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Abstract: 

The emergence of memristors with potential applications to data storage and artificial intelligence 

has attracted wide attentions. Memristors could be assembled in crossbar arrays with data bits 

encoded by the resistance of individual cells. Despite the proposed high-density and excellent 

scalability, the sneak-path current causing cross interference, impedes their practical applications. 

Therefore, developing novel architectures to mitigate sneak-path current and improve efficiency, 

reliability and stability may benefit next-generation storage-class memory (SCM). Moreover, 

conventional digital computers face the von Neumann bottleneck and the slowdown of transistors 

scaling, imposing a big challenge to hardware artificial intelligence. Memristive crossbar features co-

location of memory and processing, as well as superior scalability, making it a promising candidate 

for hardware accelerating machine learning and neuromorphic computing. This review firstly 

introduces the crossbar architecture. Then, for storage, we review the origin of sneak-path current 

and discuss techniques to mitigate this issue from the angle of materials and circuits. Computing-

wise, we survey the applications of memristive crossbars in both machine learning and neuromorphic 

computing, focusing on the structure of unit cells, the network topology, and the learning types. 

Finally, we conclude the review with our perspective on future engineering and applications of 

memristive crossbars.   

 

Keywords: 
artificial neural networks, crossbar array, memory storage, neuromorphic computing  

 

 

 

1. Introduction   

Computers nowadays feature a well-established memory hierarchy, usually including solid-state 
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drives enabled by floating-gate transistors for non-volatile data storage, dynamic random-access 

memory (DRAM), and on-chip caches and register files such as those based on static random-access 

memory (SRAM). The reason for such a hierarchy is the performance gap between floating-gate 

transistors, DRAMs, and SRAMs. The nonvolatile floating-gate transistor has slow speed and high-

energy consumption in programming, in addition to the very limited endurance. The volatile DRAM 

is relatively speedy and energy-saving in programming. The volatile SRAM is the fastest and the 

most energy-efficient among the three, but at the cost of a large footprint. An ultimate pursuit of the 

memory community is to come up with a unified memory solution that is nonvolatile like a floating 

gate transistor, featuring fast and low-energy programming like an SRAM. Such a memory is not yet 

commercially available. 

 

Another limitation of digital computers is the von Neumann architecture, where the physically 

separated memory and computing units incur large latency and high-energy consumption due to data 

shuttling. [1-5] This is more evident in machine learning and neuromorphic computing due to frequent 

transfer of massive network parameters. On the other hand, our brain computes in a drastically 

different way, in which the information is processed and stored at the same place, thanks to the 

massively intertwined neurons and synapses. [6-13] Numerous efforts have been made to build an 

electronic brain using traditional complementary metal-oxide-semiconductors (CMOS), [14-16] 

however, no digital computing systems can simultaneously parallel the intelligence and efficiency of 

a human brain yet. [9, 10, 17] This is further intensified by the slowdown of Moore’s law, because the 

size of transistors is approaching their physical limit. [9, 15] Therefore, fundamental changes to the 

computing paradigim are required.  

 

Memristor, revealed as the fourth passive electronic element, is a tunable resistor with memory as 

conceived by Prof. Leon Chua in 1971 [18, 19] and demonstrated by researchers from Hewlett-Packard 
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lab in 2008. [20] The HP memristor is essentially a resistive switch which consists of a dielectric layer 

sandwiched by two electrodes. The unique feature of memristors is that the conductance depends on 

historical electrical signals, making them capable to work as non-volatile memory. In addition, 

memristors may store multi-bit information with continuously tunable conductance, in contrast to 

binary states “0” and “1” in traditional digital storage systems, equipping them with higher bit density. 

Nonvolatility, fast programming, low pro gramming energy, and compact footprint, [21-23] make 

memristors a promising solution for the next-generation embedded memory, which may combine the 

advantage of SRAM and floating gate transistors. In addition to memory and storage, memristors 

intrinsically mimic the dynamic behaviors of synapses and neurons thanks to the bias-history-

dependent conductance, which has led to various memristor-based artificial and spiking neural 

networks (SNNs). [24-28]  

 

The simple two-terminal metal-insulator-metal (MIM) structures of memristors make them capable 

to be integrated into dense crossbar arrays. [29, 30] As shown in Figure 1a, a typical crossbar array 

consists of parallel metal lines, termed word lines and bit lines, respectively, as the top and bottom 

electrodes that are perpendicular to each other. The two-terminal memristors are formed at the 

intersections of word and bit lines. The red cylinder represents a selected cell during the operation to 

read its conductance (the black solid line). In this readout process, as shown in Figure 1a, a sneak 

path, represented by the red dashed line, carries unwanted current, which is equivalent to series 

resistors that are parallel to the selected memristor, as shown in Figure 1b. Such sneak paths would 

lead to extra energy consumption from unselected cells, which also degrades the read margin and thus 

limits the size of arrays. It shall be noted that the sneak current issue, which is prominent in sequential 

read and write isolated memristors in crossbar arrays, would have a less critical impact on both 

machine learning and neuromorphic computing.[31] So far, extensive research has been reported to 

address this sneak path leakage current in resistive random-access memory (RRAM) and phase-
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change memory (PCM) arrays. Such solutions include engineering the unit cells, such as introducing 

an access element to the 1-memristor (1R) cell to form composite cells like one transistor-one 

memristor (1T1R), one diode-one memristor (1D1R), one selector-one memristor (1S1R), self-

rectifying memristors, etc.[32-35] The introduction of the access device not only improves energy 

efficiency during array programming, but may also assist memristors in implementing synaptic 

plasticity, thus enabling novel analog machine learning and neuromorphic computing. [36-40]  

In this review, we also explore the low-dimensional materials for memristive array, which are 

promising to be the next-generation computing technology. In particular, with the recently reported 

on the wafer-scale growth ability of low-dimensional materials [41-43], a complete review on the recent 

works including research on both low dimensional materials and traditional materials based 

memristive array for information storage and neuromorphic computing becomes essential. Moreover, 

we present a comprehensive review of the memory unit cell design for RRAMs and PCMs to re-solve 

the sneak-path current issue, including 1S1R, 1T1R, 1D1R, one bipolar junction transistor (BJT)-one 

memristor (1BJT1R), self-selective cell (SSC), self-rectifying cell (SRC), complementary resistive 

switching (CRS) cell, as schematically shown in Figure 1c-1i. The types of bias schemes and the 

influence of wire resistances to the read/write operations are discussed. Some of the recently reported 

devices with staircase output electrodes and pillar input electrodes have been proposed which should 

be noted as well.[44] Finally, we survey the literature on how 1R and 1T1R arrays physically accelerate 

machine learning and neuromorphic computing. For example, how they implement different types of 

neural network topologies, and how they perform different types of learning (e.g., supervised, 

unsupervised, reinforcement learning, which is either implemented offline or online.  Au
th

or
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Figure 1. Crossbar architecture and the potential issues on sneak path current, as well as the potential 

solutions. (a) Schematic illustration of the crossbar memory array architecture, with normal and sneak 

current paths, respectively. (b) The equivalent electric circuit of sneak current is involved in the 

crossbar array. (c-i) Seven types of possible solutions to solve the sneak path current issue, including 

1T1R, 1BJT1R, CRS, 1D1R, 1S1R, SRC, and SSC, respectively. 

 

2. RRAM Writing/Reading Voltage Schemes in the Crossbar Arrays    

 

 

(a) (b)

(c)

(f)

(d) (e) (g)

(h)

(i)

(b) 1/2 Voltage Bias Scheme 1/3 Voltage Bias Scheme

RL

0…

…

Bit lines (n)

W
or

d 
lin

es
(m

)

RL

0…

…

Bit lines (n)

W
or

d 
lin

es
(m

)

Selected 
cell

Selected 
cell

(c)(a)

RL

V

Bit lines (n)

W
or

d 
lin

es
(m

)

Selected 
cell

Floating Bias Scheme

V

Rs

Rm RnRmn

V

Rs

Rm RnRmn

V

Rs

Rm RnRmn
⅔V½V

⅓V

½V

½V

½V

V

½V ½V ½V

V

⅓V

⅓V

⅓V

⅔V ⅔V ⅔V

(d) (e) (f)

0 Au
th

or
 

W

Au
th

or
 

Writing/

Au
th

or
 

riting/R

Au
th

or
 

Reading 

Au
th

or
 

eading 

Au
th

or
 

Au
th

or
 

Au
th

or
 

Au
th

or
 

Au
th

or
 

Au
th

or
 

Au
th

or
 

Au
th

or
 

Au
th

or
 

Au
th

or
 

Au
th

or
 

Au
th

or
 

R Au
th

or
 

RLAu
th

or
 

LAu
th

or
 

Au
th

or
 

Au
th

or
 

Au
th

or
 

Au
th

or
 

Au
th

or
 

Au
th

or
 

Au
th

or
 

Au
th

or
 

Au
th

or
 

Au
th

or
 

Au
th

or
 

Au
th

or
 

Au
th

or
 

Au
th

or
 

Au
th

or
 

Au
th

or
 

Au
th

or
 

Au
th

or
 

Au
th

or
 

Au
th

or
 

Au
th

or
 

Au
th

or
 

Au
th

or
 

Au
th

or
 

Au
th

or
 

Au
th

or
 

Au
th

or
 

Au
th

or
 

Au
th

or
 

Au
th

or
 

Au
th

or
 

Bit lines (n) Au
th

or
 

Bit lines (n)

Selected 

Au
th

or
 

Selected 
cell

Au
th

or
 

cell

Au
th

or
 

Floating Bias Scheme

Au
th

or
 

Floating Bias Scheme

0 Au
th

or
 

0

M
an

us
cr

ip
t

Crossbar 

M
an

us
cr

ip
t

Crossbar architecture

M
an

us
cr

ip
t

architecture

solutions. (a) Schematic illustration of the crossbar memory array architecture, with normal and sneak 

M
an

us
cr

ip
t

solutions. (a) Schematic illustration of the crossbar memory array architecture, with normal and sneak 

current paths, respectively. (b) The

M
an

us
cr

ip
t

current paths, respectively. (b) The

crossbar array. (c

M
an

us
cr

ip
t

crossbar array. (c-

M
an

us
cr

ip
t

-i) Seven types of possible solutions to solve the sneak path current issue, including 

M
an

us
cr

ip
t

i) Seven types of possible solutions to solve the sneak path current issue, including 

1T1R, 1BJT1R, CRS, 1D1R, 1S1R, SRCM
an

us
cr

ip
t

1T1R, 1BJT1R, CRS, 1D1R, 1S1R, SRC

(d)

M
an

us
cr

ip
t

(d)

M
an

us
cr

ip
t

M
an

us
cr

ip
t

M
an

us
cr

ip
t



 

 This article is protected by copyright. All rights reserved 

Figure 2. Three typical types of bias voltage (V) schemes. (a) The floating bias scheme. (b) The one-

half voltage (1/2V) bias scheme. (c) The one-third voltage (1/3V) bias scheme. (d-f) The equivalent 

electric circuits corresponding to the three types of voltage biasing schemes as shown in (a-c).  

