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Abstract
Not-at-random missingness presents a challenge in addressing missing data in
many health research applications. In this article, we propose a new approach
to account for not-at-random missingness after multiple imputation through
weighted analysis of stacked multiple imputations. The weights are easily calcu-
lated as a function of the imputed data and assumptions about the not-at-random
missingness. We demonstrate through simulation that the proposed method has
excellent performance when the missingness model is correctly specified. In
practice, the missingness mechanism will not be known. We show how we can
use our approach in a sensitivity analysis framework to evaluate the robustness
of model inference to different assumptions about the missingness mechanism,
and we provide R package StackImpute to facilitate implementation as part
of routine sensitivity analyses. We apply the proposed method to account for
not-at-random missingness in human papillomavirus test results in a study of
survival for patients diagnosed with oropharyngeal cancer.
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1 INTRODUCTION

Multiple imputation is a popular and convenient strategy for addressing missing data in modern health research.1 One
common strategy for obtaining imputations of the missing data involves filling in values for each variable with missing-
ness one-by-one as part of an iterative algorithm.2,3 In this approach, the problem of missing data handling translates into
specification and estimation of the imputation distribution used to fill in the missing values for each variable. Multiple
versions of the filled-in data are generated, and the goal data analysis is performed using each imputed dataset separately
and combined using multiple imputation combining rules.4 This general missing data handling approach, called chained
equations imputation or fully conditional specification, can be easily implemented using available statistical software. A
robust statistical literature provides guidance for implementation in many common data analysis scenarios, but the major-
ity of the statistical development and software rely on the key assumption that missingness is unrelated to unobserved
data given observed data, called missing at random (MAR).

In many practical data settings, however, the restrictive MAR assumption may not hold. In the particular set-
ting of health research, for example, results of medical tests may often be available for only a subset of patients.
Symptom-informed medical testing can induce a relationship between whether a test is administered and the test result,
even after adjusting for other observed data. When missingness relates to unobserved information, called missing not
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at random (MNAR), use of standard imputation strategies that rely on MAR assumptions can often result in biased
inference.4

Several researchers have developed modifications to the chained equations imputation procedure that incorporate
corrections for MNAR missingness. Tompsett et al5 proposed imputing each variable with missingness using a model
that also adjusts for the missingness indicators for the other variables. The relationship between missingness and the
variable being imputed is incorporated through a fixed offset in the imputation model with a corresponding sensitivity
parameter. The random indicator method proposed in Jolani6 avoids the use of fixed sensitivity parameters, but existing
software implicitly assumes a logistic regression model for missingness with main effects only, which may be violated
in practice. Both methods rely on some degree of approximation in the distribution of missing values given observed
values.6

Additionally, these approaches to handling MNAR missingness assume that the analyst fitting the target model is also
the analyst imputing the data, but this may not always be the case. Carpenter et al7 provides a sensitivity analysis approach
that re-weights parameter estimates from multiple imputations generated under MAR assumptions, with the structure
of the weights used to account for the MNAR missingness. This method can perform well in settings where the MNAR
missingness is weak, but several authors have noted that this method can perform poorly when MNAR missingness is
strong.8 Corrections to this method provided in Smuk9 only partially address this issue.

In this article, we propose a new approach for addressing not-at-random missingness that takes advantage of recent
advances in the area of stacked multiple imputations.10 In the proposed approach, multiple imputations obtained under
MAR assumptions are stacked and augmented with a weight related to the assumed MNAR missingness mechanism.
Unlike the related approach in Carpenter et al,7 the proposed method defines weights separately for each subject and
uses weights to obtain parameter estimates rather than solely for aggregating estimates across multiple imputations.7
When all models are correctly specified, we can obtain valid estimates of parameters of interest (eg, means, regression
model parameters, etc.) by performing a weighted version of the target analysis on the stacked multiple imputations.
We describe several strategies for obtaining corresponding standard errors based on previous work by Beesley and Tay-
lor and Bernhardt.10,11 We demonstrate through simulation that the proposed method has excellent performance when
the missingness model is correctly specified. In practice, the missingness mechanism will not be known. We show how
we can use our approach in a sensitivity analysis framework to evaluate the robustness of model inference to different
MNAR assumptions and describe how existing methods for eliciting sensitivity parameters can be adapted and applied.
We apply the proposed method to account for potential MNAR missingness in human papillomavirus (HPV) test results in
a study of survival for patients diagnosed with oropharyngeal cancer. We also provide R package StackImpute to facilitate
implementation as part of routine sensitivity analyses to deviations from MAR.

2 IMPUTATION STACKING APPROACH FOR SINGLE VARIABLE MNAR
MISSINGNESS

2.1 Notation and assumptions

Let Z be a n × p matrix containing p variables measured on n independent subjects such that the first k variables in
Z are missing for some subjects and the last p − k variables (denoted W) are fully-observed for all subjects. Let Rij
be an indicator for whether variable j is measured for subject i in the data. Our goal is to obtain multiple imputa-
tions of the missing values in Z, with which we will perform some target analysis. For example, we may be interested
in the mean of the jth variable in Z or a regression model of the first variable on the others. Throughout, let Zi.
denote data for the ith subject, and let Z.j denote the jth variable. Define rows and columns in matrices R and W
similarly. Let Zi,−j denote the elements in Zi. excluding the jth variable. We will assume data are independent across
subjects.

