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Abstract 

Neuromorphic computing has the great potential to enable faster and more energy-efficient 

computing by overcoming the von Neumann bottleneck. However, most emerging non-volatile 

memory based artificial synapses suffer from insufficient precision, nonlinear synaptic weight update, 

high write voltage and high switching latency. Moreover, the spatio-temporal dynamics, an important 

temporal component for cognitive computing in  spiking neural networks, are hard to generate with 

existing complementary metal-oxide-semiconductor (CMOS) devices or emerging non-volatile 

memory. Here, we develop a three-terminal, LixWO3-based electrochemical synapse (LiWES) with 
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low-programming voltage (0.2 V), fast programming speed (500 ns), and high precision (1024 states) 

that is ideal for artificial neural networks applications. We also demonstrate time-dependent synaptic 

functions such as paired-pulse facilitation (PPF), temporal filtering that are critical for spiking neural 

networks. In addition, by leveraging the spike-encoded timing information extracted from the short-

term plasticity (STP) behavior in our LiWES, we build a spiking neural networks model to benchmark 

the pattern classification performance of our LiWES and the result indicates a large boost in 

classification performance (up to 128×), compared to those NO-STP synapses. 

 

1. Introduction 

Neuromorphic computing has emerged as a new computing paradigm to potentially overcome the 

von Neumann bottleneck for faster and more energy-efficient computing.[1] Despite recent 

advancement in computing, the human brain still outperforms computers in cognitive tasks owing to 

its superior energy efficiency, large-parallelism, organizational hierarchy, as well as time-dependent 

neuronal and synaptic functionality.[2] Hence, researchers have been developing artificial neural 

networks (ANNs) to mimic the neuro-biological architecture with electronics with a grand goal of 

building systems with general artificial intelligence (AI). Recently, deep neural networks (DNNs) 

have demonstrated tremendous progress for tasks like image classification and speech recognition.[3-

10] However, these deep learning algorithms require huge amounts of computational resources, 

especially during the training process. Moreover, the temporal aspect in neural spiking, an integral 

component for all cognitive functions in the brain (e.g. the timing difference between spikes can 

represent causality), has been largely omitted in DNNs – limiting their ability in implementing causal 

relationships and logical inferences. Spiking neural networks (SNNs), which aims to mimic the 

biological neural network more closely through incorporating the temporal components,[2] offers a 

promising alternative to complement DNNs with their excellent energy efficiencies and bandwidths 

from their event-driven nature, as well as their potential for cognitive computing through 
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implementing logical inference.[11-16] However, it has been challenging and expensive to incorporate 

and process the spatio-temporal dynamics with existing CMOS devices.[2] 

Artificial neuronal and synaptic functionality can be mimicked by emerging nanoelectronics 

such as phase change memory (PCM),[17-19] resistive random access memory (RRAM),[20-22] spin 

transfer torque random access memory (STT-RAM),[23, 24] Ferroelectric random access memory 

(FeRAM),[25, 26] and reconfigurable photonics.[27-30] However, most of these devices are originally 

optimized for non-volatile memory (NVM) applications and are thus unable to generate time-encoded 

spikes for SNNs without the use of intricate circuitries, which limits the overall cost and scalability. 

Recently, emerging three-terminal electrochemical redox transistors have become a promising 

candidate for mimicking the biologic synapse due to its low power, high precision, linear and 

symmetric response, low variations, and good endurance performance.[31-39] The channel conductance 

(i.e., synaptic weight) of the electrochemical synapses can be continuously and controllably 

modulated via electrochemical reactions (e.g. involving Li+ or H+ ion flows) through a gate terminal.  

While Li+ ions in the gel electrolyte could potentially be a source of contamination for CMOS 

fabrications, it is a good material for proof-of-concept of our electrochemical redox transistors due to 

its well-known electrochemical behaviors. Most recently, we are able to leverage  the long-term 

charge transfer doping effect and the short-term ionic gating effect in electrochemical transistors[39] 

to demonstrate tunable time-dependent spatiotemporal dynamics, which are critical for spike-based, 

event-driven computations.[11] 

Tungsten oxide (WO3), consisting of corner-sharing [WO6]-octahedral structures, can be 

considered as a pseudo-perovskite oxide with absent A-site cations.[40, 41] The absence of A-site 

cations can be used as interstitial space for ion intercalation and extraction,[42-44] thus making WO3 a 

good candidate for electrochemical synapses. Moreover, insulator-to-metal transition has been 

demonstrated in epitaxial WO3 film via electrolyte gating,[45-48] which provides a large conductivity 

modulation window for building high-precision synapses with a large dynamic range that are ideal 
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for neuromorphic computing applications.[49] Another advantage of using WO3 film as the channel 

material is that the high quality epitaxial WO3 film can be deposited by radio-frequency (RF) 

magnetron sputtering,[48, 50] providing a route towards scalable fabrications that enable the wide-

spread of smart electronics in the era of the Internet of Things (IoTs).  

While WO3-based electrochemical synapses have demonstrated promising potentials in prior 

pioneering studies,[51-53] more research efforts are necessary to lower the programming voltage (e.g. 

4 V[53]) and improve the programming speed (e.g. 70 ms[51]), two key parameters in artificial synapses. 

In addition, most of the prior works on WO3-based electrochemical synapses have been focused on 

improving the precision for DNNs applications with little to no effort devoted to producing time-

coded spikes that are critical for SNNs applications. 

In this work, we develop a three-terminal LiWES with low-programming voltage (i.e. ~0.2 V 

enabled by our self-gated design[34] with near-zero open circuit voltages (OCVs) between the gate 

and the channel), fast programming speed (500 ns), and high precision (1024 states) that is ideal for 

DNNs. We also demonstrate time-dependent synaptic functions such as paired-pulse facilitation and 

temporal filtering that are critical for SNNs. In addition, by utilizing the  time-encoded spikes in our 

LiWES dynamic synapses, we build a SNNs model to benchmark the pattern classification 

performance, which shows a large boost (128× improvement) in classification performance in highly 

time-dependent scenarios.  