 

To avoid programming interference, different bias schemes, as shown in Figure 2, have been proposed 

to bias the unselected cells with a fraction of the selected cell voltage. [45-48] Despite the pursuit of 

memristors with ultralow “Off” current/conductance for memory cells in the crossbar arrays, the 

choice of bias scheme for writing/reading processes could be helpful to mitigate the sneak-path 

current issue. The voltage schemes could be classified based on the voltages applied to the unselected 

bit and word lines when the selected cell is always kept under full voltage bias. As shown in Figures 

2a and 2d, the floating scheme leaves all the unselected word and bit lines floating. The read margin 

of the floating scheme could be much lower than that of the 1/2V scheme because all the sneak currents 

of the unselected cells will flow towards V if they could not be suppressed appropriately. In other 

words, if the sneak current issue in the floating scheme is successfully handled, the crossbar RRAM 

in the floating scheme can exhibit better energy efficiency while achieving an extremely high density, 

which is mainly determined by its read margin. In the 1/2V bias scheme, as shown in Figures 2b and 

2e, the selected word line and selected bit line are applied full voltage and 0 voltage, respectively, 

and the unselected word lines and bit lines are applied with 1/2V. Thus, the selected cell (red circle) is 

under V bias, half-selected cells (green and yellow circles) are under 1/2V and the unselected cells 

(blue circles) are under 0V. While for the 1/3V bias scheme shown in Figures 2c and 2f, the selected 

word line and selected bit line are applied full voltage and 0 voltage, respectively, same as the 

situation of 1/2V. The unselected word lines are applied 1/3V, while the unselected bit lines are applied 

2/3V. Thus, the selected memory cell (red circle) is under V bias, half selected memory cells (green 

and yellow circles) are under 1/3V bias, and the unselected memory cells (blue circles) are under -1/3V 

bias. Therefore, developing nonlinear I-V curves with a large on/off ratio and ultralow off-state 
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current would be promising to decrease the energy consumption.  

 

3 Solutions to Solve the Sneak-Path Current in Crossbar Arrays 

 

3.1 1S1R Cell and Crossbar Array   

 

1S1R cell, a two-terminal circuit consisting of one selector and one memristor in series as shown in 

Figure 3a, could lead to high-density integration thanks to three-dimensional (3D) stacking ability. 

[49-52] 1S1R device structure is considered as the most preferable scheme for high-density 3D 

integration of RRAM. [34, 35, 53-55] The ideal selector should have high conductance at a large voltage 

(on state) and small current (off state) at low voltage simultaneously, or a highly non-linear I-V 

characteristic, [56-58], as well as a small variation of threshold voltage and hold voltage. [59, 60] Moreover, 

the selectors should be compatible with the memory cell, in terms of operating current and voltage 

ranges, to ensure limited sneak-path current from the unselected memory elements during both read 

and write operations, [34, 35] as well as enough current to “set” and “reset” memristors. The selectors 

should also be fast enough to avoid slowing down the operation of memory devices, and have high 

reliability with cycling endurance, array yield, device variability comparable to that of the memristors. 

[34, 35] 

 

Compared to unit cells with transistors, [61, 62] which are very challenging to be stacked vertically, and 

thus have limited ultimate density, [49] the selector is actually a bidirectional highly nonlinear resistor 

and is promising for high-density integration. Various material systems showing the function of 

selectors have been intensively studied, like silicon-based selector, [63-66] MIM based selector, [67-72] 

ovonic threshold switching selector, [73-78] metal-insulator transition (MIT) based selector, [79-84] field-

assisted superlinear threshold selector, [85, 86] and mixed ionic-electron conduction selector. [87-91] Each 

Au
th

or
 

should also be fast enough to avoid 

Au
th

or
 

should also be fast enough to avoid 

reliability with cycling endurance, array yield, device variability 

Au
th

or
 

reliability with cycling endurance, array yield, device variability 

Compared to unit cells with

Au
th

or
 

Compared to unit cells with

limit Au
th

or
 

limited Au
th

or
 

ed ultimate densityAu
th

or
 

ultimate densityAu
th

or
 

and is promising for highAu
th

or
 

and is promising for high

M
an

us
cr

ip
t3 Solutions to 

M
an

us
cr

ip
t3 Solutions to S

M
an

us
cr

ip
tSolve the 

M
an

us
cr

ip
tolve the 

ell

M
an

us
cr

ip
t

ell and 

M
an

us
cr

ip
t

and C

M
an

us
cr

ip
t

Crossbar 

M
an

us
cr

ip
t

rossbar 

, a two

M
an

us
cr

ip
t

, a two-

M
an

us
cr

ip
t

-terminal 

M
an

us
cr

ip
t

terminal 

, could 

M
an

us
cr

ip
t

, could lead

M
an

us
cr

ip
t

lead to 

M
an

us
cr

ip
t

to high

M
an

us
cr

ip
t

high

1S1R device structure is considered as the most 

M
an

us
cr

ip
t

1S1R device structure is considered as the most 

integration of 

M
an

us
cr

ip
t

integration of RRAM.

M
an

us
cr

ip
t

RRAM. [

M
an

us
cr

ip
t

[34

M
an

us
cr

ip
t

34, 

M
an

us
cr

ip
t

, 

(on state) and small current (off state) at low 

M
an

us
cr

ip
t

(on state) and small current (off state) at low 

characteristic

M
an

us
cr

ip
t

characteristic, 

M
an

us
cr

ip
t

, [

M
an

us
cr

ip
t

[56

M
an

us
cr

ip
t

56-

M
an

us
cr

ip
t

-58

M
an

us
cr

ip
t

58]

M
an

us
cr

ip
t

], as well as a small variation of threshold voltage and

M
an

us
cr

ip
t

, as well as a small variation of threshold voltage and

should M
an

us
cr

ip
t

should be M
an

us
cr

ip
t

be M
an

us
cr

ip
t

compatible with the memory cell, M
an

us
cr

ip
t

compatible with the memory cell, 

, to ensure limited sneakM
an

us
cr

ip
t

, to ensure limited sneak



 

 This article is protected by copyright. All rights reserved 

of them has its merits and demerits, which has been discussed in detail by Aluguri et al. [51] Moreover, 

in order to avoid the hard breakdown of materials used for selector, self-compliance with great 

nonlinearity properties are desirable for high-density crossbar array applications. [92, 93] Figure 3b is 

a typical nonlinear I-V curve measured from an integrated 1S1R cell with a MIM based selector. The 

selector enables the low off current around 10-12A and the memory window around four orders of 

magnitude. In this particular case, the selector turns to on-state at around 0.7 V, and the memory cell 

turns to on-state at 1.3 V. The following positive sweep verifies the low resistance state (LRS) of the 

integrated unit. For the negative voltage sweep, the selector turns to on state at about -0.7 V and the 

resistance of the united cell goes back to an off state. Figure 3c to 3e show the details about the 

nonlinear I-V curves from the selector, resistive memory, and their integrated cell, respectively, giving 

a direct impression of how to generate the nonlinear I-V curve with a 1S1R device structure from the 

separated selector and memory device. The device structure of the selector opens another general 

method for designing a selector device using a structurally symmetric Pd/Ag/HfOx/Ag/Pd stack.  

 

  

Figure 3. Electrical performance and typical features of 1S1R memory cell. (a) Schematic illustration 

of the 3D crossbar array and the inset showing the structure of the memory cell with the integration 

of 1S and 1R. (b) I-V curves of the 1S1R memory cell integrating the Cu/HfO2/Pt memory and a 

(a) (b)

(c) (d) (e)
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discrete-defect graphene selector under 500µA compliance current level. The inset is the typical 

electrical characterization of the Cu/HfO2/Pt memory device. Reproduced with permission. [52] 

Copyright 2018, Wiley-VCH. (c) Continuously bidirectional threshold switching of the individual 

Pd/Ag/HfOx/Ag/Pd selector. (d) Repeated bipolar I-V switching curves of the individual memristor 

with the structure of Pd/Ta2O5/TaOx/Pd memristor. (e) DC I-V curves of the integrated selector and 

memristor vertically. Reproduced with permission. [51] Copyright 2017, Wiley-VCH.  

 

3.2 1T1R Cell and Crossbar Array 

 

1T1R cell structure remains the most popular choice for RRAM or PCM. The 1T1R crossbar 

architecture shares a large similarity with that of DRAM. Figure 4a and Figure 4b show the schematic 

of a typical 1T1R structure and the corresponding I-V curve. [94] The transistor not only allows flexible 

selection of memory cells but also facilitates the programming for computing-in-memory applications. 

For 1T1R RRAM crossbars, the cells can either be an electrochemical metallization type (relying on 

the electrochemical dissolution and deposition of an active electrode metal to perform the resistive 

switching operation) or valence change type (modification of the valence state of anions to induce 

changes in electrical conductivity, driven by underlying ion transport and redox processes). The 

former type was developed by Otsuka et, al. in 2011, reporting a 4Mb 1T1R RRAM macro that builds 

on the 180 nm process of Sony. The RRAM cell consists of CuTe-based conductive material and a 

thin GdOx layer as the host dielectric. The macro has demonstrated a 2.3 Gb/s read throughput and a 

216 Mb/s write throughput. [95] The same RRAM device was employed by Fackenthal et al. in a test 

chip of 16 Gb 1T1Rs using the 27 nm process of Micron, achieving a similar read throughput of 1 

Gb/s and a write throughput of 200 MB/s. [96] 

 

On the other hand, more works are with the valence-change 1T1R RRAM crossbars, since valence 
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change RRAMs usually have a larger activation energy of ion migration and thus better reliability. 

Some of the widely reported material systems with valence -change, such as Hf, Ti, and Ta-based 

transition metal oxides have been paired with planar transistors. For example, for Hf-based RRAMs, 

Sheu et al. reported a 4 Mb 1T1R macro built on the 180nm process of TSMC, with a 

TiN/Ti/HfO2/TiN RRAM structure that has a cross-section of 640 nm×640 nm. The same RRAM also 

revealed 4-level conductance that can encode multiple bits per cell. [97] A similar RRAM material 

stack was reported by Ho et al. in 1T1R arrays built on Winbond 90nm process, showing improved 

reliability and high-temperature compatibility. [98] In addition, Chou et al. from TSMC reported an 11 

Mb HfOx based RRAM 1T1R macro which was produced using the 40nm logic process for embedded 

memory applications. The macro featured a RRAM programming scheme that balanced the data 

retention and programing energy/time, which also showed robust switching behavior in a wide range 

of temperatures. [99] For Ti-based cells, Chang et al. designed a 4Mb RRAM macro for embedded 

memory application based on TSMC 64nm technology. The macro was equipped with on-chip low-

voltage current sense amplifiers, which worked with TiN/TiON/SiO2/Si RRAMs. [100] The same 

RRAM stack was also integrated with TSMC 28 nm high-κ MG CMOS process to build a 1Mb 1T1R 

RRAM macro. The advanced technology node reduced the size of the RRAM down to 

0.0308µm2/cell. The macro also featured improved sense margin and a low-energy RRAM 

programming scheme. [101] For Ta-based RRAMs, in 2013, Hawahara et al. from Sony reported a 512 

Kb 1T1R RRAM macro consisting of Ir/Ta2O5/TaOx/TaN RRAM cells. The macro was fabricated 

using the 180nm process, which also consisted of a special 2-step forming scheme that could better 

control the filament size and thus lead to improved endurance (107). [102] The same RRAM device 

was employed in a 2Mb 1T1R RRAM macro using both 28nm and 40nm process by Hayakawa et al., 

which used a special process to confine the filament position to the center of the RRAM to improve 

reliability for embedded system applications (Figure 4c and 4d). [103] 
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For 1T1R PCM crossbars, the mature Ge2Sb2Te5 cells are widely reported. In addition, developing 

special material combinations that can enhance reliability is also a hot research topic. For example, 

