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Fig. S2 Mineralization rates over the course of the growing season 
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Fig. S4 Freeze-dried weight of root-tips collected across the soil mineralization gradient 
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Fig. S6 Metagenomic sequencing yield 
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Fig. S9 Change points for negatively responding gene families to soil carbon availability 

Fig. S10 Change points for gene families responding positively to soil water availability  

Fig. S11 Change points for gene families responding negatively to soil water availability 

Fig. S12 Non-ECM fungi present in each sample 

Fig. S13 GDM with non-ECM fungi as predictor 

Table S1  CAZy gene families, enzymes and substrates  
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Table S4 Generalized dissimilarity model (GDM) output 
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Fig. S1 Map of the twelve forest sites in Wexford and Manistee Counties, Manistee National 

Forest, Michigan, USA. All trees lay between 70-130m elevation. Pins are colored by rates of net 

N mineralization (μg g-1 d-1). Insets: Michigan, USA with sites in red points; continental United 

States and location of Michigan, blue box. Satellite imagery, May 2018) is derived from Google 

Earth.
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Fig S2 Relationship between May and August rates of net N mineralization. Repeated sampling 

occurred around the base of the same individual Quercus rubra trees (R2
adj = 0.58. P <0.001). 

Black line is 1:1 plot. Shading around blue line depicts 95% confidence interval. 

 

 

 

 



 

 

Fig. S3 Number of colonized ectomycorrhizal fungal root-tips encountered on focal Quercus 

rubra individuals across the soil gradient: R2
adj = 0.25, P <0.001. Shading around blue line 

depicts 95% confidence interval. 

 

 
 
 
 
 
 



 

Fig S4 Freeze-dried weight of ectomycorrhizal fungal root-tips collected from focal Quercus 

rubra individuals across the soil gradient of net N mineralization rates R2
adj = 0.10, P <0.01. 

Shading around blue line depicts 95% confidence interval. 

 

 
 

 

 

 

 

 

 

 

 



 

 

 

Fig S5 Indices of ectomycorrhizal (ECM) fungal alpha diversity across the soil inorganic N 

gradient. Y-axis depicts distinct scales for each panel, Observed ECM amplicon sequence 

variants derived from dada2, and Simpson Index. 

 
 
 
 
 
 
 
 



 

 
 
Fig S6 Metagenomic sequencing yield for each filtering step (color) across all samples. QC (red) 

represent quality filtered metagenomic reads, see main text. Kraken Unmapped (blue), represents 

reads that remain after Kraken filtering against plant and other databases containing 

contaminants, such that reads remaining represent putative fungal sequences. No significant 

relationships across the gradient of net N mineralization rates: linear regression: QC: P = 0.36. 

Kraken Unmapped: P= 0.73. 

 
 
 
 
 



 

 
 
Fig S7 Average number of single copy fungal gene counts per million kraken2 filtered 

metagenomic sequences. The geometric mean number of single copy genes was calculated from 

1312 gene families derived from the Ortho DB v.9 database, divided by the sum of all reads in 

that sample and then multiplied by 1e6. Error bars represent SE, and may be interpreted as a 

measure of variance in genome completeness at the community level. No significant variation in 

the yield of single copy fungal gene counts across the gradient of net N mineralization (P = 

0.17).   

 

 
 
 



 

Fig S8. The number of fungal genomes estimated using metagenomic estimates (x-axis), and 

their relationship with amplicon based (ITS2) estimates (y-axis) of the observed number of 

amplicon sequence variants (ASV) for ectomycorrhizal (ECM) fungal communities (top) and all 

fungal ASV (bottom). No significant relationships were detected for either panel. Note distinct y-

axis. 

 

 
 

 

 

 

 

 

 



 

 

 

Fig S9. TITAN2 output depicting change points for fungal gene families that respond negatively 

(green) and positively (blue) to increasing bulk soil C (%C). Peaks along the soil gradient (x-

axis) depict location of greatest shift in relative abundance of respective gene family. Purity and 

reliability = 0.95 for plotting purposes. 

 



 

 
 
Fig S10 Change points for the fungal gene families that responded positively to increasing soil 

water availability. Purity and reliability = 0.95, for plotting purposes. Peak along the soil 

gradient (x-axis) depicts location of greatest shift in relative abundance of individual gene 

families.  

