Supporting Information for "Cluster Non-Gaussian Functional Data" by

Qingzhi Zhong¹, Huazhen Lin^{1*}, Yi Li²

1. Center of Statistical Research and School of Statistics,

Southwestern University of Finance and Economics, Chengdu, China 611130

2. Department of Biostatistics,

University of Michigan, Ann Arbor, MI48109, USA

*email: linhz@swufe.edu.cn

1 Web Appendix A: Notations

$$\begin{split} &U_{n} = \{ \boldsymbol{\alpha}' \mathbf{B}_{n}(t) : \boldsymbol{\alpha} = (\alpha_{1}, \cdots, \alpha_{q_{n}})' \in \mathcal{R}^{q_{n}}, \max_{1 \leq i \leq q_{n}} |\alpha_{i}| \leq c_{0}, t \in [0, 1] \}, \\ &\Phi_{n} = \{ \boldsymbol{\beta}' \mathbf{B}_{n}(t) : \boldsymbol{\beta} = (\beta_{1}, \cdots, \beta_{q_{n}})' \in \mathcal{R}^{q_{n}}, \max_{1 \leq i \leq q_{n}} |\beta_{i}| \leq c_{0}, t \in [0, 1] \}, \\ &\Omega_{n}^{*} = \{ \boldsymbol{\Omega}_{n} = (\boldsymbol{\Lambda}', \boldsymbol{\sigma}^{2'}, \boldsymbol{\pi}', \boldsymbol{\mu}', \boldsymbol{\phi}')' \in \mathcal{R}^{\sum_{g=1}^{C} K_{g}}_{g=1} \otimes \mathcal{R}^{C}_{+} \otimes [0, 1]^{C} \otimes U_{n}^{C} \otimes \Phi_{n}^{\sum_{g=1}^{C} K_{g}} \}, \\ &d(\boldsymbol{\Omega}_{1}, \boldsymbol{\Omega}_{2}) = \left(\| \boldsymbol{\Lambda}_{1} - \boldsymbol{\Lambda}_{2} \|^{2} + \| \boldsymbol{\sigma}_{1}^{2} - \boldsymbol{\sigma}_{2}^{2} \|^{2} + \| \boldsymbol{\pi}_{1} - \boldsymbol{\pi}_{2} \|^{2} + \| \boldsymbol{\mu}_{1} - \boldsymbol{\mu}_{2} \|_{2}^{2} + \| \boldsymbol{\phi}_{1} - \boldsymbol{\phi}_{2} \|_{2}^{2} \right)^{1/2}, \\ &\sigma_{ij,g}(\boldsymbol{\Omega}_{n}) = \phi_{g}(t_{ij})' \boldsymbol{\Lambda}_{g} \phi_{g}(t_{ij}) + \sigma_{g}^{2}, \\ &G(\omega; y, \boldsymbol{\Omega}_{n}) = E\left[\sum_{g=1}^{C} \pi_{g0} \Phi\left\{\frac{H_{0}(y) - \mu_{g0}(t_{ij})}{\sqrt{\sigma_{ij,g}(\boldsymbol{\Omega}_{0})}}\right\} - \pi_{g} \Phi\left\{\frac{\omega - \mathbf{B}_{n}(t_{ij})' \boldsymbol{\alpha}_{g}}{\sqrt{\sigma_{ij,g}(\boldsymbol{\Omega}_{n})}}\right\} \right], \\ &G_{n}(\omega; y, \boldsymbol{\Omega}_{n}) = \frac{1}{\sum_{i=1}^{C} n_{i}} \sum_{i=1}^{n} \sum_{j=1}^{n_{i}} \left[I\left(Y_{ij} \leq y\right) - \sum_{g=1}^{C} \pi_{g} \Phi\left\{\frac{\omega - \mathbf{B}_{n}(t_{ij})' \boldsymbol{\alpha}_{g}}{\sqrt{\sigma_{ij,g}(\boldsymbol{\Omega}_{n})}}\right\} \right], \\ &l_{i}(\boldsymbol{\Omega}_{n}; H) = \log\left\{\sum_{g=1}^{C} \pi_{g} f_{gi}(\boldsymbol{\Omega}_{n}; H)\right\} - \lambda \sum_{g=1}^{C} \log\left\{\frac{\epsilon + \pi_{g}}{\epsilon}\right\} \\ &Pl(\boldsymbol{\Omega}_{n}; H) = El_{i}(\boldsymbol{\Omega}_{n}; H), P_{n}l(\boldsymbol{\Omega}_{n}; H) = \frac{1}{n} \sum_{i=1}^{n} l_{i}(\boldsymbol{\Omega}_{n}; H). \end{split}$$

Writing $\sqrt{n}(P_n - P)l(\mathbf{\Omega}_n; H)$ for the empirical process indexed by $l_i(\mathbf{\Omega}_n; H)$. $\widehat{H}_n(y; \mathbf{\Omega}_n)$ is the estimator of H(y) given $\mathbf{\Omega}_n$ and is the solution of (3.17) with respect to H(y).

2 Web Appendix B: Lemmas

In this section, we sketch the proofs of Theorems 1-3 of the paper. To prove Theorems 1-3, we will employ the theory of empirical processes, and some techniques commonly used in semiparametric literature. Define the class of functions $\mathcal{L}_n =$ $\{l_i(\Omega_n; \widehat{H}_n(\cdot; \Omega_n)) : \Omega_n \in \Omega_n^*\}$. For any $\varepsilon > 0$, the $L_1(P_n)$ covering number $N(\varepsilon, \mathcal{L}_n, L_1(P_n))$ of \mathcal{L}_n is the smallest value κ for which there exist $\{\Omega_{n,j} \in \Omega_n^*, j = 1, \cdots, \kappa\}$, such that for any $\Omega_n \in \Omega_n^*$,

$$\min_{j\in\{1,\cdots,\kappa\}} \frac{1}{n} \sum_{i=1}^{n} |l_i(\boldsymbol{\Omega}_n; \widehat{H}_n(\cdot; \boldsymbol{\Omega}_n)) - l_i(\boldsymbol{\Omega}_{n,j}; \widehat{H}_n(\cdot; \boldsymbol{\Omega}_{n,j}))| \le \varepsilon.$$

We will define $N(\varepsilon, \mathcal{L}_n, L_1(P_n)) = \infty$ if no such κ exists. To obtain the proofs, we first give some lemmas.

Lemma 1 By Lemma 2.5 and Corollary 2.6 in Van de Geer (2000), we can get the covering number of Ω_n^* satisfying

$$N(\varepsilon, \mathbf{\Omega}_n^*, L_2) \le c_1 c_0^K M_n^d \cdot \varepsilon^{-(d+K+2C)},$$

where c_0, c_1 are finite constants independent of n, K, and $K = \sum_{g=1}^{C} K_g$, $d = (K + C)q_n$.

Lemma 2 Assume that Conditions (C1)-(C5) hold, then

$$\sup_{n\in\mathbf{\Omega}_n^*, y\in[y_1, y_2]} |\widehat{H}_n(y; \mathbf{\Omega}_n) - H(y; \mathbf{\Omega}_n)| \to 0,$$

where $H(y; \mathbf{\Omega}_n)$ is the solution to

Ω

$$G(H(y; \mathbf{\Omega}_n); y, \mathbf{\Omega}_n) = 0, \qquad (2.1)$$

for any given $\Omega_n \in \Omega_n^*, y \in [y_1, y_2]$.

Proof: We first prove the existence of $\widehat{H}_n(y; \Omega_n)$, then uniform convergence of $\widehat{H}_n(y; \Omega_n)$ to $H(y; \Omega_n)$ for $y \in [y_1, y_2]$ and $\Omega_n \in \Omega_n^*$. By the Lemma 1 and Theorem 19.4 of Van der Vaart (1998), Ω_n^* is P-Glivenko-Cantelli class. Since $\pi_g \Phi \left\{ \frac{H_0(y) - \mathbf{B}_n(t_{ij})' \alpha_g}{\sqrt{\sigma_{ij,g}}(\Omega_n)} - \vartheta \right\}$ is a continuous function on Ω_n^* and the indicator function class is VC, and both are bounded by 1. Then by Theorem 3.7 of Van de Geer (2000) and the monotonicity of $H_0(y)$, we have

$$\frac{1}{\sum_{i=1}^{C} n_i} \sum_{i=1}^{n} \sum_{j=1}^{n_i} \left[I\left(Y_{ij} \le y\right) - \sum_{g=1}^{C} \pi_g \Phi \left\{ \frac{H_0(y) - \mathbf{B}_n(t_{ij})' \boldsymbol{\alpha}_g}{\sqrt{\sigma_{ij,g}(\boldsymbol{\Omega}_n)}} - \vartheta \right\} \right]$$

$$\rightarrow \sum_{g=1}^{C} E \left[\pi_{g0} \Phi \left\{ \frac{H_0(y) - \mu_{g0}(t_{ij})}{\sqrt{\sigma_{ij,g}(\boldsymbol{\Omega}_0)}} \right\} - \pi_g \Phi \left\{ \frac{H_0(y) - \mathbf{B}_n(t_{ij})' \boldsymbol{\alpha}_g}{\sqrt{\sigma_{ij,g}(\boldsymbol{\Omega}_n)}} - \vartheta \right\} \right], \quad (2.2)$$

almost surely as $n \to \infty$, for any $\vartheta \ge 0$, and uniformly for $\Omega_n \in \Omega_n^*$ and $y \in [y_1, y_2]$.