 

2. Results and Discussion 

2.1. Electrochemical LixWO3 Synapse Structure  

The structure of our LiWES is similar to that of biologic synapse, as illustrated in Figure 1a. In a 

biologic neural network, a synapse is the small gap (20-40 nm) between a pre-synaptic neuron and a 

post-synaptic neuron. This connection strength is referred to as the synaptic weight, which can be 

increased (potentiation) or decreased (depression) by modulating the Ca2+ concentration. The 

electrical signal from pre-synaptic neurons activates the opening of calcium channels, triggering the 
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release of neurotransmitters from pre-synaptic neurons into post-synaptic neurons. The schematic of 

our three-terminal LiWES is shown in Figure 1b, where the channel conductance, modulated by the 

gate terminal, represents the synaptic weight. Tungsten oxide, which contains a large number of 

vacant A-sites, is ideal for reversible intercalation and de-intercalation of Li ions (Li+), as evident in 

its wide use in commercial electrochromic devices.[54] By intercalating (extracting) Li+ into (out of) 

the LixWO3 channel, we can potentiate (depress) the synaptic weight (represented by the channel 

conductance) of our synapse.[33, 39] An optical image of the electrochemical synapse is shown in 

Figure 1c, depicting a three-terminal planar transistor structure where WO3 thin films (60 nm) are 

deposited on LaAlO3 (100) substrate as both the gate and the channel. Adopting the same material 

for both the gate and the channel allows us to minimize the OCV between the two terminals,[34] hence 

achieving a low programming voltage. We deposited epitaxial WO3 film on a LaAlO3 (100) substrate 

using RF sputtering (See the Experimental Section for fabrication processes). X-ray diffraction 

(XRD) (Figure 1d) and atomic force microscopy (AFM) (Figure 1e) measurements confirm the good 

crystallinity of the deposited WO3 film with an atomically-flat surface (root-mean-square roughness 

< 600 pm). Having a high-quality, crystalline thin film with a smooth surface is critical for promoting 

the conductance modulation efficiency in our electrochemical synapse, which involves the electrolyte 

gating process that is sensitive to the surface smoothness.[48, 50] 

 

2.2. Electrochemical Modulation 

In Figure 2a, we employ Li0.6FePO4 (LFP) as the Li+ ion reservoir as well as the reference gate for 

us to modulate the Li content in both the LixWO3 channel and self-gate, since it provides a near-

constant electrochemical window (~3.4 V vs. Li/Li+ as LFP’s Li content changes from Li0.02FePO4 

to Li0.9FePO4) to ensure stable operations.[55-57] We can achieve controllable tuning of the LixWO3 

channel conductance (i.e. synaptic weight) via changing the Li content through reversible Li 

intercalation and de-intercalation, where Li intercalation/de-intercalation is a combination of non-
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volatile charge transfer doping and the volatile ionic gating effects.[39] We first performed 

galvanostatic discharge measurements of WO3 with a constant current of 0.1 nA to establish how the 

electrochemical potential of LixWO3 relative to the standard potential of Li/Li+ electrodes (V vs. 

Li/Li+) changes as a function of the Li concentration (Figure 2b). Consistent with prior studies,[42, 44] 

the electrochemical potential of LixWO3 decreases as Li content increases. An advantage of our 

electrochemical approach over conventional resistive memory based synapse is that it allows us to 

control the Li content (and hence the synaptic weight) in the channel accurately, enabling us to build 

high-precision, analog synapses[49, 58] that are desirable for DNNs applications. As illustrated in 

Figure 2c, the channel conductance increases monotonically as the Li concentration increases. This 

is likely because that Li ions can act as n-type dopants, increasing the channel conductance by shifting 

s-band high above the Fermi level with the charge-balancing electrons occupying the d conduction 

band in Tungsten.[43]  The channel conductance can be continuously modulated over four orders of 

magnitude, suggesting a large dynamic range that is necessary for high-precision synapse. We note 

that the dynamic range becomes slightly smaller after the 1st cycle of intercalation/de-intercalation, 

likely due to a small amount of Li ions trapped inside the WO3 host.[54] The conductance modulation 

windows between the two cycles are fairly consistent, indicating a repeatable dynamic range for 

synaptic weight updates. Up to 4 consecutive cycles of the conductance modulation can be seen in 

Figure S1a, further demonstrating the good repeatability of conductance modulation in our LiWES. 

We also performed a control experiment with only the Poly(ethylene oxide) (PEO) electrolyte (i.e., 

no WO3) (Figure S1b), where we observed no change in channel conductance confirming the 

LixWO3’s modulation. Previous studies suggest that  Li intercalation can induce phase transformation 

in WO3 crystal structure,[42, 44, 46, 47] where the LixWO3 film goes through phase transformations from 

monoclinic (0 < x < 0.01), tetragonal (0.05 < x < 0.12), to cubic (0.32 < x < 0.7) with increased crystal 

symmetry as its Li content increases, partly accounting for the electrical properties change in LixWO3 

films.[42, 43, 46] As shown in Figure 2b and Figure 2c, non-linearity behavior exists due to the phase 
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transformation of WO3 crystal, which is why it is important to lithiate the WO3 channel and modulate 

its electrical conductance during the cubic phase region for obtaining a more linear response. Our in-

operando Raman measurements (See the Experimental Section for Raman setup) in Figure 2d 

suggests similar crystal structure changes during the lithiation process. Two strongest peaks in Raman 

spectra of WO3 film are located at ~ 715 cm-1 and ~ 804 cm-1, corresponding to the asymmetric and 

symmetric stretching vibrations of W6+-O bonds, while the peak at ~278 cm-1  is due to the bridging 