 
 

 

 

 

 

 



 

 

Fig S11. Change points for the fungal gene families that responded negatively to increasing soil 

water availability. Purity and reliability = 0.95, for plotting purposes. Peak along the soil 

gradient (x-axis) depicts location of greatest shift in relative abundance.   

 

  

 
 
 
 
 
 



 

Fig S12. Relative sequence abundance of non-ectomycorrhizal fungal genera present at greater 

than 0.1% relative sequence abundance. Red lines indicate GAM fits and 95% confidence 

interval. Note distinct y-axis scales 

 

 
 

 

 

 

 

 

 

 



 

Fig S13. Generalized dissimilarity model (GDM) results depicting shifts in the rate of change 

(slope) in the relative abundance of fungal decay gene families along the respective gradients on 

shown on the x-axis (panels). Two fungal community dissimilarity matrices were here 

incorporated as predictors (A & B), along with two abiotic soil measures (C & D). See also 

Figure 2 in the main text. The maximum height of the regression line indicates the relative 

proportion of variance explained by each variable. Note that ‘Putative Endophytic’ communities 

studied here comprise less than ~5% of sequence abundance across samples. 

 

 
 

 

 



 

Table S1. Gene families, enzymes they encode and putative substrates. Sourced from (CAZy: 

http://www.cazy.org; http://peroxibase.toulouse.inra.fr/) and (CAZypedia.org) 

 

Table S2. GDM model output. Tab 1: GDM output for ECM communities, Tab: 2 GDM output 

for variables contributing to ECM metagenomic decay potential, Tab 3:GDM output for 

variables contributing to ECM metagenomic decay potential with both ECM and non-ECM fungi 

as predictors. 

 

Table S3. Number of Raw, QC’d and Kraken filtered reads (Fungal hits). Methods for compiling 

single copy counts and Total CAZy and Peroxibase Gene Counts can be found in Supplementary 

Methods. ID represents individual tree stems, corresponding to plots depicted in Figure S1. 

 

Table S4. Linear mixed model output including spatially explicit correlation matrix to account 

for potential non-independence among samples. Regressions for rates of Net N mineralization, 

Soil C (%), and Gravimetric water availability. 

 

 

Methods S1:  

Soil chemical analyses 

Following field collection, soil and ectomycorrhizal root-cores were stored on ice and 

immediately transported to the laboratory. Soil was collected around the dripline of focal trees 

for assessment of mineralization rates. Samples were collected identically in both May and 

August 2018 around the same trees. Soil inorganic N was extracted from fresh sieved (2mm) soil 

using 2M KCl, followed by a 14-day aerobic incubation assay in order to measure rates of soil 

inorganic N mineralization (Vitousek, 1982).  NO3
- and NH4

+ in soil extracts were analyzed 

colorometrically (AQ2; Seal Analytical, Mequon, WI, USA). Eight of the soil incubations for the 

May sampling were disrupted, and August mineralization rates are reported throughout. Total 

free primary amines (TFPA) (primarily amino acids and amino sugars) was measured using 

unincubated soil extracted with 2M KCl following (Darrouzet-Nardi et al., 2013) using a 

Synergy HT microplate reader (Bio-Tek INC., Winooski, VT, USA). TFPA is expressed as mol 

leucine equivalents, because leucine was used as an analytical standard; estimates of TFPA 

http://www.cazy.org/
http://peroxibase.toulouse.inra.fr/


 

availability may be considered relative indices of labile organic N availability in soil solution. 

Soil was dried 105°C and total C and N contents (% of dry mass) were determined using 

combustion analysis on a LECO TruMac CN analyzer (LECO Corporation, St. Joseph, MI, 

USA). Soil pH was determined for 2:1 deionized water-soil slurries with an Accumet 15 pH 

meter (Fisher Scientific, Waltham, MA, USA). 

Ectomycorrhizal root-tip processing and DNA extraction:  

Ectomycorrhizal root-tips were isolated from root-cores within 12 days of field sampling. 