By (2.2), for large n and sufficiently large ϑ ,

$$\frac{1}{\sum_{i=1}^{C} n_i} \sum_{i=1}^{n} \sum_{j=1}^{n_i} \left[I\left(Y_{ij} \le y\right) - \sum_{g=1}^{C} \pi_g \Phi\left\{\frac{H_0(y) - \mathbf{B}_n(t_{ij})' \boldsymbol{\alpha}_g}{\sqrt{\sigma_{ij,g}(\boldsymbol{\Omega}_n)}} - \vartheta\right\} \right] > 0, \quad (2.3)$$
$$\frac{1}{\sum_{i=1}^{C} n_i} \sum_{i=1}^{n} \sum_{j=1}^{n_i} \left[I\left(Y_{ij} \le y\right) - \sum_{g=1}^{C} \pi_g \Phi\left\{\frac{H_0(y) - \mathbf{B}_n(t_{ij})' \boldsymbol{\alpha}_g}{\sqrt{\sigma_{ij,g}(\boldsymbol{\Omega}_n)}} + \vartheta\right\} \right] < 0, \quad (2.4)$$

This together with the monotonicity and continuity of Φ implies that there exists a unique $\widehat{H}_n(y; \mathbf{\Omega}_n)$ such that

$$\frac{1}{\sum_{i=1}^{C} n_i} \sum_{i=1}^{n} \sum_{j=1}^{n_i} \left[I\left(Y_{ij} \le y\right) - \sum_{g=1}^{C} \pi_g \Phi\left\{\frac{\widehat{H}_n(y; \mathbf{\Omega}_n) - \mathbf{B}_n(t_{ij})' \mathbf{\alpha}_g}{\sqrt{\sigma_{ij,g}(\mathbf{\Omega}_n)}}\right\} \right] = 0.$$
(2.5)

Furthermore, by Lemma 1 and the uniform strong law of large numbers, we have

$$G_n(H(y; \mathbf{\Omega}_n); y, \mathbf{\Omega}_n) \to G(H(y; \mathbf{\Omega}_n); y, \mathbf{\Omega}_n),$$

uniformly for $y \in [y_1, y_2]$ and $\Omega_n \in \Omega_n^*$.

Denote $\zeta_n = \sup_{\Omega_n \in \Omega_n^*, y \in [y_1, y_2]} \|G_n(H(y; \Omega_n); y, \Omega_n)\|$, by the definition of $G(H(y; \Omega_n); y, \Omega_n)$ in Supplementary 1 and the definition of $H(y; \Omega_n)$ in (2.1), we have $G(H(y; \Omega_n); y, \Omega_n) =$ 0, hence $\zeta_n \to 0$. Note that

$$G_n(\widehat{H}_n(y;\boldsymbol{\Omega}_n);y,\boldsymbol{\Omega}_n) = G_n(\widehat{H}_n(y;\boldsymbol{\Omega}_n);y,\boldsymbol{\Omega}_n) - G_n(H(y;\boldsymbol{\Omega}_n);y,\boldsymbol{\Omega}_n) + G_n(H(y;\boldsymbol{\Omega}_n);y,\boldsymbol{\Omega}_n),$$

we have

$$0 = \|G_n(\widehat{H}_n(y; \mathbf{\Omega}_n); y, \mathbf{\Omega}_n)\| \ge M \|\widehat{H}_n(y; \mathbf{\Omega}_n) - H(y; \mathbf{\Omega}_n)\| - \zeta_n$$

and hence $\widehat{H}_n(y; \mathbf{\Omega}_n) \to H(y; \mathbf{\Omega}_n)$ uniformly in $y \in [y_1, y_2]$ and $\mathbf{\Omega}_n \in \mathbf{\Omega}_n^*$.

Lemma 3 Under Conditions (C1)-(C5), the covering number of \mathcal{L}_n satisfies

$$N(\varepsilon, \mathcal{L}_n, L_1(P_n)) \le c_1 c_0^K M_n^d \cdot \varepsilon^{-(d+K+2C)}.$$

Proof: For any $\Omega^{(1)} = (\Lambda^{(1)'}, \sigma^{(1)^{2'}}, \pi^{(1)'}, \mu^{(1)'}, \phi^{(1)'})', \Omega^{(2)} = (\Lambda^{(2)'}, \sigma^{(2)^{2'}}, \pi^{(2)'}, \mu^{(2)'}, \phi^{(2)'})' \in \Omega_n^*$. By using the Taylor expansion and $\lambda \sqrt{n} \to 0$, we have

$$|l_{i}(\mathbf{\Omega}^{(1)}; H(\cdot; \mathbf{\Omega}^{(1)})) - l_{i}(\mathbf{\Omega}^{(2)}; H(\cdot; \mathbf{\Omega}^{(2)}))| \leq M(\|\mathbf{\Lambda}^{(1)} - \mathbf{\Lambda}^{(2)}\| + \|\boldsymbol{\sigma}^{(1)^{2}} - \boldsymbol{\sigma}^{(2)^{2}}\| + \|\boldsymbol{\pi}^{(1)} - \boldsymbol{\pi}^{(2)}\| + \sum_{g=1}^{C} \|\boldsymbol{\mu}_{g}^{(1)} - \boldsymbol{\mu}_{g}^{(2)}\|_{\infty} + \sum_{g=1}^{C} \sum_{k=1}^{K_{g}} \|\boldsymbol{\phi}_{gk}^{(1)} - \boldsymbol{\phi}_{gk}^{(2)}\|_{\infty}).$$

$$(2.6)$$

Note that

$$\begin{aligned} \|\mu_{g}^{(1)} - \mu_{g}^{(2)}\|_{\infty} &= \sup_{t} |\sum_{j=1}^{q_{n}} \alpha_{gj}^{(1)} b_{j}(t) - \sum_{j=1}^{q_{n}} \alpha_{gj}^{(2)} b_{j}(t)| \\ &\leq M \max_{1 \leq j \leq q_{n}} |\alpha_{gj}^{(1)} - \alpha_{gj}^{(2)}| = M \|\boldsymbol{\alpha}_{g}^{(1)} - \boldsymbol{\alpha}_{g}^{(2)}\|_{\infty}. \end{aligned}$$

Similarly, we can have $\|\phi_{gk}^{(1)} - \phi_{gk}^{(2)}\|_{\infty} \leq M \|\beta_{gk}^{(1)} - \beta_{gk}^{(2)}\|_{\infty}$. Then by (2.6), we have that

$$P_{n}|l(\mathbf{\Omega}^{(1)}; H(\cdot; \mathbf{\Omega}^{(1)})) - l(\mathbf{\Omega}^{(2)}; H(\cdot; \mathbf{\Omega}^{(2)}))| \leq M(\|\mathbf{\Lambda}^{(1)} - \mathbf{\Lambda}^{(2)}\| + \|\boldsymbol{\sigma}^{(1)^{2}} - \boldsymbol{\sigma}^{(2)^{2}}\| + \|\boldsymbol{\pi}^{(1)} - \boldsymbol{\pi}^{(2)}\| + \sum_{g=1}^{C} \|\boldsymbol{\alpha}_{g}^{(1)} - \boldsymbol{\alpha}_{g}^{(2)}\|_{\infty} + \sum_{g=1}^{C} \sum_{k=1}^{K_{g}} \|\boldsymbol{\beta}_{gk}^{(1)} - \boldsymbol{\beta}_{gk}^{(2)}\|_{\infty}).$$

$$(2.7)$$

By the uniform convergence of $\widehat{H}_n(y; \mathbf{\Omega}_n)$ to $H(y; \mathbf{\Omega}_n)$ in Lemma 2, we have

$$P_n l(\mathbf{\Omega}_n; \widehat{H}_n(\cdot; \mathbf{\Omega}_n)) = P_n l(\mathbf{\Omega}_n; H(\cdot; \mathbf{\Omega}_n)) + o_p(1).$$

This combining with (2.7) implies that, given $\Omega \in \Omega_n^*$, there exists $\Omega^{(j)} = (\Lambda^{(j)'}, \sigma^{(j)'}, \pi^{(j)'}, \mu^{(j)'}, \phi^{(j)'})' \in \Omega_n^*$ such that

$$P_{n}|l((\mathbf{\Omega};\widehat{H}_{n}(\cdot;\mathbf{\Omega})) - l(\mathbf{\Omega}^{(j)};\widehat{H}_{n}(\cdot;\mathbf{\Omega}^{(j)}))| \leq M(\|\mathbf{\Lambda} - \mathbf{\Lambda}^{(j)}\| + \|\boldsymbol{\sigma}^{2} - \boldsymbol{\sigma}^{(j)^{2}}\| + \|\boldsymbol{\pi} - \boldsymbol{\pi}^{(j)}\| + \sum_{g=1}^{C} \|\boldsymbol{\alpha}_{g} - \boldsymbol{\alpha}_{g}^{(j)}\|_{\infty} + \sum_{g=1}^{C} \sum_{k=1}^{K_{g}} \|\boldsymbol{\beta}_{gk} - \boldsymbol{\beta}_{gk}^{(j)}\|_{\infty}).$$
(2.8)

By (2.8) and Lemma 1 and following the calculation on page 94 of Van der Varrt & Weller(1996), we have

$$N(\varepsilon, \mathcal{L}_n, L_1(P_n)) \le c_1 c_0^K M_n^d \cdot \varepsilon^{-(d+K+2C)}.$$

This completes the proof.

