
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, DECEMBER 2020 1

Explainable Search-Based Refactoring
Chaima Abid, Dhia Elhaq Rzig, Thiago Ferreira, Marouane Kessentini, and Tushar Sharma

Abstract—Refactoring is widely adopted nowadays in industry to restructure the code and meet high quality while preserving the external
behavior. Many of the existing refactoring tools and research are based on search-based techniques to find relevant recommendations by
finding trade-offs between different quality attributes. While these techniques show promising results on open-source and industry
projects, they lack explanations of the recommended changes which can impact their trustworthiness when adopted in practice by
developers. Furthermore, most of the adopted search-based techniques are based on random population generation and random change
operators (e.g. crossover and mutation). However, it is critical to understand which good refactoring patterns may exist when applying
change operators to either keep them or exchange with other solutions rather than destroying them with random changes. In this paper,
we propose knowledge-informed change operators and an improved seeding mechanism that we integrated in a multi-objective genetic
algorithm. We also provide explanations for refactoring solutions. First, we generate association rules using the Apriori algorithm to find
relationships between applied refactorings in previous commits, their locations, and their rationale (quality improvements). Then, we use
these rules to 1) initialize the population, 2) improve the change operators and seeding mechanisms of the multi-objective search in order
to preserve and exchange good patterns in the refactoring solutions, and 3) explain how a sequence of refactorings collaborate in order to
improve the quality of the system (e.g. fitness functions). The validation on large open-source systems shows that X-SBR provides
refactoring solutions of a better quality than those given by the state-of-the-art techniques in terms of reducing the invalid refactorings,
improving the quality, and increasing trustworthiness of the developers in the suggested refactorings via the provided explanations.

Index Terms—Refactoring recommendations, Search-Based Software Engineering, QMOOD metrics, multi-objective search

F

1 INTRODUCTION

As software systems continue to grow in size and complexity,
their maintenance continues to become more challenging
and costly [1], [2]. Several studies show that developers
spend over 60% of their time in understanding existing code
of large projects [3]. In order to improve the quality and
maintainability of software systems, refactoring is widely
adopted in industry to change the internal structure without
affecting the external behavior of software systems [4].

A wide range of work has been done on finding refactor-
ing recommendations using a variety of techniques including
template/rule-based tools [5], [6], static and lexical analysis,
and search-based software engineering [7]. Recent surveys
show that search-based software engineering is widely
adopted to find refactoring recommendations [7], [8] due
to the conflicting nature of many quality metrics and the
large search space of potential refactoring strategies that can
be useful depending on the context. For instance, O’Keeffe
et al. [9] compared the ability of different local search-based
algorithms such as hill climbing and simulated annealing
to generate refactoring recommendations that improve the
QMOOD quality metrics [10]. Harman et al. proposed to use
multi-objective search for refactoring to improve coupling
and reduce cohesion [11]. Ouni et al. [12] and Mkaouer et al.
[13] proposed multi-objective and many-objective techniques
to balance different conflicting quality metrics when finding

• Chaima Abid, Dhia Elhaq Rzig, Thiago Ferreira, and Marouane Kessentini
are with the department of Computer and Information Science, University
of Michigan, Dearborn, MI, USA.
E-mail: cabid@umich.edu, dhiarzig@umich.edu, thiagod@umich.edu,
marouane@umich.edu

• Tushar Sharma is with Siemens Corporate Technology, Charlotte, USA.
E-mail: tusharsharma@ieee.org

Manuscript received December 19, 2020; revised December 19, 2020.

refactoring recommendations. Hall et al. [14] and Alizadeh
et al. [15] improved the state-of-the-art of search-based
refactoring by enabling interaction with the developers and
learning their preferences. More detailed descriptions of
existing search-based refactoring studies can be found in the
following surveys [7], [8].

Despite the promising results of search-based refactoring
on both open-source and industry projects, several limi-
tations can still be addressed in order to improve their
efficiency. These limitations can apply, in general, to most of
the existing search-based software engineering studies [16]–
[18] but we focus only on search-based refactoring in this
paper. First, the random generation of the initial population
can have a significant impact on the execution time and
the quality of final solutions [19], [20]. Despite the large
amount of data of the history of commits about applied
refactorings, existing search-based refactoring studies are
still generating the initial population of solutions randomly
without exploiting the prior knowledge of what could con-
struct a good refactoring solution. Second, most of software
engineering problems, including refactoring, are discrete.
However, the majority of existing studies are using regular
change operators such as the random one-point crossover.
The random application of change operators without under-
standing the good/bad patterns in a refactoring sequence of
the solution can simply destroy them, deteriorate the quality,
and delay the convergence towards good solutions. Third,
current search-based refactoring techniques generate a large
sequence of refactorings as one solution without explaining
to developers how the different operations in the solution are
dependent on each other in terms of fixing specific quality
issues or improving the fitness functions which can impact
their trustworthiness by developers in practice. Finally, the
recommendation of refactorings is highly dependent to the

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, DECEMBER 2020 2

developers interest and preferences such as files owned or
targeted quality goals. Thus, refactoring recommendations
should be customized to the needs of the developers after
understanding and learning their behavior and preferences.

In this paper, we propose an approach for refactoring
recommendations based on a novel knowledge-informed
multi-objective optimization algorithm to guide the gen-
eration of the initial population, define intelligent genetic
operators and explain the generated refactoring solutions
(also called the Pareto front). The proposed approach is a
combination of an Apriori algorithm and multi-objective
search. The first component of our approach is based on an
Apriori algorithm [21] to generate association rules using
the refactoring history and quality analysis of 18 projects
of different sizes and categories. These association rules
represent patterns linking a combination of refactoring types
with their location, characterized using structural metrics,
to their impact on improving the quality metrics/fitness
functions (e.g. extendibility, functionality, flexibility etc.).

We evaluated our proposed algorithm on four open
source projects and compared it with other variants of
genetic algorithm with random initialization and/or genetic
operators in terms of execution time of the algorithm,
quality of the generated refactoring solutions and identified
refactoring patterns. In addition, we performed a survey
with 14 participants to check the correctness and relevance of
the refactorings generated by the different algorithms using
the four open source projects. Our focus in the human study
was on selecting participants who are contributors/original
developers of the used four open source systems. We found
in our previous extensive studies on refactoring that the
manual evaluation of non-original developers of the selected
systems is not very useful as they are not knowledgeable
enough about the projects to evaluate. We included only
those four systems in our evaluation to attract the most
amount of responses with good quality from participants.
The more tedious the task that the participant must complete
the less the quality of their input is. Furthermore, running
all of the four algorithms on all of the systems 30 times is
very time consuming. The results show that our technique
performed significantly better than the four existing search-
based refactoring approaches [9], [11], [22], [23] in terms
of reducing the number of invalid refactorings, improving
the quality, and increasing the level of trust between the
developer and the refactoring tool. It also outperformed
an existing refactoring tool that is not based on heuristic
search, i.e., JDeodorant [24]. We used these four search-
based refactoring techniques, the non-heuristic refactoring
tool, and the four open source projects because 1) they are
representative of existing automated multi-objective search-
based refactoring techniques, 2) they are publicly available
including the non search-based tool and 3) the familiarity of
the participants with the open source systems that already
part of an existing benchmark not constructed by the authors
of this paper to avoid any potential bias [15]. We did not
compare with manual and interactive refactoring techniques
to ensure a fair comparison and focus on the scope of the
contributions of this paper.

The remainder of this paper is organized as follows:
Section 2 describes our enhanced knowledge-informed multi-
objective search algorithm. Section 4 describes our validation

methodology. Section 4 provides and discusses the different
results obtained from our experiments. Section 5 presents
the threats to validity. Section 6 discusses related work.
Finally, Section 7 presents the conclusion and future works.
Replication Package. All material and data used in our study
are available in our replication package [25].

2 X-SBR APPROACH

2.1 Overview

The goals of this paper are to 1) develop a knowledge-
informed NSGA-II [26] by designing operators that prevent
the destruction of good patterns in a solution 2) explain the
decision made by the algorithm and give justifications to the
users about why a refactoring solution can improve specific
quality objectives by extracting the relevant patterns and 3)
improve the population initialization by using the knowledge
from the history of refactorings to create the individuals of
the first generation rather than randomly generating them.
To reach the stated goals, our approach takes as input the
source code of several commits from different developers and
projects and generates as output a Pareto front of refactoring
solutions along with their explanations presented in a user
friendly graphical interface. A refactoring solution is an
ordered sequence of refactoring operations. The steps of our
approach are as follows:
Step 1: Detect the refactoring history using Rminer [27] and

compute quality metrics (described in section 2.2.1).
Step 2: Generation of association rules to link the quality

metrics with refactoring operations collected in Step
1.

Step 3: Design of a knowledge-informed NSGA-II including
the population generation and change operators
based on the rules extracted in Step 2.

We note that only Step 3 needs to be executed on a
new system to generate refactoring recommendations. Figure
1 summarizes our approach. It takes multiple commits of
different systems that the developer worked on as input.
For each commit, we analyze the source code automatically
to extract low- and high-level quality metrics (refer to
Table 2) and we extracted the refactoring using RMiner
[27]. Based on the collected data, we applied the Apriori
algorithm to find association rules to link low-level quality
metrics and refactoring operations with high-level quality
metrics. The rules are composed by two sides. The left-hand
side includes only item-sets with elements belonging to
the design properties (structure of the code) AND applied
refactoring operations. The right-hand side needs to include
only item-sets with elements belonging to the QMOOD
metrics. The association rules were used to 1) initialize the
first population of solutions, 2) select which refactorings
of a solution to replace during crossover and mutation in
order to avoid destroying good patterns and 3) explain the
obtained refactoring sequence per solution to the developers
by decomposing it to sub-sequences with their potential
impact on quality improvements. Then, we designed and
implemented a knowledge-informed NSGA-II to efficiently
generate the initial population and perform change operators
as detailed later. Finally, our approach can identify the
specific refactoring patterns in each solution responsible

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, DECEMBER 2020 3

for the fitness values of each solution improvement or
deterioration in the Pareto front.

2.2 Data collection
2.2.1 Quality Metrics
To evaluate the code quality of the systems, we selected the
QMOOD model of Bansiya and Davis [10]. This hierarchical
model defines six high-level quality metrics (described in
Table 2) that are computed using a set of eleven weighted
low-level object-oriented design metrics (described in Table
1). We selected this model as it has been extensively used in
existing refactoring studies [9], [10], [15], [22], [28]–[30] as
well as industrial projects [23], [31]–[37] to assess the quality
of software systems. Thus, the paper is not making any new
assumptions/validations about QMOOD.

TABLE 1: Design Metrics

Design Metric Design
Property

Description

Design Size in
Classes (DSC)

Design Size Total number of classes in the design.

Number Of Hierar-
chies (NOH)

Hierarchies Total number of ”root” classes in
the design (count(MaxInheritenceTree
(class)=0))

Average Number
of Ancestors
(ANA)

Abstraction Average number of classes in the inher-
itance tree for each class.

