feature set, scalability, scientific

applications, usability, and community. Newly implemented synced data structures,

features for generalized workflow execution, and performance optimizations will be

covered, as well as recent research using the framework and changes to the project’s

135

outreach and governance as a response to its growth.

B.2 Introduction

Run simulation
13 @Project.operation
14 def simulate(job):
15 # Run simulation

Analyze data
25 @Project.operation
26 def analyze(job):
27 # Make results.txt

Visualize data
71 @Project.operation
72 def visualize(job):
73 # Make plot.png

s i g n a c

signac (core)

signac-flow

WORKSPACE

project.py

JOB
signac_statepoint.json

signac_job_document.json

results.txt

plot.png

JOB JOB

JOB JOB JOB

JOB

JOB
signac_statepoint.json

signac_job_document.json

Initialize jobs
 9 pr = signac.init_project("MyProject")
10 pr.open_job({"a": 1}).init()

init.py

Figure B.1: Overview of the signac framework. Users first create a project, which initializes a
workspace directory on disk. Users define state points which are dictionaries that
uniquely identify a job. The workspace holds a directory for each job, containing
JSON files that store the state point and job document. The job directory name is a
hash of the state point’s contents. Here, the init.py file initializes an empty project
and adds one job with state point {"a": 1}. Next, users define a workflow using
a subclass of signac-flow’s FlowProject. The workflow shown has three operations
(simulate, analyze, visualize) that, when executed, produce two new files results.txt
and plot.png in the job directory. Special thanks to Kelly Wang for contributing the
design and concept of this figure.

Scientific research addresses problems where questions often change rapidly, data

models are always in flux, and compute infrastructure varies widely from project

to project. The signac data management framework [25] is a tool designed by re-

searchers, for researchers, to simplify the process of prototyping and then performing

reproducible scientific computations. It forgoes encoding complex data files into a

database in favor of working directly on file systems, providing fast indexing utili-

ties for a set of directories. Using signac, a data space on the file system can be

136

initialized, searched, and modified using either a Python or command-line interface.

By its general-purpose design, signac is agnostic to data content and format. The

companion package signac-flow interacts with the data space to generate and ana-

lyze data through reproducible workflows that scale from laptops to supercomputers.

Arbitrary shell commands can be run by signac-flow as part of a workflow, making

it as flexible as a script in any language of choice.

This paper will focus on developments to the signac framework over the last 3

years, during which features, flexibility, usability, and performance have been greatly

improved. The core data structures in signac have been overhauled to provide a

powerful and generic implementation of synced collections, that we will leverage in

future versions of signac to enable more performant data indexing and flexible data

layouts. In signac-flow, we have added support for submitting groups of operations

with conditional dependencies, allowing for more efficient utilization of large HPC

resources. Further developments allow for operations to act on arbitrary subsets

of the data space via aggregation, rather than single jobs alone. Moving beyond

code development, this paper will also discuss the scientific research these features

have enabled and organizational developments supported through key partnerships.

We will share our project’s experience in continuously revising project governance

to encourage sustained contributions, adding more entry points for learning about

the project (Slack support, weekly public office hours), and participating in Google

Summer of Code in 2020 as a NumFOCUS Affiliated Project. Much of the work has

been carried out in conjunction with the Molecular Simulation Design Framework

(MoSDeF) [131], a National Science Foundation Cyberinfrastructure for Sustained

Scientific Innovation (CSSI) effort.

137

B.3 Structure and Implementation

With signac, file-based data and metadata are organized in folders and JSON

files, respectively (see Figure B.1). A signac data space, or workspace, contains

jobs, which are individual directories associated with a single primary key known

as a state point stored in a file signac statepoint.json in that directory. The

JSON files allow signac to index the data space, providing a database-like interface

to a collection of directories. Arbitrary user data may be stored in user-created files

in these jobs, although signac also provides convenient facilities for storing simple

lightweight data or array-like data via JSON (the “job document”) and HDF5 (the

“job data”) utilities. Readers seeking more details about signac are referred to past

signac papers [25, 26] as well as the signac website1 and documentation.2

This filesystem-based approach has both advantages and disadvantages. Its key

advantages lie in flexibility and portability. The serverless design removes the need

for any external running server process, making it easy to operate on any filesystem.

The design is also intrinsically distributed, making it well suited for highly parallel

workflows where multiple processes concurrently read or write file-based data stored

in job directories. Conversely, this distributed approach precludes the performance

advantages of centralized data stores with persistent indexes in memory. Typically,

the signac approach works very well for projects up to 100,000 jobs, while signifi-

cantly larger projects may have wait times that constrain interactive usage. These

limits are inherent to signac’s use of small files for each job’s state point, but the

framework has been aggressively optimized and uses extensive caching/buffering to

maximize the achievable throughput within this model.

1https://signac.io
2https://docs.signac.io

138

The framework is a strong choice for applications meeting one or more of the

following criteria:

• input/output data is primarily file-based

• prototype research code where data schemas may change or evolve

• computations will use an HPC cluster

• the amount of computation per job is large

• parameter sweeps over a range of values (with values on a grid or dynamically

determined by e.g., active learning)

• heterogeneous data (not all jobs have the same keys present in their state points)

For example, M. W. Thompson et al. in Ref. [148] used 396 jobs/state points to ex-

ecute computer simulations of room-temperature ionic liquids with GROMACS [149,

150, 151, 152] simulations. The study investigated 18 compositions (by mass fraction)

and 22 unique solvents from five chemical families (nitriles, alcohols, halocarbons,

carbonyls, and glymes), with a state point for each pairing of mass fraction and

solvent type.

Users working with large tabular data (e.g., flat files on disk or data from a

SQL database) may prefer to use libraries like pandas [153, 154], Dask [155, 156], or

RAPIDS [68] that are specifically designed for those use cases. However, it is possible

to create a signac project with state points corresponding to each row, which may be

a good use of signac if there is file-based data affiliated with each row’s parameters.

Code examples of features presented in this paper can be found online.3

3https://github.com/glotzerlab/signac-examples

139

B.4 Applications of signac

The signac framework has been cited 54 times, according to Google Scholar, and

has been used in a range of scientific fields with various types of computational work-

flows. Some of these studies include quantum calculations of small molecules [125],

4,480 simulations of epoxy curing (each containing millions of particles) [126], in-

verse design of pair potentials [15], identifying photonic band gaps in 151,593 crystal

structures [13], benchmarking atom-density representations for use in machine learn-

ing [127], simulating fluid flow in polymer solutions [128], design of optical metama-

terials [129], and economic analysis of drought risk in agriculture [130]. To date,

signac users have built workflows utilizing a wide range of software packages includ-

ing simulation tools such as Cassandra and MoSDeF-Cassandra [157, 158], foyer [159],

GROMACS [149, 150, 151, 152], HOOMD-blue [28, 134, 160], mBuild [161], MIT

Photonic Bands [101], Quantum-ESPRESSO [162], Rigorous Coupled Wave Analy-

sis (RCWA) [163], and VASP [164], machine learning libraries including Keras [165],

scikit-learn [5], and TensorFlow [106], and analysis libraries for postprocessing data

such as freud [27], librascal [127], MDAnalysis [117], MDTraj [118], and OVITO [9].

Much of the published research using signac comes from chemical engineering, ma-

terials science, or physics, the fields of many of signac’s core developers and thus

fields where the project has had greatest exposure. Computational materials research

commonly requires large HPC resources with shared file systems, a use case where

signac excels. However, there are many other fields with similar hardware needs

where signac can be applied. These include simulation-heavy HPC workloads such

as fluid dynamics, atomic/nuclear physics, or genomics, data-intensive fields such as

economics or machine learning, and applications needing fast, flexible prototypes for

140

optimization and data analysis.

While there is no “typical” signac project, factors such as computational com-

plexity and data sizes offer some rough guidelines for when signac’s database-on-

the-filesystem is appropriate. For instance, the time to check the status of a workflow

depends on the number of jobs, number of operations, and number of conditions to

evaluate for those jobs. Typical signac projects have 100 to 10,000 jobs, with each

job workspace containing arbitrarily large data sizes (the total file size of the job

workspace has little effect on the speed of the signac framework). To give a rough

idea of the limits of scalability, signac projects can contain up to around 100,000 jobs

while keeping common tasks like checking workflow status in an “interactive” time

scale of 1-2 minutes. Some users that primarily wish to leverage signac-flow’s work-

flows for execution and submission may have a very small number of jobs (< 10).

One example of this would be executing a small number of expensive biomolecu-

lar simulations using different random seeds in each job’s state point. Importantly,

projects with a small number of jobs can be expanded at a later time, and make

use of the same workflow defined for the initial set of jobs. The abilities to grow

a project and change its schema on-the-fly catalyze the kind of exploration that is

crucial to answering research questions.

The workflow submission features of signac-flow interoperates with popular HPC

schedulers including SLURM, PBS/TORQUE, and LSF automating the generation

and submission of scheduler batch scripts. Directives are set through Python decora-

tors and define resource and execution requests for operations. Examples of directives

include number of CPUs or GPUs, the walltime, and memory. The use of directives

allows signac-flow workflows to be portable across HPC systems by generating re-

source requests that are specific to each machine’s scheduler.

141

B.5 Overview of New Features

The last three years of development of the signac framework have expanded its

usability, feature set, user and developer documentation, and potential applications.

Some of the largest architectural changes in the framework will be discussed in their

own sections, namely extensions of the workflow model (support for executing groups

of operations and aggregators that allow operations to act on multiple jobs) and a

much more performant and flexible re-implementation of the core “data structure”

classes that synchronize signac’s Python representation of state points and job doc-

uments with JSON-encoded dictionaries on disk.

B.5.1 Data Archival

The primary purpose of the core signac package is to simplify and accelerate

data management. The signac command line interface is a common entry point

for users, and provides subcommands for searching, reading, and modifying the

data space. New commands for import and export simplify the process of archiv-

ing signac projects into a structure that is both human-readable and machine-

readable for future access (with or without signac). Archival is an integral part

of research data operations that is frequently overlooked. By using highly compat-

ible and long-lived formats such as JSON for core data storage with simple name

schemes, signac aims to preserve projects and make it easier for studies to be in-

dependently reproduced. This is aligned with the principles of TRUE (Transparent,

Reproducible, Usable by others, and Extensible) simulations put forth by the MoS-

DeF collaboration [166].