Lemma 4 Suppose that Conditions (C1)-(C5) hold. Then

$$\sup_{\mathbf{\Omega}_n \in \mathbf{\Omega}_n^*} |P_n l(\mathbf{\Omega}_n; \widehat{H}_n(\cdot; \mathbf{\Omega}_n)) - Pl(\mathbf{\Omega}_n; H(\cdot; \mathbf{\Omega}_n))| \to 0 \text{ almost surely.}$$

Proof: Note that

$$P_n l(\boldsymbol{\Omega}_n; \widehat{H}_n(\cdot; \boldsymbol{\Omega}_n)) - Pl(\boldsymbol{\Omega}_n; H(\cdot; \boldsymbol{\Omega}_n)) = P_n l(\boldsymbol{\Omega}_n; \widehat{H}_n(\cdot; \boldsymbol{\Omega}_n)) - P_n l(\boldsymbol{\Omega}_n; H(\cdot; \boldsymbol{\Omega}_n)) + P_n l(\boldsymbol{\Omega}_n; H(\cdot; \boldsymbol{\Omega}_n)) - Pl(\boldsymbol{\Omega}_n; H(\cdot; \boldsymbol{\Omega}_n)).$$

According to uniform convergence of $\widehat{H}_n(y; \mathbf{\Omega}_n)$ in Lemma 2, we have

$$\begin{split} \sup_{\Omega_n \in \Omega_n^*} |P_n l(\Omega_n; \widehat{H}_n(\cdot; \Omega_n)) - Pl(\Omega_n; H(\cdot; \Omega_n))| &\leq \sup_{\Omega_n \in \Omega_n^*} |P_n l(\Omega_n; H(\cdot; \Omega_n)) - Pl(\Omega_n; H(\cdot; \Omega_n))| + o_p(1). \end{split}$$

Hence, we only need to prove $\sup_{\Omega_n \in \Omega_n^*} |P_n l(\Omega_n; H(\cdot; \Omega_n)) - Pl(\Omega_n; H(\cdot; \Omega_n))| \to 0. \end{split}$
By Condition (C5), let $(v + e)/2 < \phi < 1/2$ and $\alpha_n = n^{-1/2+\phi} (\log n)^{1/2}$. Here, $\{\alpha_n\}$
is a non-increasing positive numbers sequence, and for the given $\varepsilon > 0$ in Lemma 1,
let $\varepsilon_n = \varepsilon \alpha_n$. Under Condition (C2), $Pl^2(\Omega_n; H(\cdot; \Omega_n))$ is bounded. Then for any

 $\mathbf{\Omega}_n \in \mathbf{\Omega}_n^*$ and sufficiently large n, we have

$$\frac{\operatorname{var}[P_n l(\boldsymbol{\Omega}_n; H(\cdot; \boldsymbol{\Omega}_n))]}{(4\varepsilon_n)^2} \leq \frac{(1/n)Pl^2(\boldsymbol{\Omega}_n; H(\cdot; \boldsymbol{\Omega}_n))}{16\varepsilon^2\alpha_n^2} \leq \frac{c_0}{16n\varepsilon^2\alpha_n^2} \leq \frac{1}{16\varepsilon^2n^{2\phi}\log n} \leq \frac{1}{2},$$

where c_0 is finite constant independent of n.

Furthermore, by the inequality (31) and Lemma 33 of Pollard (1984) and Lemma

3, we have

$$P[\sup_{\Omega_{n}\in\Omega_{n}^{*}}|P_{n}l(\Omega_{n};H(\cdot;\Omega_{n})) - Pl(\Omega_{n};H(\cdot;\Omega_{n}))| > 8\varepsilon_{n}]$$

$$\leq 8N(\varepsilon_{n},\mathcal{L}_{n},L_{1}(P_{n}))\exp(-n\varepsilon_{n}^{2}/128)P[\sup_{\Omega_{n}\in\Omega_{n}^{*}}|P_{n}l^{2}(\Omega_{n};H(\cdot;\Omega_{n}))| \leq 64]$$

$$+P[\sup_{\Omega_{n}\in\Omega_{n}^{*}}|P_{n}l^{2}(\Omega_{n};H(\cdot;\Omega_{n}))| > 64]$$

$$\leq Mc_{0}^{K}M_{n}^{d}\cdot\varepsilon_{n}^{-(d+K+2C)}\exp(-n\varepsilon_{n}^{2}/128)$$

$$\leq M\exp[(d+K+2C)v\log n - (d+K+2C)\log\{\varepsilon n^{-1/2+\phi}(\log n)^{1/2}\} - n\varepsilon^{2}n^{-1+2\phi}\log n/128]$$

$$= M\exp[(d+K+2C)\{(v-1/2+\phi)\log n - \log\log n/2 - \log\varepsilon\} - \varepsilon^{2}n^{2\phi}\log n/128]$$

$$\leq M\exp(-Mn^{2\phi}\log n),$$

where M is a constant. Hence, $\sum_{n=1}^{\infty} P[\sup_{\Omega_n \in \Omega_n^*} |P_n l(\Omega_n; H(\cdot; \Omega_n)) - Pl(\Omega_n; H(\cdot; \Omega_n))| > 8\varepsilon_n] < \infty$. By the Borel-Cantelli lemma (Chandra, 2012, pp. 15), we have $\sup_{\Omega_n \in \Omega_n^*} |P_n l(\Omega_n; H(\cdot; \Omega_n)) - Pl(\Omega_n; H(\cdot; \Omega_n))| \to 0$ almost sure. This completes the proof.

3 Web Appendix C: Proof of Theorems 1-3

Proof of Theorem 1

The proof of Theorem 1 is split into three steps. The first step proves the consistency of $\widehat{\Omega}_n$ and $\widehat{H}_n(\cdot; \widehat{\Omega}_n)$. The second step consists of the convergence rate of $\widehat{\Omega}_n$. Finally, we obtain the selection consistency for the cluster number.

Step 1: consistency

Under Conditions (C1) and (C2), by Corollary 6.21 of Schumaker (1981), there

exist $\mu_{n,g} = \boldsymbol{\alpha}'_{g0} \mathbf{B}_n(t)$ and $\phi_{n,gk} = \boldsymbol{\beta}'_{gk0} \mathbf{B}_n(t)$ such that

$$\sup_{t \in [0,1]} |\mu_{n,g}(t) - \mu_{g0}(t)| = O(q_n^{-r}), and$$
$$\sup_{t \in [0,1]} |\phi_{n,gk}(t) - \phi_{gk0}(t)| = O(q_n^{-r}),$$

where $\mu_{g0}(\cdot)$ and $\phi_{gk0}(\cdot)$ denote the true functions of $\mu_g(\cdot)$ and $\phi_{gk}(\cdot)$, respectively, for $g = 1, \dots, C, k = 1, \dots, K_g$. Let $\Omega_{n0} = (\Lambda'_0, \sigma_0^{2'}, \pi'_0, \mu'_{n0}, \phi'_{n0})'$, where $\mu_{n0} = (\mu_{n,1}, \dots, \mu_{n,C})'$, $\phi_{n0} = (\phi_{n,gk}, g = 1, \dots, C, k = 1, \dots, K_g)'$. Then we have

$$d(\mathbf{\Omega}_0, \mathbf{\Omega}_{n0}) = O(n^{-rv + e/2}).$$
(3.1)

Let $\Theta_0 = (\pi_0', \mu_0', \Sigma_0')'$ denote the true value of $\Theta, \Theta_{n0} = (\pi_0', \mu_{n0}', \Sigma_{n0}')'$, and

$$\Sigma_{g0}(s,t) = \sum_{k=1}^{K_g} \phi_{gk0}(t) \lambda_{gk0} \phi_{gk0}(s) + \sigma_{g0}^2 I(s=t),$$

$$\Sigma_{n,g0}(s,t) = \sum_{k=1}^{K_g} \phi_{n,gk}(t) \lambda_{gk0} \phi_{n,gk}(s) + \sigma_{g0}^2 I(s=t).$$

From (3.1), we have that

$$\begin{split} \sup_{\substack{(t,s)\in[0,1]^2\\(t,s)\in[0,1]^2}} & |\Sigma_{g0}(s,t) - \Sigma_{n,g0}(s,t)| \\ \leq & \sum_{k=1}^{K_g} \lambda_{gk0} \sup_{\substack{(t,s)\in[0,1]^2\\(t,s)\in[0,1]^2}} |\phi_{gk0}(t)\phi_{gk0}(s) - \phi_{n,gk}(t)\phi_{n,gk}(s)| \\ \leq & \sum_{k=1}^{K_g} \lambda_{gk0} \Big\{ \sup_{\substack{(t,s)\in[0,1]^2\\(t,s)\in[0,1]^2}} |\phi_{gk0}(s)| |\phi_{gk0}(t) - \phi_{n,gk}(t)| + \sup_{\substack{(t,s)\in[0,1]^2\\(t,s)\in[0,1]^2}} |\phi_{n,gk}(t)| |\phi_{gk0}(s) - \phi_{n,gk}(s)| \Big\} \\ = & O(K^{1/2}q_n^{-r}). \end{split}$$

Then

$$d(\boldsymbol{\Theta}_{\mathbf{n0}}, \boldsymbol{\Theta}_{\mathbf{0}}) = O(n^{-rv+e/2}).$$
(3.2)