Close et al. reported a 4 Mbit 1T1R PCM macro built on a 90 nm process. The PCM cells were based 

on doped-Ge2Sb2Te5 that showed multi-level conductance operation capability. [104] A similar 4Mb 

1T1R PCM macro was reported by Sandre et al., which also used a 90 nm process and Ge2Sb2Te5 

PCMs, featuring a 1 Mb/s write throughput. [105] 

 

In addition to planar transistors, valence charge RRAM 1T1R also shows good compatibility with 

FinFET technology, which is suitable for embedded memory applications at advanced nodes. For 

example, Pan et al. has demonstrated the first FinFET 1T1R RRAM crossbar array using a 16 nm 

process of TSMC. The HfOx RRAM was realized using a similar process as that of the gate stack of 

a FinFET, with a cell size as small as 0.07632µm2. [106] Jain et al. from Intel showed a case of 3.6Mb 

1T1R RRAM macro using the 22nm FinFET process. It has achieved one of the largest device 

densities and the shortest sense time, as well as a low bit-error rate in RRAM programming across a 

wide range of temperatures. [107] The failure and cycled retention loss in HfO2-based electrochemical 

metallization memory cells (ECM) device with 1T1R structure were systematically investigated by 

Lv et al. using a 1 Kbit device array (Figure 4e-g), which pave the way for understanding the 

mechanism of endurance and retention failure. [108] 

 

The 1T1R fabrication cost can also be minimized by engineering the device’s structure design. For 

RRAM, as reported by Lv et al., a 1 Mb 1T1R macro, using transition metal oxide-based RRAM was 

developed using 28 nm SMIC process with a single extra mask for the integration of RRAMs at small 

fabrication cost, as shown in Figure 4h and 4i. The macro shows decent switching performance and 

high-temperature stability for embedded memory applications. [109] For PCM, Wu et al. demonstrated 

that only two extra masks were needed for 1T1R PCM integration, which also allows extra footprint 
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shrinking in a 1 Mb 1T1R PCM macro using TSMC 40 nm process. The shrinkage and electrode 

material engineering lead to low-write current and good resistance control with applications for 

computing-in-memory. [110] 

 

3.3 1D1R Cell and Crossbar Array 

 

Similar to 1S1R, the 1D1R structure consists of a diode and a unipolar memristor. They could achieve 

a footprint of 4F2, like that of 1R or 1S1R, and may further increase the structure density to n/4F2. 

[111-114] Due to the self-rectifying function of the diode, the reading error could be avoided since the 

current mainly passes through the selected memory cell itself. [115-117] Thus, 1D1R crossbar arrays 

feature better 3D stack-ability thanks to the simple structure and CMOS process compatibility of the 

diode selectors. The International Technology Roadmap for Semiconductors (ITRS) also suggested 

that the combination of a diode and transistor with a resistor in a single chip is indispensable for the 

prevention of this undesired sneak-path current issue. [118] The architecture of 1D1R or 1T1R can 

improve reading accessibility in an integrated memory array structure, [112, 119-121] while the 1D1R 

architecture is preferred in terms of integration because it occupies less area, and the design and 

fabrication of 1D1R devices are simpler than that for 1T1R devices.  
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Figure 4. Non-volatile memory based on one -transistor-one resistor structure. (a) Schematic of a 

typical 1T1R structure using a standard 0.13 µm logic process and integrated with memory cell based 

a Cu/HfOx/Pt structure. Reproduced with permission. [94] Copyright 2014, IEEE. (b) The 

corresponding I-V curve for the 1T1R cell is shown in (a) in drain voltages (Vd) sweeping mode. (c) 

The cross-sectional transmission electron microscope (TEM) image of 40 nm Ir/Ta2O5/TaOx/TaN 

resistive memory. Ir and TaN are top and bottom electrodes, respectively. (d) The image of a 2-Mbit 

memory array with 40nm 1T1R TaOx based RRAM. [103] Copyright 2015, IEEE. (e) The schematic 

of the 32 × 32 1T1R array based on Cu/HfO2/Pt structure reported by Lv et al. The gates of the 

regularly arranged transistors and the top electrodes of the memory cells were connected by the word 

line and bit line, respectively. (f) The corresponding cross-sectional TEM image of 1T1R structure. 

The transistor was fabricated with the same processes as shown in (a). (g) The test conditions of the 

ECM cell. Reproduced with permission. [108] Copyright 2015, Nature Publishing Group. (h) The 

partial cross-section of the memory cell in the 1Mb embedded RRAM Macro. (i) The zoom-in image 

of the memristive cell. Reproduced with permission. [109] Copyright 2017, IEEE.  

Based on the types of materials for fabricating diodes, the reported 1D1R could be classified as Si-

based diodes, [122-124] organic diodes, and oxide diodes. Each of them has its own advantages and 

disadvantages. For example, Si-based diodes require a high-temperature process for dopant activation 
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or enhanced contact properties, risking the rest of fabrication processes particularly that of memristors. 

Organic diodes could not be fully compatible with conventional semiconductor processes due to their 

vulnerability to high-temperature treatment. [125-128] Oxide-based diodes have no CMOS compatibility 

issue. They can also be fabricated with relatively low-temperature processes, [114, 123, 124, 129-133] for 

example, Yoon et al. reported a 1D1R crossbar array shown in Figure 5a using physical vapor 

deposition methods at low temperature. The top view and cross-sectional scanning electron 

microscopy (SEM) images are shown in Figure 5b, showing the device structure consisting of 

Ti/TiO2/Pt/SiOx/Pt. The corresponding initial I-V curve of the fabricated 1D1R device is shown in 

Figure 5c and its rectification ratio at V=2V is around 4×105. The endurance test with set/reset/read 

voltages at 8/15/2V, respectively, is shown in Figure 5d as well. However, this 1D1R configuration 

has not fully met the requirements of large rectification, high on/off resistance ratios, and low power 

consumption needs.  

 

So far, there have been some 1D1R memristive arrays reported with a large-scale capacity based on 

oxide-based diodes. For example, Kawahara et al. from Panasonic reported an 8 Mb RRAM macro 

made of 2-layer 3D stacked 1D1R crossbars using 180 nm technology. Each 1D1R cell consists of an 

Ir/Ta2O5/TaOx/TaN RRAM paired with a bidirectional TaN/SiNx/TaN diode, with a writing 

throughput up to 443 Mb/s. [134] The density of the storage can be further boosted with an advanced 

technology node. Hsieh et al. demonstrated a 3-layer 1D1R RRAM crossbar using TSMC 28 nm 

HKMG CMOS Cu line process. The material stack of the RRAM is Ta/TaN/TaON/Cu, which is 

paired with a TaOx diode, as shown in Figure 5e. [135] Liu et al. unveiled a 32 Gb 1D1R RRAM test 

chip, which is one of the largest capacity RRAM chips developed so far. The chip has 2-layer stacked 

metal oxide RRAM and diodes, fabricated using the 24 nm technology of Sandisk and Toshiba. [136]. 

 

However, due to the rectifying characteristic of the diode, almost all 1D1R arrays employ unipolar 
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memristors, because bipolar memristors demand both positive and negative voltage polarities for 

switching.[116, 137-140] Further, the device performance of bipolar memristors is generally better and 

more reliable compared to unipolar memristors. [141, 142] Another factor is that the diode c annot 

provide self-compliance without a complicated device structure, like the structure of Ni/AlOy/n+-Si-

TiN/HfOx/Ni reported by Liu et al. [143]  

 

Figure 5. 1D1Rcrossbar array based on low temperature-processed SiOx. (a) Schematic illustration 

and photograph of the 1D1R SiOx memory device. The zoom-in schematic shows the device structure 

of one memory cell including Ti/TiO2/SiOx/Pt. (b) SEM images showing the top view and cross-

sectional view of the fabricated 1D1R device. (c) The representative I-V curves of the fabricated 
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1D1R device. (d) Endurance performance of the fabricated 1D1R device. The set, reset and read 

voltages are 8 V, 15 V, and 2 V, respectively. Reproduced with permission. [144] Copyright 2018, 

Wiley-VCH. (e) Illustration of large-scale industrial crossbar arrays. Cross-sectional SEM view of 28 

nm TaON based cross-point 3D via RRAM and the zoom-in TEM image of a 3D via RRAM (30 nm 

× 30 nm) in (e) with a stacked TaOx diode in 28 nm Cu single damascene process. Reproduced with 

permission. [135] Copyright 2013, IEEE. 

 

Thus, the development of high-density integrated 1D1R is greatly limited. Li et al. reported that the 

integrated structure of Ni/TiOx/Ti diode and Pt/HfO2/Cu bipolar RRAM cell could demonstrate a self-

compliance bipolar resistive switching behavior to suppress the undesired sneak current in a crossbar 

array, [145] which paves a way to design highly integrated 1D1R crossbar array with the elimination 

of inherent obstacles of 1D1R. Thus, designing diode with high forward current density, high self-

rectifying ratio, low-temperature fabrication, and easy integration with memory cell would be the key 

parameters that should be considered further.  
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Figure 6. 3D vertical BJT RRAM cell. (a) Schematic of a vertical NPN BJT formed vertically under 

RRAM film. (b) 3D RRAM array arrangement with BJT structure. (c) The layout of the memory cell 

with vertical NPN BJT in 3D RRAM structure. (d) DC curves of 3D RRAM for set/reset, and forming 

operations. Reproduced with permission. [146] Copyright 2010, IEEE. 

 

BJT has been widely reported as the selecting devices for PCM crossbar arrays. Seravalli and Villa 

et al. demonstrated a 1 Gb PCM test chip based on 1BJT1R crossbar arrays. The chip is manufactured 

using a 45nm process of Humonyx. Each cell has a vertical PNP-BJT selector and a Ge2Sb2Te5 PCM 

cell. The chip offers a 266 Mb/s read throughput and a 9 Mb/s write throughput. [147, 148] For the 

RRAM, due to the limitations of CMOS processes and planer structure of transistors, it is difficult to 

utilize the metal-oxide-semiconductor field-effect transistors (MOSFETs) to satisfy all requirements 

of low voltage operations, high scalability, and large current drivability with one single cell. Ching 

Hua et, al reported a new logic compatible BJT with vertically formed underneath the resistive 

stacked film of TiN/Ti/HfO2/TiN as a high-performance current driver and bit-cell selector, as shown 

in Figure 6a. [146] The corresponding 3D RRAM array arrangement with BJT structure is shown in 
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Figure 6b. The shallow and tiny n-type lightly doped domain (N LDD) acts as the bit line with 

connection with RRAM film and the very thin and self-aligned P-pocket implant works as the word 

line (Figure 6c). Such new 3D RRAM cell could be easily implemented in advanced CMOS logic 

platforms for the ultra-high density and very low voltage NVM applications due to its area-saving 

device structure and efficient operation driven by the high gain BJT with a low voltage of 2V for reset 

and 1.5V for the set processes (Figure 6d).  

