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1. Introduction

In biomedical studies, stratification has been commonly undertaken in design and analytical

phases by investigators to gain more targeted insight. Due to heterogeneity of populations

from observational studies, patients may be partitioned into multiple strata so that those

within a stratum have similar characteristics and more comparable association effect sizes

with respect to an outcome. For examples, unsupervised clustering and partitioning by

treatment propensity scores are two commonly used methods to stratify populations for

estimating conditional treatment effects of these subpopulations. A key technical concern

is that data-driven approaches to stratification may be subject to errors. It is unclear if

the resulting stratification is representative of the true underlying subgroup structure of

the effects of interest. The examples above aim to group subjects into homogeneous strata

so that the resulting statistical inferences are better powered within each specific stratum.

Moreover, they may benefit from a post-stratification group merging procedure, termed as

fusion learning, for better efficiency and interpretation.

Throughout this paper, we assume that a data sample is comprised of many strata, within

each subjects are homogeneous and sampled from a common parametric distribution. The

development is motivated by the situation where erroneous stratification often occurs in

practice and excessive stratification may potentially do more harm than good due to data

attrition. Arguably, the more strata used, the more ad hoc noise is introduced to subsequent

analyses, so that results may be overly specific and lack reproducibility.

A direct consequence of stratification is that we often have limited amount of data in each

stratum. It is natural to hope we could borrow information from other strata, if possible,

to increase statistical power. A strategy of information integration, whose form is to be

unfolded, has to account for a desirable trade-off between specificity and generalizability.

We propose a new approach to address this problem via the technique of fusion learning
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(e.g., Tang and Song (2016), Wang et al. (2016), Ma and Huang (2017)), in the context of

generalized estimating equations (GEE) for longitudinal data.

GEE is one of the two primary methods of choice in longitudinal or clustered data analyses.

In comparison to its competitor, the generalized linear mixed-effects model (GLMM), GEE

is a quasi-likelihood approach based only on the first two moments of data distributions and

provides estimates of population-average effects of covariates. Ollier et al. (2016) proposed

a fused LASSO (Tibshirani et al., 2005) approach for the GLMM where parameter fusion

is operated under given random cluster effects. Their method is different from ours in the

following ways. As pointed in Song (2007), the likelihood estimation in the GLMM with

non-normal data is subject to numerical approximation errors arising from the integral

of augmented likelihoods with respect to the distribution of random effects (e.g. Laplace

approximation), whereas GEE yields consistent estimates of the parameters in the marginal

model. These two models have different interpretations of the model parameters, namely

conditional effects in the GLMM versus population-average effects in the GEE (Neuhaus

et al., 1991). Fusion learning in the GEE framework is preferred when certain regularization

is used in the analysis as the GLMM may become unstable and unreliable due to both

numerical errors and estimation bias from the penalty-led shrinkage.

Consider a longitudinal study of N individuals, each with Ti repeated measurements. For

the sake of exposition, in the rest of the paper, we assume an equal number of repeated

measures, namely, Ti = T, i = 1, . . . , N , are collected at pre-specified follow-up times. For

complete data, the design matrix of an individual i, i ∈ {1, . . . , N}, is denoted as X i =

(xi1, . . . ,xiT )T , where xit is a p-element covariate vector measured at visit t, t = 1, . . . , T .

Response vector Y i = (Yi1, . . . , YiT )T denotes the longitudinally correlated responses of

subject i. Denote the first two conditional marginal moments of Yit by µit = E(Yit|X it) and

σ2
it = var(Yit|X it), where the marginal density of Yit is a member in the family of exponential
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dispersion (ED) models (Jorgensen, 1997). The mean µit follows a generalized linear model,

g(µit) = xTitβ, where g is a known link function and β is the regression parameters of

interest, and variance σ2
it of the ED model takes the form σ2

it = φv(µit), where v(·) is the

known unit variance function and φ is the dispersion parameter. See more details of the ED

models in Jorgensen (1997). In this paper, we consider canonical link function g, satisfying

ġ(µ) = v−1(µ). With an invocation of sample stratification, the N subjects are stratified

into K strata, each having a sample size nk, k = 1, . . . , K and N =
∑

k nk. Accordingly,

we denote stratum-specific quantities within, say, stratum k, via suitable subscripts, i.e., as

Xki,Y ki, µkit, σ
2
kit, φk,βk, and so on, where i = 1, . . . , nk. For ease of presentation, we package

the parameters of interest {βjk : j = 1, . . . , p, k = 1, . . . , K} into a covariate-major vector

β = (βT1·, · · · ,βTp·)T where βj· = (βj1, . . . , βjK)T denotes regression coefficients associated

with the jth covariate Xj, for j = 1, . . . , p. Similarly, we denote β·k = (βj1, . . . , βjK)T the

vector of regression coefficients associated with stratum k, for k = 1, . . . , K.

It follows that a stratified GEE solves the following aggregated estimating equations,

K∑

k=1

nk∑

i=1

Ski(β·k) = 0, (1)

where each of the K components
∑nk

i=1 Ski(β·k) = 0 corresponds to the GEE of a stratum.

By Liang and Zeger (1986), the individual estimating equations Ski(β·k) take the forms

Ski(β·k) =
∂µki(β·k)
∂βT·k V −1ki

{
Y ki − µki(β·k)

}
, where

∂µki(β·k)
∂βT·k = XT

kiAki(β·k) with Aki(β·k) =

diag{σ2
ki1(β·k), . . . , σ2

kiT (β·k)} (φ will be cancelled with zero on the right hand side of (1),

thus omitted), and variance matrix V ki = A
1/2
ki (β·k)Rk(τ k)A

1/2
ki (β·k) with Rk(τ k) being

a working correlation matrix parameterized by correlation parameter τ k, for k = 1, . . . , K,

i = 1, . . . , nk. As a result, Ski(β·k) may be written as

Ski(β·k) = XT
kiA

1/2
ki (β·k)R−1k (τ k)A

−1/2
ki (β·k)

{
Y ki − µki(β·k)

}
. (2)

If β·k’s are treated as all different across K strata, the aggregated analysis in (1) is equivalent

to performing stratum-specific GEE analyses separately. Our approach attempts to identify
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common effects among some of the K strata and fuse them together to achieve higher

statistical power. In addition, sparsity is induced to allow detection of grouped zero effects.

In short, we develop a method of aggregated GEE with structural regularization to refine the

grouping structure on the basis of individual covariates across strata. We establish asymptotic

results on consistency and normality when both K and p go to infinity.