Let $M_i(\boldsymbol{\Omega}_n; \widehat{H}_n(\cdot; \boldsymbol{\Omega}_n)) = -l_i(\boldsymbol{\Omega}_n; \widehat{H}_n(\cdot; \boldsymbol{\Omega}_n))$, and $PM(\boldsymbol{\Omega}_n; \widehat{H}_n(\cdot; \boldsymbol{\Omega}_n)) = E\{M_i(\boldsymbol{\Omega}_n; \widehat{H}_n(\cdot; \boldsymbol{\Omega}_n))\}$, where "E" is expection over *i*. $P_nM(\boldsymbol{\Omega}_n; \widehat{H}_n(\cdot; \boldsymbol{\Omega}_n)) = \frac{1}{n} \sum_{i=1}^n M_i(\boldsymbol{\Omega}_n; \widehat{H}_n(\cdot; \boldsymbol{\Omega}_n))$, $K_{\varsigma} = \{ \Omega_n : d(\Omega_n, \Omega_{n0}) \ge \varsigma, \Omega_n \in \Omega_n^* \}$ for $\varsigma > 0$. Then, we have

$$\inf_{K_{\varsigma}} PM(\boldsymbol{\Omega}_{n}; \widehat{H}_{n}(\cdot; \boldsymbol{\Omega}_{n})) = \inf_{K_{\varsigma}} \left[PM(\boldsymbol{\Omega}_{n}; \widehat{H}_{n}(\cdot; \boldsymbol{\Omega}_{n})) - P_{n}M(\boldsymbol{\Omega}_{n}; \widehat{H}_{n}(\cdot; \boldsymbol{\Omega}_{n})) + P_{n}M(\boldsymbol{\Omega}_{n}; \widehat{H}_{n}(\cdot; \boldsymbol{\Omega}_{n})) \right] \\
\leq \zeta_{1n} + \inf_{K_{\varsigma}} P_{n}M(\boldsymbol{\Omega}_{n}; \widehat{H}_{n}(\cdot; \boldsymbol{\Omega}_{n})),$$
(3.3)

where $\zeta_{1n} = \sup_{\mathbf{\Omega}_n \in \mathbf{\Omega}_n^*} |P_n M(\mathbf{\Omega}_n; \widehat{H}_n(\cdot; \mathbf{\Omega}_n)) - P M(\mathbf{\Omega}_n; \widehat{H}_n(\cdot; \mathbf{\Omega}_n))|.$

If $\widehat{\Omega}_n \in K_{\varsigma}$, one can show that

$$\inf_{K_{\varsigma}} P_n M(\boldsymbol{\Omega}_n; \widehat{H}_n(\cdot; \boldsymbol{\Omega}_n)) = P_n M(\widehat{\boldsymbol{\Omega}}_n; \widehat{H}_n(\cdot; \widehat{\boldsymbol{\Omega}}_n))
\leq P_n M(\boldsymbol{\Omega}_{n0}; \widehat{H}_n(\cdot; \boldsymbol{\Omega}_{n0})) = \zeta_{2n} + P M(\boldsymbol{\Omega}_{n0}; \widehat{H}_n(\cdot; \boldsymbol{\Omega}_{n0})),$$
(3.4)

with $\zeta_{2n} = P_n M(\mathbf{\Omega}_{n0}; \widehat{H}_n(\cdot; \mathbf{\Omega}_{n0})) - PM(\mathbf{\Omega}_{n0}; \widehat{H}_n(\cdot; \mathbf{\Omega}_{n0}))$. By (3.3) and (3.4), we have

$$\inf_{K_{\varsigma}} PM(\boldsymbol{\Omega}_{n}; \widehat{H}_{n}(\cdot; \boldsymbol{\Omega}_{n})) \leq \zeta_{1n} + \zeta_{2n} + PM(\boldsymbol{\Omega}_{n0}; \widehat{H}_{n}(\cdot; \boldsymbol{\Omega}_{n0})) = \zeta_{n} + PM(\boldsymbol{\Omega}_{n0}; \widehat{H}_{n}(\cdot; \boldsymbol{\Omega}_{n0})),$$

with $\zeta_n = \zeta_{1n} + \zeta_{2n}$. It is obvious that $\zeta_n \ge \delta_{\varsigma} \cong \inf_{K_{\varsigma}} PM(\mathbf{\Omega}_n; \widehat{H}_n(\cdot; \mathbf{\Omega}_n)) - PM(\mathbf{\Omega}_{n0}; \widehat{H}_n(\cdot; \mathbf{\Omega}_{n0}))$ which is larger than zero under condition $\lambda \sqrt{n} \to 0$ when *n* is large enough. Hence

$$\{\widehat{\mathbf{\Omega}}_n \in K_\varsigma\} \subseteq \{\zeta_n \ge \delta_\varsigma\}.$$

$$(3.5)$$

By Lemma 2 and Law of Large Numbers, we have $\zeta_{1n} \to 0$ and $\zeta_{2n} \to 0$ then $\zeta_n \to 0$ almost surely. Hence, when *n* is large enough $\bigcup_{i=1}^{\infty} \bigcap_{n=i}^{\infty} \{\zeta_n \ge \delta_{\varsigma}\}$ is null set. By (3.5), we have $\bigcup_{i=1}^{\infty} \bigcap_{n=i}^{\infty} \{\widehat{\Omega}_n \in K_{\varsigma}\}$ is null set. Coupling with the definition of K_{ς} , we have

$$d(\widehat{\mathbf{\Omega}}_n, \mathbf{\Omega}_{n0}) \to 0, \tag{3.6}$$

almost surely as $n \to \infty$. This together with (3.1), we have $d(\widehat{\Omega}_n, \Omega_0) \to 0$. Further-

more, since

$$\widehat{\Sigma}_{g}(s,t) - \Sigma_{n,g0}(s,t) = \sum_{k=1}^{K_{g}} \left\{ \widehat{\lambda}_{gk} \widehat{\phi}_{gk}(t) \widehat{\phi}_{gk}(s) - \lambda_{gk0} \phi_{n,gk}(t) \phi_{n,gk}(s) \right\} + (\widehat{\sigma}_{g}^{2} - \sigma_{g0}^{2}) I(s=t) \\
= \sum_{k=1}^{K_{g}} \widehat{\lambda}_{gk} \left[\widehat{\phi}_{gk}(t) \left\{ \widehat{\phi}_{gk}(s) - \phi_{n,gk}(s) \right\} + \phi_{n,gk}(s) \left\{ \widehat{\phi}_{gk}(t) - \phi_{n,gk}(t) \right\} \right] \\
+ \{ \widehat{\lambda}_{gk} - \lambda_{gk0} \} \phi_{n,gk}(t) \phi_{n,gk}(s) + (\widehat{\sigma}_{g}^{2} - \sigma_{g0}^{2}) I(s=t), \quad (3.7)$$

therefore $\widehat{\Sigma}_g(s,t) \to \Sigma_{n,g0}(s,t)$ almost surely for $g = 1, \dots, C$ by (3.6). Then $d(\widehat{\Theta}_n, \Theta_{n0}) \to 0$, together with (3.2), we prove $d(\widehat{\Theta}_n, \Theta_0) \to 0$. Since $\widehat{H}_n(y) \equiv \widehat{H}_n(y; \widehat{\Omega}_n)$, coupling with Lemma 2, we have $\widehat{H}_n(y) \to H_0(y)$ uniformly in $y \in [y_1, y_2]$.

Step 2: convergence rate

To show the convergence rate, for any $\eta > 0$, define class $\mathcal{L}_{\eta} = \{l_i(\Omega_n; \hat{H}_n(\cdot; \Omega_n)) - l_i(\Omega_{n0}; \hat{H}_n(\cdot; \Omega_{n0})) : \Omega_n \in \Omega_n^*, \eta/2 \leq d(\Omega_n, \Omega_{n0}) \leq \eta\}$, and $P[l(\Omega_n; \hat{H}_n(\cdot; \Omega_n)) - l(\Omega_{n0}; \hat{H}_n(\cdot; \Omega_{n0}))] = E[l_i(\Omega_n; \hat{H}_n(\cdot; \Omega_n)) - l_i(\Omega_{n0}; \hat{H}_n(\cdot; \Omega_{n0}))]$. Following the calculation of Shen and Wong (1994, p.597), for $0 < \varepsilon < \eta$, we can establish that $\log N_{[]}(\varepsilon, \mathcal{L}_{\eta}, L_2(P)) \leq MKq_n \log(\eta/\varepsilon)$. Moreover, for large n and $\lambda\sqrt{n} \to 0$, we have $P[l(\Omega_n; \hat{H}_n(\cdot; \Omega_n)) - l(\Omega_{n0}; \hat{H}_n(\cdot; \Omega_{n0}))] \leq M\eta^2$, for any $l(\Omega_n; \hat{H}_n(\cdot; \Omega_n)) - l(\Omega_{n0}; \hat{H}_n(\cdot; \Omega_{n0}))] \in \mathcal{L}_{\eta}$. Therefore, by Lemma 3.4.2 of Van der Varrt and Wellner (1996) and the condition $\lambda\sqrt{n} \to 0$, we have

$$E_P \|\sqrt{n}(P_n - P)\|_{\mathcal{L}_\eta} \le M J_{[]}(\eta, \mathcal{L}_\eta, L_2(P)) \left[1 + \frac{J_{[]}(\eta, \mathcal{L}_\eta, L_2(P))}{n^{\frac{1}{2}} \eta^2}\right],$$
(3.8)