We imagine the missingness pattern Rij observed in the data is a data realization of a corresponding random variable,
denoted ij. Collectively, we call these random indicators . Under missing at random (MAR) assumptions, the joint
distribution of  may depend only on fully-observed data in Z, and the mechanism generating data missingness can be
ignored during data imputation.4 However, it is possible that missingness depends on unobserved information in Z, called
missing not at random (MNAR). Here, we consider a particular generalization of the MAR setting where the first variable
in Z, denoted Z.1, may be MNAR. For an extension of these methods under multiple variable MNAR missingness, see
Supplementary Section A.
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Suppose we partition the joint model for missingness as

f (i1, … ,ik|Zi.) = f (i2, … ,ik|Zi.,i1)f (i1|Zi.).

where f denotes the distribution function for the corresponding variables. We will assume the following:

1. Zi2, … ,Zik are MAR, with f (i2, … ,ik|Zi.,i1) = f (i2, … ,ik|Wi.).
2. Zi1 may be MNAR, with f (i1|Zi.) = f (i1|Zi1,Wi.).

In Assumption 2, we allow Zi1 to be MNAR such that its missingness depends on the true value of Zi1 but does
not depend on the other variables with missing values. For addressing more general missingness mechanisms, see
Supplementary Section A.

2.2 Imputation and importance sampling

Let Zi,mis and Zi,obs denote the missing and observed elements of Zi., respectively. Under a full joint model for the variables
with missingness, we can impute missing values of Zi. from f (Zi,mis|Zi,obs,i. = Ri.). In practice, we often approximate a
draw from the full joint distribution by iteratively drawing missing values for each variable in Z from its full conditional
distribution, f (Zij|Zi,−j,i. = Ri.). Then, we repeat this iterative process many times to obtain M imputed datasets. Rather
than specifying the full joint model for all variables with missingness, a chained equations strategy involves directly
specifying a model for each full conditional distribution, f (Zij|Zi,−j,i. = Ri.).4 It can be challenging in general to deter-
mine how to specify these conditional models as a function of Ri.. Under Assumptions 1-2, however, these imputation
distributions can be simplified.

First, we consider imputation for Zij in Zi2, … ,Zik. Under Assumptions 1-2, f (Zij|Zi,−j,i. = Ri.) = f (Zij|Zi,−j,ij =
1) = f (Zij|Zi,−j). This is the same distribution we would use to impute Zij under standard MAR assumptions, and we can
apply our usual strategies for performing this imputation, for example, by approximating f (Zij|Zi,−j) with a regression
model.

Now, we consider the imputation distribution for Zi1. Under Assumption 1, we can impute missing Zi1 from

f (Zi1|Zi,−1,i. = Ri.) = f (Zi1|Zi,−1,i1 = 0)

Parameters from this distribution are not identified from the observed data without additional assumptions. However,
we note that

f (Zi1|Zi,−1,i1 = 0) = P(i1 = 0|Zi)
P(i1 = 0|Zi,−1)

f (Zi1|Zi,−1) =
P(i1 = 0|Zi)

P(i1 = 0|Zi,−1)

[∑
r

f (Zi1|Zi,−1,i1 = r)P(i1 = r|Zi,−1)

]

= P(i1 = 0|Zi)
[

f (Zi1|Zi,−1,i1 = 1)
P(i1 = 1|Zi,−1)
P(i1 = 0|Zi,−1)

+ f (Zi1|Zi,−1,i1 = 0)
]

The term f (Zi1|Zi,−1,i1 = 0) appears on both the left and the right of this expression. Rearranging this expression
and using that P(i1 = 0|Zi.) = P(i1 = 0|Zi1,Wi.), we have that

f (Zi1|Zi,−1,i1 = 0) ∝ P(i1 = 0|Zi1,Wi.)
1 − P(i1 = 0|Zi1,Wi.)

f (Zi1|Zi,−1,i1 = 1) (1)

Unlike f (Zi1|Zi,−1,i1 = 0), there is information in the data to estimate parameters in distribution f (Zi1|Zi,−1,i1 = 1).
The term P(i1 = 0|Zi1,Wi.) is not identified from the observed data, and we will need to make untestable assumptions
about this distribution. We will address this challenge later on. Even if this missingness probability were known, draw-
ing from Equation (1) can still be difficult, since the distribution may only be known up to proportionality in some
cases. Rejection sampling and other statistical techniques can be applied to draw from Equation (1) directly, but these
approaches can be computationally expensive and require custom software.
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One option is to approximate a draw from Equation (1) using importance sampling as in Tanner (1993) and Little and
Rubin (2002).4,12 Define functions j(z) = f (z|Zi,−1,i1 = 1) and h(z) = f (z|Zi,−1,i1 = 0). We can approximate a draw from
h(z) by drawing multiple candidate imputations z1, … , zM from j(z). Then, we select candidate draw zm with probability
proportional to h(zm)∕j(zm) to obtain a single imputation of Zi1. This process can then be repeated multiple times to obtain
multiple imputations. This importance sampling method can be applied if

1. The support of j(z) contains the support for h(z).
2. Function h(z)∕j(z) is bounded.

The first requirement may often be met for j(z) and h(z) as defined above. However, many candidate draws may be
needed when j(z) and h(z) are very different, that is, the distribution of observed Zi1 is very different than the distribution
of missing Zi1. The second requirement is satisfied if w(z) = P(i1=0|z,Wi.)

P(i1=1|z,Wi.)
is bounded in z. w(z) will, of course, be bounded

below by 0. However, additional assumptions are needed to ensure w(z) is bounded above. We can ensure that w(z) is
bounded above if we assume there is some (possibly small) probability 𝜖 such that 𝜖 < P(i1 = 1|z,Wi.) for all z. In other
words, the probability of observing Zi1 must always be non-zero. While this may not strictly hold for some Zi1 (eg, those
defined on the real line under logistic regression), we may still reasonably apply this importance sampling strategy if the
probability of drawing very extreme candidates for Zi1 is small.

