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Abstract To phenotype mechanistic differences between heart failure with reduced (HFrEF) and
preserved (HFpEF) ejection fraction, a closed-loopmodel of the cardiovascular system coupled with
patient-specific transthoracic echocardiography (TTE) and right heart catheterization (RHC) data
was used to identify key parameters representing haemodynamics. Thirty-one patient records (10
HFrEF, 21 HFpEF) were obtained from the Cardiovascular Health Improvement Project database
at the University of Michigan. Model simulations were tuned to match RHC and TTE pressure,
volume, and cardiac output measurements in each patient. The underlying physiological model
parameters were plotted against model-based norms and compared between HFrEF and HFpEF.
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Our results confirm the main mechanistic parameter driving HFrEF is reduced left ventricular (LV)
contractility, whereasHFpEF exhibits a heterogeneous phenotype. Conducting principal component
analysis, k-means clustering, and hierarchical clustering on the optimized parameters reveal (i) a
group of HFrEF-like HFpEF patients (HFpEF1), (ii) a classic HFpEF group (HFpEF2), and (iii)
a group of HFpEF patients that do not consistently cluster (NCC). These subgroups cannot be
distinguished from the clinical data alone. Increased LV active contractility (p < 0.001) and LV
passive stiffness (p < 0.001) at rest are observed when comparing HFpEF2 to HFpEF1. Analysing
the clinical data of each subgroup reveals that elevated systolic and diastolic LV volumes seen in
both HFrEF and HFpEF1may be used as a biomarker to identify HFrEF-like HFpEF patients. These
results suggest that modelling of the cardiovascular system and optimizing to standard clinical data
can designate subgroups of HFpEF as separate phenotypes, possibly elucidating patient-specific
treatment strategies.

(Received 28 April 2021; accepted after revision 7 September 2021; first published online 12 September 2021)
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Abstract figure legend Patient specific modeling and heart failure classification workflow.

Key points
� Analysis of data from right heart catheterization (RHC) and transthoracic echocardiography
(TTE) of heart failure (HF) patients using a closed-loop model of the cardiovascular system
identifies key parameters representing haemodynamic cardiovascular function in patients with
heart failure with reduced and preserved ejection fraction (HFrEF and HFpEF).

� Analysing optimized parameters representing cardiovascular function using machine learning
shows mechanistic differences between HFpEF groups that are not seen analysing clinical data
alone.

� HFpEF groups presented here can be subdivided into three subgroups: HFpEF1 described as
‘HFrEF-like HFpEF’, HFpEF2 as ‘classic HFpEF’, and a third group of HFpEF patients that do
not consistently cluster.

� Focusing purely on cardiac function consistently captures the underlying dysfunction in HFrEF,
whereas HFpEF is better characterized by dysfunction in the entire cardiovascular system.

� Ourmethodology reveals that elevated left ventricular systolic and diastolic volumes are potential
biomarkers for identifying HFrEF-like HFpEF patients.

Introduction

Heart failure with preserved ejection fraction (HFpEF) is
diagnosed in patients with the hallmarks of heart failure
(HF) and a left ventricular (LV) ejection fraction (EF)
equal to or above 50%. HFpEF now represents more
than half of HF cases, and its incidence is increasing
with an ageing population and a high prevalence of
associated risk factors (e.g. obesity, systemic hypertension,
coronary artery disease, and diabetes) (Owan et al. 2006;
Yancy et al. 2006; Hummel et al. 2009; Little & Zile,
2012). Patients with HFpEF suffer poor quality of life and
long-term outcomes. Despite this substantial individual
and public health burden, HFpEF lacks a framework
for evidence-based pharmacotherapy (Yancy et al. 2013).
Long-term management of HFpEF focuses on (i) the

