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Summary

We consider Bayesian high-dimensional mediation analysis to identify among a large
set of correlated potential mediators the active ones that mediate the effect from
an exposure variable to an outcome of interest. Correlations among mediators are
commonly observed in modern data analysis; examples include the activated vox-
els within connected regions in brain image data, regulatory signals driven by gene
networks in genome data and correlated exposure data from the same source. When
correlations are present among active mediators, mediation analysis that fails to
account for such correlation can be sub-optimal and may lead to a loss of power
in identifying active mediators. Building upon a recent high-dimensional mediation
analysis framework, we propose two Bayesian hierarchical models, one with a Gaus-
sian mixture prior that enables correlated mediator selection and the other with a
Potts mixture prior that accounts for the correlation among active mediators in medi-
ation analysis. We develop efficient sampling algorithms for both methods. Various
simulations demonstrate that our methods enable effective identification of corre-
lated active mediators, which could be missed by using existing methods that assume
prior independence among activemediators. The proposedmethods are applied to the
LIFECODES birth cohort and the Multi-Ethnic Study of Atherosclerosis (MESA)
and identified new active mediators with important biological implications.

KEYWORDS:
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1 INTRODUCTION

Mediation analysis attempts to explain the intermediate mechanism through which an exposure affects an outcome, and quantify
the indirect effect transmitted by the mediator variable between the exposure and the outcome1. To formally define the direct10

and indirect effects, a causal approach to mediation analysis based on the counterfactual framework has been proposed, with
the key assumptions for identification and causal interpretation being specified2,3. This framework further gave rise to other
extensions in mediation analysis, such as exposure-mediator interaction4, survival data5, etc.
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The fast development in high-throughput biological technology has provided tremendous opportunities for mediation analysis
with large-scale omics data. Modern omics studies often collect a large number of mediators with the goal for identifying active
mediators that mediate the effect from an exposure variable to an outcome variable. In many of these modern data applications,
there often exists a substantial correlation among mediators. For example, in functional MRI (fMRI) studies, the brain images
are composed of a large number of voxels/regions and true signals usually represent connected regions. Our study is particularly5

motivated by two large-scale data, one in environmental science and one in genomics. The first is the LIFECODES birth cohort,
one of the nation’s largest pregnancy cohorts aimed at advancing care and improving outcomes in high-risk pregnancies6. This
study collected data on a large group of endogenous biomarkers of lipid metabolism, inflammation, and oxidative stress. These
biomarkers are hypothesized to mediate the effects of prenatal exposure to environmental contamination on adverse pregnancy
outcomes7. Moderate to strong correlations across those biomarkers are observed, and such correlations occur not only for10

biomarkers within the same biological pathways but also for biomarkers between different pathways. The second is the Multi-
Ethnic Study of Atherosclerosis (MESA) data8. In this study, high-dimensional DNA methylation (DNAm) are hypothesized
to mediate the effect of neighborhood factors on blood glucose level, which is a critical variable linked to diabetes and heart
diseases. Like the first study, these DNAm data are also correlated with each other. Performing mediation analysis with a high-
dimensional set ofmediators that may be correlatedwith each other is an important first step towards understanding themolecular15

basis of complex diseases and subsequent development of prevention and treatment strategies.
Several mediation analysis methods have been recently developed to accommodate high-dimensional mediators obtained

from large-scale genomic data. For example, Zhang et al.9 propose sure independent screening and minimax concave penalty
techniques to study how the high-dimensional DNAm mediate the effect of smoking on lung function; Zhao and Luo10 develop
a new convex, Lasso-type penalty on the indirect effects to identify brain pathways from the language stimuli to the outcome20

region activity. In addition to the frequentist methods, Song et al.11 propose a Bayesian variable selection method with separate
shrinkage priors on the exposure-mediator effects and mediator-outcome effects, respectively. Song et al.12 further replace the
two separate priors with relevant joint priors for a direct target on the non-zero indirect effect in mediator selection. Those
methods enable a joint analysis of high-dimensional mediators and a valid procedure for the identification of active mediators.
However, to the best of our knowledge, none of the existing methods for high-dimensional mediation analysis has accounted25

for the possible correlation structure among active mediators. As explained in the above paragraph, such correlation is highly
prevalent. When the truly active mediators are correlated with one another, then the existing methods that fail to account for
such correlation may lead to a loss of power. A more effective mediation analysis will require methods that can incorporate the
useful correlation information of high-dimensional mediators into the model building process. We attempt to fill this gap in the
literature.30

Our proposedmethods are based on a recently developed high-dimensional mediation analysis framework12, which introduced
a Gaussian mixture model (GMM) as a joint prior on the exposure-mediator and mediator-outcome effect to allow for a targeted
penalization on the indirect effect. This method has been shown to enjoy excellent and robust performance for mediator selection
and effect estimation. GMM assumes that each mediator can be independently categorized into one of the four components
based on association pattern, and its group indicator follows the same multinomial distribution as the other mediators. With the35

goal of utilizing the correlation structure among mediators in the modeling process, we aim to replace the independent priors on
the mediators’ group indicators with two priors that introduce coordinated selection on active mediators that may be correlated
with each other. One prior is based on the Potts distribution13, a generalization from the Ising distribution, which allows for
more than two groups and complex dependency between correlated neighboring variables. The other prior is based on a jointly
modeling of themediator-specificmixing probabilities via a logistic normal distribution14, with the group probabilities reflecting40

the underlying correlation structure. Both methods allow for high-dimensional mediation analysis with the possible coordinated
selection of active mediators via another layer in the Bayesian hierarchy. Both methods are built off the GMM proposed in Song
et al.12, and thus inherit the merits of the GMM method for high-dimensional mediation analysis. Furthermore, the proposed
methods incorporate the structural information into a prior that favors selection of correlated mediators, and are expected to
allow the identification of correlated active mediators that could be missed otherwise. Our methods rely on exact posterior45

sampling to provide estimates of quantities of interest and characterize uncertainty in estimation. The proposed methods will
also facilitate the interpretation of the results, particularly for the selected mediators with high correlations.
We note that our methods are built upon a long history of similar methods in other related statistics areas. Indeed, Bayesian

variable selection with covariate structural information has received much interest over the years. Bayesian group Lasso15 and
Bayesian sparse group selection method16 allow for the inclusion of grouping effects and lead to more parsimonious models with50

reduced estimation error compared with standard Lasso. Yuan and Lin17 also develop a correlation prior on the binary selection
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indicators to distinguish models with the same size. Bayesian graphical models represent another stream of work on structural
variable selection. Cai et al.18 utilize the graph Laplacian matrix to encode the network information into the regression coef-
ficients. Stingo et al.19 propose the simultaneous selection of pathways and genes, using the pathway summaries of the group
behavior and structure dependency within pathways to inform the selection. Along with the above methods, emerging literature
considers the extension of the “spike-and-slab" type of mixture prior20 in combination withMarkov random field (MRF) prior to5

incorporate graph information. Ising prior, a binary spatial MRF, and its variations have been effectively applied to induce spar-
sity and accommodate selection dependency. Li and Zhang21 and Chekouo et al.22 show that the structural information through
Ising priors can greatly improve selection and prediction accuracy over the independent priors. In addition to smoothing over the
latent selection indicators, recent studies deploy different types of “slab distribution", such as the Dirichlet Process23, the group
fused Lasso prior24, etc., to include the grouping and smoothing effect in the non-zero regression coefficients due to local depen-10

dence or high correlation. Those methodologies have illustrated how the structural or correlated information can be incorporated
into Bayesian framework to deliver better variable selection. However, these existing approaches are not designed specifically
for mediation models with multivariate mediators and thus not directly applied to high-dimensional mediation analysis.
The rest of the paper is organized as follows. In Section 2, we first define the causal effects of interest for the multivariate

mediation analysis with the counterfactual framework. Then we review the mediation estimands under the linear regression15

models with multiple mediators and one continuous outcome. In Section 3, we propose two novel methods to explicitly incor-
porate correlation structure among mediators while jointly analyzing them. Simulation studies are carried out and discussed in
Section 4. We illustrate our methods by applying them to LIFECODES and MESA cohort in Section 5, and conclude the paper
with a discussion in Section 6.

