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Summary

In medical and social science research, reliability of testing methods measured
through inter- and intra-observer agreement is critical in disease diagnosis. Often
comparison of agreement across multiple testing methods is sought in situations
where testing is carried out on the same experimental units rendering the outcomes
to be correlated. In this paper, we first developed a Bayesian method for compar-
ing dependent agreement measures under a grouped data setting. Simulation studies
showed that the proposed methodology outperforms the competing methods in terms
of power, while maintaining a decent type I error rate. We further developed a
Bayesian joint model for comparing dependent agreement measures adjusting for
subject and rater level heterogeneity. Simulation studies indicate that our model
outperforms a competing method that is used in this context. The developed method-
ology was implemented on a key measure on a dichotomous rating scale from a
study with six raters evaluating three classification methods for chest radiographs for
pneumoconiosis developed by the International Labor Office.
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1 INTRODUCTION

In medical and social science research, analyzing inter- or intra-observer agreement provides a useful means of assessing the
reliability of a rating system. Such assessments are particularly relevant in the field of radiology, biomarker research, and survey
research, among others. Agreement can be sought across different measurement systems, or across repeated evaluations using the
same systems. Such congruence or reliability plays a critical role in disease diagnostics and prognosis. High values of agreement
indicate consensus in diagnosis and interchangeability of measuring techniques.
When measurements are made on a binary scale, Cohen’s kappa coefficient1 serves as the most widely employed measure to

assess agreement for categorical outcomes. Kappa easily extends to nominal measurement scales with more than two categories.
For ordinal scales, weighted versions of kappa are typically preferred2,3. In this paper, we will focus our attention on measure-
ments with binary scales, assuming each ofN subjects to be rated by two raters. Let pab be the probability of being assigned to
category a by the first rater and to category b by the second rater (a, b = 0, 1). The kappa coefficient is

� =
Po − Pe
1 − Pe

=
2(p11 − p1.p.1)

p1. + p.1 − 2p1.p.1
(1)

where p1. = p10 + p11 and p.1 = p01 + p11. Here Po = p00 + p11 is the observed proportion of agreement and Pe = p1.p.1 +
(1− p1.)(1 − p.1) is the expected proportion of agreement on the basis of chance alone. In the dichotomous setting, kappa has an
attractive interpretation. When the raters are interchangeable, i.e. p1. = p.1, kappa matches the correlation coefficient between

This is the author manuscript accepted for publication and has undergone full peer review but has
not been through the copyediting, typesetting, pagination and proofreading process, which may lead
to differences between this version and the Version of Record. Please cite this article as doi:
10.1002/sim.9165

This article is protected by copyright. All rights reserved.

http://dx.doi.org/10.1002/sim.9165
http://dx.doi.org/10.1002/sim.9165


2 Sen A. ET AL

the two rating scales. Although kappa can technically vary between -1 and 1, negative values are typically rare. Landis and
Koch4 have qualitatively assigned ranges of kappa values to varying degrees of agreement. Inference for a single kappa measure
is detailed in the books by Fleiss et al.5 and Shoukri6. Several authors have investigated extensions of kappa to multi-rater
versions7 and weighted version for multi-category polytomous response scales8. In diagnostic testing, often the interest rests on
comparison of competing markers or testing methods. Procedures for comparing two or more independent kappa statistics have
been considered in the literature9,10. Regression models of kappa incorporating subject level heterogeneity have been studied by
Lipsitz et al.11. A comprehensive review of early work on kappa and associated agreement measures appears in Banerjee et al.12.
In situations where comparison of agreement is naturally conducted using the same set of subjects read by a group of raters

perhaps using different test methods, the distribution of these agreement measures for different test methods are correlated.
Kappa statistics generated in these situations are henceforth referred to as dependent kappas. This is in contrast to comparing
kappa statistics derived from independent subgroups of subjects such as different age-groups, or males vs. females. Donner et
al.13 relaxed the assumption of independence adopted in Donner et al.9 and developed model-based procedures for testing the
equality of two dependent kappa statistics for measurements with binary scales. Mckenzie et al.14, Vanbelle and Albert15 used
resampling methods to compare correlated kappa statistics. By contrast, Barnhart and Williamson16 proposed a weighted least-
squares approach. Kang et al.17 considered inference on kappa statistics when the binary responses are naturally clustered such
as those obtained from a physician-patient diad, where each physician manages multiple patients. Yang and Zhou18 developed
inference for weighted kappa statistic also under a similar framework but in the case of ordinal responses.
Kappa, in its original form, is an aggregate measure and hence does not directly account for subject-level heterogeneity.