treatment of any existing comorbidities, (ii) therapeutics
that decrease the LV diastolic pressures, and (iii) general
symptom reduction. Several clinical trials in large cohorts
of HFpEF patients have failed to demonstrate consistent
benefits. The drugs used include sildenafil (Guazzi et al.
2011; Borlaug et al. 2015; Hoendermis et al. 2015; Liu et al.
2017), sacubitril/valsartan (Solomon et al. 2019), losartan
(Wachtell et al. 2010), candesartan (Yusuf et al. 2003),
spironolactone (Edelmann et al. 2013; Cohen et al. 2020a)
and isosorbide mononitrate (Redfield et al. 2015).
HFpEF was previously termed ‘diastolic’ HF with

symptoms attributed to increased ventricular stiffness,
impaired relaxation, impaired ventricular filling during
diastole, and higher average pressures during the cardiac
cycle. However, patients with HFpEF have dysfunction
in multiple cardiovascular domains, some of which may
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become evident only during exercise (Dunlay et al.
2017). It has been suggested that selecting the correct
HFpEF cohort is an important factor in treatment success
(Borlaug et al. 2015), but the wide range of HFpEF
phenotypes at the mechanistic cardiovascular systems
level makes selecting these cohorts from upper-level
clinical data difficult. Since HFpEF is a catch-all category
for HF patients basedmainly on EF estimates, the inability
to have a standard treatment for these patients may be
an indicator of the physiological heterogeneity under-
lying HFpEF. Therefore, identifying subgroups of HFpEF
patients with similar cardiovascular aetiologies is a crucial
task and is required to target appropriate therapies for
these patients.

Patients presenting with HF and an EF below 50%
are diagnosed with heart failure with reduced ejection
fraction (HFrEF). The classical understanding of HFrEF,
also known as ‘systolic’ HF, is that loss of ventricular
contractility causes reduced ability to pump blood to
the systemic circulation during systole (Pinilla-Vera
et al. 2019). Unlike HFpEF, numerous medication and
device-based therapies improve outcomes in HFrEF
(Yancy et al. 2017; Pinilla-Vera et al. 2019).

To diagnose and monitor patients with HF, two
clinical procedures are commonly used: transthoracic
echocardiography (TTE) and right heart catheterization
(RHC). TTE is non-invasive and widely available, and
these images may be used to quantify LV volumes in
systole and diastole to estimate a patient’s EF. From TTE
measurements, we may obtain additional information,
such as cardiac output (CO) based on the heart rate (HR),
the left ventricular out tract flow velocity time integral
(LVOT VTI), and the cross-sectional aortic valve area for
each patient. RHC is used to measure right ventricular
(RV) and pulmonary artery (PA) pressures during
systole and diastole along with CO, HR, and pulmonary
capillary wedge (PCW) pressure. While TTE and RHC
provide detailed ventricular volume and pressure data
for individual patients, the challenge of integrating these
measurements into a single representation of a patient’s
cardiovascular state is onlymade qualitatively in the clinic.
One way to quantitatively reconcile what these clinical
datasets describe about the haemodynamics of the right
and left sides of the heart and the systemic and pulmonary
circulation is with a closed-loop model of the cardio-
vascular system. To combine these two sets of data, we
must take into consideration that (i) the two datasets
are typically not obtained simultaneously, (ii) they may
include a combination of data points taken at specific
instances, and (iii) time course data are often not available.

In this retrospective study, we have developed a
methodology to represent the cardiovascular state of
both HFpEF and HFrEF patients to illustrate the under-
lying mechanistic differences between diagnoses and
specifically within the diagnosis of HFpEF. Recent

studies have determined subgroups of the HFpEF
diagnosis using RNA sequencing (Hahn et al. 2021),
quantitative echocardiography (Shah, 2019), and plasma
protein profiling (Cohen et al. 2020b) combined with
unsupervised machine learning techniques.
Here, we aim to discern subgroups within the HFpEF

