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Text S1. Data on floods, fatalities, and Houston flooding event. 

● According to the flooding fatalities reports from NOAA, on average about 50% of the 

fatalities over the past 20 years were classified as ‘in vehicle’ and associated with 

vehicles trying to cross flooded roadways; 27% were classified as ‘in water’ where an 

individual was swept away by flood waters (see Table S1).  

● Extreme floods (Figure S1c) are defined as events exceeding Flood Magnitude (FM) of 6, 

where FM is computed as the common logarithm of the product of flood duration, 

severity, and affected area [Brakenridge, 2016]. All fitted lines in Figure S1b-c are 

smoothed trends obtained through locally weighted polynomial regression (LOESS) 

[Cleveland and Devlin, 1988] using weighted linear least squares. 

● Inundation data set [FEMA, 2018] for the August 2017 flooding in Houston, Texas, was 

developed by the Federal Emergency Management Agency (FEMA) and includes 



maximum depth. This product is a post-event analysis of maximum inundation without 

reference to the actual time of occurrence. The depths were generated using interpolation 

of digital elevation model, high water marks, and modeling results.  

● River stage data were collected by the U.S. Geological Survey at gage 08074540. The 

maximum discharge estimated with high confidence for the case study watershed (i.e., 

the streamflow confirmed with in-situ measurements by) is ~2.8 m3/s (100 ft3/s). 

Streamflows above this value are extrapolated from the USGS calibrated stage-discharge 

relationship. We estimated uncertainties associated with this extrapolation using gage 

rating data and the “ISO/WMO” uncertainty assessment method described in Kiang et al. 

[2018] (see Figure S2). 

 

Text S2. Computational performance and scalability of flood models 

There are numerous ways to assess computational performance of a numerical model. To enable 

a cross-comparison with models of similar as well as reduced-order of complexity, we introduce 

Core Seconds per Simulated Day - Normalized (CSSD-N), 𝜂: 

𝜂 = 𝜏!"/𝑁,  (1) 

where 𝜏!" represents the total CPU seconds required for a 24-hour simulation period and N is the 

total number of computational cells used by the model. As the formulation suggests, 𝜂 is a 

performance metric normalizing simulation time per unit cell, which attempts to eliminate the 

effect of dimensionality of the modeled problem. For example, in the current study, there are 

271,215 grid cells in the case study domain, and ~52 hours are required to simulate a 24-hour 



flood event with the flood-resolving high-fidelity model (FHFM) run in a serial mode (Intel(R) 

Xeon(R) Gold 6140 CPU @ 2.30GHz). This yields a value of the CSSD-N for the FHFM:  

𝜂#$#% = 52 × 3600/271,215 = 0.69	[𝑠𝑒𝑐], or, more generally, the typical order of 𝜂#$#% is 

expected to be in the range 𝒪(10-2) - 𝒪(100) [Noh et al., 2019; Sanders and Schubert, 2019], even 

if the computational performance can be improved by using numerical solutions of higher 

efficiency (see Text S8 for a summary of details of the flood model implementation). Although 

inundation simulation is typically carried out at fairly small scales of a local watershed, as 

illustrated in the case study, this can translate to a large computational burden. This is because 

urban floods need to be simulated at high spatial resolution (several meters, consistent with 

“human action scale”, as specified in the narrative) and correspondingly smaller time steps are 

required for numerical stability. We assess the magnitude of 𝜂#$#% to be about 2 orders of 

magnitude higher than that estimated for global climate models of similar level of complexity 

(see below) that are rarely run in real-time.  

General Circulation Models (GCMs) or Earth System Models (ESMs) are increasingly used in 

projections of the evolution of the various earth system components, including the fluid 

dynamics of the atmosphere and oceans. While GCMs/ESMs are not the ultimate examples of 

computational complexity, they can provide a useful benchmark for expectations for flooding 

computations because of the similarity of governing equations and scalability on parallelized 

platforms as compared to flooding / hydrodynamic models. Their typical computational meshes 

representing the Earth system are in the order ~𝒪(106-108) cells – another feature that makes 

their application comparable to that of flood models that can reach the same number of 

computational cells for a mid-sized or heavily urbanized watershed. One key difference 

nonetheless is that GCMs are predominantly run offline a limited number of times (typically less 



than a few dozens of times) in large computational centers with dedicated allotment of CPU 

resources.  

