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54 Abstract

55 Variation in dietary specialization stems from fundamental interactions between species and their 

56 environment. Consequently, understanding the drivers of this variation is key to understanding ecological 

57 and evolutionary processes. Dietary specialization in wild bees has received attention due to their close 

58 mutualistic dependence on plants, and because both groups are threatened by biodiversity loss. Many 

59 principles governing pollinator specialization have been identified, but they remain largely unvalidated. 

60 Organismal phenology has the potential to structure realized specialization by determining concurrent 

resource availability and pollinator foraging activity. We evaluate this principle using mechanistic models 

62 of adaptive foraging in pollinators within plant-pollinator networks. While temporal resource overlap has 

63 little impact on specialization in pollinators with extended flight periods, reduced overlap increases 

64 specialization as pollinator flight periods decrease. These results are corroborated empirically using 

65 pollen load data taken from bees with shorter and longer flight periods across environments with high and 

66 low temporal resource overlap.
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67

68

69 Introduction

70 The dietary specialization of an organism sits at the nexus of numerous fundamental processes in 

ecology and evolutionary biology. Dietary specialization helps define organismal niches (Kartzinel et al 

72 2015), mediates migration and dispersal potential (Bommarco et al 2010; Boyle et al 2011), shapes inter- 

73 and intraspecific competition (Svanbäck & D.I. Bolnik 2007; deVries 2017), influences species 

74 persistence in the face of environmental disturbance (Wood et al 2019), and can affect rates of speciation 

75 and extinction (Thompson 1998). Even the simple assembly of the collection of organisms’ dietary ranges 

76 in a community defines one of the major concepts in ecology, the food web. Therefore, identifying the 

77 drivers influencing dietary specialization provides fundamental steps towards understanding a multitude 

78 of essential biological questions.

79 Much of the progress in understanding dietary specialization in consumers comes from studies of 

80 herbivory (Kartzinel et al 2015), particularly on insects (Forister et al 2015). Using wild bees and plant-

pollinator networks as our study system, we extend the scope of those studies to include mutualistic 

82 interactions. Mutualisms are ubiquitous ecological interactions in which participant species benefit each 

83 other (Bronstein 1994). Pollination, therefore, differs from other insect herbivory because of the 

84 reproductive benefit offered to both consumer and consumed species. Bees depend on removing pollen 

85 from flowers to rear their offspring, providing a pollination service at the same time (Westerkamp 1996). 

86 Pollination is also of particular interest given its role in supporting terrestrial biodiversity (Biesmeijer et al 

87 2006) and agricultural output (Garibaldi et al 2013), a role threatened by widespread declines in both 

88 pollinators and insect pollinated plants (Biesmeijer et al 2006; Burkle et al 2013). Some studies have 

89 investigated ‘specialization’ in plant-pollinator networks, but based on floral visitation rather than the 

90 actual interaction of pollen collection (Dorado et al. 2011; King et al. 2013). Where pollen collection has 

been measured, it has often been in the context of building networks of pollen transfer (e.g. Lopezaraiza-

92 Mikel et al. 2007; Alarón 2010), but these studies do not concurrently investigate or clarify the dietary 

93 niche of the pollinators themselves. In contrast, the pollen diets of wild bee pollinators have frequently 

94 been quantified, but often without a focus on the ecological drivers of dietary specialization (e.g. Wood & 

95 Roberts 2018). This knowledge gap emphasizes the need to investigate the biological processes 

96 explaining the realized specialization of pollinators within plant-pollinator networks that account for the 

97 actual interaction of pollen collection by pollinators. 

98 Research on insect herbivores has largely focused on how adaptation to plant traits and defenses 

99 drives consumer concentration on specific phylogenetically related resources (Ali & Agrawal 2012; 

Hunter 2016). Though the imposition of a taxonomic hierarchy does not fully capture all similarities and 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



This article is protected by copyright. All rights reserved

distances between host plants (Fordyce et al. 2016), grouping host plants by botanical family allows for 

broad comparisons to be made between more and less generalized species (Forister et al. 2015). In 

addition to phylogenetically inherent plant traits that are important for the dietary specialization of 

herbivores, other drivers have been identified for consumers more generally (MacArthur & Pianka 1966; 