where $J_{[]}(\eta, \mathcal{L}_{\eta}, L_{2}(P)) = \int_{0}^{\eta} \sqrt{1 + \log N_{[]}(\varepsilon, \mathcal{L}_{\eta}, L_{2}(P))} d\varepsilon \leq M(Kq_{n})^{1/2}\eta$. The right hand of (3.8) yields that the key function $\phi_{n}(\eta) = \sqrt{Kq_{n}}\eta + Kq_{n}/n^{1/2}$. Note that, $\phi_{n}(\eta)/\eta$ is decreasing in η , and $r_{n}^{2}\phi_{n}(1/r_{n}) = r_{n}\sqrt{Kq_{n}} + r_{n}^{2}Kq_{n}/n^{1/2} \leq Mn^{1/2}$, where $r_{n} = (Kq_{n})^{-1/2}n^{1/2} = n^{(1-v-e)/2}$. Hence $n^{(1-v-e)/2}d(\widehat{\Omega}_{n}, \Omega_{n0}) = O_{p}(1)$ by Theorem 3.4.1 of Van der Varrt and Wellner (1996). This with (3.1), yields that $d(\widehat{\Omega}_{n}, \Omega_{0}) =$ $O_{p}\{n^{-\min(rv-e/2,(1-v-e)/2)}\}$. Furthermore, by $d(\widehat{\Omega}_{n}, \Omega_{n0}) = O_{p}\{n^{-(1-v-e)/2}\}$ and (3.7), we have $d(\widehat{\Theta}_n, \Theta_{n0}) = O_p\{n^{-(1-v-e)/2}\}$, combining with (3.2), yields that

$$d(\widehat{\Theta}_n, \Theta_0) = O_p\{n^{-(1-\nu-e)/2} + n^{-r\nu+e/2}\} = O_p\{n^{-\min(r\nu-e/2,(1-\nu-e)/2)}\}.$$
 (3.9)

Step 3: selection consistency

Denote $\dot{Q}_{ng}(\Omega_n; H(\cdot)) = \frac{\partial Q_n(\Omega_n; H(\cdot))}{\partial \pi_g}$. Following the lines of the proof for Theorem 3, for any given number of clusters C, we have that the estimates of parametric part have an $n^{1/2}$ rate of convergence, therefore, $\pi_g = \pi_{g0} + O_p(n^{-1/2})$ for $g = 1, \dots, C$ with the condition $\lambda \sqrt{n} \to 0$. According to the proof of Huang et al. (2017), we only need to consider the solution of $\dot{Q}_{ng}(\Omega_n; \hat{H}(\cdot; \Omega_n)) = 0$ with $d(\Omega_n, \Omega_0) = O_p\{n^{-\min(rv-e/2,(1-v-e)/2)}\}, \pi_g < \frac{1}{\sqrt{n\log(n)}}$ and $g > C_0$. According to Lemma 2, it is sufficient to show that

$$\dot{Q}_{ng}(\mathbf{\Omega}_n; H(\cdot; \mathbf{\Omega}_n)) < 0 \quad for \quad 0 < \pi_g < \frac{1}{\sqrt{n}\log(n)} \text{ and } g > C_0, \quad (3.10)$$

with probability tending to 1 as $n \to \infty$. With the constraint $\sum_{g=1}^{C} \pi_g = 1$, we can write

$$\dot{Q}_{ng}(\boldsymbol{\Omega}_n; H(\cdot; \boldsymbol{\Omega}_n)) = \sum_{i=1}^n \frac{f_{gi}(\boldsymbol{\Omega}_n; H(\cdot; \boldsymbol{\Omega}_n))}{\sum_{g=1}^C \pi_g f_{gi}(\boldsymbol{\Omega}_n; H(\cdot; \boldsymbol{\Omega}_n))} - \sum_{i=1}^n \frac{f_{1i}(\boldsymbol{\Omega}_n; H(\cdot; \boldsymbol{\Omega}_n))}{\sum_{g=1}^C \pi_g f_{gi}(\boldsymbol{\Omega}_n; H(\cdot; \boldsymbol{\Omega}_n))} - n\lambda \frac{1}{\epsilon + \pi_g} + n\lambda \frac{1}{\epsilon + \pi_1} \widehat{=} R_1 - R_2 - R_3 + R_4.$$
(3.11)

By the law of large numbers, it is obvious that R_1 and R_2 are of order $O_p(n)$. Furthermore, we have $\pi_g = \pi_{g0} + O_p(n^{-1/2}) > \frac{1}{2} \cdot \min\{\pi_{10}, \cdots, \pi_{C_0,0}\}$ when g = 1. Hence, R_4 should be $O_p(n\lambda) = o_p(n)$ by the condition $\lambda = o(1)$.

Because $\epsilon = o\{\frac{1}{\sqrt{n}\log(n)}\}$ in Theorem 1 when $g > C_0$ and $0 < \pi_g < \frac{1}{\sqrt{n}\log(n)}$, we have $R_3 = O_p(n\lambda\sqrt{n}\log n)$, with probability tending to one. Since R_1 and R_2 are of order $O_p(n)$ and R_4 is of order $o_p(n)$, hence, R_3 dominates R_1, R_2 and R_4 with the condition $\lambda\sqrt{n}\log n \to \infty$. Therefore, we prove (3.10), or equivalently $\pi_g = 0$ for $g > C_0$ with probability tending to one when $n \to \infty$.

Proof of Theorem 2

The proof of Theorem 2 follows by Steps 1 and 2 in the proof of Theorem 1.

Proof of Theorem 3

Let $\Omega_{\backslash 0}^*$ to be Ω^* excluding the true value Ω_0 , where Ω^* denotes the parameter space. Denote $\delta_n = n^{-\min(rv-e/2,(1-v-e)/2)}$. Let V denote the linear span of $\Omega_{\backslash 0}^*$ and define the Fisher inner product on the space V as $\langle v, \tilde{v} \rangle = P\left\{\dot{l}_i(\Omega_0; H(\cdot; \Omega_0))[v]\dot{l}_i(\Omega_0; H(\cdot; \Omega_0))[\tilde{v}]\right\}$ for $v, \tilde{v} \in V$, the Fisher norm $||v||^2 = \langle v, v \rangle$, where $\dot{l}_i(\Omega; H(\cdot; \Omega))[v] = \frac{dl_i(\Omega+sv;H(\cdot;\Omega))}{ds}\Big|_{s=0}$ is the first order directional derivative of $l_i(\Omega; H(\cdot; \Omega))$ at the direction $v \in V$, and $\Omega \in \{\Omega \in \Omega^* : d(\Omega, \Omega_0) = O(\delta_n)\}$. Let \overline{V} be the closed linear span of V under the Fisher norm, then $(\overline{V}, ||\cdot||)$ is a Hilbert space. Let $\dot{l}_{i,\Omega}(\Omega_0; H(\cdot; \Omega_0))[v] = \frac{dl_i(\Omega_0; H(\cdot; \Omega_0))[v]}{ds}\Big|_{s=0}$. Denote $\langle v, \tilde{v} \rangle_{\Omega} = P\left\{\dot{l}_i(\Omega_0; H(\cdot; \Omega_0))[v]\dot{v}]$, where $\dot{l}_{i,H}(\Omega_0; H(\cdot; \Omega_0))[v] = \frac{dl_i(\Omega_0; H(\cdot; \Omega_0-sv))}{ds}\Big|_{s=0}$. Denote $\langle v, \tilde{v} \rangle_{\Omega} = P\left\{\dot{l}_i(\Omega_0; H(\cdot; \Omega_0))[v]\dot{l}_{i,\Omega}(\Omega_0; H(\cdot; \Omega_0))[\tilde{v}]\right\}$. For a $2C_0$ -dimensional vector $\Gamma = (\Gamma'_1, \Gamma'_2)'$ with $||\Gamma|| \leq 1$, let $\rho(\Omega; H(\cdot; \Omega_0))[v] = \frac{d\rho(\Omega_0+sv;H(\cdot;\Omega_0+sv))}{ds}\Big|_{s=0}$. Note that $\rho(\Omega; H(\cdot; \Omega)) - \rho(\Omega_0; H(\cdot; \Omega_0)) = \dot{\rho}(\Omega_0; H(\cdot; \Omega_0))[\Omega - \Omega_0]$. According to the Riesz representation theorem, for any given $v \in V$, there exists $v^* \in \overline{V}$ such that $\dot{\rho}(\Omega_0; H(\cdot; \Omega_0))[v] = \langle v^*, v \rangle_{\Omega}$. Thus, according to the Cramér-Wold device, to prove Theorem 3, it suffices to show that

$$\sqrt{n} < \boldsymbol{v}^*, \widehat{\boldsymbol{\Omega}}_n - \boldsymbol{\Omega}_0 >_{\boldsymbol{\Omega}} \xrightarrow{d} N\{0, \boldsymbol{\Gamma}' \mathbf{I}^{-1}(\boldsymbol{\theta}_0) \boldsymbol{\Gamma}\},$$
(3.12)

due to $\Gamma'(\widehat{\boldsymbol{\theta}} - \boldsymbol{\theta}_0) = \rho(\widehat{\boldsymbol{\Omega}}_n; H(\cdot; \widehat{\boldsymbol{\Omega}}_n)) - \rho(\boldsymbol{\Omega}_0; H(\cdot; \boldsymbol{\Omega}_0)) = \dot{\rho}(\boldsymbol{\Omega}_0; H(\cdot; \boldsymbol{\Omega}_0))[\widehat{\boldsymbol{\Omega}}_n - \boldsymbol{\Omega}_0] = \langle \boldsymbol{v}^*, \widehat{\boldsymbol{\Omega}}_n - \boldsymbol{\Omega}_0 \rangle_{\boldsymbol{\Omega}}$. In fact, (3.12) holds when $\sqrt{n} < \boldsymbol{v}^*, \widehat{\boldsymbol{\Omega}}_n - \boldsymbol{\Omega}_0 \rangle_{\boldsymbol{\Omega}} \xrightarrow{d} N(0, \|\boldsymbol{v}^*\|^2)$ and $\|\boldsymbol{v}^*\|^2 = \Gamma' \mathbf{I}^{-1}(\boldsymbol{\theta}_0) \Gamma$.