However, kappa may depend on covariates, i.e. characteristics of the raters or the subjects being rated. Lipsitz et al11 developed
a subject-level kappa as a function of covariates. Regression models of these probabilities implicitly define a covariate-adjusted
kappa. Nelson and Edwards19 introduced a model-based agreement measure different from kappa that is amenable to covariate
adjustment. Ma et al.20 focused on inference for kappas arising from a longitudinal study in presence of missing data.
Our goal is to develop a set of models and methodology for comparing dependent kappa and for identifying potential factors

influencing agreement in the presence of a hierarchical structure of data. Donner et al.’s13 method that directly addresses the
comparison of dependent kappas was based on the assumption of exchangeability of raters, and the performance of their method
in situations where exchangeability does not hold is unknown. We specifically focus on the Bayesian methodology, which enjoys
several attractive advantages over the non-Bayesian methods. Statistical inference using the non-Bayesian methods are predi-
cated on large-sample normality of the estimated kappa. The asymptotic standard error is complex21 and does not readily lend
itself to an expression for comparing correlated kappa’s. The Bayesian method, on the other hand, is a finite-sample strategy
and is applicable to small-sample situations. Further, a Bayesian framework promotes an expert system where subject-matter
knowledge can be readily incorporated and updated as part of the process.
In this paper, we explore our methodology under two different data schemes. First, we address the situation where only

grouped data of counts is available for assessment of agreement. This is often the case when secondary data is made available
only at the aggregate level in order to mask personal health identifiers. Basu et al.10 developed a Bayesian method in the context
of analyzing grouped data for testing the homogeneity of kappa coefficient across different independent samples. In Section 3,
we extend Basu et al.’s method under a Bayesian framework to deal with the problem of comparing correlated kappa statistics
computed over the same sample of subjects when only summary data are available. Subsequently, under the assumption that
complete rating data are available at the individual level, we adapt and modify a regression model proposed by Lipsitz et al.11
that accounts for the effect of rater and patient level characteristics. Lipsitz et al.’s model used a two-stage approach, ignoring the
uncertainty in the plugged-in estimates of case-specific marginal probabilities carried over from the first stage, thereby inducing
potential bias. Williamson et al.22 proposed a similar method using two sets of generalized estimating equations to model kappa
for measuring dependent categorical agreement data, which is subject to the same caveat as in Lipsitz et al.11. By contrast, our
method jointly estimates parameters in the models from the two stages in a Bayesian setting, thereby properly accounting for
the uncertainty. We consider only binary rating scales in this paper. In Section 5, we indicate how the models and methods can
potentially extend to multi-category agreement data under dependence.
The remainder of the article is organized as follows. The example that motivated this study is presented in Section 2. Section

3 introduces a Bayesian model for grouped data to compare dependent kappa statistics. Detailed simulation results are presented
comparing the proposed methodology to competing approaches. In Section 4, a model-based approach is presented that offers a
joint analysis with subject-level data under a Bayesian framework. Our methodology is implemented on a key measure obtained
from an example in radiology that serves as the motivating example. Finally, we conclude our paper in Section 5 with some
directions for future research. Appendix A contains the relevant codes, with additional tables and figures included in Appendix
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B. This study was approved by the University of Michigan Institutional Review Board (IRBMED approval #2002-0855), under
which only fully de-identified data will be made available upon request.

2 A MOTIVATING EXAMPLE

Work in this article was originally motivated by the need to evaluate a standardized classification method for chest radiographs
for pneumoconiosis developed by the International Labour Office (ILO) based in Geneva, Switzerland, in the 1930’s. After
multiple revisions, the ILO system remains the most widely used method for classifying chest radiographic abnormalities related
to inhalation of pathogenic dusts23,24,25. Up through the early 2000’s, the ILO system was predicated solely on use of film-screen
radiographs (FSR)23. Beginning in about the 1980’s in the United States and other medically advanced countries, many medical
facilities began replacing traditional FSR equipment with various forms of digital radiographic (DR) imaging, including both
hard copy (HC) format (i.e., digital images printed on film and viewed with a traditional light box), and soft copy (SC) format
(i.e., digital images viewed on a computer workstation monitor). By the early 2000’s it had become difficult to obtain FSR
chest radiographs in many such locations, even though FSR is still widely used in many low and middle income countries26.
Yet, up until that point, there had only been a few studies that compared the reliability of the DR technology and FSR for the
identification and quantification of abnormalities due to dust inhalation using the ILO system27,28.
In a recently concluded study funded by the National Institutes of Occupational Safety and Health (NIOSH)29,30, a total of

one hundred seven subjects, many suffering from severe pneumoconiosis, were recruited from the pool of patients seen at or
referred to the University of Michigan; or listed in the Michigan or Ohio Silicosis Registries. Pneumoconioses are a group of
interstitial lung diseases caused by the inhalation of certain dusts and the lung tissue’s reaction to it. The principal causes of the
disease are work-place exposures, including asbestos, silica and coal.
Six certified raters evaluated images in each of the three formats (FSR, SC, and HC) in a random order, being blinded to the

identity of the subject which the image was associated with. An ILO scoring sheet that included several categorical items, with
ratings recorded both on nominal and ordinal scales, were filled out after each reading. This exercise was repeated once two
months after the initial reading, yielding a total of six readings on each subject by a single rater. The data layout for a typical
dichotomous outcome for two subjects from the study is schematically depicted in Table 1. The goal of the investigation was
to assess and compare the impact of image format (FSR, SC, and HC) on the recognition and quantification of dust-related
abnormalities as well as on the intra- and inter-rater reliability of the readings.

[TABLE 1 about here.]

3 A BAYESIAN METHOD FOR COMPARING �-COEFFICIENT OF DEPENDENT
SAMPLES

3.1 A Bayesian model
In order to understand the basic framework, assume each of n subjects is rated on a binary scale using m different settings. The
methodology presented in this section applies to a single rater. The multiple rater problem is addressed in Section 4. The rater
assigns the binary score to each subject twice using each method of the m settings. Let X1ij and X2ij be the ratings on the i-
th subject using the j-th setting in the two rounds, respectively. For setting j, one can measure the intra-rater agreement using
�j . Since the � values are calculated based on data from the same set of subjects, they are correlated. We propose a Bayesian
method for testing the hypothesisH0 ∶ �1 = �2 = ... = �m. Note the method proposed in this section can be applied to grouped
data as shown in Figure 1 and no individual-level data are needed.