 

3.5 CRS Memory Cell 

 

CRS provides another way to avoid sneak-path current without extra access elements, at the cost of 

duplicating the number of memristors. Each CRS cell usually has two anti-serially connected bipolar 

memristors in a back-to-back way. [149-152] Since they share a common electrode, when one of the 

memristors is programmed into LRS, the other will be programmed into a high resistance state (HRS) 

[149]. In order to achieve the stability on a window, a series resistor is normally required for 

entertaining an asymmetry for the set and reset device voltages, making a level read operation 

possible, as shown in Figure 7a. [150] So far, most CRS cells reported previously could be classified 

into two groups: (i) CRS using two symmetric memory cell: Lee et al. exhibited a CRS cell in the 

oxide-based RRAM device based on the inverse materials order (Pt/ZrOx/HfOx/metal/HfOx/ZrOx/Pt) 

of two symmetric memory cell, [153] Where the oxygen ion motion between the ZrOx and HfOx oxides 

contributed to the resistive switching. Wang et al. reported a CRS device consisting of two symmetric 

memory cells based on Ti/TiOx/Cu/TiOx/Ti structure as shown in Figure 7b. [154] Other reports of 

symmetrically connected pair of memory cells have been demonstrated, like Pt/BTO/LSMO/BTO/Pt, 

[155] Au/a-C/CNT/a-C/Au, [156] Pt/TiOx/TiOy/TiOx/Pt, [157]  (ii) CRS using two asymmetric memory 

cells: Since the former one with two same memory cells connected usually have the fixed operation 

voltages and thus limited operation voltage windows, Daeseok et al. demonstrated a CRS cell with a 
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structure of W/ZrOx/HfOx/TiN connected with TiN/Ir/TiOx/TiN, consisting of two asymmetric 

memory cells, as shown in Figure 7c. [158] The set/reset switching are positive/negative for HfOx based 

memory cell, which is opposite to the switching of TiOx based memory device. Both of them show 

larger reset voltage than the set voltage, and a wide voltage-operating window in the positive-bias 

region has been achieved from the superimposed I-V feature of two merged cells. Similar results have 

been observed in Al/Al2O3/Au/GO/ITO [159] and ITO/GO/Graphene/GO/Al. [152]  

 

Although the CRS with two anti-serially connected memory cells could effectively solve the sneak 

path current, the integration complexity due to extra fabrication steps, r apid degradation of the 

common active internal electrode, etc., prohibiting the implementation of large-scale CRS crossbar 

memory. A potential solution is a truly single memristor instead of two that can exhibit CRS. Nardi 

et al. proposed a CRS device based on a single memory device with the structure of TiN/HfOx/TiN.[160] 

However, CRS could only be observed with a uniform Hf concentration profile within the HfOx active 

layer. [160] Yang et al. have reported the CRS in Pd/Ta2O5-x/TaOy/Pd memory cells with two designed 

different stoichiometric TaOx layers: an oxygen-rich layer and an oxygen-deficient layer, and the 

exchange of oxygen vacancies between two layers with the gradient of oxygen composition plays a 

vital role of implementation of CRS (Figure 7d). [161] Similar structures have also been reported in 

Au/BaTiO3/NiO/Pt, [162] W/Nb2O5-x/NbOy/Pt, [163] Al/GO/ITO, [164] IrOx/GdOx/Al2O3/TiN [165], 

Pt/HfAlOx/TiN, [166] Pt/HfOx/TiN, [167] and Pt/TiO2-x/TiNxOy/TiN, [168] etc.  

 

Although there are many preliminary works on different CRS cells, several issues should be addressed 

before developing a high-density CRS RRAM array. In CRS, the read operation for one of the HRS 

involves a set transition, which requires a solution to limit the high programming current. Although 

the proper operation of a CRS crossbar memory array could be ensured by connecting each memory 

cell in series to a selector/transistor, [137, 169-172] that defeated the motivation of CRS that is selector-
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free. A typical approach is to embed a “series resistor” into the CRS memory cell, which would limit 

the increase of current with the formation of a conducting filament in the switching layer. [173-176] 

Tappertzhofen et al. reported a novel method to realize a nondestructive readout based on a CRS cell 

consisting of two memory cells with similar switching properties and distinguishably different 

capacities. [177] Another issue is the narrow read voltage window of CRS. To our best knowledge, 

most of reported RRAM devices with CRS characteristics generally exhibit a narrow read margin 

(~0.5 V), like Pt/SiO2/GeSe/Cu/SiO2/Pt, [178] Pd/Ta2O5−x/TaOy/Pd, [161] W/Nb2O5-x/NbOy/Pt, [163] 

TiN/HfOx/TiN. [160] 

 

Figure 7. Nanocrossbar memory array with CRS structures to avoid the sneak current. (a) Top panel: 

ECM-based CRS device connected serially with a resistor. Bottom Panel: ECM-based CRS device 

without the series resistor. Reproduced with permission. [150] Copyright 2013, Nature Publishing 

Group. (b) I-V curves of the symmetry-connected cells with the structure of Ti/TiOx/Cu/TiOx/Ti. 

Reproduced with permission. [154] Copyright 2016, IOP Publishing. The left top inset is the schematic 
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of the CRS device, and the right lower inset exhibits the endurance performance of the CRS device 

at 0.5V. (c) A simple scheme of hetero-device CRS device having these two RRAMs and simple 

illustrations of device states. Reproduced with permission. [158] Copyright 2012, IEEE. (d) The device 

structure of the Pd/Ta2O5-x/TaOy/Pd memory devices, and the I–V curve of a Pd/Ta2O5-x/3%-TaOy/Pd 

device showing bipolar resistive switching. The inset shows the same I–V curve on a logarithmic 

scale. Reproduced with permission. [161] Copyright 2012, AIP Publishing.  

 

Pt/ZrOx/HfOx/TiN/HfOx/ZrOx/TiN, [153] and W/ZrOx/HfOx/TiN/Ir /ZrOx/TiN. [158] To address this 

limitation, Zhang et al. proposed a new approach with ITO/HfOx/TiN memristor to enlarge the 

difference between the set and reset voltages relying on the inherent asymmetry in the O-ion exchange 

processes between interfaces because of the different reactivity of metal electrodes. [179] This work 

solves the key challenge of demonstrating array-level CRS.  

 

3.6 SRC and Crossbar Array 

 

The aforementioned solutions to alleviate the sneak-path current issue using additional selector, diode, 

or transistor would increase the complexity of the fabrication process and the cost, increase the 

read/write voltage, degrade the stability of memory, as well affect the scaling limitation because of 

the complicated device structures. Self-rectifying resistive memory could avoid the issues addressed 

above without extra rectifying devices.  

 

The typical structure of a self-rectifying RRAM is metal-insulator-insulator-metal (MIIM) or MIM. 

The large work function difference between the top and bottom electrodes is essential for the 

asymmetric effective barrier seen in the top and bottom electrodes to enable the rectifying feature. So 

far, the self-rectifying memory devices with such bilayer device structures have been intensively 
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studied. For example, NiSi/HfOx/TiN, [180] Ge/HfOx/Ni, [181] He-LiNbO3/Pt/SiO2/LiNbO3, [182] 

Pt/Ta2O5/HfO2-x/TiN, [183] Ni/HfO2/SiO2/Si-diode, [184] Pt/TaOx/n-Si, [185] Al/MoOx/Pt, [186] 

(ITO)/InGaZnO/ITO, [187] Pt/HfO2-x/TiN, [188] Pt/amorphous In-Ga-Zn-O (a-IGZO)/TaOx/Al2O3/W, 

[189] Ti/SiOxNy/AIN/Pt, [190] Pd/HfO2/WOx/W, [191] Ag/a-Si/p+-Si, [192] Au/ZrO2:nc-Au/n+Si, [193] 

Au/Li-ZnO/ZnO/Pt, [194] Ni/SiN/HfO2/Si, [195] Pd/HfO2/TaOx/Ta, [196] Ni/Al2O3/p-Al doped GaN (p-

AlGaN), [197] Si3N4/SiO2/Si, [198] Pt/Ta2O5/HfO2-x/Hf,[199] Ti/GaOx/NbOx/Pt, [200] and 

Ti/NiOx/Al2O3/Pt, [201] etc. Li et al. reported a p-Si/SiO2/n-Si memristor. The optical images and the 

cross-sectional TEM image are shown in Figure 8a-c, and the typical nonlinear I-V curve with 

unipolar behavior is shown in Figure 8d. Such a novel SRC exhibits repeatable unipolar resistance 

switching with a rectifying ratio of 105 and on/off ratio of 104 (Figure 8e) and the retention time up 

to 2 × 105. [202] Moreover, the authors also demonstrated the 3D crossbar array of up to five layers of 

100 nm memristors using fluid-supported silicon membranes, and experimentally confirmed the 

successful suppression of both intra- and inter-layer sneak path currents through the built-in diodes. 

Kim et al. reported a forming-free memristive system based on the stacked Pt/NbOx/TiOy/NbOx/TiN 

with a 30 nm contact, showing a programming current as low as 10 nA and 1 pA for the set and reset 

switching, respectively. [203] The self-rectifying ratio is about 105. This work revealed that the 

programming power can be decreased to 8.0% of the power consumption of a conventional biasing 

scheme when the device is used in a 1000 × 1000 crossbar array with the asymmetric voltage scheme 

(AVS), and a power consumption reduction could be decreased possibly to 0.31% of the reference 

value if the AVS is combined with a nonlinear selector. This kind of low-voltage operation of 

memristive device is of strong potential to be used for low-power applications such as embedded 

memory of low voltage or power-restricted chips.  Au
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Figure 8. 3D crossbar array integrated with self-rectifying Si/SiO2/Si memristors. (a) Top-view 

picture of an 11 × 8 memristor array with high fabrication yield of a single cross-point device. Scale 

bar: 100 µm. (b) The zoom-in picture a single device shown in (a), with 5 µm × 5 µm cross-point 

device. Scale bar: 50 µm. (c) Cross-sectional TEM image of the device with vertically stacked 

Si/SiO2/Si layers, clearly showing the crystalline structure of the top and bottom Si layers and the 

5nm SiO2 as the middle amorphous layer. Scale bar: 2 nm. (d) The representative unipolar I-V 

resistive switching curves. The top p-Si layer was applied with bias voltage and the bottom n-Si layer 

was grounded. The set and reset voltages are 7.5 V and 4.5 V, respectively. The turquoise curve is the 

first setting voltage with almost the same voltage, indicating the formatting-free feature of the device. 

(e) The bias voltage-dependent on/off ratio conductance ratio and the rectifying ratio. (f) Retention 

behaviors test at room temperature. The conductance states could be maintained for more than 2 × 

105 s. Reproduced with permission. [202] Copyright 2017, Nature Publishing Group.  

 

In order to satisfy the strict requirements of SCM, Hsu et al. reported a forming-free and self-

compliance bipolar Ta/TaOx/TiO2/Ti RRAM cell with extremely high endurance over 1012 cycles.[204] 

The self-rectification ratio achieved in this work could be up to 105 required for ultrahigh-density 3D 

vertical RRAM. Besides, the multiple-level-per-cell capability, room temperature processes, and 
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fabrication-friendly materials demonstrated in this memristive system make its promising potential 

to realize high-density and high-performance SCM.  

 

Normally the growth of bilayer dielectric structure increases the cost and complexity of 

manufacturing. Therefore, low-temperature compatible processes should be developed. Oh e t al. 

reported a forming-free and self-compliance resistive switching device based on Au/Ni/FeOx-

GO/Si3N4/n+-Si structure with an excellent resistive switching ratio (greater than 104) and a 

rectification ratio higher than 104. [205] The solution-processed FeOx-GO active layer showed 

comparable performance to those devices fabricated using vacuum-deposition processes, making it 

potential to the lower fabrication cost of self-rectifying memory devices.  