We will take two steps to prove (3.12). First, we prove $\sqrt{n} < \boldsymbol{v}^*, \widehat{\boldsymbol{\Omega}}_n - \boldsymbol{\Omega}_0 >_{\boldsymbol{\Omega}} \xrightarrow{d} N(0, \|\boldsymbol{v}^*\|^2)$. By Corollary 6.21 of Schumaker (1981), there exists $\Pi_n \boldsymbol{v}^* \in \boldsymbol{\Omega}_n^*$ such that $\|\Pi_n \boldsymbol{v}^* - \boldsymbol{v}^*\| = o(1)$ and $\delta_n \|\Pi_n \boldsymbol{v}^* - \boldsymbol{v}^*\| = o(n^{-1/2})$. For any $\boldsymbol{\Omega} \in \{\boldsymbol{\Omega} \in \boldsymbol{\Omega}\}$

$$\boldsymbol{\Omega}^* : d(\boldsymbol{\Omega}, \boldsymbol{\Omega}_0) = O(\delta_n) \}, \text{ define } \ddot{l}_i(\boldsymbol{\Omega}; H(\cdot; \boldsymbol{\Omega}))[\boldsymbol{v}, \widetilde{\boldsymbol{v}}] = \left. \frac{d\dot{l}_i(\boldsymbol{\Omega} + \widetilde{s}\widetilde{\boldsymbol{v}}; H(\cdot; \boldsymbol{\Omega} + \widetilde{s}\widetilde{\boldsymbol{v}}))[\boldsymbol{v}]}{d\widetilde{s}} \right|_{\widetilde{s}=0}, \text{ and } r_i[\Pi_n \boldsymbol{v}^*, \boldsymbol{\Omega} - \boldsymbol{\Omega}_0] = \dot{l}_i(\boldsymbol{\Omega}; H(\cdot; \boldsymbol{\Omega}))[\Pi_n \boldsymbol{v}^*] - \dot{l}_i(\boldsymbol{\Omega}_0; H(\cdot; \boldsymbol{\Omega}_0))[\Pi_n \boldsymbol{v}^*].$$

Since $P_n \dot{l}(\widehat{\Omega}_n; \widehat{H}(\cdot; \widehat{\Omega}_n))[\Pi_n \boldsymbol{v}^*] = 0$ by the definition of $\widehat{\Omega}_n$. Then by Lemma 2, we have

$$0 = P_n \dot{l}(\widehat{\Omega}_n; H(\cdot; \widehat{\Omega}_n))[\Pi_n \boldsymbol{v}^*] = P_n \dot{l}(\Omega_0; H(\cdot; \Omega_0))[\Pi_n \boldsymbol{v}^*] + P_n r[\Pi_n \boldsymbol{v}^*, \widehat{\Omega}_n - \Omega_0]$$

$$= P_n \dot{l}(\Omega_0; H(\cdot; \Omega_0))[\boldsymbol{v}^*] + P_n \dot{l}(\Omega_0; H(\cdot; \Omega_0))[\Pi_n \boldsymbol{v}^* - \boldsymbol{v}^*] + (P_n - P)r[\Pi_n \boldsymbol{v}^*, \widehat{\Omega}_n - \Omega_0]$$

$$+ Pr[\Pi_n \boldsymbol{v}^*, \widehat{\Omega}_n - \Omega_0]$$

$$= P_n \dot{l}(\Omega_0; H(\cdot; \Omega_0))[\boldsymbol{v}^*] + I_1 + I_2 + I_3.$$
(3.13)

We will investigate the asymptotic behavior of I_1, I_2 and I_3 . For I_1 , by Chebyshev inequality, $\lambda \sqrt{n} \to 0$, $P\dot{l}(\boldsymbol{\Omega}_0; H(\cdot; \boldsymbol{\Omega}_0))[\Pi_n \boldsymbol{v}^* - \boldsymbol{v}^*] = 0$ and $\|\Pi_n \boldsymbol{v}^* - \boldsymbol{v}^*\| = o(1)$, we have that

$$I_1 = o_p(n^{-1/2}). (3.14)$$

For I_2 , by the definition of $r[\Pi_n \boldsymbol{v}^*, \widehat{\boldsymbol{\Omega}}_n - \boldsymbol{\Omega}_0]$, we can get

$$I_2 = (P_n - P) \left\{ \dot{l}(\widehat{\boldsymbol{\Omega}}_n; H(\cdot; \widehat{\boldsymbol{\Omega}}_n)) - \dot{l}(\boldsymbol{\Omega}_0; H(\cdot; \boldsymbol{\Omega}_0)) \right\} [\Pi_n \boldsymbol{v}^*].$$

By Theorem 2.8.3 of Van der Varrt and Wellner (1996), $\{\dot{l}(\Omega; H(\cdot; \Omega))[\Pi_n v^*] : \|\Omega - \Omega_0\| = O_p(\delta_n)\}$ is a Donsker class. Hence by Theorem 2.11.23 of Van der Varrt and Wellner (1996), we have

$$I_2 = o_p(n^{-1/2}). (3.15)$$

For I_3 , by the definition of $r[\Pi_n \boldsymbol{v}^*, \widehat{\boldsymbol{\Omega}}_n - \boldsymbol{\Omega}_0]$ and the Mean Value Theorem (Flett, 1958), we have

$$I_{3} = P\left\{\ddot{l}(\widetilde{\boldsymbol{\Omega}}; H(\cdot; \widetilde{\boldsymbol{\Omega}})) - \ddot{l}(\boldsymbol{\Omega}_{0}; H(\cdot; \boldsymbol{\Omega}_{0}))\right\} [\Pi_{n}\boldsymbol{v}^{*}, \widehat{\boldsymbol{\Omega}}_{n} - \boldsymbol{\Omega}_{0}] + P\ddot{l}(\boldsymbol{\Omega}_{0}; H(\cdot; \boldsymbol{\Omega}_{0}))[\Pi_{n}\boldsymbol{v}^{*}, \widehat{\boldsymbol{\Omega}}_{n} - \boldsymbol{\Omega}_{0}]$$

$$= o_{p}(n^{-1/2}) + P\ddot{l}(\boldsymbol{\Omega}_{0}; H(\cdot; \boldsymbol{\Omega}_{0}))[\boldsymbol{v}^{*}, \widehat{\boldsymbol{\Omega}}_{n} - \boldsymbol{\Omega}_{0}] + P\ddot{l}(\boldsymbol{\Omega}_{0}; H(\cdot; \boldsymbol{\Omega}_{0}))[\Pi_{n}\boldsymbol{v}^{*} - \boldsymbol{v}^{*}, \widehat{\boldsymbol{\Omega}}_{n} - \boldsymbol{\Omega}_{0}]$$

$$= o_{p}(n^{-1/2}) + P\ddot{l}(\boldsymbol{\Omega}_{0}; H(\cdot; \boldsymbol{\Omega}_{0}))[\boldsymbol{v}^{*}, \widehat{\boldsymbol{\Omega}}_{n} - \boldsymbol{\Omega}_{0}], \qquad (3.16)$$

where $\widehat{\Omega}$ is between $\widehat{\Omega}_n$ and Ω_0 , the second equation follows by using a Taylor expansion, Condition (C2) and $\|\Pi_n \boldsymbol{v}^*\|^2 \to \|\boldsymbol{v}^*\|^2$, the last equation holds since $\delta_n \|\Pi_n \boldsymbol{v}^* - \boldsymbol{v}^*\| = o(n^{-1/2})$. Hence, by (3.14), (3.13), (3.15), (3.16), together with $\lambda \sqrt{n} \to 0$, $P\dot{l}(\Omega_0; H(\cdot; \Omega_0))[\boldsymbol{v}^*] = 0$ and the definition of $\langle \cdot, \cdot \rangle_{\Omega}$, we have that

$$0 = P_n \dot{l}(\boldsymbol{\Omega}_0; H(\cdot; \boldsymbol{\Omega}_0))[\boldsymbol{v}^*] - \langle \boldsymbol{v}^*, \widehat{\boldsymbol{\Omega}}_n - \boldsymbol{\Omega}_0 \rangle_{\boldsymbol{\Omega}} + o_p(n^{-1/2})$$
$$= (P_n - P)\dot{l}(\boldsymbol{\Omega}_0; H(\cdot; \boldsymbol{\Omega}_0))[\boldsymbol{v}^*] - \langle \boldsymbol{v}^*, \widehat{\boldsymbol{\Omega}}_n - \boldsymbol{\Omega}_0 \rangle_{\boldsymbol{\Omega}} + o_p(n^{-1/2})$$

Hence

$$\sqrt{n} < \boldsymbol{v}^*, \widehat{\boldsymbol{\Omega}}_n - \boldsymbol{\Omega}_0 >_{\boldsymbol{\Omega}} = \sqrt{n}(P_n - P)\dot{l}(\boldsymbol{\Omega}_0; H(\cdot; \boldsymbol{\Omega}_0))[\boldsymbol{v}^*] + o_p(1) \to N(0, \|\boldsymbol{v}^*\|^2),$$

with $\|\boldsymbol{v}^*\|^2 = \|\hat{l}(\boldsymbol{\Omega}_0; H(\cdot; \boldsymbol{\Omega}_0))[\boldsymbol{v}^*]\|^2$.

