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Abstract

Gaussian distributions have been commonly assumed when clustering func-
tional data. When the normality condition fails, biased results will follow. Addi-
tional challenges occur as the number of the clusters is often unknown a priori.
This paper focuses on clustering non-Gaussian functional data without the prior
information of the number of clusters. We introduce a semiparametric mixed
normal transformation model to accommodate non-Gaussian functional data, and
propose a penalized approach to simultaneously estimate the parameters, trans-
formation function and the number of clusters. The estimators are shown to be
consistent and asymptotically normal. The practical utility of the methods is
confirmed via simulations as well as an application of the analysis of Alzheimer’s
disease (AD) study. The proposed method yields much less classification error
than the existing methods. Data used in preparation of this article were obtained
from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database.
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1 Introduction

New technologies allow data to be recorded with high frequency from many research

fields, resulting in large volumes of functional data, such as growth curves of infants,

patients’ blood pressure measured at various time points, daily temperature and precip-

itation for consecutive days at national weather stations, term-structured yield curves,

and shape representations of body parts. See Ramsay and Silverman (2005), Li et al.

(2010), Jacques and Preda (2014), Wang et al. (2016), Yao et al. (2005) for more details.

In this paper, we consider clustering functional data, aiming to identify homogeneous

groups of data without using any prior knowledge on the group labels.

As functional data are infinite dimensional, most clustering algorithms project the

functional data into a finite dimensional space, followed by applying a clustering method.

For example, Abraham et al. (2003), Tarpey and Kinateder (2003), Suyundykov et al.

(2010) conducted functional principal component analysis (FPCA) or B-spline expan-

sions, and then detected clusters based on the principal component scores or the coeffi-

cients of the B-spline basis, using hierarchical or k-means clustering. Numerous model-

based methods have also been developed. For example, Biernacki et al. (2000),James

and Sugar (2003) and Bouveyron et al. (2015) considered the Gaussian mixture model,

Liu et al. (2003) combined Bayesian clustering and Markov chain Monte Carlo strategies

to group functional data, Fröhwirth-Schnatter and Kaufmann (2008) built a clustering

algorithm based on time series models, Liu and Yang (2009) developed a coherent frame-

work for simultaneously aligning and clustering functional data, Bouveyron and Jacques

(2011) extended a high-dimensional data clustering algorithm to cluster Gaussian func-

tional data, other Gaussian-model based clustering methods included Jacques and Preda

(2013, 2014) and Rivera-Garćıa et al. (2019).

Distance-based clustering methods have sparked much interest. Related works in-

cluded the L2 distance-based functional principal component scores (FPCs) developed
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by Chiou and Li (2007), Peng et al. (2008), as well as the weighted L2 distance designed

by Floriello and Vitelli (2017), Ferraty and Vieu (2006), Tarpey and Kinateder (2003)

and Tokushige et al. (2007) measured dissimilarities between curves using the L2 dis-

tance of their derivatives. Delaigle et al. (2019) proposed a modified k-means algorithm

for functional data with a given number of clusters.

Most of the aforementioned methods assume, either explicitly or implicitly, the func-

tional data to be Gaussian. When the normality assumption fails, the methods may

produce biased results. Particularly, multiple cluster solutions can be falsely identified

for homogeneous non-Gaussian functional data (Bauer and Curran, 2003). In prac-

tice, non-Gaussian functional data have been commonly observed. For example, the

Alzheimer’s disease neuroimaging initiative (ADNI) data, which motivated our study,

are non-Gaussian (see Figures 7-9 in the Supporting Information). The classification

error resulted from the existing Gaussian-based clustering method is 43.1%, while the

classification error obtained by applying our proposed method without the Gaussian

assumption is merely 2.08%.

In the paper, we propose a semiparametric mixed normal transformation (SMINT)

model to group non-Gaussian functional data when the number of clusters is unspec-

ified a priori. In the literature, only a few works have been focused on the selection

of the number of clusters, and most of them used the Bayesian information criterion

(BIC, Schwarz et al., 1978). However, the BIC method is computationally burdensome,

and the large sample model selection results, such as model selection consistency and

oracle property, are elusive. We hence propose a penalized approach that selects the

number of clusters and estimates all of the parameters and functions simultaneously

for non-Gaussian functional data. Our method is interpretable and flexible by allowing

unspecified distributions and unknown numbers of clusters. Moreover, our method is

computationally feasible. We estimate the mean function and eigenfunctions based on
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one-dimensional B-splines, instead of directly estimating covariance functions, which is

a two-dimensional nonparametric problem (Yao et al., 2005).

The remainder of the paper is organized as follows. In Section 2, we introduce

the SMINT model. In Section 3, we propose a combination of penalized likelihood

and estimating equations methods to select the number of clusters and estimate the

regression parameters and transformation function for each cluster simultaneously. We

further propose a BIC-type procedure to select tuning parameters. Section 4 focuses

on the theoretical properties, including n1/2-consistency and asymptotic normality, and

Section 5 reports simulation results and an analysis of the ADNI data. We provide

concluding remarks in Section 6 and defer all the proofs to the Supporting Information.

The R code for the proposed method is available in the Supporting Information.

2 Semiparametric mixed normal transformation model

In classical functional principal component analysis (James et al., 2000; Yao et al.,

2005; Jacques and Preda, 2014), the stochastic process X(t) can be written as X(t) =

µ(t) +
∑∞

k=1 ξkφk(t), where µ(t) = E{X(t)} is the mean function; φk(t) is the kth

orthonormal basis function and ξk is the normal functional principal component scores,

which satisfy the following conditions:

(C0) φk(t) is the kth orthonormal eigenfunction of the covariance operator Σ(s, t) =

Cov{X(s), X(t)}, which satisfies
∫
φk(t)φj(t)dt = 1 if j = k, and 0 otherwise,

and the ξk is the normal functional principal component scores with E(ξk) = 0,

var(ξk) = λk and cov(ξj, ξk) = 0 if j 6= k, with the constraint of λ1 ≥ λ2 ≥ · · · > 0

and
∑∞

k=1 λk <∞.

As
∑∞

k=1 λk <∞ so the λk usually decreases rapidly to 0, the number of included eigen-

functions, K, is usually small or moderate. Hence, we can embed X(t) in a sufficiently

flexible but suitable function space with measurement errors, and assume the following
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model,

X(t) = µ(t) +
K∑

k=1

ξkφk(t) + εt, (2.1)

where εt are errors and independent of ξk. Model (2.1) with a fixed K and a Gaussian

distribution for εt are commonly adopted for longitudinal and functional data analysis

(see, e.g., James et al., 2000; Yao et al., 2005; Hall et al., 2008). The fixed K may lead

to biased estimation and classification, we allow K →∞ as n→∞ in the paper.