O-W-O bonds.[59, 60] The intercalation of Li ions induces a larger lattice distortion, forcing the crystal 

structure to become more symmetric which leads to the gradual diminishing of the peak at 715 cm-1 

as well as a blue shift of the peak from ~804 cm-1 to ~ 806 cm-1
 resulting from the slightly decreased 

lattice parameters of LixWO3 bronzes.[44] 

 

2.3. Low-Voltage and High-Precision Synapses 

While LFP serves as a good reservoir of Li ions due to its stable electrochemical window, it is not an 

ideal control gate for a three-terminal artificial synapse because it would lead to a high programming 

voltage required to overcome the electrochemical potential difference (ranging from ~0.45 V to 1.45 

V)[44] between the channel (LixWO3) and the gate (LFP). Hence we adopt a self-gate structure, where 

we use the same material (LixWO3) for both the channel and the control gate and hence minimizing 

the potential difference[34] as well as achieving sub-1 V operations. We first lithiated both as-

deposited WO3 gate and WO3 channel to the same lithiation levels (Li0.4WO3) through applying a 

constant voltage bias VLixWO3 = -1.1 V on both the gate and channel while grounding the LFP 

reference,[34] allowing us to achieve a near-zero OCV (< 0.1 V) between the gate and the channel as 

well as a cubic WO3 crystal structure for obtaining a more linear conductance response via pulse 

modulation. We envision that only one global LFP gate is needed as the ionic reservoir for a self-

gated synaptic array, where pre-charge operations (to charge the self gate to the desired 

electrochemical level) are sparingly performed. This will enable low-voltage programming as well 
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as both short- and long-term plasticity while keeping the fabrication and circuity design complexity 

at a manageble level. 

Combining this with the high-precision nature of our synapse originating from the large 

dynamic range as well as the good tunability enabled by the electrochemical intercalation, we 

demonstrate both potentiation and depression functions in Figure 3a with low programming voltages 

(0.5 V) and good precision (1024 distinct states). We applied 512/1024 potentiation pulses (0.5 V, 10 

ms) and 512/1024 depression pulses (-0.5 V, 10 ms) at Li0.4WO3 self-gate, where we observed a 

relatively linear and symmetric weight updates. We note a trade-off the dynamic range and 

linearity/symmetry, where the linearity and symmetry of conductance response are slightly reduced 

when larger number of pulses are used to push the synapse to a larger dynamic range, likely associated 

with the saturation of accumulated electric charges at the interface between LixWO3 

channel/electrolyte and the asymmetry of electric charges accumulation (potentiation) and release 

(depression) processes under different directions of electric fields. In biological synapses, the amount 

of weight change (represented by the change in channel conductance ΔGSD in our device) often varies 

for different neuronal signals.[61] We can mimic this behavior in our synapse to achieve different 

ΔGSD by varying the amplitude, width and numbers of the programming pulse(s), as illustrated in 

Figure 3b-d. We observed pseudo-linear relationships between ΔGSD with respect to the pulse 

amplitude (from 0.1 V to 2 V, Figure 3b) and width (from 10 ms to 500 ms, Figure 3c), respectively. 

This is likely because the ΔGSD is dependent on the amount of Li ions being transferred into the 

LixWO3 film during the programming pulse. We observe a similar pseudo-linear relationship between 

ΔGSD and the pulse number up to 800 pulses, after which ΔGSD starts to become saturated. This 

saturation behavior is likely due to the limited amount of Li ions that can be transferred into the 

channel at a given electrochemical potential between the channel and the gate, which is dictated by 

the pulse amplitude (i.e., 1 V in Figure 3d) and the lithiation concentration in the channel).  
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To study the endurance behavior of our synapse, we cycled our synapse over 2000 pulses (20 

cycles of 50 potentiation (0.5 V, 10 ms) and 50 depression (-0.5 V, 10 ms) pulses, as shown in Figure 

3e), where we observed reversible and repeatable conductance change with a 500% dynamic range. 

We also performed long-time endurance test for 105 pulses on LiWES (Figure S2), where the synapse 

showed no sign of degradation after 105 pulses. We carried out thermal stability test for two different 

states: pristine WO3 (before lithiation) and Li0.4WO3 (initial conductance state for self-gate and 

channel after lithiation), where we observed minimal resistance drift over 11 hours at 80 °C for both 

states (Figure 3f). By statistically analyzing the conductance change ΔGSD per pulse in Figure 3e, we 

observe small temporal (pulse-to-pulse) variations for potentiation pulses and depression pulses, as 

shown in Figure S3a. Additionally, we studied ΔGSD per pulse for four different devices and observed 

a small device-to-device variation of  ~6.5% (Figure S3b), suggesting good repeatability and 

scalability of our devices.  

 

2.4. Temporal dynamics  

For SNNs, a dynamic synapse with both long-term and short-term plasticity (LTP and STP) is 

essential for learning applications. However, it has been difficult to implement such temporal 

dynamics with traditional CMOS devices. Our LiWES naturally possesses both LTP and STP, owing 

to a combination of the volatile ionic gating (Figure 4a) and the non-volatile charge transfer doping 

(Figure 4b) effects. Non-volatile charge transfer doping effect  results in LTP as intercalated Li ions 

could stay at vacant A-sites in pseudo-perovskite tungsten oxide for a long time via the 

electrochemical reaction as Li0.4WO3 + xLi+ + xe- ↔ Li0.4+xWO3, while volatile ionic gating effect 

results in electrical double layer formation (Figure 4b). The ionic gating effect is short term because 

the accumulated electric charges (Li+ ions in the PEO electroyte) at the interface between LixWO3 

channel and electrolyte would quickly diffuse back to the electrolyte when the external applied 

electric field (gate voltage) is removed. We are able to achieve the transition of STP to LTP by 
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switching from a LixWO3 self-gate to a LFP reference gate. As shown in Figure 4c, the LixWO3 self-

gate is used to apply voltage pulses which enables a low programming voltage (~ 0.2 V) owing to the 

near-zero OCV between LixWO3 self-gate and channel. We observed a spike in channel conductance 

after the programming pulse due to ionic gating effects. As the volatile ionic gating effect dissipates 

after the voltage pulse, the channel conductance returns towards its original value. In this case, we 

observed no obvious charge transfer doping effect (LTP) likely because the electrochemical reaction 

driving force (electrochemical potential differences between gate and channel) for LTP is weak since 

there is a near-zero OCV between LixWO3 self-gate and channel. By switching from the self-gate to 

a LFP gate (Figure 4d), we observed a spike in channel conductance likely due to combined ionic 

gating [ΔGST (t)] and charge transfer doping effects [ΔGLT]. Since the electrochemical OCV between 