Definitive ectomycorrhizal tips were sampled after visual confirmation of ectomycorrhizal 

mantle and high turgor (Agerer 2001). Individually colonized Q. rubra root-tips were counted 

and excised, and rinsed in 2% CTAB supplemented with 0.8% ß-mercaptoethanol, and then 

stored and frozen in fresh 2% CTAB at -80C. CTAB was removed, and then freeze-dried at -

50C. Lyophilized root-tips were then weighed using a microbalance. DNA was extracted from 

the totality of each sample ectomycorrhizal root-tip sample, using two or three individual 

extraction columns; each extraction utilized ~10 mg of lyophilized root-tip per extraction, so as 

not to bias extraction efficiencies. Each lysis tube contained 800l of Buffer AP1 and 4l of 

RNase A from a Qiagen DNeasy Plant Mini Kit. Tubes were vortexed and placed in a 65°C 

waterbath for 20 minutes. DNA was then extracted using the Qiagen DNeasy Plant Mini Kit 

following manufacturers recommended protocol. Extraction replicates were combined for each 

sample and DNA recovery was assessed using gel electrophoresis. Assessment of DNA quality 

was conducted using a Nanodrop Spectrophotometer (Thermo Fisher). The Quant-iT PicoGreen 

dsDNA Assay Kit (Thermo Fisher) and a BioTek SynergyHT Multi-Detection Microplate 

Reader were used to quantify DNA concentrations prior to PCR. Samples were split into DNA 

pools for amplicon sequencing and shotgun-metagenomic sequencing. Freeze-thaw cycles were 

carefully limited throughout the extraction, storage and sequencing steps in order to prevent 

shearing. 

PCR and Amplicon Bioinformatic Processing:  

The ITS2 region was amplified using Illumina dual-indexed primers 5.8S Fun and ITS4 Fun 

(Taylor et al., 2016). The forward and reverse primer each contained the appropriate Illumina 

Nextera adaptor, linker sequence and error correcting Golay barcode for use with the Illumina 

MiSeq platform. All PCRs were performed in triplicate following Taylor et al. (2016), using 

Phusion High Fidelity DNA Polymerase and master mix (New England BioLabs, Ipswich MA, 



 

USA). Each PCR contained 6 μl High Fidelity Phusion 5 × buffer, 0.75 μl each primer (10 μm 

initial concentration), 0.42 μl dNTPs (20 mmol-1 initial concentration of each dNTP), 1.5 μl of 

template DNA (mean concentration 3.76 ng/μl, SD=2.82) and 0.23 μl of Taq (2 U/μl) brought to 

a final volume of 20 μl with molecular-grade water. PCR conditions consisted of an initial 

denaturation step at 94°C for 3 min, followed by 27 cycles of the following: 30 s at 94°C, 45 s at 

57°C and 90 s at 72°C followed by a final extension step of 72°C for 10 min.  

Illumina sequencing generated a total of 27 274 716 raw reads that were demultiplexed. 

The first 10bp each forward read was trimmed due to low sequence quality, but sequences were 

not truncated (Pauvert et al., 2019). The DADA2 pipeline was implemented in QIIME 2 in order 

to denoise sequences, detect and remove chimeras and remove PhiX contaminants and infer 

exact representative sequences named amplicon sequence variants (ASV) (Callahan et al., 2016). 

A maximum of 2 expected errors (MaxEE = 2) was allowed. ASV were inferred using a total 

6,869,462 of filtered forward sequences (mean= 5.64 x 105, SD= 1.39 x 105 sequences per 

sample). ASV were assigned taxonomy using the dynamic (97-99% sequence similarity) UNITE 

database (v.8)(Nilsson et al., 2019) and the scikit-learn naive Bayes machine-learning algorithm 

(Bokulich et al., 2018). This dynamic classification system captures known variation among 

fungal clades in delimited species sequence similarity (Garnica et al., 2016). Samples were 

rarefied to 24,021 sequences, the second lowest number of quality sequences recovered per 

sample, and collapsed at the finest possible taxonomic level using the taxa collapse command in 

QIIME 2. Taxa that could not be assigned to Fungi, and appeared less than twice across all 

samples were removed. 