We propose a model to accommodate non-Gaussian functional data by using an

unknown transformation function. Without loss of generality, let T = [0, 1]. We assume

that the random functions Yi(·), i = 1, · · · , n are independent copies of a stochastic

process Y (·) on T . For non-Gaussian random variables, Box-Cox power transformations

have been routinely used in practice, and nonparametric transformations were proposed

for added flexibility (Zhou et al., 2008). Our idea is to suppose the existence of a

nonparametric functional operator, denoted by H(·) : R → R, onto Yi(t) = Yi(t), such

that the following model holds:

H(Yi(t)) = µ(t) +
K∑

k=1

ξikφk(t) + εi(t), (2.2)

where µ(t) = E[H{Yi(t)}] is the mean function of the transformed response, with ξiks

and φks satisfying the conditions in (C0), and measurement errors εi(t) are independently

and identically distributed as N(0, σ2) and independent of ξik. For more flexibility, we

do not put any parametric assumptions on H(·), except that it is monotonic function,

and allow K →∞ as n→∞ (Hall and Hosseini-Nasab, 2006; Lin et al., 2018). We term

(2.2) a semiparametric mixed normal transformation (SMINT) model, which includes

model (2.1) as a special case with H(x) = x.

We cluster functional data based on SMINT, which is to identify different subpro-

cesses underlying observations. To proceed, we introduce a cluster membership indicator

by g ∈ {1, · · · , C}, with a marginal probability mass πg satisfying
∑C

g=1 πg = 1. We
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add g to the subscript of the aforementioned Yi(t) and modify (2.2) in order to model

the subprocess Ygi(·) by

H(Ygit) = µg(t) +

Kg∑

k=1

ξgikφgk(t) + εgit, (2.3)

where Ygit = Ygi(t), each item is as defined in (2.1), with an added subscript g for

the g-th subpopulation. The scale and location normalization is needed for H to make

the model identifiable. We specify two conditions: N−1
∑n

i=1

∑ni
j=1H(Yij) = 0 and

N−1
∑n

i=1

∑ni
j=1H

2(Yij) = 1, where N =
∑n

i=1 ni, ni is the number of observation times

for curve i and Yij = Yi(tij).

Even for Gaussian functional data, most existing methods have assumed the same

eigenfunctions φgk across groups (Bouveyron and Jacques, 2011; Serban and Jiang, 2012).

The assumption was made for computational feasibility because the cluster-specified

covariance function is not available with unknown clusters. But, with this assumption,

a large number of eigenfunctions are needed for estimation accuracy. In contrast,

our model allows cluster-specific eigenfunctions, as a result, the functional curve in each

group can be represented by fewer eigenfunctions, resulting in more concise, informative,

and interpretable clusters.

3 Estimation

Let Yi = (Yi1, Yi2, · · · , Yi,ni)′ represent the measurements on individual i over ni evalu-

ation points, denoted by ti = (ti1, ti2, · · · , ti,ni)′. Without loss of generality, we assume

the tij’s are scaled within [0, 1]. Let f(·) denote the density function of the random

vector, H(Yi) = {H(Yi1), H(Yi2), · · · , H(Yi,ni)}′. Under (2.3), f(·) has the following

form:

f{H(Yi)} =
C∑

g=1

πgfg{H(Yi)},
C∑

g=1

πg = 1, (3.1)
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where fg{H(Yi)} = (2π)−ni/2|∆g(ti)|−1/2 exp
[
−1

2

{
H(Yi)− µgi

}′
∆g(ti)

−1 {H(Yi)− µgi

}]

is the density function of H(Yi) if individual i belongs to the gth cluster, µgi =

µg(ti)=̇{µg(ti1), · · · , µg(ti,ni)}′, ∆g(ti) = Φg(ti)ΛgΦg(ti)
′+σ2

gIni , Φg(ti) = {φg(ti1), · · · ,φg(ti,ni)}′,
φg(t) = {φg1(t), · · · , φg,Kg(t)}′, Λg = diag(λg1, · · · , λg,Kg) and Ini is the ni × ni iden-

tity matrix. Then the covariance function of the transformed response is Σg(s, t) =

φg(t)
′Λgφg(s) + σ2

gI(s = t) for the gth cluster. Let Ω = (Λ′,σ2′,π′,µ′,φ′)′ with

Λ = (λgk, g = 1, · · · , C, k = 1, · · · , Kg)
′,σ2 = (σ2

1, · · · , σ2
C)′,π = (π1, · · · , πC)′, µ =

(µg, g = 1, · · · , C)′ and φ = (φgk, g = 1, · · · , C, k = 1, · · · , Kg)
′.

Our goal is to simultaneously estimate the number of clusters C, the transforma-

tion function H, the mean function µg and the covariance function Σg(s, t) of each

cluster via estimating Ω, which includes finite dimensional parameters and infinite di-

mensional functions. Different from the existing method that directly estimating Σg(s, t)

by two-dimensional nonparametric technique (Yao et al., 2005; Cai and Yuan, 2010), we

estimate it via its eigenfunctions using univariate splines, hence effectively increase the

convergence rate of the estimator of Σg(s, t) from n−1/3 to n−2/5.

We start with modeling µg(·) and φgk(·). Denote by

G = {g(·) : |g(q1)(t1)− g(q1)(t2)| ≤ c0|t1 − t2|q2 , for any 0 ≤ t1, t2 ≤ 1}, (3.2)

where q1 is a non-negative integer, q2 ∈ (0, 1], r = q1 + q2 ≥ 2, and c0 is a generic

constant. The smoothness assumption (3.2) is often used in nonparametric estimation.