The paper is organized as follows. The motivating scientific problem from a longitudinal

study of depression is introduced in Section 2. A review of fusion learning and penalized

GEE is given in Section 3. The proposed approach is presented in details in Section 4. In

Section 5, we apply our method to pattern-mixture models in handling longitudinal missing-

data. We evaluate the method via simulation experiments in Section 6 and present a real

data analysis of predicting suicidal ideation in Section 7. We conclude with discussion in

Section 8. Additional supporting results are included in the Web Appendices.

2. Motivating Example: The Intern Health Study

This paper is motivated by the Intern Health Study (IHS), an ongoing longitudinal co-

hort study that investigates depression in medical interns at institutions in the U.S. (Sen

et al., 2010). Medical interns are trainees in their first year of residency. This population

is considered one of the highest risk groups to develop depression. The broader aim of this

study is to detect important risk factors in connection to the development of depression, and

subsequently, to implement constructive measures and policy interventions that may foster

a healthier and more educational environment for medical trainees.

Participants are recruited at baseline before their official start of residency, and followed

quarterly for up to four times in their internship year. Pre-internship risk factors, including

demographic factors and depression history, are collected at the baseline visit. Time-varying

internship risk factors, including mental health, anxiety level, work stress, work performance

and other questionnaires, are assessed at each follow-up visit. A specific outcome of interest,
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suicidal ideation (SI), is repeatedly measured at follow-ups. Focusing on predicting SI, an

early alarming signal of depression, rather than actual suicides or attempts, allows us to

take timely intervention measures. Also, suicidal ideation is observed more frequently than

suicidal action thus more appealing from a modeling perspective.

Due to nonresponses in follow-ups, we either observe no information or complete response

at any given visit for each individual. Figure 1 shows response availability for participants

across the four visits, based on our study data set which consists of subjects recruited from

2012 to 2014. In the analysis of this longitudinal behavioral data, we take into account poten-

tial estimation biases due to potential nonignorable missingness, as we expect the decision of

responding to a follow-up survey prompt is associated with their mental state (for example,

participant might ignore a follow-up because of heavy work load or loss of interest in engaging

social activities that they committed previously). Such outcome-dependent missingness can

in turn bias the main association of interest between SI and risk factors due to sampling bias

associated with nonresponses. A common approach taken is to stratify subjects by missing-

data patterns (Dawson, 1994), which enables the investigation of temporal heterogeneity on

the associations. However, the method of stratification by data availability patterns may

generate excessive strata, which can lead to over-attrition in stratum sample size, loss of

statistical power, and even misleading results. These consequences are especially concerned

when the number of follow-up visits is large, because the number of unique strata grows with

the number of visits. This motivates a post-stratification fusion strategy that aims to utilize

shared information across strata to improve statistical efficiency in the context of GEEs.

[Figure 1 about here.]

3. A Review of Fusion Learning

Fusion learning exploits similarity of parameters in a statistical model by aggregation, for
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examples, marginally by K-means clustering or conditionally by regularized regression, to

produce subgrouping structures of parameters. Earlier work of fusion learning penalizes

the distance between parameter estimates of biologically ordered genes on chromosomes to

achieve piecewise constancy in estimation. This idea is extended to network-type fusion as

considered in OSCAR (Bondell and Reich, 2008), grouping pursuit (Shen and Huang, 2010)

and homogeneity pursuit (Ke et al., 2015) by relaxing the ordering constraint. Penalties

are further relaxed to learn more complicated parametric structures (Tibshirani and Taylor,

2011; Bach et al., 2012). All of the above consider fusing similar parameter estimates within

the scope of single data sets.

Some other work consider clustering parameter of similar meaning, but from various sample

strata or data sets. The idea appears in the ANOVA setting to fuse the differences among

the levels within each factor to achieve grouped estimation (Bondell and Reich, 2009). It is

also studied in data integration problems to evaluate the comparative effectiveness of a same

factor across different data sets (Tang and Song, 2016; Wang et al., 2016), and to recover

the structural differences and commonalities in heterogeneous graphical models (Hao et al.,

2018). Fusion of subject level estimates is proposed to achieve individualized treatment effect

clustering where each individual forms its own stratum (Ma and Huang, 2017). Most of the

previous work ignores the serial dependency of longitudinal or clustered data, except Wang

et al. (2016) that considers a penalized quadratic inference function for longitudinal data

with no missing values. However, none of these studies consider when K diverges according

to N , which is an important feature pertaining to sample stratification.

Our approach of post-stratification fusion learning is developed in the framework of penal-

ized GEE to account for correlations of repeated measurements. Penalized GEE has been

studied by several groups. The penalized estimating equations is first studied by Fu (2003)

to address collinearity issue through the bridge penalty. Johnson et al. (2008) relaxes the
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smoothness requirement in Fu (2003) to a more general discrete case with the consideration

of variable selection, and establishes the oracle properties under a family of convex and

nonconvex penalties. Wang et al. (2012) derives the oracle properties under a diverging

number of covariates. All of these methods concern variable selection, but none consider

fusion penalties for the need of parameter clustering across sample strata.

A key contribution of our approach is the ability to fuse parameter estimates from different

sample strata to learn the underlying similarity among stratum-specific parameters in an

integrative longitudinal data analysis. In a way, it improves statistical efficiency and simplifies

the model. This procedure is particularly appealing when over-stratification is suspected. The

extension to nonconvex fusion learning in GEE brings forth new numerical algorithms; and

the asymptotic rate of K provides appropriate guidance towards application practices.

4. GEE Based Fusion Learning

4.1 Fusion Method

The proposed method takes initial estimates from stratum-specific GEE estimates from

respective marginal longitudinal models (1) and proceeds to fuse similar estimates across

strata via suitable regularization. To encourage parameter fusion and sparsity, we propose

to solve for the model parameters jointly using the following penalized GEE,

U(β) =
1

N

(
ST1 (β·1) . . .STK(β·K)

)T − qλ,α(|Dβ|)sign(Dβ) = 0, (3)

with stratum-specific estimating equations Sk(β·k) =
∑nk

i=1 Ski(β·k) for Ski(β·k) given in

(2). By definition of β = (βT1·, . . . ,βTp·)T , β·k = Ckβ where Ck = (ek, eK+k, . . . , e(p−1)K+k)
T

is an extraction matrix with ei being the ith unit vector of length pK. We use a block-

diagonal matrix D = block-diag(D1, . . . ,Dp) that consists of matrices Dj to specify the

contrasts of coefficients in βj· = (βj1, . . . , βjK) for covariate Xj, j = 1, . . . , p. The penalty

term qλ,α(x) with tuning parameters λ > 0, α > 0 is a pK-dimensional element-wise
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function vector whose specific form is dependent on D and will be defined later, and

sign(β) = (sign(β11), . . . , sign(βpK))T is pK-dimensional element-wise sign function vector.