2 NOTATIONS, DEFINITIONS AND MODELS20

We adopt the counterfactual framework for causal mediation analysis in a high-dimensional setting. Consider a study of n
subjects and for subject i, i = 1,… , n, we collect data on one exposure Ai, p potential mediatorsM i = (M

(1)
i ,M (2)

i ,… ,M (p)
i )

⊤,
one outcome Yi, and q covariates C i = (C

(1)
i ,… , C (q)i )

⊤. In particular, we focus on the case where Yi andM i are all continuous
variables. We define M i(a) = (M (1)

i (a),M
(2)
i (a),… ,M (p)

i (a)) as the ith subject’s counterfactual value of the p mediators if
he/she received exposure a, and define Yi(a,m) as the ith subject’s counterfactual outcome if the subject’s exposure were set to25

a and mediators were set to m. The effect of an exposure can be decomposed into its direct effect and effect mediated through
mediators, i.e. indirect effect. The natural direct effect (NDE) of the given subject is defined as Yi(a,M i(a⋆)) − Yi(a⋆,M i(a⋆)),
where the exposure changes from a⋆ (the reference level) to a and mediators are hypothetically controlled at the level that
would have naturally been with exposure a⋆. The natural indirect effect (NIE) of the given subject is defined by Yi(a,M i(a)) −
Yi(a,M i(a⋆)), the change in counterfactual outcomes when mediators change from M i(a⋆) to M i(a) while fixing exposure30

at a. The total effect (TE), Yi(a,M i(a)) − Yi(a⋆,M i(a⋆)), can then be expressed as the summation of the NDE and the NIE:
Yi(a,M i(a)) − Yi(a⋆,M i(a⋆)) = Yi(a,M i(a)) − Yi(a,M i(a⋆)) + Yi(a,M i(a⋆)) − Yi(a⋆,M i(a⋆)) = NIE + NDE.
The counterfactual variables are useful concepts to formally define causal effects, but they are not necessarily observed. In

order to estimate the average NDE and NIE from observed data, further assumptions are required, including the consistency
assumption and four non-unmeasured confounding assumptions25. We elaborate those assumptions in Section 1 of the Support-
ing Information (SI). It has been shown that under those assumptions, the average NDE and NIE can be identified by modeling
Yi|Ai,M i,C i andM i|Ai,C i using observed data11. Therefore, we can work with the two conditional models for Yi|Ai,M i,C i
andM i|Ai,C i, and subsequently propose two linear models for these two conditional relationships. For the outcome model, we
assume

Yi =M⊤
i �m + Ai�a + C

⊤
i �c + �Y i, (1)

where �m = (�m1,… , �mp)⊤; �c = (�c1,… , �cq)⊤; and �Y i ∼ N(0, �2e ). For the mediator model, we consider a multivariate
regression model that jointly analyzes all p potential mediators together as dependent variables:

M i = Ai�a + �cC i + �Mi, (2)

where �a = (�a1,… , �ap)⊤; �c = (�⊤
c1,… ,�⊤cp)

⊤, �c1,… ,�cp are q-by-1 vectors; �Mi ∼ MVN(0,�), with � capturing the
residual error covariance. �Y i and �Mi are assumed to be independent of each other and independent of Ai and C i. Under the
identifiability assumptions discussed in SI and the modeling assumptions (linearity, no exposure-mediator interaction in the35

outcome and mediator model) in (1)-(2), we can express causal effects with the model coefficients as below11. In the rest of the
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paper, we refer to NDE as direct effect and NIE as indirect/mediation effect.

NDE = E[Yi(a,M i(a⋆)) − Yi(a⋆,M i(a⋆))|C i] = �a(a − a⋆).

NIE = E[Yi(a,M i(a)) − Yi(a,M i(a⋆))|C i] = (a − a⋆)�⊤a �m = (a − a
⋆)

p
∑

j=1
�aj�mj .

TE = E[Yi(a,M i(a)) − Yi(a⋆,M i(a⋆))|C i] = (�a + �⊤a �m)(a − a
⋆).

3 METHOD

Recent application of univariate mediation analysis methods at genome-wide scale26,27 recognize the need for decomposing the
null hypothesis of zero indirect effect into three null components: zero exposure on mediator effect; zero mediator on outcome
effect; and both. Such composite structure of the null hypothesis in the univaraite mediation analysis can be naturally captured5

by the four-component Gaussian mixture model developed in the presence of high-dimensional mediators12. Following Song et
al.12, we also consider a four-component Gaussian mixture for the effects of the j-th mediator,

[�mj , �aj]⊤ ∼ �1jMVN2(0,V 1) + �2jMVN2(0,V 2) + �3jMVN2(0,V 3) + �4j�0
with a prior probabilities �kj (k ∈ Ω,Ω = {1, 2, 3, 4}) summing to one and MVN2 denoting a bivariate Gaussian distribution.
The first component represents active mediators, where both the exposure-mediator effect �aj and mediator-outcome effect �mj
are non-zero and V 1 models their covariance. The inactive mediator will fall into one of the remaining three components. The10

second component corresponds to mediators with non-zero �mj but zero �aj , and the third component corresponds to mediators

with non-zero �aj but zero �mj . Both V 2 and V 3 are low-rankmatrices restricting that only �mj or �aj is non-zero, i.e. V2 =
[

�22 0
0 0

]

and V3 =
[

0 0
0 �23

]

. Mediators with both exposure-mediator effect and mediator-outcome effect being zero belong to the fourth
component, and �0 is a point mass at zero. We specify a conjugate inverse-Wishart prior on V1, V1 ∼ Inv-Wishart(	0, �), where
	0 = diag

{

 01,  02
}

is a diagonal matrix, and � is the degree of freedom. We also assign inverse-gamma priors to �22 and �
2
3 ,15

i.e. �22 ∼ Inv-Gamma(�∕2,  01∕2), �23 ∼ Inv-Gamma(�∕2,  02∕2), where �,  01 and  02 are the same parameters used in the
inverse-Wishart distribution. In both simulation studies and real data examples, we set  01 and  02 as the sample variances of
the non-zero �m and �a fitted through Bi-Lasso. The degree of freedom � in the inverse-Wishart distribution is set to be two,
which makes the distribution reasonably non-informative while still well-defined.
We introduce amembership indicator variable 
j for the j-th mediator, where 
j = k if [�mj , �aj]⊤ is fromGaussian component20

k, k ∈ {1, 2, 3, 4}. If we assume independence among �k1, �k2,… , �kp (and subsequently 
1, 
2,… , 
p), then each mediator
is independent a priori and the prior distribution on [�m,�a]⊤ after integrating out {�kj} (or {
j}) is essentially a separable
product of distributions of [�mj , �aj]⊤. This is akin to the concept of “separable prior" in Ročková and George28. In contrast, the
previously developed GMM method12 assumes a common set of �1, �2, �3, �4 for all the mediators a priori. This specification
ties mediators together through the mixing probabilities and enables information sharing across mediators, making the priors25

“non-separable". However, since this previous GMM approach assumes the same mixing probabilities for all the mediators a
priori, it does not differentiate highly correlated mediators from uncorrelated ones to inform coordinated mediator selection.
Specifically, when the j-th and (j+1)-th mediators are highly correlated with each other, because such correlation often implies
common biological mechanism underlying both mediators, then one mediator being active becomes informative on the other
being active in the sense that 
j and 
j+1 are more likely to be same. To enable coordinated selection of correlated active30

mediators, we consider embedding the correlation information to {�kj}’s or 
j’s. In the following sections, we describe the
proposed methods with more details.