cohort using a mathematical modelling and unsupervised
machine learning approach. To this end, a clustering
analysis is performed on estimated model parameters
identifying HFpEF subgroups that are then used to
provide haemodynamic insight into functional differences
between HFpEF subgroups. Others have attempted to
classify HF patients using clinical data to inform cardio-
vascular modelling (Wang et al. 2018). To our knowledge,
ours is the first study that uses model-based analysis of
clinical data and physiology-informed machine learning
to determine subclassifications of HFpEF. This synergistic
approach is in line with similar studies that combine
mathematical and statistical techniques to predict physio-
logical function at the patient-specific level (e.g. the ‘digital
twin’ (Corral-Acero et al. 2020)). A workflow of the
approach used in this study is shown in Fig. 1.

Methods

Clinical data

The Cardiovascular Health Improvement Project (CHIP)
repository, supported by the Frankel Cardiovascular
Center at the University of Michigan, was queried to
extract clinical data from patients diagnosed with HFpEF
or HFrEF. This retrospective data capture was approved
by the Institutional Review Board at the University of
Michigan, and informed consent was obtained for all sub-
jects in the database. This research-ready biorepository
of DNA, plasma, serum, and tissue samples includes
de-identified electronic health records (EHRs) from
consenting patients with HF, aortic disease, arrhythmia,
and dyslipidaemia. Through the CHIP office, a search
was made to collect clinical data from HFpEF and HFrEF
patients with both TTE and RHC measurements in their
EHR. The criteria for determining whether a patient
has HFpEF or HFrEF is a history of HF symptoms and
an EF above 50% or below 50%, respectively. Patients
with both procedures within 90 days of each other were
extracted from all HFpEF and HFrEF records in a time
range from February 2016 to February 2019. With this
query, 62 patient records (26 HFrEF and 36 HFpEF)
were collected. Patient records missing the minimal
number of measurements (see below) fromRHC and TTE
procedures eliminated 10 HFrEF and 13 HFpEF records,
leaving 34 patient records (11 HFrEF and 23 HFpEF).
Finally, one HFrEF and two HFpEF records that appeared
to be outliers during the initial phase of our analysis
were followed up in the patient record and found to
have procedures or treatments that changed their original

© 2021 The Authors. The Journal of Physiology © 2021 The Physiological Society
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cardiovascular diagnosis (e.g. chemotherapy changing a
patient fromHFpEF to HFrEF). These three patients were
omitted from our final analysis, leaving 31 patient records
(10 HFrEF and 21 HFpEF).

RHC data. During this invasive procedure, a Swan-Ganz
catheter is inserted through the jugular vein andmeasures
the pressure at the tip of the catheter as it is advanced
into the pulmonary artery. Besides pressure information,
CO is estimated by using the thermodilution or Fick
methods. The thermodilution technique estimates CO
by measuring dispersion of a cold saline bolus injected
at the proximal end and then sensed at the distal end
of the catheter. The Fick method measures venous and
arterial O2 saturation and often assumes a given whole
body oxygen consumption (V̇O2) based on weight, height,
and sex. The accuracy of the Fick method hinges on
correctly estimating V̇O2 , and it has been determined that
it can vary by as much as 25% when compared to a direct
measurement of V̇O2 (Narang et al. 2014). Since all RHC
records in this study used estimated V̇O2 , we have chosen
to use the thermodilutionmethod as a consistent measure
of RHC CO.
The selected RHC datasets came from reports that

contained at least the following 13 clinically measured
values: systolic and diastolic RV pressures, systolic and
diastolic PA pressures, average PCW pressure, systolic
and diastolic SA pressure, HR during the RHC, CO
(thermodilution and Fick), body weight, height, and sex
(Table 1). To ensure that the RHC measurements used
are consistent, HR and systolic and diastolic systemic pre-
ssures were gathered from the RHC report only during
catheter insertion. If multiple measurements were taken
during this period, an average was computed of the values
recorded.