Waser et al 1996, see Table 1, Appendix S1.1). Here, we expand on the fundamental effect of resource 

density on a consumer’s dietary specialization (MacArthur & Pianka 1966), not in a spatial context, but 

temporally. This resource density is important in its interaction with consumer phenology. For long-lived 

organisms (e.g., predatory vertebrates), opportunities to access a single resource type principally depend 

on the resource’s spatial distribution. If a single resource type is physically dense, then a predator can 

specialize on it without needing to turn to alternatives, whereas if it is patchily distributed then a strategy 

of specialization is less optimal. However, for a comparatively short-lived organism like a bee whose 

adult flight period (its de facto lifespan in the context of resource gathering for reproductive investment) 

can be measured in days, the distribution of a resource type in time is also a critically important 

determinant of accessibility. A plant species that flowers for 30 days is a de facto dense, continuously 

available resource for a co-occurring bee species whose flight period lasts for only 25 days. However, this 

same plant species that flowers for 30 days can be considered to be sparse and patchily distributed for a 

separate bee species which flies for 90 days. The temporal pattern of flowering can therefore be 

considered analogous to resource density, variations in which will be acutely experienced by short-lived 

organisms. These ideas have proven influential (e.g., Robinson & Wilson 1998; CaraDonna et al. 2017) 

and aspects of phenology have been implemented in network models for the sake of other ecological 

questions (e.g. Encinas-Viso et al 2012), but direct theoretical and empirical validation is required to 

solidify our understanding of phenological drivers of diet breadth.

Expanding upon this idea of temporal density, we hypothesize that the degree of temporal overlap 

in the availability of different resources (flowering overlap among co-occurring plant species) in 

combination with the fundamental life-history phenologies of bees (adult flight period) can influence 

realized dietary specialization (i.e. their actual choices made under real-world conditions). Applied to 

plant-pollinator systems, we hypothesize that increased flowering overlap will reduce the dietary 

specialization (i.e. increase generalization) of pollinators with short flight periods, but not necessarily 

those with long flight periods (Fig. 1). Pollinators with short flight periods will experience markedly 

different resource availability based on the degree of temporal overlap of co-flowering species. High 

flowering overlap will allow pollinators with short flight periods access to a greater number of options 

available concurrently while low overlap will restrict options. Pollinators with long flight periods are 

nominally less constricted by the temporal overlap of co-occurring resources, theoretically having access 

to the same number of options over the course of their flight periods regardless of the degree of overlap 
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on average (Fig. 1). Importantly, our hypothesis does not indicate that flight period will necessarily 

correspond with and predict being more or less specialized ceteris paribus. Instead, it describes how 

temporal resource overlap will influence dietary specialization as a function of pollinators’ flight periods 

when considered as an average response across a community.

We employed a multi-faceted approach to test our hypothesis. First, we leverage advances in 

modeling adaptive foraging in ecological networks (Valdovinos et al 2013; 2016) to directly address the 

phenological mechanism driving dietary specialization across different pollinator flight periods. Second, 

we utilize our intercontinental pollen load dataset of bees with a short flight period (genus Andrena) and 

bees with a long flight period (genus Lasioglossum) from both a highly seasonal and a less seasonal 

environment which function as low and high temporal resource overlap treatments, respectively, to 

empirically test the effects of overlap. Although the modelling and empirical approaches differ 

quantitatively, qualitatively comparing their outputs allows for independent assessments of the 

mechanism proposed in our hypothesis (Fig. 1). 

 

Methods

Model Development

Plant-pollinator network models have two major components, the network structure and the 

dynamics that occur on those networks. The networks used in this study were grouped into size classes 

with plant-pollinator ratio based on an empirical pollination network (see Appendix S1.2). Before 

simulations, networks were fully connected to give each pollinator population the maximum within-

model range of dietary options without a priori restrictions (Fig S1). Namely, the adjacency matrices were 

filled entirely with 1’s, indicating all potential interactions are initially considered possible (see Appendix 

S1.2). The realized interactions within simulations emerge from the population, mutualistic, and adaptive 

foraging dynamics occurring on the network structure which were implemented based on existing work 

(Valdovinos et al 2013; 2016). In summary, the model mechanistically models pollination as a consumer-

resource interaction by separately accounting for vegetative density and floral rewards consumed by 

pollinators. The model’s time-dependent variables track the adaptive dynamics of each plant species’ 

population dynamics ( ), each animal pollinator species’ population dynamics ( ), each plant �(�)� �(�)�
species’ pool of floral rewards ( ), and the adaptive dynamics of the per-capita foraging effort �(�)�
preferences of each pollinator species  for each plant species  ( ; henceforth referred to as foraging � � �(�)��
effort). Visits of pollinator  to plant  ( ) are consumer interactions between pollinator  and plant ’s � � ��� � �
floral rewards. These visits ( ) result in mutual reproductive benefit, and pollinator effort for any given ���
plant changes dependent upon that benefit. Specifically, pollinator ’s foraging effort on plant  ( ) � � ���
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increases whenever pollinator ’s reward intake from plant , , is higher than its average reward � � ���(��)
intake from all the plants (subset ) constituting its diet, . Please see the full description �� ∑� ∈ ��������(��)
of the underlying dynamic model in Appendix S1.2.