Direct Access Met-
ric (DAM)

Encapsulation Ratio of the number of private and pro-
tected attributes to the total number of
attributes in a class.

Direct Class Cou-
pling (DCC)

Coupling Number of other classes a class relates
to, either through a shared attribute or
a parameter in a method.

Cohesion Among
Methods of class
(CAMC)

Cohesion Measure of how related methods are
in a class in terms of used parameters.
It can also be computed by: 1 − Lack-
OfCohesionOfMethods()

Measure Of Aggre-
gation (MOA)

Composition Count of number of attributes whose
type is user defined class(es).

Measure of Func-
tional Abstraction
(MFA)

Inheritance Ratio of the number of inherited meth-
ods per the total number of methods
within a class.

Number of Poly-
morphic Methods
(NOP)

Polymorphism Any method that can be used by a
class and its descendants. Counts of
the number of methods in a class ex-
cluding private, static and final ones.

Class Interface Size
(CIS)

Messaging Number of public methods in class.

Number of Meth-
ods (NOM)

Complexity Number of methods declared in a
class.

2.2.2 Extracting History of Refactorings
In this study, we used RMiner, a tool proposed by Tsantalis
et al. [27], to extract the refactoring operations performed
between Git commits. RMiner detects a total of 28 refactoring
types at multiple granularity levels—Package, Type, Method,
and Field. These types are the following: change package, ex-
tract and move method, extract class, extract interface, extract
method, extract subclass, extract superclass, extract variable,
inline method, inline variable, move and rename attribute,
move and rename class, move attribute, move class, move
method, move source folder, parameterize variable, pull up
attribute, pull up method, push down attribute, push down
method, rename attribute, rename class, rename method,
rename parameter, rename variable, replace attribute, and
replace variable with attribute.

We selected RMiner because it outperforms its competi-
tors according to a survey of refactoring detection tools [38].
RMiner achieved accurate results in detecting refactorings

compared to the state of-the-art tools, with a precision of
98% and recall of 87% [27]. RMiner was run on each project’s
source code as pulled from Github, the results generated
were stored in CSV files. One line in the RMiner Data
contained the Previous CommitID, Current CommitId, the
Refactoring operation, Source class and Change in Quality
Metrics after the application of the Refactoring. We provide
in the validation section the details of the collected data
related to refactorings and quality metrics on open source
projects.

2.3 Association Rule Mining
Apriori is an algorithm for frequent item-set mining and
association rule learning that was first defined by Agrawal
et al. [21]. A frequent item-set is a set of items appearing
together in a database meeting a user-specified threshold.
The algorithm starts by finding the frequent individual items
in a database and expand them to larger and larger item-sets
as long as the appearance of those item-sets is larger than
the threshold set by the user. The frequent item-sets found
by Apriori can be used to generate association rules which
highlight general trends in the database. The pseudo code of
the Apriori algorithm can be found in the online appendix
[25]. The Apriori algorithm takes as an input a series of
transactions with discrete values of the different variables,
thus a discretization process is necessary. We first scale the
design and QMOOD variables with the Robust Scale method
offered by Pandas 1. Then, these variables were into discrete
intervals using a combination of strategies: equal interval
width, equal frequency, and k-means clustering. We kept
the discretization results that generate the strongest rules in
terms of confidence, support and lift.

In our study, the transaction databaseD consists of the list
of classes of all commits that underwent a refactoring, their
QMOOD/design metrics after discretization, and applied
refactoring operations. The support threshold we considered
was equal to 0.936. We say that a set of refactoring operations
and QMOOD/design metrics is frequent if its support is
0.936 or more.

The number 0.936 was determined through trial and
error: It is the lowest number that we used without getting
an out of memory error. If we go any higher, we get too few
rules, and lower we get an error. We defined three types of
constraints on the generation of the rules:

• The left-hand side needs to include only item-sets
with elements belonging to the design properties
AND applied refactoring operations.

• The left-hand side needs to have at least 4 elements
from the design properties item-set.

• The right-hand side needs to include only item-sets
with elements belonging to the QMOOD metrics.

The goal of the first and second constraints is to include
both the design metrics and the refactoring operations in the
left-hand side of the rules to have a more relevant association
of the refactoring operations with the high-level metrics.
For example, we tend to apply the refactoring operator
Increase field Security when the Direct Access Metric—ratio
of the number of private and protected attributes to the

1. https://pandas.pydata.org/pandas-docs/stable/reference/index.html

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, DECEMBER 2020 4

Fig. 1: Approach Overview

TABLE 2: QMOOD Metrics

Metric Definition Formula
Reusability The ability of a design to be reused to a new problem without

significant effort.
-0.25 × Coupling + 0.25 × Cohesion + 0.5 ×Messaging + 0.5 × Design Size

Flexibility The ability of a design to be adapted to provide functionality
related capabilities easily.

0.25 × Encapsulation - 0.25 × Coupling + 0.5 × Composition + 0.5 ×
Polymorphism

UnderstandabilityThe property of a design that enable it to be easily learned and
comprehended.

-0.33 × Abstraction + 0.33 × Encapsulation + 0.33 × Coupling + 0.33 ×
Cohesion - 0.33 × Polymorphism - 0.33 × Complexity - 0.33 × Design Size

Functionality The responsibility assigned to the classes of a design, which
are made available by classes through their public interfaces.

0.12× Cohesion + 0.22× Polymorphism + 0.22×Messaging + 0.22×Design
Size + 0.22 × Hierarchies

Extendibility The ability of an existing design that allow for the incorpora-
tion of new requirements in the design easily.

0.5×Abstraction - 0.5× Coupling + 0.5× Inheritance + 0.5× Polymorphism

Effectiveness This refers to the design’s ability to achieve the desired func-
tionality and behavior using object-oriented design concepts
and techniques.

0.2 × Abstraction + 0.2 × Encapsulation + 0.2 × Composition + 0.2 ×
Inheritance + 0.2 × Polymorphism

Fig. 2: Example of an association rule

total number of attributes in a class—is low. For the third
constraint, since the fitness functions are composed only of
QMOOD metrics, we made sure that the left hand side of
the rules include only elements belonging to the QMOOD
metrics. Figure 2 represents an example of one of the rules
generated by the Apriori algorithm. The items in blue, red,
and green are respectively the refactoring operations, design
metrics, and QMOOD metrics, respectively. The rule can
be interpreted as follows: when developers have applied
the refactoring types Extract and move method and Inline
Variable in a class that has the design metric CIS, MOA, NOH
and NOM within the intervals of (−2.484, 496.8], (−0.042,
8.4], (−0.0002, 0.0002], and (−2.485, 497.0] respectively,
then the change (as the difference between before and after
refactoring) in extendibility and flexibility will be in the
range of (−0.2, 0.5], (−0.2, 0.5] respectively. We designed
a user-friendly interface in our web-app supporting the
implementation of the approach proposed in this paper so
the users can easily understand the explanations rather than
reading mined association rules.

2.4 Knowledge-Informed and Explainable NSGA-II for
Search-Based Refactoring

2.4.1 Proposed Algorithm

NSGA-II [26] is a well known, fast sorting multi-objective
optimization algorithm that has been applied extensively to
solve various optimization problems in software engineering
[12], [13], [15], [39]. It tries to find non-dominated solutions,
which cannot improve one objective without deteriorating

others and exhibit different trade-offs between several con-
flicting objectives. In our study, the goal of the algorithm is
to find non-dominated solutions balancing the six QMOOD
quality metrics listed in Table 2. All the QMOOD metrics are
to be maximized. The contributions of the paper are not about
the use of QMOOD metrics for refactorings. The QMOOD
metrics are used as the fitness functions of the multi-objective
algorithm and the user/developer can change the fitness
functions based on his/her preferences to evaluate the impact
of refactorings. In this paper, our main contributions are
the enhanced knowledge-informed seeding mechanism and
change operators as well as the explainability of the obtained
refactoring sequences to the developers. These contributions
are independent from the used fitness functions and the
algorithm can explain the obtained refactoring results based
on whatever fitness functions that are used (QMOOD metrics
or others).

We chose NSGA-II over NSGA-III based on the results
of former studies [40]–[42]. We found that the performance
of NSGA-II and NSGA-III are similar for the case of the
refactoring problem using the 6 QMOOD objectives. NSGA-
III generated a smaller number of non-dominated solutions
than NSGA-II by around 18% (due to the nitching function of
NSGA-III) but required the double execution time of NSGA-
II. The manual evaluation with developers and automated
evaluation using well-known metrics (IGD, Hyper Volume,
quality improvements) showed that both algorithms gener-
ated similar results. This observation is explained by the fact
that several QMOOD objectives are sharing the same low
level quality metrics. Thus, the use of NSGA-II or NSGA-
III will not make a difference for the particular problem
addressed in this paper. The pseudo code of our adaptation
of NSGA-II is presented in Algorithm 1. The search space
consists of different refactoring operations applied to various
code locations. Each operation is represented by an action
(e.g., push down field, move method, move field, extract

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, DECEMBER 2020 5

sub class) and its parameters (e.g. source class, target class,
attributes). A vector is used to represent a candidate solution.
Each dimension represents a refactoring operation to apply.
To assess the feasibility of solutions and see whether they
maintain the behavior of the system. we used a set of pre- and
post-conditions defined by Opdyke [43]. We did not define
change operators that always generate feasible solutions
because (1) a solution is a sequence of refactorings where
the majority of them are dependent on each other thus it
may not be possible to detect upfront those dependencies
when generating solutions, (2) there is the possibility that the
feasible space is fragmented and separated by infeasible
regions, requiring that both the feasible and infeasible
regions be searched. In fact, several authors have noted how
the removal of infeasible solutions from the search space
may cause diversity loss due to the additional selection
pressure required to bias the population towards the feasible
region [44]–[47]. The first step in NSGA-II is to create the
initial population P0 of refactoring vectors. Then, a child
population C0 is generated from the population of parents
P0 using genetic operators such as crossover and mutation.
Both populations are merged and a subset of individuals is
selected, based on the dominance principle to create the next
generation. This process will be repeated until reaching the
last iteration according to stopping criterion. To enable the
static analysis of the source code, we used the Soot parser
[48] which is a compiler framework for Java (bytecode). It
allows the construction of a call graph which is a collection
of edges representing all known method invocations in a
system. It is noteworthy to mention that our approach can
be applied to any object-oriented programming language.
All that is needed is a parser that converts the code to a
call graph. To calculate the fitness functions, the refactoring
operations are applied automatically on the source code (to
calculate the number of skipped invalid refactorings) then,
we generate the call-graph. After that, we calculate the fitness
functions by considering the changes in QMOOD values
of the call graph before and after we apply the refactoring
operations. We detail in the following three main components
that we design to improve the regular NSGA-II algorithm:
1) the population generation; 2) change operators and 3) the
explanations for the selected solution from the Pareto front.