TTE data. The selected TTE data include at a minimum:
measurements of LV volume in systole and diastole and
HR during TTE. The LV volumes are measured as either
(i) a single diameter across the LV just below the mitral
valve leaflet tips or (ii) tracings of the LV from apical
two- and four-chamber views (Lang et al. 2016). The
single diameter derived volumes assume the LV can be
approximated as a truncated prolate spheroid with a
non-linear relationship between the diameter and length
of the ventricle (Teichholz et al. 1976). Volumes derived
from the two- and four-chamber views are calculated by
the Method of Discs (MOD), also known as Simpson’s
method (Lang et al. 2016). Since MOD is preferred for
the estimation of LV volumes over the single diameter
estimation, all patient raw TTE images were reviewed by
a cardiologist to:

(i) obtain a MOD estimate of LV volumes when the
quality of the image allowed,

(ii) determine the HR, and
(iii) extract an LVOTVTI estimate of CO, when possible.

Data discrepancy/inconsistency

Ejection fraction. All patients had a reported EF
determined visually by a cardiologist. To quantitively
determine the EF, Cameron revisited the TTE images to
reassess LV volumes by MOD (EFMOD). There are some
patients where the two- and four-chamber images were
not of high enough resolution to yield aMOD estimate. In
these cases, the LV volumes and CO are calculated from a
single diameter measured across the top of the LV using
the Teichholz equation (Teichholz et al. 1976) to obtain
an EF estimate (EFT). If EFMOD was able to be calculated,
we assign this value as EF1, and if not, EF1 = EFT. This

Figure 1. Methodology
This schematic shows the workflow analysing clinical data from right heart catheterization (RHC) and transthoracic
echocardiography (TTE) from patients with heart failure with preserved (HFpEF) and reduced (HFrEF) ejection
fraction using a patient-specific cardiovascular systems model. A subset of model parameters is optimized to RHC
and TTE data for each patient. These parameter values can then be used to observe differences between HFpEF
and HFrEF patients and determine subgroups of HFpEF using unsupervised machine learning.

© 2021 The Authors. The Journal of Physiology © 2021 The Physiological Society
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method revealed discrepancies between the reported
EF and EF1. To address this discrepancy, we had a third
evaluation performed by Hummel to determine whether
EF1 should be used. If the distance between the reported
EF and EF1 is less than 0.1, we use EF1. Otherwise, we
apply the rule:

EF2 = SVLVOT

VLV,diast
, (1)

where SVLVOT is the stroke volume (SV) determined
by LVOT VTI, and VLV,diast is the diastolic LV volume
determined byMODor Teichholz. If the distance between
the reported EF and EF2 is less than 0.1, we use EF2.
Otherwise, we apply the rule:

EF3 = SVLVOT

VLV,syst + SVLVOT
, (2)

where VLV,syst is the systolic LV volume determined by
MOD or Teichholz. The decision tree for the reassessment
of EF is shown in Fig. 2A. Additional details on the EF
calculation for each patient are summarized in Section
S2 and Table S2 in the Supplemental Material file of
Supporting Information.

Cardiac output. Both TTE and RHC data can contain
multiple estimates of CO. The TTE itself resulted in a
possibility of three separate CO estimates:

(i) HR times the SV using MOD (COMOD),
(ii) HR times the SV using the Teichholz equation

(COT), and
(iii) HR times LVOT VTI times the cross-sectional area

of the outflow tract (COLVOT) (Lang et al. 2016).

We have developed a systematic method to rank the
quality of these measurements and determine a CO
estimate to be used for parameter optimization, as shown
by the decision tree (Fig. 2B). If COMOD is available,
we assign this value as CO1, and if not, CO1 = COT.
If COLVOT is available, we average CO1 and COLVOT.
Otherwise, CO1 is taken as the TTE CO for the patient.
For the RHC, there are two CO estimates:

(i) CO via thermodilution (COThermo), and
(ii) CO calculated via the Fick method (COFick).