142

B.5.2 Improved Data Storage, Retrieval, and Integrations

Data access via the shell: The signac shell command allows the user to

quickly enter a Python interpreter that is pre-populated with variables for the current

project or job (when in a project or job directory). This means that manipulating a

job document or reading data can be done through a hybrid of bash/shell commands

and Python commands that are fast to type. For example:

~/project $ ls

signac.rc workspace

~/project $ cd workspace/42b7b4f2921788ea14dac5566e6f06d0/

~/project/workspace/42b7b4f2921788ea14dac5566e6f06d0 $ signac shell

Python 3.8.3

signac 1.6.0

Project: test

Job: 42b7b4f2921788ea14dac5566e6f06d0

Root: ~/project

Workspace: ~/project/workspace

Size: 1

Interact with the project interface using the

"project" or "pr" variable. Type "help(project)"

or "help(signac)" for more information.

>>> job.sp

{'a': 1}

HDF5 support for storing numerical data: Many applications used in re-

search generate or consume large numerical arrays. For applications in Python,

NumPy arrays are a de facto standard for in-memory representation and manipu-

lation. However, saving these arrays to disk and handling data structures that mix

dictionaries and numerical arrays can be cumbersome. The signac H5Store feature

offers users a convenient wrapper around the h5py library [132] for loading and saving

both hierarchical/key-value data and numerical array data in the widely-used HDF5

format [167]. The job.data attribute is an instance of the H5Store class, and is a

key-value store saved on disk as signac data.h5 in the job workspace. Users who

prefer to split data across multiple files can use the job.stores API to save in multi-

143

ple HDF5 files. Corresponding project.data and project.stores attributes exist,

which save data files in the project root directory. Using an instance of H5Store as a

context manager allows users to keep the HDF5 file open while reading large chunks

of the data:

with job.data:

Copy array data from the file to memory

(which will persist after the HDF5 file is

closed) by indexing with an empty tuple:

my_array = job.data["my_array"][()]

Advanced searching and filtering of the workspace: The signac diff

command, available on both the command line and Python interfaces, returns the

difference between two or more state points and allows for easily assessing subsets

of the data space. By unifying state point and document queries, filtering, and

searching workspaces can be more fine-grained and intuitive.

B.5.3 Data Visualization and Integrations

Integrating with the PyData ecosystem: Users can now summarize

data from a signac project into a pandas DataFrame for analysis. The

project.to dataframe() feature exports state point and job document informa-

tion to a pandas DataFrame in a consistent way that allows for quick analysis of all

jobs’ data. Support for Jupyter notebooks [122] has also been added, enabling rich

HTML representations of signac objects.

Dashboards: The companion package signac-dashboard allows users to quickly

visualize data stored in a signac data space. The dashboard runs in a browser and

allows users to display job state points, edit job documents, render images and videos,

download any file from a job workspace, and search or browse through state points in

their project. Dashboards can be hosted on remote servers and accessed via port for-

warding, which makes it possible to review data generated on a remote HPC system

144

without needing to copy it back to a local system for inspection. Users can quickly

save notes into the job document and then search those notes, which is useful for high

throughput studies that require some manual investigation (e.g., reviewing plots).

B.5.4 Performance Enhancements

In early 2021, a significant portion of the codebase was profiled and refactored

to improve performance and these improvements were released in signac 1.6.0 and

signac-flow 0.12.0. As a result of these changes, large signac projects saw 4-7x

speedups for operations such as iterating over the jobs in a project compared to the

1.5.0 release of signac. Similarly, performance of a sample workflow that checks

status, runs, and submits a FlowProject with 1,000 jobs, 3 operations, and 2 label

functions improved roughly 4x compared to signac-flow 0.11.0. These improvements

allow signac to scale to 100,000 jobs.

In signac, the core of the Project and Job classes were refactored to support lazy

attribute access and delayed initialization, which greatly reduces the total amount

of disk I/O by waiting until data is actually requested by the user. Other improve-

ments include early exits in functions, reducing the number of required system calls

with smarter usage of the os library, and switching to algorithms that operate in

constant time, O(1), instead of linear time, O(Njobs). Optimizations were identified

by profiling the performance of common operations on small and large real-world

projects with cProfile and visualized with snakeviz [168].

Similarly, performance enhancements were also made in the signac-flow package.

Some of the optimizations identified include lazy evaluation of run commands and

directives, and caching of job status information. In addition, the improvements in

signac such as faster iteration over large signac projects used in signac-flow made

signac-flow’s primary functions — checking project status, executing operations,

145

and submitting operations to a cluster — significantly faster.

B.5.5 Improved User Output

Workflow graph detection: The preconditions and postconditions of oper-

ations in a signac-flow FlowProject implicitly define a graph. For example, if

the operation “analyze” depends on the operation “simulate” via the precondition

@FlowProject.pre.after(simulate), then there is a directed edge from “simu-

late” to “analyze.” This graph can now be detected from the workflow conditions

and returned in a NetworkX [169] compatible format for display or inspection.

Templated status output: Querying the status of a signac-flow project now

has many options controlling the information displayed and has been templated to

allow for plain text, Markdown, or HTML output. In doing so, the output has also

become cleaner and compatible with external tools.

B.5.6 Enhanced Workflows

Directives: Execution directives (or directives for short) provide a way to specify

required resources on HPC schedulers such as number of CPUs/GPUs, MPI ranks,

OpenMP threads, walltime, memory, and others. Directives can be a function of the

job as well as the operation, allowing for great flexibility. In addition, directives work

seamlessly with operation groups, job aggregation, and submission bundling (all of

which are described in the following section).

Dynamic workspaces: The signac-flow package can now handle workspaces

where jobs are created as the result of operations on other jobs. This is crucial for op-

timization workflows and iteratively sampling parameter spaces, and allows projects

to become more automated with some data points only run if a prior condition on

another data point is reached.

146

B.6 Executing Complex Workflows via Groups and Aggregation

Use groups to combine associated
operations into a single submission.

simulate(job)
Submit...

analyze(job)
Submit again...

visualize(job)
Submit again...

process(job)

simulate(job)
analyze(job)
visualize(job)

Submit once, run all.

Use aggregation to operate on
multiple jobs.

Use bundling to submit scripts that
execute multiple operations.

12 CPUs3 CPUs

3 CPUs

6 CPUs

@aggregator.groupby(...)
def make_chart(*jobs):
 # Plot grouped data

jobA1
jobA2
jobA3
jobA4
jobB1
jobB2
jobB3
jobB4
jobC1
jobC2
jobC3
jobC4

A

B

C

Figure B.2: Aggregation, groups, and bundling allow users to build complex workflows. The fea-
tures are orthogonal, and can be used in any combination. Aggregation enables one
operation or group to act on multiple jobs. Groups allow users to combine multiple op-
erations into one, with dependencies among operations resolved at run time. Bundling
helps users efficiently leverage HPC schedulers by submitting multiple commands in
the same script, to be executed in serial or parallel.

Two new concepts in signac-flow provide users with significantly more power to

implement complex workflows: groups and aggregation. A related third concept –

bundling – which is not new, also provides flexibility to users in their workflows, but

exclusively affects scheduler submission, not workflow definition. Figure B.2 shows

a graphical illustration of the three concepts.

As the names of both groups and aggregation imply, the features enable the

“grouping” or “aggregating” of existing concepts: operations in the case of groups

and jobs in the case of aggregates. The conceptual model of signac-flow builds

on signac’s notions of the Project and Job (the unit of the data space) through a

FlowProject class that adds the ability to define and execute operations (the unit

147

of a workflow) that act on jobs. Operations are Python functions or shell commands

that act on a job within the data space, and are defined using Python decorator

syntax. For example:

project.py

from flow import FlowProject

@FlowProject.operation

@Flowproject.post.true("initialized")

def initialize(job):

perform necessary initialize steps

for simulation

job.doc.initialized == True

if __name__ == "__main__":

FlowProject().main()

When this project is run using signac-flow’s command line API (python

project.py run), the current state point is prepared for simulation. Operations

can have preconditions and postconditions that define their eligibility. All precon-

ditions must be met in order for a operation to be eligible for a given job. If all

postconditions are met, that indicates an operation is complete (and thus ineligi-

ble). Examples of such conditions include the existence of an input file in a job’s

workspace or a key in the job document (as shown in the above snippet). However,

this type of conditional workflow can be inefficient when sequential workflows are

coupled with an HPC scheduler interface, because the user must log on to the HPC

and submit the next operation after the previous operation is complete. The desire

to submit large and long-running jobs to HPC schedulers encourages users to write

large operation functions which are not modular and do not accurately represent the

individual units of the workflow, thereby limiting signac-flow’s utility and reducing

the readability of the workflow.

148

B.6.1 Groups

Groups, implemented by the FlowGroup class and FlowProject.make group

method, allows users to combine multiple operations into a single entity that can

be run or submitted. Submitting a group allows signac-flow to dynamically resolve

preconditions and postconditions of operations as each operation is executed, making

it possible to combine separate operations (e.g., for simulation and analysis and plot-

ting) into a single submission script that will execute eligible operations in sequence.

This allows users to write smaller, modular functions, which may require a specific

order of execution, without sacrificing the ability to submit large, long-running jobs

on HPCs. Furthermore, groups are aware of directives and can properly combine

the directives of their constituent operations to specify resources and quantities like

walltime whether executing in parallel or serial. For example:

from flow import FlowProject

example_group = FlowProject.make_group(

name="example_group")

@example_group.with_directives(

{"ngpu": 2,

"walltime": lambda job: job.doc.hours_to_run})

@FlowProject.post.true("simulated")

@FlowProject.operation

def simulate(job):

run simulation

job.doc.simulated = True

@example_group

@FlowProject.pre.after(simulate)

@FlowProject.post.true("analyzed")

@FlowProject.operation

def analyze(job):

analyze simulation results

job.doc.analyzed = True

Groups also allow for specifying multiple machine specific resources (CPU or

GPU) with the same operation. An operation can have unique directives for each

distinct group to which it belongs. By associating an operation’s directives with re-

149

spect to a specific group, groups can represent distinct compute environments, such

as a local workstation or a remote supercomputing cluster. The below snippet shows

an expensive simulate operation which can be executed with three different direc-

tives depending on how it is written. If executed through cpu group the operation

will request 48 cores, if gpu group 4 GPUs, if neither then it will request 4 cores.