The above approach can become computationally expensive, since we need many candidate draws from j(z) in order
to obtain a single imputed value from h(z). An alternative approach is to first obtain M multiple imputations of Zi1 and
to weight these multiple imputations proportional to w(z) in the data analysis. The exact way in which these weights
should be carried through in the analysis of multiply imputed data, however, is not obvious. Previously, Carpenter et al7

proposed a strategy for incorporating such weights into analysis of multiply imputed Z.1 as described in Section 2.3
below. In this article, we will propose a different strategy to incorporate such weights into data analysis that maintains
the simplicity of the method in Carpenter et al7 but gives better properties in terms of bias in estimating parameters of
interest.

2.3 Weighting strategy of Carpenter et al (2007)

Suppose we obtain multiple imputations of missing values in Zi1 as if missingness were MAR from f (Zi1|Zi,−1,i1 = 1).
Let 𝜃 denote our parameter of interest. A common strategy for obtaining the final estimate of 𝜃 for multiply imputed data
is to take the average of parameter estimates obtained for each of the individual imputations, here denoted �̂�1, … , �̂�M .
To account for the MNAR missingness, Carpenter et al7 proposes taking a weighted average of these estimates. The
structure of the weight proposed by Carpenter et al7 was motivated by the relation in Equation (1), in the special case
where the missingness model for Zi1 can be approximated by the following logistic regression: logit (P(i1 = 1|Zi1,Wi.)) =
𝜙0 + 𝜙1Zi1 + 𝜙T

W Wi.. Omitting some details, the weight for imputation m proposed in Carpenter et al7 is defined as

𝛼m ∝ exp

(
−𝜙1

n∑
i∶Ri1=0

Zi1m

)
(2)

where the 𝛼’s are rescaled so that
∑M

k=1𝛼k = 1 and Zi1m denotes the mth imputation of Zi1. Point estimates and standard
errors under MNAR are then obtained as follows:

�̂�MNAR =
M∑

m=1
𝛼m�̂�m

Var(�̂�MNAR) =
M∑

m=1
𝛼mVar(�̂�m) + (1 + 1∕M)

M∑
m=1

𝛼m
[
�̂�m − �̂�MNAR

]2 (3)

In this analysis, 𝜙1 is treated as a sensitivity parameter, and the final analysis is performed multiple times across a
plausible range of 𝜙1 values. This analysis approach is easy to implement and allows the imputation to be separated from
the handling of MNAR missingness. Unlike more commonly-used MNAR sensitivity analysis strategies such as those
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in Tompsett et al,5 this approach does not require Z.1 to be imputed separately for each fixed value of the sensitivity
parameter.

As discussed in Carpenter et al,13 however, this approach requires the true 𝜃 value to be within the range of the �̂�j esti-
mates obtained from each of the imputed datasets under MAR. Rezvan et al8 demonstrates that the approach in Carpenter
et al7 can produce substantial bias when this assumption is not met. Additionally, Rezvan et al8 shows that this approach
does not guarantee a consistent estimate of 𝜃 even when this assumption is met. Smuk9 provides a correction to these
weights that may reduce this bias in some cases, but this correction can only be applied when we have MNAR missing-
ness in a single, normally-distributed variable. Additionally, the method in Smuk9 cannot provide consistent parameter
estimates when the true value of 𝜃 is outside the range of estimates obtained under MAR assumptions.

2.4 Proposed weighting and analysis strategy

The importance sampling logic in Section 2.2 implies that each imputed value of Zi1 should be weighted proportional to
P(i1=0|Zi1,Wi.)

1−P(i1=0|Zi1,Wi.)
, where weights are rescaled to sum to 1 for each subject. Instead, the Carpenter et al7 approach weights

vector Z.1 by the product of the unscaled weights for each individual Zi1, and the resulting aggregate weights are scaled
to sum to 1 across imputations. This approach no longer distinguishes between “good" and “bad" imputations of individ-
ual Zi1 (in terms of their corresponding weights relative to the target distribution under MNAR) and instead considers
imputed datasets in aggregate. We posit that this weight aggregation step is the primary source of residual downstream
bias in the final analysis.

To address this issue, we propose maintaining separate weights at the individual level and instead performing our
analysis using imputation stacking. The idea behind imputation stacking is that multiply imputed datasets are stacked
on top of each other to form a large, Mn by p matrix. 𝜃 can then be estimated by performing our target analysis on
the stacked dataset. Previous work has shown that this approach can produce estimates of 𝜃 equivalent to analysis by
Rubin’s combining rules.14 Historically, this imputation stacking approach has been difficult to implement owing to the
lack of easy-to-use estimators for corresponding standard errors. Wood et al15 proposed a simple method for estimating
standard errors for stacked data analysis, but we showed that this approach can result in substantially biased standard
error estimates in many settings.10 Recently, Beesley and Taylor10 proposed a new strategy for estimating valid standard
errors based on the observed data information principle of Louis.16 An alternative bootstrap-based estimator has also been
proposed in Bernhardt.11 These advancements have made the stacked imputation strategy an accessible and appealing
analysis framework.

We propose handling MNAR missingness in Zi1 through a weighted analysis of the stacked data as follows. This
approach is summarized in Figure 1.