 

Although the typical bilayer dielectric layer structure has been investigated successfully for 

developing self-rectifying resistive switching, developing a single material with concurrent high-

performance switching and self-rectification would decrease the fabrication complicity and increase 

the integration level. Recently, Yao et al. reported a RRAM device based on a chiral metal-organic 

framework (MOF) FJU-23-H2O with switched hydrogen bond p athway within its channels, 

exhibiting an ultralow set voltage (~0.2 V), a high ON/OFF ratio (~105), and a high rectification ratio 

(~105). [206] Its resistive switching behavior originated from the turn on/off of the switched hydrogen 

bond pathway under the stimulus of DC voltages. This work is not only the first MOF with voltage-

gated proton conduction but also the first single material showing both rectifying and resistive 

switching effects.  

 

3.7 SSC and Crossbar Arrays 

 

To date, most solutions like 1S1R, 1D1R, 1T1R, SRC, and CRS are achieved by connecting two MIM 
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cells in series. Each solution has its unique advantage that cannot be combined with that of alternative 

solutions, thus unable to completely resolve the sneak path current issue. For example, 1) the 1S1R, 

1D1R cell cannot be integrated with a high capacity due to complex fabrication (including etching 

issue), 2) the SRC cannot provide sufficiently low sne ak currents, which is essential for large 

integration, and 3) the CRS cell exhibits destructive read operation and high sneak currents due to its 

intrinsic device structure. [48] All the former solutions are stuck at an integration capacity of megabit 

(106 bits). Indeed, a conceptually new memory cell needs to be developed.  

 

The concept of self-selective resistive switching in a single cell offers a new strategy to overcome the 

sneak path current issue of a memory device in the crossbar array structure without additional 

stacking of active devices. By integrating two oxide layers as an insulating layer, it exhibits a selective 

functionality with an engineered nonlinearity. Other candidates like vanadium oxide (VOx), [207] with 

self-selecting  

 

Figure 9. Self-selective crossbar memory array based on v an der Waals hetero-structures. (a) 

Schematic figure of the van der Waals hetero-structure integrated with crossbar memory array 

architecture. (b) I-V curve of a typical memory cell in the memristor array. The four numbers 

represent four different resistance states of the memory cell. The selectivity of this one-body self-
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selective memory cell is 1010, and the memory window is around 104. The Au electrode was kept in 

connection with the ground. (c) The switching speed of the self-selective memory cell is about tens 

of nanoseconds. (d) Endurance of switching behavior of the involved three resistance states, with a 

voltage pulse trains of 106 measurement cycles. (e) Retention behaviors of the three resistance states 

at a time of 106 s. Reproduced with permission. [48] Copyright 2019, Nature Publishing Group.  

 

resistive switching performance for crossbar memory array was demonstrated by Myungwoo, et al. 

due to the first-order MIT property. The nanoscale VOx device exhibited self-selective switching and 

memory switching after electroforming. Haili et al. reported another self-selective resistive switching 

memory cells with a thermal oxidized HfOx layer in combination with a sputtered Ta2O5 layer 

configured as an active stack, [208] which represents high on state half bias nonlinearity of ~650, a 

sub-µA operating current, and high on/off ratios above 100x. Kwon et al. reported a selector-less 

memristor for high uniformity and low pow er consumption using the structurally engineered 

nanoporous Ta2O5-x and achieved an ultralow-power consumption (~2.7x10-6W).[209] Zongwei et al. 

utilized a VO2/TaOx bilayer structure to realize the volatile threshold switching and multilevel 

nonvolatile resistive switching and applied such hybrid self-selective switching to the self-activation 

neural network. [210] Xu et al. reported a TiN/TiOx/HfO2/Ru self-selective device formed by self-

aligned technique, with the off-state leakage current as low as 0.1 pA and operating current below 1 

µA. [211] The LRS exhibits high nonlinearity (103). The programming and erasing speeds are 100 ns 

and 400 ns, respectively, and the excellent endurance shows 107 cycles. A 4x8×32 3D vertical RRAM 

array was further demonstrated with a sufficient read margin up to 10 Mb. Eight-layers 3D vertical 

RRAM with excellent scalability towards storage class memory was reported by Luo et al. from the 

same group. [212] This work successfully extended the SSC design into the 8-layer 3D array and 

explored the scaling limit of this architecture of 5 nm cell size and 4 nm pitch in vertical dimension 
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demonstrated experimentally. Recently, Sun et al. realized a fast and energy-efficient two-

dimensional (2D) self-selective memory cells by using a high-quality van der Waals hetero-structure 

of h-BN and graphene, as shown in Figure 9a, which is compatible with an integrated capacity of 

1012. [48] A current of 10 fA at a low voltage bias (< 3 V) and abruptly a current of 10 mA at a high 

voltage bias in a stable memory device was achieved (Figure 9b). The atomically sharp and chemical 

inert interface between the h-BN and graphene layers created a rapid reading/writing process with a 

time constant of tens of nanoseconds (rising time: ~50 ns and falling time: ~15 ns), as demonstrated 

in Figure 9c, outperforming the current flash memory technology. The origin of such a memristive 

behavior is that Ag ions migrate through the h-BN layer during the memory operation and their further 

migration is blocked by the strongly bonded graphene, then the boron vacancies contribute to the 

conductive path in another h-BN layer with the continuously increased voltage.[48] The endurance and 

retention behaviors of the involved three resistance states are presented in Figure 9d and Figure 9e 

up to 106 switching cycles and 106 s, respectively. Such a new conceptual memory device based on a 

novel 2D hetero-structure will open up a new research field, low-dimensional nanomaterials-based 

memory and neuromorphic computing. 

 

3.8 Comparison of Various Architectures 

 

In this part, we compare the strengths and weakness of each architecture. (1) For the 1T1R 

architecture, it is compatible with basic operations for in-memory logic, machine learning, and 

neuromorphic computing, featuring mature process flow derived from DRAM technology. But it has 

a relatively small device areal density due to the large footprint of planar FETs, and the device density 

is further limited by the difficulty to integrate 1T1Rs in 3D; (2) For the 1BJT1R architecture, it is 

compatible with basic operations for in-memory logic, machine learning and neuromorphic 

computing, which has a smaller footprint compared to planar FETs with the use of vertical BJTs and 
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a lower fabrication cost compared to FETs. While BJT selectors are of lower input impedance and 

current gain compared to FET selectors and tend to show lower switching frequency compared to 

FET selectors; (3) For CRS architecture, it features large device areal density when it is integrated in 

3D, which is also compatible with operations for in-memory logic. However, CRS reading may be 

destructive, incurring extra re-writing energy, suffer from integration complexity due to extra 

fabrication steps. It’s also vulnerable to the rapid degradation of the common active internal electrode; 

(4) For SSC and 1D1R architecture, both of them feature large device areal density when they are 

integrated in 3D. In addition, 1D1R based storage has been commercialized by Intel and Micron, 

branded as Optane memory. However, both SSC and 1D1R are less compatible with basic operations 

for in-memory logic, machine learning and neuromorphic computing; (5) For SSC and 1S1R 

architecture, they feature large device areal density when they are integrated in 3D. Their bi-

directional non-linearity in their I-V characteristics allows them to work with bipolar memristors, but 

face the same issue similar to SSC and 1D1R.  

In order to clearly compare the performances of the discussed architectures in this review paper, we 

summarize with key parameters like on c urrent, on/off ratio, Vset/Vreset, polarity, operation 

temperature, retention and endurance in the table.  

 

Table 1. Comparison of key parameters and functions among different device structures. 

Types
On 

Current 
[A]

On/Off 
ratio

Operation
polarity

Operation 
Temperature 

[K]

Retention
[s]

Endurance Refs

1S1R 5 10-4 109 bipolar —— —— 106 [52]

1T1R 10-3 108 unipolar 300 105 108 [108]

1D1R ~10-4 108 unipolar 473 ~105 104 [112]

1BJT1R ~10-5 ~10 unipolar —— 103 105 [146]

CRS 10-2 102-103 bipolar ~360 104 2 102 [152]

SRC 10-4 ~104 unipolar 573 ~2 105 ~102 [202]

SSC 10-4 1010 bipolar 450 106 106 [48]
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4. Impact of Wire Resistance      

 

Figure 10. The equivalent circuit of a memristor crossbar array with parasitic wire resistance. The 

colormaps illustrate the effective conductance matrix 𝐺𝑒𝑓𝑓  gradually deviates from the targeting 

conductance matrix 𝐺𝑡𝑎𝑟𝑔𝑒𝑡  (discrete cosine transformation matrix mapped to [0, 1 mS]) with 

increasing wire resistance. 

In large crossbar arrays, the current passing through the metal wires would lead to significant voltage 

degradation, decreasing the voltage drop on the furthest cell in the crossbar array and finally results 

in write failure, which is also known as the “IR drop” issue. Such resistance affects both memory 

readout margin and the precision of vector-matrix multiplications. The latter poses a technical 

challenge to applications such as machine learning and signal processing in the analog domain. 

 

To illustrate the im pact of the wire resistance, Hu et al. use the mapping of discrete cosine 

transformation matrix as an example and assume the 64×64 discrete cosine transformation matrix is 

linearly mapped to the conductance of a memristor array in the range [0, 1 mS]. [213] In case that there 

is no wire resistance, the voltages are constants along red row electrodes and blue column electrodes. 

The transformation from the forced input voltage vector V⃗⃗   to the sensed output current vector 

Itarget
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ is governed by the vector-matrix multiplication Itarget

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗  =  𝐆𝐭𝐚𝐫𝐠𝐞𝐭V⃗⃗  where 𝐆𝐭𝐚𝐫𝐠𝐞𝐭  is the 

conductance matrix of the memristor array. In case the electrodes are of non-zero resistance, such as 

1 Ω/block, the currents flowing through the electrodes produce voltage drops. As a result, the 

memristor that is far from the voltage sourcing and/or current sensing edge receives reduced bias. 
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The effect of the wire resistance can be absorbed by Ieff⃗⃗ ⃗⃗  ⃗  =  𝐆𝐞𝐟𝐟V⃗⃗ , where 𝐆𝐞𝐟𝐟  is the effective 

conductance matrix that is clearly different from 𝐆𝐭𝐚𝐫𝐠𝐞𝐭, as illustrated in Figure 10, particularly the 

memristors far from the voltage sourcing and/or current sensing edge. In addition, as shown in Figure 

10, the increase of the wire resistance, for example to 10 Ω/block, will lead to a larger deviation 

between 𝐆𝐞𝐟𝐟 and 𝐆𝐭𝐚𝐫𝐠𝐞𝐭, which further degrades the precision of the vector-matrix multiplication. 

 

The wire resistance impact can be tackled by engineering the conductance range of the memristors. 