[FIGURE 1 about here.]

For a generic setting j, let pabj denote the probability of being assigned to category a by the first reading and to category b by
the second round reading (a, b = 0, 1) within the j-th setting (j = 1, 2, ..., m). The kappa coefficient for the j-th setting is

�j =
2(p11j − p1.jp.1j)

p1.j + p.1j − 2p1.jp.1j
(2)

where p1.j = p10j + p11j and p.1j = p01j + p11j .
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Applying the multinomial distribution to the counts in the four cells in the j-th contingency table, the likelihood for j-th
setting, based on a random sample of n pairs of binary responses, is

Lj(p11j , p1.j , p.1j) =
n!

∏

nabj!
pn11j11j (p1.j − p11j)

n10j (p.1j − p11j)n01j (1 − p1.j − p.1j + p11j)n00j (3)

where nabj =
∑n
i=1 I(X1ij = a,X2ij = b). We assume the availability of count data which allows us to work with the likelihood

in (3).
In order to formulate the dependence, one can potentially introduce a multivariate structure by specifying all joint probabilities

across readings and settings. Such an overly parameterized problem may suffer from sparsity even when the number of methods
m is moderate. Instead we adopt a more parsimonious structure of modeling the dependence.
Note that the marginal probabilities can be re-expressed as p1.j = pcj−11.1 , p.1j = pcj−1.11 for some positive real numbers cj−1, j =

2, ..., m. The advantage of such a representation is the ability to induce dependence through the common baseline values p1.1, p.11.
Further, the motivation of using a power formulation stems from the frailty structure often used for modeling dependence. Much
like the frailty structure, cj’s are latent, but unlike frailty, they are not shared across all j. Parsimony is imposed by assuming
that the same cj−1 operates on both marginals. This facilitates formulation of dependence between the marginals p1.j , p.1j for the
jth setting. For a dichotomous rating scale, the likelihood is given by

L =
m
∏

j=1
Lj(p11j , p1.j , p.1j). (4)

For the priors, we choose the beta distribution for p1.1 and p.11, i.e,Beta(��, �(1−�)), Beta(��, �(1−�)), where 0 < � < 1, 0 <
� < 1, and they are independent. The hyperparameters � = E(p1.1) and � = E(p.11) reflect the average prior guess for p1.1 and
p.11, whereas the hyperparameters � and � are quantification of the degree of belief about the guess. A non-informative positive
prior such as U (0,+∞) is assumed for cj−1. Then p11j conditioned on p1.j and p.1j is U [max(0, p1.j + p.1j − 1), min(p1.j , p.1j)].
Based on the above prior and likelihood, when m = 2, the joint posterior of p1.1, p.11, c1, p111, p112 is

�(p1.1, p.11, c1, p111, p112|data) ∝ pn111111 (p1.1 − p111)
n101(p.11 − p111)n011(1 − p1.1 − p.11 + p111)n001

×pn112112 (p
c1
1.1 − p112)

n102(pc1.11 − p112)
n012(1 − pc11.1 − p

c1
.11 + p112)

n002

×
p��−11.1 (1 − p1.1)�(1−�)−1p

��−1
.11 (1 − p.11)�(1−�)−1

[min(p1.1, p.11) − max(0, p1.1 + p.11 − 1)][min(pc11.1, p
c1
.11) − max(0, p

c1
1.1 + p

c1
.11 − 1)]

(5)

The joint distribution in (5) is simply a product of the likelihood function and the prior model, modulo the constant of integration.
While (5) cannot be simplified any further, a fast and efficient Markov Chain Monte Carlo (MCMC) method can be employed
in order to calculate the marginal posteriors of the parameters. The posterior distribution of �1, �2 can be obtained with (2). The
posterior distribution of the difference of �1, �2 is used to test the hypothesis H0 ∶ �1 = �2. We refer to this newly proposed
method as Bayesian Method for Dependent Kappa (BMDK) hereafter.

3.2 Homogeneity of the Kappa Statistics
In general, we are interested in testing the overall hypothesis H0 ∶ �1 = ⋯ = �m vs. the alternative Ha ∶ not H0. In the
Bayesian context, the usual method is to make a decision on the basis of Bayes Factor (BF). Below we propose this and two
other simple-to-adopt methods as competitors.

Method A (Bayes Factor)
Bayes Factor (BF), originally proposed by Jeffreys31 treats hypothesis testing as a model selection problem and is estimated as
the ratio of the marginal likelihood of the data under the null and the alternative, the two competing models. Denoting byD the
data evidence, we have the expression

BF =
Pr(D|H0)
Pr(D|Ha)

. (6)

There are several ways to estimate the quantity Pr(D|H) for a generic hypothesisH , of which perhaps the easiest, and the most
easily implementable is the one that relies on evaluation of the conditional likelihood given the parameters that are sampled



Sen A. ET AL 5

from the prior. Denoting by � the ensemble of parameters, we can write

Pr(D|H) = ∫ Pr(D|H,�) Pr(�|H) d�, (7)

where Pr(�|H) refers to the prior distribution underH . One can repeatedly sample parameters �j from the prior underH for a
large number of times and estimate (7) by the sample average of the conditional likelihoods Pr(D|H,�j) evaluated at the sampled
�j . We adopt this approach for our simulations provided in the next section. We follow standard guidelines for assessment of
BF with BF values ≥ 1∕3 indicating insufficient evidence againstH0

32.