3.1 Hierarchical Potts Mixture Model: GMM-Potts
The Potts model13 was initially developed as a generalization of the Ising model in statistical physics. However, it has enjoyed
great success as a prior model for the spatial modeling in image analysis29,30, disease mapping31, genetics studies32, etc. In35

those applications, Potts models incorporate spatial Markovian dependency by assigning homogeneous relationships for the
“neighboring" regions. In the context of mediation analysis, we allocate the high-dimensional mediators into four Gaussian
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components based on their exposure-mediator and mediator-outcome effects. We think of the highly correlated mediators as
neighbors and we attempt to assign them to different mediation components through a Potts model.
To specifically formulate our Potts mixture model, we assume that 
 = (
1, 
2,… , 
p) follows a Potts distribution,

p(
|�0,�1) = c(�0,�1)−1exp
{

p
∑

i=1
�0kI[
i = k]

}

× exp
{

p
∑

i=1

∑

i∼j

4
∑

k=1
�1kI[
i = 
j = k]

}

(3)

where i ∼ j indicates neighboring pairs and I(⋅) is the indicator function. The neighboring relationship can be defined in terms of
domain knowledge, or, in our case, the mediator correlation information. �0 = (�01, �02, �03, �04) effectively determines the four
group proportions a priori in the absence of mediator correlation. �1 = (�11, �12, �13, �14) represents how mediator correlation
determines the extent to which one mediator being selected into one group affects the probability of its neighboring mediators
being selected into the same group. For �1k > 0, the Potts distribution encourages configurations where “neighboring mediators"
belong to the same group; and the larger �1k, the tighter this coupling. When �1 = 0, group membership of one mediator is
independent of that of its neighbors. Based on the full probability distribution in Equation 3, the probability for the j-th mediator
belonging to component k conditional on its neighbors is,

p(
j = k|{
i}i≠j ,�0,�1) =
exp{�0k} × exp{

∑

i∼j �1kI[
i = 
j = k]}
∑4
k=1 exp{�0k} × exp{

∑

i∼j �1kI[
i = 
j = k]}
(4)

This conditional probability depends on the neighbors of the j-th mediator and demonstrates the Markov property of the Potts
distribution.
We develop a Markov chain Monte Carlo (MCMC) sampling strategy for the proposed model. A key challenge for inference5

is the exact calculation of the normalizing constant c(�0,�1) in Potts distribution, as it requires the summation over the entire
space of 
 which consists of 4p states. Even for a moderate number of mediators, c(�0,�1) is computationally intractable, and this
complicates the Bayesian inference. Due to the intractable normalizing constant in Potts distribution, the update of �0,�1 cannot
be handled by the standard Metropolis Hastings (MH) algorithm. To address this issue, we employ the double MH sampler33
to generate auxiliary variables via the MH transition kernels and eliminate the normalizing constants. For �0,�1, we consider10

normal priors, and the prior means of {�0k} are set to have the desired inclusion probability while the prior means of {�1k} are
set to be the same positive number. This prior information favors the grouping of correlated mediators. According to Equation
4, the updating of 
 can be realized through single site Gibbs sampling. Since the sampling space of 
 is huge and discrete,
the efficiency of the standard Gibbs updates can be improved by the Swendsen-Wang (SW) algorithm34. The SW algorithm
partitions the whole set of mediators into blocks within which the mediators belong to the same normal component, and then15

updates each block independently. Following the strategy in Higdon34, we alternate between the single site Gibbs updates of 

and SW updates to ensure movement in large patches and fast mixing of the algorithm. The detailed algorithm is given in the SI.
In our Potts mixture model, the “neighboring" mediators are predefined to capture the correlation structure among mediators.

Based on our experience, including too many neighbors into the model will cause irrelevant noises to the group probabilities and
blur the cluster boundary; while including too few neighbors will certainly lose some of the important structural information. In20

this paper, we apply the common clustering method on the p(p−1)∕2 pairwise correlations across the pmediators to divide them
into two groups: high correlation and background noise. This procedure essentially sets a correlation threshold for neighbors
and non-neighbors in a data dependent way. In the procedure, we define the i-th mediator and j-th mediator as neighbors if their
pairwise correlation is above this threshold. The threshold may be determined in other ways to reflect the prior knowledge on
the neighborhood structure and relationships across mediators.25

We refer to our Potts mixture model as GMM-Potts. GMM-Potts translates the correlation structure into a neighboring graph
and incorporates the local dependency among mediators through mediators’ predefined neighbors. For each mediator, its four-
component group probabilities will be dependent on its neighboring correlated mediators but not the non-neighboring ones.
This local dependency feature of GMM-Potts is unique as compared to the previous GMM and does not incur much additional
computational burden.30

3.2 Hierarchical GMM with Correlated Selection: GMM-CorrS
GMM-Potts requires a hard thresholding rule to determine the neighboring graph among mediators. If the neighbors and non-
neighbors of mediators are not correctly specified or difficult to specify as in the case of a weak correlation structure, then
GMM-Potts may incur a loss of performance. To avoid the need of neighborhood pre-specification and allow for a more direct
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incorporation of correlation structure, we consider an alternative approach for coordinated selection of correlated mediators
here. This alternative approach is again built upon the GMM framework. Specficially, for each mediator, we assume that the
selection/group indicator 
j follows a multinomial distribution with parameters �1j , �2j , �3j , �4j , and

∑4
k=1 �kj = 1. We pro-

pose to jointly model all the mediators’ mixing probabilities and their continuous dependence structure via latent logistic normal
distributions. The logistic normal14 has been studied in the context of analyzing compositional data, such as bacterial composi-5

tion in human microbiome data35 and topics proportions associated with document collections in correlated topics model36. In
mediation analysis, it would allow for a flexible covariance structure among mediators and give a more realistic model where
correlated mediators will have similar group probabilities a priori.
In particular, we employ a Pólya-Gamma (PG) latent variable representation of the multinomial distribution to enable coor-

diated mediator selection. Our approach is motivated in part by computational considerations. Specifically, a naive incorporation10

of the Gaussian correlation structure among multinomial parameters as described in the previous paragraph imposes substantial
computational challenge, as it would break the Dirichlet-multinomial conjugacy commonly used in mixture models. Approx-
imation techniques, such as variational inference are feasible, but they do not always come with the theoretical guarantees as
MCMC37. Our approach extends a similar approach in Bayesian logistic regression inference. Specifically, Bayesian logistic
regression has long been explored given its inconvenient analytic form of the likelihood and the non-existence of a conju-15

gate prior for parameters of interest. Recently, Polson et al.38 construct a new data-augmentation strategy based on the novel
class of Pólya-Gamma (PG) distributions, and the method is notably simpler and more efficient than the previous schemes for
Bayesian hierarchical models with binomial likelihoods39. To extend that approach to multinomial logit models and facilitate
MCMC computation, we leverage a logistic stick-breaking representation in the PG latent variable augmentation40 to formulate
the multinomial distribution in terms of latent variables with the jointly Gaussian likelihoods. First, we rewrite 4-dimensional20

multinomial in terms of 3 binomial densities �̃j1, �̃j2 and �̃j3,

p(
j = 1) = �̃j1 = �j1
p(
j = 2|
j ≠ 1) = �̃j2 = �j2∕(1 − �j1)

p(
j = 3|
j ≠ 1 or 2) = �̃j3 = �j3∕(1 − �j1 − �j2)
p(
j = 4|
j ≠ 1 or 2 or 3) = �̃j4 = �j4∕(1 − �j1 − �j2 − �j3) = 1