If COThermo is available, it is taken as the patient’s CO
from RHC. If not, COFick is used (Fig. 2C). Table 1 lists

Figure 2. Decision trees
These trees are used to determine which calculation of ejection fraction (EF) and cardiac output (CO) should be
used in the right heart catheterization (RHC) and transthoracic echocardiography (TTE) data. A, EF from TTE data.
This decision tree is used to resolve discrepancies between the reported EF in TTE records and those calculated by
Method of Discs (MOD) and Teichholz’s formula (EFT). The result is set to EF1. EF2 and EF3 are calculated using
eqns (1) and (2), respectively. B, CO from TTE data. An estimate of CO from left ventricular (LV) volumes in systole
and diastole through the MOD (COMOD) is our first choice. If COMOD is not available, CO estimates are calculated
from LV diameter data during systole and diastole using Teichholz’s formula (COT). The result is set as CO1. If a
left ventricular out tract flow velocity time integral (LVOT VTI) CO estimate (COLVOT) is also available, COLVOT is
averaged with CO1. C, CO from RHC data. CO determined via thermodilution (COThermo) takes precedence over
CO calculated using the Fick method (COFick).

© 2021 The Authors. The Journal of Physiology © 2021 The Physiological Society
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the data used in this study screened with these decision
criteria.

Mathematical modelling framework

The cardiovascular systems model is similar to that
used in a previous study from our lab (Colunga et al.
2020) and is based on the formulation developed by
Smith et al. (2004). Figure 3 shows the detailed cardio-
vascular model schematic. The model complexity was
reduced significantly since the clinical data used for
parameterization here do not have enough informational
content to uniquely identify the parameters of the full
Smith et al. model. In our previous reduced version
of the model, ventricular-ventricular interaction and
fluid inertance after each heart valve were omitted.
Additionally, in this study, the pericardial compartment
was removed, and the zero pressure (or dead space)
volumes in all vascular and ventricular compartments
were set to zero.

Overall, the model used here has 6 states
(compartmental blood volumes listed in eqns (S18)–(S23)
in Supporting Information) and 16 parameters each with
a specific physiological interpretation (Table 2). Equations

Figure 3. Model schematic
The cardiovascular system model is described using an electrical
circuit analogy where pressure, volume, and flow correspond to
voltage, charge, and current, respectively. There are 6 compartments
(clockwise): left ventricle (LV), systemic arteries (SA), systemic veins
(SV), right ventricle (RV), pulmonary arteries (PA), and pulmonary
veins (PV). The model has a systemic (Rsys) and pulmonary (Rpul)
resistance denoting the drop in pressure from the arterial to venous
compartments. Heart valves are simulated as diodes (triangles) with
an associated resistance: mitral valve (Rmval), aortic valve (Raval),
tricuspid valve (Rtval), and pulmonary valve (Rpval).

for the reduced cardiovascular system model used in this
study are given in Section S1 in the Supplemental Material
file in Supporting Information, and model code without
parameter optimization can be found at Carlson et al.
(2021). Figure S5 in the Supplemental Material file in
Supporting Information displays the model predictions
for normal cardiovascular function corresponding to the
parameters listed in Table S1 in the SupplementalMaterial
file in Supporting Information. Figure 4 shows the model
predictions for representative HFrEF (panels A–D)
and HFpEF (panels E–H) patients showing the LV and
systemic pressures (panels A and E), RV and pulmonary
pressures (panels B and F), LV and RV volumes (panels
C and G), and pressure-volume loops (panel D and H).
Figures for all model predictions for each patient can be
found in Figs S6–S34 in the Supplemental Material file in
Supporting Information.

Nominal parameters and initial conditions. Nominal
estimates of all parameters are determined starting with
the set of expressions from our previous study (Colunga
et al. 2020) as a guide. However, some estimated values
used in the previous nominal parameter calculations can
be replaced with data or calculated directly since TTE
measurements are available. Therefore, a reformulation of
some nominal parameter expressions has been made in
this study:

� LV elastances were calculated from measured volume
and estimated pressure in systole.