LettingDj = IK reduces to variable selection for GEE (Fu, 2003; Johnson et al., 2008; Wang

et al., 2012). Deviating from the focus of variable selection in most of the previous work,

we consider identifying homogeneous structures of similar parameters within βj· via matrix

Dj that characterizes contrasts or differences between pairs of elements in βj’s for fusion,

j = 1, . . . , p. We consider nonconvex penalties which have been shown to be numerically

more robust than convex ones for preserving strong signals.

Next, we provide a practical formulation of an order-dependent D matrix that allows both

parameter fusion and variable selection. Previous work (Ke et al., 2015; Wang et al., 2016)

has shown great computational efficiency gain by simplifying the contrast structures without

loss of estimation precision. Hence, we reduce the number of contrasts by assuming a certain

ordering, and provide theoretical assurance of such reduction when ordering is based on

stratified GEE estimates. For a simple example of K = 4, if the ordering of elements βj· for

covariate Xj is 0 < βj2 = βj4 < βj3 = βj1, we would define Dj as

Dj =




0 1 0 0

0 −1 0 1

0 0 1 −1

1 0 −1 0




}
selection





fusion
.

Rows 2 to K = 4 of Dj specify the penalized contrast of adjacent parameters. In addition,

we let the first row be the reference parameter, or the “anchor” parameter, and allow it to be

shrunk toward zero to enjoy sparsity. This reference parameter is chosen to be the one with

the smallest distance to zero, i.e., βj2 in this example. Similarly, we can derive Dj for each

individual Xj, j = 1, . . . , p, each may have different structure. The true ordering matrix

is not unique due to clustered coefficient values, and is discussed in Section 4.3. Denote
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θ = (θT1·, . . . ,θTp·)T = Dβ, where θj· = (θj1, . . . , θjk)
T = Djβj·, j = 1, . . . , p. To separately

control sparsity and fusion shrinkage, we introduce an additional tuning parameter so that

sparsity may be explained in the rate of fusion. For constants λ > 0, α > 0, we let

qλ,α(|θ|) = (qαλ(θ11), qλ(θ12), . . . , qλ(θ1K), . . . , qαλ(θp1), qλ(θp2), . . . , qλ(θpK))T .

Tuning parameter λ controls the magnitude of fusion and a larger value corresponds to

stronger fusion. The choice of α depends on the goal of estimation; more emphasis is given to

fusion when α is small, and vise versa for larger α. When variable selection (estimating zeros)

is not of interest, we set α = 0 so that qαλ(θj1) = 0, j = 1, . . . , p. When α = 1, there is equal

strength of selection and fusion, and we simply write the penalty term of (3) as qλ(|Dβ|).

Function qλ(·) is the subdifferential of any penalty function. Some popular qλ(·) functions

include (i) LASSO: qλ(x) = λ, x > 0, (ii) SCAD (Fan and Li, 2001): qλ(x) = λ{I(x 6

λ) + (aλ−x)+
(a−1)λ I(x > λ)}, x > 0, a > 2, and t+ = max(0, t), and (iii) MCP (Zhang, 2010):

qλ(x) = λ (aλ−x)+
aλ

, x > 0, a > 1. A comparison of the three is shown in Web Appendix F.

Although LASSO is simpler and guarantees a global optimal solution, its regularized solution

tends to over-shrink large coefficients, resulting in too many subgroups (Ma and Huang,

2017). We choose MCP as is provides the most distinguishable clustering pattern in its

solution paths and fix a = 1.5 as similar to Wang et al. (2012).

4.2 Estimation via Iterative Algorithm

We propose an efficient algorithm for obtaining an approximate regularized solutions to (3).

Equivalently, we attempt to solve the following system of equations:

S(β)−Nqλ(|Dβ|)sign(Dβ) = 0, (4)

where S(β) = (ST1 (β·1), . . . ,STK(β·K))T . The algorithm concerns a general m×pK contrast

matrixD, with m 6 pK and rank(D) = m, which includes the case considered in Section 4.1.

To begin, we considerm = pK, thus,D is full-rank invertible. Denote θ = (θT1·, . . . ,θTp·)T =
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Dβ, where θj· = (θj1, . . . , θjk)
T such that θj· = Djβj·, j = 1, . . . , p. Thus β = D−1θ. We

write (4) as a function of θ, and effectively solve the following system of equations:

Ũ(θ) = S̃(θ)−Nqλ(|θ|)sign(θ) = 0, (5)

where S̃(θ) = S(D−1θ) = (ST1 (C1D
−1θ), . . . ,STK(CKD

−1θ))T , and CkD
−1θ = Ckβ =

β·k, k = 1, . . . , K. In fact, Ũ(θ) is a penalized GEE whose solution θ̂ may be efficiently

obtained by an iterative algorithm. Following Wang et al. (2012), we estimate θ̂ in (5)

by coupling the Newton-Raphson iterative algorithm and the minorization-maximization

(MM) algorithm for nonconvex penalty (Hunter and Li, 2005). The key idea in the originally

studied penalized likelihood problems is to perturb the penalty function slightly so it becomes

differentiable (Fan and Li, 2001). In GEE, the element-wise derivative of the perturbed

penalty corresponds to Nqλ(|θjk|)sign(θjk)
|θjk|
ε+|θjk| , j = 1, . . . , p, k = 1, . . . , K, for some ε > 0

ensuring the denominator is well defined. To proceed, we select a small ε = 10−6 and obtain

the penalized GEE estimate θ̂ for θ, as the solution that approximately satisfies

Skj(CkD
−1θ)−Nqλ(|θ̂jk|)sign(θ̂jk)

|θ̂jk|
ε+ |θ̂jk|

, j = 1, . . . , p, k = 1, . . . , K,

where Skj(·) denotes the jth element of Sk(·). The updating step for θ̂, at iteration b, is

θ̂
b

= θ̂
b−1

+ {H̃(θ̂
b−1

) +NJ(θ̂
b−1

)}−1{S̃(θ̂
b−1

)−NJ(θ̂
b−1

)θ̂
b−1},with

H̃(θ̂
b−1

) = block-diag{H1(C1D
−1θ̂

b−1
), . . . ,HK(CKD

−1θ̂
b−1

)}CD−1,

J(θ̂
b−1

) = diag

{
qλ11(|θ̂b−111 |+)