For example, to evaluate computational performance of GCMs in the Coupled Model 

Intercomparison Project 6 Balaji et al. [2017] used Core Hours per Simulated Year (CHSY) 

defined as the product of run time for one simulated year and the number of cores allocated to 

the simulation. A typical number of grid cells in GCM simulation may vary from 𝒪 (106) to 

𝒪(108), requiring from 𝒪(102)  to 𝒪(105) core hours to finish a simulation of 1-year period. To 

provide a comparison with the simulation performance for an urban flooding problem, we 

convert CHSY metric to CSSD-N using the following transformation: 𝜂&'% = 𝐶𝐻𝑆𝑌/365 ∗

3600/𝑁&'%, where 𝑁&'% denotes the number of computational cells used in a GCM. Values of 

CHSY and 𝑁&'% reported in Balaji et al. [2017] lead to 𝜂&'%varying from 𝒪 (10-4) to 𝒪 (10-2), 

which are 2 orders of magnitude lower than 𝜂#$#%estimated above.  

It should be noted that GCM simulations are typically run offline or in some instances in weather 

forecasting applications of several day lead time [Alfieri et al., 2013]. This is usually done using 

parallel methods at high-performance computing (HPC) centers using 𝒪(102) - 𝒪(103) cores. 

While the computational performance of a high-fidelity flood model is somewhat inferior to that 

of a typical GCM, it is unlikely to expect that the problem can be resolved using a similar ‘brute-

force’ approach, i.e., by allocating many CPUs for flood simulation in real-time. Model 

parallelization can shorten the execution time, but there is evidence that simulation will still not 

be fast enough for real-time forecasting as the speedup gain is limited (see Figure S3; the 

scalability of the high-fidelity model used in this study is similar to others reported in 

Artichowicz and Gasiorowski [2019] and Neal et al. [2010]).  From a practical point of view, 



modeling every urban center subjected to flooding during an extreme event using a large number 

of cores would create a deficit of computational resources. Furthermore, no rigorous uncertainty 

quantification would be possible since this requires many more additional model simulations 

(dozens to thousands, depending on the number of considered uncertain inputs). 

 

Text S3. Surrogate modeling 

A general objective for a surrogate or reduced-order model (or emulator, response-surface 

model) is to simulate the behavior of a more computationally complex model. The reason for 

using a surrogate model is that it is computationally inexpensive compared to the original, 

complex model. The surrogate model can therefore be rigorously sampled for uncertainty 

propagation, parameter inference, or sensitivity analysis. However, this comes at a cost. If many 

uncertain inputs are taken, or there are high-order interactions between uncertain inputs in the 

computationally expensive model ℳ, then a significant effort will need to be expended to train 

the surrogate. Nonetheless, recent advancements have made constructing surrogates 

computationally efficient, enabling surrogate representation for models of increasing complexity. 

There are multiple frameworks that fall into the class of surrogate models, e.g., Gaussian process 

(GP) models [Kennedy and O'Hagan, 2000; Rasmussen and Williams, 2006], artificial neural 

networks [Ripley, 1996], support vector machines [Abe, 2010], and polynomial chaos expansions 

(PCEs) [Le Maître and Knio, 2010; Xiu and Karniadakis, 2002]. These different classes of 

surrogates were often developed in parallel fields over the last few decades, with GP models and 

PCEs mainly being used in statistics and engineering disciplines such as computational fluid 



dynamics, whereas neural networks and support vector machines were preferred in data-intensive 

applications. 

This study uses PCEs to construct surrogate models. This methodology is preferred because the 

construction of PCEs offers multiple benefits: it retains interpretability of uncertain inputs, 

follows the physical constraints of the underlying physical model, and enables global sensitivity 

analysis for quantities of interest. The methodology was developed by Wiener [1938], but 

remained largely untouched until recently as advances in computational power made the method 

feasible for addressing real-world engineering challenges [Marzouk et al., 2007; Najm, 2009; Xiu 

and Karniadakis, 2003; Xiu and Tartakovsky, 2004]. A limited comparison of the performance of 

PCE-based surrogates with those based on neural networks for a flooding problem is provided in 

Xu [2020].  

PCEs are briefly summarized here. Consider a deterministic mathematical model ℳ with 

uncertain inputs 𝑿 that is used to predict some output quantity of interest 𝑦 = ℳ(𝑿). If the 

inputs 𝑿 are considered to be uncertain, then it is of interest to determine the probability 

distribution of the outputs 𝑦. If the deterministic model ℳ is computationally expensive, the 

naïve random sampling of 𝑿 and estimating distribution or any statistics of 𝑦 is too 

computationally prohibitive due to the large number of model evaluations required. For efficient 

uncertainty representation and propagation with a wide class of random variables, one employs 

PCEs. Both inputs and outputs are written as polynomials of standard random variables. 

Typically, prior to seeing any observational data, one constrains the input parameters by expert-

informed ranges. Therefore, inputs 𝑿 are written as linear transformation of a standard uniform 

random variable U[-1,1]. In the following, we keep this linear transformation in mind, and 



assume 𝑿 is a 𝑑-dimensional vector of standard uniform random variables, without losing 

generality. 