LFP gate and LixWO3 channel is ~ 1.1 V, there is enough electrochemical reaction driving force for 

charge transfer doping effect and thus the resulting time-dependent channel conductance consists of 

a long-term component [ΔGLT] and a time-dependent, short-term component [ΔGST (t)] such that 

ΔGSD (t) = ΔGLT  + ΔGST (t). We achieved long-term potentiation and depression via applying multiple 

pulses at LFP gate, as shown in Figure S4a. We also studied the long-time stability for the 

intermediate conductance states  during long-term potentiation and depression (Figure S4b-c), where 

minimal stability degradation was observed. We also investigate how the pulse duration may affect 

the amount of weight change using LixWO3 self-gate (Figure 4e). We still observe STP due to ionic 

gating with pulses as short as 500 ns, consistent with the time scale reported in literature for ionic 

gating and electrical double layer formation.[62] The amount of STP decreases as the pulse duration 

decreases, likely because smaller amount of electric charges accumulate at the interface between 

LixWO3 channel/electrolyte and thus induce less electrons inside the LixWO3 channel in shorter 

pulses. Additionally, we are able to achieve consistent weight updates over 20 cycles of 50 

potentiation (1 V, 1 μs) and 50 depression (-1 V, 1 μs) pulses, with similar linearity and symmetry 

(Figure 4f) compared to long pulses (10 ms, Figure 3e).  

A
ut

ho
r 

M
an

us
cr

ip
t



  

 This article is protected by copyright. All rights reserved 

In addition to LTP and STP, time-encoded spikes containing rich temporal information, which 

are responsible for learning and logical inference in biological neural network, are also desirable for 

SNNs applications. To better focus on studying temporal dynamics of our synapses, the benchmark 

of their performance in DNNs would be omitted here but we believe our LiWES synapses could 

potentially demonstrate decent DNNs performance because of their small energy consumption (~ 2 

pJ) for a single pulse event (Figure S5), fast programming speed, high precision and low variations. 

Leveraging the natural decay in our synapses, we demonstrate time-dependent synaptic functions 

such as PPF and temporal filtering in Figure 5, which have been difficult to implement with 

traditional CMOS devices. Tunable conductance change ∆G for a pair of pulses can be achieved by 

adjusting the time interval (∆t) between these two pulses at Li0.4WO3 self-gate (Figure 5a), mimicking 

the short-term, dynamic phenomenon in biological neural network where the amplitude of the second 

response is dependent on how closely the two pulses are related.[63] In particular, the incremental 

effect (G2 – G1) in our synapse becomes less as the time interval becomes longer, as shown in Figure 

5b. This resembles the biological learning behavior where the learning effect is better reinforced when 

two stimulations are more closely related. We also fit two characteristic timescales with a two-term 

exponential function:  τ1 = 19 ms and τ2 = 433 ms, which are consistent with those found in biological 

synapse[63] and other previously reported artificial synapses.[32, 33] Those two characteristic timescales 

are likely related to the diffusion dynamics of Li ions[32, 33, 39, 51] and can be engineered by changing 

the device dimension as demonstrated in prior studies.[32, 39] We also examine how the programming 

energy scales as we vary the dimensions and observe promising scalability down to a channel area of  

50 × 200 µm2 (Figure S5). STP can be used to generate filtering functions that are used in information 

processing, e.g. fish view the surrounding environment through the low-pass temporal filtering by 

which activated patterns of slow frequency (<10 HZ) are passed while repetitive patterns of fast 

frequency (> 10 HZ) are rejected.[64] The frequency-dependent high-pass temporal filtering can be 

mimicked by short-term facilitation (STF).[65, 66] By varying the signal frequency (i.e. time interval 
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between pulses), we can modulate the maximum conductance level of our device, mimicking a high-

pass temporal filtering. As we increase the frequency of a pulse train consisting of 10 consecutive 

pulses  (0.5 V, 10 ms for each pulse) from 1 Hz to 80 Hz at Li0.4WO3 self-gate (Figure 5c), the 

maximum obtainable conductance level increases.[65] We also studied frequency-dependent gains of 

high-pass temporal filtering (Figure 5d), where the gain is defined as the ratio of the maximum 

conductance level of the tenth pulse (G10) to the first pulse (G1), demonstrating our LiWES can act 

as a high-pass temporal filter for information processing that is highly desirable for temporal 

computation in SNNs. 

 

2.5. SNNs computation implementing temporal spiking information         

The goal of this section is to show how our LiWES devices’ dynamic behaviors could be used to 

boost classification performance in highly time-dependent scenarios. The principle behind the 

proposed computation is that when the LiWES devices receive a set of spikes, their conductance 

value will change depending on the temporal structure (individual spike timings) of the input spike 

train (Figure 5). Furthermore, in absence of LTP when using LixWO3 self-gate and channel, the 

conductance of the device will be uniquely determined by the input spiking pattern and the time of 

integration,[11, 67] granting the device the ability to integrate temporal information and distinguish 

between different spike patterns.  