2.4.2 Initial population
The initial population strategy is one of the important factors
that affect the performance of search algorithms. The initial
population has a key impact on the execution time and the
quality of the generated Pareto front. Figure 3 summarizes
the steps of the improved seeding mechanism. We first
start by looking for all the rules, generated by the Apriori
algorithm from the refactoring history, that can be applied to
the classes of the system to be refactored. In other words, we
look for the rules where there exist at least one class, from the
system we are trying to refactor, with design metric values
that satisfy/match the left-hand side of the rules. Then, we
add all the refactoring operations of those rules in one unified
pool. We note that we keep the refactorings of each rule as a
group—also referred to as pattern—in a way that they are
used together as a sub-sequence in the refactoring solution
vector. The reason behind this grouping is that each group of
refactorings tend to occur together according to the frequent

Algorithm 1 Pseudo code of Knowledge-Informed and
Explainable NSGA-II adaptation for refactoring recommen-
dation problem

1: Inputs: call graph of a software system S, refactoring
operations TC

2: Output: subset(s) of the refactoring operations
3: Begin
4: I:= Instantiation(TC)// vectors of refactoring
operations

5: P0:=set of(I)//Population Initialization
6: t:=0
7: Repeat
8: Ct:=apply Genetic Operators(Pt)//Apply the
genetic operators on population Pt

9: for all I ∈ Ct do
10: Extendibility(I):=calculate Extendibility(I,S)
11: Effectiveness(I):=calculate Effectiveness(I,S)
12: Functionality(I):=calculate Functionality(I,S)
13: Understandability(I):=calculate Understandability(I,S)
14: Flexibility(I):=calculate Flexibility(I,S)
15: Reusability(I):=calculate Reusability(I,S)
16: end for
17: Gt:=Pt ∪ Ct // Combine parent and offspring

populations
18: F:=fast Non Dominated Sort(Gt) // F=(F1,F2,...),

all nondominated fronts of Gt

19: Pt+1 = ∅
20: i:=1
21: while |Pt+1| + |Fi| < Max size do
22: Crowding distance assignment(Fi) // calculate

crowding distance in Fi

23: Pt+1= Pt+1 ∪ Fi // include ith nondominated
front in parent pop

24: i:=i+1
25: end while
26: Sort (Fi, ≺n) // sort in descending order using
≺n

27: Pt+1= Pt+1 ∪ Fi [1. . . (Max size − |Pt+1|)] // choose
the first Max_size - |Pt+1| elements of Fi

28: t:=t+1 // increment generation counter
29: until t=Max iteration
30: best solutions := first front(Pt)
31: return best solutions

item-set principle and the refactoring history of developers.
Therefore, suggesting them together in a refactoring solution
provides more personalized and practical recommendations.
To create an initial population of size N, we randomly choose
groups of refactorings from the pool we formed until we fill
N ordered vectors.

2.4.3 Crossover
Figure 4 is a simplified illustration of how our improved
crossover works. We first start by randomly picking two
parents, S1 and S2, from the current population. S1 and S2

are vectors where each dimension represents a refactoring
operation to apply. Then, we create cloning copies of the
parents for the new pair of offspring S’1 and S’2. Next,
we extract the Apriori rules that satisfy the following two
conditions:

• The refactoring pattern in the left-hand side of the
rule exists in S1

• The design metric intervals in the left-hand side of
the rule contain the values of the source class design
metrics in the refactoring operations of S1.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, DECEMBER 2020 6

Fig. 3: Improved initial population process

We do the same for the second parent S2. We end up having
two rule sets R1 and R2 related to S1 and S2 respectively.
Let O1 and O2 be the objectives (e.g. the QMOOD metrics)
in the right-hand side of the rules in R1 and R2 respectively.
Now, we compute the fitness function of S1 and S2 for all the
objectives in O1 ∩O2 and we compare them. Let us consider
that S1 has a higher reusability than S2. Thus, the algorithm
will look for the rule R in R1 that contains reusability in
its right-hand side. We extract the refactoring operations
from S1 that match the refactoring pattern contained in R
and transfer it to S’2. We replace the genes of S2 in S’2
that are not used by any patterns contained in S’2 for other
objectives for which S2 has a higher value in comparison to
S1. We do the same for all the objectives in O1 ∩ O2. This
crossover strategy allows us to keep the strengths and fix
the weaknesses of the parents in the next generation while
conserving the personalization aspect and practical abilities
of the solutions.

2.4.4 Mutation

Mutation is a genetic operator used to preserve genetic
diversity from one generation to the next in a genetic
algorithm. Mutation involves a change in chromosome
structure by altering one or more genes in a chromosome.
It occurs according to a user-definable mutation probability.
In our study, we set this probability to 0.1 . Figure 5 is a
simplified illustration of how our improved mutation works.
For each solution S, we randomly select a floating-point
value. If this value is less than the mutation probability, we
follow the steps below:

• We use the Apriori rules to find the refactoring
patterns in S that improve one or more objectives.
For example, in figure 5, Rule 2 improves Objective 2.

• We deduce the refactorings that are not associated
with any pattern. In figure 5, the refactorings that are
not associated with any objective are K, O, and L.

• We look for the rules that improve the weakest
objective of S (i.e., the objective with the worst value).
In figure 5, the weakest objective is Objective 1 which
can be improved using Rule 1.

• We choose the refactoring pattern that modifies the
maximum number of refactorings that are not associ-
ated with any objective and we add it to S. In figure
5, Rule 1 is composed of three refactorings that can
replace the three refactorings that are not associated
with any pattern (e.g. K, O, and L)

• If no rules are found, we choose a random number
N between 1 and half the size of S and we randomly
modify N refactorings in S from the possible refactor-
ing operations that the tool supports.

2.4.5 Explanations Generation
Being able to explain and trust the outcome of a refactoring
recommendation system is now a crucial aspect of the
refactoring process and to ensure the trustworthiness of
SBSE algorithms. In practice, developers tend to dismiss
applying code changes if they do not understand why they
need to be applied [49]. They may not want to take the
time and effort to refactor a system without having a proper
knowledge on the relationship between the quality metrics
and the suggested refactorings [27]. In fact, refactoring is
associated with costs such as testing the system after the
changes are applied, thus developers will only apply the
refactorings that they deem really important. To lift the lid
of the black-box of the refactoring recommendation system,
we provide explanations about how the solutions are formed.
For each Pareto-optimal refactoring solution S, we look for
the rules that satisfy the following two conditions:

• The refactoring pattern in the left-hand side of the
rule exists in S

• The design metric intervals in the left-hand side of
the rule contain the values of the source class design
metrics in the refactoring operations of S.

The implemented tool includes several features to under-
stand the explanations. First, the impact of the refactoring on
the quality can be visualized to the developers via bar charts
by showing the delta between before and after refactorings.
Second, the extracted refactoring patterns are represented as
dependencies tree to the developer and s/he can visualize

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, DECEMBER 2020 7

Rule 1

A BRule 2 Targeting Objective #2

D J E K F

Parent S1

A H C I B

Crossover

Graphical Representation of Rules Graphical Representation of XSBR Crossover

Parent S2

D A E B F

Child S’1

A D E F B

Child S’2

S1 is better at objective 1 and contains
members of Rule 1

S2 is better at objective 2 and contains
members of Rule 2

D E Targeting Objective #1F

D D

Schema Key:

Type D refactoring in Purple
Group, without any Actors

Type D refactoring in Purple
Group, with actors defined

Fig. 4: An illustration of X-SBR crossover

A K O L B

Parent S

A K O L B

Objective #1 (Weak)
Objective #2 (Strong)

Find Rules in S targeting
Objective #2 A B

Rule 2

Targeting
Objective #2

A K O L B

Parent S

A D E F B

Find Rules that improves
Objective #1 with 3

Refactorings Max
D E

Rule 1

Targeting Objective #1

F

Identification of Good Patterns in Parent Identification of new Patterns in Parent

MutantMutant

Fig. 5: An illustration of X-SBR mutation

the impact of each of the refactorings in the tree on the
quality improvements or deteriorations. Third, the user can
select any of the refactorings in the sequence and can get
the pattern (other dependent refactorings with a significant
impact on some of the quality metrics) associated with it to
explain the relevance of that refactoring.

3 EXPERIMENTS

In this section, we first present our research questions and
validation methodology. Then, we describe and discuss the
obtained results. It should be emphasized that our technique
is not dependent on specific objectives, algorithms and can
be tested on other problem domains.

3.1 Research Questions

In this study, we defined three main research questions.
RQ1: To what extent can X-SBR generate good refactoring solu-

tions compared to multi-objective refactoring techniques in
terms of performance indicators of genetic algorithms?

RQ2: To what extent can X-SBR reduce the number of invalid
refactorings compared to multi-objective refactoring tech-
niques?

RQ3: To what extent can X-SBR provide relevant solutions and
explanations compared to the state of the art refactoring
techniques?

To answer RQ1, we collected the source code of 711
commits from 18 open-source systems. Table 3 contains
the list of these open-source systems. We performed static
analysis on the code to compute low- and high-level code
quality metrics. Then, we used RMiner [27] to detect the
refactoring operations performed between the commits. Our
dataset can be found in the appendix website [25]. After
that, we transformed the continuous design and QMOOD
variables into discrete intervals. The High-Level metrics
columns were divided into 6 bins. The rest of the columns
were divided into 5 bins of flexible sizes that change in order
to contain the highest number of values in each interval. Next,
we used the Apriori algorithm [21] to generate association
rules that link design metrics and refactoring operations with
the QMOOD quality metrics. Then, we used these rules to
choose strategically the initial population and improve the
change operators of the traditional NSGA-II [22]. The rules
are used to favor good patterns of the solutions and penalize
bad ones.

To evaluate the efficiency of our algorithm, we selected
four systems described in Table 4 since they are used in
existing refactoring benchmark [22] and the participants
of our study are familiar with them (RQ3). We compared
four NSGA-II variations that optimize the same quality
objectives: (1) traditional NSGA-II (Mkaouer et al. [22]) which
is basically Algorithm 1, but with random initialization,

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, DECEMBER 2020 8

TABLE 3: List of projects used to extract the association rules

Project Name GitHub Link Number of commits KLOC

Atomix
atomix/atomix.git 208 189.4

BTM bitronix/btm.git 35 40.4
Erdos Erdos-Graph-

Framework/Erdos.git
1 7.6

FreeBuilder inferred/FreeBuilder.git 30 7.6
Gson google/gson.git 23 41.6
Hdiv hdiv/hdiv.git 37 95
Hystrix Netflix/Hystrix.git 42 85.4
Jolt bazaarvoice/jolt.git 19 31.3
JSAT EdwardRaff/JSAT.git 58 189.7
MinesJTK MinesJTK/jtk.git 6 313.3
Pac4J pac4j/pac4j.git 62 75.8
SecurityBuilder tersesystems/securitybuilder.git 2 8.3
SMILE haifengl/smile.git 25 2212.8
Tablesaw jtablesaw/tablesaw.git 115 742.3
Tink google/tink.git 15 356.3
OpenTracing Toolbox zalando/opentracing-toolbox.git 8 15.7
JGraphT jgrapht/jgrapht-capi.git 20 28.8
opencsv jlawrie/opencsv.git 5 6.7

random mutation, and random crossover, (2) NSGA-II with
an improved initial population strategy, random crossover
and random mutation, (3) NSGA-II with improved change
operators and random initial population strategy, and (4)
NSGA-II with improved change operators and initial pop-
ulation strategy (X-SBR). To ensure a fair comparison, we
only limited the baseline to these four techniques since our
proposal is a variation of the work of Mkaouer et al. [22].
However, we extended our baseline in RQ3 when evaluating
the relevance of the refactoring recommendations.