The model’s outputs can then be approximated as an expansion with respect to orthogonal 

Legendre bases Ψ((𝑿) [Xiu and Karniadakis, 2002]: 

𝑦 ≈ ℳE (𝑿) = ∑ 𝑐(Ψ((𝑿))
(*+ .   (2) 

The goal is to obtain the right-hand side of the above equation, with 𝑐( being the deterministic 

coefficients. Once these coefficients are known, one can calculate the distribution of the model 

output 𝑦 as induced from the uncertain inputs 𝑿. The coefficients can be solved for using 

Gaussian quadrature, regression, or Bayesian approaches [Sargsyan et al., 2014]. Once known, 

the right side of the model can be evaluated against uncertain inputs 𝑿 to get the distribution of 

outputs 𝑦. Additionally, due to the orthogonality of Ψ((𝑿), one can estimate sensitivity indices 

with respect to input parameters (components of 𝑿), analytically. 

In general, surrogate model (ℳE (𝑿)) construction may be challenged by overfitting in cases 

when the model capacity is much larger than the number of available high-fidelity simulations. 

In the PCE context, this is manifested in situations when there is a large number of uncertain 

inputs and not enough training simulations due to the computational burden of the high-fidelity 

model. However, the simple parametric form of PCE makes it less prone to overfitting than other 

surrogate model methodologies. Furthermore, sparse learning approaches, such as Bayesian 

compressive sensing [Dwelle et al., 2019; Sargsyan et al., 2014], facilitate adaptive selection of 

only relevant polynomial terms in the PCE, effectively enforcing the Occam’s razor principle 

and further reducing the likelihood of overfitting. 



Errors of surrogate models are generally tracked with a hold-out set of high-fidelity model 

simulations. The associated variance is compared with variance contributions produced by 

parametric sensitivity analysis, leading to improved decisions to help direct the efforts in terms 

of improving predictive uncertainties. Such improvements range from focusing on certain model 

parameters, regions, and/or times to improving surrogate forms or having a larger number of 

high-fidelity training simulations. 

 

Text S4. Inference 

This section describes an important structural element of the proposed framework, which for the 

sake of simplicity has been omitted from the case study. However, it has been previously shown 

to be effective in merging uncertain data and models in the context of Bayesian inference aided 

by surrogate modeling [e.g., Sargsyan et al., 2015; Dwelle et al., 2019; Sargsyan et al., 2019]. 

Specifically, ‘inverse modeling’ is a class of problems for which the goal is to determine the 

“true” values of model inputs or parameters given observational data and a model [Jaynes, 

2003]. In addition to parameter inference (i.e., in which case ‘parameter’ is understood in a 

typical geophysical context – an uncertain property of the media considered, or an uncertain 

constant in a closure scheme, such as hydraulic conductivity, resistance coefficient, etc.), one 

may perform inference on other model inputs that describe boundary or initial conditions of the 

system such as configuration of channel bathymetry or average initial soil moisture conditions. 

That is, ‘inference’ can encapsulate a broader range of possible scenarios than parameter 

estimation.  The term “true” above is in quotes because while model inputs and parameters can 

carry physical meaning, they are subject to observational inaccuracies, scale of their 



measurement and relevant process representation in the model, and overall model assumptions 

that affect their estimation. They thus represent “effective” actual values for a studied domain.  

Conceptually, inference carried out with a high-fidelity model (aided with trained surrogates as 

described below) has the additional benefit of yielding results informative for studies and 

analyses with other models or another version of the same model. Consider two formulations (or 

versions) of high-fidelity models, A and B. If one performs an inverse modeling for a parameter 

representing surface roughness coefficient using model A, the posterior value of this coefficient 

will not necessarily fit well the observed data when used in model B. Nonetheless, obtaining the 

value for model A would be valuable as it provides more information about the parameter/input 

and therefore the watershed of interest, while also adjusting model A for future studies. 

The inference part of the uncertainty quantification workflow is shown in Figure S4. Given a 

suite of results from a model ℳ and its constructed polynomial surrogate ℳE , one can infer 

which values of uncertain inputs 𝑿 are most likely to provide results that match an observed 

quantity. The advantage of this approach is that ℳE  enables very efficient inverse analysis 

[Marzouk and Xiu, 2009]. Surrogate models with dimension reduction as presented here provide 

an approach enabling faster computation, inversion, and the ability to solve the inverse problem 

on a larger set of uncertain model parameters and inputs. 

Specifically, consider 𝒚H to be a vector of observed data and 𝑿 be the vector of uncertain model 

inputs. We also assume that the model gives an adequate approximation of the observed quantity. 