This represents the real use case where a user may want to run an operation locally

(in this case without a group), or on a CPU or GPU focused HPC/workstation. For

example:

from flow import FlowProject

cpu_group = FlowProject.make_group(name="cpu")

gpu_group = FlowProject.make_group(name="gpu")

@cpu_group.with_directives({"np": 48})

@gpu_group.with_directives({"ngpu": 4})

@FlowProject.operation.with_directives({"np": 4})

def expensive_simulate(job):

expensive simulation run on CPUs or GPUs

pass

B.6.2 Aggregation

Users also frequently work with multiple jobs when performing tasks such as

plotting data from all jobs in the same figure. Though the signac package has

methods like Project.groupby, which can generate subsets of the project that are

grouped by a state point key, there has been no way to use these “aggregation”

features in signac-flow for defining workflows. The concept of aggregation pro-

vides a straightforward way for users to write and submit operations that act on

arbitrary subsets of jobs in a signac data space through functions analogous to

Project.groupby. Just as the groups feature acts as an abstraction over opera-

tions, aggregation can be viewed as an abstraction over jobs. When decorated with

an aggregator, operations can accept multiple job instances as positional arguments

through Python’s argument unpacking. Decorators are used to define aggregates,

150

encompassed in the @aggregator decorator for single operations and in the argu-

ment aggregator function to FlowProject.make group for groups of operations.

For example:

from flow import FlowProject

@aggregator

@FlowProject.operation

def plot_enzyme_activity(*jobs):

import matplotlib.pyplot as plt

import numpy as np

x = [job.sp.temperature for job in jobs]

y = [job.doc.activity for job in jobs]

fig, ax = plt.subplots()

ax.scatter(x, y)

ax.set_title(

"Enzymatic Activity Across Temperature")

fig.savefig("enzyme-activity.png")

Like groups, there are many reasons why a user might wish to use aggre-

gation. For example, a signac data space that describes weather data for

multiple cities in multiple years might want to plot or analyze data that uses

@aggregator.groupby("city") to show changes over time for each city in the data

space. Similarly, aggregating over replicas (e.g., the same simulation with different

random seeds) facilitates computing averaged quantities and error bars. Another

example is submitting aggregates with a fixed number of jobs in each aggregate to

enable massive parallelization by breaking a large MPI communicator into a smaller

communicator for each independent job, which is necessary for efficient utilization of

leadership-class supercomputers like OLCF Summit.

B.6.3 Bundling

Finally, bundling is another way to use workflows in conjunction with an HPC

scheduling system. Whereas aggregates are concerned with jobs and groups opera-

tions, bundling is concerned with combining executable units into a single submission

script. This distinction means that bundling is not part of the workflow definition,

151

but is a means of tailoring batch scripts for different HPC systems. Bundles allow

users to leverage scheduler resources effectively and minimize queue time, and can be

run in serial (the default) or parallel. Users enable bundling by passing the command

line argument --bundle, optionally with another argument --parallel to run each

command in the bundle in parallel (the Python API has corresponding options as

well). The simplest case of a bundle is a submission script with the same operation

being executed for multiple jobs. Bundling is what allows the submission script to

contain multiple jobs executing the same operation. By storing information about

the generated bundles during submission, signac-flow prevents accidental resubmis-

sion just as in the unbundled case. While the example mentioned above does not

use either groups or aggregation, bundles works seamlessly with both.

B.6.4 Cluster Templates

The signac-flow software includes automatic detection and script support for

SLURM, PBS/TORQUE, and LSF schedulers. However, effective HPC utilization

frequently relies on specific information such as numbers of cores per compute node

or designated partitions for GPU or large memory applications. To this end, signac-

flow includes templates for a number of HPC clusters including OLCF Summit and

Andes, XSEDE [170] clusters such as PSC Bridges-2, SDSC Comet, and TACC

Stampede2, and university clusters such as the University of Michigan’s Great Lakes

and University of Minnesota’s Mangi. These cluster templates change frequently as

HPC systems are brought online and later decommissioned. Users can create their

own templates to contribute to the package or use locally.

152

B.7 Synced Collections: Backend-Agnostic, Persistent, Mutable Data
Structures

B.7.1 Motivation

At its core, signac is a tool for organizing and working with data on the filesystem,

presenting a Pythonic interface for tasks like creating directories and modifying files.

In particular, signac makes modifying the JSON files used to store a job’s state

points and documents as easy as working with Python dictionaries. Despite heavy

optimization, when seeking to scale signac to ever-larger data spaces, we quickly

realized that the most significant performance barrier was the overhead of parsing

and modifying large numbers of text files. Unfortunately, the usage of JSON files

in this manner was deeply embedded in our data model, which made switching to a

more performant backend without breaking APIs or severely complicating our data

model a daunting task.

While attempting to separate the signac data model from its original backend

implementation (manipulating JSON files on disk), we identified a common pattern:

providing a dictionary-like interface for an underlying resource. Several well-known

Python packages such as h5py [132] and zarr [171] also use dictionary-like interfaces

to make working with complex resources feel natural to Python users. Most such

packages implement this layer directly for their particular use case, but the nature

of the problem suggested to us the possibility of developing a more generic rep-

resentation of this interface. Indeed, the purpose of the Python standard library’s

collections.abc module to make it easy to define objects that “look like” standard

Python objects while having completely customizable behavior under the hood. As

such, we saw an opportunity to specialize this pattern for a specific use case: the

transparent synchronization of a Python object with an underlying resource.

153

The synced collections framework represents the culmination of our efforts in this

direction, providing a generic framework in which interfaces of any abstract data

type can be mapped to arbitrary underlying synchronization protocols. In signac,

this framework allows us to hide the details of a particular file storage medium (like

JSON) behind a dictionary-like interface, but it can just as easily be used for tasks

such as creating a new, list-like interface that automatically saves all its data in a

plain-text CSV format. This section will offer a high-level overview of the synced

collections framework and our plans for its use within signac, with an eye to potential

users in other domains as well.

B.7.2 Summary of Features

We designed synced collections to be flexible, easily extensible, and independent

of signac’s data model. Most practical use cases for this framework involve an

underlying resource that may be modified by any number of associated in-memory

objects that behave like standard Python collections, such as dictionaries or lists.

Therefore, all normal operations must be preceded by loading from this resource

and updating the in-memory store, and they must be succeeded by saving to that

resource. The central idea behind synced collections is to decouple this process into

two distinct groups of tasks: the saving and loading of data from a particular resource

backend, and the synchronization of two in-memory objects of a given type. This

delineation allows us to, for instance, encapsulate all logic for JSON files into a single

JSONCollection class and then combine it with dictionary- or list-like SyncedDict /

SyncedList classes via inheritance to create fully functional JSON-backed dictionar-

ies or lists. Such synchronization significantly lowers performance, so the framework

also exposes an API to implement buffering protocols to collect operations into a

single transaction before submitting them to the underlying resource.

154

Previously, signac contained a single JSONDict class as part of its API, along

with a separately implemented internal-facing JSONList that could only be used as

a member of a JSONDict. With the new framework, users can create fully-functional,

arbitrarily nested JSONDict and JSONList objects that share the same logic for read-

ing from and writing to JSON files. Just as importantly, signac can now combine

these data structures with a different backend, allowing us to swap in different storage

mechanisms for improved performance and flexibility with no change in our APIs.

Since different types of resources may have different approaches to batching transac-

tions — for example, a SQLite backend may want to exploit true SQL transactions,

while a Redis backend might simply collect all changes in memory and delay send-

ing memory to the server — synced collections also support customizable buffering

protocols, again via class inheritance.

B.7.3 Applications of Synced Collections

The new synced collections promise to substantially simplify both feature and

performance enhancements to the signac framework. Performance improvements in

the form of Redis-based storage are already possible with synced collections, and

as expected they show substantial speedups over the current JSON-based approach.

We have also exploited the new and more flexible buffering protocol to implement

and test alternatives to the previous approach. In certain cases, our new buffering

techniques improve performance of buffered operations by 1-2 orders of magnitude.

Some of these performance improvements are drop-in replacements that require no

changes to our existing data models, and we plan to enable these in upcoming versions

of signac.

The generality of synced collections makes them broadly useful even outside the

signac framework. Adding Pythonic APIs to collection-like objects can be challeng-

155

ing, particularly when those objects should support arbitrary nesting, but synced

collections enable nesting as a core feature to dramatically simplify this process.

Moreover, while the framework was originally conceived to support synchronization

of an in-memory data structure with a resource on disk, it can also be used to syn-

chronize with another in-memory resource. A powerful example of this would be

wrapping a C or C++ extension type, for instance by creating a SyncedList that

synchronizes with a C++ std::vector, such that changes to either object would

be transparently reflected in the other. With synced collections, creating this class

just requires defining a conversion between a std::vector and a raw Python list,

a trivial task using standard tools for exposing extension types such as pybind or

Cython.

At a higher level, synced collections represent an important step in improving

both the scalability and flexibility of signac. By abstracting away details of persis-

tent file storage from the rest of signac, they make it much easier for the rest of

signac to focus on offering flexible data models. One of the most common use cases

of signac is creating data spaces with homogeneous schemas that fit naturally into

tabular data structures. In future iterations of signac, we plan to allow users to

opt into homogeneous schemas, which would enable us to replace file-based indexes

with SQL-backed databases that would offer orders of magnitude in performance

improvements. Using this flexibility, we could also move away from our currently

rigid workspace model to allow more general data layouts on disk for cases where

users may benefit from more general folder structures. As such, synced collections

are a stepping stone to creating a more general and powerful version of signac.