ε+ |θ̂b−111 |
, . . . ,

qλ1K (|θ̂b−11K |+)

ε+ |θ̂b−11K |
, . . . ,

qλp1(|θ̂b−1p1 |+)

ε+ |θ̂b−1p1 |
, . . . ,

qλpK (|θ̂b−1pK |+)

ε+ |θ̂b−1pK |

}
,

(6)

Hk(CkD
−1θ̂

b−1
) =

nk∑

i=1

wkiX
T
kiA

1/2
ki (CkD

−1θ̂
b−1

)R−1k (τ̂ b−1k )A
1/2
ki (CkD

−1θ̂
b−1

)Xki,

and C = (CT
1 , . . . ,C

T
K)T . The update of J(θ̂) in (6) takes λjk = αλ if k = 1 and λjk = λ

if k 6= 1,∀j, to achieve both fusion and variable selection. It can be further extended using

the idea of adaptive penalties (Zou, 2006) to avoid the tuning of α. In this case, J(θ̂) will
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be updated by taking λjk = 1

|θ̂0jk|γ
λ, γ > 0, where θ̂0jk is the unpenalized estimate, for all j, k.

We recommend γ to be less than one to avoid extremely values in the denominators and set

γ = 0.5 throughout this paper.

Both τ̂ k and φ̂k (involved through Aki) can be updated sequentially using the method of

moments as suggested in the standard GEE (see Section 3.3 of Liang and Zeger (1986)). For

simplicity, we assumeRk’s, τ k’s and φk’s are common across strata, thus τ k’s and φk’s can be

omitted in the iteration. Note that these parameters do not affect the mean-zero assumption

of the GEE, i.e., ESki(β·k) = 0 for any Rk, τ k, φk. After convergence, we obtain β̂ = D−1θ̂
b

for θ̂
b

from the last iteration as our final estimate. In practice, ordering of coefficients across

strata is usually unknown without prior knowledge assistance. We propose to use estimated

ordering from the stratified estimates by solving (1). Using the initial unpenalized coefficient

estimates, we estimate the structure of D, denoted as D̂, and proceed with fusion. Refer to

Wang et al. (2016, Proposition 1) for the theoretical justification of using D̂ in the fused

LASSO. Model selection is done by the tunning of λ with the extended Bayesian information

criterion (EBIC) (Chen and Chen, 2012), with details given in Web Appendix A.

If m < pK, the above algorithm may still be applied by augmenting matrix D into a full

rank matrix D̃ by appending (pK−m) rows that are orthogonal to those inD. Subsequently,

the corresponding (pK −m) elements in resulting θ = D̃β will not be penalized, and can

be achieved by setting the corresponding λjk to zero in (6). On the other hand, contrasts

that overidentify the model such that m > pK where rank(D) = pK create redundancy in

optimization. Numerical solutions can still be obtained by the alternating direction method

of multipliers, which however requires extra iteration steps.

4.3 Theoretical Properties

Main results in Theorem 2 shows the asymptotic properties of the proposed estimator when

both p and K diverge. The key depends on Theorem 1 for estimator θ̃ from (5) when the true
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parameter ordering is given, i.e., D = D∗, and Lemma 1 for requirements on the estimated

ordering, D̂. Denote ninf = infk∈{1,...,K} nk. Let the number of true parameter clusters for

each covariate j (i.e., number of nonzero adjacent differences) be sj, and s =
∑p

j=1 sj, which

may diverge along with K. We use D∗ to denote the full-rank invertible contrast matrix

constructed based on the true parameter values β∗ as described in Section 4.2, and D̂ to

denote the data-dependent estimate of D∗. Correspondingly, θ∗ = D∗β∗ is a sparse vector

with support at the set A = {j : θ∗j 6= 0, j = 1, . . . , pK}, and subscript A is used to

denote the corresponding subvector or submatrix corresponding to the indices in A. We use

gj(k), k = 1, . . . , K, to denote the cluster membership of true parameter β∗j· of covariate

Xj, such that gj(k) ∈ {1, . . . , sj} and β∗jk = β∗jk′ only if gj(k) = gj(k
′). Denote Rk∗ the

true correlation matrix of stratum k, and Rk a constant positive-definite limiting matrix

of R̂(τ k). In the following discussion, we assume that s = o(N1/3), ||R(τ̂ k)
−1 − R−1k ||2 =

O(
√
s/ninfK), k = 1, . . . , K. Regularity conditions (C1)-(C5), Lemma 1 and proofs are given

in Web Appendices B and C.

Theorem 1: Under conditions (C1)-(C5), as ninf →∞, there exist a solution θ̃ to (5)

with D = D∗ that satisfies (a) P (θ̃Ac = 0) → 1, and (b) ∀a ∈ Rs such that ||a|| = 1,

aTM ∗
A(β∗)

−1/2H̃
∗
A(β∗)(θ̃A − θ∗A)

d→ N (0, 1), where

H̃
∗
A∪Ac(β∗) = block-diag{H1(β∗·1), . . . ,HK(β∗·K)}CD−1∗ ;

M ∗
A∪Ac(β∗) = block-diag{M 1(β∗·1), . . . ,MK(β∗·K)};

Hk(β∗·k) =

nk∑

i=1

XT
kiA

1/2
ki (β∗·k)R

−1
k A

1/2
ki (β∗·k)Xki and

M k(β∗·k) =

nk∑

i=1

XT
kiA

1/2
ki (β∗·k)R

−1
k Rk∗R

−1
k A

1/2
ki (β∗·k)Xki, k = 1, . . . , K.

Theorem 1 follows from the asymptotic results of penalized GEE with diverging number of

covariates (Wang et al., 2012) after reparameterization. The rates in (C5) imply that when

the number of unique true parameters s is fixed and τ k = τ , the total number of parameters
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pK is allowed to diverge in the sense that pK = O(N). This reduces to the result in Wang

et al. (2012, Theorem 1) when K is held fixed. On the other hand, if p is fixed, intuitively,

consistency would require that sample size increases faster than the number of strata, i.e.,

K = o(ninf). However, due to information sharing by fusion, K can be of order O(N).

Corollary 1: Under the same conditions as Theorem 1 but with s fixed such that the

dimension of θ̃A is finite, as ninf →∞, there exists a solution θ̃ to (5) with D = D∗, such

that θ̃A follows an asymptotic normal distribution with mean θ∗A and variance N−1ΣA,

where Σ−1A = H̃
∗
A(β∗)

TM ∗
A(β∗)

−1H̃
∗
A(β∗).