One can use Bayes’ rule to compute the posterior distribution of input values conditional on the 

observed data [Tarantola, 2005]: 



𝑝(𝑿	|	𝒚H) ∝ ℒ𝒟(𝒚H	|	𝑿)	𝑝(𝑿), 

where 𝑝(𝑿) is the prior distribution, ℒ𝒟 is the likelihood function which represents the 

probability of obtaining the data given the set of inputs, essentially measuring the goodness-of-fit 

between model and data, while 𝑝(𝑿	|	𝒚M) is the posterior distribution for 𝑿, representing the 

updated probability density of 𝑿, after taking the observed data into account. 

To formulate a likelihood function, one must represent the discrepancy between the model and 

observations. Assuming that the difference between these are independent and identically 

distributed random variables with some marginal density 𝑝-, the likelihood function can be 

written as: 

ℒ𝒟(𝒚M	|	𝑿) 	= 	∏ 𝑝.(𝑦O/ 	− 	𝓜𝒅(𝑿))"
/*1 , 

where there are 𝐷 conditions (e.g., the time snapshots of measured streamflow) that are being 

used for inference. Typically, the marginal discrepancy random variable 𝜂 is assumed to be 

Gaussian, essentially corresponding to the probabilistic counterpart of a least-square fit. 

 

Text S5. Dimensional reduction of quantities of interest  

There can be many quantities of interest (QoIs) in flood modeling, including flood depths, flow 

velocities, pressures at specific locations in the watershed of interest and at certain times. Given 

the spatiotemporal nature of these quantities, there may be strong correlations among QoIs in 

space or time. In this case, it can be beneficial to reduce the dimensionality of the number of 



QoIs to estimate. This can be done by considering the output space as a random field and using 

the Karhunen-Loève (KL) decomposition [Karhunen, 1946]: 

ℳ(𝑥; 	𝑿) 	≈ 	ℳU (𝑥) + ∑ 𝜉/(𝑿)	X𝜇/𝜑/(𝒙)"
/*1 ,  (3) 

where ℳ(𝑥;𝑿) provides the output from the model ℳ given design conditions 𝑥 (location, 

time, model output) and uncertain parameters 𝑿. ℳU (𝑥) is the mean of the random field, and the 

remainder is the decomposition of the variability in the random field, where ξ/(𝑿) are 

Karhunen-Loève coefficients, and Xµ2𝜑/(x) are KL modes scaled by the square root of the 

eigenvalues of the covariance matrix of the random field. 

The benefit of this approach is that it reduces the number of surrogates (i.e., the initial number of 

QoIs) that need to be constructed to 𝐷	KL coefficients. If we take the number of design 

conditions to be 𝑁3, then often times 𝐷 ≪ 𝑁3, and this approach has the opportunity to provide 

appreciable computational efficiency (see Text S10 for more details). As the dimension of the 

spatial domain grows, this type of decomposition becomes increasingly valuable in improving 

computational efficiency, allowing for modelers to have more flexibility in the types of model 

outputs that can be investigated in real-time. 

 

Text S6.  Rainfall and its uncertainty 

Both measuring and forecasting rainfall for urban flood applications is a major challenge, due to 

the need for both high accuracy and high spatial and temporal resolution. Numerical weather 

prediction (NWP) models in particular struggle to adequately forecast extreme rainfall rates at 



the correct location and time. Different observations and dataset characteristics can result in 

widely diverging estimates of rainfall for individual extreme storms. We illustrate this issue in 

Figure S5, which shows rainfall estimates for the period of analysis (0-18 UTC on 27 August 

2017) from five sources: 1) a gage-corrected radar rainfall product (5-minute, 500 m x 500 m 

resolution; see details below); 2)  Integrated Multi-satellitE Retrievals for GPM from NASA 

(IMERG 30-minute, 0.1o resolution, Huffman et al. [2015]); 3) High-Resolution Rapid Refresh 

forecast product (HRRR;  1-hour, 3000 m resolution forecast issued as at the event onset; see 

Benjamin et al. [2016] for details); 4) rain gage time series from Weather Underground (Station 

ID: KTXHOUST1941, it is the nearest station to the case study; and 5) the Regional Spectral 

Model [Nunes, 2016]; 12 km x 12 km, 3-hour outputs, assimilating the 8-km NOAA’s Climate 

Prediction Center Morphing precipitation [Joyce et al., 2004], CMORPH, interpolated to a 12-

km resolution grid, with initial and boundary conditions from the NCEP-DOE (National Centers 

for Environmental Prediction-Department of Energy) R2 global reanalysis, with integration 

starting time at 0 UTC on 15 August 2017. The differences among the products highlights the 

inherent issue of precipitation uncertainty. Figure S6 illustrates the instantaneous spatial rainfall 

distribution in the watershed from four precipitation sources, highlighting the considerable 

variability among sources, which will translate to substantial differences in the timing, extent, 

and magnitude of forecasted floods. 