Temporal plasticity in network connectivity was implemented by incorporating time dependent 

phenology functions to modify the rates controlling interactions between plants and pollinators in the 

network. These functions are formed using modified sinusoidal wave functions which produce unique 

phenologies for every plant  ( ) and animal pollinator  ( ). In flowering plant species, the phenology � ��� � ��� 
function  (see Appendix S1.3) modifies the phenology of floral reward production ( ). The  ��� �� ���
function controls the flowering of plant , such that plant  only produces floral rewards when  (the � � ��� > 0

flowering period), otherwise reward production is 0 during interceding periods of inactivity we dub 

“break periods.” Similarly, in animal pollinators, all visitation rates ( ) are modified by the phenology �
function  such that pollinators are only foraging during their flight period and not during interceding ���
break periods (see Appendix S1.3).  The  function also modifies  such that foraging effort ��� ���
preferences only change during active flight periods. With this framework, any active flying pollinator 

and flowering plant can only potentially interact during phenological co-occurrence (Fig. 2). Note that 

even overlapping phenologies between pollinators and plants only produce potential interactions as 

adaptive foraging drives pollinator foraging choices among possible resources.

Scaling up this framework to multiple interactions introduces temporal plasticity in network 

topology through organismal phenology as unique potential interactions activate and deactivate across 

time (Fig. S5). The phenology functions (  & ) were designed to be sufficiently malleable with only ��� ���
simple user inputs that facilitate direct control over the temporal availability of specific resources and the 

activity patterns of the animal pollinators over time in simulations (see Appendix S1.4, Fig. S1-S5). These 

inputs are the duration of flowering/foraging periods and a parameter dictating the length of time 

interceding between subsequent periods of flowering or foraging, i.e., the break periods (see Table S2 & 

S3; Fig. 2, S4 & S5). With these inputs, we created a range of unique plant phenologies through different 

combinations of durations for flowering periods and interceding non-flowering periods. These 

combinations created a wide range of flowering overlap among the plant species against which to test our 

hypothesis (see Fig. S12; Appendix S1.8). The quantitative degree of overlap in co-occurring floral 

resources can be measured in simulations as the Total Resource Overlap (TRO) of the entire plant 

community, and the Averaged Resource Overlap (ARO) per plant species by integrating overlapping 

resource curves ( ) within simulations (Fig. S12). See Metrics section and Appendix S1.8 for complete ��
200 details. In animal pollinators, phenological activity patterns are set up to produce a range of different 

flight period lengths separated by differing lengths in between flight periods. 
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202 Each flowering (flight) period and intervening period of inactivity between repeating flowering 

203 (flight) periods is of equal and constant duration per plant (pollinator) per single simulation. In other 

204 words, all plants share flowering period and break period lengths and all pollinators share flight period 

205 lengths per simulation. Spacing on the timeline is as dictated in Appendix S1.3. Additionally, all plants 

206 and the inherent phenologies of pollinators and plants do not change within simulations, only between 

207 simulations as different phenology parameters are used to create different phenological conditions.  

208 Simulations use three fully connected bipartite network frameworks across 2072 combinations of plant 

209 and pollinator phenologies to produce 62160 unique networks used to model over 22 million plant-

pollinator interactions (see Appendix S1.4).

Choice of model bee genera & regions for empirical study

The two bee genera Andrena and Lasioglossum were selected as two contrasting models for this 

study (Appendix S1.5). They are the two largest bee genera by number of described species (Ascher and 

Pickering 2021), and are well-represented in Holarctic bee communities, allowing for comparison across 

biogeographical regions within and between two distinct lineages each with a shared evolutionary history. 

