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Web Appendix A. Model Selection

Model selection to determine the number of clusters is done by the tunning of λ, whose value

can be selected based on standard model selection criteria, such as AIC, BIC or GCV. We

propose to use the extended Bayesian information criterion (EBIC) (Chen and Chen, 2012)

of the form:

EBIC(λ) = S̃(θ̂λ)
T G̃(θ̂λ)

−1S̃(θ̂λ) + log(N)

p∑
j=1

df(θ̂λj·) + 2 log

p∑
j=1

(
K

df(θ̂λj·)

)
,

where

G̃(θ̂λ) = block-diag{S1(C1D
−1θ̂λ)S1(C1D

−1θ̂λ)
T , . . . ,SK(CKD

−1θ̂λ)SK(CKD
−1θ̂λ)

T},

and df(θ̂j) denotes the number of unique nonzero values in θ̂j. Starting from λ = 0, we fit a

path of solutions θ̂λ for a sequence of λ > 0. To accelerate computation in calculating the

solution paths for a sequence of λ values, for the next value λ, we employ the warm-start

technique and use θ̂ from the current value of λ as the initial value of the iterative algorithm.

The initial value of the search algorithm is θ̂λ=0

Web Appendix B. Regularity Conditions

For the results in Section 4.3, we require the following regularity conditions, which are similar

to the conditions required in Theorem 1 of Wang et al. (2012).

(C1) Xkit are uniformly bounded for k = 1, . . . , K, i = 1, . . . , nk and t = 1, . . . , T . The

eigenvalues of n−1k
∑nk

i=1XkiX
T
ki are uniformly bounded away from zero and +∞ for

k = 1, . . . , K.
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(C2) There exists a positive-definite matrix Rk such that the estimated working correlation

matrix R̂k satisfies ||R̂
−1
k −R

−1
k ||2 = Op(

√
s/nsupK), k = 1, . . . , K.

(C3) Let εki(θ) = A
−1/2
ki (CkD

−1θ)(Y ki−µki(CkD
−1θ)). AssumeE(||εki(θ)||2+δ) is bounded

by a finite positive constant, for all k, i and some δ > 0; and there exist positive constants

M such that E[exp(M |εkit(θ∗)|)|Xki] is bounded by a finite positive constant, uniformly

in k = 1, . . . , K, i = 1, . . . , nk and t = 1, . . . , T .

(C4) For some ∆ > 0, B = {θ : ||θ − θ∗|| 6 ∆
√
p/nsup}. On B, for k = 1, . . . , K, i =

1, . . . , nk and t = 1, . . . , T , ∇θµ(XT
kitCkD

−1θ) are uniformly bounded away from 0

and ∞; ∇2
θµ(XT

kitCkD
−1θ) and ∇3

θµ(XT
kitCkD

−1θ) are uniformly bounded by a finite

positive constant M .

(C5) Assuming minj∈A |θ∗j|/λ → ∞ as N → ∞ and s3N−1 = o(1), λ → 0, s2(logN)4 =

o(Nλ2), log(pK) = o(Nλ2/(logN)2), pKs4(logN)6 = o(N2λ2) and pKs3(logN)8 =

o(N2λ4).

Condition (C1) is standard for regularized regressions, and is require here uniformly across

strata. Condition (C2) specifies the limits of working correlation matrices exist in individual

strata. In particular, when τ and correlation structure are the same across strata, this

assumption can be relaxed to ||R̂
−1
− R−1||2 = Op(

√
s/N). This is satisfied when the

method of moments is used to estimate τ̂ , and R = R0. Conditions (C3)-(C5) are standard

for regularized GEE, and generally satisfied for Gaussian, binary and Poisson distributions.

Web Appendix C. Proofs for Section 4.3

Web Appendix C.1 Proof of Theorem 1

By treating (5) as a penalized GEE with respect to θ, where the true value θ∗ is sparse with s

nonzero elements, we may derive similar asymptotic properties by reparametrization. We fol-

low the proof of Theorem 1 of Wang et al. (2012). By conditions (C1)-(C5), the first part, se-
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lection consistency can be easily established thus omitted. BecauseD∗ is invertible, the oracle

asymptotic normality for θ̂ states that
√
N(θ̃A−θ∗A)

d→ N (0, H̃
∗
A(θ∗)

−1M ∗
A(θ∗){H̃

∗
A(θ∗)

T}−1).