TABLE 4: Systems considered for validation

System Release # of Classes KLOC
ArgoUML v0.3 1358 114
JHotDraw v7.5.1 585 25
GanttProject v1.11.1 245 49
Apache Ant v1.8.2 1191 112

To answer RQ2, we computed the number of conflicts in
the solutions generated by the four algorithms mentioned
above (RQ1) on the four systems listed in Table 4. For that,
we calculated the number of invalid refactorings in each
solution of the Pareto fronts by checking the validity of
pre-and post-conditions of each refactoring operation.

To answer RQ3, we present to developers those associ-
ation rules that lead to the generation of each refactoring
solution in the Pareto front and their frequencies. Since the
association rules are hard to understand if they are presented
as the explanation for the recommended refactorings, we
implemented a user-friendly interface in our refactoring
webapp that can highlight the code locations and metrics
associated with the recommended refactorings. To validate
the usefulness of our explanations, we conducted a survey
with a group of 14 active programmers to identify and
manually evaluate the relevance of the refactorings that
they found using X-SBR. Since the manual validation is
limited to 14 participants, we considered another evaluation
which is based on the percentage of fixed code smells (NF)
by the refactoring solution. The detection of code smells
after applying a refactoring solution is performed using
the detection rules of [50]. The detection of code smells is
subjective and some developers prefer not to fix some smells
because the code is stable or some of them are not important
to fix. To this end, we considered another metric based
on QMOOD that estimates the quality improvement of the
system by comparing the quality before and after refactoring
independently from the number of fixed design defects.

Based on the two above metrics, we can evaluate the different
approaches without the need of developers evaluation. The
baseline to answer RQ3 includes the different existing multi-
objective techniques [9], [11], [22], [23] and also a tool,
called JDeodorant [24], not based on heuristic search. All the
selected search-based refactoring techniques for the baseline
of RQ2 are based on multi-objective search but using different
fitness functions and solution representation which may
confirm if good refactoring recommendations are actually
due to our knowledge-based component and not to the
design of the algorithm. The current version of JDeodorant is
implemented as an Eclipse plug-in that identifies some types
of design defects using quality metrics and then proposes a
list of refactoring strategies to fix them. For the comparison
with JDeodorant, we limited the comparison to the same
refactoring types supported by both X-SBR and JDeodorant
which are the following: Move Method, Extract Method, and
Extract Class.

3.2 Evaluation Metrics

To address the three research questions described in the
introduction section, we defined the following metrics and
applied them on a data set, described in the next subsection.
For RQ1, we generated association rules that link design
metrics and refactoring operations with QMOOD metrics. To
evaluate these rules, we computed support, confidence, and
lift [51].

Support: Support reflects how frequently the item set
appears in the dataset. In our problem, it is defined as the
ratio of the classes that contain D∪R∪Q to the total number
of classes in the dataset where D is a set of design metrics
intervals, R is a set of refactoring operations and Q is a set of
QMOOD intervals.

support(D,R⇒ Q) = P (D ∪R ∪Q) (1)

where P(D ∪R ∪Q) is the probability of cases containing D,
R and Q all in the same transaction.

Confidence: Confidence reveals how often the rule has
been considered to be correct. In our approach, confidence
is defined as the ratio of the number of classes that contain
D ∪ R ∪ Q to the number of classes that contain D ∪ R. It
evaluates the strength of a rule. The higher the confidence
the more likely it is for Q to be present in transactions that
contain D ∪R.

confidence(D,R⇒ Q) = P (Q|D ∪R)
= P (D∪R∪Q)/P (D∪R)

(2)

Lift: Lift is defined as the confidence of the rule divided
by the expected level of confidence. A lift value higher than
1 means that there is a positive correlation between D ∪ R
and Q. If the lift is smaller than 1, it means that D ∪ R is
negatively correlated with Q. A lift value almost equal to 1
means that we cannot say anything about the correlation of
D ∪R and Q.

lift(D,R⇒ Q) = confidence(D,R⇒Q)/P (Q)

= P (D∪R∪Q)/P (D∪R)∗P (Q)
(3)

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, DECEMBER 2020 9

To evaluate the quality of solution sets obtained by all
four algorithms mentioned above, we used the following
three metrics as performance indicators:

• Contributions (IC) [52]: It measures the proportion
of solutions that lie on the reference front RS (i.e.,
best know approximation set, computed as the non-
dominated elements of all known solutions) [53]. The
higher this proportion the better is the quality of the
solutions.

• Hypervolume (IHV) [54]: It computes the volume
covered by members of a non-dominated set of
solutions in the objective space. A higher value of
hypervolume is desirable, as it demonstrates better
spread and convergence of solutions.

• Inverted Generational Distance (IGD) [55]: It computes
the average Euclidean distance in the objective space
between each solution in the Pareto front and its
closest point in the reference front RS. Small values
are desirable.

For RQ2, we want to estimate the feasibility of the
solutions generated by the four algorithms. For that, we
compute the number of invalid refactorings in each solution
of the Pareto fronts by inspecting the validity of pre-and post-
conditions of each refactoring operation. These conditions are
discussed by Opdyke et al. [43]. We checked the pre and post-
conditions automatically by verifying that (certain parts of)
the behavior of the software is preserved by the refactoring.
We have carefully validated the pre- and post-conditions of
the refactoring types as part of previous studies [9], [43]. The
exhaustive list can be found in the online appendix [25].

For RQ3, the goal is to validate the refactoring solutions
generated by X-SBR from both quantitative and qualitative
perspectives and compare them with those generated with
baseline. For the quantitative validation, we calculated
precision and recall scores to compare between refactorings
suggested by X-SBR and those expected based on the
participants assessment. We also did the same using the
tools of the baseline.

Precision =
X-SBR solutions ∩ Expected Refactorings

X-SBR solutions
(4)

Recall =
X-SBR solutions ∩ Expected Refactorings

Expected Refactorings
(5)

For the qualitative validation, we asked the participants
to assign 0 or 1 to every refactoring of the solutions generated
by both tools. A 0 means that the refactoring is not applicable
and inconsistent with the source code; 1 means that the
refactoring is meaningful and relevant. We computed manual
correctness which is defined as the number of meaningful
refactorings divided by the total number of recommended
refactorings. 1

Manual Correctness =
|Meaningful Refactorings|
|Recommended Refactorings|

(6)

We have also calculate the number of code smells fixed
by the recommended refactorings. Formally, NF is defined
as:

NF =
#fixed code smells

#code smells
∈ [0, 1] (7)

The gain for each of the considered QMOOD quality
metrics and the average total gain in quality after refactoring
can be easily estimated as:

G =

6∑
i=1

Gqi

6
and Gqi = q′i − qi (8)

where q′i and qi represents the value of the QMOOD
quality attribute i after and before refactoring, respectively.

We finally asked the participants to evaluate the rules
that are intended to explain the creation of the Pareto front
solutions. For that, we randomly picked between 2 and
5 refactoring solutions per system and their explanations.
Then, we asked them to assign a grade on a Likert scale of
1-5, 1 being the lowest (not relevant), 5 being the highest
(very relevant) to every rule to indicate how helpful it is
in explaining the creation and relevance of the refactoring
solution.

3.3 Parameters tuning
Parameters setting plays an important role in the perfor-
mance of a search-based algorithm. We have used one of the
most efficient and popular approach for parameter setting
of evolutionary algorithms which is Design of Experiments
(DoE) [56]. Each parameter has been uniformly discretized
in some intervals. Values from each interval have been tested
for our application. Finally we pick the best values for all
parameters. Hence, a reasonable set of parameter values
have been experimented. We picked the combination based
on the number of evaluations without improvement and
convergence of the population. We tried to find a balance
between wide exploration and deep exploitation during the
evolutionary process. In order to ensure a fair comparison
of the results of the four algorithms, we performed the same
number of evaluations per run and used the same sizes for
the initial population. We ended up by choosing 100 for the
initial population and 10 000 for the maximum number of
evaluations (the stopping criterion). We did not chose the
execution time as a stopping criterion because it is known
in the computational intelligence field that execution time is
not suitable to ensure a fair comparison as it is very sensitive
to the used hardware resources. The crossover and mutation
probabilities are set to 0.8 and 0.1 respectively.

Because of the stochastic nature of the used meta-heuristic
algorithms, different runs of the same algorithm solving
the same problem typically lead to different results. For
this reason, we performed 30 runs for each algorithm and
each project to make sure that the results are statistically
significant. For each evaluation metric, we used the Wilcoxon
rank sum test [57] in a pairwise fashion in order to detect
significant performance differences between the algorithms
(X-SBR vs each of the competitors) under comparison based
on 30 independent runs as recommended by existing guide-
lines [58].

We found that all the results based on the different
measures were statistically significant on 30 independent
runs using the Wilcoxon test with a 95% confidence level

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, DECEMBER 2020 10

(α < 5%). The p-values of the pairwise analysis were lower
than 0.01 in all cases. We have also calculated Eta squared
(η2) [59] which is a measure of the effect size (strength
of association) and it estimates the degree of association
between the independent factor and dependent variable for
the sample. Eta squared is the proportion of the total variance
that is attributed to a factor (the “refactoring methods” in
this study). Table 5 reports Eta squared values for each pair
of software projects and metrics. These values shows to what
extent different algorithms are the cause of variability of the
metrics.

TABLE 5: Effect Size values (Eta squared (η2)) for correspond-
ing software project and metric.

System G NF MC PR RC
ApacheAnt 0.898 0.919 0.924 0.936 0.924
GanttProject 0.873 0.902 0.946 0.931 0.962
JHotDraw 0.826 0.903 0.918 0.836 0.962
ArgoUML 0.813 0.842 0.931 0.901 0.951

3.4 Subjects

We selected 14 participants to evaluate X-SBR on the four
systems described in Table 4 because we wanted to target
the right users of the tools to get actionable results. From
our previous experience, in-depth interviews with relatively
small targeted developers yield deep, quality insights that
are more useful than the ones extracted using an online
survey. In our study, we targeted participants who are part
of the original developers of the systems that we used
in our evaluation so they can give us valuable input and
relevant feedback since they are very knowledgeable about
the code. We advertised our study with 38 developers of
the open-source projects selected based on their number
of commits including the history of pervious refactoring
(extracted using RefMiner). Out of the 21 participants who
responded, we selected 16 of them based on the number of
years of experience (should be more than a minimum of 5
years), current positions (required a current active position
in industry), their knowledge of the systems beyond the
system who served as a main contributor and availability for
the manual assessments of the refactoring. Table 6 shows an
overview of the background of the selected 14 participants
after eliminating 2 participants due to their very limited
knowledge of the only one system where they served as a
contributor. They are all considered experts in refactoring in
the development teams they work based on their several
years of experience and extensive involvement in code
rewriting projects.