The gage-corrected radar rainfall dataset used in the study was generated based on a conversion 

of specific differential phase to rainfall rate, using dual-polarimetric information collected from 

the NEXRAD (Next-Generation Radar) KHGX installation in Houston, Texas. Five-minute 

accumulations from Harris County Flood Control District rain gage data were used to perform 

mean-field bias correction of the radar data.  



Text S7.  Mesh generation 

The flowchart in Figure S7 outlines the process of mesh generation that accounts for the 

complexity of geometry of the urban environment. Specifically, ArcGIS Hydrology Package 

(Version 10.5.1. Redlands, CA: Environmental Systems Research Institute, Inc., 2019) 

hydrologic analysis tools are used to delineate the watershed area (46.9 km2) using the 3 m 

resolution Digital Elevation Model (DEM) developed by the USGS. ArcGIS tool “Raster2TIN” 

is then used to develop Triangulated Irregular Network (TIN) from the delineated grid-based 

watershed. TIN is a representation of a surface with triangular facets that can capture terrain 

geometrical features with less number of nodes, as compared to the original raster-based 

description of the watershed.  

To account for the effects of buildings on flood wave propagation, we next merge building 

footprint data as a set of irregularly spaced TIN nodes. As the original building footprint has a 

significant number of small-scale features, these are first simplified with the ArcGIS tool 

“Simplify Polygon”. Figure S8  illustrates a small region to showcase this procedure. There are 

two major reasons for simplifying the building footprints: (1) to avoid the occurrence of very 

small triangles, targeting the minimum characteristic dimension of ~𝒪(100) m with an area < 0.1 

km2, as the smallest area of a computational cell constrains the time step in the finite-volume 

method implemented in OFM to simulate overland flow; and (2) to decrease the number of cells 

in the overall mesh representing the watershed, so as to reduce the computational burden of 

numerical simulation.   

Another necessary element of mesh generation is the specification of channel and floodplain 

areas. Conventionally, a stream network can be extracted from the DEM based on flow 



accumulation analysis. In a heavily urbanized region, the streamlines become discontinuous 

where bridges and roadways cross river channels. In order to guarantee the connectivity of the 

stream network, we incorporate additional stream vertices discretized from the continuous 

streamlines to the set of TIN nodes from the terrain and building footprint analysis. Finally, 

Delaunay triangulation [Okabe et al., 2009] is carried out using the developed node set. 

In summary, the TIN for the case study watershed results in 136,423 mesh nodes and 271,215 

triangle cells. There are about 20,000 buildings included in the mesh, which take up 

approximately 30% of the total watershed area. All of the land cover is developed area: open 

space (13%), low intensity (32%), medium intensity (35%), and high intensity (21%). The land 

use information was downloaded from National Land Cover Database 2016.  

Text S8.   High-fidelity flood model 

A coupled model integrating hydrologic, hydraulic, and morphologic processes, previously 

verified, and applied to real watersheds  [Kim et al., 2013; Kim et al., 2012] was used in this 

research as the high-fidelity flood model ℳ (Text S3). The hydrology module, the TIN - Based 

Real Time Integrated Basin Simulator (tRIBS), can simulate a range of hydrological processes 

such as canopy interception, evapotranspiration from bare soil and canopy, vertical and lateral 

moisture fluxes in the subsurface, and various runoff generation mechanisms (i.e., saturation 

excess, infiltration excess, perched subsurface stormflow, and groundwater exfiltration), given 

the spatial inputs of meteorological data, topography, landuse, and soil type [Ivanov et al., 2008; 

Ivanov et al., 2004]. Accounting for these hydrologic processes offers water sources/sinks to a 

model simulating the hydrodynamics of overland flow – Overland Flow Model, OFM [Kim et 



al., 2012], using physically modeled wave speeds within the domain of arbitrary geometric 

configuration.  

In the case study considered, the computed flow states did not influence runoff generation, 

implying that water flowing on surface is not allowed to re-infiltrate. Furthermore, it was 

assumed that no water loss took place due to infiltration or stormwater management 

infrastructure. This assumption is justified for the August 27, 2017 event, which followed a 

series of antecedent storms that likely filled the soil water and stormwater storage capacities very 

quickly after the time of event onset. The inclusion of both types of rainfall losses in the high-

fidelity model tRIBS-OFM is possible and should be used in assessments of less extreme events. 

It would however result in an additional computational demand, further emphasizing the need for 

the developed flood-forecasting framework. 