With the assumption of µg(·), φgk(·) ∈ G, we approximate µg(·) and φgk(·) by

µng(t) =

qn∑

j=1

αgjbj(t) = α′gBn(t), (3.3)

φngk(t) =

qn∑

j=1

βgkjbj(t) = β′gkBn(t), (3.4)

respectively, where Bn(·) = {b1(·), · · · , bqn(·)}′ is an orthogonal set of spline basis func-

tions of order r + 1 with knots 0 = ζ0 < ζ1 < · · · < ζMn < ζMn+1 = 1, satisfying
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max(ζj − ζj−1 : j = 1, · · · ,Mn) = O(n−v), where qn = Mn + r+ 1, and Mn is the integer

part of nv with 0 < v < 0.5. Substituting (3.3) and (3.4) into (3.1), we obtain the

log-likelihood,

Ln(Ωn;H) =
n∑

i=1

log

{
C∑

g=1

πgfgi(Ωn;H)

}
, (3.5)

subject to N−1
∑n

i=1

∑ni
j=1H(Yij) = 0 and N−1

∑n
i=1

∑ni
j=1H

2(Yij) = 1,

C∑

g=1

πg = 1,

∫

t

Bn(t)Bn(t)′dt = Iqn , βgβ
′
g = IKg , for g = 1, · · · , C, (3.6)

and the first nonzero element of each row of βg to be positive, where βg = (βg1, · · · ,βg,Kg)′,

fgi(Ωn;H) =
(2π)−ni/2

|∆gi(Ωn)|1/2 exp

[
−1

2
{H(Yi)−Bniαg}′∆gi(Ωn)−1 {H(Yi)−Bniαg}

]
,

Bni = {Bn(ti1), · · · ,Bn(ti,ni)}′, ∆gi(Ωn) = Bniβ
′
gΛgβgB

′
ni+σ

2
gIni and Ωn = {λgk, σ2

g , πg,

αg,βgk, k = 1, · · · , Kg, g = 1, · · · , C}. (3.6) is orthogonality constraints on the eigen-

functions. To adhere to the orthonormal constraints on the B-spline, we denote by

A =
∫
t
B̃n(t)B̃n(t)′dt, where B̃n(t) is the cubic B-spline basis functions (Schumaker,

2007). As A is a symmetric matrix, we have
∫
t
{A− 1

2 B̃n(t)}{A− 1
2 B̃n(t)}′dt = Iqn , and

Bn(t) = A−
1
2 B̃n(t) satisfies the orthonormal constraints. Throughout the paper, n in

the subscript represents the corresponding parameters and functions when using splines

to approximate µg(·) and φgk(·).

As C is not given a priori and to make the model inclusive, we often start with

a relative large C, which, however, may lead to many nuisance parameters and cause

large variation of estimates. This necessitates developing a more formal procedure for

estimating C. To proceed, we first note that if πg is found to be 0, the gth cluster is

not necessary and can be deleted from the model. Hence, the selection of the clusters

corresponds to the selection of non-zero elements of {πg, g = 1, . . . , C}. However, we may

not directly penalize on {πg, g = 1, . . . , C} to achieve model selection. To see that, we

consider the complete data for individual i as Di = {Yi, δi}, where δi = (δi1, · · · , δiC)′

8
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with δig = 1 if Yi arises from the gth cluster, otherwise δig = 0. The expected complete-

data log-likelihood function is

n∑

i=1

C∑

g=1

(big [log(πg) + log{fgi(Ωn;H)}]) (3.7)

where big = E{δig|Yi}. As (3.7) contains log(πg) with an unbounded derivative when

πg is close zero, setting Lp penalties directly on πg will not return an exact zero solution

for πg. Instead, we propose to penalize on log{πg} in order to achieve the sparsity for

(πg, 1 ≤ g ≤ C)′. However, large πg might be overly shrunk to 0 since we penalize on

log{πg}. Therefore, following Huang et al. (2017), we propose the following penalized

likelihood,

Qn(Ωn;H) = Ln(Ωn;H)− nλ
C∑

g=1

log

{
ε+ πg
ε

}
, (3.8)

where ε is a very small positive number, say 10−6 or o{n−1/2(log n)−1} (Huang et al.,

2017). Then it is natural to define the penalized log-likelihood estimator

(Ω̂n, Ĥn) = arg max
Ωn,H

Qn(Ωn;H), (3.9)

based on which we show that there is a nonzero probability of estimating some πg’s to

be exactly zero and achieving automatic cluster selection. Our procedure naturally inte-

grates the steps of cluster selection and parameter estimation, which makes computation

feasible.

The penalized likelihood function Qn(Ωn;H) involves the infinite-dimensional func-

tion H(·) and mixture distribution, so a direct maximization is not feasible. We resort

to a two-stage approach. Particularly, we estimate Ωn by maximizing the penalized

pseudo-likelihood, which is implemented by a penalized expectation maximization (EM)

algorithm based on Qn(Ωn;H) with H replaced by its estimated value with (3.17) de-

scribed in Section 3. We repeat the procedure until convergence.

3.2. Penalized expectation maximization algorithm
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Since the penalized likelihood function involves both finite and infinite dimensional

parameters, we resort to a two-stage iterative algorithm. We estimate the parameter

Ωn by a penalized expectation maximization (EM) algorithm, then we use a series of

estimating equations to estimate the transformation function H.

We first consider the penalized maximum likelihood estimator for Ωn given H, and

propose a penalized expectation maximization (EM) algorithm (Dempster et al., 1977),

which was originally designed for handling missing data. In our setting, we treat δi as

the missing data and view the complete data for individual i as Di = {Yi, δi}. Thus,

the penalized complete-data log-likelihood function is

Qc(Ωn;H) = logLc(Ωn;H)− nλ
C∑

g=1

log

{
ε+ πg
ε

}
, (3.10)

where logLc(Ωn;H) ∝∑n
i=1

∑C
g=1 (δig [log(πg) + log{fgi(Ωn;H)}]) .

In the maximization step, we maximize the conditional expectation of Qc(Ωn;H)

given the observed data. Differentiating E{Qc(Ωn;H)|Yi, i = 1, · · · , n} with respect to

Ωn and setting the derivatives to zero lead to:

n∑

i=1

E(δig|Yi)

πg
−

n∑

i=1

E(δi1|Yi)

1−∑C
j=2 πj

+
nλ

ε+ 1−∑C
j=2 πj

− nλ

ε+ πg
= 0, g ≥ 2, (3.11)

β̃gk =

{
n∑

i=1

E(δig|Yi)B
′
ni∆gi(Ωn)−1Bni

}−1

×
n∑

i=1

E(δig|Yi)B
′
ni∆gi(Ωn)−1 {H(Yi)−Bniαg}⊗2 ∆gi(Ωn)−1Bniβgk, (3.12)

λgk =
−∑n

i=1E(δig|Yi)β
′
gkB

′
ni∆gi(Ωn)−1Rgi,−k(Ωn)∆gi(Ωn)−1Bniβgk∑n

i=1E(δig|Yi)β
′
gkB

′
ni∆gi(Ωn)−1Bniβgkβ

′
gkB

′
ni∆gi(Ωn)−1Bniβgk

, (3.13)

σ2
g =
−∑n

i=1E(δig|Yi)tr
(
∆gi(Ωn)−2

[
Bni

∑Kg
k=1 λgkβgkβ

′
gkB

′
ni − {H(Yi)−Bniαg}⊗2

])

∑n
i=1E(δig|Yi)tr {∆gi(Ωn)−2} ,

(3.14)

αg =

{
n∑

i=1

E(δig|Yi)Ggi(Ωn)