In standard neuromorphic SNNs with NO-STP synapses, the synaptic efficacy (or weight), 

which remains fixed during inference, is used to simply scale current pulses directed towards the 

post-synaptic neuron. In these models, the temporal integration of stimuli is left solely to the neuron; 

whereas in STP enabled networks, synapses also encode temporal information through weight 

changes, enriching network dynamics[65, 68, 69] and increasing the ability of neurons to discriminate 

between temporal stimuli.[70] For this reason, when compared to NO-STP synapses, a network 

including the proposed LiWES device should increase its performance in highly time-dependent tasks, 
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such as classification of different spike patterns. In order to test this hypothesis, we propose a test 

tailored to compare our LiWES to an IDEAL synapse (a noiseless LiWES device)  and a standard 

NO-STP synapse. Here, we connect a post-synaptic neuron, modelled with Leaky Integrate and Fire 

profile (parametrized with the membrane decay constant τm and spiking threshold = ∞), to a pre-

synaptic neuron, which is a Poisson Spike generator (Figure 6a). As shown in Figure 4c, the channel 

conductance response of our LiWES shows a spike profile, where the conductance quickly reaches 

the maximum conductance level followed by an exponential decay back to initial conductance level, 

due to ionic-gating governed STP effect.  Thus, we are able to model the conductance response of 

our LiWES with a linear rise equation (gate-pulse applied) and a double exponential decay equation 

(gate-pulse removed). (See the Experimental section for model build details). Every time the synapse 

receives a new spike at the time ti, the parameter Goff gets updated to the last conductance value while 

a set of parameters are drawn to generate a response as the one shown in Figure 6b.  

In the proposed task, we generate multiple pre-synaptic neuron spike trains with a fixed 

maximum duration. Since each spike sequence is randomly generated at a fixed frequency, therefore 

it differs from the others mainly by its temporal characteristics (the timestamps of individual spikes) 

and it represents a single class of a classification problem. The beginning of each spike train is 

delimited by tonset. A “sequence end spike” is added at the end of each spike train at a specific time 

tend (Figure 6c) and the post-synaptic neuron membrane potential is read out at tread (Figure 6d), 

representing the output of the system. Each spike train is presented to the synapse multiple times to 

obtain multiple membrane potential read-outs for the same “class” (or spike pattern). To calculate the 

class separability of the read-outs, we define a distance metric as the difference between the euclidean 

distance of points between different classes (inter-class distance) and the distance of the points within 

the same class (intra-class distance) in Figure 6e. Since the membrane potential of the post-synaptic 

neuron is always read out at the same time (tread) after the last spike (tend), a neuron unable to integrate 

temporal information will have similar membrane potential for different spike patterns and therefore 
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it will have an average inter-class distance of zero or close to zero, However, for an STP enabled 

neuron, its membrane value depends on previous spiking activity, which gives different values of 

inter-class distance based on different classes. This is the case shown in Figure 6f, where a fast spiking 

neuron (τm = 10 ms) is stimulated with Poisson generated spikes at a slow mean 10 Hz frequency. 

The number of classes used for this simulation was 50, each one presented 10 times (for intra-class 

measurement), for a total number of 500 points. In this case, class separability (inter-class distance – 

intra-class distance) is ~3.8 × 10−4 for the NO-STP synapse, ~4.9 × 10−2 for our LiWES device (~128× 

higher relative to NO-STP synapse), and ~8.6 × 10−2 for the IDEAL synapse (~226× higher compared 

to NO-STP synapse), with using a synaptic weight k of 4.3 (See the Experimental section for model 

build details). As both comparison synapses (NO-STP and IDEAL synapses) are totally deterministic, 

their mean intra-class distance is 0. The same simulation parameters were used in Figure 6g for a 

much slower post-synaptic neuron (τm = 100 ms). Even though the post-synaptic neuron is relatively 

slower to integrate temporal information, a boost in class separation (~1.4× in our LiWES and ~1.7× 

in the IDEAL synapse, relative to the NO-STP synapse) can still be achieved owing to the natural 

stochastic STP in our LiWES. The class separability  are ~8.4 × 10−2 , ~1.2 × 10−1 , ~1.4 × 10−1 , for 

the NO-STP synapse, our LiWES device, and the IDEAL synapse respectively, with using a synaptic 

weight k of 16.7. By implementing the temporal spiking information in STP of our LiWES, we 

improve the pattern classification performance (up to 128× comparted to NO-STP synapse ) in highly 

time-dependent scenarios. 

 
3. Conclusion 

In summary, we develop a WO3-based, electrochemical synapse with low programming voltage (0.2 

V), fast programming speed (500 ns), high precision (1024 levels), low variations, as well as a 

relatively linear and symmetric response. In addition, our dynamic synapse naturally exhibits both 

LTP and STP behaviors owing to the combined effects from charge transfer doping and ionic gating, 

which is desirable for SNNs applications. We demonstrate various time-dependent synaptic functions 
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such as pair-pulse facilitation and temporal filtering. By leveraging the spike-encoded timing 

information extracted from the short-term plasticity exponential decay behavior, we build a SNNs 

model to benchmark the pattern classification performance of our LiWES, which shows a large boost 

(128× improvement) in classification performance in highly time-dependent scenarios.  

 

4. Experimental Section 

Fabrication of Electrochemical WO3 Synapses: Epitaxial tungsten oxide (WO3) thin films were 

deposited on (100) LaAlO3 substrates (MTI Ltd.) using radio-frequency (RF) magnetron sputtering 

with WO3 target (99.99% purity from Sigma-Aldrich). A total RF power of 80 W was used. The 

process pressure was kept at 60 mTorr with a gas ratio of 1:2 for Ar : O2, while the deposition 

temperature was kept at 650 °C to achieve a deposition rate at 1 nm per min. The resulting WO3 film 

thickness was 60 nm, measured by a surface profiler (KLA-Tencor AlfaStep IQ). During the 

deposition of WO3 film, a shadow mask was used for patterning. Devices of different channel areas 

(from 1000 × 200 µm2 to 200 × 50 µm2) were fabricated for variation study. For the electrical 

characterization and pulse measurement, devices of 400 × 200 µm2
 channel area were used. Au 

contacts (100 nm) with a Ti adhesion layer (5 nm) were deposited using an electron-beam evaporator 

and patterned by a shadow mask. 

