
Received: 6 April 2021 Revised: 20 July 2021 Accepted: 25 July 2021

DOI: 10.1002/rnc.5726

R E S E A R C H A R T I C L E

Iterative learning control with discrete-time nonlinear
nonminimum phase models via stable inversion

Isaac A. Spiegel1 Nard Strijbosch2 Tom Oomen2 Kira Barton1

1Mechanical Engineering Department,
University of Michigan, Ann Arbor,
Michigan, USA
2Mechanical Engineering Department,
Eindhoven University of Technology,
North Brabant, The Netherlands

Correspondence
Isaac A. Spiegel, Mechanical Engineering
Department, University of Michigan, Ann
Arbor, MI, USA.
Email: ispiegel@umich.edu

Funding information
National Institute of Standards and
Technology, Grant/Award Number:
70NANB20H137; National Science
Foundation, Grant/Award Number:
CAREER Award 1351469; Nederlandse
Organisatie voor Wetenschappelijk
Onderzoek, Grant/Award Number:
Research programme VIDI project 15698

Abstract
Output reference tracking can be improved by iteratively learning from past
data to inform the design of feedforward control inputs for subsequent track-
ing attempts. This process is called iterative learning control (ILC). This article
develops a method to apply ILC to systems with nonlinear discrete-time dynam-
ical models with unstable inverses (i.e., discrete-time nonlinear nonminimum
phase models). This class of systems includes piezoactuators, electric power con-
verters, and manipulators with flexible links, which may be found in nanoposi-
tioning stages, rolling mills, and robotic arms, respectively. As these devices may
be required to execute fine transient reference tracking tasks repetitively in con-
texts such as manufacturing, they may benefit from ILC. Specifically, this article
facilitates ILC of such systems by presenting a new ILC synthesis framework
that allows combination of the principles of Newton’s root finding algorithm
with stable inversion, a technique for generating stable trajectories from unsta-
ble models. The new framework, called invert-linearize ILC (ILILC), is validated
in simulation on a cart-and-pendulum system with model error, process noise,
and measurement noise. Where preexisting Newton-based ILC diverges, ILILC
with stable inversion converges, and does so in less than one third the number of
trials necessary for the convergence of a gradient-descent-based ILC technique
used as a benchmark.

K E Y W O R D S

iterative learning control, Newton’s method, nonminimum phase, stable inversion

1 INTRODUCTION

Iterative learning control (ILC) is the process of learning an optimal feedforward control input over multiple trials of a
repetitive process based on feedback measurements from previous trials. Compared to real-time-feedback and/or feed-
forward control techniques, many case studies of ILC have shown a substantial reduction in tracking error. Relevant
applications include robot-assisted stroke rehabilitation,1 high speed train control,2 laser additive manufacturing,3 and
vehicle-mounted manipulators,4 all of which use nonlinear models. In fact, while the majority of ILC literature focuses on
linear systems, the prevalence of nonlinear dynamics in real-world systems has motivated the development of numerous
ILC theories for discrete-time nonlinear models.5-10

Abbreviations: ILC, iterative learning control; ILILC, invert-linearize iterative learning control; NILC, Newton iterative learning control.

Int J Robust Nonlinear Control. 2021;31:7985–8006. wileyonlinelibrary.com/journal/rnc © 2021 John Wiley & Sons Ltd. 7985

https://orcid.org/0000-0002-4415-9190

7986 SPIEGEL et al.

In addition to the state nonlinearities most commonly treated by nonlinear systems literature, many real-life systems
exhibit dynamics well represented by models with at least one of the following properties: (P1) relative degree ≥ 1, (P2)
input nonlinearities, (P3) time-variation, and (P4) instability of the model inverse. For example, (P1) may be exhibited in
the position control of myriad systems including piezoactuators,11 motors,12 robotic manipulators,13 and vehicles.14 (P2)
may be exhibited by piezoactuators,11 electric power converters,15 wind energy systems,16 magnetic levitation systems,17

and flexible-link manipulators.13 (P3) may be exhibited by any feedforward-input-to-output model of systems using both
feedforward and feedback control, as is often done for robotic manipulation.18 Finally, and of primary concern in this
work, (P4) may be exhibited by piezoactuators,19 electric power converters,15 wind energy systems,16 DC motor and
tachometer assemblies,20 and flexible-link manipulators.13 However, published discrete-time-nonlinear-model-based ILC
theories exclude at least one of properties (P1)–(P4) from consideration. While the prior art makes important contribu-
tions such as foundational nonlinear ILC theory,5-7 relaxation of process repetitiveness assumptions,8 robustness to packet
dropout in measurement and controller signals,9 and integration of ILC with adaptive control,10 these studies’ analyses
are limited to specific system structures. As a consequence, (P1) is not addressed by References 6,7,9, (P2) is not addressed
by References 5–7,9,10, (P3) is not addressed by References 5,8, and (P4) is not addressed by References 5–9*.

The fact that many of the above example systems exhibit multiple properties and many of the above ILC theories
exclude multiple properties from consideration illustrates that it can be challenging to find a model-based ILC synthe-
sis scheme appropriate for many real-world applications. Indeed, flexible-link manipulators exhibit all four properties,
and they are relevant to the fast and cost-effective automation of pick-and-place and assembly tasks as well as to the con-
trol of large structures such as cranes.21(ch. 6) Such application spaces would benefit from having a versatile ILC scheme
compatible with (P1)–(P4).

Additionally, while ILC seeks to converge to a satisfactorily low error, this learning is not immediate, and trials exe-
cuted before the satisfactory error threshold is passed may be seen as costly failures from the perspective of the process
specification. It is thus desirable to develop ILC schemes that converge as quickly as possible.

One ILC scheme that comes close to meeting these needs for versatility and speed is that of Avrachenkov,22 called
Newton ILC (NILC) here. NILC is the application of Newton’s root finding algorithm to a complete finite time series (as
opposed to individual points in time). NILC’s synthesis procedure and convergence analysis are unusually broad in that
they admit discrete-time nonlinear models with properties (P1)–(P3).22,23 Additionally, Newton’s method has been shown
to deliver faster convergence in ILC than schemes such as P-type ILC.24(ch. 5), upon which much of the relevant prior art
on the ILC of discrete-time nonlinear systems is founded.5–9 However, this work demonstrates that when synthesized
from models with unstable inverses, that is, nonminimum phase models, NILC typically generates control signals that
diverge toward very large magnitudes. In other words NILC may be incompatible with models exhibiting (P4). This article
presents a new ILC framework inheriting the benefits of NILC while surmounting this shortcoming.

For linear models with unstable inverses, a common way to obtain feedforward control signals is to systematically
synthesize approximate dynamical models with stable inverses by individually changing the model zeros and poles, for
example, the work of Tomizuka.25 However, it is difficult to prescribe analogous systematic approximation methods for
nonlinear models because the poles and zeros do not necessarily manifest as distinct binomial factors in the system
transfer function that can be individually inverted or modified.

An alternative is to harness the fact that a scalar difference equation that is unstable when evolved forward in time
from an initial condition is stable if evolved backward in time from a terminal condition. If the stable and unstable modes
of a system are decoupled and evolved in opposite directions, a stable total trajectory can be obtained. This process is
called stable inversion. For linear systems on a bi-infinite timeline, with boundary conditions at time ±∞, stable inver-
sion gives an exact solution to the output tracking problem posed by the unstable inverse model. In practice on a finite
timeline, a high-fidelity approximation is obtained by ensuring the reference is designed with sufficient room for pre- and
post-actuation, that is, with a “flat” beginning and end. However, unlike ILC, stable inversion alone cannot account for
model error. To address this, Zundert et al.26 details stable inversion and presents an ILC scheme for linear systems that
incorporates a process similar to stable inversion.

Extension of stable inversion to nonlinear models involves additional complexities. Some of these challenges, for
example the difficulty of completely decoupling the stable and unstable parts of a nonlinear system, have been addressed
by works such as those of Devasia et al.27,28 for continuous-time systems and Zeng et al.29 for discrete-time systems. How-
ever, the following challenges remain. First, this prior art assumes that if the state and input are both zero at a particular

*References 5–9 do not explicitly discuss inverse instability issues, but the appendix shows that the ILC schemes they present may fail to converge for
systems with unstable inverses.

SPIEGEL et al. 7987

time step, then the state will be zero at the next time step. This is not true for most representations of systems employing
both feedback and feedforward control because if the reference is nonzero it drives state change via the feedback con-
troller despite the initial state and feedforward input being zero. Stable inversion erroneously based on this assumption
can have poor performance, and stable inversion has not been proven to converge when this assumption is relaxed. Sec-
ondly, Zeng et al.29 does not translate from the theoretical solution on a bi-infinite timeline to an implementable solution
on a finite timeline. This work addresses these challenges.

In short, although the work to date on NILC and stable inversion has made great strides, gaps remain between the
prior art and a synthesis scheme for ILC that is fast and applicable to a wide variety of models—including nonlinear non-
minimum phase models. This leads to the main contribution of the present article: an ILC framework enabling controller
synthesis from models satisfying all of (P1)–(P4). The key elements of this framework are

• reversing the order of the linearization and model inversion processes in NILC to circumvent issues associated with
matrix inversion,

• reformulation of the model inversion in NILC as stable inversion,
• proof of stable inversion convergence with relaxed assumptions on state dynamics, enabling treatment of a wider array

of feedback control and other time-varying models, and
• development of a structured method for implementing the stable inversion technique proposed in this work.

The proposed framework is validated in simulation on a nonlinear, relative degree 2, time-varying, nonminimum
phase cart-and-pendulum system with model error and process and measurement noise.