For example, a large ratio between the wire and memristor conductance can reduce the voltage drops 

across the wires. In addition, circuit and algorithm level techniques have been invented to mitigate 

the impact of the wire resistance for machine learning. Hu et al. proposed a conversion method to 

compute the actual memristor crossbar conductance matrix that c an approximate a targeting 

conductance matrix, based on numerically solving the Kirchhoff equations. [213] In addition, Jeong et 

al. developed a compact analytic compensation scheme that rescales each element of the sensed 

current vector by a constant. The scheme is based on the observation that the majority of the current 

deviation can be accounted by a model assuming constant input voltage and conductance. [214] Liao 

et al. demonstrated diagonal matrix regression, where two diagonal matrices approximate the impact 

of row and column wire resistance, which can balance the computational complexity and the accuracy 

of vector-matrix multiplication. [215] There are some other circuit techniques to deal with the voltage 

drop issue, by adding write drivers at both sides of bitlines, as wrote by Zhang et al. [216] 

 

Another factor is that the crossbar line capacitance could add both read/write delay time and extra 

current sneak paths, [48, 217-219] which will further degrade the performance of the memory array. Thus, 

in real application with consideration of line resistance, the position of the selected cell will have a 

significant influence on the voltage margin. 
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5. Applications to Machine Learning and Neuromorphic Computing 

 

In addition to storage class and embedded memory, 1R and 1T1R type resistive memory crossbars 

are frequently applied to machine learning and neuromorphic computing.  

 

Figure 11. Illustration of 1R and 1T1R cells for being used as synapses in both SNNs and artificial 

neural networks (ANNs). In an SNN, the neurons communicate in spikes which are modulated by 

synapses interfacing neurons. The neuron integrates incoming spikes and fires its own spike if the 

stimulation exceeds a threshold. In an ANN, the neurons and synapses are abstracted to nodes and 

arrows of computational graphs, representing weighted summation followed by activation and scalar-

scalar multiplication, respectively. Reproduced with permission [40]. Copyright 2018, AAAS. 

So far, 1R and 1T1R crossbars have been used for machine learning by hardware implementation of 

ANNs. In addition, they are also employed in neuromorphic computing or the SNNs which mimic 

how our brain works. As schematically illustrated in Figure 11, the SNN is a bio-inspired neural 

network, consisting of two types of building blocks, the neurons and the synapses. The latter are 

junctions interfacing two neurons which can modulate the signal transmission strength between 

neurons, forming the basis of our memory. Each neuron accumulates incoming spikes from upper 

stream neurons through synapses. Once the stimulation exceeds a threshold, the neuron fires its own 

spike or action potential, that propagates along its axon to reach the downstream neurons. Resistive 

1R and 1T1R cells have been widely reported for their potential to serve as compact hardware 

synapses, by mapping the signal transmission strength to their conductance. [12, 13, 220-230] In addition, 

chemical synapses own the capability to change connection strength depending on the historic signal 
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that has transmitted through them. This could be replicated using ionic or electronic switching 

dynamics of 1R or 1T1R resistive memory cells, which exhibit various short and long-term synaptic 

plasticity. Such plasticity is the foundation of the learning capability of bio-creatures. On the other 

hand, ANN is an abstraction of SNN, essentially a computational graph where arrows usually 

represent scalar-scalar multiplications while nodes stand for summation followed by nonlinear 

activation functions. (See the left panel of Figure 11) The cascaded nonlinear transformations endow 

ANNs with the capability to approximate arbitrary functions, provided the size and depth of the 

network being sufficiently large. [231] Likely in SNNs, the 1R and 1T1R cells could serve as the 

synapses in ANNs. Since the current flowing through a 1R or 1T1R is governed by Ohm’s law, the 

multiplication of its conductance and voltage can be naturally mapped to the multiplication of the 

synaptic weight and the value of the upper stream node. In addition, the summation can be 

automatically fulfilled by Kirchhoff’s current law in crossbars, as to be discussed in the next 

paragraph. 
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Figure 12. Different topologies of neural network layers that have been implemented by 1R and 

1T1R crossbars. (a) Fully connected layer. In a fully connected layer, each input neuron connects to 

all output neurons. The output neuron vector is the multiplication between the input neuron vector 

and the weight matrix which can be mapped to the conductance of a 1R or 1T1R crossbar. (b) 

Convolutional layer. An input image is scanned by a convolution window. The pixels within the 

window are elementwise multiplied with a set of kernels before accumulation. The flattened kernels 

can be mapped to the conductance of a 1R or 1T1R crossbar. (c) Recurrent layer. Here an example of 

a long short-term memory (LSTM) layer is used. A LSTM node has its internal state that is updated 

by 4 gates. The vector-matrix multiplications of LSTM nodes can be physically implemented by two 

1R or 1T1R sub-arrays, one for the external input and the other one for recurrent input. 

Either an SNN or ANN usually consists of a stack of assorted layers. Typical layer topologies that 1R 

and 1T1R crossbars have implemented comprise a fully connected layer, convolutional layer and 
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recurrent layer. As shown in Figure 12a, in a fully connected layer, each input neuron (node) is 

connected to all output neurons. Therefore, 𝑦 = W𝑥 , where 𝑥  and 𝑦  are the vectors of input and 

output neurons, respectively. For simplicity, bias and activation are ignored here. The W denotes the 

weights of all the black arrows in the form of a matrix, for example W𝑖,𝑗 stands for the connection 

strength between the 𝑖-th input neuron and 𝑗-th output neuron. Therefore, the weight matrix W can 

be conveniently mapped to the conductance matrix of a 1R or 1T1R crossbar. By doing so, the vector-

matrix multiplication (or weighted-summation) will be physically carried out by Ohm’s law for 

multiplication and Kirchhoff’s current law for summation in one computational cycle, regardless of 

the dimension of the matrix. This may offer a large throughput and efficiency boost over conventional 

digital systems, since the data is both stored and processed on the same resistive memory element, 

which avoids the frequent data shuttling between physically separated memory and processing units 

in conventional digital hardware that incurs large latency and energy consumption. [1, 28, 232-238] In 

addition to the fully connected layer, a convolutional layer is shown in Figure 12b, which is mostly 

famous for its applications in computer vision. The input such as a 2D image will be scanned by a 

convolution window that is outlined by the green box. The sub-array of the input falling to the window 

will be multiplied element-wise with a set of kernels, followed by kernel-wise summation, which 

completes a stride of the convolution. Since flattened kernels can be concatenated as a matrix and 

mapped to the conductance of a 1R or 1T1R crossbar, such a convolutional stride again becomes a 

vector-matrix multiplication that can be physically accelerated by crossbars like a fully connected 

layer. Moreover, Figure 12c illustrates a LSTM layer, a widely used recurrent layer with nodes 

connect to themselves via feedback loops. Such looped connections make a recurrent layer a dynamic 

system, which has an internal state which can remember the historic inputs, with wide applications 

to temporal information processing. Here each LSTM node consists of 4 gates, which adds and 

removes information from its internal state at each time step. The vector-matrix multiplication 

involved in LSTM can be conveniently mapped to a 1R or 1T1R crossbar with 2 sub-arrays. One of 
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the sub-arrays is multiplied with an external input vector at each time step, while the other sub-array 

handles the recurrent input that depends on the output of the crossbar at the last time point. 

 

Figure 13. Different types of learning that have been implemented on 1R or 1T1R crossbars. (a-b) In 

terms of where the neural network parameters are optimized, the learning can be offline as shown in 

a. The optimization is done on a digital platform before converting the parameters to conductance 

and crossbar programming. On the other hand, the learning can be online as shown in b, where the 

crossbar conductance is updated along the course of learning. (c-e) In terms of the available 

information, the learning can be supervised, given the data with paired labels, and the learning aims 

to find out the mapping between them. Or the learning can be unsupervised if the input data is not 

labelled, which discovers the structure of the data, for example clustering them. Or the learning can 

be reinforcement, where an agent interacts with an unknown environment to find out a strategy to 

maximize the accumulated reward. 

The associated learning of the 1R and 1T1R crossbars can be offline, online, or a hybrid. As shown 

in Figure 13a, in the process of offline learning, the parameters/weights of a neural network are first 

learned on an alternative computing system, such as a digital computer, before being converted to the 

conductance of 1Rs or 1T1Rs and physically programmed into the crossbars. The crossbar will then 

be able to work with unseen data or the inference dataset. This approach features the least frequent 

programming of 1R or 1T1R crossbars, but it has difficulty adapting to the hardware non-idealities, 
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such as bad devices of the crossbar, and is unable to perform learning in real-time. As shown in Figure 

13b, online learning refers to the process where the conductance of 1R and 1T1R crossbars is updated 

during the course of learning, which is considerably challenging as there are concurrent requirements 

on the programming linearity, precision, energy, and speed. 

 

The learning can also be classified according to the available information. For example, as shown in 

Figure 13c, the learning can be supervised with example input-output pairs, and the neural network 

will be able to learn a mapping between the input and output. In case the input data is not labeled as 

shown in Figure 13d, the learning can be unsupervised which learns the internal structure of the 

dataset that is frequently used to cluster data. Figure 13e depicts the scenario of reinforcement 

learning where a learning agent interacts with an unknown environment. The agent receives some 

information about the environment (so-called state) and a reward signal at each time point. The agent 

learns the strategy to apply an action to the environment to maximize the accumulated reward signal. 

Such learning has triumphed over human players in games that were believed humans would long 

dominate. [239, 240]  

 

We would like to point out that different cell structures are mainly used to mitigate the sneak path 

currents in reading and programming a single device. This may be less compatible with the parallel 

programming operations required by logic-in-memory, such as the IMPLY[241] and MAGIC[241] 

protocols, as well as the parallel reading employed in vector-matrix multiplications[242-244] for both 

machine learning and neuromorphic computing. Thus, we discuss the required performance one by 

one as following for the data storage application. 

ON/OFF ratio and/or nonlinearity: The ON/OFF ratio or current-voltage nonlinearity of selecting 

devices dictates the storage capacity, or the size of the memristor array.[245-249] An ideal selecting 

device would possess infinite resistance when it’s unselected (e.g., biased at Vhalf-select) and zero 
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resistance when it’s selected (e.g., biased at Vselect). On the other hand, a small ON/OFF ratio will 

clearly impact on both read margin during reading,[249] and voltage/current delivery during 

programming.[247] 

Retention: Threshold resistive switching selectors, such as those based on MIT[82, 250], Ovonic 

switching[251], and metal-filament formation/rupture,[51] feature non-zero delay of relaxing their 

conductance back to OFF states upon the cease of selecting signals. Therefore, the retention time 

affects the read/write throughput, particularly if the reading or writing is performed in a row-by-row 

or column-by-column fashion. Diode and tunnelling [252] selectors ideally have zero retention, 

although, in reality, the time to establish the proper bias will be dependent on the parasitic capacitance. 

Endurance: Like retention, for those selectors based on threshold resistive switching, they usually 

exhibit finite endurance or number of switching cycles before the breakdown of permanent dielectric 

layer, which limits the lifespan of the underlying data storage system. Record high endurance of 1012 

has been demonstrated on NbO2 MIT selectors.[253] Up to 108 cycles have also been observed on 

Ovonic[251] and metal filament formation/rupture selectors.[51] On the other hand, diodes and 

tunnelling selector ideally have no limit on their lifespan since no resistive switching are needed. 

