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We consider Bayesian high-dimensional mediation analysis to identify among
a large set of correlated potential mediators the active ones that mediate the
effect from an exposure variable to an outcome of interest. Correlations among
mediators are commonly observed in modern data analysis; examples include
the activated voxels within connected regions in brain image data, regulatory
signals driven by gene networks in genome data, and correlated exposure data
from the same source. When correlations are present among active mediators,
mediation analysis that fails to account for such correlation can be subopti-
mal and may lead to a loss of power in identifying active mediators. Building
upon a recent high-dimensional mediation analysis framework, we propose two
Bayesian hierarchical models, one with a Gaussian mixture prior that enables
correlated mediator selection and the other with a Potts mixture prior that
accounts for the correlation among active mediators in mediation analysis. We
develop efficient sampling algorithms for both methods. Various simulations
demonstrate that our methods enable effective identification of correlated active
mediators, which could be missed by using existing methods that assume prior
independence among active mediators. The proposed methods are applied to the
LIFECODES birth cohort and the Multi-Ethnic Study of Atherosclerosis (MESA)
and identified new active mediators with important biological implications.

K E Y W O R D S

Bayesian hierarchical mediation analysis, correlated mediators, environmental exposure,
epigenetics, Gaussian mixture model, Potts model

6038 © 2021 John Wiley & Sons Ltd. wileyonlinelibrary.com/journal/sim Statistics in Medicine. 2021;40:6038–6056.

https://orcid.org/0000-0002-7652-6864
https://orcid.org/0000-0003-3331-3583
https://orcid.org/0000-0003-0118-4561


SONG et al. 6039

1 INTRODUCTION

Mediation analysis attempts to explain the intermediate mechanism through which an exposure affects an outcome, and
quantify the indirect effect transmitted by the mediator variable between the exposure and the outcome.1

To formally define the direct and indirect effects, a causal approach to mediation analysis based on the counterfactual
framework has been proposed, with the key assumptions for identification and causal interpretation being specified.2,3

This framework further gave rise to other extensions in mediation analysis, such as exposure-mediator interaction,4
survival data,5 and so on.

The fast development in high-throughput biological technology has provided tremendous opportunities for mediation
analysis with large-scale omics data. Modern omics studies often collect a large number of mediators with the goal for
identifying active mediators that mediate the effect from an exposure variable to an outcome variable. In many of these
modern data applications, there often exists a substantial correlation among mediators. For example, in functional MRI
(fMRI) studies, the brain images are composed of a large number of voxels/regions and true signals usually represent
connected regions. Our study is particularly motivated by two large-scale data, one in environmental science and one in
genomics. The first is the LIFECODES birth cohort, one of the nation’s largest pregnancy cohorts aimed at advancing care
and improving outcomes in high-risk pregnancies.6 This study collected data on a large group of endogenous biomarkers
of lipid metabolism, inflammation, and oxidative stress. These biomarkers are hypothesized to mediate the effects of pre-
natal exposure to environmental contamination on adverse pregnancy outcomes.7 Moderate to strong correlations across
those biomarkers are observed, and such correlations occur not only for biomarkers within the same biological pathways
but also for biomarkers between different pathways. The second is the Multi-Ethnic Study of Atherosclerosis (MESA)
data.8 In this study, high-dimensional DNA methylation (DNAm) are hypothesized to mediate the effect of neighborhood
factors on blood glucose level, which is a critical variable linked to diabetes and heart diseases. Like the first study, these
DNAm data are also correlated with each other. Performing mediation analysis with a high-dimensional set of mediators
that may be correlated with each other is an important first step toward understanding the molecular basis of complex
diseases and subsequent development of prevention and treatment strategies.

Several mediation analysis methods have been recently developed to accommodate high-dimensional mediators
obtained from large-scale genomic data. For example, Zhang et al9 propose sure independent screening and minimax
concave penalty techniques to study how the high-dimensional DNAm mediate the effect of smoking on lung function;
Zhao and Luo10 develop a new convex, Lasso-type penalty on the indirect effects to identify brain pathways from the
language stimuli to the outcome region activity. In addition to the frequentist methods, Song et al11 propose a Bayesian
variable selection method with separate shrinkage priors on the exposure-mediator effects and mediator-outcome effects,
respectively. Song et al12 further replace the two separate priors with relevant joint priors for a direct target on the nonzero
indirect effect in mediator selection. Those methods enable a joint analysis of high-dimensional mediators and a valid
procedure for the identification of active mediators. However, to the best of our knowledge, none of the existing methods
for high-dimensional mediation analysis has accounted for the possible correlation structure among active mediators. As
explained in the above paragraph, such correlation is highly prevalent. When the truly active mediators are correlated with
one another, then the existing methods that fail to account for such correlation may lead to a loss of power. A more effec-
tive mediation analysis will require methods that can incorporate the useful correlation information of high-dimensional
mediators into the model building process. We attempt to fill this gap in the literature.

Our proposed methods are based on a recently developed high-dimensional mediation analysis framework,12 which
introduced a Gaussian mixture model (GMM) as a joint prior on the exposure-mediator and mediator-outcome effect
to allow for a targeted penalization on the indirect effect. This method has been shown to enjoy excellent and robust
performance for mediator selection and effect estimation. GMM assumes that each mediator can be independently
categorized into one of the four components based on association pattern, and its group indicator follows the same multi-
nomial distribution as the other mediators. With the goal of utilizing the correlation structure among mediators in the
modeling process, we aim to replace the independent priors on the mediators’ group indicators with two priors that intro-
duce coordinated selection on active mediators that may be correlated with each other. One prior is based on the Potts
distribution,13 a generalization from the Ising distribution, which allows for more than two groups and complex depen-
dency between correlated neighboring variables. The other prior is based on a jointly modeling of the mediator-specific
mixing probabilities via a logistic normal distribution,14 with the group probabilities reflecting the underlying correla-
tion structure. Both methods allow for high-dimensional mediation analysis with the possible coordinated selection of
active mediators via another layer in the Bayesian hierarchy. Both methods are built off the GMM proposed in Song
et al,12 and thus inherit the merits of the GMM method for high-dimensional mediation analysis. Furthermore, the
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proposed methods incorporate the structural information into a prior that favors selection of correlated mediators, and
are expected to allow the identification of correlated active mediators that could be missed otherwise. Our methods rely
on exact posterior sampling to provide estimates of quantities of interest and characterize uncertainty in estimation. The
proposed methods will also facilitate the interpretation of the results, particularly for the selected mediators with high
correlations.

We note that our methods are built upon a long history of similar methods in other related statistics areas. Indeed,
Bayesian variable selection with covariate structural information has received much interest over the years. Bayesian
group Lasso15 and Bayesian sparse group selection method16 allow for the inclusion of grouping effects and lead to more
parsimonious models with reduced estimation error compared with standard Lasso. Yuan and Lin17 also develop a cor-
relation prior on the binary selection indicators to distinguish models with the same size. Bayesian graphical models
represent another stream of work on structural variable selection. Cai et al18 utilize the graph Laplacian matrix to encode
the network information into the regression coefficients. Stingo et al19 propose the simultaneous selection of pathways
and genes, using the pathway summaries of the group behavior and structure dependency within pathways to inform the
selection. Along with the above methods, emerging literature considers the extension of the “spike-and-slab” type of mix-
ture prior20 in combination with Markov random field (MRF) prior to incorporate graph information. Ising prior, a binary
spatial MRF, and its variations have been effectively applied to induce sparsity and accommodate selection dependency.
Li and Zhang21 and Chekouo et al22 show that the structural information through Ising priors can greatly improve selec-
tion and prediction accuracy over the independent priors. In addition to smoothing over the latent selection indicators,
recent studies deploy different types of “slab distribution,” such as the Dirichlet Process,23 the group fused Lasso prior,24

and so on, to include the grouping and smoothing effect in the nonzero regression coefficients due to local dependence or
high correlation. Those methodologies have illustrated how the structural or correlated information can be incorporated
into Bayesian framework to deliver better variable selection. However, these existing approaches are not designed specif-
ically for mediation models with multivariate mediators and thus not directly applied to high-dimensional mediation
analysis.