Method B (Probability of Dominance)
The posterior probability of dominance of the Bayesian estimators can be used as evidence either in favor or against H0.
Specifically one can compute

M = max
i≠j

Pr(�̂i > �̂j|data), (8)

where �̂ refers to the Bayesian estimator of �. If M is close to 50%, the evidence against H0 is negligible. In the Bayesian
paradigm, such a criterion is natural and has been used in other contexts33. In order to have a guideline akin to BF, one can come
up with a prescription such as

M 50% – 69% 70% – 79% 80% – 89% ≥ 90%
Evidence againstH0 None Weak Moderate Strong

Method C (Multivariate Statistics)
The above methods do not explicitly incorporate the extent of dependence between the estimators themselves. A properly
weighted multivariate statistics can be constructed as

Q = 	 ′�̂−1	 (9)

where Ψ = (�̂2 − �̂1, �̂3 − �̂2,⋯ , �̂m − �̂m−1)′ is the vector of the successive differences of the Bayesian estimators and Σ̂ is the
corresponding estimated variance-covariance matrix. Since the inferential approach is simulation based, all the ingredients can
be estimated without difficulty from the posterior MCMC samples. While the true distribution of Q underH0 is unknown, it is
reasonable to think of Q to be approximately distributed as a chi-square random variable with (m − 1) degrees of freedom.

3.3 Simulation studies for evaluating BMDK
In order to assess the performance of BMDK, we ran a simulation study for m = 3. To evaluate Type I error of the proposed
method (Table 2), summary data of 2 by 2 tables were generated for three settings from multinomial distributions determined by
sample size n, fixed marginal probabilities p1.1, p.11, link parameters c1, c2, and a common �. To evaluate power of the proposed
method (Table 3), a similar simulation setup was used but with different �’s for the three settings. The given values of c1, c2
determined the marginals for the second and third settings, i.e., p1.2 = pc11.1, p1.3 = pc21.1.
In estimation, we consider the hyper-parameters � = � = 2 and � = � = 0.5, which impose the prior specification, p1.1, p.11 ∼

beta(1, 1). Further, c1, c2 are independently drawn from a U (0, 10) distribution. Codes for the BDMK are presented in Appendix
Section A.1. We fitted our model using Rjags34. We ran three chains and assessed convergence graphically using trace plots.
We used a burn-in of 1,000 iterations and conducted inference based on a chain of length 5,000 from the posterior distributions
of model parameters. Quantities in Table 2 and Table 3 are obtained as averages over 1000 replications of this process.
Table 2 shows the type I error analogs for testing H0 ∶ �1 = �2 = �3 at various levels of n, �, and p, where � is the

common value. We estimated statistics based on the three homogeneity tests described in Section 3.2 and compared them with
the Bayesian method of Basu et al10, which is based on independence of � statistics among settings. We report the statistics
BF ,M,Q as described in (6)–(9). In addition, we also report the mean squared error (MSE) estimated as

∑3
j=1(�̂j − �j)2∕3

where �̂j is the posterior mean estimate for � for method j, j = 1, 2, 3. Based on the table values, BDMK and Basu’s method are
reasonably close to each other for small values of �. Both values estimate the average BF to be close to 1 with the proportion
of BF values exceeding 1/3 varying between 82% and 89%. Under either method, the dominance probability M mostly stays
below 60% with BDMK based estimates falling slightly closer to 50% for larger �. Similarly, the percentage of timesQ is larger
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than 5.99, the 95tℎ percentile of �2 with 2 degrees of freedom, is greater for BDMK compared to the method by Basu et al.,
especially for larger �. Finally the estimated MSE based on BDMK are also lower than its competitor.
Table 3, estimates the analog of power for detecting the difference between the � parameters. In this case, the proportion of

cases for which BF ≥ 1∕3 is significantly smaller for BDMK compared to Basu et al.’s method. This is particularly true for
moderate to large n. The dominance probabilityM also shows a much stronger support for the alternative under BDMK. If we
estimate power by Pr(Q > 5.99), again BDMK beats the Basu et al’s method which ignores dependence. The average MSE
estimated by

∑3
j=1(�̂j − �j)

2∕3 are comparable across the two methods. Overall it appears that BDMK outperforms Basu et al’s
method with respect to power and maintains a comparable performance with regards to type I error.
Finally Figure S1 shows for each scenario in Table 2, an overlay of a smoothed empirical distribution ofQ and the probability

distribution function of a �2 with 2 degrees of freedom. The proximity of the curves justifies using �2 as the approximate null
distribution for calibration purposes.

[TABLE 2 about here.]

[TABLE 3 about here.]