� LV diastolic stiffness was calculated from measured
volume and estimated pressure in diastole.

� RV elastances were calculated from measured pressure
and estimated volume in systole.

� RV diastolic stiffness was calculated from measured
pressure and estimated volume in diastole.

� Systemic elastances were calculated from measured
arterial pulse pressures, estimated venous pulse pre-
ssures, and estimated stressed volumes.

� Pulmonary elastances were calculated from estimated
and measured pulse pressures and estimated stressed
volumes.

� Systemic and pulmonary resistances were calculated
from measured systemic and pulmonary average
arterial pressures and estimated systolic venous
pressure along with the measured RHC CO.

Resistances across the four valves were calculated in
exactly the same way as in our previous study, and the
ventricular end-diastolic reference pressures were set to
normal values from Smith et al. (2004). More details on
the exact expressions used for nominal calculations are
shown in Section S3 of the Supplemental Material file of
the Supporting Information and the model code (Carlson
et al. 2021).

© 2021 The Authors. The Journal of Physiology © 2021 The Physiological Society
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Table 2. Model parameters for patients at rest

Parameter Units Description Fixed Adjustable

Left ventricle (LV) ELV mmHg ml–1 LV active contractility X
P0,LV mmHg LV diastolic reference pressure X
λLV ml–1 LV passive stiffness X

Right ventricle
(RV)

ERV mmHg ml–1 RV active contractility X
P0,RV mmHg RV diastolic reference pressure X
λRV ml–1 RV passive stiffness X

Pulmonary
vasculature

EPA mmHg ml–1 Pulmonary arterial (PA) stiffness X
EPV mmHg ml–1 Pulmonary venous (PV) stiffness X
Rpul mmHg s ml–1 Pulmonary resistance X

Systemic
vasculature

ESA mmHg ml–1 Systemic arterial (SA) stiffness X
ESV mmHg ml–1 Systemic venous (SV) stiffness X
Rsys mmHg s ml–1 Systemic resistance X

Heart valves Rmval mmHg s ml–1 Mitral valve resistance X
Raval mmHg s ml–1 Aortic valve resistance X
Rtval mmHg s ml–1 Tricuspid valve resistance X
Rpval mmHg s ml–1 Pulmonary valve resistance X

A B

HFrEF
Patient 7

HFpEF
Patient 27

E F
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Figure 4. Model predictions
The model predicted pressures and volumes for a representative HFrEF (Patient 7, panels A–D) and HFpEF (Patient
27, panels E–H) are plotted. A and E, pressure (mmHg) time courses for the left ventricle (PLV, black), systemic
arteries (PSA, red), and systemic veins (PSV, cyan). Data for the systolic and diastolic systemic arterial pressures
are plotted as horizontal dashed red lines. B and F, pressure time courses for the right ventricle (PRV, purple),
pulmonary arteries (PPA, blue), and pulmonary veins (PPV, green). Data for the systolic and diastolic right ventricular
and pulmonary arterial pressures are plotted as horizontal dashed magenta and blue lines, respectively. C and G,
volume (mL) time courses for the left (VLV, black) and right (VRV, purple) ventricles. Data for the systolic and diastolic
left ventricular volumes are plotted as horizontal dashed black lines. D and H, pressure-volume loops for the left
(black) and right (purple) ventricles. Data for the systolic and diastolic left ventricular volumes are plotted as vertical
dashed black lines.
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Total blood volume is calculated based on the height,
weight, and sex of each patient as described in Colunga
et al. (2020), utilizing the expression originally developed
by Nadler et al. (1962). This total blood volume comprises
stressed and unstressed volumes. The unstressed blood
volume is the volume in each compartment at which the
pressure is zero. The stressed volume is the difference
between the total and unstressed volumes. The initial
distribution of stressed and unstressed blood volume
among the six vascular compartments is based on the
work by Beneken (Beneken & DeWit, 1967), in which
a total stressed volume of 18.75% was assumed. In this
study, we assumed 30% of the total blood volume is
stressed volume (Maas et al. 2012; Colunga et al. 2020), so
additional volume was recruited from the four systemic
and pulmonary compartments based on the unstressed
volume available in each compartment. Explicit details
on determining patient-specific stressed volume for each
model compartment can be found in the Supplemental
Material file in Supporting Information in Section S4 and
the model code (Carlson et al. 2021). In this study, the
percentage of stressed volume remains the same across all
patients. However, regulation of stressed and unstressed
volume is a current topic of discussion in the field of HF
(Fallick et al. 2011; Fudim et al. 2017), and the ability to
change the ratio of stressed and unstressed volume can be
explored in future studies.