THe participants had to fill a pre-study survey that
collects background information on them such as their
programming experience, their role within their companies
etc. We divided the participants into 4 groups (2 groups of 3
and 2 groups of 4). The groups were formed based on the pre-
study questionnaire and their familiarity with the studied
systems to ensure that all the groups have almost the same
average skill level. The details of the selected participants
and the projects they evaluated can be found in Table 6 (the
depicted values averages across the four participants in each
row). To improve the survey outcome, we have made every

possible effort to avoid any potential bias. We organized
a two-hour lecture about software quality assessment in
general and refactoring in particular. We also presented a
demo for all the tools and gave them enough time to explore
and test the tools themselves. We tested the trustfulness of
participants and their knowledge on both the open source
systems and refactoring beforehand by asking them to
pass ten tests to evaluate their performance in evaluating
and suggesting refactoring solutions. Each participant was
asked to assess the meaningfulness and relevance of the
refactorings recommended using our tool and all the four
systems. The participants were shown recommendations
created by the authors’ approach as well as by the baseline,
but without knowing which recommendations came from
which approach. We assigned for each participant refactoring
solutions from the different tools on the same system. Since
the tools generate a lot of refactoring solutions, it is not
possible to ask the participants to evaluate all of them.
Therefore, to perform meaningful and fair comparisons, for
each project and algorithm, we selected the solution using a
knee-point strategy [60]. The knee point corresponds to the
solution with the maximal trade-off between the different
objectives which can be equivalent to the mono objective
solution with equal objective weights if the objectives are
not conflicting. Thus, we selected the knee point from the
Pareto approximation having the median hyper-volume IHV
value. The average number of refactorings per participant is
62. We ensured that each refactoring was evaluated by two
developers and we considered it relevant if both of them
agreed (The overall Cohen’s kappa was 0.97). The experiment
lasted between one to two hours.

TABLE 6: Participants details

System #Subjects Avg. prog. experience
(years)

Refactoring
experience

ArgoUML 4 10 High
JHotDraw 4 11.5 Very High
GanttProject 4 10.5 High
Apache Ant 4 12 Very High

4 RESULTS

4.1 Results for RQ1

TABLE 7: Evaluation metrics and statistics of the rules

Evaluation Metric Mean Max Min
Support 0.945 0.986 0.935
Confidence 0.986 0.992 0.959
Lift 1.000 1.002 0.999

We generated a total of 3097 association rules that link the
design metrics and refactoring operations with the QMOOD
quality metrics. Figure 2 shows an example of a rule created
by the Apriori algorithm. The complete list can be found
in our online appendix [25]. Table 7 contains the average,
max and min support, confidence and lift of all the rules.
The minimum support, confidence and lift are 0.935, 0.959
and 0.999, respectively. This confirms the strong correlation
between design metrics, refactoring operations and the
QMOOD metrics. After that, we compared the execution time
of the four algorithms: (1) traditional NSGA-II (Mkaouer et
al. [22]), (2) NSGA-II with an improved initial population

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, DECEMBER 2020 11

Fig. 6: Average execution time (ms) of all algorithms using the four systems

strategy, (3) NSGA-II with improved change operators, and
(4) NSGA-II with improved change operators and initial
population strategy (X-SBR).

Figure 6 shows the average time spent to run the four
systems 30 times. In small systems (e.g. Gantt and JhotDraw),
the four algorithms have almost the same execution time. X-
SBR outperforms the other variations with a slight difference.
However, when dealing with large systems (e.g. Apache Ant
and ArgoUML), the traditional NSGA-II [22] has the highest
execution time which is expected since both, the initialization
and change operators, are done randomly without any
guidance. This confirms the usefulness of our strategy of
guiding the creation of solutions towards the construction
of good refactoring patterns. The other three variations
performed clearly better than the the traditional NSGA-II
[22]. The difference in performance is more noticeable in
large systems than in small systems because the execution
time of the improved algorithms include the running time of
the Apriori algorithm. Thus, the running time of the Apriori
algorithm is compensated when we are dealing with a large
number of classes by removing excessive diversity from
the search space. Table 8 shows the mean, min and max of
the Hypervolume (IHV) and Generational Distance (IGD)
Indicators of all algorithms using the four systems. Table 9
contains the results of the Contribution (IC) metric of the
three modified algorithms compared to the traditional NSGA-
II [22]. For each performance indicator, we highlighted in
bold the best min/max/average values. Please note that the
Contributions (IC) and the Hypervolume (IHV) are to be
maximized and the Generational Distance (IGD) is to be
minimized. All these indicators show that the traditional
NSGA-II exhibits more diversity in the solutions than other
algorithms. This observation is expected as the traditional
NSGA-II relies on randomness when generating the solutions,
unlike the modified versions where the creation of solutions
is guided towards the construction of good refactoring pat-
terns based on the Apriori rules. It is important to note that
excessive diversity can diverge the algorithm from generating
good quality solutions due to the large search space and
infinite number of possible combinations. In other words,
we can end up having a diverse Pareto front but with many
infeasible refactoring solutions. Therefore, it is necessary

to have a strategy to push the algorithm towards creating
correct solutions. However, guiding the algorithm too much
might also hurt the exploration. Maintaining diversity is one
important aim of multi-objective optimization. When clear
user preferences are not available, it is highly desirable that
a large number of solutions can be obtained that uniformly
spread over the whole Pareto front and are as diverse as
possible. However, we want to stay away from excessive
diversity that leads the algorithm to diverge from generating
good quality solutions due to the large search space and
infinite number of possible combinations. On the other hand,
selection pressure pushes the algorithm to focus more and
more on the already discovered better performing regions
in the search space and as a result population diversity
declines, gradually reaching a homogeneous state. Through
our approach, we are trying to maintain an optimal level
of diversity in the population to ensure that progress of the
search algorithm is unhindered by premature convergence
to suboptimal solutions.

Finding 1: The variants of NSGA-II with random
initialization and/or genetic operators demon-
strate higher diversity than X-SBR but the dif-
ference is small. X-SBR outperforms the other
variations in terms of execution time, especially
with large systems.

4.2 Results for RQ2

Figure 7 shows the average number of invalid refactorings
in the solutions of the Pareto front in all four systems using
the different algorithms. We would like to point out that
all algorithms have the same number of non-dominated
solutions in the final Pareto front which is equal to 100. The
traditional NSGA-II and NSGA-II with random initialization
and improved change operators had the largest number
of invalid refactorings in their Pareto front with values
exceeding 15 invalid refactorings. The lowest number of
invalid refactorings was achieved by X-SBR. The latter
algorithms had less than four invalid refactorings in their
Pareto fronts. The reason why the combination of the random
initialization and the random or improved crossover produce

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, DECEMBER 2020 12

Fig. 7: Average number of invalid refactorings in the solutions of all algorithms using the four systems

a significant number of invalid refactorings is that the new
crossover and mutation operators care more about improving
the QMOOD quality metrics rather than checking the correct-
ness of refactorings. However, this problem is mitigated by
initializing the gene pool with valid chromosomes based on
mining the refactoring history of several projects. This can be
observed by the reduced number of infeasible refactorings
in the solutions generated by the improved initialization
method when combined with either the random or improved
change operators.

Finding 2: Based on the results of RQ1 and RQ2,
X-SBR was able to achieve a better quality of
solutions in comparison to the traditional NSGA-
II with small sacrifices in terms of diversity and
execution time.

4.3 Results for RQ3

We summarize in the following the feedback of the devel-
opers based on the survey. Figure 8 contains the results
of the manual correctness, precision and recall of both our
tool (X-SBR) and the state of the refactoring techniques. X-
SBR was able to achieve better scores than [22] and existing
approaches in all the previous metrics for all systems. The
average manual correctness, precision and recall of our tool
compared to that of Mkaouer et al. [22] are 0.839, 0.795,
and 0.83 to 0.67, 0.56, and 0.67 respectively and much better
than the remaining tools. The participants also found our
refactoring recommendations applicable and consistent with
the source codes and their design issues.

Figure 9 summarizes what the participants think about
the explanations provided by X-SBR. For all the four systems,
more than 85% of the rules are judged relevant (score 4)
and very relevant (score 5). Only less than 3% of the rules
were judged not relevant (score 1). They mentioned that X-
SBR provided trust, clarity and understanding compared to
existing refactoring tools. They highlighted that the black-box
nature of existing refactoring tools, giving results without a
reason, is hindering them from adopting their refactoring rec-

ommendations. According to them, this obstacle is alleviated
by our proposed approach.

Finding 3: X-SBR provided more relevant and
meaningful refactorings than the state of the art
refactoring techniques and helped the partici-
pants understand why and how the solutions
are generated which boosted their trust in the
refactoring tool.

5 THREATS TO VALIDITY

Conclusion validity. The parameter tuning of the different
search based algorithms used in our experiments creates an
internal threat that needs to be evaluated in our future work.
The parameters’ values used in our experiments were found
by trial-and-error [61]. It can be an interesting perspective to
automate the parameter tuning process [58] for our approach
so that the parameters are automatically set and updated
during the execution in order to provide the best possible
results and optimal performance.
Internal validity. The variation of correctness and speed
between the different groups when using our approach
and other tools is one potential internal threat. In fact,
our approach may not be the only reason for the supe-
rior performance because the participants have different
programming skills and familiarity with refactoring tools.
To counteract this, we assigned the developers to different
groups according to their programming experience so as
to reduce the gap between the different groups and we
also adopted a counter-balanced design. The relatively small
number of participants might also be considered as a threat
to the validity of our approach. We selected 14 developers to
participate in our study because we wanted to target the right
audience persona to get actionable results. Since the manual
evaluation of the refactorings is subjective and depends
on the programming style of developers, we considered
quantitative metrics that are less subjective than the partic-
ipants’ opinion and can be automatically calculated with
any bias of the human intervention. These metrics estimate

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, DECEMBER 2020 13

TABLE 8: Results of the Hypervolume (IHV) and Generational Distance (IGD) indicators