Since S̃(θ) = S(D−1∗ θ) = (ST1 (C1D
−1
∗ θ), . . . ,STK(CKD

−1
∗ θ))T , by reparameterization we

have,

H̃
∗
(θ∗) = −∂S̃(θ)

∂θ

= −
(
∂ST1 (C1D

−1
∗ θ)

∂θ
, . . . ,

∂STK(CKD
−1
∗ θ)

∂θ

)T
= −

((
∂S1(C1D

−1
∗ θ)

∂C1D
−1
∗ θ

∂C1D
−1
∗ θ

∂θ

)T
, . . . ,

(
∂SK(CKD

−1
∗ θ)

∂CKD
−1
∗ θ

∂CKD
−1
∗ θ

∂θ

)T)T

=
(
(H1(C1D

−1
∗ θ)C1D

−1
∗ )T , . . . , (HK(CKD

−1
∗ θ)CKD

−1
∗ )T

)T
= block-diag{H1(C1D

−1
∗ θ∗), . . . ,HK(CKD

−1
∗ θ∗)}CD−1∗

= block-diag{H1(β∗·1), . . . ,HK(β∗·K)}CD−1∗ ,

whereHk(β∗·k) =
∑nk

i=1X
T
kiA

1/2
ki (β∗·k)R

−1
A

1/2
ki (β∗·k)Xki is the sensitivity matrix of Sk(β∗·k),

k = 1, . . . , K, C = (CT
1 , . . . ,C

T
K)T , and

M ∗(θ∗) = var(S̃(θ∗))

= block-diag{var(S1(C1D
−1
∗ θ∗)), . . . , var(SK(CKD

−1
∗ θ∗))}

= block-diag{M 1(β∗·1), . . . ,MK(β∗·K)},

where M k(β∗·k) =
∑nk

i=1X
T
kiA

1/2
ki (β∗·k)R

−1
R∗R

−1
A

1/2
ki (β∗·k)Xki is the variability matrix

of Sk(β∗·k), k = 1, . . . , K. Therefore, the second part of asymptotic results follows.

Web Appendix C.2 Proof of Theorem 2

First, we present the following lemma regarding the estimation of parameter ordering to

assist the proof of Theorem 2.

Lemma 1: If D̂ is estimated based on the unpenalized estimator β̂ from (1) and K =

O(N1/4−ξ) where ξ ∈ (0, 1/4], then for ∀ε > 0, limN P (||D̂ −D∗|| > ε) = 0 for some D∗

such that θ∗ = D∗β∗.
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Proof. First, we define Dk the submatrix of D that only contains the rows and columns

relevant to parameters in β·k, k = 1, . . . , K. The dimension of Dk is of same order as p

since it only involves adjacent contrasts. Similar to Tang and Song (2016), we examine

the probability of incorrectly estimating the order. Note that existence and consistency of

solution to the unpenalized GEE (1) as p diverges has been established in Wang (2011,

Theorem 3.6). Combining results from both, the probability of getting the wrong ordering

for coefficient estimates from different clusters tend to zero at rate Op(
√
p/N), under the

condition that N−1p2 = o(1). Since N−1K4 = o(1), we have that K = o(N1/2/p1/2). Thus,

jointly considering all K diagonal blocks of D̂, we have

P (||D̂ −D∗|| > ε) = P (
K∑
k=1

||D̂k −D∗k||2 > ε2)

6
K∑
k=1

P (||D̂k −D∗k||2 > ε2/K)

6
K∑
k=1

P (||D̂k −D∗k||2 > ε2p1/2/N1/2)

= Op(p
1/2N−1/2K) = o(1).

Note that D∗ is not unique since some parameters are common across strata within β∗ thus

ties may occur. Here, we resolve the ties by ordering the parameters based on first occurrence.

This will not affect our results since β∗ are uniquely defined given θ∗ and D∗ pairs. Below

we present the proof to Theorem 2 following a result in Tang and Song (2016).

By Corollary 1, P (θ̂Ac = 0|D̂ = D∗)→ 1. Combine with Lemma 1, we have

P (θ̂Ac = 0) = P (θ̂Ac = 0|D̂ = D∗)P (D̂ = D∗)

+ P (θ̂Ac = 0|D̂ 6= D∗)P (D̂ 6= D∗)→ 1

as N →∞. Thus, we have selection consistency.

Similarly, the estimator θ̂A can be written as

θ̂A = θ̃A1{D̂ = D∗}+ θ̂A1{D̂ 6= D∗}.
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Therefore,

√
N(θ̂A − θ∗A) =

√
N(θ̃A − θ∗A)1{D̂ = D∗}

+
√
N(θ̂A − θ∗A)1{D̂ 6= D∗}.

Based on results given in Proposition 1, we can show that
√
N(θ̃A−θ∗A)

d→ N (0,ΣA). From

Lemma 1 as K = O(N1/2−ξ) and ninf →∞, we have P (D̂ = D∗)→ 1 and P (D̂ 6= D∗)→ 0,

as N →∞. Hence, the asymptotic normality result follows.