3.4 Application of BMDK to the imaging study
To demonstrate the above proposed BMDK method using the chest radiograph imaging study, we compared the intra-rater
agreement on the parenchymal abnormalities (PARABS) rating between the three chest radiographic image formats (HC, SC,
FSR). Parenchymal abnormalities are characterized by abnormal increase in tissue density around the air sacs of the lung. Since
some form of parenchymal abnormality is common, it is important to identify the ones which require treatment and is indicative
of interstitial disease. The outcome variable (PARABS) is dichotomous, indicating the presence or absence of abnormality. A
total of six experienced raters interpreted all images in each of the three image formats (FSR, HC, SC) in random order on two
separate occasions (i.e., each rater read each image twice). We analyzed the data separately for these six raters. In each case,
we have used the same prior specification as we used for the simulation. Table 4 reports the statistics we proposed in Section
3.2 for each rater. Instead of reporting an overall M statistic, we documented the posterior probability of the three pairwise
ordering of estimated �’s, in order to identify where the difference (if any) is. For rater 3, both BF and the dominant probability
method identify the ordering �FSR > max{�HC , �SC} to be present. The Q value is also quite high although did not cross the
significance threshold of 5.99. No significant difference between �HC and �SC emerged. For other raters, the distinction between
� statistics is not prominent.
Figure S2 in the Appendix shows side-by-side boxplots of the reliability estimated from the MCMC samples stratified by

rater, using our proposed BMDKmethod. As we found before, for most raters, the difference between image formats is minimal.
However, the variability across raters is evident from the plots.
In our data analysis, we assumed different c values for HC vs FSR (c1) and HC vs SC (c2). Table S1 in the Appendix demon-

strates the summary measures from the posterior stratified by raters. Despite the fact that the prior support for c is moderate,
the bulk of the posterior distribution generally stayed under 3. Further, the distributions are unimodal, exhibiting only minor
skewness (Figure S3). All estimates were based on 50000 MCMC samples.
Since the unadjusted calculations cannot provide an overall comparison between the three image formats adjusting for het-

erogeneity between raters, the conclusion is not straightforward. When individual data is available, a deeper methodology to
capture subject level heterogeneity is warranted. In what follows, we present a regression based approach that can be used to
adjust for subject and rater level covariates.

[TABLE 4 about here.]

4 A BAYESIAN JOINT MODEL FOR COMPARING DEPENDENT �-COEFFICIENT
ADJUSTED FOR SUBJECT- AND RATER-LEVEL HETEROGENEITY

4.1 A Bayesian joint model
Lipsitz et al.11 proposed a regression model for � for dichotomous ratings by using two ordinary logistic regressions and one
linear regression. To take advantage of widely available standard software packages, they adopted a two-stage approach. At the
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first stage, one fits the two ordinary logistic regressions to calculate case-specific marginal probabilities for each pair of readings;
at the second stage, these case-specific marginal probabilities are plugged into the linear regression model for �. The caveat
of this two-stage approach is that the uncertainty in the plugged-in estimates of case-specific marginal probabilities from the
first stage sub-model can potentially lead to biased and less efficient estimates in the second stage sub-model35. We propose to
eliminate this potential bias and account for hierarchical structure in agreement data by jointly estimating parameters in the two
sub-models simultaneously under a Bayesian framework.
Using the same notation as in Section 3, the joint probability function for the observed pair of ratings X1ij and X2ij can be

formulated as a function of subject-level marginal probabilities p1.ij and p.1ij , and subject level Kappa �ij .

Pr(X1ij = x1ij , X2ij = x2ij) = [p1.ijp.1ij +
�ij
2
(p1.ijp′.1ij + p

′
1.ijp.1ij)]

x1ijx2ij

× [p1.ijp′.1ij −
�ij
2
(p1.ijp′.1ij + p

′
1.ijp.1ij)]

x1ij (1−x2ij )

× [p′1.ijp.1ij −
�ij
2
(p1.ijp′.1ij + p

′
1.ijp.1ij)]

(1−x1ij )x2ij

× [p′1.ijp
′
.1ij +

�ij
2
(p1.ijp′.1ij + p

′
1.ijp.1ij)]

(1−x1ij )(1−x2ij ) (10)

where p′1.ij = 1 − p1.ij and p′.1ij = 1 − p.1ij , and x1ij , x2ij equal 0 or 1. We assume �ij is a linear function of K covariates
Wij = {W1ij ,W2ij , ...,WKij},

�ij = �0 + βWij (11)

where β = {�1, �2, ..., �K} are regression coefficients. We used two separate logistic regression models for modeling p1.ij and
p.1ij to allow effects of subject-level covariates and rating methods on these subject-specific marginal probabilities to differ
between the two rounds. Alternatively, they can be modeled using the same equation. In addition, we introduced subject level
random effects to account for association between readings for the same subjects.

logit(p1.ij) = �1i + 10 + γZij (12)
logit(p.1ij) = �2i + 20 + γZij (13)

where {�1i, �2i}
i.i.d∼ N(, �) are the subject-specific random effects,� =

(

�21 0
0 �22

)

,Zij = {Z1ij , Z2ij , ..., ZSij} are S covariates

that are associated with the marginal probabilities, and γ = {11, 12, ..., 1S} and γ = {21, 22, ..., 2S} are the corresponding
regression coefficients. Combining equations (10), (11), (12) and (13), the likelihood of the sample can be written as a function
of �0, β, 10, 20, γ, γ, and �.