The remainder of the article is organized as follows. Section 2 provides technical details from the prior art in NILC23

and stable inversion29 necessary to present the novel contributions of the present work. Section 3 presents analysis that
justifies the attribution of a class of NILC failures to inverse instability, and provides a new ILC framework that enables
the circumvention of this failure mechanism by incorporating stable inversion. Section 4 provides proof of convergence of
stable inversion for an expanded class of systems and provides improved methods for practical implementation. Section 5
details and discusses the validation of the new ILC framework with stable inversion through benchmark simulations on
a nonminimum phase cart-and-pendulum system. This includes demonstration of conventional NILC’s divergence when
applied to the same system. Section 6 presents conclusions and areas for future work.

2 BACKGROUND

2.1 Newton ILC

Consider SISO, discrete-time, nonlinear, time-varying models

x̂𝓁(k + 1) = f̂ (x̂𝓁(k),u𝓁(k), k) x̂𝓁(0) = x0 ∀𝓁, (1a)

ŷ𝓁(k) = ĥ(x̂𝓁(k)), (1b)

k ∈ {0, 1, … ,N}, (2)

where x̂ ∈ Rnx is the state vector, u ∈ R is the control input, ŷ ∈ R is the output, and k is the discrete time index. The
system is made to perform repeated trials of a reference tracking task, where N ∈ Z>0 is the number of time steps in a trial
(i.e., the number of samples minus 1), and 𝓁 ∈ Z≥0 is the trial index†. Additionally, consider the trial-invariant reference
r(k) ∈ R. Hats, ^, are used to emphasize that (1) is an imperfect model of some true system. It is assumed that the control
input and trial-invariant initial condition are perfectly known.

A classical ILC structure is given by

u𝓁+1 = u𝓁 + L𝓁e𝓁 , (3)

†𝓁 is used for the trial index because i and j will be used for matrix element indexing, k is used for the discrete time index, t is avoided to prevent
confusion with continuous time, and 𝓁 is the next letter in the alphabet and thus commonly used for indexing.

7988 SPIEGEL et al.

where u ∈ RN−𝜇+1 and e ∈ RN−𝜇+1 are input and error time series vectors, 𝜇 is the relative degree of (1), and L ∈
RN−𝜇+1×N−𝜇+1 is the learning matrix, which must be designed by a human or generated by an automatic synthesis
procedure. The time series vectors, also called lifted vectors, are explicitly given by

u𝓁 =
[

u𝓁(0) · · · u𝓁(N − 𝜇)
]T
, (4)

e𝓁 = r − y𝓁 =
[

r(𝜇) − y𝓁(𝜇) · · · r(N) − y𝓁(N)
]T
, (5)

where y ∈ R is the measured output of the true, but unknowable, system. These unknown system dynamics are
represented as the function g ∶ RN−𝜇+1 → RN−𝜇+1, which takes in u𝓁 and outputs y𝓁 .

The work of Avrachenkov22 analyzes the convergence of (3) within a ball around the solution input ud (“solution”
meaning that g (ud) = r). In the present context this ball can be defined as S (ud, 𝜌) = {u ∈ RN−𝜇+1| ‖u − ud‖2 < 𝜌} with
𝜌 > 0 and ‖⋅‖2 being the Euclidean norm. Three conditions are posited:

(C1) The true dynamics g are continuously differentiable with respect to u in S (ud, 𝜌) and their Jacobian 𝜕g
𝜕u

is Lipschitz
continuous with respect to u in S (ud, 𝜌).

(C2) The learning matrix always has a bounded norm: ‖L𝓁‖2 < 𝜀1 ∈ R>0 ∀ 𝓁.
(C3) The learning matrix is sufficiently similar to the inverse of the true lifted system Jacobian: ‖‖‖I − L𝓁

𝜕g
𝜕u
(u𝓁)

‖‖‖2
< 1 ∀ 𝓁.

Avrachenkov22 proves that if (C1)–(C3) are satisfied within S (ud, 𝜌), then there exists a ball S(ud, 𝜀2) with 𝜀2 > 0 such
that if the initial guess u0 is an element of S(ud, 𝜀2) then (3) converges to e = 0N−𝜇+1 as 𝓁 → ∞.

NILC is the use of the Newton–Raphson root finding algorithm to derive an automatic synthesis formula for the
trial-varying learning matrix L𝓁 . The learning matrix is derived from the lifted representation of (1)–(2), ŷ𝓁 = ĝ(u𝓁), which
is defined as follows. Elements of ŷ𝓁 output by ĝ are given via

ŷ𝓁(k) = ĥ
(

f̂
(k−1)

(u𝓁)
)

k ∈ {𝜇, 𝜇 + 1, … ,N}, (6)

where the parenthetical superscript notation indicates function composition of the form

f̂
(k)
(u𝓁) = f̂ (x̂𝓁(k),u𝓁(k), k) (7)

= f̂
(

f̂ (… ,u𝓁(k − 1), k − 1) ,u𝓁(k), k
)
. (8)

Because x̂𝓁(0) = x0 is known in advance and the time argument is determined by the element index of the lifted
representation, ŷ𝓁 is a function of only u𝓁 . Note that because the first element of ŷ𝓁 is ŷ𝓁(𝜇) it explicitly depends on u𝓁(0).

Using Newton’s method to find the root of the error time series

e = r − y = r − g(u) (9)

yields

L𝓁 =
(
𝜕g
𝜕u

(u𝓁)
)−1

, (10)

where 𝜕g
𝜕u

is the Jacobian of g with respect to u as a function of u. This learning matrix formula is impossible to eval-
uate because of its dependence on the unknown dynamics g. Thus, ĝ is used as an approximation of g to yield the
implementable NILC learning matrix formula

L𝓁 =
(
𝜕ĝ
𝜕u

(u𝓁)
)−1

. (11)

When NILC was originally developed, large Jacobians such as 𝜕ĝ
𝜕u

were prohibitively difficult to derive and store
as functions of u𝓁 , necessitating the definition of additional approximation techniques. However, with automatic

SPIEGEL et al. 7989

differentiation tools such as CasADi,30 the barrier to Jacobian computation is vastly reduced, and can be done directly in
many cases.

2.2 Stable inversion

The first step of stable inversion is deriving the conventional inverse. To synthesize a minimal inverse system representa-
tion, first assume (1) is in the normal form

x̂i(k + 1) = x̂i+1(k) i < 𝜇, (12a)

x̂i(k + 1) = f̂
i
(x̂(k),u(k), k) i ≥ 𝜇, (12b)

ŷ(k) = x̂1
, (12c)

where x̂(0) = 0, and the superscripts i indicate the vector element index, starting from 1. Note the ILC trial index subscript
𝓁 is omitted in this section, as stable inversion on its own does not involve incrementing 𝓁. Equation (12a) captures the
time delay arising from the system relative degree, while Equation (12b) captures the remaining system dynamics. One
method of deriving this normal form from a system not in normal form is given in Eksteen et al.31 Note that this coordinate
transformation is performed in advance of any stable inversion or ILC analysis or synthesis. Thus the coordinate transform
does not interfere with satisfaction of the identical initial condition assumption in (1a).

Given this normal form, use (12c) to replace the first 𝜇 state variables with output variables via

x̂i(k) = ŷ(k + i − 1) i ≤ 𝜇. (13)

Similarly, replace the 𝜇th state variable incremented by one time step (i.e., the left side of (12b) for i = 𝜇) with an
output variable via

x̂𝜇(k + 1) = ŷ(k + 𝜇). (14)

These substitutions are made to facilitate the inversion of system (12), as the inverse of a system with relative degree
𝜇 ≥ 1 is necessarily acausal with dependence on some subset of {ŷ(k), ŷ(k + 1), … , ŷ(k + 𝜇)} at each time step k. For
notational compactness, define the ŷ-preview vector 𝓎̂(k) ≡ [ŷ(k), … , ŷ(k + 𝜇)]T . Then inverting (12b) with i = 𝜇 yields
the conventional inverse output function

u(k) = f̂
𝜇−1

([
x̂𝜇+1

, … , x̂nx

]T
, 𝓎̂(k), k

)
, (15)

where f̂
𝜇−1

is the inverse of f̂
𝜇

, that is, (12b, i = 𝜇) solved for u(k). This output equation is substituted into (12b, i > 𝜇)
along with (13)–(14) to yield the entire inverse system dynamics

𝜂̂(k + 1) = f̂ 𝜂 (𝜂̂(k), 𝓎̂(k), k) , (16a)

u(k) = f̂
𝜇−1

(𝜂̂(k), 𝓎̂(k), k) , (16b)

where 𝜂̂ ∈ R
n𝜂 (n𝜂 = nx − 𝜇) is the inverse state vector defined

𝜂̂
i(k) ≡ x̂𝜇+i(k) (17)

and f̂ 𝜂 ∶ R
n𝜂 × R𝜇+1 × Z → R

n𝜂 is the inverse state dynamics

f̂
i
𝜂(𝜂̂(k), 𝓎̂(k), k) ≡ f̂

i+𝜇
(x̂(k),u(k), k). (18)

7990 SPIEGEL et al.

Next, a similarity transform is to be applied to this inverse system to decouple the stable and unstable modes of its
linearization about the initial condition. Consider the Jacobian

A =
𝜕f̂ 𝜂
𝜕𝜂̂

(
𝜂̂ = 0, 𝓎̂ = 𝓎̂†

, k = 0
)
, (19)

where 𝓎̂† is the solution to f̂ 𝜂(0, 𝓎̂
†
, 0) = 0. Then let V be the similarity transform matrix such that

Ã = V−1AV =

[
Ãs 0
0 Ãu

]
, (20)

where Ãs ∈ Rv×v has all eigenvalues inside the unit circle, and Ãu ∈ R
n𝜂−v×n𝜂−v has all eigenvalues outside the unit circle.

This can be satisfied by deriving the real block Jordan form of A. The corresponding inverse system state dynamics are

𝜂̃(k + 1) = f̃ 𝜂 (𝜂̃(k), 𝓎̂(k), k) ≡ V−1 f̂ 𝜂 (V 𝜂̃(k), 𝓎̂(k), k) , (21)

where the tilde on f̃ 𝜂 indicates application to 𝜂̃ rather than 𝜂̂. Note that despite using a linearization-derived linear simi-
larity transform, (21) describes the same nonlinear time-varying dynamics as (16a), but with the linear parts of the stable
and unstable modes decoupled.