6. Example 1R Crossbars 

 

ANNs at UCSB: The team of Prof. Dimitri Strukov is among the first in demonstrating fully 

connected and recurrent ANNs using RRAM 1R crossbars, which applied to both offline and online 

supervised learning in pattern classification and optimization. Alibart et al. reported the first single-

layer fully connected ANN made of TiO2-x RRAM crossbars to learn 3×3 binary patterns, via both 

offline and online supervised learning [254], while a larger Al2O3/TiO2-x RRAM crossbar was built by 

Prezioso et al. to classify similar patterns. [242] A two-layer fully connected network was developed 

by Bayat et al. to classify 4×4 patterns with a crossbar of similar RRAMs, using offline supervised 
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learning. The crossbar was paired with analog hidden neurons to get rid of the tedious analog-digital 

conversions. [255] In addition to fully connected ANNs, a restricted Boltzmann machine, a recurrent 

stochastic network, has been realized on a 20×20 RRAM 1R crossbar by Mahmoodi et al. [256] The 

key feature is the tunable stochasticity using external noisy current injection. Since the amplitude of 

the injected noise can be correlated to the “thermal fluctuation” in an Ising model, a Hopfield network 

made of 64×64 RRAM 1R crossbar has been used by Mahmoodi et al. to implement stochastic 

simulated annealing, chaotic simulated annealing, as well as exponential annealing, which shows fast 

convergence to the global energy minimum than the case without noise injection. [257] 

 

ANNs at GIST: The team of Prof. Byung-Geun Lee developed a RRAM 1R crossbar made of 

Pr0.7Ca0.3MnO3 (PCMO) RRAMs in collaboration with POSTECH. Using 192 PCMO cells, Park et 

al. implemented a single layer fully connected ANN to classify electroencephalography signals via 

offline supervised learning. [258] 

 

ANNs and SNNs at UMich: Prof. Wei Lu’s group have developed various RRAM 1R crossbars that 

have pioneered many novel applications of ANNs and SNNs.  

ANN-wise, dimensionality reduction was performed by Choi et al. using online unsupervised 

learning on a TaOx RRAM 1R crossbar for principal component analysis of the breast cancer dataset. 

[259] A similar crossbar used by Jeong et al. was for the classification of the IRIS dataset, which 

implemented unsupervised K-means clustering through online learning. [260] In addition, Sheridan et 

al. creatively found sparse representations via a locally competitive algorithm on an offline learned 

dictionary physically mapped to a 32×32 WOx RRAM 1R crossbar. [261] Moreover, Cai et al. 

developed the first integrated RRAM computing system that comes with a 108×54 RRAM 1R 

crossbar array with on-chip sourcing and sensing circuitry as well as a reduced instruction set 

computer (RISC) processor built on a 180 nm technology node. [3] Moreover, for optimization tasks, 
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Shin et al. solved a 2D spin-glass problem by mapping the coupling matrix to TaOx RRAM crossbars. 

The total energy was minimized by flipping a random spin if it lowers the total energy or decided by 

a stochastic Cu-based RRAM. 

 

In terms of SNNs, liquid state machine, a special SNN roots on the concept of reservoir computing 

has been demonstrated by Du et al., Moon et al., and Zhu et al., using the short-term memory of 

RRAM. Such systems have revealed their advantages in online supervised learning of temporal 

sequences, with applications to spoken number recognition, [262] chaotic series prediction, [263] and 

neural firing pattern classification. [25] 

 

SNNs at Southampton: The group of Prof. Themis Prodromakis creatively devised a scheme to 

simulate synaptic plasticity using the switching dynamics of TiO2 RRAMs. Serb et al. demonstrated 

a simple fully connected SNN with hardware encoded spike-timing-dependent plasticity (STDP) for 

online unsupervised learning of pattern clustering. [264] 

 

ANNs from Polimi: Prof. Daniele Ielmini’s team has implemented linear and logistic regressions for 

the first time with RRAM 1R crossbars. Sun et al. reported the training of both linear and logistic 

regressions on an RRAM 1R crossbar with feedback configuration, which can fast optimize the output 

layer of an ANN. [265] 

 

7. Example 1T1R Crossbars 

 

ANNs and SNNs from IBM:  Dr. Geffory Burr, Dr. Evangelos Eleftheriou, Dr. Abu Sebastian, and 

their colleagues from IBM have advanced ANNs and SNNs based on PCM 1T1R crossbars. 
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In terms of ANNs, Burr et al. first employed 165,000 cells of a PCM 1T1R crossbar with an integrated 

peripheral circuit to build a 3-layer fully connected ANN which classified the MNIST dataset using 

online supervised learning. [266] To resolve the programming linearity and symmetry challenges in 

online learning, Ambrogio et al. developed a novel hardware synapse by pairing PCM cells with 3-

transistor-1-capacitor structures, leading to accurate classification of the MNIST dataset with a 4-

layer fully connected ANN and CIFAR-10/100 datasets with a convolutional ANN. [243] Besides 

online learning, using a novel offline supervised learning, including noise injection and adaptive 

batch normalization, Joshi et al. classified CIFAR-10 and ImageNet datasets with a ResNet, which 

makes it powerful enough to handle the very challenging ImageNet with the PCM 1T1R crossbars. 

[267] In addition to fully connected and convolutional networks, recurrent networks, such as LSTM, 

was employed for offline supervised modeling of language, such as the Penn Treebank dataset, by 

Tsai et al. [268]  Moreover, Karunaratne et al. reported hyperdimensional computing that one PCM 

1T1R crossbar stores the high-dimensional correspondents of low-dimensional symbols and compute 

n-grams using in-memory logic, while other worked as an associative memory for inverse hamming 

distance, for one-shot supervised learning of language classification. [269] 

 

PCM 1T1R crossbars have also been used to implement SNNs. Kim et al. reported a 256×256 2T1R 

crossbar built on 90 nm CMOS technology equipped with hardware encoded leaky-integrate-and-fire 

(LIF) neurons and STDP-capable synapses for auto-associative memory. [270] An upgraded version, 

consisting of 1.4 Mb PCMs in 6T2R (a variant of 1T1R) units was reported by Ishii et al. using the 

same technology node, which physically practiced STDP with asynchronous stochastic CMOS LIF 

neurons, which experimentally implemented a spiking restricted Boltzmann machine for MNIST 

classification. [39] In addition, SNNs were used to detect spatiotemporal correlations by Pantazi et al. 

and Sebastian et al., using either single layer fully connected SNN on PCM 1T1R crossbar [271] or 

PCM neurons in the same crossbar, [272] respectively. In addition, Wozniak et al. invented a spiking 
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neural unit characterized by its internal integration dynamics, with applications to both ANNs and 

SNNs. A fully connected network on PCM 1T1R crossbars paired with such spiking neural units 

predicted music using online supervised learning. [273] 

 

ANN from ASU: Teaming up with Tsinghua, Prof. Shimeng Yu reported a 16 Mb computing-in-

memory macro that accommodates integrated TaOx/HfOx RRAM 1T1R crossbars and 

sourcing/sensing circuits using 130 nm CMOS process, which performed offline and online training 

of a fully connected ANN for MNIST classification. [274] In addition, convolutional kernels were 

simulated based on another computing-in-memory macro developed by Prof. Jae-sun Seo’s team. The 

chip consists of a 128×64 RRAM 1T1R crossbar with on-chip sourcing/sensing circuitry as reported 

by Yin et al, showing a large energy efficiency in classifying the CIFAR-10 dataset with offline 

supervised learning. [275] 

 

ANNs and SNNs from Tsinghua: Prof. Huaqiang Wu, Prof. He Qian, Prof. Jianshi Tang, and Prof. 

Bin Gao’s team have explored various applications using ANNs and SNNs based on RRAM 1T1R 

crossbars.  

 

For fully connected ANNs, Yao et al. used 1T1R crossbars made of HfAlyOx RRAMs to build a single 

layer fully connected ANN to classify the Yale face database using online supervised learning. [276] 

They also teamed up with National Tsinghua in developing a computing-in-memory RRAM macro 

consisting of a 158.8 Kb 1T1R crossbar fabricated on a 130 nm process, using TaOx analog RRAM 

and achieving energy efficiency of 78.4 tera operations per second per watt (TOPS/W) (1bit 

input/output) in offline supervised learning of MNIST classification. The chip also features 

innovative sign-weighted 2T2R cells that can largely mitigate the impact of parasitic wire resistance. 

[277] Such fully connected networks, combined with RRAM crossbar-based Finite Impulse Response 
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(FIR) filters, can recognize epilepsy-related signals using offline supervised learning.[24] Besides 

supervised learning, Lin et al. demonstrated online unsupervised training of a generative adversarial 

network on a 1 Kb 1T1R crossbar to generate digits that are like those of the MNIST dataset. [278] For 

convolutional ANNs, the same team also implemented supervised hybrid learning, a mixture of 

offline learning and online learning, on a LeNet-5 convolutional network to classify MNIST datasets 

with duplicated convolutional kernels that further speed up the convolution operation. [244] Recurrent 

network-wise, Zhou et al. performed image reconstruction with a Hopfield network implemented on 

a 128×8 1T1R crossbar. [279] Probabilistic models such as Bayesian neural networks have been 

realized on a 160 Kb RRAM crossbar by Lin et al., thanks to the tunable Gaussian distributions of 

the read noise of multiple RRAM cells, which classified MNIST handwritten digits. [280] 

 

For SNNs, Li et al. experimentally developed a novel bio-realistic SNN chip that possesses artificial 

dendrites made of TaOx/AlOδ RRAMs. These dendrites are paired with HfOx RRAM crossbar 

synapses and NbOx RRAM artificial somas. The introduction of the dendrite enables hierarchical 

processing of postsynaptic signals in SNNs. [27] In addition, Liu et al. used RRAM crossbars to 

parallelly encode the multichannel neural signals, thanks to the nonlinear resistive switching of 

RRAMs to extract amplitude and variation of inputs as the conductance changes of RRAM 1T1R 

crossbars. [281] 

 

ANNs and SNNs from HPE-UMass: Dr. John Paul Strachan and Dr. Miao Hu from HPE, together 

with Prof. Joshua Yang and Prof. Qiangfei Xia from UMass, have co-developed a 128×64 RRAM 

1T1R crossbar. The system has been used to implement offline and online learning in ANNs and 

SNNs, which explores different network topologies and types of learning. 
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networks. Hu et al. [282] and Li et al. [283] implemented single-layer and two-layer networks to classify 

MNIST datasets, using offline and online supervised learning, respectively. In addition to supervised 

learning, Wang et al. demonstrated online reinforcement learning with 3-layer fully connected 

networks on the same 1T1R crossbar to solve classical control problems, including cart-pole and 

mountain-car. [2] For convolutional networks, Wang et al. implemented a LeNet-5 like network that 

classified the MNIST dataset using online supervised learning. [284] Recurrent network-wise, Li et al. 