Restricting the analysis to two large bee genera controls for potentially confounding effects of 

phylogenetic position (Resende et al. 2007) while retaining statistical power through the potentially large 

sample size deriving from the high generic richness.  The majority of Andrena and Lasioglossum species 

220 generally lack morphological adaptations for pollen harvesting and therefore favor shallow, open, and 

radially symmetrical flowers, and within each genus have similar dispersal abilities, controlling for the 

222 effects of resource accessibility and the cost of travel (see Appendix S1.5 for additional detail). However, 

223 the genera pursue different life history strategies, with Andrena following a solitary lifecycle with a short 

224 foraging period typically lasting a few weeks (Westrich 1989; Else & Edwards 2018). Lasioglossum 

225 species contain a mixture of solitary and social species (Brady et al 2006), but both types have longer 

226 foraging periods, typically lasting several months (Westrich 1989; Else & Edwards 2018). Andrena and 

227 Lasioglossum can therefore be considered to have functionally ‘short’ and ‘long’ foraging periods, 

228 respectively (Appendix S1.7). 

229 Andrena and Lasioglossum were collected from two biogeographical regions, Britain and 

230 Michigan, USA. These regions are both found in the Holarctic and so have broadly similar floral 

communities composed of the same major botanical families (Stace 2010; Voss & Reznicek 2012). 

232 Importantly, they differ noticeably in their levels of temporal flowering resource overlap. The highly 

233 seasonal continental climate of Michigan (Beck et al 2018) produces lower degrees of overlap and highly 

234 seasonal flowering communities, while the more mild oceanic climate of the British Isles and its 
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235 consistent temperatures produces longer, overlapping flowering times among plant species (see Appendix 

236 S1.6 for additional detail and justification). 

237 Restricting the analysis to the same two bee genera across two biogeographical regions that differ 

238 most strongly in their temporal resource overlap rather than botanical composition, therefore, controls for 

239 possible effects of phylogenetic structuring at both the bee and the plant level. This allows us to evaluate 

240 the relative importance of foraging period and environmental seasonality in structuring a generalized 

foraging response in wild bees.

242

243 Selection and standardization of pollen load data

244 Pinned Andrena and Lasioglossum specimens with pollen loads were selected from museum and 

245 contemporary non-standardized collections, with the majority (81.9%) collected between 2013-2018. 

246 Specimens were collected from 265 Michigan sites and 289 UK sites (see Appendix S1.7). Because of the 

247 high variability in occurrence between bee species in wild communities in general (Williams et al. 2001) 

248 and plant-pollinator networks specifically (Burkle & Alarcón 2011; Jordano 2016), capturing an 

249 equivalent number of specimens for each species from a similar number of sites within a similar time 

250 period is functionally unfeasible for all but the most abundant species. In order to maximize species-level 

replication and taxonomic representation, an approach favouring the greatest number of samples was 

252 adopted without restrictions based on collection locality or date. A total of 2,609 suitable specimens from 

253 118 species (21.9±3.8 samples per species) were analysed, representing between 30-63% of the genus-

254 level fauna of each region. Pollen was removed from specimens and analyzed following standard 

255 methodology (Wood & Roberts 2018). Pollen was identified to the lowest possible taxonomic level using 

256 light microscopy, in most cases to genus (see Appendix S1.7 for additional detail). A minimum sample 

257 size of five pollen loads was selected as the cut-off for inclusion in the study. 

258

259 Metrics

260 Within the model, temporal resource overlap between any two flowering plant species  and  �1 �2
in a simulation is defined as the shared area under their respective resource curves  and   during the �1 �2

262 simulation. This was quantified as both the sum of all overlap across the entire plant community for total 

263 resource overlap (TRO) and average resource overlap (ARO) per individual plant species (see Appendix 

264 S1.8). Note that resource overlap is not necessarily synonymous with the length of flowering periods. Per 

265 unit time, overlap can emerge regardless of flowering period length, so long as flowering periods co-

266 occur in time. 

267 Dietary specialization was calculated using two metrics, Deviation from Generalism (DFG) and 

268 the Coefficient of Variation (CV). Both metrics are calculated at the level of pollinator species due to 
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269 potentially unrepresentative effects of flower constancy that make calculation at an individual level 

270 unrepresentative of species-level preference (see Appendix S1.8). When used for simulated pollinators, 

both metrics take measurement of relative allocation of foraging effort ( ) per pollinator species across ���
272 all potential resource options as input to produce a per pollinator species dietary specialization score. The 

273 DFG metric is the normalized summation of all pairwise differences of pollinator foraging effort on 

274 potential floral resources (Appendix S1.8, Table S4). It ranges from 0 (perfect generalist) to 1 (perfect 

275 specialist), regardless of botanical species richness. When used for pollen load data, the quantity of pollen 

276 collected from each resource (grouped by either botanical family or botanical genus) is used in place of 

277 the foraging effort, under the assumption that greater quantities of pollen collected from any particular 

278 plant group correspond to higher foraging effort on that group. Importantly, the algorithm used to 