If (1) has an unstable inverse, then (21) is unstable and 𝜂̃(k) will be unbounded as k increases. However, given an
infinite timeline in the positive and negative direction, the equation

𝜂̃(k) =
∞∑

i=−∞
𝜙(k − i)

(
f̃ 𝜂 (𝜂̃(i − 1), 𝓎̂(i − 1), i − 1) − Ã𝜂̃(i − 1)

)
, (22)

where

𝜙(k) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

[
Ãk

s 0v×n𝜂−v

0n𝜂−v×v 0n𝜂−v×n𝜂−v

]
k > 0

[
Iv×v 0v×n𝜂−v

0n𝜂−v×v 0n𝜂−v×n𝜂−v

]
k = 0

[
0v×v 0v×n𝜂−v

0n𝜂−v×v −Ãk
u

]
k < 0

, (23)

is an exact, bounded solution to (21) provided the right hand side of (22) exists for all k ∈ Z. However, (22) is implicit,
and thus cannot be directly evaluated. A fixed-point problem solver—Zeng et al.29 uses Picard iteration—must be used
to find 𝜂̃, and sufficient conditions for the solver convergence and solution uniqueness must be determined.

The Picard iterative solver32(ch. 9) for (22) is

𝜂̃(m+1)(k) =
∞∑

i=−∞
𝜙(k − i)

(
f̃ 𝜂

(
𝜂̃(m)(i − 1), 𝓎̂(i − 1), i − 1

)
− Ã𝜂̃(m)(i − 1)

)
, (24)

where the parenthetical subscript (m) ∈ Z≥0 is the Picard iteration index.
To prove that (24) converges to a unique solution, Zeng et al.29 makes the assumptions that

(Z1) f̂ (0, 0, k) = 0 ∀ k, and
(Z2) 𝜂̃(0)(k) = 0 ∀ k.

Note that the continuous time literature also makes these assumptions.27,28

The first assumption is violated for many representations of systems incorporating both feedback and feedforward
control. An example of such a system is given in Section 5, where u is the feedforward control input and the feedback

SPIEGEL et al. 7991

control is part of the time-varying dynamics of f̂ . This feedback control influences x̂ regardless of whether or not u(k) = 0.
While there may often be a change of variables that enables satisfaction of (Z1), (12) already imposes constraints on the
states and outputs, and for many systems it is unlikely for there to exist a change of variables satisfying both assumptions.

Furthermore, while for systems satisfying (Z1), (Z2) may be the zero-input state trajectory, this is untrue for systems
violating (Z1). For these systems, the zero state trajectory (Z2) is essentially arbitrary, and may degrade the quality of low-m
Picard iterates if far from the solution trajectory. This jeopardizes convergence because the computational complexity of
the Picard iteration solution grows exponentially with the number of iterations. It is thus desirable to reach a satisfactory
solution in as few iterations as possible, that is, it is desirable to have high-quality low-m iterates.

Section 4 addresses these limitations by proving a new set of sufficient conditions for the unique convergence of (24)
that relaxes (Z1), (Z2).

3 ILC ANALYSIS AND DEVELOPMENT

In order to develop a new ILC framework for nonminimum phase models, it is necessary to concretely identify the failure
mechanism of Section 2.1’s NILC. Such analysis is absent in the literature, and is thus provided in Section 3.1. Section 3.2
then presents a new learning matrix formula overcoming this failing.

3.1 Failure for models with unstable inverses

The NILC scheme (3), (11) provides convergence of e𝓁 to 0 in theory. However, this assumes perfect computation of the

matrix inversion in (11). In practice, the precision to which
(
𝜕ĝ
𝜕u
(u𝓁)

)−1
can be accurately computed is directly dependent

on the condition number of 𝜕ĝ
𝜕u
(u𝓁). If the condition number of a matrix is large enough, the values computed for its inverse

may become arbitrary, and their order of magnitude may grow directly with the order of magnitude of the condition
number.33,34(ch. 3.2) This “blowing up” of the matrix inverse can cause divergence of (3), (11).

In studies unrelated to NILC, large 𝜕ĝ
𝜕u

condition numbers have been observed for nonminimum phase linear sys-
tems, both time-invariant35,36(ch. 5.3-5.4) and time-varying.37,38(ch. 4.1.1) The fact that the minimum singular value of 𝜕ĝ

𝜕u
(u𝓁)

decreases with increases in the system frequency response function magnitude at the Nyquist frequency39 may contribute
to this ill-conditioning. For linear systems, this magnitude is directly dependent on the zero magnitudes, and thus on the
inverse systems’ stability.

If inverse instability degrades the conditioning of 𝜕ĝ
𝜕u

for linear models, it is guaranteed to do so for nonlinear models.

This is because the Jacobian evaluated at a particular input trajectory, 𝜕ĝ
𝜕u
(u∗), is equal to the constant matrix 𝜕g

𝜕u
where g

is the lifted input–output model of the linearization of (1) about the trajectory u∗.
To illustrate this equality, first consider that the elements of 𝜕ĝ

𝜕u
(u∗) are given by (6) and the chain rule as

𝜕ŷ(k)
𝜕u(j)

(u∗) = 𝜕ĥ
𝜕x̂

(
f̂
(k−1)

(u∗)
) 𝜕f̂

(k−1)

𝜕u
(u∗) 𝜕u

𝜕u(j)
, (25)

where
𝜕u
𝜕u(j)

=
[
01×j 1 01×N−𝜇+1−j

]T
(26)

and 𝜕ĥ
𝜕x̂

is a row vector.
Then consider the linearization of (1) about u∗:

𝛿x̂(k + 1) = f (𝛿x̂(k), 𝛿u(k), k) =
𝜕f̂
𝜕x̂

(
x̂∗(k),u∗(k), k

)
𝛿x̂(k) +

𝜕f̂
𝜕u

(x̂∗(k),u∗(k), k) 𝛿u(k), (27a)

𝛿ŷ(k) = h(𝛿x̂(k)) = 𝜕ĥ
𝜕x̂

(x̂∗(k)) 𝛿x̂(k), (27b)

where x̂∗(k) = f̂
(k−1)

(u∗) and the 𝛿 notation denotes 𝛿x̂(k) = x̂(k) − x̂∗(k) for x̂ and similar for u.

7992 SPIEGEL et al.

Lifting (27) in the same manner as (1) yields the output perturbation as a function of the input perturbation time
series 𝛿u via

𝛿ŷ(k) = 𝜕ĥ
𝜕x̂

(
f̂
(k−1)

(u∗)
)

f
(k−1)

(𝛿u). (28)

Because of (27)’s linearity, f
(k−1)

(𝛿u) can be explicitly expanded as

f
(k−1)

(𝛿u) =

(k−1∏
𝜅=0

𝜕f̂
(𝜅)

𝜕f̂
(𝜅−1) (u

∗)

)
𝛿x̂(0) +

𝜕f̂
(k−1)

𝜕u
(u∗)𝛿u, (29)

where
∏

is ordered with the factor of least 𝜅 on the right and the factor of greatest 𝜅 on the left. The terminal condition
of the recursive function composition is f̂

(−1)
= x̂(0). From (28) and (29) it is clear that the elements of 𝜕g

𝜕𝛿u
are given by

𝜕𝛿ŷ(k)
𝜕𝛿u(j)

= 𝜕ĥ
𝜕x̂

(
f̂
(k−1)

(u∗)
) 𝜕f̂

(k−1)

𝜕u
(u∗) 𝜕𝛿u

𝜕𝛿u(j)
, (30)

which is equal to (25) because 𝜕𝛿u
𝜕𝛿u(j)

= 𝜕u
𝜕u(j)

due to the identical structures (4) of u and 𝛿u with respect to u and 𝛿u time

indexing. Thus, if (1) is such that its linearization (27) is unstable, 𝜕ĝ
𝜕u
(u𝓁) will suffer ill-conditioning and attempts to

compute the learning matrix (11) may yield a matrix with large arbitrary elements. Such a learning gain matrix may in
turn cause u𝓁+1 to contain large arbitrary elements, causing the learning law to diverge.

Therefore, for the learning law (3) to converge for a system with an unstable inverse in practice, a learning matrix
synthesis that does not require matrix inversion of 𝜕ĝ

𝜕u
(u𝓁) is desired.

3.2 Alternative learning matrix synthesis

To circumvent issues associated with inverting 𝜕ĝ
𝜕u
(u𝓁) a new learning matrix definition seeking to satisfy the requirements

(C2)–(C3) in the spirit of Newton’s method, but without the matrix inversion requirement of (11), is given by

L𝓁 =
𝜕ĝ−1

𝜕ŷ
(y𝓁), (31)

where ĝ−1 ∶ RN−𝜇+1 → RN−𝜇+1 is a lifted model of the inverse of (1). This makes 𝜕ĝ−1

𝜕ŷ
a function of the output of (1),

namely ŷ𝓁 . As stated in Section 2.1, ŷ𝓁 is the output of a necessarily erroneous model, and thus is merely a prediction
of the accessible, measured output y𝓁 . Hence y𝓁 is used as the input to 𝜕ĝ−1

𝜕ŷ
. In short, this work proposes using the lin-

earization of the inverse of (1) rather than the inverse of the linearization, and thus the new framework (3), (31) will be
referred to as “invert-linearize ILC” (ILILC).

The first step in deriving ĝ−1, and thus in deriving (31) is the inversion of the original model (1). A direct method of
inverting (1) is to solve

ŷ𝓁(k + 𝜇) = ĥ(f̂
(k+𝜇−1)

(u𝓁)) (32)

for u𝓁(k), and substitute the resulting function of {ŷ𝓁(k), ŷ𝓁(k + 1), … , ŷ𝓁(k + 𝜇)} into (1a). However, if (1) has an unsta-
ble inverse, this method of inversion will yield unbounded states x̂𝓁(k) as k increases. Thus, ĝ−1 is derived via the stable
inversion procedure described in Section 4 rather than direct inversion. Note, though, that (31) also admits the use of
other stable approximate inverse models for ĝ−1 should they be available.