}−1 n∑

i=1

E(δig|Yi)B
′
ni∆gi(Ωn)−1H(Yi), (3.15)

10
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for k = 1, · · · , Kg and g = 1, · · · , C, where Ggi(Ωn) = B′ni∆gi(Ωn)−1Bni, Rgi,−k(Ωn) =

Bni

∑Kg
r=1,r 6=k λgrβgrβ

′
grB

′
ni + σ2

gIni − {H(Yi)−Bniαg}⊗2. Given a small ε such that

1
πj+ε
≈ 1

πj
for all j, we obtain an approximate solution for (3.11),

π̃g = max

{
0,

1

1− Cλ

[
1

n

n∑

i=1

E(δig|Yi)− λ
]}

. (3.16)

Some π̃g may be shrunk to zero, in which case, we only need to re-normalize π̃g by

enforcing
∑C

g=1 π̃g = 1 after the EM algorithm converges. Denote the estimate of Ωn

from the rth step by Ω̃n. We update π
(r−1)
g from step r − 1 by π

(r)
g = π̃g/

∑C
j=1 π̃j and

further perform a QR decomposition on β̃g = (β̃g1, · · · , β̃g,Kg)′ obtained from (3.12)

to get β̃g = QR and update β(r−1)
g from step r − 1 by β(r)

g = Q′. It is easy to see

that β(r)
g β(r)′

g is an identity matrix. We estimate Ωn by repeatedly using equations

(3.12), (3.13), (3.14), (3.15) and (3.16) until convergence. At each step, Ωn on the

right side of the equations is replaced by its most updated value. When computing

the conditional mean δig given Yi, E(δig|Yi) = fg{H(Yi)}πg∑C
j=1 fj{H(Yi)}πj

, we also replace all the

unknown parameters and functions with their estimates from the previous step.

3.3. Estimation of the transformation function

For any given y = Yij, j = 1, · · · , ni and i = 1, · · · , n, we have

Pr(Yij ≤ y) = Pr{H(Yij) ≤ H(y)} =
C∑

g=1

πgPr{H(Yij) ≤ H(y)|δig = 1}

=
C∑

g=1

πgΦ





H(y)−Bn(tij)
′αg√

Bn(tij)′β
′
gΛgβgBn(tij) + σ2

g



 ,

where Φ(·) is the cumulative distribution of the standard normal variable. For each y in

the support of Yij, we estimate H(y) by solving

n∑

i=1

ni∑

j=1


I (Yij ≤ y)−

C∑

g=1

πgΦ





H(y)−Bn(tij)
′αg√

Bn(tij)′β
′
gΛgβgBn(tij) + σ2

g






 = 0. (3.17)

For each y, the estimating equation implicitly defines a value of θ ≡ H(y). Clearly
∑n

i=1

∑ni
j=1 I{Yij ≤ y} is a non-decreasing function of y. Therefore, the second term in
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the estimating equation (3.17) is a non-decreasing function of y. Since Φ is an increasing

function of its argument, we must have θ nondecreasing in y. By the same reasoning,

we can see that θ is piecewise constant, with non-zero jumps at the data values of y.

Remark 1. The computational cost for H(·) is very limited. Coupled with the

closed-form estimator for Ωn at each step, the implementation and computation of the

proposed method are simple. Unlike a traditional nonparametric approach to estimate

the transformation function (Horowitz, 1996) , our approach does not involve nonpara-

metric smoothing and thus does not suffer from smoothing-related problems, for example

selection of a smoothing parameter.

Denote the resulting estimate for H(Yij) from the rth step by Hnr(Yij). Then we

update H(r−1)(Yij) by H(r)(Yij) = {Hnr(Yij) − Hnr}/sd{Hnr} for identification, where

H̄nr and sd{Hnr} is the empirical mean and standard deviation of Hnr(Yij) over i, j.

3.4. Selection of hyper-parameters

The method requires to tune three parameters: the truncation parameter Kg, the

penalty parameter λ and the number of interior knots Mn. For standard LASSO and

SCAD penalty functions, Wang et al. (2007) showed that the BIC yields model selection

consistency, we hence propose to select Kg, Mn and λ and by maximizing

BIC(Kg,Mn, λ) = Ln(Ωn;H)− 1

2
DF (Ωn) log(

n∑

i=1

ni), (3.18)

where Ln(Ωn;H) is as defined in (3.5) and DF (Ωn) is the number of parameters Ωn.

As reported in Figure S.4(a)-(d) in the Supporting Information , we have examined the

performance of criterion (3.18) in selecting Kg,Mn and λ, which show that the optimal

Kg, Mn and λ are nearly independent, suggesting Kg, Mn and λ can be separately

chosen. Furthermore, we can see the proposed method is not sensitive to the choice of

Mn and hence a rough selection for Mn is enough. For smooth and either monotonic or

unimodal functions, 2 − 6 knots seem quite adequate and that is what we recommend.
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The simulations and data analysis suggested the BIC criterion (3.18) performs well.

4 Large sample properties

Let Ω̂n = {λ̂gk, σ̂2
g , π̂g, α̂g, β̂gk, k = 1, · · · , Kg, g = 1, · · · , Ĉ} and Ĥn be the estimator

of Ω and H derived above. The mean function µg(t) and covariance functions Σg(s, t)

can be estimated by µ̂g(t) = α̂′gBn(t) and Σ̂g(s, t) =
∑Kg

k=1 φ̂gk(t)λ̂gkφ̂gk(s) + σ̂2
gI(s = t),

respectively, where φ̂gk(t) = β̂
′
gkBn(t). In the Section, we focuses on the theoretical

properties, including n1/2-consistency and asymptotic normality.

Denote the Euclidean norm and the L2 norm by ‖ · ‖ and ‖ · ‖2, respectively, and

the parametric space Ω∗ = {Ω = (Λ′,σ2′,π′,µ′,φ′)′ ∈ R
∑C
g=1Kg

+ ⊗ RC
+ ⊗ [0, 1]C ⊗ GC ⊗

G
∑C
g=1Kg} with R+ = (0,∞). Denote Θ = (π′,µ′,Σ′)′ with Σ = (Σ1, · · · ,ΣC)′, µ and

Σ are the mean and covariance functions of interest, and π is the probabilities. We

define the norm between Θ1 and Θ2 by

d(Θ1,Θ2) =

(
‖π1 − π2‖2 +

C∑

g=1

‖µg,1 − µg,2‖22 +
C∑

g=1

‖Σg,1 − Σg,2‖22

)1/2

.