Multinomial(
j|1, {�j1, �j2, �j3, �j4}) =
3
∏

k=1
Binomial(I(
j = k)|njk, �̃jk)

where njk = 1−
∑

k′<k I(
j = k
′), nj1 = 1. The multinomial distribution is now expressed with three binomial distributions and

each �̃jk describes the faction of the remaining probability for the k-th group (details in the SI). To better aid the interpretation
of the above stick-breaking representation, we may consider a testing strategy for the indirect effect �mj�aj implemented on each
mediator. By doing that, we will get the subset of active mediators with �mj�aj ≠ 0, i.e. 
j = 1. For the remaining mediators with25

�mj�aj = 0, we further consider the following three cases: p(
j = 2|
j ≠ 1) is the conditional probability of having non-zero
�mj effect but zero �aj given that �mj�aj = 0; p(
j = 3|
j ≠ 1 or 2) is the conditional probability of having non-zero �aj effect
given that �mj = 0; and the rest of the mediators will surely have �mj = �aj = 0, i.e. 
j = 4. We note that under the sparsity
assumption, for most of the mediators, �̃j2 ≈ �j2, �̃j3 ≈ �j3 due to the small values of �j1 and �j2.
Then, we define bjk = logit(�̃jk) for k = 1, 2, 3 and j = 1, 2,… , p. We stack the 3× p bjk’s as one random vector, and assume

a multivariate normal prior on it, that is,
b ∶= {bjk}j=1,…,p;k=1,2,3

b ∼ MVN(a, diag{�2d1, �
2
d2, �

2
d3}⊗D) (5)

where ⊗ denotes the Kronecker product. The logistic transformation maps the transformed multinomial parameters to the 3p-30

dimensional open real space. The prior mean a = {ajk}j=1,…,p;k=1,2,3, and it is chosen such that ajk = aj′k for k = 1, 2, 3 and
1 ≤ j < j′ ≤ p. It reflects our prior belief on the overall group proportions and induces sparsity for the first three groups. The
D is a p-by-p covariance matrix and will incorporate the mediator-wise correlation/structure dependency to the transformed
mixing probabilities. In our setting, we estimate the correlation matrix among mediators from data and replace the negative
correlations with their absolute values. For technical reasons, we then find the nearest positive definite matrix to the absolute35

correlation matrix, and use that as theD matrix in model fitting. Based on our practical experience, this approximation does not
alter the absolute values of the correlation in D much. In this way, both the positive and negative correlation among mediators
will encourage similar values on �1j’s, therefore favoring the selection of correlated mediators. Since the variation level may
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be different for logit(�̃j1), logit(�̃j2) and logit(�̃j3), we introduce the group-wise �2dk, k = 1, 2, 3 for a more general covariance
pattern. This correlation embedded GMM exploits the whole correlation information from all the mediators and does not require
the predefined neighbors as in the GMM-Potts model.
We refer to the above model as GMM-CorrS. We develop anMCMC algorithm to infer parameters through data augmentation

with Pólya-Gamma variables38. The augmented posterior leads to conditional distributions from which we can easily draw5

samples and the entire vector b can be sampled as a block in a single Gibbs update. The detailed derivation and algorithm can be
found in the SI. The software for implementing both GMM-Potts and GMM-CorrS can be found at https://github.com/yanys7/
Correlated_GMM_Mediation.

4 SIMULATIONS

We evaluate the performance of the proposed models compared with existing methods under different scenarios through10

simulations.

4.1 Small Sample Scenarios: n = 100, p = 200
4.1.1 Simulation Design
Following settings in Song et al.12, we adopt the four-component structure to generate the exposure-mediator and mediator-
outcome effects, i.e. simulate [�mj , �aj]⊤ from

[�mj , �aj]⊤ ∼ �1MVN(0,
[

0.5 0.2
0.2 0.5

]

) + �2MVN(0,
[

0.5 0
0 0

]

) + �3MVN(0,
[

0 0
0 0.5

]

) + �4�0

To introduce sparsity, we assume the proportion of active mediators �1 = 0.05, and the other three null components �2 =
0.05, �3 = 0.10, �4 = 0.80. We generate a p-vector of correlated mediators for the ith individual fromM i = Ai�a + �Mi

, where15

the continuous exposure {Ai, i = 1,… , n} is independently sampled from a standard normal distribution. The residual errors
�Mi

∼ MVN(0,�) and � models the correlation structure across mediators. For the outcome, we simulate it from the linear
model: Yi =M⊤

i �m + Ai�a + �Yi , with �a = 0.5, and the residual error �Yi ∼ N(0, 1).
For the correlation structure, we assume 10 highly-correlated blocks of size 10 × 10, within which the pairwise correlation

of mediators is �1, e.g. �1 = 0.5 − 0.03|i − j| or 0.9 − 0.05|i − j|, and the correlation between blocks (�2) is relatively weak20

(e.g. �2 = 0 or 0.1). Such correlation structure mimics the local dependency due to physical adjacency or biologically functional
pathway of biomarkers, which is commonly seen in the high-dimensional mediators. There are 10 active mediators, and they are
assumed to cluster within one block or scatter over a few blocks, while the other blocks contain no active mediators. We also
consider settings where there is no correlation or such structural information underlying active mediators, that is, setting � to be
identical matrix or estimated covariance based on a random subset of DNAm fromMESA. For the Bayesian methods, we check25

the MCMC convergence by running ten chains and computing the potential scaled reduction factors (PSRF)41. The estimated
95% confidential interval of the PSRFs for all the PIPs is [1.0, 1.2], indicating good mixing and convergence of the algorithms.
The GMM-Potts model needs the input of a reliable neighborhood matrix. In practice, we may not be able to specify a

completely precise neighborhood structure, but instead a deviated version of that. To examine how sensitive our GMM-Potts
model is to the incorrect neighborhood relationship, we randomly convert a proportion of r neighboring mediator pairs to be30

non-neighboring, and randomly convert the same amount of non-neighboring pairs to be neighbors. The other configurations are
the same as in the previous simulations. We vary the perturbation rate r from 0.05 to 0.5 to mimic different degrees of bias. In
addition, for the GMM-CorrS, since it directly takes the correlation matrix as an input, we examine its sensitivity to the observed
correlation matrix by adding mild changes from N(0, �2) to the estimated matrix. We vary � from 0.1 to 0.3 for different levels
of noise.35

4.1.2 Evaluation Metrics
To examine the mediator selection accuracy, for the proposed GMM-Potts and GMM-CorrS methods as well as GMM, we use
PIP to rank and select mediators. We calculate the true positive rate (TPR) for active mediators based on the fixed 10% false
discovery rate (FDR). For the estimation accuracy, we calculate the mean square error (MSE) of the indirect effects for both

https://github.com/yanys7/Correlated_GMM_Mediation
https://github.com/yanys7/Correlated_GMM_Mediation
https://github.com/yanys7/Correlated_GMM_Mediation
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non-null and null mediators, denoted as MSEnon-null and MSEnull. We perform 200 replicates for each scenario and report the
means of those metrics in the result tables.