• Step 1: Obtain M multiple imputations of Z assuming ignorable missingness (MAR).
Obtain M multiple imputations of the missing data using chained equations imputation, where each variable Zij
with missingness is imputed from a regression model approximation to f (Zij|Zi,−j,ij = 1), denoted f̃ . Following logic
commonly-used in chained equations imputation, we approximate a draw from this distribution by first drawing the
corresponding parameter, which we will denote 𝛽j, as follows:

Draw parameter 𝛽j from f̃ (𝛽j|Zimp
.,−j ,Zobs

.j ,.j = 1)

Impute missing Zij from f̃ (Zij|Zi,−j,ij = 1; 𝛽j) (4)

where Zimp
.,−j denotes the most recent imputed version of variable Z.,−j and Zobs

.j denotes the fully-observed elements in
Z.j. In practice, we can obtain a draw of 𝛽j from a multivariate normal distribution with mean and covariance matrix
estimated from fitting a model for Z.j|Z.,−j to the subset of recently imputed data for which Z.j is observed. Alternatively,
𝛽j could be obtained by fitting a model to a bootstrap sample of the same subset of the imputed data. The key here is that
parameters used for imputing Z.1 are drawn only using data Zi. from subjects i with observed Zi1, since the distribution
of Zi1|Zi,−1 conditioning on Ri1 = 1 is not the same as the unconditional distribution. Fortunately, this approach for
obtaining parameter draws is used by many commonly-used statistical packages to impute missing data under MAR
assumptions, for example, package mice in R and PROC MI in SAS. Therefore, we can often impute Z using standard
imputation software assuming ignorable missingness.
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F I G U R E 1 Visualization of proposed imputation and stacked data analysis procedure (𝜙1 is a sensitivity analysis parameter. Steps 3-4
can be repeated for multiple values of 𝜙1. R package StackImpute (available at https://github.com/lbeesleyBIOSTAT/StackImpute) can be
used to estimate standard errors via the methods in Section 3)

• Step 2: Stack multiple imputations
Generate a Mn by p dataset by stacking the M multiple imputations on top of each other, where complete cases are also
repeated M times. An alternative formulation where complete cases are included only once is discussed in Beesley and
Taylor.10

• Step 3: Calculate weights
Let Zi1m denote the mth multiple imputation of Zi1. We then define weights

𝜔im ∝ P(i1 = 0|Zi1m,Wi.)
1 − P(i1 = 0|Zi1m,Wi.)

(5)

that are rescaled such that
∑M

k=1𝜔ik = 1. We augment each row of the stacked dataset with the corresponding weight,
where rows corresponding to subjects with observed Zi1 are assigned weight 1∕M.

• Step 4: Estimate parameter of interest
Let 𝜃 be our parameter of interest. Estimate �̂� by performing a weighted version of our target analysis on the stacked
dataset, where weights are defined as in Step 3. For example, if our goal is to estimate the mean of Z.1, we can estimate
a weighted mean from the stacked dataset. If all models are correctly specified, this will produce a valid estimate for
𝜃. We can estimate corresponding standard errors using the strategies in Section 3. We provide software for applying
these standard error estimators in R package StackImpute.

2.5 Modeling missingness

The structure of the weights in Equation (5) depends on an assumed model for whether or not Zi1 is observed, and a key
limitation of this approach is that this missingness relationship may often be unknown. Suppose, however, that we posit
a working regression model structure for this missingness model as follows:

g (P(i1 = 1|Zi1,Wi.)) = 𝜙0 + 𝜙1Zi1 + 𝜙T
2 Wi. (6)

where 𝜙2 may be a vector. Then, we can define

𝜔im ∝
1 − g−1 (𝜙0 + 𝜙1Zi1m + 𝜙T

2 Wi.
)

g−1
(
𝜙0 + 𝜙1Zi1m + 𝜙T

2 Wi.
) . (7)

In general, this weight will not have a nice form, and it depends on unknown parameters 𝜙0, 𝜙1, and 𝜙2. Generally,
𝜙1 will not be identifiable from the observed data, and we will instead treat it as a fixed sensitivity parameter. Strategies
guiding the choice of 𝜙1 are discussed in Section 2.6. For a fixed value of 𝜙1, parameters 𝜙0 and 𝜙2 can be estimated by
fitting the model in Equation (6) with fixed offset 𝜙1Zi1m to the (unweighted) dataset obtained by stacking the multiple

https://github.com/lbeesleyBIOSTAT/StackImpute
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imputations. This can be repeated to generate weights for different fixed values of 𝜙1 within a plausible window. Unlike
usual sensitivity analysis strategies applied within the chained equations algorithm as in Tompsett et al,5 this sensitivity
parameter can be directly interpreted as the variable’s association with its own missingness, adjusting for Wi..

One downside of this strategy is that it requires us to specify the functional relationship between missingness in Z.1
and fully-observed variables, W . In the special case where Equation (6) corresponds to a logistic regression, however, the
structure of the weights simplifies as follows:

𝜔im ∝ exp (−𝜙1Zi1m) (8)

The contribution of W drops out of these weights after we rescale the weights such that
∑M

k=1𝜔im = 1. In other words,
the weights become a simple function of (1) the multiple imputations of Zi1 and (2) the fixed sensitivity parameter, 𝜙1.
This result holds true for a more general class of logistic regression missingness models where W is allowed to have more
complicated relationships with .1, including non-linear effects or interactions between variables in W .

2.6 Choosing values for the sensitivity parameter

Even in settings where the degree of MNAR adjustment is entirely captured by 𝜙1 as in Equation (8), choosing values for
𝜙1 is not straightforward. However, we can leverage existing statistical tools for eliciting sensitivity analysis parameters to
guide our choice of 𝜙1. Several strategies are summarized here and discussed in more detail in Supplementary Section B.

One common strategy called “tipping point” analysis involves estimating 𝜃 across a wide interval of sensitivity
parameters.5,17 Then, we identify bounds on the sensitivity parameter for which our study conclusions are changed in a
meaningful way. Our level of concern about deviations from MAR is then converted into a question of the plausibility of
these bounds.

Since 𝜙1 is defined in terms of the W -adjusted association between Z.1 and .1, it can still be difficult to determine
whether a single fixed value of the sensitivity parameter is scientifically plausible. One solution discussed in Tompsett
et al18 is to reformulate the problem in terms of more easily interpretable sensitivity parameters. Using a single set of
multiple imputations obtained under MAR, we can repeat our stacked data analysis across multiple values of 𝜙1 to char-
acterize how values of 𝜙1 are related to the target parameter, 𝜃. For each chosen value for 𝜙1, we can also use stacked and
weighted analysis to estimate an easier-to-interpret parameter related to missingness (eg, P(.1 = 1|Zi1)), denoted 𝜋1. We
can then evaluate our sensitivity analysis results in terms of the relationship between 𝜃 and 𝜋1 rather than 𝜙1.