Corollary 1 directly results from Theorem 1, yet they both rely on knowing D∗. The

dependency of θ̃ on D∗ is restrictive in practice because the true parameter ordering is

usually unknown. We will need more stringent requirement on the speed of divergence of K

when the initial ordering D∗ is unknown to guarantee similar results. Theorem 2 relaxes the

dependence of D∗ required above for the estimator θ̂ under D = D̂, where D̂ is the contrast

matrix based on the unpenalized estimates from (1). For simplicity, we assume s is fixed in

Theorem 2 and Corollary 2, while still allow both p and K to diverge.

Theorem 2: Suppose that conditions (C1)-(C5) hold, N−1p2 = o(1), K = O(N1/4−ξ)

with ξ ∈ (0, 1/4], ninf →∞, then the solution θ̂ to the penalized GEE in (5) under D = D̂

satisfies (a) P (θ̂Ac = 0) → 1, and (b) θ̂A follows an asymptotic normal distribution with

mean θ∗A and variance N−1ΣA.

Corollary 2: Under the same conditions as Theorem 2, for each j ∈ {1, . . . , p}, the

estimator β̂ obtained from the penalized GEE (4) with D = D̂ satisfies P (β̂jk = β̂jk′)→ 1,

∀k, k′ ∈ {k, k′|gj(k) = gj(k
′)}.

The rate established for K in Theorem 2 is dependent on both p and N . In the case of fixed

dimensional covariate p, the number of strata K = O(N1/2−ξ), ξ ∈ (0, 1/2]. In regards to β,
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Corollary 2 states that the clustering structure in β can be estimated consistently. However,

the joint asymptotic distribution of β̂ cannot be directly obtained from Theorem 2 because

it involves elements of θ̂ in Ac whose asymptotic distribution is unknown. Bias-correction

approaches (Van de Geer et al., 2014; Zhang and Zhang, 2014) may be adopted, however

challenges remain as the size of β̂ diverges.

5. Fusion Learning in Pattern-Mixture Models

We apply the proposed post-stratification fusion learning method for the analysis of in-

complete longitudinal data using pattern-mixture models. In the missing-data literature,

pattern-mixture model is one of the primary modeling methods to deal with not missing

at random mechanisms (NMAR), where stratification according to missing-data patterns is

taken. We propose to perform post-stratification fusion learning in this framework to investi-

gate the heterogeneous interaction of missing-data pattern and time varying covariates. After

stratification by missing-data patterns, separate complete data analyses can be conducted.

Due to dropouts or intermittent nonresponses, suppose we observe K distinct missing-data

patterns. By stratifying the N subjects according to the patterns, each stratum has a sample

size nk, k = 1, . . . , K. Subjects in the kth response pattern are observed at certain visits

as indexed by Lk = {t : rkt = 1, t = 1, . . . , T}, where rkt = 0 if no response at visit t and

rkt = 1 vice versa. In one extreme case where missing-data are missing completely at random

(MCAR), we can estimate the common β using the sum of GEE across all patterns,

K∑

k=1

nk∑

i=1

Ski(β) = 0, (7)

where Ski(β) is defined as (2). Note that the number of repeated measurements may be

different for different k, and are uniquely determined by the missing-data patterns outlined

in Lk. Equation (7) is the GEE under the assumption of MCAR, or ignorable missingness

defined in Little (1993), in which the underlying relationships between outcomes and covari-
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ates are not affected by missing-data patterns. When such MCAR assumption is violated,

GEE (7) may be invalid due to biased sampling across missing-data patterns (Song, 2007).

To test the MCAR assumption, Chen and Little (1999) proposes a Wald-type test, where

under the null, there exists a common true parameter vector β∗ such that E{Sk(β∗)} = 0 for

all K strata. Assuming parameters of interest are identifiable in every stratum, and letting

β̂k and Σ̂k be the GEE estimator and sandwich variance estimator from stratum k, we can

obtain a meta estimator β̂c =
(∑K

k=1 Σ̂
−1
k

)−1∑K
k=1 Σ̂

−1
k β̂k. Then, Chen and Little (1999)’s

test statistic takes the form:

d =
K∑

k=1

(β̂k − β̂c)TΣ−1k (β̂k − β̂c), (8)

which asymptotically follows a χ2
r distribution with degrees of freedom r = p(K−1). Similar

tests are developed to test the same null hypothesis under different scenarios (Diggle, 1989;

Qu and Song, 2002; Qu et al., 2011). When the null is rejected, a stratified analysis is

required to generate interpretable results. As pointed above, any fully stratified models based

on missing-data patterns specify model parameters to be distinct across strata, leading to

potential over-parameterization. This is again an issue caused by over-stratification which

has not been addressed in the current literature. Arguably when the number of repeated

measurements increases, the number of missing-data patterns may become very large, so the

sample size of each stratum would be too small to provide reliable and meaningful results.

Our post-stratification fusion learning developed in this paper can greatly relax simulta-

neously the MCAR assumption and the NMAR assumption with the flexibility on departure

from the full homogeneous parameterization under MCAR and/or from the full heteroge-

neous parameter under NMAR. A legitimate decision may be reached in between the two

extreme cases. The above test (8) is only able to assess the MCAR assumption, and is not

designed to understand partially homogeneous structures.

In lieu of an exclusive conditional distribution given each missing pattern, a more realistic
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situation is that there exist some strata that may share some common parameter structures

due to various reasons, such as over stratification. In other words, two data generation

machines under missing-data patterns k and k′, P (Y |k,X) and P (Y |k′,X), respectively,

may share a common parameter for covariate Xj when gj(k) = gj(k
′). Thus, conducting

post-stratification analysis is needed in the context of pattern-mixture model based analysis

of longitudinal data with non-ignorable missing values.

6. Monte-Carlo Simulation Experiments

Multiple methods are applied to pattern-mixture models for studying simulated nonignorable

missing-data problems. Both linear and logistic models are presented, in which we simulate

longitudinal data with T = 4 repeated measurements. Samples are generated from K = 8

strata corresponding to missing-data patterns {0011, 0110, 0111, 1011, 1101, 1100, 1110, 1111},

with 0 means missing and 1 otherwise. For simplicity, we let nk = n = 100 for all k.