In the second step, we calculate $\|\boldsymbol{v}^*\|^2$. Rewrite $\boldsymbol{\theta} = (\boldsymbol{\sigma}^{2'}, \boldsymbol{\pi}')' = (\theta_1, \cdots, \theta_{2C_0})'$, let $K_0 = \sum_{g=1}^{C_0} K_g$ and $l_{i,b_j} = \frac{\partial l_i(\boldsymbol{\Omega}_0; H(\cdot; \boldsymbol{\Omega}_0))}{\partial b_j}$. For each $\theta_q, q = 1, 2, \cdots, 2C_0$, denote $\psi_q^* = \{b_{1q}^*, b_{2q}^*, \cdots, b_{(C_0+K_0)q+K_0}^*, b_{H,q}^*\}$ be the minimizer

$$E\left\{l_{i,\theta} \cdot e_q - l_{i,b_1}[b_{1q}] - l_{i,b_2}[b_{2q}] - \dots - l_{i,b_{C_0+2K_0}}[b_{(C_0+K_0)q+K_0}] - l_{i,b_H}[b_{H,q}]\right\}^2,$$

with respect to $\psi_q = \{b_{1q}, b_{2q}, \cdots, b_{(C_0+K_0)q+K_0}, b_{H,q}\}$, where e_q is a $2C_0$ -dimensional vector of zeros except the *q*th element equal to 1, $l_{i,\theta} = (l'_{i,\sigma^2}, l'_{i,\pi})', l_{i,\sigma^2} = (l_{i,\sigma_1^2}, \cdots, l_{i,\sigma_{C_0}^2})',$ $l_{i,\pi} = (l_{i,\pi_1}, \cdots, l_{i,\pi_{C_0}})', l_{i,\sigma_g^2} = \frac{\partial l_i(\Omega_{0;H}(:\Omega_{0}))}{\partial \sigma_g^2}, l_{i,\pi_g} = \frac{\partial l_i(\Omega_{0;H}(:\Omega_{0}))}{\partial \pi_g}, g = 1, \cdots, C_0,$ and $(l_{i,b_j}[b_{jq}], j = 1, \cdots, C_0)$ is the directional derivative of $\boldsymbol{\mu}$, $(l_{i,b_j}[b_{jq}], j = C_0 + 1, \cdots, C_0 + 1, \cdots, C_0 + K_0)$ is the directional derivative of $\boldsymbol{\phi}$, $(l_{i,b_j}[b_j], j = C_0 + K_0 + 1, \cdots, C_0 + 2K_0)$ is the directional derivative of $\boldsymbol{\Lambda}$, and $l_{i,b_H}[b_{H,q}]$ is the directional derivative of H. By the similar calculation of Chen et al. (2006), we can obtain $\|\boldsymbol{v}^*\|^2 = \Gamma'[E\{S(\theta_0)S(\theta_0)'\}]^{-1}\Gamma = \Gamma'\mathbf{I}^{-1}(\theta_0)\Gamma$, where $S(\theta_0)$ is a $2C_0$ -dimensional vector, with the *q*th element as $l_{i,\theta} \cdot e_q - l_{i,b_1}[b_{1q}^*] - l_{i,b_2}[b_{2q}^*] - \cdots - l_{i,b_{C_0+2K_0}}[b_{(C_0+K_0)q+K_0}^*] - l_{i,b_H}[b_{H,q}^*]$. Then, we complete the proof of Theorem 3.

4 Web Appendix D: Tables 6-8 and Figures 3-9

	Proposed(C=7)	CT(C=3)		CT(C=	7)	WoT(C=3)	
	bias(sd)	RMSE	bias(sd)	RMSE	bias(sd)	RMSE	bias(sd)	RMSE
π_1	0.005(0.043)	0.043	0.002(0.031)	0.031	0.003(0.041)	0.041	0.058(0.054)	0.080
π_2	0.009(0.052)	0.053	0.000(0.032)	0.032	0.008(0.046)	0.047	0.053(0.085)	0.100
π_3	0.003(0.052)	0.052	0.002(0.030)	0.030	0.003(0.038)	0.038	0.111(0.082)	0.138
σ_1^2	0.002(0.016)	0.016	0.000(0.011)	0.011	0.001(0.011)	0.011	0.094(0.002)	0.094
σ_2^2	0.003(0.018)	0.018	0.001(0.014)	0.014	0.001(0.014)	0.014	0.141(0.002)	0.141
σ_3^2	0.002(0.020)	0.021	0.001(0.015)	0.015	0.001(0.019)	0.019	0.188(0.001)	0.188
λ_{11}	0.022(0.152)	0.153	0.017(0.132)	0.133	0.022(0.140)	0.141	0.960(0.008)	0.960
λ_{12}	0.009(0.037)	0.038	0.003(0.036)	0.036	0.003(0.036)	0.036	0.236(0.005)	0.236
λ_{21}	0.031(0.152)	0.155	0.006(0.130)	0.130	0.021(0.131)	0.133	1.044(0.014)	1.044
λ_{22}	0.001(0.033)	0.033	0.001(0.010)	0.010	0.001(0.016)	0.016	0.003(0.009)	0.010
λ_{31}	0.040(0.151)	0.156	0.031(0.105)	0.110	0.033(0.135)	0.139	0.937(0.009)	0.937
λ_{32}	0.030(0.086)	0.091	0.015(0.058)	0.060	0.015(0.061)	0.063	0.132(0.005)	0.132
$\mu_1(\cdot)$	0.007(0.131)	0.132	0.006(0.091)	0.091	0.007(0.093)	0.093	0.362(0.074)	0.369
$\mu_2(\cdot)$	0.013(0.135)	0.135	0.007(0.105)	0.105	0.012(0.109)	0.110	0.458(0.099)	0.468
$\mu_3(\cdot)$	0.012(0.133)	0.134	0.010(0.089)	0.090	0.011(0.115)	0.115	1.252(0.073)	1.255
$\phi_{11}(\cdot)$	0.007(0.069)	0.069	0.005(0.063)	0.063	0.007(0.065)	0.065	0.187(0.475)	0.511
$\phi_{12}(\cdot)$	0.008(0.081)	0.082	0.007(0.075)	0.075	0.008(0.077)	0.077	0.184(0.495)	0.528
$\phi_{21}(\cdot)$	0.016(0.061)	0.063	0.012(0.059)	0.060	0.016(0.061)	0.063	0.127(0.316)	0.341
$\phi_{22}(\cdot)$	0.008(0.090)	0.090	0.007(0.087)	0.087	0.008(0.089)	0.090	0.456(0.819)	0.937
$\phi_{31}(\cdot)$	0.024(0.093)	0.096	0.018(0.055)	0.058	0.018(0.060)	0.063	0.068(0.197)	0.208
$\phi_{32}(\cdot)$	0.007(0.046)	0.046	0.004(0.011)	0.011	0.006(0.041)	0.041	0.105(0.113)	0.154
$\Sigma_1(\cdot, \cdot)$	0.027(0.174)	0.176	0.022(0.154)	0.156	0.024(0.161)	0.163	0.996(0.092)	1.000
$\Sigma_2(\cdot, \cdot)$	0.043(0.172)	0.178	0.037(0.156)	0.160	0.041(0.159)	0.164	1.048(0.145)	1.058
$\Sigma_3(\cdot, \cdot)$	0.048(0.177)	0.184	0.031(0.135)	0.139	0.046(0.151)	0.158	1.582(0.067)	1.583
#cluster	0.050(0.219)	0.224	-	-	0.003(0.208)	0.209	-	-

Table 6:	Results	for	Case	2	of	Simulation	1.