 The reference gate LFP was placed about 2 mm away from the WO3 channel. The LFP gate 

was prepared by manually coating the LFP slurry[34] onto a Au contact pad. The PEO electrolyte was 

prepared by mixing 30 wt % LiClO4 (Sigma-Aldrich) with poly(ethylene oxide) (molecular weight 

600, 000 from Sigma-Aldrich) in acetonitrile solvent. Subsequently, the PEO electrolyte (~ 1 µm)[71] 

was drop-casted to cover both the WO3 gate/channel and the LFP reference gate. The PEO serves as 

an electrolyte for Li+ ions transport in both cases: LixWO3 self-gate and channel, LFP gate and 

LixWO3 channel. The difference between self-gate and LFP gate is the OCV between gate and 

channel as well as the required programming voltage. To remove the residual solvent, the sample was 
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heated at 80 °C on a hot plate overnight. All the chemical preparation and operation steps were 

performed in an Ar-gas glovebox. 

 

XRD and AFM characterization: The Bruker D8 Discover instrument was used for XRD 

measurement. The WO3 film sample for XRD was annealed at 650 °C in air for 1 hour. The asylum 

MFP-3D was used for AFM measurement and a scan area of 1 µm × 1 µm was chosen for surface 

roughness analysis. 

 

Raman Spectroscopy: The Horiba Scientific system with a 633 nm laser (1800 gr mm-1 grating) was 

used for in-operando Raman measurements. The absorbed laser power was kept low (< 5 mW) to 

avoid excessive laser heating. 

 

Electrochemical Characterization: Electrochemical galvanostatic discharge measurement was 

carried out with an SP-200 Biologic workstation. A constant discharge/charge current of 0.1 nA was 

applied with the WO3 channel connected to the working electrode and the LFP reference gate 

connected to the counter/reference electrodes.  

 

Electrical Characterization and Pulse Measurement: Electrical characterization and pulse 

measurement were performed with Keithley Semiconductor Parameter Analyzer (4200-SCS) with 

pulse measuring units. During the test, the sample was transferred into the vacuum probe station 

(JANIS ST-500-UHT) and annealed at 350 K for ~2 hours to eliminate the residual moisture before 

the electrical measurements. For fast-speed pulse tests, an arbitrary function generator (Tektronix 

AFG3252C) and a mixed domain oscilloscope (Tektronix MDO 3034) with a high-speed current 

amplifier (FEMTO DHPCA-100) were used via a customized LABVIEW program. 
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SNN computation model: We model our LiWES device behavior using a linear rise (Equation 1) and 

a double decay exponential model (Equation 2), using equation (3) to define the rise and decay parts, 

respectively. 

𝐺𝑟𝑖𝑠𝑒(𝑡) = (𝐴1̂ + 𝐴2̂)
𝑡−𝑡𝑖

𝑤
+ η + 𝐺𝑜𝑓𝑓                                                                                        (1) 

𝐺𝑑𝑒𝑐𝑎𝑦(𝑡) = (𝐴1̂ +
𝐺𝑜𝑓𝑓

2
) 𝑒

−(
𝑡−𝑡𝑖

τ1̂
)

+ (𝐴2̂ +
𝐺𝑜𝑓𝑓

2
) 𝑒

−(
𝑡−𝑡𝑖

τ2̂
)

+  η                                                  (2) 

𝐺(t) = { 
𝐺𝑟𝑖𝑠𝑒(𝑡) 𝑤ℎ𝑒𝑛 (𝑡 − 𝑡𝑖) < 𝑤

𝐺𝑑𝑒𝑎𝑐𝑦(𝑡) 𝑤ℎ𝑒𝑛 (𝑡 − 𝑡𝑖) ≥ 𝑤
                                                                                     (3) 

 
The model parameters (𝐴1̂, 𝐴2̂, 𝜏1̂, 𝜏2̂) are drawn from Gaussian distributions fitted on experimental 

recordings obtained with a single pulse stimulus of a given amplitude and pulse width w. Additive 

Gaussian noise η with a mean of 0 is also added to simulate device and recording setup noise. 

In order to obtain the Gaussian distributions of the LiWES parameters (𝐴1̂, 𝐴2̂, 𝜏1̂, 𝜏2̂) and the 

standard deviation the additive noise, we fit the decay equation (Equation 2) on the device response 

to a single pulse (1 V, 200 μs) for 20 consecutive trials. Every trial produces a set of parameters (A1, 

A2, τ1, τ2, η), which can be then averaged to produce the Table 1. 

Table 1. Model parameters for a single pulse (1 V, 200 μs). Results of an averaged fit over 20 
consecutive recordings. All parameters are presented with their mean ± standard deviation except for 
η, which is the mean standard deviation of each individual fit.  
 

A1  τ1 
[ms] 

A2 τ2 
[ms] 

η 

0.57± 0.27 5 ± 2 0.5 ± 0.05 92 ± 18 0.11 
 
 When simulating the noise-free, IDEAL synapse, we use the same parameters presented above 

but set all standard deviations and additive Gaussian noise η to 0. Finally, the NO-STP synapse is 

modelled as a weighted Dirac pulse centered on the input spike timestamp ti (Equation 4): 

𝐺(𝑡) = ∑ 𝑘δ(𝑡 − 𝑡𝑖)𝑡𝑖
                                                                                                                 (4) 

where k is the synaptic weight chosen so that the peak response of the post-synaptic neuron to a single 

spike is the same to the IDEAL synapse. 
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Figure 1. Biologic synapse compared to our LiWES and the characterization of epitaxial WO3 film. 

a) Biologic neuron and synapse structure. b) Schematic of our LiWES and the inset shows the crystal 

structure of WO3 octahedrons. c) Optical image of the LiWES without electrolyte coating. d) X-Ray 