For the linear model with continuous outcomes, the following model is used to simulate

experimental data for the (k, i, t)-trios, k = 1, . . . , K, i = 1, . . . , n, and t ∈ Lk:

Ykit = βk1Xkit1 + βk2Xkit2 + βk3Xkit3 + βk4Xki4 + βk5Xki5 + εkit,

where βk = (βk1, . . . , βk5)
T is the model coefficient vector under stratified pattern k, and

εkit is the temporally correlated marginal error. For subject i in stratum k, Xkit1 and

Xkit2 are drawn independently from Bernoulli distributions each with 0.5 success rate, and

Xkit3, Xki4 and Xki5 are drawn independently from the standard normal distribution, for

t ∈ LK . Covariates X1, X2 and X3 are time-varying, whereas X4 and X5 are constant. To

induce correlation among repeated responses, εki = (εki1, εki2, εki3, εki4)
T is drawn from a

multivariate normal distribution, N4(0, φR(τ)), and only the elements in Lk are kept. In

the simulation experiments, we let R(τ) be exchangeable with true correlation coefficient

τ = 0.6. The true regression coefficients of covariates X1 (binary), X3 (continuous) and X5
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(continuous) are set to be homogeneous across strata, and the true coefficients of X2 (binary)

and X4 (continuous) are heterogeneous. Specifically, β1 = (β11, . . . , β1K)T = (0.5, . . . , 0.5)T ,

β3 = (β31, . . . , β3K)T = (0.3, . . . , 0.3)T , and β5 = (β51, . . . , β5K)T = (0, . . . , 0)T . The true

coefficients of X2 and X4 are each divided into G distinct-valued groups, G 6 K, with δ

controlling the gap between values of distinct groups (i.e., signal strength) and G ∈ {1, 2, 3}.

Note that G = 1 corresponds to the MCAR setting, where the true responses-covariate rela-

tionships are homogeneous and independent of the missing-data patterns; in this case, we let

β2 = (β21, . . . , β2K)T = (0.3, . . . , 0.3)T and β4 = (β41, . . . , β4K)T = (0, . . . , 0)T . When G = 2,

we split elements in β2 and β4 into two clusters based on binomial draws Binom(K, 1/G) and

discard draws with only one group; the coefficients are then set so that one cluster is larger

than the other by δ. For example, we set β2 = (0.3, 0.3+δ, 0.3, 0.3, 0.3, 0.3+δ, 0.3, 0.3+δ)T and

β4 = (0, δ, 0, 0, 0, δ, 0, δ)T . The clusterings of β2 and β4 are aligned for ease of presentation

but is not required. Similarly, we create heterogeneous groups for G = 3 by subtracting δ

from coefficients in the third cluster.

Our method is compared with (a) the homogeneous GEE assuming MCAR, (b) the strat-

ified GEE, and (c) a two-stage GEE approach described as follows: based on a test for

parameter homogeneity (8), use (a) if fail to reject the null (MCAR) and (b) otherwise.

The metrics we use to evaluate the methods include mean squared errors of the estimated

coefficients and the average number of groups estimated.

[Table 1 about here.]

Table 1 summarizes results for the linear model with the independent working correlation

R(·) = I, averaged from 100 replications. Results for the proposed fusion learning method

are reported for sparsity tuning levels α = 0, 0.5, 1 and adaptive, where α is the ratio between

variable selection and fusion penalties. When G = 1 and β1, . . . ,β5 are all homogeneous,

the proposed method (α = 0) has consistently smaller MSE than stratified and two-stage
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GEE approaches, and close to the benchmark homogeneous GEE method. As δ becomes

larger in β2 and β4 when G = 2 or 3, the homogeneous method becomes worse in estimating

β2 and β4. In comparison, the stratified and two-stage GEE methods yield smaller MSE

for β2 and β4 when δ = 0.3, but have very large MSE for estimating β1, β3 and β5. The

fusion only method (α = 0) produces small MSE for all β when G > 1. Additional results

for the combined fusion and sparsity method (α = 0.5, 1) suggest improved estimation of

β4 and β5, which contains zero coefficient clusters, but also introduces bias to β1, β2 and

β3 as expected for all shrinkage estimators. The adaptive tuning method provides balanced

performance for all coefficients.

Table 2 summarizes results for the linear model using exchangeable working correlation

matrix, averaged from 100 replications. By considering the dependency between longitudinal

outcomes, we show general improvement in estimation efficiency reflected in MSE for all

methods when compared to Table 1. Comparing between methods, all conclusions remain

similar as to those drawn from Table 1. The distributions of estimates across all simulation

replicates for all settings are plotted in Figure 2. The histograms show better separation of

peaks for β2 and β4 as δ increases, and better concentration at zero for truly zero coefficients

as α increases. The distributions of β1 and β2 are wider because X1 and X2 are binary

covariates thus have larger variance estimates. In general, the proposed method is able to

adequately detect parameter heterogeneity and cluster estimates into sensible groups. Web

Appendix D illustrates through boxplots the performance of fusion learning procedure in

selecting the right number of clusters.

[Table 2 about here.]

[Figure 2 about here.]

Similarly, simulation experiments for the logistic model with binary outcomes, which

mimics the actual real data analysis in Section 7, are performed and given in Web Appendix
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D. Results remain largely consistent with findings in the linear model in that we see generally

smaller MSE in our method than other stratified methods; and we observe comparable MSE

in our method for the truly homogeneous covariates and smaller MSE for truly heterogeneous

covariates, in comparison to the homogeneous method.

7. Application: Intern Health Study

As discussed in Section 2, the goal of the IHS is to identify risk factors that predict suici-

dal ideation (SI). Our sample consists of 2,467 qualified subjects recruited across medical

institutes in the U.S. between 2012 and 2014, who have at least two consecutive study

responses. Four baseline covariates of interest are age, gender, baseline SI and score of

psychological health from Patient Health Questionnaire (PHQ) (Kroenke et al., 2001), and

four time-dependent risk factors are PHQ score, anxiety score from General Anxiety Disorder

questionnaire (GAD) (Spitzer et al., 2006), binary indicator of whether conducted medical

error in the past three month (MEDERR) and average work hours in the past three month

(HOUR). Over 30% of the sample have at least one nonresponse, and exhibits K = 8

distinct missing-data patterns as shown in Figure 1. Continuous covariates are standardized

in subsequent data analysis. See Web Appendix E for a summary of variables in their original

scales, stratified by missing-data patterns.