156

B.8 Project Evolution

The signac project has evolved from being an open-source project mostly devel-

oped and managed by the Glotzer Group at the University of Michigan, to being

supported by over 30 contributors and 8 committers/maintainers on 3 continents

and with over 55 citations from academic and government research labs and 12 talks

at large scientific, Python, and data science conferences. The growth in involvement

with signac results from our focus on developing features based on user needs, as

well as our efforts to transition signac users into signac contributors, through many

initiatives in the past few years. Through encouraging users to become contributors,

we ensure that signac addresses real users’ needs. Early on, we identified that the

framework had the potential to be used by a wide community of researchers and that

its philosophy was aligned with other projects in the scientific Python ecosystem. We

have expanded signac’s contributor base beyond the University of Michigan through

research collaborations such as the MoSDeF CSSI with other universities, sharing

the framework at conferences, and through the Google Summer of Code (GSoC) pro-

gram, which we applied to under the NumFOCUS organization. Working with and

mentoring students through GSoC led to a new committer and significant work on

the synced collections and aggregation projects presented above. We provide active

support and open discussion for the contributor and user community through Slack.

In addition, we have started hosting weekly “office hours” for in-person (virtual)

introduction and guided contributions to the code base. By pairing new contributors

with experienced signac developers, we significantly reduce the knowledge barrier

to joining a new project. Close interactions between developers and users during

office hours has led to more features and documentation born directly out of user

157

need. Contributing to documentation has been a productive starting point for new

users-turned-contributors, both for the users and the project, since it improves the

users’ familiarity with the API as well as addresses weak spots in the documentation

that are more obvious to new users.

In our growth with increasing contributors and users, we recognized a need to

change our governance structure to make contributing easier and provide a clear

organizational structure to the community. We based our new model on the Merito-

cratic Governance Model and our manager roles on Numba [172] Czars. We decided

on a four category system with maintainers, committers, contributors, and users.

Code review and pull request merge responsibilities are granted to maintainers and

committers, who are (self-) nominated and accepted by a vote of the project main-

tainers. Maintainers are additionally responsible for the strategic direction of the

project and administrative duties. Contributors consist of all members of the com-

munity who have contributed in some way to the framework, which includes adding

or refactoring code as well as filing issues and improving documentation. Finally,

users refer to all those who use signac in any capacity.

In addition, to avoid overloading our committers and maintainers, we added three

rotating manager roles to our governance model that ensure project management goes

smoothly: triage, community, and release. These managers have specific rotation

policies based on time (or release cycles). The triage manager role rotates weekly

and looks at new issues or pull requests and handles cleanup of outdated issues.

The community manager role rotates monthly and is in charge of meeting planning

and outreach. Lastly, the release manager rotates with each release cycle and is the

primary decision maker for the timeline and feature scope of package releases. This

prevents burnout among our senior developers and provides a sense of ownership to

158

a greater number of people, instead of relying on a “benevolent dictator/oligarchy

for life” mode of project leadership.

B.9 Conclusions

From the birth of the signac framework in 2015 to now, signac has grown in

usability, performance, and use. In the last three years, we have added exciting

new features such as groups, aggregation, and synced collections, while learning how

to manage outreach and establish sustainable project governance in a burgeoning

scientific open-source project. We hope to continue expanding the framework through

user-oriented development, reach users in research fields beyond materials science

that routinely have projects suited for signac, and welcome new contributors with

diverse backgrounds and skills to the project.

B.10 Installing signac

The signac framework is tested for Python 3.6+ and is compatible with Linux,

macOS, and Windows. The software is available under the BSD-3 Clause license.

To install, execute:

conda install -c conda-forge signac \

signac-flow signac-dashboard

or:

pip install signac signac-flow signac-dashboard

Source code is available on GitHub4 and documentation is hosted online by

ReadTheDocs.5

4https://github.com/glotzerlab/signac, https://github.com/glotzerlab/signac-flow
5https://docs.signac.io

159

B.11 Acknowledgments

We would also like to thank NumFOCUS for providing helpful advice on open-

source governance, project sustainability, and community outreach, as well as funding

for the design of the signac project logo.

This work was supported by the National Science Foundation, Office of Ad-

vanced Cyberinfrastructure Awards OAC 1835612 and OAC 1835593. B.D. and

B.B. acknowledge fellowship support from the National Science Foundation under

ACI 1547580, S212: Impl: The Molecular Sciences Software Institute [1, 2]. B.D.

was also supported by a National Science Foundation Graduate Research Fellow-

ship Grant DGE 1256260 (2016–2019). V.R. acknowledges the 2019-2020 J. Robert

Beyster Computational Innovation Graduate Fellowship at the University of Michi-

gan. A.T. is supported by the National Science Foundation under DMR 1707640.

Software was deployed and validated and benchmarked on the Extreme Science and

Engineering Discovery Environment (XSEDE) [170], which is supported by National

Science Foundation Grant No. ACI-1053575 (XSEDE award DMR 140129) and on

resources of the Oak Ridge Leadership Computing Facility which is a DOE Office of

Science User Facility supported under Contract No. DE-AC05-00OR22725.

B.12 Author Contributions

Conceptualization, B.D.D., B.L.B., V.R., A.T., M.M.H., H.O., and C.S.A.; data

curation, B.D.D., B.L.B., V.R., A.T., M.M.H., H.O., and C.S.A.; funding acqui-

sition, E.J. and S.C.G.; methodology, B.D.D., B.L.B., V.R., A.T., M.M.H., H.O.,

and C.S.A.; project administration, B.D.D., B.L.B., V.R., A.T., M.M.H., H.O., and

C.S.A.; software, B.D.D., B.L.B., V.R., A.T., M.M.H., H.O., and C.S.A.; supervi-

sion, S.C.G.; visualization, B.D.D., B.L.B., A.T., and K.W.; writing – original draft,

160

B.D.D., B.L.B., V.R., A.T., and H.O.; writing – review & editing, B.D.D., B.L.B.,

V.R., A.T., M.M.H., H.O., K.W., C.S.A., and S.C.G. All authors have read and

agreed to the published version of the manuscript.

161

BIBLIOGRAPHY

162

BIBLIOGRAPHY

[1] N. Wilkins-Diehr and T. D. Crawford, “NSF’s Inaugural Software Institutes: The Science
Gateways Community Institute and the Molecular Sciences Software Institute,” Computing
in Science Engineering, vol. 20, no. 5, pp. 26–38, 2018.

[2] A. Krylov, T. L. Windus, T. Barnes, E. Marin-Rimoldi, J. A. Nash, B. Pritchard, D. G. A.
Smith, D. Altarawy, P. Saxe, C. Clementi, T. D. Crawford, R. J. Harrison, S. Jha, V. S. Pande,
and T. Head-Gordon, “Perspective: Computational Chemistry Software and Its Advancement
As Illustrated Through Three Grand Challenge Cases for Molecular Science,” The Journal of
Chemical Physics, vol. 149, no. 18, p. 180901, 2018.

[3] M. Spellings and plato-draw contributors, “https://github.com/glotzerlab/plato/,” May 2021.

[4] J. Grout and PyThreejs Development Team, “https://github.com/jupyter-
widgets/pythreejs,” October 2020.

[5] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,
M. Perrot, and E. Duchesnay, “Scikit-learn: Machine Learning in Python,” Journal of Ma-
chine Learning Research, vol. 12, pp. 2825–2830, 2011.

[6] W. Mickel, S. C. Kapfer, G. E. Schröder-Turk, and K. Mecke, “Shortcomings of the Bond
Orientational Order Parameters for the Analysis of Disordered Particulate Matter,” Journal
of Chemical Physics, vol. 138, no. 4, 2013.

[7] Plotly Technologies Inc., “Collaborative Data Science,” 2015.

[8] P. M. Larsen, S. Schmidt, and J. Schiøtz, “Robust Structural Identification via Polyhedral
Template Matching,” Modelling and Simulation in Materials Science and Engineering, vol. 24,
p. 055007, June 2016.

[9] A. Stukowski, “Visualization and Analysis of Atomistic Simulation Data with OVITO - The
Open Visualization Tool,” Modelling and Simulation in Materials Science and Engineering,
vol. 18, p. 015012, January 2010.

[10] M. J. Mehl, D. Hicks, C. Toher, O. Levy, R. M. Hanson, G. Hart, and S. Curtarolo, “The
AFLOW Library of Crystallographic Prototypes: Part 1,” Computational Materials Science,
vol. 136, pp. S1–S828, August 2017.

[11] C. X. Du, G. van Anders, R. S. Newman, and S. C. Glotzer, “Shape-Driven Solid-Solid
Transitions in Colloids,” Proceedings of the National Academy of Sciences of the United States
of America, vol. 114, pp. E3892–E3899, May 2017.

163

[12] G. E. Schröder-Turk, W. Mickel, S. C. Kapfer, F. M. Schaller, B. Breidenbach, D. Hug, and
K. Mecke, “Minkowski Tensors of Anisotropic Spatial Structure,” New Journal of Physics,
vol. 15, p. 083028, August 2013.

[13] R. K. Cersonsky, J. Antonaglia, B. D. Dice, and S. C. Glotzer, “The Diversity of Three-
Dimensional Photonic Crystals,” Nature Communications, vol. 12, p. 2543, May 2021.

[14] J. Anderson and fresnel contributors, “https://github.com/glotzerlab/fresnel/,” June 2021.

[15] C. S. Adorf, J. Antonaglia, J. Dshemuchadse, and S. C. Glotzer, “Inverse Design of Simple Pair
Potentials for the Self-Assembly of Complex Structures,” The Journal of Chemical Physics,
vol. 149, p. 204102, November 2018.

[16] R. Rusali and G. J. Wang, “High-Throughput Analysis of Urban Textures Using Methods
from Molecular Simulation,” in Proceedings of the 7th ACM International Conference on
Systems for Energy-Efficient Buildings, Cities, and Transportation, (New York, NY, USA),
pp. 298–301, Acm, November 2020.

[17] E. Fermi, J. Pasta, S. Ulam, and M. Tsingou, “Studies of Nonlinear Problems,” tech. rep.,
Los Alamos Scientific Laboratory of the University of California, 1955.