Throughout the paper, 0 in the subscript represents the true values of corresponding

parameters and functions. Without loss of generality, we assume that π1,0 ≥ π2,0 ≥
· · · ≥ πC0,0 > 0,

∑C0

g=1 πg,0 = 1, and πC0+1,0 = · · · = πC,0 = 0. We set the following

conditions.

(C1) max1≤j≤Mn(ζj − ζj−1) = O(n−v) with 0 < v < 1/2. Moreover, max1≤j≤Mn(ζj −
ζj−1)/min1≤j≤Mn(ζj − ζj−1) is bounded.

(C2) Ω0 is an interior point of Ω∗ and µg0 ∈ G, φgk0 ∈ G for 1 ≤ g ≤ C, 1 ≤ k ≤ Kg.

(C3) There exists [y1, y2] so that 1∑n
i=1 ni

∑n
i=1

∑ni
j=1 I (Yij 6∈ [y1, y2]) = op(n

−1/2).

(C4) The transformation function H(y) is strictly increasing and its first derivative is

continuous over y ∈ [y1, y2].
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(C5) Kg = O(ne) for 1 ≤ g ≤ C, with 0 ≤ e < min(1− υ, 2rυ).

(C6)
∑Kg

k=1 λgk0 <∞ for 1 ≤ g ≤ C.

(C7) The matrix E{S(θ0)S(θ0)
′} is finite and positive definite, where θ0 is the true

value of θ = (σ2′,π′)′, and S(θ0) is defined in the proof of Theorem 3.

Condition (C1) is common in the spline smoothing (Chen et al., 2017), and Condition

(C2) is often assumed in semiparametric analyses (Chen and Tong, 2010; Ma et al., 2015).

Condition (C3) is needed to avoid the tail problem (Lin et al., 2012). Condition (C4) is a

regular assumption for the transformation function (Horowitz, 1996; Zhou et al., 2008).

In practice, Kg is small and Condition (C5) is easy to be satisfied. Condition (C6) is

needed to avoid unbounded covariance (Hall et al., 2007). Condition (C7) is to ensure

the existence of the asymptotic covariance matrix (Ma et al., 2015; Chen et al., 2017).

We state below Theorems 1 to 3, which indicate the proposed estimates are consistent

and asymptotically normal, forming the basis for statistical inference. We defer the

proofs to the Supporting Information .

Theorem 1 Under Conditions (C1)-(C6), λ
√
n → 0, λ

√
n log(n) → ∞ and ε =

o
{

1√
nlog(n)

}
, we have Ĉ → C0 with probability tending to 1.

Theorem 2 With Conditions (C1)-(C6), λ
√
n→ 0 and ε = o

{
1√

nlog(n)

}
, we have,

Ĥn(y)→ H0(y) uniformly over y ∈ [y1, y2] and d(Θ̂n,Θ0) = Op{n−min( 1−υ−e
2

,rυ− e
2
)},

as n → ∞, r is defined in (3.2) and v ∈ (0, 0.5] is given to determine the number of
knots for the spline basis Bn(·).

As e increases, the number of eigenfunctions increases and the parameter space be-

comes larger, causing the error d(Θ̂n,Θ0) to increase. When e = 0, corresponding to

a fixed number of eigenfunctions, d(Θ̂n,Θ0) = Op{n−min( 1−υ
2
,rυ)}. In this case, taking

v = 1/(2r + 1), we have d(Θ̂n,Θ0) = Op{n−r/(2r+1)}, which is the optimal rate for the

estimation of univariate nonparametric functions (Stone, 1980).
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Theorem 3 Assume that Conditions (C1)-(C7) hold with r ≥ 2, 1
4r
< v < 1

2
, λ
√
n→ 0,

and ε = o
{

1√
nlog(n)

}
. As n→∞, the estimator θ̂ for finite parameters θ satisfies,

√
n(θ̂ − θ0)→ N{0, I−1(θ0)},

where I(θ0) = E{S(θ0)S(θ0)
′} is defined in the Supporting Information .

5 Simulations

With unspecified transformation functions, we expect our method to be robust and

flexible. To investigate the tradeoff between the added robustness and the efficiency, we

compare the proposed method with the model-based and distance-based clustering meth-

ods. The former includes the method with a correctly specified transformation function

(CT), the method without transformation (WoT) and the FunFEM method (Bouveyron

et al., 2015). We take the DHP method recently proposed by Delaigle et al. (2019) as a

representation of distance-based clustering methods. We also examine the sensitivity of

the proposed method to the initial value of the number of groups and the performance of

criterion (3.18) in selectingKg,Mn and λ. As our method requires the measurement error

of the transformed responses to be normally distributed, we further investigate the sensi-

tivity of the proposed method to the normality assumption. We assess the performance

in terms of bias, standard deviation (sd), and root mean squared error (RMSE), defined

by bias =
[

1
ngrid

∑ngrid
i=1 {Ef̂(ti)− f(ti)}2

]1/2
, sd =

[
1

ngrid

∑ngrid
i=1 E{f̂(ti)− Ef̂(ti)}2

]1/2
,

and RMSE = [bias2 + sd2]
1/2

for any estimation f̂(·) of f(·), with ti (i = 1, . . . , ngrid)

being the grid evaluation points and Ef̂(ti) being approximated by its sample mean,

based on 300 replications and ngrid = 300. To evaluate the classification accuracy, we use

the measurements of purity function (PF) and adjusted Rand index (ARI), commonly

used in the classification literature (Delaigle et al., 2019). In the following simulations,

we use the cubic B-spline, choose the number of interior knots Mn via BIC in (3.18),

and place the knots at the Mn quantiles of the observation times.
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5.1 Performance of estimation

To investigate the efficiency and robustness, we compare the proposed method with the

correctly specified transformation function (CT) and the method without transformation

(WoT) in terms of bias, sd and RMSE.

Simulation 1. We generate n = 400 samples from a three-component population

with mixing probabilities π = (1/3, 1/3, 1/3)′. The data in the gth cluster are generated

from H(Ygit) = µg(t)+
∑2

k=1 ξgikφgk(t)+εgit, g = 1, 2, 3, where µ1(t) = t+sin(πt), µ2(t) =

exp(t), µ3(t) = 2t2 + 2; φ11(t) =
√

2 cos(πt), φ12(t) =
√

2 sin(πt), φ21(t) =
√

2 cos(2πt),

φ22(t) =
√

2 cos(πt), φ31(t) =
√

2 cos(2πt), φ32(t) =
√

2 sin(πt), ξgik ∼ N(0, λgk) with

λ11 = 1, λ12 = 0.25, λ21 = 1.1, λ22 = 0.2, λ31 = 0.9, λ32 = 0.15, and εgit ∼ N(0, σ2
g)

with σ2
1 = 0.1, σ2

2 = 0.15, σ2
3 = 0.2. The errors εgit for g = 1, 2, 3 and i = 1, · · ·n are

independently and identically distributed over time t. For each subject, the number of

observations is randomly drawn from a discrete uniform distribution on {8, 9, 10, 11, 12}
and the observation times are sampled from U(0, 1). We take H(y) = 3log(y) and

10(
√
y − 1) for Cases 1 and 2, respectively.