Web Appendix C.3 Proof of Corollary 2

For all k, k′ ∈ {k, k′|gj(k) = gj(k
′)}, we show P (β̂jk = β̂jk′)→ 1.

P (|β̂jk − β̂jk′ | > 0) 6 P (|β̂jk − β̂jk′ − (β∗jk − β∗jk′)| > 0)

6 P (|β̂jk − β∗jk| > 0) + P (|β̂jk′ − β∗jk′| > 0)→ 0

Since β∗jk = β∗jk′ = 0 or β∗jk = β∗jk′ 6= 0, thus by Slutsky’s Theorem we prove the result.

Web Appendix D. Additional Simulation Results

Web Appendix D.1 The Linear Model

For the linear model with exchangeable working correlation matrix, boxplots of estimate

number of coefficient clusters are shown in Web Figure 1.

[Figure 1 about here.]

Web Appendix D.2 The Logistic Model

We simulate correlated data with binary outcomes from the following marginal mean model:

logit{E(Ykij)} = βk1Xkij1 + βk2Xkij2 + βk3Xkij3 + βk4Xki4 + βk5Xki5

for k = 1, . . . , K, i = 1, . . . , n, and j ∈ Lk. The covariates are simulated in the same way as in

the linear model, and outcomes with the exchangeable correlation with τ = 0.6 are simulated

by R package SimCorMultRes. We use the true coefficient values β1 = (1, . . . , 1)T ,β2 =
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(0.6, . . . , 0.6)T ,β3 = (0.6, . . . , 0.6)T ,β4 = (0, . . . , 0)T ,β5 = (0, . . . , 0)T , and create hetero-

geneous parameter clusters in β2 and β4 using the same procedure as in the linear model,

with δ = 0, 0.2 and 0.6. The comparison between choices of working correlation matrices

in terms of efficiency evaluation is similar to the linear model, thus only results for the

logistic model with exchangeable working correlation are presented. For the logistic model

with exchangeable working correlation matrix, mean squared errors of coefficient estimates

are shown in Web Table 1; histograms of estimated coefficient values are shown in Web

Figure 2; boxplots of estimate number of coefficient clusters are shown in Web Figure 3. All

results are based on 100 replications.

[Table 1 about here.]

[Figure 2 about here.]

[Figure 3 about here.]

Web Appendix E. Summary Statistics of IHS Covariates

Summary of variables in their original scales, stratified by missing-data patterns, is shown

in Web Table 2.

[Table 2 about here.]

Web Appendix F. Comparison of LASSO, SCAD and MCP

We provide an example comparing LASSO, SCAD and MCP penalties in fusion learning.

Compared to the convex LASSO penalty, SCAD and MCP penalties are nonconvex functions

that are designed to protect large coefficients from being unduly shrunk through a very

slowly growing function for large value. In the context of fusion learning, different shrinkage

mechanisms can be visualized in Web Figure 4 through their respective solution paths.

Clearly, nonconvex penalties on the coefficient contrasts shows a clearer separation between
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parameter subgroups than LASSO. Both SCAD and MCP taper off quickly for large β values,

leading to dendrogram-like solution paths for clear separation of clusters.

[Figure 4 about here.]
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Web Figure 1. Boxplots of estimated cluster sizes in the linear model with exchangeable
working correlation matrix. Bolded horizontal bars represent the medians.
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Web Figure 2. Histograms of coefficient estimates in the logistic model with exchangeable
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Web Figure 3. Boxplots of estimated cluster sizes in the logistic model with exchangeable
working correlation matrix. Bolded horizontal bars represent the medians.
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Web Figure 4. Plots of penalty functions (top) and solution paths (bottom) in an example
of GEE fusion learning with p = 3 and K = 8, for LASSO, SCAD and MCP, respectively.
Each color in the solution path plots represents stratum-specific estimates from one covariate.
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Web Table 1
Mean squared error (×100) of GEE coefficient estimates in the logistic model with exchangeable working correlation

matrix (i.e., working correlation matrix correctly specified).