Hypervolume (IHV) Generational Distance (IGD)
System Algorithm Average Min Max Average Min Max
Apache Ant Improved Initialization + Random Crossover And Mutation 0.680742 0.432318 0.935184 0.015524 0.010209 0.020846
Apache Ant Random Initialization+Random Crossover And Mutation (Traditional NSGA-II) 0.693186 0.398396 1.117279 0.031465 0.00819 0.051153
Apache Ant Improved Initialization+Improved Crossover And Mutation (X-SBR) 0.499433 0.293363 1.124596 0.064079 0.002978 0.093633
Apache Ant Random Initialization+Improved Crossover And Mutation 0.809312 0.485615 1.085356 0.019873 0.008611 0.037001
ArgoUML Improved Initialization + Random Crossover And Mutation 0.642199 0.404763 0.857439 0.024575 0.00818 0.034475
ArgoUML Random Initialization+Random Crossover And Mutation (Traditional NSGA-II) 0.777583 0.52648 1.112845 0.03008 0.002679 0.047454
ArgoUML Improved Initialization+Improved Crossover And Mutation (X-SBR) 0.641947 0.444483 1.136336 0.044481 0.002322 0.057297
ArgoUML Random Initialization+Improved Crossover And Mutation 0.690078 0.444543 1.141642 0.041118 0.005496 0.055032
GanttProject Improved Initialization + Random Crossover And Mutation 0.68693 0.566786 0.907115 0.021973 0.012951 0.029777
GanttProject Random Initialization+Random Crossover And Mutation (Traditional NSGA-II) 0.861142 0.666087 1.133707 0.022668 0.002095 0.032585
GanttProject Improved Initialization+Improved Crossover And Mutation (X-SBR) 0.782098 0.626555 0.978024 0.022406 0.011344 0.02651
GanttProject Random Initialization+Improved Crossover And Mutation 0.776723 0.655532 1.242082 0.022349 0.006756 0.029976
JhotDraw Improved Initialization + Random Crossover And Mutation 0.771315 0.588192 1.33879 0.04945 0.000903 0.071506
JhotDraw Random Initialization+Random Crossover And Mutation (Traditional NSGA-II) 0.933738 0.555179 1.281501 0.026886 0.007105 0.056431
JhotDraw Improved Initialization+Improved Crossover And Mutation (X-SBR) 0.564916 0.393056 1.083154 0.08246 0.024441 0.20624
JhotDraw Random Initialization+Improved Crossover And Mutation 0.756657 0.592614 1.217705 0.052932 0.006605 0.072263

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

X-S
BR M

C

X-S
BR P

R

X-S
BR R

C

X-S
BR N

F

X-S
BR G

Mka
ou

er
et

al.
 N

F

Mka
ou

er
et

al.
 G

Mka
ou

er
et

al.

Mka
ou

er
et

al.
 P

R

Mka
ou

er
et

al.

Harm
an

 et
 al

. N
F

Harm
an

 et
 al

. G

Harm
an

 et
 al

. M
C

Harm
an

 et
 al

. P
R

Harm
an

 et
 al

. R
C

Oun
i e

t a
l. N

F

Oun
i e

t a
l. G

Oun
i e

t a
l. M

C

Oun
i e

t a
l. P

R

Oun
i e

t a
l. R

C

Mel
et

al.
 N

F

Mel
et

al.
 G

Mel
et

al.
 M

C

Mel
et

al.
 P

R

Mel
et

al.
 R

C

JD
eo

do
ran

t N
F

Jd
eo

do
ran

t G

JD
eo

do
ran

t M
C

JD
eo

do
ran

t P
R

JD
eo

do
ran

t R
C

ArgoUML JHotDraw GanttProject Apache Ant

Fig. 8: Automated and manual evaluation of refactoring recommendations generated by the different refactoring tools

Fig. 9: Distribution of the relevance of the explanations ac-
cording to the survey results (1=not relevant-5=very relevant)

TABLE 9: Results of the Contributions (IC) metric

Algorithms Contribution value
Contribution of NSGA-II with random initializa-
tion + improved change operators to traditional
NSGA-II

0.34030526

Contribution of NSGA-II with improved initial-
ization + random change operators to traditional
NSGA-II

0.247601151

Contribution of NSGA-II with improved initial-
ization + improved change operators to tradi-
tional NSGA-II

0.241613462

the quality improvement of the system by comparing the
quality before and after applying the refactorings generated
by the different approaches and also the number of fixed code
smells. From our previous experience, in-depth interviews
with a relatively small targeted audience persona yield deep,
quality insights that are more useful than the ones extracted
using an online survey. In our study, we targeted participants
who are familiar with the systems that we used in our
evaluation so they can give us valuable input and relevant
feedback. We have also taken precautions to ensure that our
participants represent a diverse set of software developers
with experience in refactoring, and also that the groups

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, DECEMBER 2020 14

formed had, in some sense, a similar average skill set in the
refactoring area.
Construct validity. The different developers involved in
our experiments may have divergent opinions about the
recommended refactorings in terms of relevance which
may impact our results. Furthermore, we integrated our
intelligent change operators in a multi-objective optimization
algorithm, i.e, NSGA-II. It has been shown that NSGA-II
demonstrates optimal performance when dealing with two
or three objectives [62]. It has been also shown that increasing
the amount of objectives impact the multi-objective evo-
lutionary algorithms differently [62]. In our future work,
we are planning to evaluate these change operators with
other evolutionary algorithms as they should be algorithm
independent.
External threats. External threats concern the generalization
of our findings. We used 18 projects to generate the asso-
ciation rules. To mitigate these threats, we used projects of
different sizes and domains. Moreover, we only included four
projects in our validation. The reason behind that is, first, to
attract the most amount of responses with good quality from
participants in our survey. The more tedious the task that
the participant must complete the less the quality of their
input is. The second reason is the long execution time due
to running all of the four algorithms on all of the systems
30 times. Furthermore, we considered 28 refactoring types,
11 design metrics, and 6 high-level quality metrics in our
study. Finally, we only used the Apriori algorithm to link the
design metrics and refactoring operations with the QMOOD
metrics, instead of other features such as code smells.

6 RELATED WORK

In this section, we summarize the main research related
to search-based software refactoring. We also highlight
other search-based software engineering work that evaluated
different strategies to seed the initial population and design
the genetic operators. Table 10 outlines a summary of the
differences between our approach and the existing studies.

6.1 Search-Based Software Refactoring

Many studies have used search-based techniques to automate
software refactoring by optimizing different sets of quality
metrics [9], [11], [17], [22], [23], [30], [69]–[78]. One interesting
observation is that evolutionary algorithms are the dominant
ones in search-based refactoring (e.g. NSGA-II, NSGA-III,
etc.). Thus, we refer to evolutionary techniques when using
the term search-based in this section. The reader can refer to
the systematic literature review on search-based refactoring
[7].

Kessentini et al. [50] proposed a single-objective combina-
torial optimization using a genetic algorithm to find the best
sequence of refactoring operations that improve the quality
of the code by minimizing as much as possible the number of
design defects detected in the source code. Harman and Tratt
[11] were the first to use the concept of Pareto optimality
in search-based software refactoring to deal with conflicting
quality objectives such as coupling and cohesion. They
showed that their multi-objective technique generates better
results compared to a mono-objective approach. Ó Cinnéide

et al. [30] proposed as well multi-objective search-based
refactoring to conduct an empirical investigation to explore
relationships between several structural metrics. They used
different search techniques such as Pareto-optimal search
and semi-random search guided by a set of cohesion metrics.
Ouni et al. [63] presented a multi-objective refactoring
formulation that generates solutions that maximize the
number of detected defects after applying the proposed
refactoring sequence and minimize the semantics similarity
of the elements to be changed by the refactoring.

Several other studies aimed at addressing the refactoring
problem while taking into account the developers’ feedback
and preferences in order to personalize the recommendations.
Kessentini et al. [64] proposed a personalized multi-objective
approach based on the analysis of the history of changes to
recommend refactorings solutions that maximize refactoring
operations for recently modified classes, classes containing
incomplete refactorings detected in previous releases, and
classes in bug reports. Wang et al. [65] proposed an inter-
active recommendation approach based on NSGA-II that
suggests refactoring solutions for the interface of web ser-
vices while taking the user feedback into consideration. These
solutions optimize several interface design quality metrics
such as coupling, cohesion, number of port types. They
also fix antipatterns, maximize the interaction constraints
learnt from the user feedback during the execution of the
algorithm and minimize the deviation from the initial design.
Alizadeh et al. [15] proposed an interactive and dynamic
search-based approach to find refactoring solutions that
improve software quality while minimizing the deviation
from the initial design. The refactorings are ranked and
suggested to the developer in an interactive fashion. The
developer is allowed to accept, modify or reject any of the
recommended refactorings. The feedback is then used to
update the rankings of the refactoring solutions.

All the above studies used the traditional random change
operators (e.g. 1-point crossover, random mutation, etc.).
These change operators can destroy relevant patterns in-
side good refactoring solutions when applied randomly on
discrete problems. Furthermore, the existing search-based
refactoring studies are generating the initial population ran-
domly, which may have a negative impact on the execution
time and the quality of the final solutions. With the large
amount of data on GitHub projects about refactorings applied
by developers and their impact, it may be possible to inject
good patterns extracted from the history of refactorings when
generating the initial population or designing knowledge-
based change operators which are the hypotheses of this
paper.

It is possible that the injection of knowledge and prefer-
ences when generating the initial population can lead to less
variety in the generated refactoring solutions, thus to less
exploration of the search space. This is why we still used in
our approach a random generation for part of the population
to preserve variety in the initial population.

6.2 Seeding and genetic operators strategies in Search-
Based Software engineering

Search-based software engineering (SBSE) studies proposed
approaches on improving the initialization of the population

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, DECEMBER 2020 15

TABLE 10: Summary of related work

Paper Software refactoring Knowledge-based
change operators

Personalization Explainability

Kessentini et al. [50] Yes No No No
Ouni et al. [63] Yes No No No
Harman and Tratt [11] Yes No No No
Ó Cinnéide et al. [30] Yes No No No
Ouni et al. [12] Yes No Yes No
Ouni et al. [23] Yes No Yes No
Kessentini et al. [64] Yes No Yes No
Mkaouer et al. [13] Yes No Yes No
Wang at al. [65] Yes No Yes No
Alizadeh et al. [39] Yes Yes Yes No
Alizadeh et al. [15] Yes Yes Yes No
Fraser et al. [66] No Yes No No
Arcuri et al. [67] No Yes No No
Struber et al. [68] No Yes No No

and the design of change operators in order to optimize the
performance and convergence of search algorithms as well
as the quality of the generated solutions.

Fraser et al. [66] evaluated different strategies to seed
the initial population in search-based techniques as well
as techniques to seed values introduced during the search
when generating tests for object-oriented code. They focused
on three contexts: the first one is seeding of constants
extracted from source code or bytecode throughout the
search (e.g., initial population, mutation operators). The
second one is related to strategies intended to improve the
diversity of the initial population and its suitability for the
optimization target. The last context targets the reuse of
previously generated or hand-crafted solutions to seed the
initial population of the search.

Arcuri et al. [67] conducted an empirical study in pa-
rameter tuning in search-based software engineering. They
focused on test data generation for object-oriented software
using the EVOSUITE tool. The results show evidence that
parameter tuning is indeed critical, and very sensitive to the
case study they provided.

7 CONCLUSION

Existing refactoring tools lack adaptability and explainability
towards the developers. As a result, developers seem to be
more inclined to abandon them and make changes by hand.
We propose in this paper, X-SBR, an enhanced knowledge-
informed multi-objective search algorithm to provide per-
sonalized and relevant refactoring recommendations. X-SBR
implements new initial population and change operators
methods using the refactoring and quality history of 18
projects and provides explanations regarding why and how
the solutions are formed and impacted the fitness functions.
Based on our quantitative and qualitative validation using
four open-source systems, our tool was able to achieve
more relevant refactoring solutions than existing refactoring
techniques with a small sacrifice in terms of diversity and
execution time. The results of the survey conducted with
14 software developers provide strong evidence that our
tool improves the quality of refactoring solutions and helps
developers understand, appropriately trust, and effectively
manage the refactoring process.