Global sensitivity analysis. Since the inverse problem
investigated here is ill-posed, a sensitivity analysis is
performed to assess the practical identifiability of the
parameters, i.e. determine which of the parameters can
be identified with the given clinical patient data. Due
to the vast variation in parameter values across sub-
jects, we conducted a global sensitivity analysis using
Sobol’ indices to explore the entire parameter space.
Sobol’ indices apportion the variance in the output to
the effect of each parameter (Sobol′, 2001). In particular,
we use total effect Sobol’ indices to characterize the
effect of both the parameter and parameter interactions
on the residual variance (Randall et al. 2021). All
parameters were varied within their physiological bounds,
listed in Table S1 in the Supplemental Material file in
Supporting Information. The residual (eqn (S80) in the
Supplemental Material file in Supporting Information)
was calculated by determining the least squares error
between simulations and RHC and TTE data in a
similar fashion to that described in Colunga et al.
(2020). The Sobol’ indices were calculated using Monte
Carlo integration by computing 103(16+2)=1.8e4 model
evaluations similar to the procedure described in Randall
et al. (2021).We then ranked the total effect Sobol’ indices
(Fig. 7) to determine a set of influential parameters that
substantially affect the variance of the residual, i.e. a subset

of parameters that have an index above the threshold η =
10−2. Parameters below the threshold were excluded from
consideration for optimization and set to their nominal
values. Though the parameters P0,LV, P0,RV, and ESV were
above η, they are correlated to other parameters with
a higher sensitivity and therefore cannot be determined
explicitly (Colunga et al. 2020). Hence, P0,LV, and P0,RV
were set to the values used in Colunga et al., and ESV
was calculated using eqn (S47) in the Supplemental
Material file in Supporting Information. Note that our
previous study used only RHC data to determine model
parameters. Since TTE data were included here, two
additional model parameters could be identified: ELV and
ERV. From the set of influential parameters, we obtained
the subset

θ = {
λLV, λRV, ELV, ERV, ESA, EPA, EPV, Rsys, Rpul

}

(3)

to optimize. This subset consists of parameters λLV,
λRV, ELV and ERV, which are used to describe cardiac
function. All others are haemodynamic parameters that
define cardiovascular function as a whole, which may
be important for distinguishing particular subgroups
of HFpEF. This methodology produced a subset of
uncorrelated parameters that can be estimated for each
patient. In particular, none of the parameters reached their
physiological bounds when estimated, giving confidence
that the parameter subset in eqn (3) is well prescribed to
investigate the HF questions discussed here.

Optimization. For each patient, we estimate the
adjustable parameters in eqn (3) by minimizing the
least squares error between the simulations and data for
tenmeasurements: RV pressure in systole and diastole, PA
pressure in systole and diastole, average PCW pressure,
SA pressure in systole and diastole, CO during RHC,
LV volume in systole and diastole, and CO during TTE.
Since the HR during RHC and TTE can be different, two
separate simulations are run: one simulating the RHC and
one simulating the TTE. However, both simulations are
run with one set of parameter values with the assumption
that the parameters representing cardiac function do
not change appreciably across procedures for a single
patient. Values of the clinical data are calculated over
the cardiac cycle after the system has reached a steady
state of pulsatile pressures and flows. This is assured by
allowing our simulations to run for 50 beats. Once this
steady state is reached, the maximum and minimum
values of the pressure and volume data of the last 5 beats
are used to compute the total residual error. The PCW
pressure and CO represent average values over the cardiac
cycle; because of this, their values are averaged over the
cardiac cycle before being compared to the TTE and
RHC data. Estimates for the adjustable parameters are