Subject matter experts can also help choose reasonable values for 𝜙1 or some transformation, 𝜋1. In Tompsett et al18

and Rezvan et al,19 multiple subject matter experts were asked to provide their intuition regarding expected differences
between subjects with missing and observed data. These expectations were then combined using a process called linear
pooling to obtain a distribution of expert-elicited values for the sensitivity parameter. While previously applied to pattern
mixture model-based sensitivity analysis, this approach can also be applied under our selection modeling framework,
where expert-elicited summary statistics can be used to inform choices for𝜙1 either directly or through some intermediate
sensitivity parameter, 𝜋1.

3 VARIANCE ESTIMATION STRATEGIES

In Beesley and Taylor,10 we proposed a strategy for estimating standard errors for �̂� obtained using maximum likelihood
estimation based on stacked and weighted data as follows. Let Jcom be the negative of the second derivative matrix of the
complete data log-likelihood function for the target analysis, and let Ucom be the first derivative matrix of the complete
data log-likelihood function. Let Ji

com(𝜃) and Ui
com(𝜃) be the contributions to the complete data information matrix and

score matrix for subject i respectively. We approximate

Iobs(𝜃) ≈
∑

i

∑
m

𝜔imJi
com(Zi.m; 𝜃) −

∑
i

∑
m

𝜔im
[
Ui

com(Zi.m; 𝜃) − Ūi
com(Zi..; 𝜃)

]⊗2 (9)

where Ūi
com(Zi..; 𝜃) =

∑
k 𝜔ikUi

com(Zi.k; 𝜃). We can evaluate this expression at the maximum likelihood estimator for 𝜃, �̂�,
obtained from maximizing the complete data log-likelihood using the weighted, stacked dataset. Inverting the resulting
matrix Iobs(�̂�) will provide an estimate for the observed data covariance matrix for �̂�.
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A limitation of the estimator in Equation (9) is that it requires us to obtain the complete data score and information
matrices and can only be applied when our target analysis is maximum likelihood estimation with a valid log-likelihood
function. Additionally, this approach can produce inaccurate or even negative variances when n is small (eg, n = 100).
An alternative method proposed in Bernhardt11 uses bootstrap methods to account for so-called “between imputation"
variation as follows. Let Vstack be the estimated covariance matrix output by the stacked and weighted analysis, obtained
using standard error estimation strategies that account for the weights. For example, for a generalized linear model with
a dispersion parameter, the dispersion parameter must also be estimated using weighted residuals. The matrix Vstack
represents the “within imputation" variation. To capture the “between imputation" variation, we estimate 𝜃 on many
bootstrap replicates of the stacked data. Unlike standard bootstrap replication, we obtain each bootstrap replicate of the
stacked data by drawing with replacement from the set of indices {1, … ,M} corresponding to the M imputed datasets and
then construct the bootstrapped stacked dataset composed of the drawn M imputed datasets, where individual imputed
datasets may appear in the stack multiple times. We then re-scale weights𝜔im in the bootstrapped stack so that the weights
again sum to 1 within individuals. Let Vbetween be the estimated covariance matrix of the resulting �̂� estimates across
bootstrap samples of the imputed datasets. We then estimate the overall covariance matrix as follows:

Var(�̂�MNAR) = Vstack + (1 + M)Vbetween (10)

One unappealing feature of the bootstrap-based estimator for Vbetween proposed in Bernhardt11 is that it may require
a large number of bootstrap samples, which can result in slow estimation. Instead, we propose estimating the “between
imputation" variation using a jackknife estimator, defined with respect to leave-one-out imputations. We estimate Vbetween
as

Vbetween = M − 1
M

∑
m

[
�̂�
(m) − 𝜃

]⊗2
𝜃 = 1

M
∑

m
�̂�
(m)

where �̂�
(m) is estimated by fitting the model on the stacked data excluding the mth multiple imputation, again re-scaling

the weights to sum to 1 within subjects.

4 SIMULATIONS REPRODUCING REZVAN ET AL (2015): MNAR
OUTCOME MISSINGNESS

Rezvan et al8 conducted a simulation study to demonstrate settings in which the method from Carpenter et al7 does and
does not perform well. Here, we reproduce this simulation study and compare the results obtained using our proposed
method to complete case analysis and the method in Carpenter et al.7

4.1 Simulation set-up

Suppose our goal is to estimate the association between outcome variable Z1 (partially missing) and covariate Z2
(fully-observed), and suppose we have MNAR missingness in outcome Z1 dependent on the true value of Z1 and Z2.
For each of several simulation settings, we generate 1000 simulated datasets of n = 100 or 1000 subjects. In all settings,
we generate Z2 ∼ N(0, 1). We then generate Z1 using one of two models: (1) Z1 ∼ N(0.5Z2, 1) or (2) logit(P(Z1 = 1|Z2)) =
0.5Z2. In both settings, we then impose roughly 50% missingness in Z1 using the following logistic regression model:
logit(P(Z1 observed |Z)) = 𝜙1Z1 + Z2 where 𝜙1 = 1, 0.5, or 0. We then obtain M multiple imputation of the missing val-
ues of Z1 under MAR assumptions, where M takes values 5, 10, 50, 100, 500, or 1000. We apply the proposed method
and the method in Carpenter et al7 to estimate parameters in the outcome model (either linear or logistic regression for
Z1|Z2). We obtain parameter estimates under different assumed values for 𝜙1, including 0, 0.2, 0.5, 0.8, 1, and 1.2.