The principal elements of the hydrodynamic model OFM are outlined below. 

The OFM model solves the 2D Saint-Venant equations (i.e., the shallow water equations), which 

are derived by depth-integrating the Navier-Stokes equations [Liggett, 1968]. The governing 

equations consist of a continuity equation and two momentum equations for two perpendicular 

horizontal directions: 

,   (4) 

where  is vector of flow variables,  and  are the flux terms in x and y direction, 

respectively, and  is the source vector [Kim et al., 2012]: 
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where  represents flow depth,  are the flow velocities in x-axis and y-axis direction  in the 

Cartesian system of coordinates,  is the gravitational acceleration constant, 𝑖 is the net runoff 

production rate,  is the bed elevation, and 𝐶" = 𝑔𝑛4ℎ51/7 is the surface drag coefficient, 

where 𝑛 is Manning roughness coefficient (assumed to be spatially uniform at value of 0.015 in 

the case study watershed because the sensitivity to rainfall input overrides the sensitivity to 

roughness). Detailed descriptions of the numerical solution with the finite-volume method can be 

found in Kim et al. [2012].  

The solution is valid for most kinds of overland flow conditions. For numerical stability, in the 

time-explicit finite volume method the time step is constrained by the mesh’s smallest cell area, 

which introduces another challenge in the forecast with the overland model. For example, the 

typical time step is ~𝒪(10-1) sec for a high-resolution application (e.g., cell area is ~𝒪(101) m). 

Time-implicit schemes for solving shallow water equations do not impose hard constraints on 

time stepping and require less solution steps, offering computational savings [Fernández-Pato et 

al., 2018]. The overall computational need however depends on the number of iterations within 

each time step and for a transient flow situation, such as flood wave motion, the demand is 
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higher. This limits the possible gains from an implementation of this numerical scheme to less 

than one order of magnitude. 

 

Text S9.  Rainfall input for pretraining and forecasting 

The approach requires pretraining simulations using the high-fidelity flood-resolving hydrologic 

and hydrodynamic model of Kim et al. [2012] combined with time series of input rainfall. 

Outputs from these high-fidelity simulations are used to train reduced-order models that will 

‘learn’ the underlying physics (see Text S3). As the specifics of a rainfall event to be forecasted 

in future cannot be known during the pretraining phase (the proposed framework postulates that 

it needs to be during a pre-storm period), it must be determined what kind of rainfall input should 

be supplied to the high-fidelity model. While these inputs could take the form of previous 

observed storms or hypothetical “synthetic” events, a more powerful demonstration of the 

efficacy of the proposed approach is if pretraining simulations are fully “ignorant” to 

circumstances of a flooding event for which a forecast would have to be issued. As a result, we 

developed an ensemble set of 18-hour long rainfall inputs, each represented as a series of 

uncorrelated pulses randomly drawn from the Uniform distribution between 0 and 50 [mm/hour]. 

These inputs were spatially uniform, chosen due to the fairly modest size of the study watershed. 

The addition of realistic spatiotemporal evolution of storm structure using stochastic 

representations of precipitation process [Fatichi et al., 2013; Peleg et al., 2017] is a logical 

extension of the framework. It would provide rainfall series for pretraining simulations that have 

a structure similar to observations. 



After having completed the pretraining and in order to emulate a real-time operational 

application of the framework, we use an 18-hour of the High Resolution Rapid Refresh (HRRR) 

product provided by NOAA at the event onset. The quantitative precipitation forecast product 

one of many precipitation estimates that NOAA released to water resources and forecasting 

professionals prior to or following this forecast. The HRRR rainfall forecast scenario was used to 

construct a Gaussian process (GP) stochastic model [Rasmussen and Williams, 2006] of the 

event precipitation process. The GP model was parameterized as follows:  

𝑓(𝑡) 	∼ 	𝐺𝑃(𝑓(𝑡)	|	𝑚(𝑡), 𝑘(𝑡, 𝑡8),  (7) 

where 𝑓(𝑡) represents precipitation intensity at hour 𝑡, 𝑚(𝑡) is the mean precipitation intensity at 

hour 𝑡, and 𝑘(𝑡, 𝑡8) is the covariance function between time 𝑡 and 𝑡8. In this study, squared-

exponential kernel was used to represent similarity of precipitation intensity between times 𝑡 and 

𝑡8, i.e., how close the corresponding precipitation rates are 

𝑘(𝑡, 𝑡8) 	= 	𝜎4𝑒𝑥𝑝(−(𝑡 − 𝑡8)4/	2𝑙4),  (8) 

where 𝜎4 is the variance, and 𝑙 is the length scale. Specifically, we used 𝜎4 = 467 and 𝑙 = 0.74 

when fitting Gaussian Process to the HRRR precipitation forecast.  