The rest of the article is organized as follows. In Section 2, we first define the causal effects of interest for the multi-
variate mediation analysis with the counterfactual framework. Then we review the mediation estimands under the linear
regression models with multiple mediators and one continuous outcome. In Section 3, we propose two novel methods
to explicitly incorporate correlation structure among mediators while jointly analyzing them. Simulation studies are car-
ried out and discussed in Section 4. We illustrate our methods by applying them to LIFECODES and MESA cohort in
Section 5, and conclude the article with a discussion in Section 6.

2 NOTATIONS, DEFINITIONS, AND MODELS

We adopt the counterfactual framework for causal mediation analysis in a high-dimensional setting. Consider a
study of n subjects and for subject i, i = 1, … ,n, we collect data on one exposure Ai, p potential mediators Mi =
(M(1)

i ,M(2)
i , … ,M(p)

i )⊤, one outcome Yi, and q covariates Ci = (C(1)
i , … ,C(q)

i )⊤. In particular, we focus on the case where
Yi and Mi are all continuous variables. We define Mi(a) = (M(1)

i (a),M(2)
i (a), … ,M(p)

i (a)) as the ith subject’s counterfactual
value of the p mediators if he/she received exposure a, and define Yi(a,m) as the ith subject’s counterfactual outcome if the
subject’s exposure were set to a and mediators were set to m. The effect of an exposure can be decomposed into its direct
effect and effect mediated through mediators, that is, indirect effect. The natural direct effect (NDE) of the given subject
is defined as Yi(a,Mi(a⋆)) − Yi(a⋆,Mi(a⋆)), where the exposure changes from a⋆ (the reference level) to a and mediators
are hypothetically controlled at the level that would have naturally been with exposure a⋆. The natural indirect effect
(NIE) of the given subject is defined by Yi(a,Mi(a)) − Yi(a,Mi(a⋆)), the change in counterfactual outcomes when media-
tors change from Mi(a⋆) to Mi(a) while fixing exposure at a. The total effect (TE), Yi(a,Mi(a)) − Yi(a⋆,Mi(a⋆)), can then
be expressed as the summation of the NDE and the NIE: Yi(a,Mi(a)) − Yi(a⋆,Mi(a⋆)) = Yi(a,Mi(a)) − Yi(a,Mi(a⋆)) +
Yi(a,Mi(a⋆)) − Yi(a⋆,Mi(a⋆)) = NIE + NDE.

The counterfactual variables are useful concepts to formally define causal effects, but they are not necessarily observed.
In order to estimate the average NDE and NIE from observed data, further assumptions are required, including the con-
sistency assumption and four nonunmeasured confounding assumptions.25 We elaborate those assumptions in Section
1 of the supporting information (SI). It has been shown that under those assumptions, the average NDE and NIE can
be identified by modeling Yi|Ai,Mi,Ci and Mi|Ai,Ci using observed data.11 Therefore, we can work with the two con-
ditional models for Yi|Ai,Mi,Ci and Mi|Ai,Ci, and subsequently propose two linear models for these two conditional
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relationships. For the outcome model, we assume

Yi = M⊤
i 𝜷m + Ai𝛽a + C⊤

i 𝜷c + 𝜖Yi, (1)

where 𝜷m = (𝛽m1, … , 𝛽mp)⊤, 𝜷c = (𝛽c1, … , 𝛽cq)⊤, and 𝜖Yi ∼ N(0, 𝜎2
e ). For the mediator model, we consider a multivariate

regression model that jointly analyzes all p potential mediators together as dependent variables:

Mi = Ai𝜶a + 𝜶cCi + 𝝐Mi, (2)

where 𝜶a = (𝛼a1, … , 𝛼ap)⊤; 𝜶c = (𝜶⊤c1, … ,𝜶⊤cp)⊤, 𝜶c1, … ,𝜶cp are q-by-1 vectors; 𝝐Mi ∼ MVN(0,𝚺), with 𝚺 capturing the
residual error covariance. 𝜖Yi and 𝝐Mi are assumed to be independent of each other and independent of Ai and Ci. Under
the identifiability assumptions discussed in SI and the modeling assumptions (linearity, no exposure-mediator interaction
in the outcome and mediator model) in (1)-(2), we can express causal effects with the model coefficients as below.11 In
the rest of the article, we refer to NDE as direct effect and NIE as indirect/mediation effect.

NDE = E[Yi(a,Mi(a⋆)) − Yi(a⋆,Mi(a⋆))|Ci] = 𝛽a(a − a⋆).

NIE = E[Yi(a,Mi(a)) − Yi(a,Mi(a⋆))|Ci] = (a − a⋆)𝜶⊤a𝜷m = (a − a⋆)
p∑

j=1
𝛼aj𝛽mj.

TE = E[Yi(a,Mi(a)) − Yi(a⋆,Mi(a⋆))|Ci] = (𝛽a + 𝜶⊤a𝜷m)(a − a⋆).

3 METHOD

Recent application of univariate mediation analysis methods at genome-wide scale26,27 recognizes the need for decompos-
ing the null hypothesis of zero indirect effect into three null components: zero exposure on mediator effect, zero mediator
on outcome effect, and both. Such composite structure of the null hypothesis in the univaraite mediation analysis can
be naturally captured by the four-component Gaussian mixture model developed in the presence of high-dimensional
mediators.12 Following Song et al,12 we also consider a four-component Gaussian mixture for the effects of the jth
mediator,

[𝛽mj, 𝛼aj]⊤ ∼ 𝜋1jMVN2(0,V1) + 𝜋2jMVN2(0,V2) + 𝜋3jMVN2(0,V3) + 𝜋4j𝜹0

with a prior probabilities 𝜋kj (k ∈ Ω,Ω = {1, 2, 3, 4}) summing to one and MVN2 denoting a bivariate Gaussian distribu-
tion. The first component represents active mediators, where both the exposure-mediator effect 𝛼aj and mediator-outcome
effect 𝛽mj are nonzero and V1 models their covariance. The inactive mediator will fall into one of the remaining three
components. The second component corresponds to mediators with nonzero 𝛽mj but zero 𝛼aj, and the third compo-
nent corresponds to mediators with nonzero 𝛼aj but zero 𝛽mj. Both V2 and V3 are low-rank matrices restricting that

only 𝛽mj or 𝛼aj is nonzero, that is, V2 =
[
𝜎2

2 0
0 0

]
and V3 =

[
0 0
0 𝜎2

3

]
. Mediators with both exposure-mediator effect and

mediator-outcome effect being zero belong to the fourth component, and 𝜹0 is a point mass at zero. We specify a
conjugate inverse-Wishart prior on V1, V1 ∼ Inv-Wishart(𝜳 0, 𝜈), where 𝜳 0 = diag {𝜓01, 𝜓02} is a diagonal matrix, and
𝜈 is the degree of freedom. We also assign inverse-gamma priors to 𝜎2

2 and 𝜎2
3 , that is, 𝜎2

2 ∼ Inv-Gamma(𝜈∕2, 𝜓01∕2),
𝜎2

3 ∼ Inv-Gamma(𝜈∕2, 𝜓02∕2), where 𝜈, 𝜓01, and 𝜓02 are the same parameters used in the inverse-Wishart distribution.
In both simulation studies and real data examples, we set 𝜓01 and 𝜓02 as the sample variances of the nonzero 𝜷m and
𝜶a fitted through Bi-Lasso. The degree of freedom 𝜈 in the inverse-Wishart distribution is set to be two, which makes the
distribution reasonably noninformative while still well-defined.