G δ Method β1 β2 β3 β4 β5

β1 = 1 β2 = 0.6 β3 = 0.6 β4 = 0 β5 = 0

1 0.0 Homogeneous 0.837 0.639 0.179 0.198 0.212
1 0.0 Stratified 6.457 5.366 2.257 1.876 1.817
1 0.0 Two-stage 1.299 1.158 0.446 0.375 0.393
1 0.0 Proposed (α = 0) 1.797 1.135 0.329 0.234 0.301
1 0.0 Proposed (α = 0.5) 2.191 1.901 0.302 0.029 0.000
1 0.0 Proposed (α = 1) 3.431 4.049 0.625 0.074 0.139
1 0.0 Proposed (adaptive) 1.953 2.536 0.719 0.124 0.062

β1 = 1 β2 ∈ {0.6, 0.6 + δ}8 β3 = 0.6 β4 ∈ {0, δ}8 β5 = 0

2 0.2 Homogeneous 0.789 1.558 0.197 1.14 0.207
2 0.2 Stratified 6.355 5.564 2.359 1.896 1.853
2 0.2 Two-stage 2.513 3.067 1.086 1.47 0.7
2 0.2 Proposed (α = 0) 1.523 2.227 0.326 1.316 0.245
2 0.2 Proposed (α = 0.5) 2.548 3.304 0.524 1.985 0.064
2 0.2 Proposed (α = 1) 3.213 4.794 0.786 1.993 0.131
2 0.2 Proposed (adaptive) 2.400 3.862 0.853 2.002 0.166

2 0.6 Homogeneous 0.859 8.87 0.242 8.404 0.214
2 0.6 Stratified 6.605 6.827 2.509 2.316 1.863
2 0.6 Two-stage 6.599 6.916 2.503 2.403 1.86
2 0.6 Proposed (α = 0) 2.637 6.426 0.318 1.558 0.309
2 0.6 Proposed (α = 0.5) 3.174 6.962 0.367 1.189 0.052
2 0.6 Proposed (α = 1) 3.973 7.947 0.677 1.133 0.095
2 0.6 Proposed (adaptive) 3.043 7.554 0.703 1.293 0.084

β1 = 1 β2 ∈ {0.6, 0.6± δ}8 β3 = 0.6 β4 ∈ {0,±δ}8 β5 = 0

3 0.2 Homogeneous 0.771 3.054 0.188 2.665 0.182
3 0.2 Stratified 6.527 5.455 2.257 1.852 1.81
3 0.2 Two-stage 4.663 4.79 1.645 2.179 1.344
3 0.2 Proposed (α = 0) 2.314 3.755 0.242 2.377 0.285
3 0.2 Proposed (α = 0.5) 2.838 4.623 0.444 2.533 0.172
3 0.2 Proposed (α = 1) 3.939 5.587 0.898 2.628 0.189
3 0.2 Proposed (adaptive) 2.373 5.140 0.644 2.719 0.081

3 0.6 Homogeneous 1.066 22.673 0.311 22.283 0.198
3 0.6 Stratified 6.392 6.546 2.419 2.263 1.806
3 0.6 Two-stage 6.392 6.546 2.419 2.263 1.806
3 0.6 Proposed (α = 0) 2.836 7.685 0.37 2.986 0.285
3 0.6 Proposed (α = 0.5) 3.119 7.322 0.334 2.006 0.066
3 0.6 Proposed (α = 1) 3.445 7.119 0.671 1.755 0.117
3 0.6 Proposed (adaptive) 2.466 6.443 0.765 1.732 0.118
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Web Table 2
Summary statistics for suicidal ideation data. Means (and standard deviations) are reported for continuous

covariates and percentages are reported for binary covariates.

Pattern 0011 0110 0111 1011 1100 1101 1110 1111

Sample size 41 68 120 128 150 141 249 1570
Baseline
Age 27.9(3.5) 27.2(2.1) 27.6(3) 27.8(3.5) 27.6(3) 27.7(3) 27.3(2.3) 27.4(2.5)
Female (%) 56.1 47.1 38.3 54.7 54.0 49.6 47.0 51.3
Baseline SI (%) 4.9 4.4 4.2 4.7 3.3 3.5 3.6 2.7
Baseline PHQ score 2.6(3.1) 1.8(2.3) 2.8(3.5) 2.7(3.1) 2.5(2.8) 3.1(3.4) 2.6(3) 2.4(2.7)
Time Dependent
PHQ score 5.6(4.8) 6.1(4.3) 5.1(4.1) 6.4(4.9) 6.4(4.6) 6.4(4.7) 5.6(4.5) 5.3(4.2)
GAD score 4.1(4.4) 4.8(4) 3.9(4.2) 5(4.5) 5.2(4.5) 5.7(4.9) 4.5(4.4) 4.4(4.2)
MEDERR (%) 19.5 21.3 20.0 15.9 26.3 22.5 19.0 18.2
HOUR 64.7(17) 64.7(18.1) 66.3(17.5) 63.6(17.5) 65.5(18.6) 65.3(20) 63.8(19.2) 63.8(18.5)
SI (%) 8.5 11.0 8.1 9.6 10.3 10.9 9.2 6.8
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