279 calculate our DFG score is a holistic accounting for every possible interaction and compares all possible 

280 interactions among each other to accumulate a score. This means that for each bee species, their realized 

collection patterns are compared to all resources collected by all bees in either the Michigan or UK 

282 datasets, therefore geographically partitioning the comparison between regions. Specifically, Andrena and 

283 Lasioglossum (combined) collected from 44 and 37 botanical families in Michigan and the UK, 

284 respectively, and 91 botanical genera in both Michigan and the UK (see Table S8). We investigate the 

285 effects of organismal phenology and flowering resource overlap by comparing realized collection patterns 

286 to all plant taxa in the dataset, some of which will only be available during specific time periods and 

287 access to which is affected by flight period length. 

288 The DFG metric may not be the best option in all circumstances. It functions best when available 

289 data can convincingly represent all possible foraging options because DFG calculates specialization 

290 considering all potential foraging options. This functions especially well in the model, but it is not 

necessarily guaranteed in empirical surveys. Therefore, we also employed the CV as our second metric of 

292 specialization (also termed the Species Specialization Index; Julliard et al 2006). This well-known 

293 summary statistic was applied to our model’s output foraging effort ( ) per individual pollinator ���
294 population, whereas in the empirical data we take the CV of the percentage of pollen loads collected 

295 across plant groups per region (as for DFG). Higher CV values occur with values for specific plant taxa 

296 that deviate most strongly from other values, indicating specialization (Fig. S13). As a metric of 

297 specialization, the CV will increase when there are a limited number of extreme values. It performs the 

298 same whether or not the full range of possible resource options for foraging pollinators is known and it 

299 can function as a means of inter-regional comparison given the similar number of resource options 

300 between our sampling regions. The relationship between the two metrics is positive monotonic but non-

linear (Fig. S13) showing that the two metrics relate to the measurement of specialization differently as 

302 desired. With model results, both DFG and CV were applied to final foraging levels at the end of 
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303 simulations (  & ), as well as to the average foraging levels across the last 1000 time steps (������ �����
304  & ; see Appendix S1.8 for additional details). In contrast, for the empirical pollen load data, ������ �����
305 metrics were applied categorically by bee genus and region.

306

307 Statistics

308 Statistical analysis was conducted in R 3.3.2. Regression analysis on model diet breadth results 

309 was done using the lm function and measured with traditional  metric when working with  �2 ������
results or with beta regressions (betareg package in R) and the pseudo  metric when working with �2 ��

. When measuring diet breadth results with  or , log-linked gamma regressions were ���� ����� �����
completed with the mgcv package and the amount of deviance accounted for by the regression was 

measured with the  metric. Due to deeply non-normal data, differences in the metrics generated from �2
the empirical dataset were tested using Kruskal-Wallis one-way analysis of variance tests. Confidence 

intervals in Figure 5 were calculated using the resampling process outlined in Desharnais et al. (2015). 

Results

Model Results

        Our simulation results (Figs. 3, 4) support our hypothesis (Fig. 1) demonstrating strong effects of 

320 temporal resource overlap on the dietary specialization of pollinators with short but not long flight 

periods. Fig. 3 shows an example of results from one network as an illustration of how resource overlap 

322 explains variation in the dietary specialization of pollinators with shorter flight periods (Fig. 3a, c), but 

323 does little to explain the dietary specialization of pollinators with longer flight periods (Fig. 3b, d). The 

324 different measurable ranges in resource overlap for long flight period bees (Fig. 3) stem from the fact that 

325 long flight period bees tend to extract more resources than short flight period bees over the course of their 

326 full flight period, all else (e.g., resource extraction rates) being roughly equal in the model. This is the 

327 case whether overlap is measured in aggregate (TRO) or on average (ARO) due to their strong correlation 

328 in our results. The transition from high explanatory power to low explanatory power for temporal 

329 resource overlap is apparent as pollinator flight period length increases, regardless of whether 

330 specialization was measured at the end of simulations or averaged across the last 1000 model time steps 

(visual depiction in Fig. 4). This result is consistent across varying lengths of time between pollinator 

332 flight periods (i.e., break periods) using either the DFG or CV metric across all networks tested (Fig. S14-

333 S16). As predicted, low levels of resource overlap drive pollinators with short flight periods to specialize 

334 because potential resource options are limited at any given moment in time. As temporal resource overlap 

335 increases, potential options increase resulting in greater generalization (Fig. 3a, c). Bees with long flight 

336 periods, on the other hand, do not experience the same limitation of potential options due to temporal 
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337 resource overlap, because they are active most of the entire flowering season and can potentially access 

338 most or all of the flowering plants. Results were consistent regardless of whether resource overlap was 

339 measured as total resource overlap (TRO) or average resource overlap (ARO).