We introduce a membership indicator variable 𝛾j for the jth mediator, where 𝛾j = k if [𝛽mj, 𝛼aj]⊤ is from Gaussian com-
ponent k, k ∈ {1, 2, 3, 4}. If we assume independence among 𝜋k1, 𝜋k2, … , 𝜋kp (and subsequently 𝛾1, 𝛾2, … , 𝛾p), then each
mediator is independent a priori and the prior distribution on [𝜷m,𝜶a]⊤ after integrating out {𝜋kj} (or {𝛾j}) is essentially a
separable product of distributions of [𝛽mj, 𝛼aj]⊤. This is akin to the concept of “separable prior” in Ročková and George.28

In contrast, the previously developed GMM method12 assumes a common set of 𝜋1, 𝜋2, 𝜋3, 𝜋4 for all the mediators a pri-
ori. This specification ties mediators together through the mixing probabilities and enables information sharing across
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mediators, making the priors “nonseparable.” However, since this previous GMM approach assumes the same mixing
probabilities for all the mediators a priori, it does not differentiate highly correlated mediators from uncorrelated ones to
inform coordinated mediator selection. Specifically, when the jth and (j + 1)th mediators are highly correlated with each
other, because such correlation often implies common biological mechanism underlying both mediators, then one medi-
ator being active becomes informative on the other being active in the sense that 𝛾j and 𝛾j+1 are more likely to be same. To
enable coordinated selection of correlated active mediators, we consider embedding the correlation information to {𝜋kj}’s
or 𝛾j’s. In the following sections, we describe the proposed methods with more details.

3.1 Hierarchical Potts mixture model: GMM-Potts

The Potts model13 was initially developed as a generalization of the Ising model in statistical physics. However, it has
enjoyed great success as a prior model for the spatial modeling in image analysis,29,30 disease mapping,31 genetics
studies,32 and so on. In those applications, Potts models incorporate spatial Markovian dependency by assigning homoge-
neous relationships for the “neighboring” regions. In the context of mediation analysis, we allocate the high-dimensional
mediators into four Gaussian components based on their exposure-mediator and mediator-outcome effects. We think of
the highly correlated mediators as neighbors and we attempt to assign them to different mediation components through
a Potts model.

To specifically formulate our Potts mixture model, we assume that 𝜸 = (𝛾1, 𝛾2, … , 𝛾p) follows a Potts distribution,

p(𝜸|𝜽0,𝜽1) = c(𝜽0,𝜽1)−1 exp

{ p∑
i=1

𝜃0kI[𝛾i = k]

}
× exp

{ p∑
i=1

∑
i∼j

4∑
k=1

𝜃1kI[𝛾i = 𝛾j = k]

}
, (3)

where i ∼ j indicates neighboring pairs and I(⋅) is the indicator function. The neighboring relationship can be defined in
terms of domain knowledge, or, in our case, the mediator correlation information. 𝜽0 = (𝜃01, 𝜃02, 𝜃03, 𝜃04) effectively deter-
mines the four group proportions a priori in the absence of mediator correlation. 𝜽1 = (𝜃11, 𝜃12, 𝜃13, 𝜃14) represents how
mediator correlation determines the extent to which one mediator being selected into one group affects the probability
of its neighboring mediators being selected into the same group. For 𝜃1k > 0, the Potts distribution encourages configura-
tions where “neighboring mediators” belong to the same group; and the larger 𝜃1k, the tighter this coupling. When 𝜽1 = 0,
group membership of one mediator is independent of that of its neighbors. Based on the full probability distribution in
Equation (3), the probability for the jth mediator belonging to component k conditional on its neighbors is,

p(𝛾j = k|{𝛾i}i≠j,𝜽0,𝜽1) =
exp{𝜃0k} × exp{

∑
i∼j 𝜃1kI[𝛾i = 𝛾j = k]}∑4

k=1 exp{𝜃0k} × exp{
∑

i∼j 𝜃1kI[𝛾i = 𝛾j = k]}
. (4)

This conditional probability depends on the neighbors of the jth mediator and demonstrates the Markov property of
the Potts distribution.

We develop a Markov chain Monte Carlo (MCMC) sampling strategy for the proposed model. A key challenge for
inference is the exact calculation of the normalizing constant c(𝜽0,𝜽1) in Potts distribution, as it requires the summation
over the entire space of 𝜸 which consists of 4p states. Even for a moderate number of mediators, c(𝜽0,𝜽1) is computa-
tionally intractable, and this complicates the Bayesian inference. Due to the intractable normalizing constant in Potts
distribution, the update of 𝜽0,𝜽1 cannot be handled by the standard Metropolis Hastings (MH) algorithm. To address
this issue, we employ the double MH sampler33 to generate auxiliary variables via the MH transition kernels and elim-
inate the normalizing constants. For 𝜽0,𝜽1, we consider normal priors, and the prior means of {𝜃0k} are set to have
the desired inclusion probability while the prior means of {𝜃1k} are set to be the same positive number. This prior
information favors the grouping of correlated mediators. According to Equation (4), the updating of 𝜸 can be realized
through single site Gibbs sampling. Since the sampling space of 𝜸 is huge and discrete, the efficiency of the standard
Gibbs updates can be improved by the Swendsen-Wang (SW) algorithm.34 The SW algorithm partitions the whole set
of mediators into blocks within which the mediators belong to the same normal component, and then updates each
block independently. Following the strategy in Higdon,34 we alternate between the single site Gibbs updates of 𝜸 and
SW updates to ensure movement in large patches and fast mixing of the algorithm. The detailed algorithm is given
in the SI.
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In our Potts mixture model, the “neighboring” mediators are predefined to capture the correlation structure among
mediators. Based on our experience, including too many neighbors into the model will cause irrelevant noises to the
group probabilities and blur the cluster boundary, while including too few neighbors will certainly lose some of the
important structural information. In this article, we apply the common clustering method on the p(p − 1)∕2 pairwise cor-
relations across the p mediators to divide them into two groups: high correlation and background noise. This procedure
essentially sets a correlation threshold for neighbors and nonneighbors in a data dependent way. In the procedure, we
define the ith mediator and jth mediator as neighbors if their pairwise correlation is above this threshold. The threshold
may be determined in other ways to reflect the prior knowledge on the neighborhood structure and relationships across
mediators.

We refer to our Potts mixture model as GMM-Potts. GMM-Potts translates the correlation structure into a neighbor-
ing graph and incorporates the local dependency among mediators through mediators’ predefined neighbors. For each
mediator, its four-component group probabilities will be dependent on its neighboring correlated mediators but not the
nonneighboring ones. This local dependency feature of GMM-Potts is unique compared with the previous GMM and does
not incur much additional computational burden.

3.2 Hierarchical GMM with correlated selection: GMM-CorrS

GMM-Potts requires a hard thresholding rule to determine the neighboring graph among mediators. If the neighbors and
nonneighbors of mediators are not correctly specified or difficult to specify as in the case of a weak correlation struc-
ture, then GMM-Potts may incur a loss of performance. To avoid the need of neighborhood prespecification and allow
for a more direct incorporation of correlation structure, we consider an alternative approach for coordinated selection
of correlated mediators here. This alternative approach is again built upon the GMM framework. Specifically, for each
mediator, we assume that the selection/group indicator 𝛾j follows a multinomial distribution with parameters 𝜋1j, 𝜋2j, 𝜋3j,
𝜋4j, and

∑4
k=1𝜋kj = 1. We propose to jointly model all the mediators’ mixing probabilities and their continuous depen-

dence structure via latent logistic normal distributions. The logistic normal14 has been studied in the context of analyzing
compositional data, such as bacterial composition in human microbiome data35 and topics proportions associated with
document collections in correlated topics model.36 In mediation analysis, it would allow for a flexible covariance struc-
ture among mediators and give a more realistic model where correlated mediators will have similar group probabilities a
priori.