Based on 300 repetitions, Table 1 and Table 6 (in the Supporting Information )

summarize the results obtained by using the proposed method with C = 7, the CT

method with C = 3, 7, and the WoT method with C = 3 for Cases 1 and 2. We take

Kg = 2,Mn = 2 and λ = 0.05 for all of the three methods. We implement the CT and

the WoT estimators by using the proposed algorithm with the transformation function

H specified by the true transformation function and the misspecified transformation

H(y) = y, respectively. The CT method with C = 3 is served as the gold standard,

the CT method with C = 7 is used to investigate the effect of the selection of the

number of clusters, and the WoT method with C = 3 is used to investigate the effect of

misspecification of the transformation function. In Table 1 and Table 6, we also present

]cluster, the estimated number of clusters.
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Table 1 and Table 6 reveal the WoT method produces large biases and variances,

with biases often overwhelming variances, suggesting that the misspecification of the

transformation function leads to severely biased and unstable estimates. In contrast,

the proposed method is unbiased with a variance close to that of the CT estimator,

suggesting that our method is robust with little loss of efficiency. Moreover, the proposed

method consistently selects the number of clusters.

Figures 3 and 4 (both in the Supporting Information ) display the averaged estimates

of the transformation functions, mean functions and eigenfunctions, along with their

empirical 95% pointwise confidence intervals based on the 300 simulated datasets. In

all the cases, the average estimates of the functions match well with the true functions,

with confidence intervals of reasonable width.

To investigate the sensitivity of the proposed procedure to the initial number of clus-

ters, we compare the results with the initial values of C = 7, 10, 15 for Case 1. Figure 5 in

the Supporting Information illustrates the estimation errorErr(f) =
[

1
ngrid

∑ngrid
i=1 {f̂(ti)− f(ti)}2

]1/2

over 300 simulated datasets. Figure 5 shows that the proposed estimates are nearly

identical with different initial numbers of clusters, supporting the conjecture of robust-

ness. It further hints that our method may be as efficient as the method with a known

number of clusters, which is the oracle property.

Figures 6(a)-(d) in the Supporting Information report the performance of criterion

(3.18) in selecting Kg,Mn and λ under Case 1 of Simulation 1. The candidates of Kg,Mn

and λ are {1, 2, 3, 4}, {1, 2, 3, 4, 5} and {0.01, 0.03, 0.05, 0.07}, respectively. The

largest BIC is achieved when Kg = 2, which is the true value. These figures reveal that

the optimal Kg, Mn and λ are nearly independent, suggesting Kg, Mn and λ can be

separately chosen. Furthermore, we can see the proposed method is not sensitive to

the choice of Mn. Figure 6(e) in the Supporting Information, the barplot of estimated

number of clusters based on the strategy and BIC criterion (3.18) for Case 1 of Simulation
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1, shows that the proposed method can correctly identify the number of clusters.

Simulation 2. To match the real data of of the ADNI study where the function

data is a restricted density, we generate data similarly as Case 1 of Simulation 1, except

that π = (0.229, 0.277, 0.494)′, the transformation function, the mean functions, the

eigenfunctions, the eigenvalues and error variances are taken as the estimators from the

real data analysis of the ADNI study in Section 6. Table 7 in the Supporting Information

shows that the proposed method is unbiased with a variance close to that of the CT

estimator, and has much less RMSE than the WoT method, and can correctly select the

number of clusters.

Simulation 3. To assess the sensitivity of our proposed method to the assumption of

Gaussian errors, we generate data similarly as Case 1 of Simulation 1, except that we gen-

erate εgit from a mixed distribution with each component being the centralized and scaled

gamma distribution σg × {Gamma(τ, 1) − τ}/√τ with σ2
1 = 0.1, σ2

2 = 0.15, σ2
3 = 0.2,

which approaches the normal distribution as τ increases. We take τ = 1, 5, 10, 100. Table

8 (in the Supporting Information ) presents the bias, sd and RMSE for the parameters

and the nonparametric functions when C = 7. When τ ≥ 10 and both skewness and

excess kurtosis are less than 1, the proposed estimators are nearly unbiased. When both

skewness and excess kurtosis approximate 1, the proposed estimators are acceptable,

although the estimators are moderately biased. Taken altogether, these results suggest

the robustness towards the Gaussian error assumption.

5.2 Performance of classification

To assess the classification accuracy, we compare the proposed method with the Fun-

FEM (Bouveyron et al., 2015) and the DHP method proposed by Delaigle et al. (2019),

based on the PF and ARI. The larger PF and ARI, the better the clustering. The

DHP method requires a specification of C. For fair comparisons, we always take C to
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be the true number of clusters when required. We perform the DHP method with the

Haar basis (DHPHA), the Daubechies DB2 wavelet basis (DHPDB), and the principal

component basis (DHPPC). We consider two settings.

Simulation 4. The setting is the same as Setting (a) in Delaigle et al. (2019). The

data in the gth cluster are generated from Ygit =
∑40

k=1(λ
1/2
k ξgik + γkg)φk(t), on a grid

of 128 equispaced time points in [0, 1], where λk = k−2, φk(t) =
√

2 sin(kπt) and ξgik ∼
N(0, 1) for k = 1, . . . , 40 and g = 1, 2; (γ11, γ21, γ31, γ41, γ51, γ61) = (0,−0.3, 0.6,−0.3, 0.6,−0.3),

(γ12, γ22, γ32, γ42, γ52, γ62) = (0,−0.45, 0.45,−0.09, 0.84, 0.6) and γkg = 0 for g = 1, 2 and

k > 6. We generate 100 replications, each with sample size n = 200, where half of the

data come from the first cluster and the remaining half come from the second cluster.

Simulation 5. The setting is the same as Bouveyron et al. (2015) except that

we consider two clusters. A total of n = 100 curves with equal mixing proportions

are generated from Ygit = Ui + (1 − Ui)hg(t) + εi(t) on a grid of 101 equispaced time

points in [1, 21] for g = 1, 2, where Ui is uniformly distributed on [0, 1], εi(t) ∼ N(0, 0.5),

h1(t) = 6− |t− 7| and h2(t) = 6− |t− 15|. We generate 100 replications.