We used the DEEMY (characterization and DEtermination of EctoMYcorrhizae) 

database (http://www.deemy.de/) to gather morphological information on the exploration type 

(hyphal foraging distance) and rhizomorph occurrence of ectomycorrhizal taxa present in our 

dataset at more than 0.5% relative abundance. When fungal taxa present in our study were not 

represented in the DEEMY database, congeners were surveyed and, if 90% of the entries agreed, 

consensus trait values were assigned to that taxon (Moeller et al., 2014). This classification 

system is supported by the fact that foraging-related functional traits for fungal hyphae are 

typically conserved at the genus level (Agerer, 2006). This also allowed incorporation of taxa 

that could only be identified to Genus level. Only taxa producing ‘abundant rhizomorphs’ were 



 

recorded as ‘rhizomorphic’. Long-distance foraging types were rare in our study system, 

composing less than 7% of ectomycorrhizal-derived sequences in each sample (SE = 1.38). 

Metagenomic Sequencing and Processing: 

Prior to metagenomic sequencing library preparation, DNA extracts were quantified (Agilent 

4200 TapeStation; Santa Clara, CA). 40ng of input DNA was used for library construction, 

however six of the 60 samples had lower total DNA yield. For these samples, the totality of all 

DNA was used. Libraries were then custom sheared using a Covaris S2 Focused-Ultrasonicator 

Woburn, MA, USA), to a target of 200 bp (duty =10%, intensity = 5, cycles/burst = 200, time 

=120 seconds); previous trials confirmed the efficacy of these settings. Libraries were prepared 

using the NEB Next Ultra 2 DNA Library Prep kit with seven cycles of PCR. 59 out of the 60 

samples successfully yielded libraries suitable for sequencing. Sequencing was conducted using 

a full S4 flow cell of the Illumina NovaSeq 6000 instrument. 

In total, 23 203 326 006 sequences were generated. Reads were then dereplicated, 

adapters trimmed, sequence Q >20 retained, and reads shorter than 40 bp were removed using 

BBDuk (jgi.doe.gov). 23 177 098 622 paired-end reads passed initial quality filtering. We then 

used an additional filtering step to remove non-fungal sequences using Kraken2 paired-end mode 

with default parameters (Wood et al., 2019). Sequences were mapped against the standard 

Kraken2 database containing bacterial, archaeal and UniVec reads (containing sequencing 

adapters, linkers, and primer sequences), and further supplemented with sequences obtained from 

published Quercus rubra (Konar et al., 2017) and Qurcus lobata genomes (Sork et al., 2016) in 

order to remove plant sequences (contaminants). All mapped reads were removed. On average, 

21.7% of sequences per sample were removed during this Kraken2 filtering step, and the mean 

number of sequences remaining in each sample after Kraken mapping was 307 041 274  

 Filtered reads were mapped to functional reference gene databases CAZy (accessed 

March 2019) (Lombard et al., 2014) and Peroxibase (accessed February 2019) (Fawal et al., 

2013). Translated reads were mapped to CAZy using ‘sensitive’ mode in DIAMOND v. 0.9.31, 

with an -e value: 1e-4, following best practices for unmerged reads (Treiber et al., 2020). BWA-

MEM was used to map sequences to representatives downloaded from Peroxibase, using default 

settings (Li & Durbin, 2009). The number of mapped reads was averaged for unmerged forward 

and reverse reads for each reference gene to avoid double counting, the geometric mean of all 

mapped reads were then averaged across all reference sequences for a given gene family. Note 



that gene counts were not normalized to gene size (for example, average length of each gene in 

CAZy) because this was unnecessary: comparisons of CAZy relative abundances were primarily 

to environmental parameters and not to each other, and the multivariate models used here are 

insensitive to absolute magnitudes.  

We tabulated the number of near-single copy genes, as a proxy for the number of 

Dikaryotic fungal genomes present in each sample, using the OrthoDB v.9 orthologous ancestral 

gene database, which comprised 1312 near-single copy Dikaryotic gene variants (Kriventseva et 

al., 2019). Filtered forward and reverse reads for each sample were mapped to the Dikaryotic 

OrthoDB database of 1312 orthologs using ‘sensitive’ DIAMOND as above. Mapped reads to 

each ortholog were averaged to prevent double-counting. Dikaryotic near single-copy genes were 

chosen because the majority ( > 90% sequences) are Dikaryotic. Instead of relying on a single 

arbitrarily chosen house-keeping gene that may not be at true single-copy in complex 

environmental samples, we calculated the geometric mean number of ‘single-copy’ genes present 

across all orthologs and the standard error of orthologous gene counts for each sample.  