In particular, we employ a Pólya-Gamma (PG) latent variable representation of the multinomial distribution to enable
coordinated mediator selection. Our approach is motivated in part by computational considerations. Specifically, a naive
incorporation of the Gaussian correlation structure among multinomial parameters as described in the previous para-
graph imposes substantial computational challenge, as it would break the Dirichlet-multinomial conjugacy commonly
used in mixture models. Approximation techniques such as variational inference are feasible, but they do not always
come with the theoretical guarantees as MCMC.37 Our approach extends a similar approach in Bayesian logistic regres-
sion inference. Specifically, Bayesian logistic regression has long been explored given its inconvenient analytic form of
the likelihood and the nonexistence of a conjugate prior for parameters of interest. Recently, Polson et al38 construct a
new data-augmentation strategy based on the novel class of Pólya-Gamma (PG) distributions, and the method is notably
simpler and more efficient than the previous schemes for Bayesian hierarchical models with binomial likelihoods.39 To
extend that approach to multinomial logit models and facilitate MCMC computation, we leverage a logistic stick-breaking
representation in the PG latent variable augmentation40 to formulate the multinomial distribution in terms of latent vari-
ables with the jointly Gaussian likelihoods. First, we rewrite four-dimensional multinomial in terms of three binomial
densities 𝜋̃j1, 𝜋̃j2, and 𝜋̃j3,

p(𝛾j = 1) = 𝜋̃j1 = 𝜋j1,

p(𝛾j = 2|𝛾j ≠ 1) = 𝜋̃j2 = 𝜋j2∕(1 − 𝜋j1),

p(𝛾j = 3|𝛾j ≠ 1 or 2) = 𝜋̃j3 = 𝜋j3∕(1 − 𝜋j1 − 𝜋j2),

p(𝛾j = 4|𝛾j ≠ 1 or 2 or 3) = 𝜋̃j4 = 𝜋j4∕(1 − 𝜋j1 − 𝜋j2 − 𝜋j3) = 1,

Multinomial(𝛾j|1, {𝜋j1, 𝜋j2, 𝜋j3, 𝜋j4}) =
3∏

k=1
Binomial(I(𝛾j = k)|njk, 𝜋̃jk),
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where njk = 1 −
∑

k′<k I(𝛾j = k′), nj1 = 1. The multinomial distribution is now expressed with three binomial distribu-
tions and each 𝜋̃jk describes the faction of the remaining probability for the kth group (details in the SI). To better aid the
interpretation of the above stick-breaking representation, we may consider a testing strategy for the indirect effect 𝛽mj𝛼aj
implemented on each mediator. By doing that, we will get the subset of active mediators with 𝛽mj𝛼aj ≠ 0, that is, 𝛾j = 1.
For the remaining mediators with 𝛽mj𝛼aj = 0, we further consider the following three cases: p(𝛾j = 2|𝛾j ≠ 1) is the condi-
tional probability of having nonzero 𝛽mj effect but zero 𝛼aj given that 𝛽mj𝛼aj = 0; p(𝛾j = 3|𝛾j ≠ 1 or 2) is the conditional
probability of having nonzero 𝛼aj effect given that 𝛽mj = 0; and the rest of the mediators will surely have 𝛽mj = 𝛼aj = 0,
that is, 𝛾j = 4. We note that under the sparsity assumption, for most of the mediators, 𝜋̃j2 ≈ 𝜋j2, 𝜋̃j3 ≈ 𝜋j3 due to the small
values of 𝜋j1 and 𝜋j2.

Then, we define bjk = logit(𝜋jk) for k = 1, 2, 3 and j = 1, 2, … , p. We stack the 3 × p bjk’s as one random vector, and
assume a multivariate normal prior on it, that is,

b ∶= {bjk}j=1,… ,p;k=1,2,3,

b ∼ MVN(a, diag{𝜎2
d1, 𝜎

2
d2, 𝜎

2
d3}⊗ D), (5)

where ⊗ denotes the Kronecker product. The logistic transformation maps the transformed multinomial parameters
to the 3p-dimensional open real space. The prior mean a = {ajk}j=1,… ,p;k=1,2,3, and it is chosen such that ajk = aj′k for
k = 1, 2, 3 and 1 ≤ j < j′ ≤ p. It reflects our prior belief on the overall group proportions and induces sparsity for the first
three groups. The D is a p-by-p covariance matrix and will incorporate the mediatorwise correlation/structure dependency
to the transformed mixing probabilities. In our setting, we estimate the correlation matrix among mediators from data
and replace the negative correlations with their absolute values. For technical reasons, we then find the nearest positive
definite matrix to the absolute correlation matrix, and use that as the D matrix in model fitting. Based on our practical
experience, this approximation does not alter the absolute values of the correlation in D much. In this way, both the
positive and negative correlation among mediators will encourage similar values on 𝜋1j’s, therefore favoring the selection
of correlated mediators. Since the variation level may be different for logit(𝜋̃j1), logit(𝜋̃j2), and logit(𝜋̃j3), we introduce
the groupwise 𝜎2

dk, k = 1, 2, 3 for a more general covariance pattern. This correlation embedded GMM exploits the whole
correlation information from all the mediators and does not require the predefined neighbors as in the GMM-Potts model.

We refer to the above model as GMM-CorrS. We develop an MCMC algorithm to infer parameters through data aug-
mentation with Pólya-Gamma variables.38 The augmented posterior leads to conditional distributions from which we can
easily draw samples and the entire vector b can be sampled as a block in a single Gibbs update. The detailed derivation
and algorithm can be found in the SI. The software for implementing both GMM-Potts and GMM-CorrS can be found at
https://github.com/yanys7/Correlated_GMM_Mediation.

4 SIMULATIONS

We evaluate the performance of the proposed models compared with existing methods under different scenarios through
simulations.

4.1 Small sample scenarios: n = 100,p = 200

4.1.1 Simulation design

Following settings in Song et al,12 we adopt the four-component structure to generate the exposure-mediator and
mediator-outcome effects, that is, simulate [𝛽mj, 𝛼aj]⊤ from

[𝛽mj, 𝛼aj]⊤ ∼ 𝜋1MVN

(
0,

[
0.5 0.2
0.2 0.5

])
+ 𝜋2MVN

(
0,

[
0.5 0
0 0

])
+ 𝜋3MVN

(
0,

[
0 0
0 0.5

])
+ 𝜋4𝜹0.

To introduce sparsity, we assume the proportion of active mediators 𝜋1 = 0.05, and the other three null components
𝜋2 = 0.05, 𝜋3 = 0.10, 𝜋4 = 0.80. We generate a p-vector of correlated mediators for the ith individual from Mi = Ai𝜶a + 𝝐Mi ,

https://github.com/yanys7/Correlated_GMM_Mediation
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where the continuous exposure {Ai, i = 1, … ,n} is independently sampled from a standard normal distribution. The
residual errors 𝝐Mi ∼ MVN(0,𝚺) and 𝚺 models the correlation structure across mediators. For the outcome, we simulate
it from the linear model: Yi = M⊤

i 𝜷m + Ai𝛽a + 𝜖Yi , with 𝛽a = 0.5, and the residual error 𝜖Yi ∼ N(0, 1).
For the correlation structure, we assume 10 highly correlated blocks of size 10 × 10, within which the pairwise cor-

relation of mediators is 𝜌1, for example, 𝜌1 = 0.5 − 0.03|i − j| or 0.9 − 0.05|i − j|, and the correlation between blocks (𝜌2)
is relatively weak (eg, 𝜌2 = 0 or 0.1). Such correlation structure mimics the local dependency due to physical adjacency
or biologically functional pathway of biomarkers, which is commonly seen in the high-dimensional mediators. There
are 10 active mediators, and they are assumed to cluster within one block or scatter over a few blocks, while the other
blocks contain no active mediators. We also consider settings where there is no correlation or such structural information
underlying active mediators, that is, setting 𝚺 to be identical matrix or estimated covariance based on a random subset of
DNAm from MESA. For the Bayesian methods, we check the MCMC convergence by running ten chains and computing
the potential scaled reduction factors (PSRF).41 The estimated 95% confidential interval of the PSRFs for all the PIPs is
[1.0, 1.2], indicating good mixing and convergence of the algorithms.