4 STABLE INVERSION DEVELOPMENT

This section proves a relaxed set of sufficient conditions for the convergence of Picard iteration to the unique solution to
the stable inversion problem, that is, the unique solution to (22) from Section 2.2. This enables stable inversion—and thus

SPIEGEL et al. 7993

ILC—for a new class of system representations capturing simultaneous feedback and feedforward control. Additionally, a
new initial Picard iterate prescription is given to suit the broadened scope of stable inversion, and a procedure for practical
implementation is described. This procedure enables the derivation of ĝ−1.

4.1 Fixed-point problem solution

Several definitions are needed to prove the relaxed set of sufficient conditions for convergence of the fixed-point problem
solver used for stable inversion.

Definition 1 (lifted matrices and third-order tensors). Given the vector and matrix functions of time a(k) ∈ Rn and
B(k) ∈ Rn×n, the corresponding lifted matrix and third-order tensor are given by upright bold notation: a ∈ Rn× and
B ∈ Rn×n×.  is the time dimension, and may be ∞. Elements of the lifted objects are ai,k ≡ ai(k) and Bi,j,k ≡ Bi,j(k).

Definition 2 (matrix and third-order tensor norms). ‖⋅‖∞ refers to the ordinary ∞-norm when applied to vectors,
and is the matrix norm induced by the vector norm when applied to matrices (i.e., the maximum absolute row sum).
Additionally, the entrywise (∞, 1)-norm is defined for the matrices and third-order tensors a and B from Definition 1 as

‖a‖∞,1 ≡
∑
k∈

‖a(k)‖∞ ‖B‖∞,1 ≡
∑
k∈

‖B(k)‖∞ . (33)

Definition 3 (local approximate linearity27,29). f̃ 𝜂 is locally approximately linear in 𝜂̃(k) and its 𝜂̃(k) = 0 dynamics, in a
closed s-neighborhood around (𝜂̃(k) = 0, f̃ 𝜂(0, 𝓎̂(k), k) = 0), with Lipschitz constants K1,K2 > 0 if ∃s > 0 such that for any
vectors

• a(k), b(k) ∈ R
n𝜂 with ‖⋅‖∞ ≤ s ∀k, and

• 𝒶(k), 𝒷(k) ∈ R𝜇+1 such that ‖‖‖f̃ 𝜂(0,𝒶(k), k)‖‖‖∞, ‖‖‖f̃ 𝜂(0,𝒷(k), k)
‖‖‖∞ ≤ s ∀k

the following is true ∀k

‖‖‖(f̃ 𝜂(a(k),𝒶(k), k) − Aa(k)
)
−
(

f̃ 𝜂(b(k),𝒷(k), k) − Ab(k)
)‖‖‖∞

≤ K1 ‖a(k) − b(k)‖∞ + K2
‖‖‖f̃ 𝜂(0,𝒶(k), k) − f̃ 𝜂(0,𝒷(k), k)

‖‖‖∞ . (34)

With these definitions a new set of sufficient conditions for Picard iteration convergence is established. Proof of this
theorem shares the approach of Zeng et al.29 in establishing the Cauchy nature of the Picard sequence. It is also influenced
by the proofs of Picard iterate local approximate linearity for continuous-time systems in Devasia et al.27

Theorem 1. The Picard iteration (24) converges to a unique solution to (21) if the following sufficient conditions are met.

(C4) ||𝛈̃(0)||∞,1 ≤ s
(C5) ∀k ∃𝓎̂(k) = 𝓎̂†(k) such that f̃ 𝜂(0, 𝓎̂

†(k), k) = 0
(C6) f̃ 𝜂 is locally approximately linear in the sense of (34)
(C7) K1||𝛗||∞,1 < 1
(C8) ||𝛗||∞,1K2||f̃𝜂(0,𝓎̂)||∞,1

1−||𝛗||∞,1K1
≤ s,

where 𝛗 and ‖‖‖f̃𝜂(0, 𝓎̂)
‖‖‖∞,1 =

∑∞
k=−∞

‖‖‖f̃ 𝜂(0, 𝓎̂(k), k)
‖‖‖∞ are defined by Definition 1.

Proof. Proof that (24) converges to a unique fixed point begins with an induction showing that 𝜂̃(m)(k) remains in the
locally approximately linear neighborhood ∀ k, m. The base case of this induction is given by (C4). Then under the premise

||𝛈̃(m)||∞,1 ≤ s (35)

the induction proceeds as follows. Here, ellipses indicate the continuation of a line of mathematics.

7994 SPIEGEL et al.

By the Picard iterative solver (24):

||𝛈̃(m+1)||∞,1 =
∞∑

k=−∞

‖‖‖‖‖
∞∑

i=−∞
𝜙(k − i)(f̃ 𝜂(𝜂̃(m)(i − 1), 𝓎̂(i − 1), i − 1) − A𝜂̃(m)(i − 1))

‖‖‖‖‖∞ … . (36)

By the triangle inequality:

… ≤

∞∑
k=−∞

∞∑
i=−∞

‖‖‖𝜙(k − i)
(

f̃ 𝜂
(
𝜂̃(m)(i − 1), 𝓎̂(i − 1), i − 1

)
− A𝜂̃(m)(i − 1)

)‖‖‖∞ … . (37)

By the fact that for matrix norms induced by vector norms ‖Ba‖ ≤ ‖B‖ ‖a‖ for matrix B and vector a:

… ≤

∞∑
k=−∞

∞∑
i=−∞

‖𝜙(k − i)‖∞ ‖‖‖f̃ 𝜂
(
𝜂̃(m)(i − 1), 𝓎̂(i − 1), i − 1

)
− A𝜂̃(m)(i − 1)‖‖‖∞ … , (38)

… =
∞∑

i=−∞

‖‖‖f̃ 𝜂
(
𝜂̃(m)(i − 1), 𝓎̂(i − 1), i − 1

)
− A𝜂̃(m)(i − 1)‖‖‖∞ ∞∑

k=−∞
‖𝜙(k − i)‖∞ … . (39)

By the fact that
∑∞

k=−∞ ‖𝜙(k − i)‖∞ has the same value ∀i

… = ||𝛗||∞,1 ∞∑
i=−∞

||f̃ 𝜂(𝜂̃(m)(i − 1), 𝓎̂(i − 1), i − 1) − A𝜂̃(m)(i − 1)||∞ … . (40)

By (C5):

… = ||𝛗||∞,1 ∞∑
i=−∞

||(f̃ 𝜂(𝜂̃(m)(i − 1), 𝓎̂(i − 1), i − 1) − A𝜂̃(m)(i − 1)) − (f̃ 𝜂(0, 𝓎̂
†(i − 1), i − 1) − A(0))||∞ … . (41)

By (C6):

… ≤ ||𝛗||∞,1 ∞∑
i=−∞

K1||𝜂̃(m)(i − 1)||∞ + K2||f̃ 𝜂(0, 𝓎̂(i − 1), i − 1)||∞ … , (42)

… = ||𝛗||∞,1(K1||𝛈̃(m)||∞,1 + K2||f̃𝜂(0, 𝓎̂)||∞,1) … . (43)

By (C7), the denominator of (C8) is positive. Thus both sides of (C8) can be multiplied by this denominator without
changing the inequality direction. Thus by (35) and algebraic rearranging of (C8)

… ≤ ||𝛗||∞,1(K1s + K2||f̃𝜂(0, 𝓎̂)||∞,1) ≤ s. (44)

∴ ||𝛈̃(m)||∞,1 ≤ s ∀m. Because ||𝛈̃(m)||∞,1 ≥ ||𝜂̃(m)(k)||∞ ∀k, this implies that 𝜂̃(m)(k) is within the locally approximately
linear neighborhood ∀ m, k.

To show that (24) converges to a unique fixed point, define

Δ𝜂̃(m)(k) ≡ 𝜂̃(m+1)(k) − 𝜂̃(m)(k). (45)

Then, by a nearly identical induction

||Δ𝛈̃(m+1)||∞,1 ≤ ||𝛗||∞,1K1||Δ𝛈̃(m)||∞,1. (46)

By (C7)

lim
m→∞

||Δ𝛈̃(m)||∞,1 = 0, (47)

SPIEGEL et al. 7995

which implies

lim
m→∞

‖‖Δ𝜂̃(m)(k)‖‖∞ = 0 ∀k. (48)

∴ ∀k the sequence {𝜂̃m(k)} is a Cauchy sequence, and thus the fixed point 𝜂̃(k) = limm→∞ 𝜂̃(m)(k) is unique. ▪

Remark 1. Neither the preceding presentation nor the nonlinear stable inversion prior art29 explicitly discusses the intu-
itive foundation of stable inversion: evolving the stable modes of an inverse system forward in time from an initial
condition and evolving the unstable modes backward in time from a terminal condition. Unlike for linear time invariant
(LTI) systems, this intuition is not put into practice directly for nonlinear systems because the similarity transforms that
completely decouple the stable and unstable modes of linear systems do not necessarily decouple the stable and unsta-
ble modes of nonlinear systems. However, the same principle underpins this work. This is evidenced by the fact that the
intuitive LTI stable inversion is recovered from (22) when f̂ is LTI, as illustrated briefly below.