4.1.3 Competing Methods
In addition to the proposedmethods, we consider the following existingmethods: GMMwith no correlated information included,
Bi-Lasso (apply two separate Lasso regressions42 to the outcome and mediator model, respectively), Bi-Ridge (apply two sep-5

arate ridge regressions43 to the outcome and mediator model, respectively), and Pathway Lasso10. In Bi-Lasso and Bi-Ridge,
we adopt 10-fold cross validation to choose the tuning parameter in each regression separately. The three frequentist methods
provide optimized solutions of �m, �a to the three different penalized likelihoods, and the marginal indirect contribution from
each mediator, i.e. �mj�aj , is used to rank mediators for the TPR calculation.

4.1.4 Simulation Results10

Table 1 shows the results under the small sample scenarios with n = 100, p = 200. Overall, by leveraging mediators’ correla-
tion structure, the two proposed approaches, GMM-Potts and GMM-CorrS, substantially improve the selection accuracy over
the other methods. When the active mediators are concentrated within one block, the GMM-Potts achieves the highest TPR (>
0.90) at a fixed 10% FDR for identifying this whole block, followed by GMM-CorrS (∼0.80 TPR). The advantage of the pro-
posed methods grows with stronger correlations. Without such “group selection" ability, the GMM under independent priors15

tends to lose half of the power for detecting correlated mediators. On the other hand, if the active ones are evenly distributed into
two blocks, then highly correlated mediators within the same block may not be concurrently active. This could happen if their
correlation does not mainly link with mediation as we assume, and therefore may disturb mediator selection. Under those set-
tings, we do observe power decrease for the proposed methods. Particularly, the GMM-Potts model becomes less preferable as it
smoothes over non-mediating neighbors to infer active mediators; while GMM-CorrS uses a more flexible Gaussian distribution20

for dependent group probabilities and thus has the best TPR. In the settings where there is no systematic correlation structure
underlying mediators, we find that GMM-CorrS behaves quite similarly to the GMM, and outperforms the others. GMM-Potts
is less robust presumably due to the inclusion of irrelevant neighbors, but still better than the frequentist methods. The three
frequentist methods have relatively poor selection performance with highly correlated mediators, and Bi-Lasso is most com-
petitive under zero or weak correlation. In terms of the effects estimation, the proposed methods mostly achieve the smallest25

MSEnon-null and a reasonable level of MSEnull. Among the three frequentist methods, since in general Lasso tends to select less
correlated variables than the elastic net type penalty, Bi-Lasso has a relatively larger MSEnon-null but noticeably smaller MSEnull
than the pathway Lasso. Given the sparse setup in the above simulations, Bi-Ridge does not exhibit much advantage over the
other methods.

30

Tables 2 and 3 summarize the sensitivity analysis for GMM-Potts and GMM-CorrS, respectively, regarding the input corre-
lation structure. As expected, with increasing noise added to the correlation structure, the overall accuracy of GMM-Potts and
GMM-CorrS gets reduced. However, the power of our methods remains 75% of the original level for reasonable r and � (r < 0.3,
� < 0.3). Even with large r = 0.5 and � = 0.3, GMM-CorrS still has better performance (TPR, MSEnon-null) over methods with
no structural information in all the settings, and GMM-Potts does for most of the settings. Generally speaking, the proposed35

methods are not sensitive to small alteration of the input correlation structure. In addition, we also perform sensitivity analysis on
the  parameters ( 01 and  02) in the covariances of both mixture models. We find that the posterior inference is robust to mild
changes in  ′s, especially as we increase the values of  ′s. The results also show that model fitting criteria, such as the deviance
information criterion (DIC) , can be used to select the optimal  ′s. More details can be found in Section 7 of the supporting file.

40

4.2 Large Sample Scenarios: n = 1000, p = 2000
4.2.1 Simulation Design
Next, we examine the settings for n = 1000, p = 2000. We simulate the exposure, exposure-mediator and mediator-outcome
effects using the same distribution as above. For the correlation structure, we now consider 50 blocks of size 20 × 20, with45

relatively high within-block mediator correlation �1 and zero between-block correlation. We first set the four group proportions
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TABLE 1 Simulation results of n = 100, p = 200 under different correlation structures. TPR: true positive rate at false discovery
rate (FDR) = 0.10. MSEnon-null: mean squared error for the indirect effects of active mediators. MSEnull: mean squared error for
the indirect effects of inactive mediators. The results are based on 200 replicates for each setting. Bolded TPRs indicate the top
two performers.

�1 = 0.5 − 0.03|i− j|, �2 = 0

(A) Signals in one block (B) Signals in two blocks

Method TPR MSEnon-null MSEnull ×10−4 TPR MSEnon-null MSEnull ×10−4

GMM-CorrS 0.78 0.029 1.360 0.62 0.039 1.919
GMM-Potts 0.93 0.035 2.251 0.49 0.040 2.112

GMM 0.45 0.042 1.211 0.46 0.047 1.203
Bi-Lasso 0.26 0.238 0.520 0.23 0.238 0.584
Bi-Ridge 0.22 0.283 2.639 0.21 0.286 2.642

Pathway Lasso 0.24 0.233 2.598 0.23 0.180 6.405

�1 = 0.9 − 0.05|i− j|, �2 = 0.1

(A) Signals in one block (B) Signals in two blocks

Method TPR MSEnon-null MSEnull ×10−4 TPR MSEnon-null MSEnull ×10−4

GMM-CorrS 0.81 0.208 1.146 0.49 0.182 4.080
GMM-Potts 0.92 0.171 3.515 0.41 0.233 1.651

GMM 0.33 0.206 2.158 0.22 0.201 3.112
Bi-Lasso 0.11 0.342 0.173 0.13 0.343 0.179
Bi-Ridge 0.15 0.322 2.170 0.16 0.326 1.690

Pathway Lasso 0.21 0.237 5.495 0.19 0.264 3.457

No systematic correlation structure (signals in two blocks)

(A) �1 = 0 (B) Weak correlation from MESA

Method TPR MSEnon-null MSEnull ×10−4 TPR MSEnon-null MSEnull ×10−4

GMM-CorrS 0.52 0.020 1.042 0.44 0.023 1.780
GMM-Potts 0.46 0.043 1.970 0.40 0.030 3.041

GMM 0.52 0.021 0.805 0.45 0.023 1.642
Bi-Lasso 0.45 0.081 0.542 0.35 0.139 0.740
Bi-Ridge 0.35 0.238 3.645 0.28 0.247 4.003

Pathway Lasso 0.35 0.164 0.314 0.32 0.177 0.400

same as in the small sample scenarios, and the resultant 100 active mediators are assumed to evenly distribute over five blocks.
The other blocks contain no active mediators. In one of the settings, we use the covariance matrix estimated from a random
subset of DNAm in MESA as � to simulate mediators with no underlying systematic correlation structure.
Then we study a much sparser setting with only 10 active mediators to better reflect the situation we observe in the MESA

application. The 10 active mediators exist in two blocks, each of which contains five active ones and 15 inactive ones. Further-5

more, we consider another worse-case scenario for GMM-Potts model by reducing �1 to 0.25 and remaining the high sparsity.
The weak correlation makes it hard for GMM-Potts model to identify the true neighboring relationship via the clusteringmethod,
and the performance of the Potts model is quite dependent on the smoothing effects from the predefined neighbors.