The GMM-Potts model needs the input of a reliable neighborhood matrix. In practice, we may not be able to spec-
ify a completely precise neighborhood structure, but instead a deviated version of that. To examine how sensitive our
GMM-Potts model is to the incorrect neighborhood relationship, we randomly convert a proportion of r neighboring medi-
ator pairs to be nonneighboring, and randomly convert the same amount of nonneighboring pairs to be neighbors. The
other configurations are the same as in the previous simulations. We vary the perturbation rate r from 0.05 to 0.5 to mimic
different degrees of bias. In addition, for the GMM-CorrS, since it directly takes the correlation matrix as an input, we
examine its sensitivity to the observed correlation matrix by adding mild changes from N(0, 𝜎2) to the estimated matrix.
We vary 𝜎 from 0.1 to 0.3 for different levels of noise.

4.1.2 Evaluation metrics

To examine the mediator selection accuracy, for the proposed GMM-Potts and GMM-CorrS methods as well as GMM, we
use PIP to rank and select mediators. We calculate the true positive rate (TPR) for active mediators based on the fixed 10%
false discovery rate (FDR). For the estimation accuracy, we calculate the mean square error (MSE) of the indirect effects
for both nonnull and null mediators, denoted as MSEnonnull and MSEnull. We perform 200 replicates for each scenario and
report the means of those metrics in the result tables.

4.1.3 Competing methods

In addition to the proposed methods, we consider the following existing methods: GMM with no correlated information
included, Bi-Lasso (apply two separate Lasso regressions42 to the outcome and mediator model, respectively), Bi-Ridge
(apply two separate ridge regressions43 to the outcome and mediator model, respectively), and Pathway Lasso.10 In
Bi-Lasso and Bi-Ridge, we adopt 10-fold cross validation to choose the tuning parameter in each regression separately.
The three frequentist methods provide optimized solutions of 𝜷m, 𝜶a to the three different penalized likelihoods, and the
marginal indirect contribution from each mediator, that is, 𝛽mj𝛼aj, is used to rank mediators for the TPR calculation.

4.1.4 Simulation results

Table 1 shows the results under the small sample scenarios with n = 100, p = 200. Overall, by leveraging mediators’ corre-
lation structure, the two proposed approaches, GMM-Potts and GMM-CorrS, substantially improve the selection accuracy
over the other methods. When the active mediators are concentrated within one block, the GMM-Potts achieves the high-
est TPR (>0.90) at a fixed 10% FDR for identifying this whole block, followed by GMM-CorrS (∼0.80 TPR). The advantage
of the proposed methods grows with stronger correlations. Without such “group selection” ability, the GMM under inde-
pendent priors tends to lose half of the power for detecting correlated mediators. On the other hand, if the active ones
are evenly distributed into two blocks, then highly correlated mediators within the same block may not be concurrently
active. This could happen if their correlation does not mainly link with mediation as we assume, and therefore may dis-
turb mediator selection. Under those settings, we do observe power decrease for the proposed methods. Particularly, the
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T A B L E 1 Simulation results of n = 100, p = 200 under different correlation structures

𝝆1 = 0.5 − 0.03|i − j|, 𝝆2 = 0

(A) Signals in one block (B) Signals in two blocks

Method TPR MSEnonnull MSEnull ×10−4 TPR MSEnonnull MSEnull ×10−4

GMM-CorrS 0.78 0.029 1.360 0.62 0.039 1.919

GMM-Potts 0.93 0.035 2.251 0.49 0.040 2.112

GMM 0.45 0.042 1.211 0.46 0.047 1.203

Bi-Lasso 0.26 0.238 0.520 0.23 0.238 0.584

Bi-Ridge 0.22 0.283 2.639 0.21 0.286 2.642

Pathway Lasso 0.24 0.233 2.598 0.23 0.180 6.405

𝝆1 = 0.9 − 0.05|i − j|, 𝝆2 = 0.1

(A) Signals in one block (B) Signals in two blocks

Method TPR MSEnonnull MSEnull ×10−4 TPR MSEnonnull MSEnull ×10−4

GMM-CorrS 0.81 0.208 1.146 0.49 0.182 4.080

GMM-Potts 0.92 0.171 3.515 0.41 0.233 1.651

GMM 0.33 0.206 2.158 0.22 0.201 3.112

Bi-Lasso 0.11 0.342 0.173 0.13 0.343 0.179

Bi-Ridge 0.15 0.322 2.170 0.16 0.326 1.690

Pathway Lasso 0.21 0.237 5.495 0.19 0.264 3.457

No systematic correlation structure (signals in two blocks)

(A) 𝝆1 = 0 (B) Weak correlation from MESA

Method TPR MSEnonnull MSEnull × 10−4 TPR MSEnonnull MSEnull ×10−4

GMM-CorrS 0.52 0.020 1.042 0.44 0.023 1.780

GMM-Potts 0.46 0.043 1.970 0.40 0.030 3.041

GMM 0.52 0.021 0.805 0.45 0.023 1.642

Bi-Lasso 0.45 0.081 0.542 0.35 0.139 0.740

Bi-Ridge 0.35 0.238 3.645 0.28 0.247 4.003

Pathway Lasso 0.35 0.164 0.314 0.32 0.177 0.400

Note: TPR: true positive rate at false discovery rate (FDR) = 0.10. MSEnonnull: mean squared error for the indirect effects of active mediators.
MSEnull: mean squared error for the indirect effects of inactive mediators. The results are based on 200 replicates for each setting. Bolded
TPRs indicate the top two performers.

GMM-Potts model becomes less preferable as it smoothes over nonmediating neighbors to infer active mediators, while
GMM-CorrS uses a more flexible Gaussian distribution for dependent group probabilities and thus has the best TPR. In
the settings where there is no systematic correlation structure underlying mediators, we find that GMM-CorrS behaves
quite similarly to the GMM, and outperforms the others. GMM-Potts is less robust presumably due to the inclusion of
irrelevant neighbors, but still better than the frequentist methods. The three frequentist methods have relatively poor
selection performance with highly correlated mediators, and Bi-Lasso is most competitive under zero or weak correlation.
In terms of the effects estimation, the proposed methods mostly achieve the smallest MSEnonnull and a reasonable level
of MSEnull. Among the three frequentist methods, since in general Lasso tends to select less correlated variables than the
elastic net type penalty, Bi-Lasso has a relatively larger MSEnonnull but noticeably smaller MSEnull than the pathway Lasso.
Given the sparse setup in the above simulations, Bi-Ridge does not exhibit much advantage over the other methods.

Tables 2 and 3 summarize the sensitivity analysis for GMM-Potts and GMM-CorrS, respectively, regarding the input
correlation structure. As expected, with increasing noise added to the correlation structure, the overall accuracy of
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T A B L E 2 Sensitivity analysis for Potts mixture model (GMM-Potts) for n = 100, p = 200

𝝆1 = 0.5 − 0.03|i − j|, 𝝆2 = 0

(A) Signals in one block (B) Signals in two blocks

Perturbation rate TPR MSEnonnull MSEnull ×10−4 TPR MSEnonnull MSEnull ×10−4

0 0.93 0.035 2.251 0.49 0.040 2.112

0.05 0.78 0.076 1.496 0.44 0.091 1.733

0.1 0.72 0.077 1.578 0.43 0.091 1.827

0.2 0.69 0.087 1.568 0.42 0.086 1.822

0.3 0.61 0.097 1.736 0.41 0.088 2.019

0.4 0.53 0.102 1.525 0.40 0.085 1.952

0.5 0.49 0.094 2.082 0.41 0.081 1.847

𝝆1 = 0.9 − 0.05|i − j|, 𝝆2 = 0.1

(A) Signals in one block (B) Signals in two blocks

Perturbation rate TPR MSEnonnull MSEnull ×10−4 TPR MSEnonnull MSEnull ×10−4

0 0.92 0.171 3.515 0.41 0.233 1.651

0.05 0.91 0.180 0.819 0.33 0.191 1.876

0.1 0.91 0.181 1.203 0.35 0.183 2.156

0.2 0.91 0.175 1.393 0.32 0.201 1.815

0.3 0.89 0.174 1.129 0.32 0.177 2.081

0.4 0.88 0.173 1.395 0.32 0.200 1.492

0.5 0.83 0.166 2.046 0.30 0.188 1.884

GMM-Potts and GMM-CorrS gets reduced. However, the power of our methods remains 75% of the original level for rea-
sonable r and 𝜎 (r < 0.3, 𝜎 < 0.3). Even with large r = 0.5 and 𝜎 = 0.3, GMM-CorrS still has better performance (TPR,
MSEnonnull) over methods with no structural information in all the settings, and GMM-Potts does for most of the settings.
Generally speaking, the proposed methods are not sensitive to small alteration of the input correlation structure. In addi-
tion, we also perform sensitivity analysis on the𝜓 parameters (𝜓01 and𝜓02) in the covariances of both mixture models. We
find that the posterior inference is robust to mild changes in 𝜓 ′s, especially as we increase the values of 𝜓 ′s. The results
also show that model fitting criteria, such as the deviance information criterion (DIC) , can be used to select the optimal
𝜓 ′s. More details can be found in Section 7 of the supporting file.