340

Pollen data results

342 Our empirical results support our hypothesis, showing more specialized diets for bees with short 

343 flight periods in more seasonal environments (Michigan) with lower flowering overlap than in less 

344 seasonal environments (UK) with higher flowering overlap. Additionally, Michigan presents more single 

345 family specialists than the UK (Fig. S17). Dietary specialization between bee genera and regions varied 

346 significantly at both the level of botanical family (χ2=30.1, p<0.001, Fig. 5a) and genus (χ2=27.3, 

347 p<0.001, Fig. 5b). In accordance with our hypothesis, there was an effect of region at the botanical family 

348 level, but only for the short flight period Andrena where species in Michigan were significantly more 

349 specialized than their British counterparts. In contrast, there were no significant differences for the long 

350 flight period Lasioglossum. Lasioglossum species in the region with lower flowering overlap (MI) were 

the most generalized of all studied groups, but this difference was non-significant. At the botanical genus 

352 level, the same trend was more strongly expressed, as Andrena in Michigan were again significantly more 

353 specialized than those in Britain, with the latter group showing no differences from Lasioglossum in 

354 either Michigan or the UK. Results were consistent when analyzed using the DFG metric (Fig. S18).

355  

356 Discussion

357 Our model results mechanistically demonstrate how differing phenologies interact with varying 

358 degrees of temporal resource overlap to alter pollinator dietary specialization. Though nominally having 

359 the possibility of affecting the realized specialization of pollinators with both long and short flight 

360 periods, increasing temporal resource overlap was only found to increase the dietary generalization of 

species with short flight periods. This same qualitative result was found in our empirical pollen load 

362 datasets, which presents the first empirical validation of this specific benchmark theory on 

363 phenologically-mediated adaptive foraging by consumers in general (MacArthur & Pianka 1966) and 

364 pollinators in particular (Waser et al 1996). In addition to our approach detailed here, regional differences 

365 in dietary breath are also apparent using established analysis methods (Fig. S17), and our metrics 

366 correlate well with well-known measures (Appendix S1.8), helping corroborate our results.

367 The lack of a meaningful dietary response by long flight period bees to temporal resource overlap 

368 in both the model and empirical datasets, suggests that increased temporal resource overlap does not 

369 functionally change the resources available to this group. Waser et al (1996) suggests that longer 

370 flowering periods are necessary for long flight period bees to co-occur with a resource and develop a 
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specialized foraging relationship. While long flowering periods may seem intuitively linked to high 

372 resource overlap, high resource overlap in and of itself does not necessitate long flowering periods for 

373 individual resources. Flowering periods may remain short but overlapped with other resources that are 

374 also only available for a short period of time. It therefore follows that the absolute length of the flowering 

375 period of individual resources influences specialization in long flight period pollinators, but not resource 

376 overlap per se. In contrast, the absolute length of the flowering period of individual resources is almost 

377 irrelevant for short flight period pollinators because they are active for such a restricted period of time; for 

378 them, only the degree of overlap is what determines concurrently available resources.

379 It is important to set these findings within a wider context, specifically that of other known 

380 drivers of dietary specialization. In addition to the impact of spatial and temporal resource density on 

dietary specialization, fundamental research (MacArthur & Pianka 1966; Waser et al 1996) also points to 

382 the constraining impacts of differing resource quality, the cost of travel, and morphological limitations 

383 (Table 1). These factors are strong enough to shape realized foraging niches. For example, the 

384 consumption of certain resources by foraging bees without physiological adaptations is strongly and 

385 actively discouraged (Wang et al 2019; Brochu et al 2020). Through selecting the regions of the UK and 

386 Michigan, efforts were made to control for these additional factors in order to focus specifically on and 

387 test for the effects of varying bee phenology and flowering period overlap in isolation, ceteris paribus 

388 (see Appendix S1.5). However, these should not be viewed as mechanisms that explain all aspects of 

389 realized dietary breadth in and of themselves. The phenomenon of synchronous specialization can be 

390 commonly observed in many bee communities, where at least two specialists are present at the same time, 

each specializing on different resources. For example, specialists such as those of Helianthus (Asteraceae, 

392 A. helianthi) and Solidago/Symphyotrichum (Asteraceae, A. asteris) and those of Bryonia (Cucurbitaceae, 

393 A. florea) and Fabaceae (A. wilkella) can be found concurrently in Michigan and the UK, respectively. 

394 Clearly, resource overlap cannot explain host choice itself where alternative mechanisms relating to 

395 morphological or physiological adaptation may be more important (Danforth et al. 2019). Instead, the 

396 level of temporal resource overlap should be viewed as a factor that affects the level of realized 

397 specialization across a pollinator community, rather than a predictor of specialization of the level of the 

398 individual species. 