[285] and Wang et al. [284] implemented LSTM and Convolutional LSTM, respectively, to classify 

human walking gait extracted from the USF-NIST gait dataset and small synthetic videos, 

respectively. For the optimization task, Cai et al. employed the intrinsic random telegraph noise as a 

random signal source in a similar RRAM 1T1R crossbar, which translates to tunable temperature in 

simulated annealing via tuning the signal-to-noise ratio. [286] Li et al. further downsized RRAMs to 

nanoscale in a computing-in-memory macro using TSMC 180 nm technology node. [287] 

 

In addition to a ccelerating SNNs, Wang et al. developed diffusive memristors that feature 

spontaneous filament rupture due to minimization of interfacial energy. [13]Such devices have been 

integrated with 1T1R crossbars to perform autonomous online learning using simplified synaptic 

plasticity to cluster patterns [61] and used as spiking neurons in a liquid state machine to classify 

MNIST.[288] 

 

ANNs by Panasonic: Mochida et al. have developed two computing-in-memory RRAM macros, one 

with 2 Mb 1T1R crossbars while the other with 4 Mb, using 180 nm and 40 nm technology node, 

respectively. These macros classified the MNIST dataset while revealing an energy efficiency up to 

66.5 TOPS/W.[289] 

 

SNNs from Polimi: Prof. Daniele Ielmini’s group has invented a novel solution to address the 
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stochasticity of RRAM in reliably implementing a supervised variant of STDP rule using RRAM 

1T1Rs, as reported by Wang et al. The SNN powered by 1T1R synapses has been applied to 

spatiotemporal pattern detection and sound localization.[40]  

 

ANNs from National Tsinghua: A series of computing-in-memory RRAM macros have been 

developed by the team of Prof. Marvin Chang from National Tsinghua University using TSMC 

CMOS and RRAM technology, including a 1 Mb 1T1R crossbars macro using 65 nm process,[290, 291] 

a 1 Mb 1T1R crossbars macro using 55 nm process,[292] and a 2 Mb 1T1R crossbars macro using 22 

nm process.[293] All the reported macros have been experimentally benchmarked in accelerating either 

fully connected ANNs or convolutional ANNs for pattern recognition via offline supervised learning, 

such as ResNet for the CIFAR-100 dataset, with a record high energy-efficiency up to 121.38 

TOPS/W (1bit input) demonstrated.[293] 

 

SNNs from Duke: Prof. Hai Li and Prof. Yiran Chen’s team has pioneered architecture design and 

algorithms for resistive memory crossbars in machine learning and neuromorphic computing.[294, 295] 

Recently, with joint efforts from National Tsinghua University, their team has developed a 64 Kb 

RRAM macro based on TiN/Ti/HfO2/TiN RRAM crossbars built on TSMC 150 nm process, as 

reported by Yan et al.[296] This macro has hardware spiking LIF neurons which leads to energy 

efficiency of 16.9 TOPS/W in offline supervised learning of classifying CIFAR-10 images.  

 

SNNs from CAS and Fudan: Prof. Qi Liu, Prof. Hangbing Lv, Prof. Shibing Long,  Prof. Dashan 

Shang, Prof. Ming Liu, and their colleagues have made important contributions to RRAM 

mechanisms,[297] electrical property engineering,[52, 298, 299] and novel material crossbars,[300] which 

have also led to innovations in SNNs based on 1T1R crossbars.  
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For example, Zhang et al. reported a single-layer ANN-to-SNN conversion enabled by compact NbO2 

RRAM spiking neurons which implemented rectified linear units (ReLU).[301] The neurons are paired 

with a 640×10 RRAM 1T1R crossbar to classify the MNIST dataset using offline supervised learning. 

Besides offline training, Zhang et al. developed a hybrid analog-digital spiking neuron powered by 

Ag-RRAMs, which not only realized LIF neural function but also enabled hardware encoded synaptic 

plasticity in a 2-layer fully hardware SNN that practiced online unsupervised learning for pattern 

clustering. [302] To further explore the efficiency of SNN, Zhang et al. engineered a NbO2-based 

neuron circuit with a controllable refractory period. Then combined such neurons with a 512 × 5 

RRAM 1T1R array, they experimentally demonstrate a temporal coding SNN with offline learning 

for recognizing Olivetti face patterns, achieving energy efficiency up to 20.1 TMACS/W. In addition, 

Wu et al. reported a single-layer SNN that features LixSiOy RRAM synapses. Such synapses revealed 

habituation behaviors upon identical stimulations that can actively filter synaptic inputs. Together 

with Ag-based RRAM neurons, the SNN planned the path for a robot by avoiding obstacles. [303] Also, 

to make the SNN interact with the environment, the same group demonstrated an artificial spiking 

afferent nerve based on a NbO2 device for converting sensed analog signals to spiking frequency 

processed by SNN, which paves the way to build a self-aware SNN machine.[26] 

 

ANNs from NJU: Prof. Feng Miao and Prof Shijun Liang’s group has invented an integrated sensing-

processing system consisting of retinomorphic sensors made of WSe2/h-BN/Al2O3 heterostructure 

and Pt/Ta/HfOx/Pt RRAM 1T1R crossbars which implement a fully connected ANN and a recurrent 

ANN for letter recognition and object tracking. [304] 

 

ANNs from UPenn and CEA-Leti: Prof. Jing Li’s team worked together with CEA-Leti on the  

development of liquid silicon, the codename of a hybrid digital-analog processor that contains HfO2 

RRAM 1T1R crossbars built on 130 nm CMOM process. As reported by Zha et al., the processor 
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achieved a 60.9 TOPS/W energy efficiency in performing a binary ANN inference. It also comes up 

with a compilation framework that interfaces with high-level programming language while optimizes 

hardware resources.[305] 

 

In addition to deterministic models, the stochastic programming of HfO2 crossbars has been used by 

Dalgaty et al. to im plement Markov Chain Monte Carlo, specifically the Metropolis-Hasting 

algorithm. They physically sample the posterior distribution of a Bayesian model usin g the 

conductance of the 1T1R crossbar, with applications to online reinforcement learning.[305] 

 

ANNs and SNNs from Stanford: The work of Prof. Philip Wong’s team has a long-lasting impact on 

the advancement of PCM and RRAM technology, as well as their computing applications.[306, 307] 

 

In terms of ANNs and 3D integration, Li et al reported one-shot learning to classify European 

language with high-dimensional computing, where the multiplication-addition-permutation are 

experimentally performed by a 4-layer 3D 1T1R crossbars. [308] In addition, the joint efforts between 

Prof. Subhasish Mitra and Prof. Philip Wong lead to the birth of the first 3D nano-system, which 

consists of vertically stacked RRAM crossbar layer, carbon-nanotube transistor layers, as well as a 

digital logic layer, which is of interleaved sensing, computing and data storage with dense 

connections across layers. [309] Yang et al. has demonstrated the int egration of 2D molybdenum 

disulfide (MoS2) transistors with RRAMs into a 1T1R memory cell, which has low fabrication 

temperature and is suitable for monolithic 3D integration. [310] They have further integrated 2D MoS2 

transistors with RRAMs into ternary content-addressable memory (TCAM) cells, which is suitable 

for parallel in-memory search of massive data. [311] Moreover, Feng et al. reported a fully printed 

flexible MoS2 memristive artificial synapse with femtojoule switching energy, showing its potential 

ability of demonstrating energy-efficient artificial neuromorphic computing,[312] and Chen et al. 
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proposed an ideal memristive device based on 1T  phase MoS2 nanosheets, exhibiting a unique 

memristive behavior due to voltage-dependent resistance change.[313] 

 

In terms of recurrent SNNs, Eryilmaz et al. reported a Hopfield network consisting of a 10×10 PCM 

1T1R crossbar which implemented Hebbian plasticity for associative learning of simple patterns. [314] 

In collaborating with National Tsinghua, the team has reported a computing-in-memory RRAM 

macro built on the 130 nm technology node. A unique feature of this macro, as reported by Wan et 

al., is that there is 16×16 sub-cores, where each sub-core possesses a 16×16 1T1R crossbar and an 

associated CMOS LIF neuron, on a reconfigurable communication fabric allowing flexible dataflow. 

It demonstrated an energy efficiency of 74 TMACS/W in implementing a restricted Boltzmann 

machine for image reconstruction. [315]  

 

ANNs and SNNs from PKU: Prof. Yuchao Yang and Prof. Ru Huang’s team and Prof. Jinfeng Kang’s 

team have not only advanced the resistive switching mechanisms [316, 317] and materials [318, 319], but 

also ANNs and SNNs made of RRAM crossbars. 

 

For fully connected ANNs, Jiang et al. reported a single-layer network that interfaces with a digital 

camera through an FPGA for offline supervised learning to recognize printed digits. [320] In addition, 

Zhou et al. developed a 1 Kb TaOx/HfOx RRAM crossbar using a 130 nm technology node, which 

can implement online supervised training of a binary multi-layer fully connected ANN for MNIST 

recognition. [321] A new scheme of this binary network is its capability to mitigate the RRAM 

stochasticity in encoding weights, where the weights are determined by the comparison of 

conductance between a pair of 1T1R cells. The same crossbar has been applied to convolutional 

ANNs as reported by Zhang et al., using a digital propagation module in addition to the RRAM 

crossbars and extra circuit-level techniques to mitigate the RRAM stochasticity. [322] For recurrent 
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ANNs, Yang et al. devised a novel Hopfield network to perform chaotic simulated annealing. The 

network is mapped to Ta/TaOx/Pt RRAM crossbars. A unique feature is that the diagonal RRAMs 

were programmed along the course of optimization, the nonlinear conductance evolution would 

enlarge the probability of finding global optimum while achieving fast convergence, with applications 

to problems like Max-cut. [323] 

 

In addition to ANN, Duan et al. reported a fully RRAM-based SNN, consisting of NbOx based RRAM 

neurons with unique spatiotemporal integration capability and neural gain, which leads to online 

supervised learning of simple pattern classification and coincide detection. [324] 

 

Conclusions and Perspective  

 

Memristive device represents a promising solution to the next-generation storage class memory due 

to its simple device structure, excellent scalability, fast programming, large program/erase endurance, 

long retention, and good compatibility with CMOS process. To address the sneak path current issue, 

different unit cell designs including 1S1R, 1T1R, 1D1R, 1BJT1R, CRS, SRC, and SSC have been 

systematically surveyed. Each unit cell design has its own ceiling and cannot simultaneously offer all 

aforementioned merits of resistive memory at the same time. For example, 1T1R and 1BJT1R lose 

the advantage of high-density crossbar arrays because of the additional space required for the 

transistor, and complicated high-temperature fabrication processes. CRS inevitably results in a 

destructive reading issue. 1D1R and SRC can only be paired with the unipolar memories in most 

cases, limiting their applications. 1S1R needs further optimization of nonlinearity, on/off ratio, etc. 

Therefore, the search for novel material systems, device structures, and electrical operation schemes 

to completely unleash the potential of resistive switching memory would be of ultimate importance 

for high-density storage memories.  
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On the one hand, the same set of electrical properties of memristors are critical for in-memory 

machine learning and neuromorphic computing, which has the potential to solve the von Neumann 

bottleneck and the scaling issue of transistors. 1R or 1T1R have been employed as building blocks to 

physically implement hardware ANNs and SNNs. 1R crossbar arrays possess better scalability 

compared to 1T1R crossbar arrays, although the programming is usually more expensive in terms of 

time and energy due to the presence of sneak path currents. On the other hand, transistors in 1T1R 

crossbar arrays can impose current compliance, which benefits the forming process and analog 

programming of resistive switches, improving the array yield. Moreover, transistors together with 

memristors have implemented complicated synaptic plasticity on a large scale. These advantages lead 

to the flourish of 1T1R crossbar array-based computing.  

However, the high energy consumption due to the high current, larger-than-expected cell size due to 

the transistors, and device stochasticity are the main obstacles that hinder the commercialization of 

this technology. To address such issues, novel resistive switching materials such as low-dimensional 

materials, new device structures for synapses and neurons, as well as innovative circuit and algorithm 

designs, resistive switches are promising to be the next transformative computing technology. 
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