[18] J. Jung, W. Nishima, M. Daniels, G. Bascom, C. Kobayashi, A. Adedoyin, M. Wall, A. Lap-
pala, D. Phillips, W. Fischer, C.-S. Tung, T. Schlick, Y. Sugita, and K. Y. Sanbonmatsu,
“Scaling Molecular Dynamics Beyond 100,000 Processor Cores for Large-Scale Biophysical
Simulations,” Journal of Computational Chemistry, vol. 40, pp. 1919–1930, August 2019.

[19] Z. M. Sherman, M. P. Howard, B. A. Lindquist, R. B. Jadrich, and T. M. Truskett, “Inverse
Methods for Design of Soft Materials,” The Journal of Chemical Physics, vol. 152, p. 140902,
April 2020.

[20] Y. Geng, G. van Anders, P. M. Dodd, J. Dshemuchadse, and S. C. Glotzer, “Engineering
Entropy for the Inverse Design of Colloidal Crystals From Hard Shapes,” Science Advances,
vol. 5, p. eaaw0514, July 2019.

[21] G. C. Sosso, J. Chen, S. J. Cox, M. Fitzner, P. Pedevilla, A. Zen, and A. Michaelides, “Crys-
tal Nucleation in Liquids: Open Questions and Future Challenges in Molecular Dynamics
Simulations,” Chemical Reviews, vol. 116, pp. 7078–7116, June 2016.

[22] L. McInnes and J. Healy, “UMAP: Uniform Manifold Approximation and Projection for
Dimension Reduction,” February 2018.

[23] P. F. Damasceno, M. Engel, and S. C. Glotzer, “Predictive Self-Assembly of Polyhedra Into
Complex Structures,” Science (New York, N.Y.), vol. 337, pp. 453–7, July 2012.

[24] G. van Anders, N. K. Ahmed, R. Smith, M. Engel, and S. C. Glotzer, “Entropically Patchy
Particles: Engineering Valence Through Shape Entropy,” ACS Nano, vol. 8, no. 1, pp. 931–
940, 2014.

[25] C. S. Adorf, P. M. Dodd, V. Ramasubramani, and S. C. Glotzer, “Simple Data and Work-
flow Management with the signac Framework,” Computational Materials Science, vol. 146,
pp. 220–229, April 2018.

[26] V. Ramasubramani, C. S. Adorf, P. M. Dodd, B. D. Dice, and S. C. Glotzer, “signac: A
Python Framework for Data And Workflow Management,” in Proceedings of the 17th Python
in Science Conference (F. Akici, D. Lippa, D. Niederhut, and M. Pacer, eds.), pp. 152–159,
2018.

[27] V. Ramasubramani, B. D. Dice, E. S. Harper, M. P. Spellings, J. A. Anderson, and S. C.
Glotzer, “freud: A Software Suite for High Throughput Analysis of Particle Simulation Data,”
Computer Physics Communications, vol. 254, p. 107275, September 2020.

164

[28] J. A. Anderson, J. Glaser, and S. C. Glotzer, “HOOMD-blue: A Python Package for High-
Performance Molecular Dynamics and Hard Particle Monte Carlo Simulations,” Computa-
tional Materials Science, vol. 173, p. 109363, February 2020.

[29] M. Spellings and S. C. Glotzer, “Machine Learning for Crystal Identification and Discovery,”
AIChE Journal, vol. 64, pp. 2198–2206, June 2018.

[30] C. S. Adorf, T. C. Moore, Y. J. U. Melle, and S. C. Glotzer, “Analysis of Self-Assembly Path-
ways with Unsupervised Machine Learning Algorithms,” The Journal of Physical Chemistry
B, vol. 124, pp. 69–78, January 2020.

[31] E. Boattini, M. Dijkstra, and L. Filion, “Unsupervised Learning for Local Structure Detection
in Colloidal Systems,” The Journal of Chemical Physics, vol. 151, p. 154901, October 2019.

[32] W. F. Reinhart, A. W. Long, M. P. Howard, A. L. Ferguson, and A. Z. Panagiotopoulos,
“Machine Learning for Autonomous Crystal Structure Identification,” Soft Matter, vol. 13,
no. 27, pp. 4733–4745, 2017.

[33] P. J. Steinhardt, D. R. Nelson, and M. Ronchetti, “Bond-Orientation Order in Liquids and
Glasses,” Physical Review B, vol. 28, no. 2, pp. 784–805, 1983.

[34] A. S. Keys, C. R. Iacovella, and S. C. Glotzer, “Characterizing Structure Through Shape
Matching and Applications to Self-Assembly,” Annual Review of Condensed Matter Physics,
vol. 2, pp. 263–285, March 2011.

[35] J. D. Honeycutt and H. C. Andersen, “Molecular Dynamics Study of Melting and Freezing of
Small Lennard-Jones Clusters,” The Journal of Physical Chemistry, vol. 91, pp. 4950–4963,
September 1987.

[36] F. A. Lindemann, “Über die berechnung molekularer eigenfrequenzen,” Phys. Z, vol. 11,
pp. 609–612, 1910.

[37] B. Peters, “Reaction Coordinates and Mechanisms,” in Reaction Rate Theory and Rare Events
Simulations, pp. 539–571, Elsevier, January 2017.

[38] C. L. Kelchner, S. J. Plimpton, and J. C. Hamilton, “Dislocation Nucleation and Defect Struc-
ture During Surface Indentation,” Physical Review B, vol. 58, pp. 11085–11088, November
1998.

[39] G. J. Ackland and A. P. Jones, “Applications of Local Crystal Structure Measures in Exper-
iment and Simulation,” Physical Review B, vol. 73, p. 054104, February 2006.

[40] A. Stukowski, “Structure Identification Methods for Atomistic Simulations of Crystalline Ma-
terials,” Modelling and Simulation in Materials Science and Engineering, vol. 20, p. 045021,
June 2012.

[41] A. Malins, S. R. Williams, J. Eggers, and C. P. Royall, “Identification of Structure in Con-
densed Matter with the Topological Cluster Classification,” The Journal of Chemical Physics,
vol. 139, p. 234506, December 2013.

[42] C. Dietz and M. H. Thoma, “Investigation and Improvement of Three-Dimensional Plasma
Crystal Analysis,” Physical Review E, vol. 94, p. 033207, September 2016.

[43] C. Dietz, T. Kretz, and M. H. Thoma, “Machine-Learning Approach for Local Classification
of Crystalline Structures in Multiphase Systems,” vol. 011301, pp. 1–5, 2017.

[44] E. G. Teich, G. van Anders, and S. C. Glotzer, “Identity Crisis in Alchemical Space Drives
the Entropic Colloidal Glass Transition,” Nature Communications, vol. 10, p. 64, December
2019.

165

[45] W. Lechner and C. Dellago, “Accurate Determination of Crystal Structures Based on Aver-
aged Local Bond Order Parameters,” Journal of Chemical Physics, vol. 129, no. 11, 2008.

[46] R. van Damme, G. M. Coli, R. van Roij, and M. Dijkstra, “Classifying Crystals of Rounded
Tetrahedra and Determining Their Order Parameters Using Dimensionality Reduction,” ACS
Nano, vol. 14, pp. 15144–15153, November 2020.

[47] M. Li, Y. Chen, H. Tanaka, and P. Tan, “Revealing Roles of Competing Local Structural
Orderings in Crystallization of Polymorphic Systems,” Science Advances, vol. 6, p. eaaw8938,
July 2020.

[48] C. Rycroft, “Voro++: A Three-Dimensional Voronoi Cell Library in C++,” tech. rep.,
Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA, January 2009.

[49] A. Ng, “Machine Learning and AI via Brain Simulations,” March 2013.

[50] R. S. DeFever, C. Targonski, S. W. Hall, M. C. Smith, and S. Sarupria, “A Generalized Deep
Learning Approach for Local Structure Identification in Molecular Simulations,” Chemical
Science, vol. 10, pp. 7503–7515, August 2019.

[51] T. Xie and J. C. Grossman, “Crystal Graph Convolutional Neural Networks for Accurate and
Interpretable Prediction of Material Properties,” Physical Review Letters, vol. 120, no. 14,
p. 145301, 2018.

[52] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification with Deep Convolu-
tional Neural Networks,” Communications of the ACM, vol. 60, pp. 84–90, June 2017.

[53] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, and
Y. Bengio, “Learning Phrase Representations Using RNN Encoder-Decoder for Statistical
Machine Translation,” in EMNLP 2014 - 2014 Conference on Empirical Methods in Natural
Language Processing, Proceedings of the Conference, pp. 1724–1734, Association for Compu-
tational Linguistics (ACL), 2014.

[54] G. M. Coli and M. Dijkstra, “An Artificial Neural Network Reveals the Nucleation Mechanism
of a Binary Colloidal AB13 crystal,” ACS Nano, vol. 15, pp. 4335–4346, March 2021.

[55] E. Boattini, M. Ram, F. Smallenburg, and L. Filion, “Neural-Network-Based Order Parame-
ters for Classification of Binary Hard-Sphere Crystal Structures,” Molecular Physics, vol. 116,
pp. 3066–3075, November 2018.

[56] J. A. van Meel, L. Filion, C. Valeriani, and D. Frenkel, “A Parameter-Free, Solid-Angle Based,
Nearest-Neighbor Algorithm,” Journal of Chemical Physics, vol. 136, p. 114707, June 2012.

[57] D. P. Kingma and M. Welling, “Auto-Encoding Variational Bayes,” December 2013.

[58] H. Tanaka, “Bond Orientational Order in Liquids: Towards a Unified Description of Water-
Like Anomalies, Liquid-Liquid Transition, Glass Transition, and Crystallization,” The Euro-
pean Physical Journal E, vol. 35, p. 113, October 2012.

[59] J. Russo and H. Tanaka, “The Microscopic Pathway to Crystallization in Supercooled Liq-
uids,” Scientific Reports, vol. 2, p. 505, December 2012.

[60] S. Arai and H. Tanaka, “Surface-Assisted Single-Crystal Formation of Charged Colloids,”
Nature Physics, vol. 13, pp. 503–509, May 2017.