For LTI f̂ , f̃ takes the form

𝜂̃(k + 1) = Ã𝜂̃(k) + B̃𝓎̂(k), (49)[
𝜂̃s(k + 1)
𝜂̃u(k + 1)

]
=

[
Ãs 0
0 Ãu

][
𝜂̃s(k)
𝜂̃u(k)

]
+

[
B̃s

B̃u

]
𝓎̂(k). (50)

Then the implicit solution (22) becomes the explicit solution

𝜂̃(k) =
∞∑

i=−∞
𝜙(k − i)B̃𝓎̂(i − 1), (51)[

𝜂̃s(k)
𝜂̃u(k)

]
=

[∑k
i=−∞Ãk−i

s B̃s𝓎̂(i − 1)
−
∑∞

i=k+1Ãk−i
u B̃u𝓎̂(i − 1)

]
=

[
Ãs𝜂̃s(k − 1) + B̃s𝓎̂(k − 1)

Ã−1
u 𝜂̃u(k + 1) − Ã−1

u B̃u𝓎̂(k)

]
, (52)

which is the forward evolution of the stable modes and backward evolution of the unstable modes where the initial and
terminal conditions at k = ±∞ are zero.

4.2 Initial Picard iterate 𝜼(0) selection and implementation

This subsection addresses the need to select a new initial Picard iterate 𝜂̃(0)(k) in the absence of (Z2). Also addressed is
the fact that (24) is a purely theoretical, rather than implementable, solution because it contains infinite sums along an
infinite timeline.

In the context of ILC, the learned feedforward control action is often intended to be a relatively minor adjustment
to the primary action of the feedback controller. Thus, choosing 𝜂̃(0)(k) to be the feedback-only trajectory, that is, the
zero-feedforward-input trajectory, is akin to warm-starting the fixed-point solving process. This trajectory is given by

x̂(k + 1) = f̂ (x̂(k), 0, k) x̂(0) = 0nx ,

𝜂̃(0)(k) = V−1

[
0𝜇×𝜇 0𝜇×n𝜂

0n𝜂×𝜇 In𝜂×n𝜂

]
x̂(k) (53)

for k ∈ {0, … ,N − 𝜇}.
An implementable version of (24) is given by

𝜂̃(m+1)(k) =
N−𝜇+1∑

i=1
𝜙(k − i)

(
f̃ 𝜂

(
𝜂̃(m)(i − 1), 𝓎̂(i − 1), i − 1

)
− Ã𝜂̃(m)(i − 1)

)
(54)

for k ∈ {1, … ,N − 𝜇}, fixing the initial condition 𝜂̃(m)(0) = 0n𝜂 ∀m.

7996 SPIEGEL et al.

Note that (54) is equivalent to assuming 𝜂̃(m)(k) = 0, 𝓎̂(k) = 0, and f̃ 𝜂 (0, 0, k) = 0 for k ∈ (−∞,−1] ∪ [N − 𝜇 + 1,∞)
and extracting the k ∈ [1,N − 𝜇] elements of 𝜂̃(m+1)(k) generated by (24). These assumptions correspond to a lack of con-
trol action prior to k = 0 and a reference trajectory that brings the system back to its zero initial condition with enough
trailing zeros for the system to settle by k = N − 𝜇. This is typical of repetitive motion processes, but admittedly may
preclude some other ILC applications.

Furthermore, for the first Picard iteration (m + 1 = 1) these assumptions yield identical (54)-generated and
(24)-generated 𝜂̃(1)(k) on k ∈ [0,N − 𝜇]. Because output tracking of systems with unstable inverses typically requires pre-
actuation, for this range of k to contain a practical control input trajectory there must be sufficient leading zeros in the
reference starting at k = 0. For the following Picard iterates the theoretical and implementable trajectories are unlikely
to be equal, but can be made closer the more leading zeros are included in the reference.

Ultimately, applying (54) for any number of iterations mfinal ≥ 1 yields an expression for each time step of 𝜂̃(mfinal)(k)
whose only variable parameters are the elements of ŷ. This is because the recursion calling 𝜂̃(mfinal)(k) terminates at the
known trajectory 𝜂̃(0)(k), and because ŷ(k) = 0 for k ∈ {0, … , 𝜇 − 1} due to the known initial condition x̂(0) = 0. The
concatenation of these expressions plugged into the inverse output function (16b) yields the lifted inverse system model

ĝ−1(ŷ) =

⎡⎢⎢⎢⎢⎢⎣

f̂
𝜇−1 (

V 𝜂̃(mfinal)(0), 𝓎̂(0), 0
)

f̂
𝜇−1 (

V 𝜂̃(mfinal)(1), 𝓎̂(1), 1
)

⋮

f̂
𝜇−1 (

V 𝜂̃(mfinal)(N − 𝜇), 𝓎̂(N − 𝜇),N − 𝜇
)
⎤⎥⎥⎥⎥⎥⎦
, (55)

which enables the synthesis of the ILILC learning matrix (31). With this, the complete synthesis of ILILC with stable
inversion—starting from a model in the normal form (12)—can be summarized by Procedure 1.

Remark 2. The computation time required to synthesize ILILC with stable inversion grows with the number of time
steps N in the time series, and can become relatively long. However, the overwhelming majority of this computation
is performed before the execution of the zeroth trial and need not be repeated. This allows for minimal computation
time—that is, minimal downtime—between trials.

More specifically, Steps 1–5 are all performed before trial zero execution, with Step 5 being the most computationally
intensive. These steps yield a function 𝜕ĝ−1

𝜕ŷ
(⋅) that arithmetically produces a learning matrix L𝓁 given an output time series.

Step 6—the only step featuring intertrial computation—merely needs to call this function and the simple matrix-vector
multiplication of (3). The fixed-point problem solving and automatic differentiation does not need to be redone.

For reference, the validation system’s computation times for each step of Procedure 1 are given in Section 5.4, Table 2.

5 VALIDATION

This section presents validation of the fundamental claim that the original NILC fails for models with unstable inverses
and that the newly proposed ILILC framework—when used with stable inversion—succeeds. Additionally, while the

Procedure 1. ILILC synthesis with stable inversion

1: Derive the minimal state space representation f̂𝜂 and f̂ 𝜇−1 (from (16)) of the conventional inverse of (12).
2: Apply similarity transform V (from (20)) to derive the inverse state dynamics representation f̃𝜂 (from (21)) with

decoupled stable and unstable linear parts.
3: Use the fixed-point problem solver (53)–(54) to derive the inverse system state 𝜂̃(mfinal) as a function of ŷ at each point

in time k ∈ {0,… ,N − 𝜇}.
4: Derive the lifted inverse model ĝ−1 via (55).
5: Use an automatic differentiation tool to derive 𝜕ĝ−1

𝜕ŷ
as a function of y, that is, the learning matrix L𝓁 from (31).

6: Compute L𝓁 = 𝜕ĝ−1

𝜕ŷ
(y𝓁) at each trial for the ILC law (3).

// Steps 3-4 are greatly facilitated by using a computer algebra system. CasADi can provide this functionality in
addition to automatic differentiation.

SPIEGEL et al. 7997

intent of ILC is to account for model error, overly erroneous modeling can cause violation of (C3), which may cause
divergence of the ILC law. Thus this section also probes the performance and robustness of ILILC with stable inversion
over increasing model error in physically motivated simulations.

The ILILC law (3), (31) is applied as a reference shaping tool to a feedback control system (sometimes called “series
ILC”). This represents the common scenario of applying a higher level controller to “closed source” equipment. The
resultant system (1) is a nonlinear time-varying system with relative degree 𝜇 = 2.

Modeling error is simulated by synthesizing the ILC laws from a nominal “control model” of the example system, and
applying the resultant control inputs to a set of “truth models” featuring random parameter errors and the injection of
process and measurement noise. Finally, to give context to the results for ILILC with stable inversion, identical simulations
are run with a benchmark technique that does not require modification for models with unstable inverses: gradient ILC.

5.1 Benchmark technique: Gradient ILC

Gradient ILC is gradient descent applied to the optimization problem

arg min
u

1
2

eTe, (56)

which yields the ILC law

u𝓁+1 = u𝓁 + 𝛾
𝜕ĝ
𝜕u

(u𝓁)Tej, (57)

where 𝛾 > 0 is the gradient descent step size. Note that (57) is free of the matrix inversion that inhibits the application of
NILC to systems with unstable inverses. Past work on gradient ILC40 has been limited to linear systems due in part to the
difficulty of synthesizing 𝜕ĝ

𝜕u
for nonlinear systems. This article extends gradient ILC to nonlinear systems by using the

automatic differentiation tool CasADi to synthesize 𝜕ĝ
𝜕u

.
The tuning parameter 𝛾 influences the performance-robustness trade off of (57). Reducing 𝛾 improves the probability

that (57) will converge for some unknown model error, but may also reduce the rate of convergence. For the sake of
comparing the convergence rates between gradient ILC and ILILC, here we choose 𝛾 such that the two methods have
comparable probabilities of convergence over the set of random model errors tested: 𝛾 = 1.1.

5.2 Example system

Consider the system pictured in Figure 1, consisting of a pendulum fixed to the mass center of a cart on a rail. This
subsection presents the first-principles continuous-time equations of motion for this plant, the method for converting
these dynamics to the discrete-time normal form (12), and the control architecture of the system.

The cart is subjected to an applied force c, and viscous damping occurs both between the cart and the rail and between
the pendulum and the cart. Equations of motion for this plant are given by

𝜓̈ = −3
(

HMp (c + 𝜔c) cos(𝜓) + dp(Mc + Mp)𝜓̇ + H2M2
p sin(𝜓) cos(𝜓)𝜓̇2 + ℊH

(
McMp + M2

p
)

sin(𝜓)

−dcHMp cos(𝜓)ż
) 1

H2Mp
(
4(Mc + Mp) − 3Mpcos2(𝜓)

) , (58)

z̈ =
(
4H (c + 𝜔c) + 3dp cos(𝜓)𝜓̇ + 4H2Mp sin(𝜓)𝜓̇2 + 3ℊHMp sin(𝜓) cos(𝜓)

−4dcHż
) 1

H
(
4(Mc + Mp) − 3Mpcos2(𝜓)

)
,

(59)

where 𝜓(k) is the pendulum angle, z(k) is the cart’s horizontal position, ℊ = 9.8 m/s2 is the gravitational acceleration,
and the process noise 𝜔c(k) is a random sample from a normal distribution with 0 mean and standard deviation 3.15 ×
10−2 N. H is the pendulum half-length, Mc and Mp are the cart and pendulum masses, and dc and dp are the cart–rail and

7998 SPIEGEL et al.

F I G U R E 1 Cart and pendulum system. Dimension, position, and mass annotations are in grey. Force and torque annotations are in
black

pendulum–cart damping coefficients, respectively. The time argument of 𝜔c, 𝜓 , z and their derivatives has been dropped
for compactness.