"—" not available

	Proposed(roposed(C=7) CT(C=3)		3)	CT(C =	7)	WoT(C=3)	
	bias(sd)	RMSE	bias(sd)	RMSE	bias(sd)	RMSE	bias(sd)	RMSE
π_1	0.024(0.091)	0.094	0.017(0.080)	0.081	0.022(0.084)	0.087	0.024(0.400)	0.401
π_2	0.032(0.090)	0.096	0.013(0.064)	0.066	0.013(0.068)	0.069	0.077(0.391)	0.399
π_3	0.027(0.116)	0.119	0.017(0.109)	0.111	0.026(0.114)	0.117	0.053(0.410)	0.413
σ_1^2	0.004(0.017)	0.018	0.003(0.013)	0.013	0.004(0.018)	0.018	0.020(0.003)	0.020
σ_2^2	0.016(0.090)	0.092	0.014(0.085)	0.086	0.014(0.085)	0.086	0.150(0.003)	0.150
σ_3^2	0.002(0.085)	0.085	0.001(0.078)	0.078	0.001(0.082)	0.082	0.237(0.003)	0.237
λ_{11}	0.017(0.087)	0.089	0.009(0.074)	0.074	0.015(0.083)	0.085	0.198(0.011)	0.198
λ_{31}	0.006(0.041)	0.041	0.003(0.029)	0.029	0.005(0.029)	0.030	0.137(0.013)	0.138
λ_{32}	0.008(0.038)	0.038	0.004(0.021)	0.021	0.007(0.032)	0.033	0.050(0.012)	0.052
$\mu_1(\cdot)$	0.003(0.033)	0.033	0.003(0.014)	0.014	0.003(0.014)	0.014	1.024(0.002)	1.024
$\mu_2(\cdot)$	0.004(0.023)	0.024	0.002(0.018)	0.018	0.002(0.019)	0.019	0.920(0.002)	0.920
$\mu_3(\cdot)$	0.002(0.042)	0.042	0.001(0.038)	0.038	0.001(0.042)	0.042	1.027(0.002)	1.027
$\phi_{11}(\cdot)$	0.006(0.038)	0.039	0.006(0.030)	0.031	0.006(0.031)	0.032	0.705(0.657)	0.964
$\phi_{31}(\cdot)$	0.017(0.069)	0.071	0.013(0.061)	0.062	0.016(0.062)	0.064	0.181(0.550)	0.579
$\phi_{32}(\cdot)$	0.005(0.037)	0.037	0.004(0.032)	0.032	0.004(0.032)	0.032	0.171(0.031)	0.174
$\Sigma_1(\cdot, \cdot)$	0.019(0.125)	0.127	0.012(0.095)	0.096	0.017(0.118)	0.119	0.929(0.819)	1.239
$\Sigma_2(\cdot, \cdot)$	0.016(0.090)	0.092	0.014(0.085)	0.086	0.014(0.085)	0.086	0.150(0.003)	0.150
$\Sigma_3(\cdot, \cdot)$	0.032(0.130)	0.134	0.029(0.088)	0.093	0.032(0.128)	0.132	0.982(0.707)	1.210
#cluster	0.021(0.185)	0.186	-	-	0.007(0.144)	0.144	-	-

Table 7: Results for Simulation 2.

"—" not available

au	normal		100		10		5		1	
Skewness	ess 0		0.2		0.63		0.89		2	
Excess kurtosis	0		0.06		0.6		1.2		6	
	bias(sd)	RMSE								
π_1	0.003(0.034)	0.034	0.004(0.034)	0.035	0.006(0.034)	0.035	0.007(0.034)	0.035	0.009(0.034)	0.035
π_2	0.009(0.039)	0.039	0.009(0.039)	0.039	0.009(0.040)	0.041	0.014(0.039)	0.041	0.030(0.053)	0.061
π_3	0.004(0.038)	0.038	0.006(0.038)	0.038	0.011(0.039)	0.041	0.017(0.040)	0.043	0.039(0.054)	0.067
σ_1^2	0.001(0.009)	0.009	0.001(0.009)	0.009	0.002(0.010)	0.010	0.001(0.010)	0.010	0.006(0.012)	0.013
σ_2^2	0.001(0.014)	0.014	0.004(0.019)	0.019	0.006(0.023)	0.024	0.008(0.024)	0.025	0.018(0.034)	0.038
σ_3^2	0.006(0.030)	0.031	0.007(0.032)	0.032	0.009(0.033)	0.034	0.009(0.035)	0.036	0.021(0.039)	0.044
λ_{11}	0.030(0.145)	0.148	0.040(0.164)	0.169	0.050(0.189)	0.195	0.063(0.204)	0.213	0.066(0.234)	0.243
λ_{12}	0.011(0.036)	0.038	0.012(0.041)	0.043	0.014(0.054)	0.055	0.016(0.056)	0.058	0.016(0.058)	0.061
λ_{21}	0.037(0.140)	0.145	0.043(0.177)	0.182	0.051(0.176)	0.183	0.073(0.187)	0.200	0.069(0.225)	0.235
λ_{22}	0.001(0.011)	0.011	0.006(0.035)	0.036	0.012(0.037)	0.038	0.015(0.039)	0.042	0.039(0.047)	0.062
λ_{31}	0.038(0.149)	0.154	0.041(0.170)	0.175	0.050(0.173)	0.180	0.067(0.178)	0.190	0.069(0.177)	0.190
λ_{32}	0.017(0.056)	0.058	0.021(0.057)	0.061	0.024(0.058)	0.063	0.035(0.061)	0.071	0.036(0.073)	0.081
$\mu_1(\cdot)$	0.020(0.130)	0.132	0.026(0.159)	0.161	0.029(0.165)	0.168	0.031(0.186)	0.189	0.035(0.222)	0.225
$\mu_2(\cdot)$	0.033(0.180)	0.183	0.040(0.230)	0.233	0.042(0.256)	0.259	0.047(0.272)	0.276	0.053(0.306)	0.310
$\mu_3(\cdot)$	0.049(0.184)	0.191	0.057(0.257)	0.263	0.059(0.251)	0.258	0.061(0.279)	0.285	0.071(0.293)	0.302
$\phi_{11}(\cdot)$	0.020(0.070)	0.073	0.022(0.088)	0.090	0.021(0.114)	0.116	0.020(0.138)	0.140	0.021(0.158)	0.159
$\phi_{12}(\cdot)$	0.013(0.083)	0.084	0.015(0.100)	0.101	0.018(0.135)	0.136	0.023(0.144)	0.146	0.023(0.165)	0.167
$\phi_{21}(\cdot)$	0.037(0.109)	0.115	0.040(0.107)	0.114	0.042(0.120)	0.127	0.045(0.160)	0.166	0.044(0.164)	0.170
$\phi_{22}(\cdot)$	0.014(0.115)	0.116	0.021(0.141)	0.142	0.029(0.152)	0.155	0.034(0.192)	0.195	0.082(0.308)	0.319
$\phi_{31}(\cdot)$	0.035(0.106)	0.112	0.042(0.118)	0.125	0.081(0.155)	0.175	0.085(0.173)	0.193	0.095(0.177)	0.201
$\phi_{32}(\cdot)$	0.023(0.107)	0.110	0.030(0.108)	0.112	0.034(0.117)	0.122	0.081(0.118)	0.144	0.091(0.134)	0.162
$\Sigma_1(\cdot, \cdot)$	0.061(0.267)	0.274	0.070(0.268)	0.277	0.082(0.276)	0.288	0.089(0.285)	0.298	0.095(0.461)	0.471
$\Sigma_2(\cdot, \cdot)$	0.072(0.271)	0.280	0.081(0.304)	0.314	0.092(0.297)	0.311	0.098(0.313)	0.328	0.101(0.398)	0.410
$\Sigma_3(\cdot, \cdot)$	0.073(0.293)	0.302	0.101(0.311)	0.327	0.114(0.353)	0.371	0.133(0.366)	0.389	0.142(0.372)	0.398

 Table 8: The proposed estimators under gamma distributions for Simulation 3

Figure 3: Estimated transformation functions for Cases 1 and 2 of Simulation 1 (solid-true function; dotted-95% confidence limits; dashed-average of the estimated function). This figure appears in color in the electronic version of this article, and any mention of color refers to that version.

Figure 4: Estimated mean functions (top) and eigenfunctions (median and bottom) for Case 1 of Simulation 1 (solid-true function; dotted-95% confidence limits; dashed-average of the estimated function). This figure appears in color in the electronic version of this article, and any mention of color refers to that version.

Figure 5: Comparison of the estimation error with different initial numbers of clusters, C = 7, 10, 15, from left to right for Case 1 of Simulation 1. This figure appears in color in the electronic version of this article, and any mention of color refers to that version.

Figure 6: (a)- (d) The BIC values under various K_g , M_n and λ ; (e) The barplot of estimated number of clusters based on the BIC criterion for Case 1 of Simulation 1. This figure appears in color in the electronic version of this article, and any mention of color refers to that version.

Figure 7: Histogram of density for cluster 1.

Figure 8: Histogram of density for cluster 2.

Figure 9: Histogram of density for cluster 3.

References

- Chen, X., Fan, Y., and Tsyrennikov, V. (2006). Efficient estimation of semiparametric multivariate copula models. *Journal of the American Statistical Association*, 101, 1228-1240.
- Chandra, T. K. (2012). The Borel-Cantelli Lemma. Springer Science & Business Media.
- Flett, T. M. (1958). A mean value theorem. The Mathematical Gazette, 42, 38-39.
- Huang, T., Peng, H., and Zhang, K.(2017). Model selection for gaussian mixture models. *Statistica Sinica*, 27, 147-169.
- Pollard, D. (1984). Convergence of Stochastic Processes. Springer, New York.
- Schumaker, L. L. Spline functions: basic theory. 1981. John Wiley & Sons, New York.
- Shen, X., and Wong, W. H. (1994). Convergence rate of sieve estimates. The Annals of Statistics, 22, 580-615.
- Van de Geer, S. (2000). Empirical Processes in M-estimation. Cambridge University Press.
- Van der Vaart, A. W. (1998). Asymptotic statistics (Vol. 3). Cambridge university press.
- Van der Varrt, A. W. and Wellner, J. A. (1996). Weak Convergence and Empirical Processes. Springer, New York.