[61] K. Pearson, “On Lines and Planes of Closest Fit to Systems of Points in Space,” The London,
Edinburgh, and Dublin Philosophical Magazine and Journal of Science, vol. 2, pp. 559–572,
November 1901.

166

[62] L. van der Maaten and G. Hinton, “Visualizing Data Using t-SNE,” Journal of Machine
Learning Research, vol. 9, no. 11, 2008.

[63] D. W. H. Swenson, J.-H. Prinz, F. Noe, J. D. Chodera, and P. G. Bolhuis, “OpenPathSam-
pling: A Python Framework for Path Sampling Simulations. 1. Basics,” Journal of Chemical
Theory and Computation, vol. 15, pp. 813–836, February 2019.

[64] D. W. H. Swenson, J.-H. Prinz, F. Noe, J. D. Chodera, and P. G. Bolhuis, “OpenPathSam-
pling: A Python Framework for Path Sampling Simulations. 2. Building and Customizing
Path Ensembles and Sample Schemes,” Journal of Chemical Theory and Computation, vol. 15,
pp. 837–856, February 2019.

[65] H. Sidky, Y. J. Colón, J. Helfferich, B. J. Sikora, C. Bezik, W. Chu, F. Giberti, A. Z.
Guo, X. Jiang, J. Lequieu, J. Li, J. Moller, M. J. Quevillon, M. Rahimi, H. Ramezani-
Dakhel, V. S. Rathee, D. R. Reid, E. Sevgen, V. Thapar, M. A. Webb, J. K. Whitmer, and
J. J. de Pablo, “SSAGES: Software Suite for Advanced General Ensemble Simulations,” The
Journal of Chemical Physics, vol. 148, p. 044104, January 2018.

[66] E. Becht, L. McInnes, J. Healy, C.-A. Dutertre, I. W. H. Kwok, L. G. Ng, F. Ginhoux, and
E. W. Newell, “Dimensionality Reduction for Visualizing Single-Cell Data Using UMAP,”
Nature Biotechnology, vol. 37, pp. 38–44, January 2019.

[67] C. J. Nolet, V. Lafargue, E. Raff, T. Nanditale, T. Oates, J. Zedlewski, and J. Patterson,
“Bringing UMAP Closer to the Speed of Light with GPU Acceleration,” in Proceedings of the
AAAI Conference on Artificial Intelligence, vol. 35, pp. 418–426, May 2021.

[68] RAPIDS Development Team, RAPIDS: Collection of Libraries for End to End GPU Data
Science, 2018.

[69] J. D. Hunter, “Matplotlib: A 2D Graphics Environment,” Computing in Science & Engineer-
ing, vol. 9, no. 3, pp. 90–95, 2007.

[70] J. A. Anderson, M. Eric Irrgang, and S. C. Glotzer, “Scalable Metropolis Monte Carlo for
Simulation of Hard Shapes,” Computer Physics Communications, vol. 204, pp. 21–30, July
2016.

[71] V. Ramasubramani, B. D. Dice, T. T. Dwyer, and S. C. Glotzer, “coxeter: A Python Package
for Working with Shapes,” Journal of Open Source Software, vol. 6, no. 63, p. 3098, 2021.

[72] J. MacQueen et al., “Some Methods for Classification and Analysis of Multivariate Obser-
vations,” in Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and
Probability, vol. 1, pp. 281–297, Oakland, CA, USA, 1967.

[73] A. K. Sharma and F. A. Escobedo, “Disorder Foreshadows Order in Colloidal Cubes,” The
Journal of Physical Chemistry B, vol. 122, pp. 9264–9273, October 2018.

[74] H. L. Yakel, “Atom Distributions in Sigma Phases. I. Fe and Cr Atom Distributions in a
Binary Sigma Phase Equilibrated at 1063, 1013 and 923 K,” Acta Crystallographica Section
B Structural Science, vol. 39, pp. 20–28, February 1983.

[75] P. R. ten Wolde, M. J. Ruiz-Montero, and D. Frenkel, “Numerical Evidence for bcc Ordering
at the Surface of a Critical fcc Nucleus,” Physical Review Letters, vol. 75, pp. 2714–2717,
October 1995.

[76] L. Filion, M. Hermes, R. Ni, and M. Dijkstra, “Crystal Nucleation of Hard Spheres Using
Molecular Dynamics, Umbrella Sampling, and Forward Flux Sampling: A Comparison of
Simulation Techniques,” The Journal of Chemical Physics, vol. 133, p. 244115, December
2010.

167

[77] I. Han, K. L. Wang, A. T. Cadotte, Z. Xi, H. Parsamehr, X. Xiao, S. C. Glotzer, and A. J.
Shahani, “Self-Healing Behavior of Quasicrystals Upon Hard Collision,” June 2021.

[78] A. Karas, Understanding and Controlling Directional Entropic Forces in Hard Particle Self-
Assembly. PhD thesis, University of Michigan, 2018.

[79] D. A. Porter and K. E. Easterling, Phase Transformations in Metals and Alloys (Revised
Reprint). CRC Press, 2009.

[80] P. Chao, X. Xiao, and A. J. Shahani, “Flexible Unsupervised Binary Change Detection Algo-
rithm Identifies Phase Transitions in Continuous Image Streams,” Integrating Materials and
Manufacturing Innovation, vol. 10, pp. 72–81, March 2021.

[81] M. Engel, “Point Group Analysis in Particle Simulation Data,” June 2021.

[82] J. A. Anderson, J. Antonaglia, J. A. Millan, M. Engel, and S. C. Glotzer, “Shape and Sym-
metry Determine Two-Dimensional Melting Transitions of Hard Regular Polygons,” Physical
Review X, vol. 7, p. 021001, April 2017.

[83] W. Shen, J. Antonaglia, J. A. Anderson, M. Engel, G. van Anders, and S. C. Glotzer, “Sym-
metries in Hard Polygon Systems Determine Plastic Colloidal Crystal Mesophases in Two
Dimensions,” Soft Matter, vol. 15, pp. 2571–2579, March 2019.

[84] T. C. Moore, J. A. Anderson, and S. C. Glotzer, “Shape-Driven Entropic Self-Assembly of an
Open, Reconfigurable, Binary Host-Guest Colloidal Crystal,” Soft Matter, vol. 17, pp. 2840–
2848, March 2021.

[85] F. M. Schaller, S. C. Kapfer, M. E. Evans, M. J. Hoffmann, T. Aste, M. Saadatfar, K. Mecke,
G. W. Delaney, and G. E. Schröder-Turk, “Set Voronoi Diagrams of 3D Assemblies of As-
pherical Particles,” Philosophical Magazine, vol. 93, pp. 3993–4017, November 2013.

[86] S. Weis, P. W. A. Schönhöfer, F. M. Schaller, M. Schröter, and G. E. Schröder-Turk, “Pomelo,
a Tool for Computing Generic Set Voronoi Diagrams of Aspherical Particles of Arbitrary
Shape,” EPJ Web of Conferences, vol. 140, p. 06007, June 2017.

[87] S. Kapfer, Morphometry and Physics of Particulate and Porous Media. PhD thesis, Friedrich-
Alexander-Universität Erlangen-Nürnberg (FAU), 2012.

[88] W. Mickel, Geometry Controlled Phase Behavior in Nanowetting and Jamming. PhD thesis,
Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 2011.

[89] S. C. Kapfer, W. Mickel, F. M. Schaller, M. Spanner, C. Goll, T. Nogawa, N. Ito, K. Mecke,
and G. E. Schröder-Turk, “Local Anisotropy of Fluids Using Minkowski Tensors,” Journal of
Statistical Mechanics: Theory and Experiment, vol. 2010, p. P11010, November 2010.

[90] G. E. Schröder-Turk, W. Mickel, M. Schröter, G. W. Delaney, M. Saadatfar, T. J. Senden,
K. Mecke, and T. Aste, “Disordered Spherical Bead Packs Are Anisotropic,” EPL (Euro-
physics Letters), vol. 90, p. 34001, May 2010.

[91] S. C. Kapfer, W. Mickel, K. Mecke, and G. E. Schröder-Turk, “Jammed Spheres: Minkowski
Tensors Reveal Onset of Local Crystallinity,” Physical Review E, vol. 85, p. 030301, March
2012.

[92] T. E. Smidt, “Euclidean Symmetry and Equivariance in Machine Learning,” Trends in Chem-
istry, vol. 3, pp. 82–85, February 2021.

[93] M. Geiger, T. Smidt, A. M., B. K. Miller, W. Boomsma, B. Dice, K. Lapchevskyi, M. Weiler,
M. Tyszkiewicz, S. Batzner, J. Frellsen, N. Jung, S. Sanborn, J. Rackers, and M. Bailey,
“e3nn/e3nn: 2021-06-21,” June 2021.

168

[94] S. Batzner, T. E. Smidt, L. Sun, J. P. Mailoa, M. Kornbluth, N. Molinari, and B. Kozin-
sky, “SE(3)-Equivariant Graph Neural Networks for Data-Efficient and Accurate Interatomic
Potentials,” January 2021.

[95] Z. Chen, N. Andrejevic, T. Smidt, Z. Ding, Q. Xu, Y. T. Chi, Q. T. Nguyen, A. Alatas,
J. Kong, and M. Li, “Direct Prediction of Phonon Density of States with Euclidean Neural
Networks,” Advanced Science, vol. 2021, p. 2004214, 2021.

[96] J. W. Galusha, L. R. Richey, J. S. Gardner, J. N. Cha, and M. H. Bartl, “Discovery of a
Diamond-Based Photonic Crystal Structure in Beetle Scales,” Physical Review E, vol. 77,
p. 050904, May 2008.

[97] S. G. Johnson, P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, “Linear Waveguides in
Photonic-Crystal Slabs,” Physical Review B, vol. 62, pp. 8212–8222, September 2000.

[98] R. C. Schroden, M. Al-Daous, C. F. Blanford, and A. Stein, “Optical Properties of Inverse
Opal Photonic Crystals,” Chemistry of Materials, vol. 14, no. 8, pp. 3305–3315, 2002.

[99] J. D. Jackson, Classical Electrodynamics. American Association of Physics Teachers, 1999.