Originally proposed analysis stratifies subjects by missing-data patterns due to the concern

that missingness may be nonignorable, and that the predictive effects of risk factors on

suicidal ideation are dependent on the missing-data patterns. We examine this hypothesis

by performing the test given in (8). It rejects the hypothesis that data are MCAR with high

confidence (p < 10−9), indicating a strong deviation from homogeneity and suggesting the

need of stratification via pattern-mixture structure. Thus, the application of stratification

seems to be a reasonable choice of method to analyze effects of the risk factors when MCAR

is proved to be invalid missing-data mechanism in the longitudinal data analysis.
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The stratified GEE is applied to fit stratum-wise models for the binary suicidal ideation

outcome E(SIk,ij) = µk,ij of the following form:

logit(µkij) = β0 + β1AGEi + β2SEXi + β3SIi0 + β4PHQi0

+ β5kPHQkij + β6kGADkij + β7kMEDERRkij + β8kHOURkij,

k = 1, . . . , 8, where with consultation with our collaborators, in this analysis, the baseline

coefficients are set to be homogeneous, and the effects of time-dependent risk factors are

allowed to be different on the missing-data patterns. We are interested in assessing if the

pattern-mixture model (7) pertains to an over-stratification and the effective number of

heterogeneous risk groups may be smaller than eight. In particular, we want to learn if there

exist some shared effects of the risk factors in the time-varying covariates, i.e., β5, . . . ,β8.

Stratum-specific estimating equations are weighted by the inverse of their respective sample

sizes. We set α = 0.5 to induce a moderate amount of sparsity and use EBIC to select λ.

We compare fused GEE estimates with stratified GEE estimates. Figures 3(a)-(d) overlay

the estimated values from the two methods for time-dependent covariates PHQ, GAD,

MEDERR and HOUR, respectively. The 95% confidence intervals from stratified GEE,

plotted by vertical bars, overlaps each other and do not provide informative knowledge

about coefficient clustering. On the other hand, the proposed method identifies coefficient

clusters in PHQ, MEDERR and HOUR that differ among others. Due to the sparsity

penalty, some coefficients are estimated exactly as zero, such as in GAD. The values of our

estimates are strikingly consistent with the coverage of zero by the 95% confidence intervals

from the stratified analysis. For example, the 95% confidence intervals of PHQ effects exclude

zero except for the “0011” pattern, which are in agreement with the findings from fusion

learning. Since fusion learning selects a model that is quite close to the homogeneous model

assumed under MCAR, we further examine their prediction performance by 5-fold cross-

validation. Samples from each missing-data pattern are split separately to ensure each

stratum is represented in both the training and testing sets. Prediction performance is
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evaluated by the cross-validated area under curve (AUC) from 50 replications, and the

results are summarized as boxplots in Figures 3(e)-(g) for fusion learning, homogeneous

and stratified models, respectively. Results indicate that the homogeneous GEE predicts as

good as the selected model, i.e., with comparable AUC and uncertainty. Both models have

consistently higher AUC and smaller uncertainty than the stratified GEE across patterns.

The difference between the selected model and the homogeneous model may be due to the

uncertainty in tuning and the relatively small sample sizes in some of the strata. Nevertheless,

our method provides additional protection against model misspecification with little extra

computational cost and no loss of predictability.

[Figure 3 about here.]

In summary, regression coefficients with a simplified structure is easier to interpret and

more informative than those obtained by commonly used pattern-mixture models. The

discovered grouping results may support tailored decisions being made when implementing

training and caring programs across medical institutes. The results also warrant further

validation in a future cohort with a larger sample size.

8. Concluding Remarks

Stratification is an important and widely used method in statistical analysis to address

data heterogeneity and complex interaction effects. However, it is often taken for granted

with no systematic follow-up assessment, for example, to check over-stratification and to

identify shared information or hidden homogeneity. The latter may be utilized to improve

statistical power and provide better interpretation of response-covariate relationships. The

proposed post-stratification fusion learning overcomes these shortcomings in stratification-

based analyses. While pattern-mixture models is one of the primary methods used to handle

incomplete longitudinal data under NMAR missing-data mechanism, there is no sensitivity
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analysis available in the literature to assess the influence of stratification on stratum-specific

analysis. The proposed post-stratification fusion learning fills in this critical methodology

gap. Moreover, through simulation experiments and real data analysis, we demonstrate the

usefulness of the proposed methodology in the application of pattern-mixture models.

In regard to technical advances, we generalize fusion learning to the GEE framework, allow-

ing modeling of correlated data, in particular, longitudinal data, and to handle nonignorable

missing-data issues. It can be readily applied to other correlated cases, such as spatial and

spatiotemporal data. Second, we derive asymptotically the rates permitted for the number

of strata and variables in terms of sample size to guarantee theoretical properties, which is

useful in guiding applications. Cluster memberships produced from fusion learning may be

modified to derive individualized treatment rules in longitudinal randomized trials.
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Supporting Information

Web Appendices referenced in Sections 4, 6, 7 and R code implementing the method are

available with this paper at the Biometrics website on Wiley Online Library.
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Figure 1. Response availability across the four longitudinal follow-up visits for IHS
participants, grouped into eight response patterns. Black color indicates responses, and white
color indicates nonresponses.
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Figure 2. Histograms of coefficient estimates in the linear model with exchangeable
working correlation matrix. This figure appears in color in the electronic version of this
article.
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(d) HOUR
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(f) Homogeneous GEE
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(g) Heterogeneous GEE
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Figure 3. Coefficient estimates from fusion learning and stratified GEE (with 95% confi-
dence intervals), by missing-data patterns, of time-dependent covariates PHQ (a), GAD (b),
MEDERR (c) and HOUR (d). Boxplots of AUC from cross-validation repeated 50 times by
missing-data patterns for fusion learning (e), homogeneous (f) and heterogeneous GEE (g).
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Table 1
Mean squared error (×100) of GEE coefficient estimates in the linear model with independent working correlation

matrix (i.e., working correlation matrix mis-specified).