L =
N
∏

i=1

m
∏

j=1

+∞

∫
−∞

+∞

∫
−∞

Pr(X1ij , X2ij|�0,β, 10, 20,γ,γ,Zij ,Wij) × f (�1i, �2i|�21 , �
2
2)d�1id�2i

Denote the prior distribution for �0, β, 10, 20, γ, γ, and � as �(�0), �(β), �(10), �(20), �(γ), �(γ), and �(�),
respectively. DenoteD as observed data. MCMC can be employed to sample from the joint posterior distribution.

�(�0,β, 10, 20,γ,γ, �|D)

∝
N
∏

i=1

m
∏

j=1

+∞

∫
−∞

+∞

∫
−∞

Pr(X1ij , X2ij|�0,β, 10, 20,γ,γ,Zij ,Wij) × f (�1i, �2i|�21 , �
2
2)d�1id�2i

×�(�0) × �(β) × �(10) × �(20) × �(γ) × �(γ) × �(�)

4.2 Application of the proposed Bayesian joint model to the imaging study
We applied the proposed Bayesian joint model to the chest radiograph imaging study. It is well known that the marginal dis-
tribution of the outcome variable affects the level of �-coefficient and makes interpretation and comparison between � values
challenging. The goal of this analysis was to compare intra-rater agreement on the parenchymal abnormalities rating between
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the three chest radiographic image formats (HC, SC, FSR) adjusting for patient characteristics that can potentially influence the
probability of being rated as having parenchymal abnormalities and difference in intra-rater agreement between raters. We mod-
eled the subject-level marginal probability of being rated as having parenchymal abnormalities in round 1 and round 2 (p1.ij and
p1.ij) as a function of body mass index (BMI), gender, pack-years of smoking, and age of patients, and image format.

logit(p1.ij) = �1i + 10 + 11BMIi + 12GENDERi + 13PACKYEARSi + 14AGEi + 15HCij + 16FSRij
logit(p.1ij) = �2i + 20 + 21BMIi + 22GENDERi + 23PACKYEARSi + 24AGEi + 25HCij + 26FSRij

HereHCij , FSRij are indicators of ratings based on HC, FSR formats, respectively.
We modeled the �-coefficient as a function of image format and rater.

�ij = �0 + �1rater2ij + �2rater3ij + �3rater4ij + �4rater5ij + �5rater6ij + �6HCij + �7FSRij
where {rater2ij , ..., rater6ij} are five rater indicators, with rater 1 as the reference category. Using the same equations for marginal
probabilities p1.ij , p.1ij and �ij , we also fit a Bayesian version of the two-stage model proposed by Lipsitz et al. (2001)11 and
compared the results obtained from the joint Bayesian model to the two-stage model (Table 5, See Table S2 for more details).
We used N(0,100) as priors for �0, β, 10, 20, γ, and γ. The subject specific parameters �1i, �2i were assumed to be i.i.d.

N(0, �2) random variables, where the hyper-parameter � ∼ U (0, 100). We fitted our model using Rjags. For generating the
MCMC samples for inference, we ran three chains and assessed convergence graphically using trace plots. We used a burn-in of
1,000 iterations and conducted inference based on a chain of length 5,000 from the posterior distributions of model parameters.
The Bayesian joint model results showed that BMI, age, sex, and image format were significantly associated with the chance

of being rated as having parenchymal abnormalities. After adjusting for rater difference in �-coefficient, image format didn’t
significantly affect the intra-rater reliability. Although the two-stage method showed similar results, sex wasn’t found to be
significantly associated with the likelihood of being rated as having parenchymal abnormalities using the two-stage method.

[TABLE 5 about here.]

4.3 Simulation study for evaluating the proposed Bayesian joint model
To compare the performance of joint modeling and Lipsitz’s 2-stage model, we ran a simulation with a simpler setting with
two imaging methods only. In the marginal models, a continuous variable z1i from standard normal distribution and a binary
variable z2i with probability 0.5 are generated, and method indicator is included as z3ij . For Zij = {z1i, z2i, z3ij} in (12), we
took the coefficients to be 10 = 1,γ = {1.2,−1, 0.3}. In marginal model for p.1ij in (13), 20 = 1.1,γ = {1,−0.8, 0.4}. The
random intercept for each subject �1i, �2i ∼ N(0, 0.12), which is relatively small compared to the main effect in the models.
Logistic link was used for the marginals. For the kappa model (11), only one method indicator was included. Thus when type I
error is sought in Table 6, �0 = �, and � = 0. On the other hand, in Table 7 �0 = �1 and � = �2 − �1.
We compared our Bayesian joint-modeling methods with Lipsitz’s frequentist method. For the Bayesian joint model, we

only report the method based on the dominant probability M . We also estimated the probability of M exceeding 90% by
the corresponding empirical proportion based on the 1000 iterations. Type I error and power for the frequentist method were
estimated empirically in a similar manner. The story is analogous to that observed in the case of grouped data. The Bayesian
joint model outperforms the Lipsitz method with regards to power while the type I errors are generally comparable. When the
random intercept variance was tripled to induce greater within-subject correlation, the pattern remained unchanged.

[TABLE 6 about here.]

[TABLE 7 about here.]