4.2 Large sample scenarios: n = 1000,p = 2000

4.2.1 Simulation design

Next, we examine the settings for n = 1000, p = 2000. We simulate the exposure, exposure-mediator and
mediator-outcome effects using the same distribution as above. For the correlation structure, we now consider 50 blocks
of size 20 × 20, with relatively high within-block mediator correlation 𝜌1 and zero between-block correlation. We first set
the four group proportions same as in the small sample scenarios, and the resultant 100 active mediators are assumed
to evenly distribute over five blocks. The other blocks contain no active mediators. In one of the settings, we use the
covariance matrix estimated from a random subset of DNAm in MESA as 𝚺 to simulate mediators with no underlying
systematic correlation structure.

Then we study a much sparser setting with only 10 active mediators to better reflect the situation we observe in the
MESA application. The 10 active mediators exist in two blocks, each of which contains five active ones and 15 inactive
ones. Furthermore, we consider another worse-case scenario for GMM-Potts model by reducing 𝜌1 to 0.25 and remaining



6048 SONG et al.

T A B L E 3 Sensitivity analysis for the Gaussian mixture model with correlated selection (GMM-CorrS) for
n = 100, p = 200

𝝆1 = 0.5 − 0.03|i − j|, 𝝆2 = 0

(A) Signals in one block (B) Signals in two blocks

Noise level TPR MSEnonnull MSEnull ×10−4 TPR MSEnonnull MSEnull

0 0.78 0.029 1.360 0.62 0.039 1.919

0.1 0.71 0.029 2.481 0.56 0.036 2.246

0.2 0.60 0.031 2.575 0.50 0.037 2.043

0.3 0.53 0.033 2.235 0.47 0.037 1.910

𝝆1 = 0.9 − 0.05|i − j|, 𝝆2 = 0.1

(A) Signals in one block (B) Signals in two blocks

Noise level TPR MSEnonnull MSEnull ×10−4 TPR MSEnonnull MSEnull ×10−4

0 0.81 0.208 1.146 0.49 0.182 4.080

0.1 0.72 0.168 4.017 0.40 0.127 3.288

0.2 0.63 0.170 3.442 0.37 0.130 3.370

0.3 0.54 0.176 3.413 0.34 0.133 3.283

the high sparsity. The weak correlation makes it hard for GMM-Potts model to identify the true neighboring relationship
via the clustering method, and the performance of the Potts model is quite dependent on the smoothing effects from the
predefined neighbors.

4.2.2 Simulation results

Table 4 shows the results under the large sample scenarios with n = 1000, p = 2000. Our methods enjoy up to 30%
power gain on mediator selection utilizing the correlation structure compared with the other methods. In the first set-
ting, both methods identify almost all the active blocks, and GMM-Potts has a slightly higher TPR (0.97) at 10% FDR
than GMM-CorrS (TPR = 0.92). When the mediator correlation has no implication for mediation effects in the sec-
ond setting, the overall performance of GMM-CorrS is similar to that of GMM, and better than GMM-Potts. Those
patterns are consistent with what we have observed in the small sample scenarios. Under the much sparser settings
with only 10 active mediators and varied correlation 𝜌1, the GMM-CorrS maintains good and stable performance with
TPR around 0.80. By contrast, the performance of GMM-Potts is dependent on how obvious the correlation patterns
are and subsequently how well the clustering method does in defining neighbors and nonneighbors. For example, with
𝜌1 = 0.5 − 0.02|i − j|, the GMM-Potts models can accurately identify the underlying correlation structure and achieve
the highest TPR (0.85), smallest MSE (MSEnonnull = 0.002, MSEnull = 7.607 ×10−7). However, as the within-block corre-
lation 𝜌1 reduces to 0.25, it becomes challenging for the clustering method to separate true correlation vs noise, and we
do observe many noisy pairs in the neighborhood matrix. As a consequence, the results of GMM-Potts model get com-
promised by the inclusion of those irrelevant neighbors. This setting is actually in agreement with our observation of the
ambiguous correlation structure and sparse signals in the MESA application, which may not fare well for GMM-Potts
model. Among the other three frequentist methods, Bi-Lasso performs best regarding to the selection and estimation
accuracy.

We note that the TPR results shown in the above tables represent the best selection performances one can achieve
with the proposed methods, as we know the underlying true signals and can perfectly specify the 10% FDR thresholds.
But that is not the case with real data applications. Therefore, we examine the empirical FDR estimates using (a) the
local FDR approach44 for a targeted 10% FDR (specifically, we sort the p local FDRs from all the mediators and find the
cutoff value on the local FDRs to declare significance), (b) median PIP cutoff, and (c) 0.90 PIP cutoff, along with the cor-
responding TPR estimates. Detailed procedure and the empirical estimates, including the empirical FDRs for simulations
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T A B L E 4 Simulation results of n = 1000, p = 2000 under different correlation structures, p11 is the number of true
active mediators

p11 = 100, signals in five blocks

(A) 𝝆1 = 0.5 − 0.02|i − j| (B) Weak correlation from MESA

Method TPR MSEnonnull MSEnull ×10−4 TPR MSEnonnull MSEnull ×10−4

GMM-CorrS 0.92 0.031 0.440 0.83 0.002 0.240

GMM-Potts 0.97 0.030 0.018 0.76 0.004 1.013

GMM 0.76 0.077 0.630 0.84 0.002 0.176

Bi-Lasso 0.73 0.031 0.199 0.65 0.042 0.446

Bi-Ridge 0.32 0.244 2.680 0.36 0.202 3.795

Pathway Lasso 0.44 0.112 1.162 0.42 0.107 1.427

p11 = 10, signals in two blocks

(A) 𝝆1 = 0.5 − 0.02|i − j| (B) 𝝆1 = 0.25

Method TPR MSEnonnull MSEnull ×10−4 TPR MSEnonnull MSEnull ×10−4

GMM-CorrS 0.83 0.003 0.015 0.82 0.002 0.017

GMM-Potts 0.85 0.002 0.008 0.61 0.018 0.228

GMM 0.80 0.003 0.013 0.81 0.002 0.016

Bi-Lasso 0.73 0.013 0.036 0.76 0.010 0.035

Bi-Ridge 0.41 0.061 1.508 0.39 0.063 1.517

Pathway Lasso 0.55 0.046 0.133 0.56 0.047 0.141

Note: TPR: true positive rate at false discovery rate (FDR) = 0.10. MSEnonnull: mean squared error for the indirect effects of active mediators.
MSEnull: mean squared error for the indirect effects of inactive mediators. The results are based on 200 replicates for each setting. Bolded
TPRs indicate the top two performers.

in this section, are provided in the SI. Under the small sample scenarios (Table S1), the local FDR approach provides
decent and well-controlled empirical FDR for both of the proposed methods, while the estimates by median PIP cut-
off and 0.90 PIP cutoff tend to be either slightly overestimated or very conservative. Under the large sample scenarios
(Table S2), the local FDR approach and median PIP cutoff still produces reasonable FDR estimates for GMM-CorrS across
different settings and for GMM-Potts when neighbors reflect connected signals. However, including irrelevant neigh-
bors in GMM-Potts could lead to increased false discoveries, and instead a more stringent 0.90 PIP cutoff may be used
if one seeks a lower limit on the false discovery. Therefore in practice, we would recommend the local FDR and 0.90
PIP cutoff for reasonable FDR estimates and control, and we recognize the potential caveat concerning inflated FDR for
GMM-Potts.