We take (C,Kg,Mn, λ) = (7, 6, 6, 0.08) and (C,Kg,Mn, λ) = (7, 2, 6, 0.15) for Sim-

ulations 4 and 5, respectively, for the proposed method. Table 2 displays the averages

of PF and ARI using the proposed method, the FunFEM and the DHP methods for

Simulations 1, 4 and 5. Table 2 presents that the proposed method yields larger PF

and ARI than the FunFEM and DHP mthods when the assumptions required by our

method are satisfied, and produces comparable or slightly better results than FunFEM

and DHP when the assumptions follow those specified in Bouveyron et al. (2015) and

Delaigle et al. (2019), respectively.
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6 Analysis of the ADNI Study

Alzheimer’s disease is an irreversible and the most common form of dementia, and

can result in the loss of thinking, memory and language skills. It is of substantial

interest to unravel the complex brain changes involved in the onset and progression

of Alzheimer’s disease. The effort helps develop effective therapies targeting specific

progression mechanisms in order to stop or prevent the actual underlying cause of the

disease. In particular, the volume of hippocampus, which is the brain region that is

associated with memory loss and disorientation, has been found to be associated with the

cognitive function. We explore using the volume of hippocampus to distinguish patients

with different levels of cognitive impairment. Specifically, we propose to use the density

function of the volumes of hippocampus, obtained from various sampling locations, as a

basis for grouping patients with cognitive impairment (AD), mild cognitive impairment

(MCI, an early stage of AD) and cognitively normal (CN). The dataset includes 768

participants enrolled in ADNI1 (Mueller et al., 2005), the first phase of Alzheimer’s

Disease Neuroimaging Initiative study, a large cohort study designed to prevent and

treat Alzheimer’s disease. Each patient’s record consists of the density for each of

the observed 501 equispaced sampling volumes, which are in the interval of [-255,255].

Among the 768 patients, 172 subjects are diagnosed with AD, 378 MCI and 218 CN.

To proceed, denote by Y (t) the density function of the log of the Jacobian volume

of the hippocampus (denoted by t), which is to be used as the functional response in

the analysis. The density curves for all the subjects are plotted on Figures 1. Figures

7-9 in the Supporting Information for three groups, respectively, display the histogram

for Y -values (Y=density) given x-value (x = log Jacobian volume) at 16 points which

are uniformly distributed over the support of x. It is obvious that the values of density

are not normally distributed. We scale the log Jacobian volume into [0, 1] before anal-

ysis. The density functions are all non-negative and each integrates to 1, we fit the
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transformed density functions by the proposed estimation procedure. We conduct un-

supervised learning of the data based on model (2.2), without using the known labeling

of AD, MCI or CN. Then we compare the resulting estimators with the known grouping

information to examine the clustering performance.

We also compare the proposed method with the untransformed method, i.e. WoT

with H(y) = y. We adopt the cubic B-spline with interior knots chosen by (3.18). To

reduce the computational burden, we first select Mn, λ and a common Kg for all clusters

by the BIC criterion (3.18), which are (Mn, λ,Kg) = (2, 0.003, 2) and (2, 0.002, 1) for

the proposed method and the WoT, respectively. With the selected (Mn, λ,Kg), both

methods identify the number of clusters as 3. Table 3 displays the resulting estimates,

their standard deviation (sd) and an ad hoc p−values (based on bootstrap resamples).

The sd and p−values are estimated based on 200 bootstrap resamples, where the number

of 200 is determined by monitoring the stability of the sd. The p−value for testing the

parameters equalling 0 is obtained as the frequency that the replicates fall in the region

(estimator ± 1.96× sd). Since the estimates of λ12, λ21, λ22 are not significant by using

the proposed method, we set K1 = 1, K2 = 0, K3 = 2 for our proposed method. Figure

2 displays the estimated mean and transformation functions, eigenfunctions and their

corresponding 95% point-wise confidence limits.

Table 3 reveals that the estimates in the WoT method are all nonsignificant at

the level of 0.05, which does not seem reasonable. In contrast, the proposed method

yields mostly significant estimates, and Figure 2 shows that the estimated transformation

function appears deviating from a linear function, which has a negative intercept causing

µ̂1 and µ̂3 to be negative. Figure 2 shows that the shapes of the mean functions of

different clusters are almost same, but the mean function of cluster 2 is higher than

those in the remaining two clusters, and cluster 3 is second. The first eigenfunctions of

clusters 1 and 3 are nearly the same, but clusters 1, 2 and 3 extracted one, zero and two
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principal components, respectively. That is, the proposed method can detect different

clusters with the ADNI data. With Table 5, we see that group 2 (CN) is cognitively

normal and K2 = 0 implies that the variations over volumes and across subjects are

simply due to randomness. These findings are consistent with what researchers expect

of the three cognitive groups displayed in Figure 1, which shows that the pointwise

variance of group 2 is smaller than that of groups 1 and 3 and the mean functions of

these 3 groups are almost the same.

To check the clustering performance, we compare PF and ARI among the DHPHA,

DHPDB, DHPPC , FunFEM and WoT(C=3) methods in Table 4. Table 4 reports that

the proposed method has larger PF and ARI than the DHP and FunFEM methods, sug-

gesting that the proposed method performs better than the DHP and FunFEM methods

in clustering. Furthermore, we estimate the class label for each individual using the

Bayes’ optimal allocation rule, gi = arg maxg
fg{H(Yi)}πg∑C
j=1 fj{H(Yi)}πj

, and classify 186, 219 and

363 subjects to clusters 1, 2 and 3, respectively by the proposed method, and 200, 159

and 409 to clusters 1, 2 and 3 by the WoT method. Figure 2 reveals that the mean func-

tions are unimodal for all three groups, with an obvious ordering. The mean function

of cluster 2 is on top of those for clusters 1 and 3. Cluster 3 comes second, and cluster

1 is the last. Since AD patients tend to have low hippocampal volumes, indicating a

high level of cognitive impairment, we label clusters 1, 2 and 3 as AD, CN and MCI,

respectively. Table 5 displays the comparisons of the estimated and true clusters. The

classification error by applying the WoT method is 43.1%, while the classification error

by applying our proposed method without the Gaussian assumption is merely 2.08%.

7 Conclusion

We have proposed a semiparametric mixed normal transformation (SMINT) model to

cluster non-Gaussian functional data, and used functional principal components for di-

mension reduction. We have utilized cubic B-spline approximation for eigenfunctions
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to avoid computing cluster-specific covariance functions, and allowed eigenfunctions to

differ across clusters. We have developed an computationally efficient algorithm to es-

timate the unknown finite and infinite dimensional parameters. The proposed method

has some appealing features: (i) the model is flexible as both the distribution of the

response and the number of clusters are unspecified, and (ii) the estimates are robust,

efficient, consistent and asymptotically normal.