4.2.2 Simulation Results
Table 4 shows the results under the large sample scenarios with n = 1000, p = 2000. Our methods enjoy up to 30% power gain10

on mediator selection utilizing the correlation structure compared to the other methods. In the first setting, both methods identify
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TABLE 2 Sensitivity analysis for Potts mixture model (GMM-Potts) for n = 100, p = 200.

�1 = 0.5 − 0.03|i− j|, �2 = 0

(A) Signals in one block (B) Signals in two blocks

Perturbation rate TPR MSEnon-null MSEnull ×10−4 TPR MSEnon-null MSEnull ×10−4

0 0.93 0.035 2.251 0.49 0.040 2.112
0.05 0.78 0.076 1.496 0.44 0.091 1.733
0.1 0.72 0.077 1.578 0.43 0.091 1.827
0.2 0.69 0.087 1.568 0.42 0.086 1.822
0.3 0.61 0.097 1.736 0.41 0.088 2.019
0.4 0.53 0.102 1.525 0.40 0.085 1.952
0.5 0.49 0.094 2.082 0.41 0.081 1.847

�1 = 0.9 − 0.05|i− j|, �2 = 0.1

(A) Signals in one block (B) Signals in two blocks

Perturbation rate TPR MSEnon-null MSEnull ×10−4 TPR MSEnon-null MSEnull ×10−4

0 0.92 0.171 3.515 0.41 0.233 1.651
0.05 0.91 0.180 0.819 0.33 0.191 1.876
0.1 0.91 0.181 1.203 0.35 0.183 2.156
0.2 0.91 0.175 1.393 0.32 0.201 1.815
0.3 0.89 0.174 1.129 0.32 0.177 2.081
0.4 0.88 0.173 1.395 0.32 0.200 1.492
0.5 0.83 0.166 2.046 0.30 0.188 1.884

almost all the active blocks, andGMM-Potts has a slightly higher TPR (0.97) at 10% FDR thanGMM-CorrS (TPR= 0.92).When
the mediator correlation has no implication for mediation effects in the second setting, the overall performance of GMM-CorrS
is similar to that of GMM, and better than GMM-Potts. Those patterns are consistent with what we have observed in the small
sample scenarios. Under the much sparser settings with only 10 active mediators and varied correlation �1, the GMM-CorrS
maintains good and stable performance with TPR around 0.80. By contrast, the performance of GMM-Potts is dependent on5

how obvious the correlation patterns are and subsequently how well the clustering method does in defining neighbors and non-
neighbors. For example, with �1 = 0.5 − 0.02|i − j|, the GMM-Potts models can accurately identify the underlying correlation
structure and achieve the highest TPR (0.85), smallest MSE (MSEnon-null = 0.002, MSEnull = 7.607 ×10−7). However, as the
within-block correlation �1 reduces to 0.25, it becomes challenging for the clustering method to separate true correlation versus
noise, and we do observe many noisy pairs in the neighborhood matrix. As a consequence, the results of GMM-Potts model get10

compromised by the inclusion of those irrelevant neighbors. This setting is actually in agreement with our observation of the
ambiguous correlation structure and sparse signals in the MESA application, which may not fare well for GMM-Potts model.
Among the other three frequentist methods, Bi-Lasso performs best regarding to the selection and estimation accuracy.

We note that the TPR results shown in the above tables represent the best selection performances one can achieve with the15

proposed methods, as we know the underlying true signals and can perfectly specify the 10% FDR thresholds. But that is not
the case with real data applications. Therefore, we examine the empirical FDR estimates using (a) the local FDR approach44

for a targeted 10% FDR (specifically, we sort the p local FDRs from all the mediators and find the cutoff value on the local
FDRs to declare significance), (b) median PIP cutoff, and (c) 0.90 PIP cutoff, along with the corresponding TPR estimates.
Detailed procedure and the empirical estimates, including the empirical FDRs for simulations in this section, are provided in20

the SI. Under the small sample scenarios (Table S1), the local FDR approach provides decent and well-controlled empirical
FDR for both of the proposed methods, while the estimates by median PIP cutoff and 0.90 PIP cutoff tend to be either slightly
overestimated or very conservative. Under the large sample scenarios (Table S2), the local FDR approach and median PIP cutoff
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TABLE 3 Sensitivity analysis for the Gaussian mixture model with correlated selection (GMM-CorrS) for n = 100, p = 200.

�1 = 0.5 − 0.03|i− j|, �2 = 0

(A) Signals in one block (B) Signals in two blocks

Noise level TPR MSEnon-null MSEnull ×10−4 TPR MSEnon-null MSEnull

0 0.78 0.029 1.360 0.62 0.039 1.919
0.1 0.71 0.029 2.481 0.56 0.036 2.246
0.2 0.60 0.031 2.575 0.50 0.037 2.043
0.3 0.53 0.033 2.235 0.47 0.037 1.910

�1 = 0.9 − 0.05|i− j|, �2 = 0.1

(A) Signals in one block (B) Signals in two blocks

Noise level TPR MSEnon-null MSEnull ×10−4 TPR MSEnon-null MSEnull ×10−4

0 0.81 0.208 1.146 0.49 0.182 4.080
0.1 0.72 0.168 4.017 0.40 0.127 3.288
0.2 0.63 0.170 3.442 0.37 0.130 3.370
0.3 0.54 0.176 3.413 0.34 0.133 3.283

still produces reasonable FDR estimates for GMM-CorrS across different settings and for GMM-Potts when neighbors reflect
connected signals. However, including irrelevant neighbors in GMM-Potts could lead to increased false discoveries, and instead
a more stringent 0.90 PIP cutoff may be used if one seeks a lower limit on the false discovery. Therefore in practice, we would
recommend the local FDR and 0.90 PIP cutoff for reasonable FDR estimates and control, and we recognize the potential caveat
concerning inflated FDR for GMM-Potts.5

In addition to the above simulation scenarios, we also perform simulationswhere there is a single activemediator in each block.
The simulation results are presented in Table S3. We find that the three GMM-based methods behave quite similarly to each
other, and outperform the frequentist methods. Such pattern still holds when we use a different n∕p ratio, e.g. n = 100, p = 500
(see Table S4). Along with the selection and estimation performance, we report the computational cost for these two proposed
methods in Table 5. For both the small sample scenario with n = 100, and the large sample scenario with n = 1000, the proposed10

algorithms can be finished in a reasonable amount of time. We do acknowledge that future development of new algorithms
and/or new methods will likely be required to scale our methods to handle thousands of subjects and millions of mediators.

To summarize our findings from the simulations, GMM-CorrS takes the overall correlation structure amongmediators directly
into the modeling process, and shows excellent performance and robustness under different correlation structures. On the other15

hand, the performance of GMM-Potts is related to how well the pre-specified neighborhood matrix reflects the underlying
connection of active mediators. When the correlation-based neighboring relationship has good implication on similar mediation
effects, GMM-Potts usually achieves the best selection and estimation accuracy. Its performance will likely get compromised
by the inclusion of irrelevant neighbors.