[100] J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals. Prince-
ton University Press, 2011.

[101] S. G. Johnson and J. D. Joannopoulos, “Block-Iterative Frequency-Domain Methods for
Maxwell’s Equations in a Planewave Basis,” Opt. Express, vol. 8, pp. 173–190, Jan 2001.

[102] A. da Silva Ferreira, G. N. M. Silveira, and H. E. H. Figueroa, “Predicting Complete Band-
Gaps of 2d Photonic Crystals by Using Artificial Neural Networks,” in 2017 SBMO/IEEE
MTT-S International Microwave and Optoelectronics Conference (IMOC), pp. 1–5, IEEE,
August 2017.

[103] A. da Silva Ferreira, G. N. Malheiros-Silveira, and H. E. Hernández Figueroa, “Designing Ar-
tificial Neural Networks for Band Structures Computations in Photonic Crystals,” in Physics
and Simulation of Optoelectronic Devices XXVII (M. Osiński, Y. Arakawa, and B. Witzig-
mann, eds.), vol. 10912, p. 60, Spie, February 2019.

[104] H. Men, K. Y. K. Lee, R. M. Freund, J. Peraire, and S. G. Johnson, “Robust Topology
Optimization of Three-Dimensional Photonic-Crystal Band-Gap Structures,” Optics Express,
vol. 22, p. 22632, September 2014.

[105] A. H. Larsen, J. J. Mortensen, J. Blomqvist, I. E. Castelli, R. Christensen, M. Du lak, J. Friis,
M. N. Groves, B. Hammer, C. Hargus, E. D. Hermes, P. C. Jennings, P. B. Jensen, J. Kermode,
J. R. Kitchin, E. L. Kolsbjerg, J. Kubal, K. Kaasbjerg, S. Lysgaard, J. B. Maronsson, T. Max-
son, T. Olsen, L. Pastewka, A. Peterson, C. Rostgaard, J. Schiøtz, O. Schütt, M. Strange,
K. S. Thygesen, T. Vegge, L. Vilhelmsen, M. Walter, Z. Zeng, and K. W. Jacobsen, “The
Atomic Simulation Environment–A Python Library for Working with Atoms,” Journal of
Physics: Condensed Matter, vol. 29, no. 27, p. 273002, 2017.

[106] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis,
J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia,
R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray,
C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke,
V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and
X. Zheng, “TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems,” 2015.
Software available from tensorflow.org.

[107] A. Sergeev and M. Del Balso, “Horovod: Fast and Easy Distributed Deep Learning in Ten-
sorFlow,” February 2018.

169

[108] A. Souza, L. B. Oliveira, S. Hollatz, M. Feldman, K. Olukotun, J. M. Holton, A. E. Cohen,
and L. Nardi, “DeepFreak: Learning Crystallography Diffraction Patterns with Automated
Machine Learning,” April 2019.

[109] B. Liu, S. G. Johnson, J. D. Joannopoulos, and L. Lu, “Generalized Gilat-Raubenheimer
Method for Density-of-States Calculation in Photonic Crystals,” Journal of Optics (United
Kingdom), vol. 20, p. 044005, April 2018.

[110] G. Gilat and L. J. Raubenheimer, “Accurate Numerical Method for Calculating Frequency-
Distribution Functions in Solids,” Physical Review, vol. 144, pp. 390–395, April 1966.

[111] L. D. Dalcin, R. R. Paz, P. A. Kler, and A. Cosimo, “Parallel Distributed Computing Using
Python,” Advances in Water Resources, vol. 34, pp. 1124–1139, September 2011.

[112] J. Behler and M. Parrinello, “Generalized Neural-Network Representation of High-
Dimensional Potential-Energy Surfaces,” Physical Review Letters, vol. 98, p. 146401, April
2007.

[113] V. Fung, G. Hu, P. Ganesh, and B. G. Sumpter, “Machine Learned Features from Density of
States for Accurate Adsorption Energy Prediction,” Nature Communications, vol. 12, p. 88,
December 2021.

[114] C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen, D. Cournapeau,
E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern, M. Picus, S. Hoyer, M. H. van Kerkwijk,
M. Brett, A. Haldane, J. F. del Ŕıo, M. Wiebe, P. Peterson, P. Gérard-Marchant, K. Sheppard,
T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke, and T. E. Oliphant, “Array Programming
with NumPy,” Nature, vol. 585, pp. 357–362, September 2020.

[115] B. Dice, V. Ramasubramani, E. Harper, M. Spellings, J. Anderson, and S. Glotzer, “Analyzing
Particle Systems for Machine Learning and Data Visualization with freud,” in Proceedings of
the 18th Python in Science Conference, pp. 27–33, 2019.

[116] P. R. ten Wolde, M. J. Ruiz-Montero, and D. Frenkel, “Numerical Calculation of the Rate of
Crystal Nucleation in a Lennard-Jones System At Moderate Undercooling,” The Journal of
Chemical Physics, vol. 104, pp. 9932–9947, June 1996.

[117] N. Michaud-Agrawal, E. J. Denning, T. B. Woolf, and O. Beckstein, “MDAnalysis: A Toolkit
for the Analysis of Molecular Dynamics Simulations,” Journal of Computational Chemistry,
vol. 32, pp. 2319–2327, July 2011.

[118] R. T. McGibbon, K. A. Beauchamp, M. P. Harrigan, C. Klein, J. M. Swails, C. X. Hernández,
C. R. Schwantes, L.-P. Wang, T. J. Lane, and V. S. Pande, “MDTraj: A Modern Open
Library for the Analysis of Molecular Dynamics Trajectories,” Biophysical Journal, vol. 109,
pp. 1528–1532, October 2015.

[119] G. van Anders, D. Klotsa, N. K. Ahmed, M. Engel, and S. C. Glotzer, “Understanding Shape
Entropy Through Local Dense Packing,” Proceedings of the National Academy of Sciences,
vol. 111, no. 45, pp. E4812–e4821, 2014.

[120] A. S. Karas, J. Glaser, and S. C. Glotzer, “Using Depletion to Control Colloidal Crystal
Assemblies of Hard Cuboctahedra,” Soft Matter, vol. 12, pp. 5199–5204, June 2016.

[121] E. S. Harper, R. L. Marson, J. A. Anderson, G. van Anders, and S. C. Glotzer, “Shape
Allophiles Improve Entropic Assembly,” Soft Matter, vol. 11, pp. 7250–7256, September 2015.

[122] T. Kluyver, B. Ragan-Kelley, F. Pérez, B. Granger, M. Bussonnier, J. Frederic, K. Kelley,
J. Hamrick, J. Grout, S. Corlay, P. Ivanov, D. Avila, S. Abdalla, C. Willing, and Jupyter
Development Team, “Jupyter Notebooks - A Publishing Format for Reproducible Computa-
tional Workflows,” in Positioning and Power in Academic Publishing: Players, Agents and
Agendas (F. Loizides and B. Scmidt, eds.), (Netherlands), pp. 87–90, IOS Press, 2016.

170

[123] E. G. Teich, M. Cieslak, B. Giesbrecht, J. M. Vettel, S. Grafton, T. D. Satterthwaite, and
D. S. Bassett, “Crystallinity Characterization of White Matter in the Human Brain,” New
Journal of Physics, July 2021.

[124] B. D. Dice, B. L. Butler, V. Ramasubramani, A. Travitz, M. M. Henry, H. Ojha, K. L. Wang,
C. S. Adorf, E. Jankowski, and S. C. Glotzer, “signac: Data Management and Workflows
for Computational Researchers,” in Proceedings of the 20th Python in Science Conference,
pp. 23–32, 2021.

[125] M. Govoni and G. Galli, “GW100: Comparison of Methods and Accuracy of Results Ob-
tained with the WEST Code,” Journal of Chemical Theory and Computation, vol. 14, no. 4,
pp. 1895–1909, 2018.

[126] S. Thomas, M. Alberts, M. M. Henry, C. E. Estridge, and E. Jankowski, “Routine Million-
Particle Simulations of Epoxy Curing with Dissipative Particle Dynamics,” Journal of Theo-
retical and Computational Chemistry, vol. 17, p. 1840005, April 2018.

[127] F. Musil, M. Veit, A. Goscinski, G. Fraux, M. J. Willatt, M. Stricker, T. Junge, and M. Ceri-
otti, “Efficient Implementation of Atom-Density Representations,” The Journal of Chemical
Physics, vol. 154, p. 114109, March 2021.

[128] M. P. Howard, T. M. Truskett, and A. Nikoubashman, “Cross-Stream Migration of a Brownian
Droplet in a Polymer Solution Under Poiseuille Flow,” Soft Matter, vol. 15, no. 15, pp. 3168–
3178, 2019.

[129] E. S. Harper, E. J. Coyle, J. P. Vernon, and M. S. Mills, “Inverse Design of Broadband Highly
Reflective Metasurfaces Using Neural Networks,” Physical Review B, vol. 101, p. 195104, May
2020.

[130] D. Rodziewicz and J. Dice, “Drought Risk to the Agriculture Sector,” The Federal Reserve
Bank of Kansas City Economic Review, December 2020.

[131] P. T. Cummings, C. McCabe, C. R. Iacovella, A. Ledeczi, E. Jankowski, A. Jayaraman,
J. C. Palmer, E. J. Maginn, S. C. Glotzer, J. A. Anderson, J. I. Siepmann, J. Potoff, R. A.
Matsumoto, J. B. Gilmer, R. S. DeFever, R. Singh, and B. Crawford, “Open-Source Molecular
Modeling Software in Chemical Engineering Focusing on the Molecular Simulation Design
Framework,” AIChE Journal, vol. 67, no. 3, p. e17206, 2021.

[132] A. Collette, Python and HDF5. O’Reilly, 2013.

[133] J. A. Anderson, C. D. Lorenz, and A. Travesset, “General Purpose Molecular Dynamics
Simulations Fully Implemented on Graphics Processing Units,” Journal of Computational
Physics, vol. 227, no. 10, pp. 5342–5359, 2008.