There are multiple ways within which this work can
be expanded upon. First, we believe it’s a natural step to
validate our work with additional programming languages,

developers, projects, and quality metrics in order to draw
conclusions about the general applicability of our method-
ology. Second, we intend to try out other algorithms for
frequent item-set mining, beyond the Apriori Algorithm,
to extend our empirical validation. Third, we think that
adding support for more quality metrics and other fine-
grained refactoring operations, such as Decompose Condi-
tional, Replace Conditional with Polymorphism, and Replace
Type Code with State/Strategy can prove an interesting
addition and extension of our work. Fourth, we are planning
to validate the change operators with other evolutionary
algorithms such as a many-objective variant of MOEA/D,
Global WASF-GA, and/or RVEA. We clarified this in the
conclusion section. Last but not least, using code smell
history and bug reports in addition to or in place of Low
Level metrics when generating association rules can be an
interesting future research direction

REFERENCES

[1] G. Huang, H. Mei, and Q.-x. Wang, “Towards software architecture
at runtime,” ACM SIGSOFT Software Engineering Notes, vol. 28,
no. 2, p. 8, 2003.

[2] S. Das, W. G. Lutters, and C. B. Seaman, “Understanding docu-
mentation value in software maintenance,” in Proceedings of the
2007 Symposium on Computer human interaction for the management of
information technology, 2007, pp. 2–es.

[3] C. A. C. Coello, G. B. Lamont, D. A. Van Veldhuizen et al.,
Evolutionary algorithms for solving multi-objective problems. Springer,
2007, vol. 5.

[4] M. Fowler, Refactoring: Improving the Design of Existing Programs,
1st ed. Addison-Wesley Professional, 1999.

[5] R. Terra, M. T. Valente, K. Czarnecki, and R. S. Bigonha, “Recom-
mending refactorings to reverse software architecture erosion,”
in 2012 16th European Conference on Software Maintenance and
Reengineering. IEEE, 2012, pp. 335–340.

[6] F. Palomba, G. Bavota, M. Di Penta, R. Oliveto, A. De Lucia,
and D. Poshyvanyk, “Detecting bad smells in source code using
change history information,” in 2013 28th IEEE/ACM International
Conference on Automated Software Engineering (ASE). IEEE, 2013,
pp. 268–278.

[7] T. Mariani and S. R. Vergilio, “A systematic review on search-based
refactoring,” Information and Software Technology, vol. 83, pp. 14–34,
2017.

[8] M. Mohan and D. Greer, “A survey of search-based refactoring for
software maintenance,” Journal of Software Engineering Research and
Development, vol. 6, no. 1, p. 3, 2018.

[9] M. O’Keeffe and M. O. Cinnéide, “Search-based refactoring for
software maintenance,” Journal of Systems and Software, vol. 81,
no. 4, pp. 502–516, 2008.

[10] J. Bansiya and C. G. Davis, “A hierarchical model for object-oriented
design quality assessment,” IEEE Transactions on software engineering,
vol. 28, no. 1, pp. 4–17, 2002.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, DECEMBER 2020 16

[11] M. Harman and L. Tratt, “Pareto optimal search based refactoring
at the design level,” in Proceedings of the 9th annual conference on
Genetic and evolutionary computation, 2007, pp. 1106–1113.

[12] A. Ouni, M. Kessentini, H. Sahraoui, K. Inoue, and M. S. Hamdi,
“Improving multi-objective code-smells correction using develop-
ment history,” Journal of Systems and Software, vol. 105, pp. 18–39,
2015.

[13] M. W. Mkaouer, M. Kessentini, M. Ó. Cinnéide, S. Hayashi, and
K. Deb, “A robust multi-objective approach to balance severity
and importance of refactoring opportunities,” Empirical Software
Engineering, vol. 22, no. 2, pp. 894–927, 2017.

[14] M. Hall, N. Walkinshaw, and P. McMinn, “Supervised software
modularisation,” in 2012 28th IEEE International Conference on
Software Maintenance (ICSM). IEEE, 2012, pp. 472–481.

[15] V. Alizadeh, M. Kessentini, W. Mkaouer, M. Ocinneide, A. Ouni,
and Y. Cai, “An interactive and dynamic search-based approach
to software refactoring recommendations,” IEEE Transactions on
Software Engineering, 2018.

[16] W. Afzal, R. Torkar, and R. Feldt, “A systematic review of search-
based testing for non-functional system properties,” Information
and Software Technology, vol. 51, no. 6, pp. 957–976, 2009.

[17] M. Harman and P. McMinn, “A theoretical and empirical study
of search-based testing: Local, global, and hybrid search,” IEEE
Transactions on Software Engineering, vol. 36, no. 2, pp. 226–247, 2009.

[18] A. Ouni, R. G. Kula, M. Kessentini, T. Ishio, D. M. German, and
K. Inoue, “Search-based software library recommendation using
multi-objective optimization,” Information and Software Technology,
vol. 83, pp. 55–75, 2017.

[19] V. Toğan and A. T. Daloğlu, “An improved genetic algorithm with
initial population strategy and self-adaptive member grouping,”
Computers & Structures, vol. 86, no. 11-12, pp. 1204–1218, 2008.

[20] Y. Deng, Y. Liu, and D. Zhou, “An improved genetic algorithm
with initial population strategy for symmetric tsp,” Mathematical
Problems in Engineering, vol. 2015, 2015.

[21] R. Agrawal, R. Srikant et al., “Fast algorithms for mining association
rules,” in Proc. 20th int. conf. very large data bases, VLDB, vol. 1215,
1994, pp. 487–499.

[22] M. W. Mkaouer, M. Kessentini, S. Bechikh, M. Ó. Cinnéide, and
K. Deb, “On the use of many quality attributes for software
refactoring: a many-objective search-based software engineering
approach,” Empirical Software Engineering, vol. 21, no. 6, pp. 2503–
2545, 2016.

[23] A. Ouni, M. Kessentini, H. Sahraoui, K. Inoue, and K. Deb, “Multi-
criteria code refactoring using search-based software engineering:
An industrial case study,” ACM Transactions on Software Engineering
and Methodology (TOSEM), vol. 25, no. 3, pp. 1–53, 2016.

[24] N. Tsantalis, T. Chaikalis, and A. Chatzigeorgiou, “Jdeodorant:
Identification and removal of type-checking bad smells,” in 2008
12th European Conference on Software Maintenance and Reengineering.
IEEE, 2008, pp. 329–331.

[25] A. authors. (2020) Study appendix. URL:
https://sites.google.com/view/tse2020xsbr.

[26] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and
elitist multiobjective genetic algorithm: Nsga-ii,” IEEE transactions
on evolutionary computation, vol. 6, no. 2, pp. 182–197, 2002.

[27] N. Tsantalis, M. Mansouri, L. Eshkevari, D. Mazinanian, and D. Dig,
“Accurate and efficient refactoring detection in commit history,” in
2018 IEEE/ACM 40th International Conference on Software Engineering
(ICSE). IEEE, 2018, pp. 483–494.

[28] G. Suryanarayana, G. Samarthyam, and T. Sharma, Refactoring for
Software Design Smells: Managing Technical Debt, 1st ed. Morgan
Kaufmann, 2014.

[29] O. Seng, J. Stammel, and D. Burkhart, “Search-based determination
of refactorings for improving the class structure of object-oriented
systems,” in Proceedings of the 8th annual conference on Genetic and
evolutionary computation, 2006, pp. 1909–1916.

[30] M. Ó Cinnéide, L. Tratt, M. Harman, S. Counsell, and
I. Hemati Moghadam, “Experimental assessment of software
metrics using automated refactoring,” in Proceedings of the ACM-
IEEE international symposium on Empirical software engineering and
measurement, 2012, pp. 49–58.

[31] H. M. Olague, L. H. Etzkorn, S. Gholston, and S. Quattlebaum,
“Empirical validation of three software metrics suites to predict
fault-proneness of object-oriented classes developed using highly it-
erative or agile software development processes,” IEEE Transactions
on software Engineering, vol. 33, no. 6, pp. 402–419, 2007.

[32] S. S. Virani, S. Messimer, P. Roden, and L. Etzkorn, “Software
quality management tool for engineering managers,” in Proceedings
of the Industrial Engineering Research Conference, 2008, pp. 1401–1406.

[33] G. Samarthyam, G. Suryanarayana, T. Sharma, and S. Gupta, “Mi-
das: A design quality assessment method for industrial software,”
in 2013 35th International Conference on Software Engineering (ICSE).
IEEE, 2013, pp. 911–920.

[34] N. F. I. A. Hamid and M. K. Hasan, “Identifying software quality
factors for telecommunication industry in malaysia,” in Proceedings
of the 2011 International Conference on Electrical Engineering and
Informatics. IEEE, 2011, pp. 1–5.

[35] ——, “Industrial-based object-oriented software quality measure-
ment system and its importance,” in 2010 International Symposium
on Information Technology, vol. 3. IEEE, 2010, pp. 1332–1336.

[36] A. Almogahed et al., “Empirical studies on software refactoring
techniques in the industrial setting,” Turkish Journal of Computer and
Mathematics Education (TURCOMAT), vol. 12, no. 3, pp. 1705–1716,
2021.

[37] S. Gupta, H. K. Singh, R. D. Venkatasubramanyam, and U. Uppili,
“Scqam: a scalable structured code quality assessment method
for industrial software,” in Proceedings of the 22nd International
Conference on Program Comprehension, 2014, pp. 244–252.

[38] L. Tan and C. Bockisch, “A survey of refactoring detection tools.”
in Software Engineering (Workshops), 2019, pp. 100–105.

[39] V. Alizadeh and M. Kessentini, “Reducing interactive refactoring
effort via clustering-based multi-objective search,” in Proceedings of
the 33rd ACM/IEEE International Conference on Automated Software
Engineering, 2018, pp. 464–474.

[40] M. W. Mkaouer, M. Kessentini, S. Bechikh, K. Deb, and
M. Ó Cinnéide, “High dimensional search-based software engi-
neering: finding tradeoffs among 15 objectives for automating
software refactoring using nsga-iii,” in Proceedings of the 2014 Annual
Conference on Genetic and Evolutionary Computation, 2014, pp. 1263–
1270.

[41] W. Mkaouer, M. Kessentini, A. Shaout, P. Koligheu, S. Bechikh,
K. Deb, and A. Ouni, “Many-objective software remodularization
using nsga-iii,” ACM Transactions on Software Engineering and
Methodology (TOSEM), vol. 24, no. 3, pp. 1–45, 2015.

[42] M. Fleck, J. Troya, M. Kessentini, M. Wimmer, and B. Alkhazi,
“Model transformation modularization as a many-objective op-
timization problem,” IEEE Transactions on Software Engineering,
vol. 43, no. 11, pp. 1009–1032, 2017.