Statistical Analyses:  

We visualized shifts in ectomycorrhizal community composition using NMDS with Hellinger 

transformed Bray-Curtis distance matrices; the relative abundance of hyphal morphotypes were 

correlated with NMDS axes using envfit in vegan v 2.5-6. The responses of individual 

ectomycorrhizal genera to changes in soil inorganic N availability (net N mineralization rates) 

was conducted using Threshold Indicator Taxa ANalysis (TITAN) using the ‘TITAN2’ package 

in R (Baker & King, 2010). TITAN combines bootstrapped indicator species analysis (IndVal 

scores) and change-point analysis (Baker & King 2010). Fungal genera with known 

ectomycorrhizal trophic status were included, while those that occurred in less than five samples, 

with a frequency of less than five were removed following (Baker & King, 2010). We used 

relative cutoff and threshold scores of 0.85 after Hellinger transformation of the ASV table. 

Indvals were calculated using the relative abundance obtained by the ratio of summed abundance 

in each partition to the total, to address skew.  

We tested which environmental variables were most strongly correlated with 

ectomycorrhizal community composition using generalized dissimilarity modeling (GDM) 

(Ferrier et al., 2007). GDM can accommodate non-linear responses to environmental gradients, 

and identify where along gradients community change is slow/rapid. Modeling assemblages of 



fungal taxa along environmental gradients was accomplished by transforming predictor variables 

by fitting I-spline functions to the environmental variables and polynomial pieces are connected 

using knots (Ferrier et al., 2007). We used Bray-Curtis dissimilarity matrices and three I-splines 

for each predictor (Ferrier et al., 2007; Qin et al., 2020). Environmental predictors initially 

included in the model, included net N mineralization rates, pH, soil C and N, C:N, total free 

primary amines (TFPA), gravimetric soil moisture, and Bray-Curtis transformed plant overstory 

dissimilarity matrices. We separately assessed plant overstory using the frequency of stems of a 

particular species, as well as summing the DBH of each overstory species. We used backwards 

model selection using gdm.varImp to iteratively remove variables that resulted in less than 0.5% 

change in model deviance (nperm = 250) (Bouma-Gregson et al., 2019; Qin et al., 2020). We 

performed additional testing on the selected GDM to confirm significance of remaining 

predictors (nperm =500). After finalizing model fit, we estimated the proportion of model 

variance uniquely attributable to soil inorganic N availability, by calculating the difference in the 

deviance explained by a GDM containing final variables and a model with all variables except 

soil inorganic N availability. We then converted this difference to a percentage by dividing by 

the deviance explained by the finalized GDM sensu (Gossner et al., 2016). We identified a core 

set of decay gene families (unscaled) that were responsive to elements of the studied soil 

gradient deemed significant using GDM (net N mineralization rates, C, and soil water 

availability). We used purity and reliability scores > 0.8, metrics that are based on the robustness 

of the sign and magnitude of gene responses when resampled using 1000 bootstraps (Baker and 

King 2010). This threshold is more stringent than other ‘omic studies using IndVal’s to identify 

microbial gene families and transcripts that respond to environmental treatments (Malik et al., 

2020).  

Gene families underlying Figure 1: (Chitin: GH18,GH19, GH20, GH46, AA10, AA11) 

Cellulose (AA8,AA9, AA11, AA12 GH1, GH12, GH43,GH6,GH7, GH9, GH5_5, GH5_22, 

AA3_1,  AA3_2). Hemicellulose: (CE1, CE12, CE16, CE5, CE8, GH10,GH11, GH115, GH2, 

GH27, GH28, GH29, GH35, GH5_7, GH51, GH53, GH63, GH74, GH78, GH95, GH3). Lignin: 

(AA3_1, AA3_1, AA3_2, AA3_3, AA3_4, AA1, AA2, AA9, MnP, DyPrx, LiP). 
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