4.2 Point estimation

Figure 2A shows the average estimated values for outcome model parameters across 1000 simulated datasets, assuming
𝜙1 is known to equal 1. Complete case analysis and analysis of imputations obtained under MAR (not shown, similar
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(A) Estimates assuming true 1 is known (results shown for true 1 = 1)
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(B) Estimates across assumed values for 1. Results shown true 1 = 1 (left) and 0.5 (right)1
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F I G U R E 2 Average estimated outcome model parameters across 1000 simulated datasets under MNAR missingness in outcome Z1

(Results shown for M = 1000 and n=1000) [Colour figure can be viewed at wileyonlinelibrary.com]
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to complete case estimates) produced substantial bias in estimating outcome model parameters. Although it results in
reduced bias compared to complete case analysis, the method in Carpenter et al7 produced substantial residual bias even
when n and M were large. In contrast, the proposed method had small or negligible bias in estimating all model parameters
as long as M, the number of multiple imputations, was large enough (eg, ≥ 50). For example, the method in Carpenter
et al7 resulted in biases in the linear regression coefficient of Z2 up to 21% for n=100 and up to 14% for n=1000 with M =
1000. In comparison, the proposed method gave much smaller biases, with corresponding biases in the linear regression
coefficient of Z2 down to 9% for n=100 and down to 2% for n=1000. Results were similar for 𝜙1 = 0.5. In Section D, we
describe a second simulation study in which missingness was generated for multiple covariates, one of which was MNAR.
Results were similar. Additional simulations addressing multiple variable and more complicated MNAR missingness are
presented in Section E. In these simulations, the extensions of the proposed method described in Section A resulted in
little bias in estimating outcome model parameters for well-specified sensitivity parameters.

We also compare the performance of the proposed method in terms of point estimation with two existing
MNAR-handling strategies within the chained equations literature in Table C.1. We implement the method in Tompsett
et al5 using the best possible value for the corresponding offset parameter related to R.1, which was estimated by fit-
ting the pattern mixture model in the true simulated data. The method in Jolani6 implemented in mice.impute.ri was
also applied. We found that the method in Jolani6 produced substantial residual bias in estimating outcome model
parameters. The method in Tompsett et al5 produced little bias when the corresponding offset sensitivity parameter was
correctly specified. We observed similar results when these methods were applied to multiple variable missingness in
Table D.1.

As discussed in Section 2.6, we will rarely know the true value of 𝜙1 or any sensitivity parameter. We can apply these
methods across different assumed values for 𝜙1 as a sensitivity analysis to departures from MAR. Results are shown
in Figure 2B. Point estimates from the method in Carpenter et al7 did not vary much across assumed 𝜙1 values above
about 0.5. As demonstrated in Figure C.1, this is because the true value of the outcome model parameter is outside the
range of estimates obtained from MAR-based imputation (range between 0.32 and 0.45, mean = 0.39). In Figure C.2, we
compare the imputation-specific weights obtained for the method in Carpenter et al7 and for our proposed method using
the data visualization proposed in Heraud-Bousquet et al.20 The final weighted estimate for the Carpenter et al7 method
is dominated by the imputed dataset producing the most extreme MAR-based estimates for larger values of |𝜙1|, with
weights near 1 for a single imputed dataset. In contrast, the proposed method defines weights at the subject level, and the
largest imputation-specific weight obtained for any subject was near 0.5. For most subjects, the largest weight was about
0.06. These smaller imputation- and subject-specific weights produce a much more stable estimation of model parameters
that is much less sensitive to extreme imputations drawn for individual subjects.

4.3 Estimation of standard errors

We may also be interested in estimating standard errors for regression model parameters. We apply the methods in
Section 3 to estimate standard errors for the proposed stacked and weighted analysis method assuming that 𝜙1 is correctly
specified. We calculate corresponding 95% confidence intervals for estimating the coefficient of Z2 in linear or logistic
regression models using each of the three variance estimation strategies and assuming a normal distribution approxima-
tion (point estimate ± 1.96 × standard error estimate). Results are shown in Figure 3. When the target model was logistic
regression, all of the variance estimation strategies produced similarly good coverage rates as long as M was large enough
(eg, >50). However, the story is more complicated for coverage rates when the target outcome model is linear regression.
When true 𝜙1 was moderate or small (eg, 𝜙1 ≤ 0.5), the method proposed in Bernhardt11 and our jackknife modification
produced nominal coverage for large M. However, these two approaches resulted in slight over-coverage when 𝜙1 was
large (eg, 1). The method in Equation (9) based on the observed data information principle in Louis16 resulted in small
under-coverage for all values of 𝜙1 ≠ 0, with stronger under-coverage seen for larger 𝜙1.

As noted in Rezvan et al,8 the distribution actually used to impute normally-distributed Z.1 within the chained
equations imputation algorithm has heavier tails than the “ideal" normal distribution when the corresponding dispersion
parameter is not known. To evaluate whether this explains the observed over- and under-coverages, we repeated these
simulations after imputing Z1 from a normal distribution with dispersion parameter fixed at the simulation truth. This
modified imputation strategy did not impact the resulting coverage rates (results not shown), indicating that this slight
over- and under-coverage was not driven by the heavy-tailed imputation. Similar results were seen in simulations with
multiple covariates as discussed in Section D.
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F I G U R E 3 Coverage of 95% confidence intervals for the coefficient of Z2 from stacked and weighted analysis across 1000 simulated
datasets assuming true 𝜙1 is known [Colour figure can be viewed at wileyonlinelibrary.com]

Figure C.3 provides the average run-time for each of these variance estimation strategies under a normally-distributed
imputed outcome with n=1000. At M = 100, the method in Equation (9) took on average only 1.4 seconds to estimate
standard errors. In comparison, the method from Bernhardt11 and our jackknife modification took an average of roughly
39 and 25 seconds, respectively. While this difference will be negligible for many analyses, the shorter runtime of the
method in Equation (9) may produce a much shorter aggregate runtime when sensitivity analyses are performed across
a large grid of 𝜙1 values. The comparison between runtime for the proposed analysis and standard pattern mixture-type
imputation will vary based on the number of sensitivity parameter evaluations, the number of multiple imputations, and
the complexity of the multiple imputation procedure.