399 It should also be noted that total season length (the overarching flowering season for all flowers) 

400 was not investigated in this study. The two regions and selected model genera were specifically chosen to 

be as similar as possible, including total season length. It is here that care must be taken. It has long been 

402 noted that deserts and arid regions with short and highly concentrated flowering periods play host not 

403 only to species-rich bee communities, but also to bee communities that display the highest levels of 

404 dietary specialization anywhere on earth (Moldenke 1979; Waser et al 1996; Danforth et al 2019). The 
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405 combination of high levels of specialization occurring during a short flowering period with considerable 

406 flowering overlap (and hence many different resources available concurrently) further shows that the 

407 explanatory principle of flowering resource overlap that we demonstrate here cannot be used in and of 

408 itself to explain every aspect of dietary specialization. Instead, total season length (overarching flowering 

409 season) may be a third factor affecting opportunities for an individual species to interact with available 

resources in addition to flight period and flowering overlap. By restricting the resources available outside 

a narrow flowering window, a short season may result in other factors such as interspecific competition or 

morphological and physiological constraints to increase in relative importance despite the high resource 

overlap. In future work, the relationships between these three phenological factors and their impact on 

specialization could be clarified by leveraging our model’s seasonality functions to more explicitly mimic 

a variety of environmental flowering patterns and interrogate results with relevant empirical data from a 

wider range of more extreme environments.

With future work in mind, our modeling developments provide a flexible operational basis going 

forward. We showed that even high dimension network models can be further expanded to include the 

dynamics of organismal phenology by focusing on simple inputs and tractability in developing a 

420 functional phenology-modeling framework. Our framework provides the adaptability needed to mimic a 

variety of different biomes’ seasonal growth patterns (described above). Additionally, for more direct 

422 comparisons to empirical networks in the future, work will need to be done integrating a variety of 

423 phenologies among plant and pollinator species in single simulations. While model results matched our 

424 theoretical expectations well, empirical results show some signs of complexity. A likely source of this 

425 complexity is the fact that pollinator communities exist with many unique phenologies. Expanding the 

426 model to study how well the effects of our described mechanism withstands a diversity of phenologies 

427 (both at the consumer and resource level) will help to delimit the many factors driving species diet 

428 breadth. This is particularly important when diet breadth exists as part of a larger ecological function like 

429 pollination or seed dispersal and will indirectly influence diversity and distribution. 

430 Our empirical approach was deliberately regional, and focused on comparing average responses 

from sampled species in the empirical dataset. In adopting this regional approach and using this as a 

432 categorical variable, no single bee individual actually experiences these overall regional environmental 

433 conditions. The individual bee lives in a subset of the total area and thus is necessarily exposed to 

434 conditions that may vary around the regional average. Because this approach gathers together samples 

435 from disparate areas across bee species with different habitat specializations, it is possible that variation in 

436 geographic sampling may influence the results. Future empirical studies could focus on specific locations 

437 to characterize the degree of floral overlap specific to each site and quantify the dietary breadth of 

438 selected taxa through repeated sampling for increased precision. This would allow an assessment of the 
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439 degree of variation in dietary specialization within both regions and individual species, in addition to the 

440 comparisons between regions that were made here. However, a more localized sampling strategy is still 

constrained by the difficulty of standardizing measurements (such as analysis of collected pollen from a 

442 set number of individuals) across multiple pollinator taxa. Due to their high inherent variability in 

443 occurrence (Williams et al. 2001; Burkle & Alarcón 2011; Jordano 2016) this would potentially limit the 

444 number of taxa that can be compared between sites or regions. The same constraint applies to temporal 

445 standardization. Many pollinator taxa appear sporadically thus limiting the number of individuals and 

446 species that can be captured for analysis. Such future studies could test the scalability of the results 

447 presented here. In the face of our changing climate, both scalability and range of effect will be important 

448 elements in future investigations involving the phenological drivers of pollinator diets.
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623 Tables & Figures

624

625

626 Table 1: Factors favoring specialization in foraging as detailed in MacArthur & Pianka (1966) and their 

627 corresponding construction in Waser et al’s (1996) study on factors favoring generalization in foraging. 