[134] J. Glaser, T. D. Nguyen, J. A. Anderson, P. Lui, F. Spiga, J. A. Millan, D. C. Morse,
and S. C. Glotzer, “Strong Scaling of General-Purpose Molecular Dynamics Simulations on
GPUs,” Computer Physics Communications, vol. 192, pp. 97–107.

[135] S. Plimpton, “Fast Parallel Algorithms for Short-Range Molecular Dynamics,” Journal of
Computational Physics, vol. 117, pp. 1–19, Mar 1995.

[136] H. Berendsen, D. van der Spoel, and R. van Drunen, “GROMACS: A Message-Passing Parallel
Molecular Dynamics Implementation,” Computer Physics Communications, vol. 91, pp. 43–
56, September 1995.

[137] R. K. Cersonsky, J. Dshemuchadse, J. A. Antonaglia, G. van Anders, and S. C. Glotzer,
“Pressure-Tunable Photonic Band Gaps in an Entropic Colloidal Crystal,” Physical Review
Materials, vol. 2, p. 125201, 2018.

171

[138] A. J. Simon, Y. Zhou, V. Ramasubramani, J. Glaser, A. Pothukuchy, J. Gollihar, J. C.
Gerberich, J. Leggere, B. R. Morrow, C. Jung, S. C. Glotzer, D. W. Taylor, and A. D.
Ellington, “Supercharging Enables Organized Assembly of Synthetic Biomolecules,” Nature
Chemistry, vol. 11, pp. 204–212, 2019.

[139] S. C. Glotzer and M. J. Solomon, “Anisotropy of Building Blocks and Their Assembly Into
Complex Structures,” Nature Materials, vol. 6, pp. 557–562, Aug 2007.

[140] S. J. Tan, M. J. Campolongo, D. Luo, and W. Cheng, “Building Plasmonic Nanostructures
with DNA,” Nature Nanotechnology, vol. 6, pp. 268–276, May 2011.

[141] T. E. Oliphant, A Guide to NumPy. Trelgol Publishing, 2006.

[142] E. Jones, T. Oliphant, P. Peterson, and others, “SciPy: Open Source Scientific Tools for
Python,” 2001.

[143] S. Behnel, R. Bradshaw, C. Citro, L. Dalcin, D. S. Seljebotn, and K. Smith, “Cython: The
Best of Both Worlds,” Computing in Science & Engineering, vol. 13, pp. 31–39, March 2011.

[144] Intel, “Intel Threading Building Blocks,” 2018.

[145] E. S. Harper, B. Waters, and S. C. Glotzer, “Hierarchical Self-Assembly of Hard Cube Deriva-
tives,” Soft Matter, vol. 15, pp. 3733–3739, 2019.

[146] S. S. Schoenholz, E. D. Cubuk, E. Kaxiras, and A. J. Liu, “A Structural Approach to Relax-
ation in Glassy Liquids,” Nature Physics, no. February, pp. 1–11, 2015.

[147] M. Fulford, M. Salvalaglio, and C. Molteni, “DeepIce: A Deep Neural Network Approach
to Identify Ice and Water Molecules,” Journal of Chemical Information and Modeling,
p. acs.jcim.9b00005, March 2019.

[148] M. W. Thompson, R. Matsumoto, R. L. Sacci, N. C. Sanders, and P. T. Cummings, “Scalable
Screening of Soft Matter: A Case Study of Mixture of Ionic Liquids and Organic Solvents,”
J. Phys. Chem. B, vol. 123, no. 6, pp. 1340–1347.

[149] S. Pronk, S. Páll, R. Schulz, P. Larsson, P. Bjelkmar, R. Apostolov, M. R. Shirts, J. C.
Smith, P. M. Kasson, D. van der Spoel, B. Hess, and E. Lindahl, “GROMACS 4.5: A High-
Throughput and Highly Parallel Open Source Molecular Simulation Toolkit,” Bioinformatics,
vol. 29, no. 7, pp. 845–854.

[150] E. Lindahl, B. Hess, and D. van der Spoel, “GROMACS 3.0: A Package for Molecular
Simulation and Trajectory Analysis,” J Mol Model, vol. 7, no. 8, pp. 306–317.

[151] B. Hess, C. Kutzner, D. van der Spoel, and E. Lindahl, “GROMACS 4: Algorithms for Highly
Efficient, Load-Balanced, and Scalable Molecular Simulation,” J. Chem. Theory Comput.,
vol. 4, no. 3, pp. 435–447.

[152] M. J. Abraham, T. Murtola, R. Schulz, S. Páll, J. C. Smith, B. Hess, and E. Lindahl,
“GROMACS: High Performance Molecular Simulations Through Multi-Level Parallelism from
Laptops to Supercomputers,” SoftwareX, vol. 1-2, pp. 19–25.

[153] The pandas Development Team, “pandas-dev/pandas: Pandas,” February 2020.

[154] W. McKinney, “Data Structures for Statistical Computing in Python,” Proceedings of the 9th
Python in Science Conference, pp. 56–61.

[155] D. D. Team, Dask: Library for Dynamic Task Scheduling, 2016.

[156] M. Rocklin, “Dask: Parallel Computation with Blocked Algorithms and Task Scheduling,”
in Proceedings of the 14th Python in Science Conference (K. Huff and J. Bergstra, eds.),
pp. 130–136, 2015.

172

[157] J. K. Shah, E. Marin-Rimoldi, R. G. Mullen, B. P. Keene, S. Khan, A. S. Paluch, N. Rai,
L. L. Romanielo, T. W. Rosch, B. Yoo, et al., “Cassandra: An Open Source Monte Carlo
Package for Molecular Simulation,” 2017.

[158] R. S. DeFever, R. A. Matsumoto, A. W. Dowling, P. T. Cummings, and E. J. Maginn, “MoS-
DeF Cassandra: A Complete Python Interface for the Cassandra Monte Carlo Software,”
Journal of Computational Chemistry, 2021.

[159] C. Klein, A. Z. Summers, M. W. Thompson, J. B. Gilmer, C. McCabe, P. T. Cummings,
J. Sallai, and C. R. Iacovella, “Formalizing Atom-Typing and the Dissemination of Force
Fields with Foyer,” Computational Materials Science, vol. 167, pp. 215–227.

[160] Brandon L. Butler, Vyas Ramasubramani, Joshua A. Anderson, and Sharon C. Glotzer,
“HOOMD-blue Version 3.0: A Modern, Extensible, Flexible, Object-Oriented API for Molec-
ular Simulations,” in Proceedings of the 19th Python in Science Conference (Meghann Agar-
wal, Chris Calloway, Dillon Niederhut, and David Shupe, eds.), pp. 24–31, 2020.

[161] C. Klein, J. Sallai, T. J. Jones, C. R. Iacovella, C. McCabe, and P. T. Cummings, “A Hierar-
chical, Component Based Approach to Screening Properties of Soft Matter,” in Foundations
of Molecular Modeling and Simulation: Select Papers from FOMMS 2015 (R. Q. Snurr, C. S.
Adjiman, and D. A. Kofke, eds.), Molecular Modeling and Simulation, pp. 79–92, Springer.

[162] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L.
Chiarotti, M. Cococcioni, I. Dabo, A. D. Corso, S. de Gironcoli, S. Fabris, G. Fratesi,
R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos,
N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia,
S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcovitch,
“QUANTUM ESPRESSO: A Modular and Open-Source Software Project for Quantum Sim-
ulations of Materials,” Journal of Physics: Condensed Matter, vol. 21, p. 395502, September
2009.

[163] V. Liu and S. Fan, “S4: A Free Electromagnetic Solver for Layered Periodic Structures,”
Computer Physics Communications, vol. 183, no. 10, pp. 2233–2244, 2012.

[164] G. Kresse and J. Furthmüller, “Efficient Iterative Schemes for Ab Initio Total-Energy Calcu-
lations Using a Plane-Wave Basis Set,” Phys. Rev. B, vol. 54, pp. 11169–11186, Oct 1996.

[165] F. Chollet et al., “Keras,” 2015.

[166] M. W. Thompson, J. B. Gilmer, R. A. Matsumoto, C. D. Quach, P. Shamaprasad, A. H.
Yang, C. R. Iacovella, C. McCabe, and P. T. Cummings, “Towards Molecular Simulations
That Are Transparent, Reproducible, Usable by Others, and Extensible (TRUE),” Molecular
Physics, vol. 118, p. e1742938, June 2020.

[167] T. H. Group, “Hierarchical Data Format, Version 5,” 1997-2021.

[168] M. Davis, “snakeviz.”

[169] A. A. Hagberg, D. A. Schult, and P. J. Swart, “Exploring Network Structure, Dynamics,
and Function Using NetworkX,” in Proceedings of the 7th Python in Science Conference
(G. Varoquaux, T. Vaught, and J. Millman, eds.), (Pasadena, CA USA), pp. 11–15, 2008.

[170] J. Towns, T. Cockerill, M. Dahan, I. Foster, K. Gaither, A. Grimshaw, V. Hazlewood, S. Lath-
rop, D. Lifka, G. D. Peterson, R. Roskies, J. R. Scott, and N. Wilkins-Diehr, “XSEDE: Ac-
celerating Scientific Discovery,” Computing in Science Engineering, vol. 16, no. 5, pp. 62–74,
2014.

173

[171] A. Miles, jakirkham, M. Durant, M. Bussonnier, J. Bourbeau, T. Onalan, J. Hamman, Z. Pa-
tel, M. Rocklin, shikharsg, R. Abernathey, J. Moore, V. Schut, raphael dussin, E. S. de An-
drade, C. Noyes, A. Jelenak, A. Banihirwe, C. Barnes, G. Sakkis, J. Funke, J. Kelleher,
J. Jevnik, J. Swaney, P. S. Rahul, S. Saalfeld, john, T. Tran, pyup.io bot, and sbalmer,
“zarr-developers/zarr-python: v2.5.0,” October 2020.

[172] S. K. Lam, A. Pitrou, and S. Seibert, “Numba: A LLVM-Based Python JIT Compiler,” in
Proceedings of the Second Workshop on the LLVM Compiler Infrastructure in HPC, LLVM
’15, pp. 1–6, Association for Computing Machinery.

174