By sampling from the GM model, a set of rainfall realizations was generated for the forecast 

period and used as inputs into the surrogate models for the real-time flood forecasting and 

uncertainty quantification demonstrations. 

 

 



Text S10.  Computational efficiency of surrogate models 

Due to its polynomial form, the reduced-order surrogate model is much more computationally 

efficient than the high-fidelity model. About 2.84 CPU seconds (Intel(R) Xeon(R) Gold 6140 

CPU @ 2.30GHz) was sufficient to run all of the 127,026 constructed surrogate models (i.e., 

7,057 locations ×18 hours). Thus, Core Seconds per Simulated Day - Normalized (CSSD-N, 

Text S2) metric for polynomial chaos surrogate (PCS) can be computed as 𝜂9'! =
4.;<
=>+=

× 4<
1;
=

0.0005, or 𝒪(10-4) CPU seconds to carry out 24-hour simulation for a single location (i.e., mesh 

node of the high-fidelity model). This translates to a computation time reduction of 2-4 orders of 

magnitude compared with the high-fidelity flood model (the corresponding range for 𝜂#$#% is 

assessed as 𝒪(10-2) - 𝒪(100)), which is sufficiently fast for forward runs in real-time flood-

forecasting.  

The number of simulations needed to carry out uncertainty analysis is still substantial, however: 

at the least 127,026 ×𝒪(101) → 𝒪(106) of basic algebraic operations are embedded in polynomial 

expansion series per single forward run. They may pose computational challenges, especially 

when these are run serially on a typical desktop or laptop. For example, carrying out 10,000 

simulations for each QoI to quantify the uncertainty stemming from precipitation input can take 

about eight hours; even more so, if the number of selected QoIs is orders of magnitude higher. 

However, if the dimensionality of QoIs can be reduced significantly because of their high spatial 

correlation (Text S5 “Dimensional reduction of quantities of interest”), there is no need to 

formally carry out uncertainty quantification for all QoIs. In this study, for example, using the 

first three dominant eigenvalues retains 99% of the original training sets for flooding depth at a 

given time instant (Figure S9). Therefore, the use of KL decomposition reduces the number of 



surrogates that needed to be constructed from 127,026 to 54. This is achieved because a 

surrogate model was constructed at each 7,057 locations for each of 18 hours; by using the KL 

decomposition flooding depth spatial field can be reduced by using three KL modes for each of 

the 18 hours (7,057 × 18 vs. 3 × 18). As a result, this increases the numerical efficiency by 

additional three orders of magnitude: 𝜂9'!~ 𝒪(10-7). This guarantees the efficiency of uncertainty 

quantification using the proposed framework relying on surrogate models. As the dimension of 

the spatial domain grows, this type of decomposition becomes increasingly valuable in 

improving computational efficiency, allowing for modelers to have more flexibility in the types 

of model outputs that can be investigated in real-time. 

We note that the additional computational effort of surrogate training based on outputs of high-

fidelity model represents only a small fraction of the time required by the high-fidelity model 

(i.e., 52 hours in Text S2). Using the Bayesian regression [Sargsyan et al., 2014], it takes 2.03 

hours to construct all of the 127,026 surrogates, or ~0.0575 or 𝒪(10-2) CPU seconds per 

surrogate. The use of KL decomposition (see the paragraph above) reduces the overall 

computational effort further: it takes 414 seconds to carry out the KL decomposition analysis to 

reduce the number of surrogates that needed to be constructed from 127,026 to 54; the 

subsequent Bayesian regression to estimate PCE coefficients takes 37.8 seconds. This results in 

[<1<@7=.;]
14=,+4C

= 0.00356 or 𝒪(10-3) CPU seconds per surrogate (note that we assume that 54 

represent all 127,062). As illustrated above, this permits the increase of the overall numerical 

efficiency of surrogates by three orders of magnitude (i.e., 𝜂9'!~ 𝒪(10-7)).   

The reallocation of intense simulations with the high-fidelity model from the flooding periods to 

the time interval between them effectively replaces the strain of computational burden in real-



time with a data storage problem. However, the actual amount of storage is likely to remain 

modest: in the case study considered, 3 gigabytes of outputs from the high-fidelity model are 

used to train 127,026 surrogate models, and their multi-index arrays total in volume of ~1.3 

gigabytes. Normalizing the latter value by the total number of QoIs yields 0.01 megabytes per 

QoI, a trivial magnitude, given the low cost of modern storage systems. Since the QoI 

dimensionality can be further reduced using the Karhunen- Loève decomposition, the storage of 

multi-index arrays representing surrogate models is only ~0.5 megabytes.  