Diffraction of the epitaxial WO3 film on LaAlO3 (100) substrate. e) Atomic Force Microscopy image 

of the epitaxial WO3 film, showing the atomically flat surface with a root-mean-square (rms) 

roughness less than 1 nm. 
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Figure 2. Electrochemical characterization of WO3 film during Li intercalation/de-intercalation. a) 

The schematic of the electrochemical cell for Li intercalation and de-intercalation. b) Galvanostatic 

discharge (intercalation) of WO3 film using constant current 0.1 nA during in-operando Raman 

spectra, indicating the electrochemical potential of LixWO3 change relative to the standard potential 

of Li/Li+ electrodes (V vs. Li/Li+) as a function of Li concentration. c) The electrical channel 

conductance change as a function of the electrochemical potential of LixWO3 change during Li 

intercalation/de-intercalation. d) In-operando Raman spectra change of WO3 film during Li 

intercalation/de-intercalation. 
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Figure 3. Synaptic weight modulation for DNNs application using our low-voltage LiWES. a) 

Dynamic range and precision controlled by using different numbers of programming potentiation 

pulses (0.5 V, 10 ms) and depression pulses (-0.5 V, 10 ms) at Li0.4WO3 gate (the inset).  b) Synaptic 

weight change as a function of pulse amplitude. c) Synaptic weight change as a function of pulse 

width. d) Synaptic weight change as a function of pulse number. e) Endurance test using 20 cycles of 

50 potentiation pulses (0.5 V, 10 ms) and 50 depression pulses (-0.5 V, 10 ms) at Li0.4WO3 gate. f) 

Stability test for two different states: pristine WO3, Li0.4WO3 (initial conductance state for self-gate 

and channel), using reading voltage of 0.1 V at 80 °C.  
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Figure 4. STP, LTP and high-speed programming of our LiWES. a) Ionic gating effect for STP. b) 

Charge transfer doping effect for LTP, where the electrochemical reaction occurs as Li0.4WO3 + xLi+ 

+ xe- ↔ Li0.4+xWO3, which is a type of donor doping. c) STP using Li0.4WO3 gate and Li0.4WO3 

channel, controlled by different amplitudes of single pulse at Li0.4WO3 gate side. The inset shows the 

test setup. d) LTP using LFP gate and Li0.4WO3 channel, controlled by different amplitudes of single 

pulse at LFP gate. The inset shows the test setup. e) High-speed programming using different width 

of single pulse applied at Li0.4WO3 self-gate. f) Synaptic weight modulation via 20 cycles of 50 

potentiation pulses (1 V, 1 µs) and 50 depression pulses (- 1 V, 1 µs) applied at Li0.4WO3 self-gate.  
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Figure 5. Bio-realistic, time-dependent synaptic functions for SNNs. a) Two consecutive pulses (0.5 

V, 10 ms, ∆t = 50 ms) at Li0.4WO3 gate showing paired-pulse facilitation. b) Paired-pulse facilitation 

with exponential decay fitting. c) High-past temporal filtering characteristics of the our LiWES via 

applying 10 potentiation pulses (0.5 V, 10 ms) with different frequencies (1/∆t) at Li0.4WO3 gate. d) 

The frequency-dependent conductance gain. 
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Figure 6. SNNs computation based STP of our LiWES. a) The diagram of our network, a Poisson 

pre-synaptic (PRE) neuron connected to a Leaky  and  Integrate  and  Fire  post-synaptic (POST) 

neuron through  a  synapse (NO-STP,  our LiWES or  IDEAL synapse). b) An example of a  Poisson 

train spike eliciting activity in our LiWES and the consequently generated membrane potential. c-e) 

An example of the proposed spike-based SNNs computation model for classification performance 

benchmark. c) The PRE-Neuron produces multiple random spike trains, at the end of each one  we  

add  a  “sequence  end”  spike  occurring  always  at  the  same  timestamp(tend).   Each  spike  train  

represents  a  different  class  in  a  classification  problem. d) We  then  record  multiple  POST-

Neuron  responses (three responses per each spike train),  in order to better characterize the device 

noise and cycle-to-cycle variation, and finally we save the membrane value after the “sequence end 

spike” (at tread). e) Lastly, for each point we calculate the inter-class distance between  points  of  

different  spike  trains,  and  the  intra-class  distance  between points of the same spike train class.  
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These measures indicate how much each point position encodes for temporal information and how 

well the points are separable in a classification task. f,g) The classification result of the benchmarked 

synapses. f) The classification comparison for a 10 Hz Poisson PRE-Neuron and a fast POST-Neuron 

(τm= 10 ms). g) The classification comparison for the same 10 Hz Poisson PRE-Neuron but a much 

slower POST-Neuron (τm= 100 ms).  
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1. Repeatability of conductance change and control sample during the Li intercalation/de-

intercalation 

We prepared a new LiWES device (200 × 50 µm2 ) for exploring the repeatability of the conductance 

modulation during the Li intercalation/de-intercalation. During the test, a small DC reading voltage 

(0.1 V) was applied between the Source and Drain to continuously monitor the current/conductance 

level, while a gate dual-sweeping voltage ranging from 1.95 V to 2.75 V (V vs. Li/Li+) was applied 

to the LFP for Li intercalation/de-intercalation. Up to 4 cycles of test were performed (Figure S1a) 

and we observed a fairly consistent dynamic range, which demonstrates the good repeatability of the 

conductance modulation of our LiWES during the Li intercalation/de-intercalation. 