5 CONCLUDING REMARKS

In this article, we investigated homogeneity testing of correlated kappa statistics. The study explored testing both under a
grouped-data setting as well as under individual-level data setting using a regression formulation that controls for subject- and
rater-level heterogeneity. The framework we adopted is Bayesian, which has the capability of handling flexible modeling struc-
ture as well as providing a natural strategy for incorporating measurement error. In general, our proposed Bayesian method has
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better power than the competing Bayesian or frequentist method which either ignores the intra-subject correlation, or measure-
ment error. An additional study (not reported here) also demonstrated the superiority of BDMK over other frequentist methods
that (falsely) assume interchangeability of raters (Donner et al.13). We proposed multiple methods for assessing homogeneity
of � statistics, all of which work well in tandem, although it appears that the dominant probability method is more pro-active in
picking up signals.
The current article is entirely devoted to dichotomous ratings. With more than two categories of response, the distinction

between nominal and ordinal scales comes into play, and the models and methods used in these contexts are inherently different.
However, we contend that the theoretical framework of our proposed methods extend somewhat naturally. For example, in the
grouped-data setting, the marginal probabilities can be modeled as a Dirichlet distribution. Analogously, c, the power parameters
for each table, can also be modeled as a multivariate distribution, such as multivariate lognormal. While theoretically feasible,
the challenge is the loss of parsimony and it is unclear how such modeling impacts the speed and convergence of the MCMC
algorithms. In a similar token, individual-level regression models may also involve heavy parameterization. Studying agreement
for polytomous response incorporating dependence is an exercise worth pursuing.
While kappa is a traditional measure that has been well accepted for decades, its image has been tainted by some shortcomings.

The strong dependence of kappa on marginal prevalence, forcing an upper bound, is well known. Related to this, Feinstein and
Cicchetti36 noted that in the case of marginal heterogeneity, it is possible to get a low kappa value despite high level of diagonal
agreement. Interval estimation of � when true � is non-zero is not straightforward. Several modifications of kappa as well as
alternative measures for assessing agreement between diagnostic tests have been developed. A popular line of development
envisions discrete scoring as realizations arising from an underlying (latent) scoring scheme on the continuum37.
Application of the kappa statistic to describe agreement between two diagnostic tests with or without the presence of any gold

standard can be investigated in the context of the sensitivity and specificity. Much like prevalence, � is also dependent on these
two properties of a test38. How this dependence affects the inference related to �, remains an open area of research.
Agreement between diagnostic tests, rating methods etc. remains an important topic of research and exploration. Several

researchers have developed methodology to assess agreement between outcomes measured on different scales. These include
Concordance Correlation Coefficient introduced and studied by Lin39,40 for continuous data that has been extended to repeated
measures41 and survival outcomes42. When trying to assess the association between a continuous and an ordinal measurement
that have not necessarily been measured in identical manner, a more general concept of broad sense agreement has recently been
proposed43. Bayesian treatment of such agreement paradigms have largely been unexplored.
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FIGURE 1 Summary data of dependent binary agreement data
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TABLE 1 Partial Data from two selected subjects from the NIOSH study

Subject rater Setting

FSR (j=1) HC (j=2) SC (j=3)
Round 1 Round 2 Round 1 Round 2 Round 1 Round 2

i X1i1 X2i1 X1i2 X2i2 X1i3 X2i3
1001 1 1 1 1 1 1 1
1001 2 1 1 1 1 1 1
1001 3 0 0 1 1 1 1
1001 4 1 1 1 1 1 1
1001 5 0 1 1 1 1 1
1001 6 1 1 1 1 1 1
1002 1 1 1 0 1 1 1
1002 2 1 1 1 1 1 1
1002 3 1 1 1 1 1 1
1002 4 0 1 1 1 0 1
1002 5 1 1 1 1 1 1
1002 6 1 1 1 1 1 1
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TABLE 2 Type I errors for testing H0 ∶ �1 = �2 = �3. comparison of the proposed Bayesian method and existing method.
Total of 1000 iterations. c1 = 0.1, c2 = 0.25.

BDMK Basu
sample size avg BF BF≥1/3 (%) M Q > 5.99 (%) MSE avg BF BF≥1/3 (%) M Q > 5.99 (%) MSE
�=0.1, (p1.1,p.11)=(0.2, 0.7)

50 1.018 0.852 0.610 0.010 0.006 0.995 0.849 0.577 0.015 0.008
100 1.109 0.850 0.578 0.034 0.004 1.076 0.859 0.552 0.026 0.005
200 1.220 0.857 0.552 0.044 0.002 1.220 0.880 0.529 0.029 0.003

�=0.2, (p1.1,p.11)=(0.3, 0.7)
50 0.999 0.849 0.559 0.014 0.009 0.933 0.828 0.526 0.022 0.012
100 1.058 0.821 0.536 0.039 0.006 1.045 0.827 0.505 0.033 0.008
200 1.192 0.849 0.524 0.062 0.004 1.175 0.858 0.508 0.063 0.005

�=0.4, (p1.1,p.11)=(0.4, 0.6)
50 0.992 0.816 0.512 0.028 0.017 1.008 0.814 0.549 0.064 0.021
100 1.125 0.848 0.510 0.058 0.011 1.161 0.835 0.535 0.071 0.013
200 1.273 0.851 0.511 0.051 0.006 1.270 0.867 0.536 0.058 0.007

�=0.6, (p1.1,p.11)=(0.6, 0.7)
50 1.069 0.876 0.562 0.017 0.024 1.062 0.844 0.647 0.068 0.037
100 1.105 0.845 0.552 0.032 0.016 1.186 0.836 0.621 0.086 0.022
200 1.148 0.849 0.533 0.048 0.009 1.256 0.849 0.592 0.071 0.012
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TABLE 3 Empirical powers for testing H0 ∶ �1 = �2 = �3, comparison of the proposed Bayesian estimation and existing
method. Total of 1000 iterations. c1 = 0.1, c2 = 0.25.