In addition to the above simulation scenarios, we also perform simulations where there is a single active mediator in
each block. The simulation results are presented in Table S3. We find that the three GMM-based methods behave quite
similarly to each other, and outperform the frequentist methods. Such pattern still holds when we use a different n∕p
ratio, for example, n = 100, p = 500 (see Table S4). Along with the selection and estimation performance, we report the
computational cost for these two proposed methods in Table 5. For both the small sample scenario with n = 100, and the
large sample scenario with n = 1000, the proposed algorithms can be finished in a reasonable amount of time. We do
acknowledge that future development of new algorithms and/or new methods will likely be required to scale our methods
to handle thousands of subjects and millions of mediators.

To summarize our findings from the simulations, GMM-CorrS takes the overall correlation structure among medi-
ators directly into the modeling process, and shows excellent performance and robustness under different correlation
structures. On the other hand, the performance of GMM-Potts is related to how well the prespecified neighborhood
matrix reflects the underlying connection of active mediators. When the correlation-based neighboring relationship has
good implication on similar mediation effects, GMM-Potts usually achieves the best selection and estimation accuracy.
Its performance will likely get compromised by the inclusion of irrelevant neighbors.
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T A B L E 5 The average runtime of the proposed methods with (n, p) = (100, 200),
(100, 500), and (1000, 2000)

Method n = 100,p = 200 n = 100,p = 500 n = 1000,p = 2000

GMM-CorrS 3.5 min 0.97 h 9.8 h

GMM-Potts 2.2 min 0.44 h 4.0 h

Note: Comparison was carried out on a single core of Intel(R) Xeon(R) Platinum 8176 CPU @ 2.10GHz.
For both proposed methods, we in total ran 150 000 iterations.

5 DATA APPLICATION

In this section, we study two real data applications of the proposed methods: the LIFECODES birth cohort and the MESA
cohort. These two data sets have different correlation strength among mediators and thus can serve to demonstrate the
advantages of each of the proposed methods. Specifically, in the LIFECODES birth cohort, the biomarkers present a rela-
tively clear correlation/neighborhood structure. We thus expect GMM-Potts model to work well based on our observation
from simulations. On the other hand, the correlation structure in the MESA cohort is relatively weak. We thus expect a
better performance from GMM-CorrS compared with GMM-Potts there.

5.1 The LIFECODES birth cohort

In this application, we consider a set of n = 161 pregnant women registered at the Brigham and Women’s Hospital in
Boston, MA between 2006 and 2008. We are interested in the mediation mechanism linking environmental contaminant
exposure during pregnancy to preterm birth through endogenous signaling molecules. Those endogenous biomarkers
are derived from lipids, peptides, and DNA, and the lipids and peptide derived biomarkers were measured from subjects’
plasma samples, while the oxidative stress markers of DNA damage were measured from subjects’ urine samples. Both
the urine and plasma specimens were collected at one study visit between 23.1 and 28.9 weeks gestation. We focus on
p = 61 available endogenous biomarkers as potential mediators, including 51 eicosanoids, five oxidative stress biomarkers
and five immunological biomarkers. The correlation structure across mediators are shown in Figure 1, and clear pattern
with moderate to strong correlations can be observed. For the prenatal exposure to environmental toxicants, we focus the
attention of this present study on one class of environmental contaminants, polycyclic aromatic hydrocarbons (PAHs).
PAHs are a group of organic contaminants that form due to the incomplete combustion of hydrocarbons, and commonly
present in tobacco smoke, smoked and grilled food products, polluted water and soil, and vehicle exhaust gas.45 Previous
studies have suggested association between PAH exposure and adverse birth outcomes.46 Since the PAH class contains
multiple chemical analytes in our study, we follow Aung et al7 to construct an environmental risk score for the PAH class
and use that risk score as the exposure variable. The continuous birth outcome, gestational age, was recorded at delivery
for each participant, and preterm is defined as delivery prior to 37 weeks gestation. Since the cohort is oversampled for
preterm cases, we multiply the data by the case-control sampling weights to adjust for that. We log-transform all measure-
ments of the exposure metabolites and endogenous biomarkers. We apply the proposed methods with the aforementioned
exposure, mediator and outcome variables, controlling for age and maternal BMI from the initial visit, race, and urinary
specific gravity levels in both regressions of the mediation analysis.

The results are summarized in Table 6. Based on 10% FDR using the local FDR approach, GMM-Potts identifies four
biomarkers for actively mediating the impact of PAH exposure on gestational age at delivery, 8,9-epoxy-eicosatrienoic
acid (8(9)-EET), 9,10-dihydroxy-octadecenoic acid (9,10-DiHOME), 12,13-epoxy-octadecenoic acid (12(13)-EpoME),
9-oxooctadeca-dienoic acid (9-oxoODE), while both GMM-CorrS and GMM only identifies two of them, 8(9)-EET and
9,10-DiHOME. We also report the indirect effect estimates and their 95% credible intervals for selected mediators, and
the direction of effects are consistent among different methods. Among the four biomarkers, 8(9)-EET, 9,10-DiHOME,
and 12(13)-EpoME belong to the same Cytochrome p450 (CYP450) pathway, while 9-oxoODE is within cyclooxygenase
(COX) pathway. CYP450 is a family of enzymes that function to metabolize environmental toxicants, drugs, and endoge-
nous compounds,47 and thus the PAH exposure may cause perturbations in the functions of these enzymes. It has also
been suggested that the group of CYP450 metabolites as well as the related genes may play a role in the etiology of
preterm delivery,48 and the underlying mechanisms involve increased maternal oxidative stress and inflammation.49 This
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F I G U R E 1 Correlations among biomarkers in LIFECODES birth cohort. The negative correlations (∼37% of all the pairwise
correlations) were replaced with their absolute values. The 61 biomarkers were grouped by literature derived biological pathways or processes
(black lines) [Colour figure can be viewed at wileyonlinelibrary.com]

evidence helps explain the potential mediating mechanism of CYP450 metabolites from PAH exposure to preterm deliv-
ery. Additionally, single biomarker analysis also demonstrated the protective effect of 12(13)-EpoME on preterm.50 We
also performed the posterior predictive checks on the outcome model for the three methods, in which the data gener-
ated from the posterior predictive distribution are compared with the observed outcome. We find the Bayesian predictive
P-values51 of the GMM-Potts model are 0.72 and 0.48 for sample first and second moments, respectively, which are closest
to 0.5 among the three methods and indicate the most adequate fit of the outcome model.

Besides the estimated correlation structure, we also consider the input of biological pathway based structural infor-
mation. That is, only mediators within the same literature derived biological pathway or process are treated as neighbors
in GMM-Potts and have nonzero pairwise correlations in GMM-CorrS. The findings are shown in Table S7 of the SI.
GMM-Potts identifies a subset of the above four biomarkers: 8(9)-EET, 9,10-DiHOME, and GMM-CorrS declares the other
two biomarkers as active mediators: 12(13)-EpoME, 9-oxoODE. The overlapping lists of active mediators add confidence
to our findings, and also reveal the fact that only adjusting for biological pathways may lose the correlated information
between different pathways.