The output to be tracked is the pendulum tip’s horizontal position, y. Obtaining a discrete-time state space model of
this system in the normal form (12) requires first a change of coordinates such that the desired output is a state, and then
discretization. The change of coordinates is

𝜓 = arcsin
(y − z

2H

)
(60)

with associated derivative substitutions

𝜓̇ =
ẏ − ż

2H
√

1 − (y−z)2

4H2

, (61)

𝜓̈ =
sec (𝜓)

(
ÿ − z̈ + 2H sin (𝜓) 𝜓̇2)

2H
. (62)

Then the equations of motion are solved for in terms of the new coordinates. In the present case (58)–(62) can be
solved for ÿ(k) and z̈(k) as functions of y(k), z(k), ẏ(k), and ż(k). Next, forward Euler discretization is applied recursively to
the equations of motion to reformulate the state dynamics in terms of discrete time increments rather than derivatives,
as is required by the normal form. The innermost layer of the recursion is the first derivatives

ẏ(k) =
y(k + 1) − y(k)

Ts
ż(k) = z(k + 1) − z(k)

Ts
, (63)

where the sample period Ts = 0.016 s in this case. These can be plugged into ÿ(k) and z̈(k) to eliminate their dependence
on derivatives. The next—and in this case final—layer is the forward Euler discretization of the second derivatives. The
outermost layer can be rearranged to yield the discrete-time equations of motion

y(k + 2) = ÿ(k)T2
s + 2y(k + 1) − y(k),

z(k + 2) = z̈(k)T2
s + 2z(k + 1) − z(k), (64)

which are directly used to define the state dynamics f in terms of the state vector x(k) = [y(k), y(k + 1), z(k), z(k + 1)]T .
The explicit expressions of (64) are too long to print here, but can be easily obtained in Mathematica, MATLAB symbolic
toolbox, and so on via the algebra described in (60)–(64).

The output must track the reference r(k) given in Figure 2. To accomplish this the plant is equipped with a full-state
feedback controller modeled as

c(k) = 𝜅0r∗(k) −
[
𝜅1 𝜅2 𝜅3 𝜅4

]
x(k), (65)

r∗(k) = r(k) + u(k). (66)

SPIEGEL et al. 7999

0 1 2 3 4

Time [s]

0

0.05

0.1

0.15

0.2

R
ef

er
en

ce
 [

m
]

F I G U R E 2 Reference

T A B L E 1 Cart–pendulum control model parameters

Parameter Symbol Value

Cart mass M̂c 0.5 kg

Pendulum mass M̂p 0.25 kg

Pendulum half-length Ĥ 0.225 m

Cart–rail damping coefficient d̂c 10 kg/s

Pendulum–cart damping coefficient d̂p 0.01 kg m2/s

Full-state feedback gain 0 𝜅̂0 630

Full-state feedback gain 1 𝜅̂1 −5900

Full-state feedback gain 2 𝜅̂2 5900

Full-state feedback gain 3 𝜅̂3 −3700

Full-state feedback gain 4 𝜅̂4 4300

Here, r∗(k) is the effective reference and u(k) is the control input generated by the ILC law. In other words, the ILC law
adjusts the reference delivered to the feedback controller to eliminate the error transients inherent to feedback control.
Finally, the error signal input to the ILC law is subject to measurement noise 𝜔y(k)

e(k) = r(k) − y(k) − 𝜔y(k), (67)

where the noise’s distribution has 0 mean and standard deviation 5 × 10−5 m.
The ILC law itself is synthesized from a control model that is identical in structure to the truth model presented above,

but has 𝜔̂c = 𝜔̂y = 0 and uses the model parameters tabulated in Table 1. Stable inversion for the synthesis of learning
matrix (31) is performed with a single Picard iteration, that is, mfinal = 1 in (55). To simulate model error, the hatless truth
model parameters differ from the behatted control model parameters in a manner detailed in Section 5.3. This ultimately
results in the system block diagram given in Figure 3.

5.3 Simulation and analysis methods

Let 𝜃̂ ∈ R10 be a vector of the control model parameters in Table 1. Then a truth model can be specified by the vector 𝜃,
generated via

𝜃 =
(
110×1eT

𝜃
⊙ I + I

)
𝜃̂, (68)

where⊙ is the Hadamard product and e𝜃 ∈ R10 is a random sample of a uniform distribution. Under (68), each element of
e𝜃 is the relative error between the corresponding elements of 𝜃 and 𝜃̂. Thus, ‖e𝜃‖2 provides a scalar metric for the model

8000 SPIEGEL et al.

F I G U R E 3 System block diagram. The control law outputting u is synthesized from the control models defined by the behatted
parameters of Table 1 and by 𝜔c(k) = 𝜔y(k) = 0. The plant and controller gain blocks are defined with the truth model parameters generated
according to Section 5.3. Intertrial signals from trial 𝓁 are stored and used to compute the input for trial 𝓁 + 1

error between the control model and a given truth model. The range ‖e𝜃‖2 ∈ [0, 0.1] is divided into 20 bins of equal width,
and 50 truth models are generated for each bin. Both ILC schemes are applied to each truth model with 50 trials, and
u0(k) = 0 ∀k. A full set of 50 trials of one of the ILC laws applied to a single truth model is referred to as a “simulation.”
The results of these simulations are used to characterize the probability of convergence and rate of convergence of each
ILC law.

For each iteration of a simulation, the normalized root mean square error (NRMSE) is given by

NRMSE𝓁 ≡
RMS (e𝓁)‖r‖∞ . (69)

A simulation is deemed convergent if there exists 𝓁∗ such that NRMSE𝓁 is less than some tolerance for all 𝓁 ≥ 𝓁∗.
This work uses a tolerance of 5 × 10−4, which is close to the NRMSE floor created by noise.

Let 𝓁𝛽,𝜏,𝜆 be the minimum 𝓁∗ for truth model 𝜏 ∈ [1, 50] in bin 𝛽 ∈ [1, 20] under ILC law 𝜆 ∈ {ILILC, gradient ILC},
and let  be the set of all (𝛽, 𝜏) for which both ILILC and gradient ILC converge. Then the mean transient convergence rate

𝜆 = mean
,𝓁∈[1,𝓁𝛽,𝜏,𝜆]

(
NRMSE𝛽,𝜏,𝜆𝓁

NRMSE𝛽,𝜏,𝜆𝓁−1

)
(70)

offers a numerical performance metric. Note that Avrachenkov22 gives a theoretical convergence analysis for the ILC
structure (3) in general (covering NILC, ILILC, and gradient ILC). This analysis can be used to lower bound perfor-
mance (i.e., upper bound convergence rate) via multiple parameters computed from the learning matrix L𝓁 and the true
dynamics g. The mean transient convergence rate (70) may thus serve as a specific, measurable counterpart to any
theoretical worst-case-scenario analyses performed via the formulas in the work of Avrachenkov.22

Finally, to verify the fundamental necessity and efficacy of ILILC for systems with unstable inverses, two trials of
traditional stable-inversion-free NILC (3), (11) are applied to each truth model.

All computations are performed on a desktop computer with a 4 GHz CPU and 16 GB of RAM.

5.4 Results and discussion

The condition number of 𝜕ĝ
𝜕u

(u0) is 1 × 1017. Attempted inversion of this matrix in MATLAB yields an inverse matrix with
average nonzero element magnitude of 4 × 1013 and max element magnitude of 3 × 1016. Consequently, u1 generated
by (3), (11) has an average element magnitude of 2 × 1010 m and a max element magnitude of 8 × 1011 m, which is so
large that y1 and 𝜕ĝ

𝜕u
(u1) contain NaN elements for all simulations. Conversely, while some simulations using ILILC ,

that is, (3), (31), diverge due to excessive model error, the majority converge. Additionally, the computation times given
in Table 2 show that Procedure 1 successfully front-loads almost all of the required computation; intertrial computation
time is almost always less than 150 ms. Together, these results validate the fundamental claim that the direct application

SPIEGEL et al. 8001

T A B L E 2 Computation times for the steps of Procedure 1

When performed Step Operation Time (s)

Once, before execution
of trial 0

1–2 Derive the minimal, similarity transformed
inverse state space system

6

3 Fixed-point-problem-solving-based stable
inversion to derive the inverse state
trajectory as a function of ŷ

95

4 Conversion to lifted input–output model ĝ(⋅) 0.3

5 Automatic differentiation to produce 𝜕ĝ−1

𝜕ŷ
(⋅) 573

Between trials, 49,000
samples

6 Update of feedforward input trajectory via
L𝓁 = 𝜕ĝ−1

𝜕ŷ
(y𝓁) and (3)

Mean: 0.138

SD: 0.006

F I G U R E 4 Representative input solution trajectories from low- and high-model-error ILILC simulations compared with the solution
to the zero-model-error problem. The zero-model-error solution is the input trajectory that would be chosen for feedforward control in the
absence of learning, and differs notably from both minimum-error trajectories found by ILILC with stable inversion

of Newton’s method in NILC is insufficient for systems with unstable inverses, and that the combination of ILILC and
stable inversion fills this gap.