5 ILLUSTRATIVE EXAMPLE: MISSINGNESS OF HPV STATUS IN
PATIENTS WITH OROPHARYNGEAL CANCER

We apply the proposed methods to address potential MNAR missingness in a study of N=840 patients newly-diagnosed
with oropharyngeal squamous cell carcinoma at the University of Michigan. Baseline characteristics including smoking
status, age, cancer stage, and comorbidities were collected at the time of study enrollment (at or soon after diagnosis),
and patients were then followed for cancer-related outcomes including overall survival. For over 30% of patients, HPV
(human papillomavirus) status was not evaluated at baseline. Baseline comorbidities status (none/mild/moderate/severe)
is missing for roughly 27% of patients, and there is a very small amount of missingness in smoking status and cancer stage.
For additional details about patient recruitment, data collection, and study descriptives, we refer the reader to Beesley
et al.21

Suppose our interest lies in modeling overall survival as a function of baseline characteristics. For the baseline covari-
ates of interest, only 45% of patients have complete data. To improve estimation efficiency and guard against bias from
complete case analysis, we want to perform multiple imputation to handle the missing data. However, we have concerns
about the reasonableness of the MAR assumption. In particular, we consider missingness in HPV status. Missingness
in HPV status is clearly related to year of enrollment for this cohort, reflecting the increasing acceptance of HPV sta-
tus as a key prognostic factor for oropharyngeal cancer patients (Figure F.1). As shown in Table F.1, missingness in
HPV status is also associated with smoking status even after adjusting for year of enrollment, with current smokers
being less likely to have HPV status available relative to never smokers (log-odds ratio −0.13, 95% CI: −0.21, −0.04). In
terms of oropharyngeal cancer etiology, this makes sense; two strong risk factors for oropharynx cancer development
are smoking and HPV positivity. If the patient was a current smoker, doctors may have been less inclined to recom-
mend testing for HPV status (at least, for earlier enrollment periods before HPV testing had become a standard part of

http://wileyonlinelibrary.com
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patient care). However, additional unobserved factors such as sexual history could have also informed decision-making
for whether a patient was tested for HPV infection. This could induce a MNAR association between HPV testing and
true HPV status, where untested people may be less likely to be positive even after adjusting for other observed base-
line variables and calendar time of enrollment. We are interested in exploring to what extent our estimated parameters
in a model for overall survival are impacted by our assumptions regarding HPV missingness. In our analysis, we will
allow HPV missingness to depend on true HPV status given covariates, but we will assume that HPV status missing-
ness does not depend on any other unobserved information. Table F.1 suggests there may also be an association between
missingness and comorbidities, which is missing for 27% of patients. If this association is not induced by the associ-
ation between comorbidities and HPV status, our working missingness model may only partially capture the MNAR
dependence.

We applied the method in Figure 1 as follows. First, we obtained 50 multiply imputed datasets assuming HPV
missingness is MAR. Missingness for other baseline covariates was also assumed to be MAR. Details on this impu-
tation procedure can be found in Supplementary Section F. We then obtained a stacked dataset and weighted the
dataset proportional to exp (−𝜙1[HPV positive]), where 𝜙1 corresponds to the log-odds ratio for observing HPV sta-
tus for HPV positive vs. HPV negative patients. We fit a weighted Cox proportional hazards regression model for
overall survival using this stacked data, where 𝜙1 was varied between −1 and 1. Relative to estimated log-odds ratios
for missingness (Table F.1), a value of |𝜙1| > 0.2 represents very extreme MNAR dependence. The Cox proportional
hazards model adjusted for HPV status, smoking status, ACE27 comorbidities, overall cancer stage, and age at can-
cer diagnosis. We applied the method in Equation (9) to estimate corresponding standard errors using the partial
log-likelihood.

Figure 4 shows the estimated log-hazard ratio for HPV positivity in the overall survival regression model as a func-
tion of 𝜙1. We see that the point estimate for the log-hazard ratio does change in magnitude across 𝜙1. For example,
the log-hazard ratio is estimated as 1.19 (95% CI: 0.96, 1.42) for 𝜙1 = 1 and 0.84 (95% CI: 0.57, 1.10) for 𝜙1 = −1. How-
ever, for more reasonable values of |𝜙1| consistent with observed associations between missingness and other variables
(Table F.1), the log-hazard ratio only varies between about 0.99 and 1.09. Additionally, the 95% confidence intervals
across all 𝜙1 are still far from 0 even for more extreme values of 𝜙1. If our goal was to assess whether HPV sta-
tus was associated with overall survival for patients newly-diagnosed with oropharyngeal cancer, our study findings
would not be strongly impacted by assuming MAR. In this example, we may be more concerned about the magni-
tude of the association between HPV status and overall survival if we are wanting to use the resulting model to predict
likely survival outcomes for new patients. To compare the impact of the choice of 𝜙1 on discrimination of resulting
5-year overall survival estimates, we calculated 5-year survival predictions for each of the 378 patients with complete
covariate data using each of the estimated survival models. We report the corresponding C-Indices and area under the
receiver operating curve (AUC) in Figure 4. The estimated C-Indices and AUC did not vary much across different values
of 𝜙1.

http://wileyonlinelibrary.com
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6 DISCUSSION