 

  



Table S1: U.S. flood-related fatalities from 1995 to 2017. Data were downloaded from 

https://www1.ncdc.noaa.gov/pub/data/swdi/stormevents/csvfiles/. Some of the summaries are no 

longer accessible at the NOAA website but the authors have the entire record used to develop 

Table S1 available. 

Year Total In Vehicle In Water Flash Flood River Flood 

1995 80 39 35 60 20 

1996 131 79 31 94 37 

1997 118 46 45 86 32 

1998 136 75 25 118 18 

1999 68 26 29 60 8 

2000 38 24 7 30 8 

2001 48 24 12 35 13 

2002 49 28 11 38 11 

2003 86 39 21 67 18 

2004 82 45 25 58 24 

2005 43 18 19 28 15 

2006 76 32 34 59 17 

2007 87 50 21 70 17 

2008 82 39 23 58 24 

2009 56 33 10 33 23 

2010 103 45 22 67 36 

2011 113 68 26 69 44 

2012 29 10 11 19 10 

2013 82 37 17 60 22 

2014 40 16 14 29 9 

2015 187 112 24 129 45 

2016 126 58 34 86 40 

2017 136 40 52 N/A N/A 

Average 86.8 42.7 23.8 61.5 22.3 

Percentage 100% 49.3% 27.5% 70.9% 25.7% 

 



 
(a) 

 
(b) (c) 

  
  
Figure S1. Floods and fatalities. (a) Count of extreme floods for 1985-2019 on a 7.5o´7.5o 

latitude - longitude grid. (b) Annual fatalities from flooding globally (red) and in the U.S. 

(black). (c) The total number of annual extreme floods globally (black) and the ratio of extreme 

floods to all floods (red). The data sources and the definition of extreme floods are described in 

Text S1. 

 
 
 
 
 
 
 



 
 
 
Figure S2. Stage-discharge relationship and streamflow uncertainty. River stage – discharge 

data (i.e., the rating curve) collected by the U.S. Geological Survey at gage 08074540. The red 

dashed line indicates the 5%-95% regional of uncertainty associated with the stage-discharge 

relationship estimated using the “ISO/WMO” uncertainty assessment method [Kiang et al., 

2018]. 

 
 
 

 
 
Figure S3. Computational performance of parallelized Overland Flow Model (OFM). The 

model is by Kim et al. (2012). (a) Speedup factor as a function of number of CPU cores, with the 

dashed line illustrating a perfect scalability. The factor is defined as the ratio of model execution 

time in serial mode to that in parallelized mode. (b) OFM simulation time for 24-hour event 

using the case study watershed. 



 
 
Figure S4.  Workflow of the inference portion of the uncertainty quantification workflow. 

Steps 3a and 3b refer to the data flows present in Figure 1 of the main narrative, where 3a is the 

flow of outputs of QoIs from the surrogate model into a likelihood function to compare the value 

from the surrogate and observed data. This inference is used to obtain posterior distribution for 

𝑿, trained on the observational data 𝒚H. This posterior can then be sent back to the surrogate in 3b 

in order to reduce the uncertainty in the inputs that are evaluated through the surrogate model. 

 
 

 
 
Figure S5. Cumulative, area-averaged rainfall for the case study watershed on August 27, 

2017. Data (time axis uses the Greenwich Mean Time): the high-resolution gage-adjusted radar 

product (“radar”, black diamonds), NASA IMERG product (“IMERG”, blue squares), NOAA 

High Resolution Rapid Refresh (“HRRR”, red circles), Weather Underground (“WU”, green 

circles) and simulation with the Regional Spectral Model (“RSM”, magenta triangles).   



 
 

 
 
Figure S6. Spatial distribution of rainfall. A snapshot is at 4:30 UTC on August 27 2017 from 

(a) gage-adjusted radar rainfall product, (b) NASA IMERG satellite-based product, (c) NOAA 

HRRR forecast product, and (d) RSM simulation. 

 

 

 
 
Figure S7. Flowchart for mesh generation process for an urban domain. Rectangles 

represent elements of the mesh at various stages; pointed rectangles represent a process / tool by 

which the various mesh elements are modified. 

 
 



 

 
 
 
Figure S8. An example of building footprint layout simplification. Subplot (a) illustrates the 

original building footprint layout (the inset shows the location of the region within the watershed 

area as the green box), and subplot (b) shows the simplified building shapes. 

 
 
 

 
 
Figure S9. An illustration of dimensionality reduction for simulated inundation depth. The 

first three eigenvalues from the training sets of Region 2 at all the 18 hours. Specifically, the 

eigenvalues are computed from 4,476 × 1,000 matrix, where 4,476 is the number of cells in the 

case study watershed subareas and 1,000 is the number of training simulations. 
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