5.2 The MESA cohort

In this application, we study the mediation mechanism of DNAm in the pathway from neighborhood socioeconomic
disadvantage to blood glucose. We focus on n = 1226 participants with no missing data, and a subset of p = 2000 CpG
sites that have the strongest marginal associations with neighborhood disadvantage for computational reasons. As the
exposure, neighborhood socioeconomic disadvantage evaluates the neighborhood social conditions from dimensions of

http://wileyonlinelibrary.com


6052 SONG et al.

T A B L E 6 Summary of the identified active mediators from the data application
on LIFECODES study based on 10% FDR with the local FDR approach

Method Selected mediators PIP 𝜷mj𝜶̂aj (95% CI)

Polycyclic aromatic hydrocarbons → biomarkers → gestational age

GMM-Potts 12(13)-EpoME 0.99 0.419 (0.295, 0.579)

8(9)-EET 0.98 0.368 (0.179, 0.567)

9-oxoODE 0.97 −0.296 (−0.441, 0.000)

9,10-DiHOME 0.87 −0.185 (−0.383, 0.000)

Note: Compared with GMM-CorrS and GMM, the GMM-Potts model achieves the most
adequate fit of the outcome model based on posterior predictive check. The two additional
findings from GMM-Potts are marked in blue. Besides the PIP, we also report the posterior
estimates 𝛽mj𝛼̂aj (ie, the marginal indirect contribution of the jth mediator to the joint NIE) and
its 95% credible interval (CI).

T A B L E 7 Summary of the identified active mediators from the data application on MESA study based
on 10% FDR using the local FDR approach

Method Selected mediators Nearby genes PIP 𝜷mj𝜶̂aj (95% CI)

Neighborhood SES → biomarkers → glucose

GMM-CorrS cg19515398 EIF2C2 0.97 −0.013 (−0.026, 0.000)

cg04000940 MYBPC3 0.96 0.016 (0.000, 0.029)

cg17907003 CD101 0.88 0.016 (0.000, 0.034)

cg27090988 OGG1 0.84 −0.011 (−0.024, 0.000)

Note: We include the nearby gene, PIP, the posterior estimates 𝛽mj𝛼̂aj (ie, the marginal indirect contribution of the jth
mediator to the joint NIE) and its 95% credible interval (CI) for each selected CpG site. The one additional finding from
GMM-CorrS is marked in blue. The GMM-Potts does not identify any active mediators based on 10% FDR.

education, occupation, income and wealth, poverty, employment, and housing. Previous literature has demonstrated the
relationship between DNA methylation patterns and socially patterned stressors including low adult socioeconomic sta-
tus (SES)52 and unfavorable neighborhood conditions.53 It has also been long known that disadvantaged neighborhood
conditions can lead to a variety of health problems, such as chronic psychological distress54 and increased risk of car-
diovascular disease.55 The outcome, glucose, is one of the most important blood parameters and should be kept within a
safe range in order to support vital body functions and reduce the risk of diabetes and heart disease.56 Multiple evidence
has supported the association between differential DNAm patterns and glucose metabolism.57 However, the underlying
molecular mechanisms that link neighborhood conditions to physical health profiles are not fully elucidated. To take a
step forward, we apply the proposed methods for high-dimensional mediation analysis on DNAm. In the outcome model,
we adjust for age, gender, race/ethnicity, childhood SES and adult SES (more details on the SES variables can be found at
Smith et al53). In the mediator model, we control for age, gender, race/ethnicity, childhood SES, adult SES, and enrich-
ment scores for four major blood cell types (neutrophils, B cells, T cells, and natural killer cells) to account for potential
contamination by nonmonocyte cell types. All the continuous variables are standardized to have zero mean and unit
variance. In general, the correlation among DNAm in our study is relatively weak, and only 3% of DNAm pairs have
correlation larger than 0.2.

The results can be found in Table 7. Because of the relatively ambiguous correlation structure observed across medi-
ators in MESA, we do not expect big improvement from our methods. Indeed, the GMM-CorrS identifies one more CpG
site as active mediators compared with GMM, and three other CpG sites are detected by both GMM-CorrS and GMM.
The rank correlation for the mediator rank lists obtained from the two methods is 0.74, indicating the high consistency
between them. The indirect effect estimates from the GMM-CorrS are also close to those from the GMM. The one addi-
tional finding of CpG site by GMM-CorrS, cg27090988, is close to the gene OGG1. This gene, which is involved in the
repair of oxidative DNA damage, has been shown up-regulated in type 2 diabetic islet cell mitochondria, and studies have
suggested a crucial role of oxidative DNA damage in the pathogenesis of type 2 diabetes (T2D).58,59 We also examine the
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nearby genes to the other three jointly selected CpG sites. Among them, MYBPC3 is a known cardiomyopathy gene,60

and the increased risk of cardiac hypertrophy and heart failure is likely to alter the glucose metabolism;61 the expression
level of CD101, a protein involved in innate immunity, was found associated with T2D in a Mendelian randomization
analysis.62 As shown in the simulations, GMM-Potts is not quite suitable for a weak correlation structure as in the MESA
data, and the method does not identify any active mediators based on 10% FDR.

6 DISCUSSION

In this article, we present two hierarchical Bayesian approaches to incorporating the correlation structure across medi-
ators in high-dimensional mediation analysis: (1) through a logistic normal for mixing probabilities (GMM-CorrS),
or (2) through a Potts distribution on the group indicators (GMM-Potts). The consequent “nonseparable” priors of
both methods inform the grouping and selection of correlated mediators under the composite structure of mediation.
The simulation studies show that utilizing the correlation pattern in active mediators, the proposed methods greatly
enhance the selection and estimation accuracy over the methods that do not account for such correlation, and maintain
decent and comparable performance under no obvious or misspecified correlation structure. In addition, the analysis
on the LIFECODES birth cohort and MESA cohort indicates that our methods can promote the detection of new active
mediators, which may have important implications on future research in targeted interventions for preterm birth and
diabetes.

Between the two proposed methods, GMM-CorrS shows excellent performance and robustness under different
correlation structures, while the performance of GMM-Potts is relatively heavily dependent on how well the pre-
specified neighborhood matrix reflects the underlying connection among active mediators. In particular, when the
correlation-based neighborhood matrix captures the main correlation structure and has good predictive power on the
correlated mediation effects, GMM-Potts usually achieves the best selection and estimation accuracy. Therefore, in data
analysis, we would recommend using the GMM-Potts when one is confident that the prespecified neighborhood matrix
well captures the clustering pattern of active mediators, or when there are relatively strong domain knowledge on such
mediator grouping structure. If that is not the case, then it would be safer to start from GMM-CorrS. There are several lim-
itations of the proposed methods. First, for GMM-CorrS, it requires the inversion of a p × p matrix in each iteration of the
sampling algorithm, and as p increases to the scale of hundreds of thousands, that step could become the computational
bottleneck of the method. Techniques on matrix approximation or fast parallel matrix inversion will be required to speed
up the computing time and reduce the memory footprint. Second, for GMM-Potts, smoothing over arbitrary or inaccu-
rately specified neighbors may have a negative effect on its performance, and this can be further improved by imposing
adaptive weight for each neighbor to reflect their relative importance. Moreover, the method can be extended to allow for
simultaneous inference of both the active mediators and the neighborhood/network structure linking them. In that way,
the neighborhood/network structure among mediators does not need to be known a priori. It can also be easily extended
to more than two groups by introducing group-specific parameters 𝜃0k and 𝜃1k in the Potts distribution. This will facilitate
the needs for multiple mediator groups.

As promising directions for future work, we note that there may be other ways to incorporate mediators’ correlation
into the modeling process. Recently, testing the multivariate mediation effects from groups of potential mediators has
received growing attention,63 and the variance component tests developed by Huang27 can naturally take into account the
correlation within groups. Other frequentist extensions involving a sparse group Lasso type method by treating 𝛽mj and
𝛼aj as a group is also worth developing in the future. Also, Bobb et al64 develop a Bayesian kernel machine regression to
incorporate the structure of the multipollutant mixtures into the hierarchical model. Those methodologies may provide
insightful perspective to applying correlation kernels under the global testing setup in the context of high-dimensional
mediation analysis.
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