[43] W. F. Opdyke, “Refactoring object-oriented frameworks,” 1992.
[44] S. B. Hamida and A. Petrowski, “The need for improving the

exploration operators for constrained optimization problems,” in
Proceedings of the 2000 Congress on Evolutionary Computation. CEC00
(Cat. No. 00TH8512), vol. 2. IEEE, 2000, pp. 1176–1183.

[45] A. H. Aguirre, S. B. Rionda, and C. A. C. Coello, “Passss: an imple-
mentation of a novel diversity strategy for handling constraints,”
in Proceedings of the 2004 Congress on Evolutionary Computation (IEEE
Cat. No. 04TH8753), vol. 1. IEEE, 2004, pp. 403–410.

[46] A. H. Aguirre, S. B. Rionda, C. A. Coello Coello, G. L. Lizárraga,
and E. M. Montes, “Handling constraints using multiobjective
optimization concepts,” International Journal for Numerical Methods
in Engineering, vol. 59, no. 15, pp. 1989–2017, 2004.

[47] E. Mezura Montes, “Alternative techniques to handle constraints
in evolutionary optimization,” 2004.

[48] P. Lam, E. Bodden, O. Lhoták, and L. Hendren, “The soot frame-
work for java program analysis: a retrospective,” in Cetus Users and
Compiler Infastructure Workshop (CETUS 2011), vol. 15, 2011, p. 35.

[49] E. R. Murphy-Hill and A. P. Black, “Why don’t people use
refactoring tools?” in WRT, 2007, pp. 60–61.

[50] M. Kessentini, W. Kessentini, H. Sahraoui, M. Boukadoum, and
A. Ouni, “Design defects detection and correction by example,” in
2011 IEEE 19th International Conference on Program Comprehension.
IEEE, 2011, pp. 81–90.

[51] P. D. McNicholas, T. B. Murphy, and M. O’Regan, “Standardising
the lift of an association rule,” Computational Statistics & Data
Analysis, vol. 52, no. 10, pp. 4712–4721, 2008.

[52] F. Ferrucci, M. Harman, J. Ren, and F. Sarro, “Not going to take
this anymore: multi-objective overtime planning for software
engineering projects,” in 2013 35th International Conference on
Software Engineering (ICSE). IEEE, 2013, pp. 462–471.

[53] H. Meunier, E.-G. Talbi, and P. Reininger, “A multiobjective genetic
algorithm for radio network optimization,” in Proceedings of the 2000
Congress on Evolutionary Computation. CEC00 (Cat. No. 00TH8512),
vol. 1. IEEE, 2000, pp. 317–324.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, DECEMBER 2020 17

[54] E. Zitzler and L. Thiele, “Multiobjective evolutionary algorithms: a
comparative case study and the strength pareto approach,” IEEE
transactions on Evolutionary Computation, vol. 3, no. 4, pp. 257–271,
1999.

[55] D. A. Van Veldhuizen and G. B. Lamont, “Multiobjective evolu-
tionary algorithm research: A history and analysis,” Citeseer, Tech.
Rep., 1998.

[56] E.-G. Talbi, Metaheuristics: from design to implementation. John Wiley
& Sons, 2009, vol. 74.

[57] F. Wilcoxon, S. Katti, and R. A. Wilcox, “Critical values and
probability levels for the wilcoxon rank sum test and the wilcoxon
signed rank test,” Selected tables in mathematical statistics, vol. 1, pp.
171–259, 1970.

[58] A. Arcuri and L. Briand, “A practical guide for using statistical
tests to assess randomized algorithms in software engineering,” in
2011 33rd International Conference on Software Engineering (ICSE).
IEEE, 2011, pp. 1–10.

[59] J. T. Richardson, “Eta squared and partial eta squared as measures
of effect size in educational research,” Educational Research Review,
vol. 6, no. 2, pp. 135–147, 2011.

[60] X. Zhang, Y. Tian, and Y. Jin, “A knee point-driven evolutionary
algorithm for many-objective optimization,” IEEE Transactions on
Evolutionary Computation, vol. 19, no. 6, pp. 761–776, 2014.

[61] M. Harman, S. A. Mansouri, and Y. Zhang, “Search-based software
engineering: Trends, techniques and applications,” ACM Computing
Surveys (CSUR), vol. 45, no. 1, pp. 1–61, 2012.

[62] S. Ong and A. Täcklind, “Performance differences between multi-
objective evolutionary algorithms in different environments,” 2016.

[63] A. Ouni, M. Kessentini, H. Sahraoui, and M. S. Hamdi, “Search-
based refactoring: Towards semantics preservation,” in 2012 28th
IEEE International Conference on Software Maintenance (ICSM). IEEE,
2012, pp. 347–356.

[64] M. Kessentini, T. J. Dea, and A. Ouni, “A context-based refactoring
recommendation approach using simulated annealing: two indus-
trial case studies,” in Proceedings of the Genetic and Evolutionary
Computation Conference, 2017, pp. 1303–1310.

[65] H. Wang, M. Kessentini, and A. Ouni, “Interactive refactoring
of web service interfaces using computational search,” IEEE
Transactions on Services Computing, 2017.

[66] G. Fraser and A. Arcuri, “The seed is strong: Seeding strategies
in search-based software testing,” in 2012 IEEE Fifth International
Conference on Software Testing, Verification and Validation. IEEE, 2012,
pp. 121–130.

[67] A. Arcuri and G. Fraser, “On parameter tuning in search based
software engineering,” in International Symposium on Search Based
Software Engineering. Springer, 2011, pp. 33–47.

[68] D. Strüber, “Generating efficient mutation operators for search-
based model-driven engineering,” in International Conference on
Theory and Practice of Model Transformations. Springer, 2017, pp.
121–137.

[69] M. Kessentini, H. Sahraoui, and M. Boukadoum, “Example-based
model-transformation testing,” Automated Software Engineering,
vol. 18, no. 2, pp. 199–224, 2011.

[70] M. Kessentini, M. Wimmer, H. Sahraoui, and M. Boukadoum,
“Generating transformation rules from examples for behavioral
models,” in Proceedings of the Second International Workshop on
Behaviour Modelling: Foundation and Applications, 2010, pp. 1–7.

[71] A. Ghannem, M. Kessentini, and G. El Boussaidi, “Detecting model
refactoring opportunities using heuristic search,” in Proceedings of
the 2011 Conference of the Center for Advanced Studies on Collaborative
Research, 2011, pp. 175–187.

[72] S. Kalboussi, S. Bechikh, M. Kessentini, and L. B. Said, “Preference-
based many-objective evolutionary testing generates harder test
cases for autonomous agents,” in International Symposium on Search
Based Software Engineering. Springer, Berlin, Heidelberg, 2013, pp.
245–250.

[73] A. Ghannem, G. El Boussaidi, and M. Kessentini, “Model refactor-
ing using examples: a search-based approach,” Journal of Software:
Evolution and Process, vol. 26, no. 7, pp. 692–713, 2014.

[74] M. Kessentini, A. Ouni, P. Langer, M. Wimmer, and S. Bechikh,
“Search-based metamodel matching with structural and syntactic
measures,” Journal of Systems and Software, vol. 97, pp. 1–14, 2014.

[75] U. Mansoor, M. Kessentini, P. Langer, M. Wimmer, S. Bechikh,
and K. Deb, “Momm: Multi-objective model merging,” Journal of
Systems and Software, vol. 103, pp. 423–439, 2015.

[76] R. Almhana, W. Mkaouer, M. Kessentini, and A. Ouni, “Recom-
mending relevant classes for bug reports using multi-objective

search,” in 2016 31st IEEE/ACM International Conference on Auto-
mated Software Engineering (ASE). IEEE, 2016, pp. 286–295.

[77] M. Kessentini and A. Ouni, “Detecting android smells using multi-
objective genetic programming,” in 2017 IEEE/ACM 4th International
Conference on Mobile Software Engineering and Systems (MOBILESoft).
IEEE, 2017, pp. 122–132.

[78] E. A. AlOmar, M. W. Mkaouer, A. Ouni, and M. Kessentini, “On the
impact of refactoring on the relationship between quality attributes
and design metrics,” in 2019 ACM/IEEE International Symposium
on Empirical Software Engineering and Measurement (ESEM). IEEE,
2019, pp. 1–11.

Chaima Abid is currently a PhD student in the
intelligent Software Engineering group at the
University of Michigan. Her PhD project is con-
cerned with the application of intelligent search
and machine learning in different areas such as
web services, refactoring, mobile app reviews
and security. Her current research interests are
Search-Based Software Engineering, web ser-
vices, refactoring, security, data analytics and
software quality.

Dhia Elhaq Rzig is currently a Phd Student in
the Intelligent Software Engineering group at
the University of Michigan Dearborn, His PhD
work and research interest concern the inter-
section of Machine Learning and Software en-
gineering, such as the adoption of DevOps within
ML projects workflows’, using AI and intelligent
search to improve Software Refactoring, among
other Topics. He obtained his Master’s in Infor-
mation Processing from a joint program of the
University of Paris Descartes and the National

Engineering School of Tunis, and his Bachelor’s in Software Engineering
from the National Institute of Applied Sciences and Technology in Tunisia.

Thiago do Nascimento Ferreira is currently
a Postdoctoral Researcher at University of
Michigan-Dearborn in USA. He received the
PhD degree in Computer Science from the Fed-
eral University of Paraná in Brazil, in 2019. His
main interest are bio-inspired computation, multi-
objective optimization and preference-based op-
timization algorithms focused on Search-based
Software Engineering (SBSE).

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, DECEMBER 2020 18

Marouane Kessentini is a recipient of the presti-
gious 2018 President of Tunisia distinguished re-
search award, the University distinguished teach-
ing award, the University distinguished digital
education award, the College of Engineering and
Computer Science distinguished research award,
4 best paper awards, and his AI-based software
refactoring invention, licensed and deployed by
industrial partners, is selected as one of the Top 8
inventions at the University of Michigan for 2018
(including the three campuses), among over 500

inventions, by the UM Technology Transfer Office. He is currently a
tenured associate professor and leading a research group on Software
Engineering Intelligence. Prior to joining UM in 2013, He received his
Ph.D. from the University of Montreal in Canada in 2012. He received
several grants from both industry and federal agencies and published over
110 papers in top journals and conferences. He has several collaborations
with industry on the use of computational search, machine learning and
evolutionary algorithms to address software engineering and services
computing problems.

Tushar Sharma Tushar Sharma is currently a
research scientist at Siemens Corporate Tech-
nology, Charlotte, USA. He earned PhD from
Athens University of Economics and Business,
Athens, Greece with specialization in software
engineering in May 2019. Earlier, he obtained
an MS in Computer Science from the Indian
Institute of Technology-Madras, Chennai, India.
His professional experience includes working
with Siemens Research and Technology Center,
Bangalore, India for more than seven years (2008-

2015). He co-authored the book Refactoring for Software Design Smells:
Managing Technical Debt and two Oracle Java certification books. He
has founded and developed Designite which is a software design quality
assessment tool used by many practitioners and researchers worldwide.
He is an IEEE Senior Member.