628 The third column describes the common factor in each treatment. The factor noted in green highlights the 

629 work which helped inspire our study.
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630

632

633

634

635

636

637

638

639

640

Figure 1: Graphical diagram of our hypothesis. Our hypothesis stems from the temporal overlap of 

642 flowering resources available to pollinators. Highly seasonal delimitations between different flowering 

643 populations create low levels of temporal overlap among different flowering resources. On the other hand, 
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644 fewer seasonal delimitations between different flowering populations create higher levels of temporal 

645 overlap among different flowering resources. a) In long flight-period pollinators (e.g. Lasioglossum), 

646 differing levels of temporal resource overlap have a weaker average effect on the degree of diet options 

647 available to the pollinator. b) This is predicted to lead to a non-significant relationship between overlap 

648 and specialization among long flight period pollinators. c) In short flight-period pollinators (e.g. 

649 Andrena), low and high temporal resource overlap can limit or expand pollinator diet options 

650 respectively. d) This is predicted to lead to a significant relationship between overlap and specialization in 

short flight-period pollinators.

652  

653

654 Figure 2: Diagram of phenologically mediated pollination interactions. Our model framework 

655 simulates pollination interactions over time by controlling key biological rates via phenology functions. 

656 Flight/foraging in pollinators is mediated by the function  and flowering in plants is mediated via the ��� 
657 function . Foraging and rewards production are only active during the flight period and flowering ��� 
658 period, respectively. The length of these periods and the time interceding each period is set by the user. 

659 See Appendix S1.3. Any possible interaction between plants and pollinators is only active during 

660 phenological overlap. Otherwise the interaction is inactive in the pollination network. A
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662 Figure 3: Temporal resource overlap drives specialization more strongly in short flight period than 

663 long flight period pollinators. Example model output on pollinator specialization taken across average 

664 plant overlap (ARO) for a short flight period (flight period = 20 time steps) and a long flight period 

665 pollinator (flight period = 300 time steps). Each dot represents the dietary specialization metric of a single 

666 pollinator population based on their foraging effort per plant species. Dietary specialization was measured 

667 at the end of simulations using a) DFG in a short flight period bee,  -1.1e-4, F-statistic: 1.05e+05 on 1 �=
668 and 18498 DF,  p-value: < 2.2e-16, b) DFG in a long flight period bee,  -6.3e-5, F-statistic: 1089 on 1 �=
669 and 18498 DF,  p-value: < 2.2e-16, c) CV in a short flight period bee,  3.2e-4, Residual deviance: �=
670 671.94 on 18498  degrees of freedom, d) CV in a long flight period bee,  -2.6e-4, Residual deviance: �=

8244.4  on 18498 degrees of freedom. Example data taken from a network framework with 30 plant and 
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672 50 pollinator species. Higher values of both DFG and CV metrics indicate higher levels of specialization 

673 while lower values indicate greater generalization. 

674  

675  

676

677 Figure 4: Interactive effect of temporal resource overlap and pollinator flight period on pollinator 

678 dietary specialization. Representative sample of generalized linear models (Gamma distribution with log 

679 link functions) showing change in effect of Total Resource Overlap (TRO) on pollinator dietary 

680 specialization in model simulations. Flight period labels indicate the length of the flight period and the 

number of phenology cycles between subsequent flight periods (see Supplementary Methods). Dietary 

682 specialization is shown as the degree of specialization measured by the CV of pollinator foraging effort 

683 per plant species a) averaged across the last 1000 time steps and b) taken at the end of simulations. Higher 

684 CV values correspond with a higher level of specialization while lower CV values indicate greater 

685 generalization. Example data taken from a network framework with 30 plant and 50 pollinator species.

686  

687   
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688

689 Figure 5: Empirical measures of dietary specialization. Short flight period Andrena bees show higher 

690 levels of specialization in highly seasonal (Michigan) compared to the weakly seasonal (UK), with no 

differences for long flight period Lasioglossum bees using the CV metric. Moreover, only in Michigan is 

692 there a difference in specialization between the two bee genera, showing a minimal impact of flight 

693 period in weakly seasonal environments. Effects are consistent at both the (a) botanical family and (b) 

694 botanical genus level. Bars headed by different letters were found to be significantly different via Dunn 

695 post-hoc test (a): p<0.05, DF=3, η²=0.21, (b): (p<0.05, DF=3, η²=0.20). Error bars show 95% confidence 

696 intervals created via the resampling process outlined in Desharnais et al. (2015). 
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