G δ Method β1 β2 β3 β4 β5

β1 = 0.5 β2 = 0.3 β3 = 0.3 β4 = 0 β5 = 0

1 0.0 Homogeneous 0.158 0.144 0.041 0.056 0.044
1 0.0 Stratified 1.215 1.185 0.357 0.425 0.380
1 0.0 Two-stage 0.321 0.353 0.089 0.113 0.108
1 0.0 Proposed (α = 0) 0.300 0.278 0.058 0.102 0.067
1 0.0 Proposed (α = 0.5) 0.328 0.312 0.064 0.046 0.033
1 0.0 Proposed (α = 1) 0.553 0.808 0.088 0.032 0.013
1 0.0 Proposed (adaptive) 0.549 0.725 0.069 0.045 0.015

β1 = 0.5 β2 ∈ {0.3, 0.3 + δ}8 β3 = 0.3 β4 ∈ {0, δ}8 β5 = 0

2 0.1 Homogeneous 0.156 0.361 0.041 0.273 0.045
2 0.1 Stratified 1.215 1.185 0.357 0.425 0.380
2 0.1 Two-stage 0.544 0.655 0.136 0.325 0.159
2 0.1 Proposed (α = 0) 0.362 0.521 0.062 0.318 0.060
2 0.1 Proposed (α = 0.5) 0.430 0.562 0.061 0.355 0.031
2 0.1 Proposed (α = 1) 0.619 0.989 0.101 0.380 0.031
2 0.1 Proposed (adaptive) 0.612 0.874 0.073 0.432 0.021

2 0.3 Homogeneous 0.155 2.097 0.042 2.011 0.049
2 0.3 Stratified 1.215 1.185 0.357 0.425 0.380
2 0.3 Two-stage 1.215 1.185 0.357 0.425 0.380
2 0.3 Proposed (α = 0) 0.535 1.171 0.057 0.244 0.062
2 0.3 Proposed (α = 0.5) 0.539 1.216 0.049 0.203 0.026
2 0.3 Proposed (α = 1) 0.691 1.459 0.080 0.191 0.022
2 0.3 Proposed (adaptive) 0.644 1.398 0.072 0.203 0.004

β1 = 0.5 β2 ∈ {0.3, 0.3± δ}8 β3 = 0.3 β4 ∈ {0,±δ}8 β5 = 0

3 0.1 Homogeneous 0.154 0.726 0.041 0.642 0.045
3 0.1 Stratified 1.215 1.185 0.357 0.425 0.380
3 0.1 Two-stage 1.015 1.102 0.292 0.489 0.298
3 0.1 Proposed (α = 0) 0.558 0.900 0.071 0.553 0.079
3 0.1 Proposed (α = 0.5) 0.538 0.948 0.065 0.551 0.038
3 0.1 Proposed (α = 1) 0.691 1.310 0.095 0.556 0.029
3 0.1 Proposed (adaptive) 0.682 1.286 0.084 0.565 0.032

3 0.3 Homogeneous 0.153 5.434 0.043 5.352 0.051
3 0.3 Stratified 1.215 1.185 0.357 0.425 0.380
3 0.3 Two-stage 1.215 1.185 0.357 0.425 0.380
3 0.3 Proposed (α = 0) 0.619 1.463 0.051 0.457 0.080
3 0.3 Proposed (α = 0.5) 0.574 1.423 0.067 0.382 0.024
3 0.3 Proposed (α = 1) 0.686 1.453 0.089 0.295 0.014
3 0.3 Proposed (adaptive) 0.631 1.423 0.069 0.357 0.006
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Table 2
Mean squared error (×100) of GEE coefficient estimates in the linear model with exchangeable working correlation

matrix (i.e., working correlation matrix correctly specified).

G δ Method β1 β2 β3 β4 β5

β1 = 0.5 β2 = 0.3 β3 = 0.3 β4 = 0 β5 = 0

1 0.0 Homogeneous 0.101 0.081 0.021 0.030 0.026
1 0.0 Stratified 0.787 0.741 0.208 0.257 0.225
1 0.0 Two-stage 0.202 0.173 0.047 0.068 0.055
1 0.0 Proposed (α = 0) 0.142 0.085 0.023 0.029 0.026
1 0.0 Proposed (α = 0.5) 0.132 0.090 0.023 0.009 0.005
1 0.0 Proposed (α = 1) 0.173 0.346 0.028 0.002 0.001
1 0.0 Proposed (adaptive) 0.163 0.288 0.022 0.010 0.000

β1 = 0.5 β2 ∈ {0.3, 0.3 + δ}8 β3 = 0.3 β4 ∈ {0, δ}8 β5 = 0

2 0.1 Homogeneous 0.102 0.300 0.021 0.249 0.027
2 0.1 Stratified 0.787 0.741 0.208 0.257 0.225
2 0.1 Two-stage 0.451 0.519 0.114 0.269 0.122
2 0.1 Proposed (α = 0) 0.155 0.317 0.023 0.243 0.027
2 0.1 Proposed (α = 0.5) 0.136 0.318 0.023 0.259 0.004
2 0.1 Proposed (α = 1) 0.126 0.644 0.037 0.239 0.008
2 0.1 Proposed (adaptive) 0.205 0.500 0.026 0.323 0.003

2 0.3 Homogeneous 0.107 2.039 0.023 1.993 0.029
2 0.3 Stratified 0.787 0.741 0.208 0.257 0.225
2 0.3 Two-stage 0.787 0.741 0.208 0.257 0.225
2 0.3 Proposed (α = 0) 0.195 0.820 0.027 0.100 0.026
2 0.3 Proposed (α = 0.5) 0.202 0.859 0.028 0.074 0.006
2 0.3 Proposed (α = 1) 0.240 1.004 0.027 0.064 0.002
2 0.3 Proposed (adaptive) 0.222 0.914 0.027 0.056 0.000

β1 = 0.5 β2 ∈ {0.3, 0.3± δ}8 β3 = 0.3 β4 ∈ {0,±δ}8 β5 = 0

3 0.1 Homogeneous 0.099 0.67 0.021 0.623 0.027
3 0.1 Stratified 0.787 0.741 0.208 0.257 0.225
3 0.1 Two-stage 0.716 0.75 0.191 0.302 0.204
3 0.1 Proposed (α = 0) 0.213 0.667 0.022 0.438 0.027
3 0.1 Proposed (α = 0.5) 0.203 0.711 0.024 0.453 0.004
3 0.1 Proposed (α = 1) 0.277 1.021 0.031 0.414 0.003
3 0.1 Proposed (adaptive) 0.229 0.986 0.023 0.464 0.008

3 0.3 Homogeneous 0.105 5.360 0.024 5.338 0.030
3 0.3 Stratified 0.787 0.741 0.208 0.257 0.225
3 0.3 Two-stage 0.787 0.741 0.208 0.257 0.225
3 0.3 Proposed (α = 0) 0.207 1.048 0.026 0.21 0.026
3 0.3 Proposed (α = 0.5) 0.196 1.044 0.025 0.18 0.006
3 0.3 Proposed (α = 1) 0.232 1.023 0.027 0.155 0.003
3 0.3 Proposed (adaptive) 0.190 1.039 0.023 0.171 0.000