BDMK Basu
sample size avg BF BF≥1/3 (%) M Q > 5.99 (%) MSE avg BF BF≥1/3 (%) M Q > 5.99 (%) MSE
�1=0.2, �2=0.3, �3=0.4, (p1.1,p.11)=(0.3, 0.7)

50 0.594 0.602 0.853 0.042 0.033 0.637 0.613 0.765 0.122 0.041
100 0.256 0.242 0.949 0.390 0.033 0.531 0.483 0.858 0.249 0.038
200 0.050 0.033 0.991 0.894 0.034 0.316 0.290 0.937 0.512 0.037

�1=0.4, �2=0.5, �3=0.6, (p1.1,p.11)=(0.4, 0.6)
50 0.757 0.684 0.785 0.069 0.071 0.840 0.712 0.719 0.123 0.074
100 0.510 0.471 0.884 0.278 0.073 0.668 0.564 0.827 0.225 0.075
200 0.232 0.203 0.961 0.628 0.074 0.445 0.397 0.918 0.404 0.074

�1=0.2, �2=0.4, �3=0.6, (p1.1,p.11)=(0.4, 0.6)
50 0.332 0.323 0.928 0.379 0.086 0.413 0.398 0.892 0.345 0.087
100 0.107 0.088 0.983 0.795 0.087 0.175 0.147 0.967 0.662 0.088
200 0.009 0.004 0.999 0.988 0.088 0.028 0.020 0.996 0.947 0.088
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TABLE 4 Intra-rater comparison of kappa’s for PARABS

Posterior Probability Posterior mean of �
Raters BF Q �HC < �FSR �HC < �SC �FSR < �SC HC FSR SC

1 0.814 1.663 0.13 0.114 0.463 0.757 0.691 0.684
2 1.959 0.307 0.437 0.645 0.715 0.697 0.685 0.739
3 0.255 4.648 0.954 0.428 0.03 0.617 0.791 0.593
4 2.559 0.157 0.527 0.651 0.629 0.745 0.75 0.779
5 1.506 0.943 0.243 0.183 0.412 0.755 0.68 0.654
6 1.453 0.980 0.668 0.838 0.723 0.758 0.796 0.842
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TABLE 5 Comparison of kappa’s for PARABS using a Bayesian joint model and a two-stage model

Method Posterior
Mean

Posterior
SD

2.5%
quantile

97.5%
quantile

Posterior probability
of parameter <0

Two-stage
HC vs. SC: �6 0.101 0.091 -0.080 0.278 0.127
FSR vs. SC: �7 0.050 0.091 -0.125 0.233 0.288
FSR vs. HC: �7 − �6 -0.051 0.089 -0.227 0.125 0.718

Joint model
HC vs. SC: �6 0.061 0.041 -0.012 0.144 0.062
FSR vs. SC: �7 0.042 0.047 -0.051 0.130 0.193
FSR vs. HC: �7 − �6 -0.019 0.032 -0.086 0.039 0.728
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TABLE 6 Type I errors for testingH0 ∶ �1 = �2. comparison of the Bayesian joint-modeling and Lipsitz’s frequentist method.
Total of 1000 iterations.

Joint model Lipsitz
� sample size M Pr(M > 0.9) type 1 error (Wald test)
random intercept ∼ N(0, 0.12)
0.5 50 0.493 0.046 0.057

100 0.471 0.056 0.049
200 0.474 0.076 0.067

0.3 50 0.486 0.038 0.061
100 0.478 0.053 0.042
200 0.500 0.066 0.052

0.1 50 0.496 0.017 0.058
100 0.502 0.029 0.040
200 0.502 0.050 0.032

random intercept ∼ N(0, 0.32)
0.3 50 0.486 0.031 0.053

100 0.487 0.065 0.055
200 0.478 0.070 0.040

0.1 50 0.478 0.011 0.048
100 0.503 0.032 0.050
200 0.508 0.037 0.041
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TABLE 7 Powers for testingH0 ∶ �1 = �2. comparison of the Bayesian joint-modeling and Lipsitz’s frequentist method. Total
of 1000 iterations.

Joint model Lipsitz
�1 �2 sample size M Pr(M > 0.9) power (Wald test)
random intercept ∼ N(0, 0.12)
0.3 0.5 50 0.694 0.218 0.169

100 0.794 0.407 0.257
200 0.891 0.647 0.442

0.1 0.5 50 0.842 0.467 0.439
100 0.951 0.838 0.686
200 0.994 0.992 0.943

0.1 0.3 50 0.668 0.117 0.116
100 0.777 0.331 0.200
200 0.894 0.664 0.392

0.1 0.4 50 0.766 0.307 0.264
100 0.882 0.610 0.417
200 0.967 0.910 0.713

random intercept ∼ N(0, 0.32)
0.1 0.3 50 0.678 0.140 0.141

100 0.770 0.342 0.228
200 0.888 0.637 0.368
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