We fabricated a control sample without depositing WO3 film and only deposited the Au (100 

nm)/Ti (5 nm) metal contacts for Source and Drain. The reference gate LFP was placed about 2 mm 

away from the Source/Drain contacts and was manually coated with LFP slurry. PEO electrolyte was 

prepared[1] and drop-casted to cover both the Source/Drain contacts and LFP reference gate. The 

sample was heated at 80 °C on a hot plate to remove the residual solvent in Ar-gas glovebox. During 

the test, the sample was transferred into the vacuum probe station (JANIS ST-500-UHT) and annealed 

at 350 K for ~2 hours to eliminate the residual moisture before the electrical measurements. During 

the test, a small DC reading voltage (0.1 V) was applied between the Source and Drain to continuously 

monitor the current/conductance level, while a gate dual-sweeping voltage ranging from 1.95 V to 

2.82 V (V vs. Li/Li+) was applied to the LFP for Li intercalation/de-intercalation. As shown in Figure 

S1b, there is negligible current/conductance change during the gate dual-sweeping processes, which 

confirms that the 4 orders of magnitudes of conductance changes are due to the Li intercalation into 

WO3 films, rather than electrical conductance changes of the PEO electrolyte. A
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Figure S1. a) The electrical channel conductance change as a function of the electrochemical 

potential of LixWO3 change during 4 consecutive cycles of Li intercalation/de-intercalation, 

demonstrating good repeatability. b) ISD and GSD response as a function of the gate sweeping voltage 

(V vs. Li/Li+) when no WO3 film is deposited as the channel and only PEO electrolyte is coated to 

cover the LFP reference electrode and channel area. 

 

2. Endurance performance  

For long-time endurance, we adopted a similar test method as reported in previous work.[2] We cycled 

our LiWES using 1000 cycles of 50 potentiation (0.5 V, 10 ms) and 50 depression (-0.5 V, 10 ms) 

pulses with a dynamic range ~ 500 %, shown in Figure S2. After the 105 pulses, our LiWES device 

is still working and shows no obvious degradation. 

  

Figure S2. Long-time endurance performance of our LiWES. Endurance test for 105 pulses on our 

LiWES using 1000 cycles of 50 potentiation (0.5 V, 10 ms) and 50 depression (-0.5 V, 10 ms). No 

degradation of the device is found even after the 105 pulses. 
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3. Variation  

 

Pulse-to-pulse variation and device-to-device variation are very important parameters for evaluating 

the synaptic device performance for DNNs application.[3] We leveraged the data from Figure 3e and 

statistically analyzed the conductance change ΔGSD per pulse over the whole dynamic range window. 

As shown in Figure S3a, we find a relatively small variation ~11% of ∆GSD per pulse for potentiation 

pulses (red) and ~13% for depression pulses (blue). For device-to-device variation (Figure S3b), we 

fabricated four different devices of the same dimensions (400 × 200 µm2) in one single batch and 

applied a single potentiation pulse (0.5 V, 10 ms) to the LixWO3 gate while monitoring the channel 

conductance change using a small reading voltage (0.1 V) between LixWO3 Source/Drain. We find a 

small variation of 6.5 %, which demonstrates the good repeatability of our devices. 

 
Figure S3. Variation test. a) Cycle-to-cycle (pulse-to-pulse) variation, plotted using data from Figure 

3e. Small variation ~11% of ∆GSD per pulse is found for potentiation pulses (red) and ~13% variation 

of ∆GSD per pulse is found for depression pulses (blue). b) Small device-to-device variation ~6.5% of 

∆GSD per pulse using single potentiation pulse (0.5 V, 10 ms). 
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4. Long-term potentiation and depression via LFP gate 

 

We further explored the long-term potentiation and depression by switching to use the LFP gate. For 

synaptic weight modulation via multiple pulses, we applied 50 potentiation pulses (3 V, 10 ms) and 

50 depression pulses (- 1 V, 10 ms) applied at LFP gate as shown in Figure S4a. A dynamic range 

(~ 200 %) was achieved. During the test, a small DC reading voltage (0.1 V) was applied between 

the Source and Drain to continuously monitor the current/conductance level, while programming 

pulses were applied at LFP gate. Since the electrochemical OCV between LFP gate and Li0.4WO3 

channel is ~ 1.1 V, we need to use potentiation pulses (3 V) and depression pulses (-1 V) at LFP gate 

to achieve a base voltage level (1 V) that can offset the OCV difference in order to obtain a more 

linear and symmetric conductance response.  

For confirming the intermediate conductance level stability in Figure S4a, we applied 5 

potentiona pulses (3 V, 10 ms) at LFP gate (Figure S4b) and then used a small DC reading voltage 

(0.1 V) at 80 °C to monitor the channel conductance and observed small gradual stability degradation 

that is likely due to to the slow self-extraction of the pulse-injected Li ions under high temperature at 

80 °C. We also studied the long-time stability of the device after applying 5 depression pulses (-1 V, 

10 ms) (Figure S4c) and no obvious stability degradation was observed. 

  

Figure S4. a) Synaptic weight modulation via multiple cycles of 50 potentiation pulses (3 V, 10 ms) 

and 50 depression pulses (- 1 V, 10 ms) applied at LFP gate. b) Long-time stability test of the LiWES 

device after 5 potentiation pulses (3 V, 10 ms) were applied. There is small gradual stability 

degradation, likely due to the slow self-extraction of the pulse-injected  Li ions under high 
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temperature at 80 °C. c) Long-time stability test of the LiWES device after 5 depression pulses (- 1 

V, 10 ms) were applied. No obvious stability degradation was observed.   

 

5. Scaling performance 

 

We fabricated devices of different channel areas (from 1000 × 200 µm2 to 200 × 50 µm2) and applied 

single potentiation pulse at LixWO3 gate while monitoring the channel conductance change. We 

define the programming energy as E = I × V× t, which is enough to induce 10% increase of 

conductance change (ΔGSD/ G0). Since there is near-zero open-circuit voltage (OCV) between our 

LixWO3 gate and channel, V and t denote the programming voltage pulse amplitude[4] and 

programming voltage pulse width, respectively, while we define the current I as the average current 

between our LixWO3 gate and channel. As shown in Figure S5, our smallest device (200 × 50 µm2) 

demonstrates a very small programming energy (~ 2 pJ) and it shows a pseudo-linear scalability trend 

as previously reported.[5] 

  

Figure S5. Scaling performance of programming energy as a function of channel area. 
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