To accompany the quantitative metric ‖e𝜃‖2, Figure 4 offers a qualitative sense of the degree of model error in this study
by comparing two representative ILILC solution trajectories u50(k) with the solution to the ‖e𝜃‖2 = 0, 𝜔c(k) = 𝜔y(k) = 0
scenario. The lower-model-error representative solution is from within the range of ‖e𝜃‖2 for which all simulations con-
verged, while the higher-model-error solution comes from a bin in which some simulations diverged. A more detailed
analysis of the boundaries in 𝜃-space determining convergence or divergence of a simulation is beyond the scope of this
work. However, the given trajectories illustrate that even in the conservative subspace defined by the 100% convergent
bins learning bridges a visible performance gap, and that beyond this subspace there are far greater performance gains to
be had.

Finally, a statistical comparison of the performance and robustness of ILILC with stable inversion and gradient ILC is
given in Figure 5. The tuning of gradient ILC indeed yields comparable robustness to ILILC, with ILILC 97% as likely to
converge as gradient ILC over all simulations. The convergence rates of the two ILC schemes, however, differ substantially,
with gradient ILC taking over three times as many trials as ILILC to converge on average. The mean transient convergence
rate values tabulated in Table 3 give a more portable quantification of ILILC’s advantage, having a convergence rate nearly
half that of gradient ILC’s.

8002 SPIEGEL et al.

F I G U R E 5 Left: Histogram giving the percentage of simulations converged in each bin of the model error metric ‖e𝜃‖2. Right: Mean
value of NRMSE for each ILC trial over all simulations that are convergent for both gradient ILC and ILILC with stable inversion. This
illustrates that for comparable robustness to model error, ILILC converges substantially faster than gradient ILC

T A B L E 3 Transient convergence rates
for ILILC and gradient ILC

ILC law Mean SD

Gradient ILC 0.76 0.17

ILILC + stab. inv. 0.41 0.27

This analysis confirms that ILILC with stable inversion is an important addition to the engineer’s toolbox because
it enables ILC synthesis from nonlinear nonminimum phase models and delivers the fast convergence characteristic of
algorithms based on Newton’s method.

6 CONCLUSION

This work introduces and validates a new ILC synthesis scheme applicable to nonlinear time-varying systems with unsta-
ble inverses and relative degree greater than 1. This is done with the support of nonlinear stable inversion, which is
advanced from the prior art via proof of convergence for an expanded class of systems and methods for improved practical
implementation. In all, this results in a new, broadly implementable ILC scheme displaying a competitive convergence
speed under benchmark testing.

Future work may focus on further broadening the applicability of ILILC by relaxing reference and initial condition
repetitiveness assumptions, and on the extension of ILILC with a potentially adaptive tuning parameter or other means
to enable the exchange of some speed for robustness when called for. Levenberg–Marquardt–Fletcher algorithms may
offer one source of inspiration for such work.

ACKNOWLEDGMENT
This work is supported by the U.S. National Science Foundation (CAREER Award #1351469), the U.S. Department of
Commerce, National Institute of Standards and Technology (Award 70NANB20H137), and the Netherlands Organization
for Scientific Research (research programme VIDI project 15698).

CONFLICT OF INTEREST
The authors declare no potential conflict of interests.

DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available from the corresponding author upon reasonable request.

ORCID
Isaac A. Spiegel https://orcid.org/0000-0002-4415-9190

https://orcid.org/0000-0002-4415-9190
https://orcid.org/0000-0002-4415-9190

SPIEGEL et al. 8003

REFERENCES
1. Freeman CT. Upper limb electrical stimulation using input-output linearization and iterative learning control. IEEE Trans Control Syst

Technol. 2015;23(4):1546-1554. https://doi.org/10.1109/TCST.2014.2363412
2. Yu Q, Hou Z, Xu JX. D-Type ILC based dynamic modeling and norm optimal ILC for high-speed trains. IEEE Trans Control Syst Technol.

2018;26(2):652-663. https://doi.org/10.1109/TCST.2017.2692730
3. Rafajłowicz W, Jurewicz P, Reiner J, Rafajłowicz E. Iterative learning of optimal control for nonlinear processes with applications to laser

additive manufacturing. IEEE Trans Control Syst Technol. 2019;27(6):2647-2654. https://doi.org/10.1109/TCST.2018.2865444
4. Xing X, Liu J. Modeling and robust adaptive iterative learning control of a vehicle-based flexible manipulator with uncertainties. Int

J Robust Nonlinear Control. 2019;29:2385-2405. https://doi.org/10.1002/rnc.4500
5. Jang TJ, Ahn HS, Choi CH. Iterative learning control for discrete-time nonlinear systems. Int J Syst Sci. 1994;25(7):1179-1189. https://doi.

org/10.1080/00207729408949269
6. Saab SS. Discrete-time learning control algorithm for a class of nonlinear systems. Paper presented at: Proceedings of 1995 American

Control Conference; 1995:2793-2743; IEEE, Seattle. https://doi.org/10.1109/ACC.1995.532347
7. Wang D. Convergence and robustness of discrete time nonlinear systems with iterative learning control. Automatica.

1998;34(11):1445-1448. https://doi.org/10.1016/S0005-1098(98)00098-3
8. Sun M, Wang D. Initial shift issues on discrete-time iterative learning control with system relative degree. IEEE Trans Automat Contr.

2003;48(1):144-148. https://doi.org/10.1109/TAC.2002.806668
9. Zhang Y, Liu J, Ruan X. Iterative learning control for uncertain nonlinear networked control systems with random packet dropout. Int

J Robust Nonlinear Control. 2019;29:3529-3546. https://doi.org/10.1002/rnc.4568
10. Xing J, Chi R, Lin N. Adaptive iterative learning control for 2D nonlinear systems with nonrepetitive uncertainties. Int J Robust Nonlinear

Control. 2021;31:1168-1180. https://doi.org/10.1002/rnc.5347
11. Shieh HJ, Hsu CH. An adaptive approximator-based backstepping control approach for piezoactuator-driven stages. IEEE Trans Ind

Electron. 2008;55(4):1729-1738. https://doi.org/10.1109/TIE.2008.917115
12. Hackl CM, Hopfe N, Ilchmann A, Mueller M, Trenn S. Funnel control for systems with relative degree two. SIAM J Control Optim.

2013;51(2):1046-1060. https://doi.org/10.1137/100799903
13. Geniele H, Patel RV, Khorasani K. End-point control of a flexible-link manipulator: theory and experiments. IEEE Trans Control Syst

Technol. 1997;5(6):556-570. https://doi.org/10.1109/87.641401
14. Münz U, Papachristodoulou A, Allgöwer F. Robust consensus controller design for nonlinear relative degree two multi-agent systems

with communication constraints. IEEE Trans Automat Contr. 2011;56(1):145-151. https://doi.org/10.1109/TAC.2010.2084150
15. Escobar G, Ortega R, Sira-Ramirez H, Vilain JP, Zein I. An experimental comparison of several nonlinear controllers for power converters.

IEEE Control Syst Mag. 1999;19(1):66-82. https://doi.org/10.1109/37.745771
16. De Battista H, Mantz RJ. Dynamical variable structure controller for power regulation of wind energy conversion systems. IEEE Trans

Energy Convers. 2004;19(4):756-763. https://doi.org/10.1109/TEC.2004.827705
17. Gutierrez HM, Ro PI. Magnetic servo levitation by sliding-mode control of nonaffine systems with algebraic input invertibility. IEEE Trans

Ind Electron. 2005;52(5):1449-1455. https://doi.org/10.1109/TIE.2005.855651
18. Khosla PK, Kanade T. Experimental evaluation of nonlinear feedback and feedforward control schemes for manipulators. Int J Robot Res.

1988;7(1):18-28. https://doi.org/10.1177/027836498800700102
19. Schitter G, Stark RW, Stemmer A. Sensors for closed-loop piezo control: strain gauges versus optical sensors. Meas Sci Technol.

2002;13:N47-N48. https://doi.org/10.1088/0957-0233/13/4/404
20. Awtar S, Craig KC. Electromagnetic coupling in a dc motor and tachometer assembly. J Dyn Syst Meas Control. 2004;126(3):684-691.

https://doi.org/10.1115/1.1789543
21. de Wit CC, Siciliano B, Bastin G. Theory of Robot Control. Springer-Verlag; 1996.
22. Avrachenkov KE. Iterative learning control based on quasi-Newton methods. Paper presented at: Proceedings of the 37th IEEE Conference

on Decision & Control; December 1998:170-174; Tampa.
23. Spiegel IA & Barton K A closed-form representation of piecewise defined systems and their integration with iterative learning control.

Paper presented at: Proceedings of the 2019 American Control Conference (ACC); 2019:2327-2333; IEEE, Philadelphia, PA. https://doi.
org/10.23919/ACC.2019.8814823

24. Xu JX, Tan Y. Linear and Nonlinear Iterative Learning Control. Vol 404. Springer-Verlag; 2003.
25. Tomizuka M. Zero phase error tracking algorithm for digital control. J Dyn Syst Meas Control. 1987;109(1):65-68. https://doi.org/10.1115/

1.3143822
26. van Zundert J, Bolder J, Koekebakker S, Oomen T. Resource-efficient ILC for LTI/LTV systems through LQ tracking and stable inversion:

Enabling large feedforward tasks on a position-dependent printer. Mechatronics. 2016;38:76-90. https://doi.org/10.1016/j.mechatronics.
2016.07.001

27. Devasia S, Chen D, Paden B. Nonlinear inversion-based output tracking. IEEE Trans Automat Contr. 1996;41(7):930-942. https://doi.org/
10.1109/9.508898

28. Devasia S, Paden B. Stable inversion for nonlinear nonminimum-phase time-varying systems. IEEE Trans Automat Contr.
1998;43(2):283-288. https://doi.org/10.1109/9.661082