Chained equations multiple imputation is an appealing approach to handling missing data in many data analysis settings.
However, the majority of statistical development in this area relies on a key assumption that data are missing at random
(MAR). Application of MAR-based imputation and data analysis strategies when data are not missing at random (MNAR)
can produce bias in estimating parameters of interest.4

In this article, we propose a novel strategy for addressing single variable MNAR missingness given multiple imputations
generated assuming MAR. MNAR missingness is handled through weighted data analysis applied to the stacked multiple
imputations, where the data weights are a function of an assumed model for MNAR missingness. In the special setting
where the MNAR missingness mechanism can be reasonably approximated by a standard logistic regression, the weights
take a simple form and depend only on a single sensitivity parameter. This parameter has a convenient interpretation as
the log-odds ratio association between the MNAR missingness and the true value of the variable with MNAR missingness,
adjusting for fully-observed variables. In Supplementary Section A, we extend this methodology to handle settings with
more complicated MNAR missingness in multiple variables.

The proposed method makes several advances over existing methods in this area. Unlike the related data re-weighting
method in Carpenter et al,7 the proposed approach defines separate weights for each subject and imputation combination.
This prevents estimation from being dominated by a single imputed dataset. As discussed in Rezvan et al,8 the method in
Carpenter et al7 may also produce inconsistent estimates of common parameters of interest (eg, means, regression model
parameters, etc.) in some cases. This is a result of the reliance on point estimates obtained under MAR assumptions,
which may be far from the truth. The proposed method uses imputed data obtained under MAR assumptions but not the
corresponding point estimates, avoiding this challenge and allowing for valid point estimation even under strong MNAR
missingness.

Several authors have developed strategies for addressing MNAR missingness within the chained equations impu-
tation procedure itself. Tompsett et al5 recommends including missing data indicators as predictors in the imputation
model and handles MNAR missingness related to the imputed variable itself through a fixed offset with correspond-
ing sensitivity parameter. This results in a regression model approximation of the “exact" imputation distribution in
Equation (1). This approach performed well in simulations when the corresponding offset parameter was well-specified
(Tables C.1 and D.1). However, imputation and data analysis as in Tompsett et al5 must be repeated across multiple
values of the sensitivity parameter, which can become computationally challenging for a large grid of plausible val-
ues or when the procedure for generating multiple imputations is slow. Our proposed approach also involves repeated
analysis across sensitivity parameter values, but it relies on a single set of multiple imputations, avoiding the need to
re-impute the data many times. Jolani6 avoids use of sensitivity parameters entirely under assumptions that the true
model generating missingness follows a logistic regression model with main effects. However, we found that the imple-
mentation of this method in mice in R performed poorly in terms of large residual bias in estimating regression model
parameters. This may be related to difficulty in identifying parameters in the missingness model and warrants further
exploration.

One historical disadvantage of the general strategy of imputation stacking was the limited statistical literature regard-
ing standard error estimation and the lack of corresponding software for easy implementation. However, Beesley and
Taylor10 recently proposed a simple strategy for estimating standard errors for stacked and weighted multiple imputa-
tions Equation (9) inspired by the observed data information principle in Louis.16 Bernhardt11 proposed an alternative
strategy involving bootstrapping of multiply imputed data for estimating the between-imputation variation as in Equation
(10). Through simulations in Section 4, we demonstrate that both general estimation strategies can produce reason-
able standard error estimates, with some slight under-coverage (eg, 90%) seen for the method in Equation (9) and some
over-coverage seen for the method in Bernhardt11 when the MNAR missingness is strong. This under-coverage may be
a result of the dependence between the weights (a function of the imputed data) and the target model parameter 𝜃 due
to the model-based multiple imputation procedure, and future efforts can explore this issue in greater detail. An addi-
tional limitation of the proposed approach is that it generally requires more imputed datasets than Rubin’s rules-based
estimation. The number of required imputations will depend on the amount of missingness, but we generally found good
estimation properties for M = 50. Given sufficient M and the correct sensitivity parameter, the proposed method resulted
in very low bias even for small sample sizes (eg, n=100).

In the main article, we focused on the particular setting where we have MNAR missingness in a single variable. Miss-
ingness in other variables was assumed to be MAR. In Supplementary Section A, we extend the proposed method to
handle MNAR missingness in multiple variables and to allow for more complex MNAR mechanisms. In the special case
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where (1) missingness in each variable is independent of the true values for other variables with missingness and (2) the
MNAR mechanisms are well-approximated with logistic regressions, resulting weights are similar to those in Equation
(8) but with a separate sensitivity parameter for each variable that is MNAR. In simulations under (1) and (2), this exten-
sion performed as expected, with properties similar to those seen in simulations presented here (Figure E.1). Future work
can explore implementation for more general MNAR missingness.

An overall advantage of the proposed method is that it disentangles the challenges of data imputation (ie, filling in the
missing values) and handling of MNAR (ie, avoiding or reducing bias due to the MNAR missingness mechanism). This
approach can be applied to data previously imputed under MAR assumptions, and point estimation can be very easily
implemented using standard software. Standard error estimation presents a greater challenge, and we provide R pack-
age StackImpute (available at https://github.com/lbeesleyBIOSTAT/StackImpute) to allow users to easily obtain standard
errors for many commonly-used regression model settings, including Cox proportional hazards regression and general-
ized linear models. The primary disadvantage of the proposed methodology is the need to specify values for unidentified
sensitivity parameters. This is a common challenge for most MNAR adjustment methods, and existing strategies for elic-
iting sensitivity parameter values in the pattern mixture modeling literature can be applied to inform reasonable choices
for the sensitivity parameters.18,19 These methods will naturally become more difficult to implement as the dimension of
unidentified sensitivity parameters grows, and addressing practical challenges to larger-dimensional sensitivity parameter
elicitation is an area for future development.
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