5 DATA APPLICATION20

In this section, we study two real data applications of the proposed methods: the LIFECODES birth cohort and the MESA
cohort. These two data sets have different correlation strength among mediators and thus can serve to demonstrate the advan-
tages of each of the proposed methods. Specifically, in the LIFECODES birth cohort, the biomarkers present a relatively clear
correlation/neighborhood structure. We thus expect GMM-Potts model to work well based on our observation from simulations.
On the other hand, the correlation structure in the MESA cohort is relatively weak. We thus expect a better performance from25

GMM-CorrS as compared to GMM-Potts there.
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TABLE 4 Simulation results of n = 1000, p = 2000 under different correlation structures, p11 is the number of true active
mediators. TPR: true positive rate at false discovery rate (FDR) = 0.10. MSEnon-null: mean squared error for the indirect effects
of active mediators. MSEnull: mean squared error for the indirect effects of inactive mediators. The results are based on 200
replicates for each setting. Bolded TPRs indicate the top two performers.

p11 = 100, Signals in five blocks

(A) �1 = 0.5 − 0.02|i− j| (B) Weak correlation from MESA

Method TPR MSEnon-null MSEnull ×10−4 TPR MSEnon-null MSEnull ×10−4

GMM-CorrS 0.92 0.031 0.440 0.83 0.002 0.240
GMM-Potts 0.97 0.030 0.018 0.76 0.004 1.013

GMM 0.76 0.077 0.630 0.84 0.002 0.176
Bi-Lasso 0.73 0.031 0.199 0.65 0.042 0.446
Bi-Ridge 0.32 0.244 2.680 0.36 0.202 3.795

Pathway Lasso 0.44 0.112 1.162 0.42 0.107 1.427

p11 = 10, Signals in two blocks

(A) �1 = 0.5 − 0.02|i− j| (B) �1 = 0.25

Method TPR MSEnon-null MSEnull ×10−4 TPR MSEnon-null MSEnull ×10−4

GMM-CorrS 0.83 0.003 0.015 0.82 0.002 0.017
GMM-Potts 0.85 0.002 0.008 0.61 0.018 0.228

GMM 0.80 0.003 0.013 0.81 0.002 0.016
Bi-Lasso 0.73 0.013 0.036 0.76 0.010 0.035
Bi-Ridge 0.41 0.061 1.508 0.39 0.063 1.517

Pathway Lasso 0.55 0.046 0.133 0.56 0.047 0.141

TABLE 5 The average runtime of the proposed methods with (n, p) = (100, 200), (100, 500), and (1000, 2000). Comparison
was carried out on a single core of Intel(R) Xeon(R) Platinum 8176 CPU @ 2.10GHz. For both proposed methods, we in total
ran 150,000 iterations.

Method n = 100, p = 200 n = 100, p = 500 n = 1000, p = 2000

GMM-CorrS 3.5 min 0.97 hr 9.8 hr
GMM-Potts 2.2 min 0.44 hr 4.0 hr

5.1 The LIFECODES Birth Cohort
In this application, we consider a set of n = 161 pregnant women registered at the Brigham and Women’s Hospital in Boston,
MA between 2006 and 2008. We are interested in the mediation mechanism linking environmental contaminant exposure during
pregnancy to preterm birth through endogenous signaling molecules. Those endogenous biomarkers are derived from lipids,
peptides, and DNA, and the lipids and peptide derived biomarkers were measured from subjects’ plasma samples, while the5

oxidative stress markers of DNA damage were measured from subjects’ urine samples. Both the urine and plasma specimens
were collected at one study visit between 23.1 and 28.9 weeks gestation. We focus on p = 61 available endogenous biomarkers
as potential mediators, including 51 eicosanoids, five oxidative stress biomarkers and five immunological biomarkers. The
correlation structure across mediators are shown in Figure 1, and clear pattern with moderate to strong correlations can be
observed. For the prenatal exposure to environmental toxicants, we focus the attention of this present study on one class of10

environmental contaminants, polycyclic aromatic hydrocarbons (PAHs). PAHs are a group of organic contaminants that form
due to the incomplete combustion of hydrocarbons, and commonly present in tobacco smoke, smoked and grilled food products,
polluted water and soil, and vehicle exhaust gas45. Previous studies have suggested association between PAH exposure and
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FIGURE 1 Correlations among biomarkers in LIFECODES birth cohort. The negative correlations (∼37% of all the pairwise
correlations) were replaced with their absolute values. The 61 biomarkers were grouped by literature derived biological pathways
or processes (black lines).

adverse birth outcomes46. Since the PAH class contains multiple chemical analytes in our study, we follow Aung et al.7 to
construct an environmental risk score for the PAH class and use that risk score as the exposure variable. The continuous birth
outcome, gestational age, was recorded at delivery for each participant, and preterm is defined as delivery prior to 37 weeks
gestation. Since the cohort is oversampled for preterm cases, we multiply the data by the case-control sampling weights to adjust
for that. We log-transform all measurements of the exposure metabolites and endogenous biomarkers. We apply the proposed5

methods with the aforementioned exposure, mediator and outcome variables, controlling for age and maternal BMI from the
initial visit, race, and urinary specific gravity levels in both regressions of the mediation analysis.
The results are summarized in Table 6. Based on 10% FDR using the local FDR approach, GMM-Potts identifies four biomark-

ers for actively mediating the impact of PAH exposure on gestational age at delivery, 8,9-epoxy-eicosatrienoic acid (8(9)-EET),
9,10-dihydroxy-octadecenoic acid (9,10-DiHOME), 12,13-epoxy-octadecenoic acid (12(13)-EpoME), 9-oxooctadeca-dienoic10

acid (9-oxoODE); while both GMM-CorrS and GMM only identifies two of them, 8(9)-EET and 9,10-DiHOME.We also report
the indirect effect estimates and their 95% credible intervals for selected mediators, and the direction of effects are consis-
tent among different methods. Among the four biomarkers, 8(9)-EET, 9,10-DiHOME and 12(13)-EpoME belong to the same
Cytochrome p450 (CYP450) Pathway; while 9-oxoODE is within Cyclooxygenase (COX) Pathway. CYP450 is a family of
enzymes that function to metabolize environmental toxicants, drugs, and endogenous compounds47, and thus the PAH exposure15

may cause perturbations in the functions of these enzymes. It has also been suggested that the group of CYP450 metabolites
as well as the related genes may play a role in the etiology of preterm delivery48, and the underlying mechanisms involve
increased maternal oxidative stress and inflammation49. This evidence helps explain the potential mediating mechanism of
CYP450 metabolites from PAH exposure to preterm delivery. Additionally, single biomarker analysis also demonstrated the pro-
tective effect of 12(13)-EpoME on preterm50. We also performed the posterior predictive checks on the outcome model for the20

three methods, in which the data generated from the posterior predictive distribution are compared with the observed outcome.
We find the Bayesian predictive P -values51 of the GMM-Potts model are 0.72 and 0.48 for sample first and second moments,
respectively, which are closest to 0.5 among the three methods and indicate the most adequate fit of the outcome model.
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Besides the estimated correlation structure, we also consider the input of biological pathway based structural information.
That is, only mediators within the same literature derived biological pathway or process are treated as neighbors in GMM-Potts
and have non-zero pairwise correlations in GMM-CorrS. The findings are shown in Table S7 of the SI. GMM-Potts identifies
a subset of the above four biomarkers: 8(9)-EET, 9,10-DiHOME, and GMM-CorrS declares the other two biomarkers as active
mediators: 12(13)-EpoME, 9-oxoODE. The overlapping lists of active mediators add confidence to our findings, and also reveal5

the fact that only adjusting for biological pathways may lose the correlated information between different pathways.

TABLE 6 Summary of the identified active mediators from the data application on LIFECODES study based on 10% FDR with
the local FDR approach. Compared to GMM-CorrS and GMM, the GMM-Potts model achieves the most adequate fit of the
outcome model based on posterior predictive check. The two additional findings from GMM-Potts are marked in blue. Besides
the PIP, we also report the posterior estimates �̂mj �̂aj (i.e. the marginal indirect contribution of the j-th mediator to the joint
NIE) and its 95% credible interval (CI).