While focused on univariate functional data, our method can be extended to ac-

commodate multivariate functional data. It is also possible to extend our method to

accommodate external covariates. However, we envision that the theory and implemen-

tation may be more complicated, which warrants further study.
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Figure 1: ADNI dataset (top left) and separate plots for each group with mean function
(Black thick line). This figure appears in color in the electronic version of this article,
and any mention of color refers to that version.
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Figure 2: The estimated transformation function and mean functions (top), and eigen-
functions (bottom) for ADNI data (dotted–95% confidence limit; solid–estimated func-
tion). This figure appears in color in the electronic version of this article, and any
mention of color refers to that version.
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Table 1: Results for Case 1 of Simulation 1.
Proposed(C=7) CT(C=3) CT(C=7) WoT(C=3)

bias(sd) RMSE bias(sd) RMSE bias(sd) RMSE bias(sd) RMSE
π1 0.003(0.034) 0.034 0.000(0.032) 0.032 0.001(0.034) 0.034 0.017(0.095) 0.096
π2 0.009(0.039) 0.039 0.002(0.034) 0.034 0.003(0.039) 0.039 0.031(0.112) 0.116
π3 0.004(0.038) 0.038 0.001(0.031) 0.031 0.001(0.037) 0.037 0.048(0.113) 0.123
σ2
1 0.001(0.009) 0.009 0.001(0.005) 0.005 0.001(0.006) 0.006 0.044(0.044) 0.062
σ2
2 0.001(0.014) 0.014 0.001(0.012) 0.012 0.000(0.014) 0.014 0.010(0.054) 0.055
σ2
3 0.006(0.030) 0.031 0.001(0.011) 0.011 0.002(0.013) 0.013 0.070(0.052) 0.087

λ11 0.030(0.145) 0.148 0.008(0.121) 0.121 0.009(0.125) 0.125 0.526(0.648) 0.835
λ12 0.011(0.036) 0.038 0.003(0.033) 0.033 0.006(0.034) 0.034 0.059(0.427) 0.431
λ21 0.037(0.140) 0.145 0.022(0.137) 0.139 0.023(0.137) 0.138 0.301(0.609) 0.680
λ22 0.001(0.011) 0.011 0.000(0.010) 0.010 0.000(0.011) 0.011 0.146(0.354) 0.382
λ31 0.038(0.149) 0.154 0.030(0.114) 0.118 0.038(0.139) 0.144 0.143(0.485) 0.506
λ32 0.017(0.056) 0.058 0.013(0.050) 0.052 0.015(0.054) 0.056 0.164(0.350) 0.386
µ1(·) 0.020(0.130) 0.132 0.007(0.103) 0.103 0.014(0.112) 0.113 0.729(0.448) 0.856
µ2(·) 0.033(0.180) 0.183 0.013(0.143) 0.144 0.019(0.166) 0.167 0.753(0.506) 0.907
µ3(·) 0.049(0.184) 0.191 0.013(0.140) 0.141 0.040(0.163) 0.167 1.300(0.518) 1.399
φ11(·) 0.020(0.070) 0.073 0.004(0.065) 0.065 0.005(0.067) 0.067 0.534(0.569) 0.780
φ12(·) 0.013(0.083) 0.084 0.006(0.080) 0.080 0.007(0.081) 0.081 0.421(0.620) 0.750
φ21(·) 0.037(0.109) 0.115 0.022(0.086) 0.089 0.026(0.092) 0.096 1.262(0.723) 1.455
φ22(·) 0.014(0.115) 0.116 0.007(0.099) 0.099 0.009(0.100) 0.100 1.147(0.888) 1.451
φ31(·) 0.035(0.106) 0.112 0.033(0.098) 0.103 0.035(0.100) 0.106 1.154(0.551) 1.279
φ32(·) 0.023(0.107) 0.110 0.013(0.052) 0.054 0.017(0.082) 0.084 1.135(0.777) 1.376
Σ1(·, ·) 0.061(0.267) 0.274 0.013(0.146) 0.146 0.014(0.149) 0.150 0.748(0.784) 1.083
Σ2(·, ·) 0.072(0.271) 0.280 0.061(0.236) 0.244 0.063(0.269) 0.276 1.130(0.837) 1.406
Σ3(·, ·) 0.073(0.293) 0.302 0.063(0.260) 0.267 0.066(0.268) 0.276 1.088(1.087) 1.538
]cluster 0.070(0.354) 0.361 - - 0.056(0.212) 0.219 - -

“−” not available
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Table 2: The averages of PF and ARI for Simulations 1, 4 and 5.

Proposed DHPHA DHPDB DHPPC FunFEM
Case 1 of Simulation 1

PF 0.924 0.599 0.522 0.587 0.557
ARI 0.812 0.242 0.118 0.227 0.177

Case 2 of Simulation 1

PF 0.937 0.622 0.528 0.628 0.577
ARI 0.836 0.275 0.126 0.277 0.211

Simulation 4

PF 0.934 0.850 0.857 0.915 0.548
ARI 0.793 0.661 0.552 0.808 0.009

Simulation 5

PF 0.927 0.824 0.860 0.827 0.896
ARI 0.664 0.424 0.532 0.433 0.638

Table 3: The resulting estimates for ADNI data.

WoT Proposed

Estimate(sd) p-value Estimate(sd) p-value

π1 0.321(0.176) 0.068 0.229(0.027) 0.000
π2 0.329(0.187) 0.079 0.277(0.023) 0.000
π3 0.351(0.180) 0.051 0.494(0.032) 0.000
σ2
1 2.031×10−5(2.628×10−5) 0.440 0.306(0.090) 0.001
σ2
2 1.888×10−5(2.490×10−5) 0.448 0.302(0.088) 0.001
σ2
3 2.475×10−5(2.778×10−5) 0.373 0.018(0.131) 0.891

λ11 -(-) - 0.163(0.075) 0.030
λ31 -(-) - 0.308(0.027) 0.000
λ32 -(-) - 0.160(0.013) 0.000

“−” not available

Table 4: The PF and ARI for ADNI data.

Proposed DHPHA DHPDB DHPPC FunFEM WoT
PF 0.962 0.516 0.451 0.509 0.451 0.569
ARI 0.899 0.042 0.459 0.025 0.034 0.097
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Table 5: The confusion matrix for the estimated clusters of the ADNI1 patients using
the proposed method

estimated

cluster 1 (AD) cluster 2 (CN) cluster 3 (MCI) Total
cluster 1 (AD) 172 0 0 172

true cluster 2 (CN) 1 217 0 218
cluster 3 (MCI) 13 2 363 378

all 186 219 363 768
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