29. Zeng G, Hunt LR. Stable inversion for nonlinear discrete-time systems. IEEE Trans Automat Contr. 2000;45(6):1216-1220. https://doi.org/
10.1109/9.863610

https://doi.org/10.1109/TCST.2014.2363412
https://doi.org/10.1109/TCST.2017.2692730
https://doi.org/10.1109/TCST.2018.2865444
https://doi.org/10.1002/rnc.4500
https://doi.org/10.1080/00207729408949269
https://doi.org/10.1080/00207729408949269
https://doi.org/10.1109/ACC.1995.532347
https://doi.org/10.1016/S0005-1098(98)00098-3
https://doi.org/10.1109/TAC.2002.806668
https://doi.org/10.1002/rnc.4568
https://doi.org/10.1002/rnc.5347
https://doi.org/10.1109/TIE.2008.917115
https://doi.org/10.1137/100799903
https://doi.org/10.1109/87.641401
https://doi.org/10.1109/TAC.2010.2084150
https://doi.org/10.1109/37.745771
https://doi.org/10.1109/TEC.2004.827705
https://doi.org/10.1109/TIE.2005.855651
https://doi.org/10.1177/027836498800700102
https://doi.org/10.1088/0957-0233/13/4/404
https://doi.org/10.1115/1.1789543
https://doi.org/10.23919/ACC.2019.8814823
https://doi.org/10.23919/ACC.2019.8814823
https://doi.org/10.1115/1.3143822
https://doi.org/10.1115/1.3143822
https://doi.org/10.1016/j.mechatronics.2016.07.001
https://doi.org/10.1016/j.mechatronics.2016.07.001
https://doi.org/10.1109/9.508898
https://doi.org/10.1109/9.508898
https://doi.org/10.1109/9.661082
https://doi.org/10.1109/9.863610
https://doi.org/10.1109/9.863610

8004 SPIEGEL et al.

30. Andersson JAE, Gillis J, Horn G, Rawlings JB, Diehl M. CasADi: a software framework for nonlinear optimization and optimal control.
Math Program Comput. 2019;11:1-36. https://doi.org/10.1007/s12532-018-0139-4

31. Eksteen JJA, Heyns PS. Improvements in stable inversion of NARX models by using Mann iteration. Inverse Probl Sci Eng.
2016;24(4):667-691. https://doi.org/10.1080/17415977.2015.1055262

32. Agarwal RP. Difference Equations and Inequalities: Theory, Methods, and Applications. 2nd ed. Marcel Dekker, Inc; 2000.
33. Rump SM. Inversion of extremely ill-conditioned matrices in floating-point. Jpn J Ind Appl Math. 2009;26(2-3):249-277. https://doi.org/

10.1007/BF03186534
34. Belsley DA, Kuh E, Welsch RE. Regression Diagnostics: Identifying Influential Data and Sources of Collinearity. John Wiley & Sons, Inc.;

1980.
35. Chu B, Owens D. Singular value distribution of non-minimum phase systems with application to iterative learning control. Paper presented

at: Proceedings of the 52nd IEEE Conference on Decision and Control; 2013:6700-6705; Florence: IEEE. https://doi.org/10.1109/CDC.
2013.6760950

36. Moore KL. Iterative Learning Control for Deterministic Systems. Springer-Verlag; 1993.
37. Norrlöf M, Gunnarsson S. Time and frequency domain convergence properties in iterative learning control. Int J Control.

2002;75(14):1114-1126. https://doi.org/10.1080/00207170210159122
38. Dijkstra BG. Iterative Learning Control with Application to a Wafer Stage. PhD thesis. Delft University of Technology; 2004.
39. Lee JH, Lee KS, Kim WC. Model-based iterative learning control with a quadratic criterion for time-varying linear systems. Automatica.

2000;36(5):641-657. https://doi.org/10.1016/S0005-1098(99)00194-6
40. Owens DH, Hatonen JJ, Daley S. Robust monotone gradient-based discrete-time iterative learning control. Int J Robust Nonlinear Control.

2009;19:634-661. https://doi.org/10.1002/rnc.1338

How to cite this article: Spiegel IA, Strijbosch N, Oomen T, Barton K. Iterative learning control with
discrete-time nonlinear nonminimum phase models via stable inversion. Int J Robust Nonlinear Control.
2021;31:7985-8006. doi: 10.1002/rnc.5726

APPENDIX A. FAILURE OF OTHER ILC SCHEMES FOR SYSTEMS WITH UNSTABLE
INVERSES

This appendix demonstrates that the sufficient conditions for convergence proposed by past works5–9 on ILC for
discrete-time nonlinear systems are in actuality not sufficient for at least some cases of systems having unstable inverses.
This is done by running model-error-free ILC simulations that are guaranteed to converge by the past works, and
observing them to diverge instead.

Each of References 5–9 proposes sufficient conditions for the convergence lim𝓁→∞ e𝓁 = 0N−𝜇+1 of a particular ILC
scheme applied to a particular class of nonlinear dynamics. All of these classes of nonlinear dynamics are supersets of
the SISO LTI dynamics

x𝓁(k + 1) = Ax𝓁(k) + Bu𝓁(k), (A1a)

y𝓁(k) = Cx𝓁(k), (A1b)

with relative degree 𝜇 = 1, that is, CB ≠ 0. Additionally, assume (A1) is stable and x𝓁(0) is such that y𝓁(0) = r𝓁(0) ∀𝓁.
Given a system of this structure, the ILC schemes and convergence conditions of the past works reduce to the following.

From Reference 5 the learning law is

u𝓁+1(k) = u𝓁(k) + L𝓁(k) (𝛾1e𝓁(k + 1) + 𝛾0e𝓁(k)) , (A2)

where L ∈ R is a potentially time-varying and trial-varying part of the learning gain and 𝛾1, 𝛾0 ∈ R are trial-invariant,
time-invariant learning gains with 𝛾1 ≠ 0. The learning laws of References 6–9 are special cases of (A2): Reference 6 sets
𝛾1 = 1, 𝛾0 = −1, Reference 7 sets L to be trail-invariant, 𝛾1 = 1, 𝛾0 = 0, Reference 8 sets 𝛾1 = 1 and leaves 𝛾0 free, and
Reference 9 sets L to be trial-invariant and time-invariant, 𝛾1 = 1, 𝛾0 = 0.

Each work presents a different variation of convergence analysis, but all propose a sufficient condition for the
convergence lim𝓁→∞ e𝓁 = 0N−𝜇+1 under their ILC scheme. References 5,7,8 use

https://doi.org/10.1007/s12532-018-0139-4
https://doi.org/10.1080/17415977.2015.1055262
https://doi.org/10.1007/BF03186534
https://doi.org/10.1007/BF03186534
https://doi.org/10.1109/CDC.2013.6760950
https://doi.org/10.1109/CDC.2013.6760950
https://doi.org/10.1080/00207170210159122
https://doi.org/10.1016/S0005-1098(99)00194-6
https://doi.org/10.1002/rnc.1338

SPIEGEL et al. 8005

F I G U R E A1 NRMSE versus trial number of past works’ ILC schemes (A2) applied with learning gain (A4) to the system (A3). These
NRMSEs monotonically increase, confirming the inability of the past work on ILC with discrete-time nonlinear systems to account for
unstable inverses. The NRMSE trajectory yielded by the stable-inversion-supported ILILC scheme proposed by this article is also displayed.
The convergence of this ILC scheme when applied to (A3) reiterates its ability to control such nonminimum phase systems

(C9) |1 − L𝓁(k)𝛾1CB| < 1 ∀ k, 𝓁.

Reference 9 uses the stricter condition

(C10) 0 < L𝓁(k)CB < 1 ∀ k, 𝓁.

Finally, Reference 6 uses the combination of (C9) and

(C11) ‖A‖ > 1,

where any consistent norm may be chosen for ‖⋅‖.
Consider the example system and learning gain

A =
⎡⎢⎢⎢⎣
−0.3 −0.79 0.53

0 0.5 1
0 −0.36 0.5

⎤⎥⎥⎥⎦ B =
⎡⎢⎢⎢⎣

0
0

1.34

⎤⎥⎥⎥⎦ ,
C =

[
0.7 1.1 −0.74

]
x𝓁(0) = 0 ∀𝓁. (A3)

L𝓁(k) = 0.5(CB)−1 ∀ k, 𝓁 (A4)

with the reference given in Figure 2 and the zeroth control input u0(k) = 0 ∀k. This system has an unstable inverse.
The plant (A3) satisfies (C11), and with (A4) it satisfies (C9) and (C10) for 𝛾1 = 1. Thus, according to References 5-9 the

ILC scheme (A2) is guaranteed to yield tracking error convergence in a model-error-free simulation. However, Figure A1
shows that the tracking error diverges under (A2), meaning that satisfaction of (C9)–(C11) is not actually sufficient for
the convergence of all systems (A1) under the learning law (A2) in practice. This illustrates that the failure to account
for phenomena arising from inverse instability is not unique to NILC, but rather pervades the literature on ILC with
discrete-time nonlinear systems.

In light of the counterexample given by (A3) to the sufficiency of (C9)–(C11) for the convergence of the ILC schemes in
References 5–9, it is desirable to formalize an additional condition that precludes systems such as (A3) from consideration
for the application of these ILC schemes. Such a condition is given by:

(C12) Equation (21) must be asymptotically stable about its solution.

8006 SPIEGEL et al.

For SISO LTI systems with relative degree 𝜇 ≥ 1 (i.e., systems of class (A1)), (C12) is equivalent to

SpectralRadius
(

A − B
(

CA𝜇−1B
)−1CA𝜇

)
< 1, (A5)

where A − B
(

CA𝜇−1B
)−1CA𝜇 is the state matrix of the inverse system. (A3) violates this condition, but many systems

satisfy it, including all damped harmonic oscillators discretized via the forward Euler method. While sufficient, note that
(C9)–(C12) might not be necessary conditions. Analysis of necessary conditions for error convergence under past works’
ILC schemes is beyond the scope of this work. As shown in Figure A1, the ILC scheme proposed by the present article is
capable of solving the problem presented by the given counterexample—(A3)—to past works’ ILC schemes.