Method Selected Mediators PIP �̂mj�̂aj (95% CI)

Polycyclic aromatic hydrocarbons→ Biomarkers→ Gestational Age

GMM-Potts 12(13)-EpoME 0.99 0.419(0.295, 0.579)
8(9)-EET 0.98 0.368(0.179, 0.567)
9-oxoODE 0.97 -0.296(-0.441, 0.000)

9,10-DiHOME 0.87 -0.185(-0.383, 0.000)

5.2 The MESA Cohort
In this application, we study the mediation mechanism of DNAm in the pathway from neighborhood socioeconomic disadvan-
tage to blood glucose. We focus on n = 1226 participants with no missing data, and a subset of p = 2000 CpG sites that have10

the strongest marginal associations with neighborhood disadvantage for computational reasons. As the exposure, neighborhood
socioeconomic disadvantage evaluates the neighborhood social conditions from dimensions of education, occupation, income
and wealth, poverty, employment, and housing. Previous literature has demonstrated the relationship between DNA methyla-
tion patterns and socially patterned stressors including low adult socioeconomic status (SES)52 and unfavorable neighborhood
conditions53. It has also been long known that disadvantaged neighborhood conditions can lead to a variety of health problems,15

such as chronic psychological distress54 and increased risk of cardiovascular disease55. The outcome, glucose, is one of the
most important blood parameters and should be kept within a safe range in order to support vital body functions and reduce the
risk of diabetes and heart disease56. Multiple evidence has supported the association between differential DNAm patterns and
glucose metabolism57. However, the underlying molecular mechanisms that link neighborhood conditions to physical health
profiles are not fully elucidated. To take a step forward, we apply the proposed methods for high-dimensional mediation analysis20

on DNAm. In the outcome model, we adjust for age, gender, race/ethnicity, childhood SES and adult SES (more details on the
SES variables can be found at Smith et al.53). In the mediator model, we control for age, gender, race/ethnicity, childhood SES,
adult SES, and enrichment scores for 4 major blood cell types (neutrophils, B cells, T cells and natural killer cells) to account for
potential contamination by non-monocyte cell types. All the continuous variables are standardized to have zero mean and unit
variance. In general, the correlation among DNAm in our study is relatively weak, and only 3% of DNAm pairs have correlation25

larger than 0.2.
The results can be found in Table 7. Because of the relatively ambiguous correlation structure observed across mediators in

MESA, we do not expect big improvement from our methods. Indeed, the GMM-CorrS identifies one more CpG site as active
mediators compared to GMM, and three other CpG sites are detected by both GMM-CorrS and GMM. The rank correlation for
the mediator rank lists obtained from the two methods is 0.74, indicating the high consistency between them. The indirect effect30

estimates from the GMM-CorrS are also close to those from the GMM. The one additional finding of CpG site by GMM-CorrS,
cg27090988, is close to the gene OGG1. This gene, which is involved in the repair of oxidative DNA damage, has been shown



YANYI SONG ET AL 15

TABLE 7 Summary of the identified active mediators from the data application on MESA study based on 10% FDR using the
local FDR approach. We include the nearby gene, PIP, the posterior estimates �̂mj �̂aj (i.e. the marginal indirect contribution of
the j-th mediator to the joint NIE) and its 95% credible interval (CI) for each selected CpG site. The one additional finding from
GMM-CorrS is marked in blue. The GMM-Potts does not identify any active mediators based on 10% FDR.

Method Selected Mediators Nearby Genes PIP �̂mj�̂aj (95% CI)

Neighborhood SES → Biomarkers→ Glucose

GMM-CorrS cg19515398 EIF2C2 0.97 -0.013(-0.026, 0.000)
cg04000940 MYBPC3 0.96 0.016(0.000, 0.029)
cg17907003 CD101 0.88 0.016(0.000, 0.034)
cg27090988 OGG1 0.84 -0.011(-0.024, 0.000)

up-regulated in type 2 diabetic islet cell mitochondria, and studies have suggested a crucial role of oxidative DNA damage in
the pathogenesis of type 2 diabetes (T2D)58,59. We also examine the nearby genes to the other three jointly selected CpG sites.
Among them, MYBPC3 is a known cardiomyopathy gene60, and the increased risk of cardiac hypertrophy and heart failure
is likely to alter the glucose metabolism61; the expression level of CD101, a protein involved in innate immunity, was found
associated with T2D in a Mendelian randomization analysis62. As shown in the simulations, GMM-Potts is not quite suitable5

for a weak correlation structure as in the MESA data, and the method does not identify any active mediators based on 10% FDR.

6 DISCUSSION

In this paper, we present two hierarchical Bayesian approaches to incorporating the correlation structure across mediators in
high-dimensional mediation analysis: (1) through a logistic normal for mixing probabilities (GMM-CorrS), or (2) through a10

Potts distribution on the group indicators (GMM-Potts). The consequent “non-separable" priors of both methods inform the
grouping and selection of correlated mediators under the composite structure of mediation. The simulation studies show that
utilizing the correlation pattern in active mediators, the proposed methods greatly enhance the selection and estimation accuracy
over the methods that do not account for such correlation, and maintain decent and comparable performance under no obvious
or mis-specified correlation structure. In addition, the analysis on the LIFECODES birth cohort and MESA cohort indicates that15

our methods can promote the detection of new active mediators, which may have important implications on future research in
targeted interventions for preterm birth and diabetes.
Between the two proposed methods, GMM-CorrS shows excellent performance and robustness under different correlation

structures, while the performance of GMM-Potts is relatively heavily dependent on how well the pre-specified neighborhood
matrix reflects the underlying connection among activemediators. In particular, when the correlation-based neighborhoodmatrix20

captures the main correlation structure and has good predictive power on the correlated mediation effects, GMM-Potts usually
achieves the best selection and estimation accuracy. Therefore, in data analysis, we would recommend using the GMM-Potts
when one is confident that the pre-specified neighborhood matrix well captures the clustering pattern of active mediators, or
when there are relatively strong domain knowledge on such mediator grouping structure. If that is not the case, then it would be
safer to start from GMM-CorrS. There are several limitations of the proposed methods. First, for GMM-CorrS, it requires the25

inversion of a p× p matrix in each iteration of the sampling algorithm, and as p increases to the scale of hundreds of thousands,
that step could become the computational bottleneck of the method. Techniques on matrix approximation or fast parallel matrix
inversion will be required to speed up the computing time and reduce the memory footprint. Second, for GMM-Potts, smoothing
over arbitrary or inaccurately specified neighbors may have a negative effect on its performance, and this can be further improved
by imposing adaptive weight for each neighbor to reflect their relative importance. Moreover, the method can be extended to30

allow for simultaneous inference of both the active mediators and the neighborhood/network structure linking them. In that way,
the neighborhood/network structure among mediators does not need to be known a priori. It can also be easily extended to more
than 2 groups by introducing group-specific parameters �0k and �1k in the Potts distribution. This will facilitate the needs for
multiple mediator groups.



16 YANYI SONG ET AL

As promising directions for future work, we note that there may be other ways to incorporate mediators’ correlation into the
modeling process. Recently, testing the multivariate mediation effects from groups of potential mediators has received growing
attention63, and the variance component tests developed by Huang27 can naturally take into account the correlation within
groups. Other frequentist extensions involving a sparse group Lasso type method by treating �mj and �aj as a group is also
worth developing in the future. Also, Bobb et al.64 develop a Bayesian kernel machine regression to incorporate the structure of5

the multi-pollutant mixtures into the hierarchical model. Those methodologies may provide insightful perspective to applying
correlation kernels under the global testing setup in the context of high-dimensional mediation analysis.
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