© 2021 The Authors. The Journal of Physiology © 2021 The Physiological Society
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obtained using the genetic algorithm with a population
size of 500 and a stall generation limit of 10 generations
implemented in MATLAB (MathWorks, Natick, MA,
USA). All other specifications were set to their default
MATLAB values. To check to see if the parameter space
was explored adequately, we ran the optimization for
each patient 10 times and observed a consistent residual
across the best few runs. The run with the lowest cost was
chosen for our final results. More details aboutMATLAB’s
implementation of the genetic algorithm can be found at
mathworks.com.

Machine learning

We utilized one classification and two different clustering
techniques using the built-in MATLAB k-means and
hierarchical clustering functions to group individuals
within a population based on similar characteristics. In
theory, patients within the same groups should share
similar physiological characteristics. The clinical data and
optimized parameter values were compiled into separate
matrices where each row represents a given patient, and
each column represents a clinical measure or optimized
parameter value (Tables 1 and 2). Before any of the
clustering methods are applied, each column is centred
by subtracting the average of each column from each
element in that column. Because our clinical data and
optimized parameters had different units within their
respective matrices, we normalized each clinical measure
or parameter by its standard deviation. To mitigate any
bias in these analyses, no additional weighting is placed on
any of the clinicalmeasurements or optimized parameters.

Principal component analysis (PCA). We performed a
PCA (Jolliffe, 1986), which is simply a singular value
decomposition identifying an orthogonal change of basis
within the clinical data or optimized parameter spaces that
retain the greatest variation across patients, independent
of the level of dimension reduction selected. For the
optimized parameter matrix P, the decomposition P =
USVT produces unitary matrices U and V and diagonal
matrix S, representing the portion of the total variation
explained by each principal component. The PCA score,
which gives the position in this rotated space that
maximizes variation, is given by the product of U and
S. Figure 6A plots the two-dimensional space of the first
two principal components describing more than 50% of
the total variance. Subsequent principal components each
accounted for less than 15% of the total variance and
are not plotted for clarity. A convex hull was prescribed
about the HFpEF and HFrEF groups. HFpEF patients are
then assigned a group based on the following clustering
methods.

k-means clustering. k-means clustering creates k
unsupervised clusters from the data. In this study, we

chose to group the patients into two clusters, that is, two
patients are randomly chosen as cluster centroids, and all
other patients are grouped relative to their L1-distance
from each centroid. This method is dependent on the
random initial cluster centroids selected, so we run this
process 20 times and select the clustering result that
has the smallest total cluster variance (Eisen et al. 1998;
Wilkin &Huang, 2008). Figure 4B shows the two k-means
clusters of the clinical data superimposed on the PCA
hulls.

Hierarchical clustering. In this clustering method, each
patient starts as a cluster, and then the two closest patients
are grouped together. This process is repeated, grouping
the two closest clusters together to reduce the total number
of clusters by 1 until all the patients are in one cluster
(Kraskov et al. 2005). This method forms a hierarchical
cluster tree known as a dendrogram that can then be
truncated to produce the desired number of clusters.
To do this in MATLAB, the linkage function is used,
and the Ward metric (Ward, 1963) is selected to group
the two clusters together at each step that minimize
the total in-cluster variation. Using the dendrogram, we
partitioned our patients into two clusters by cutting the
dendrogram halfway between the second-from-last and
last linkages. Figure 6C superimposes the hierarchical
clusters of the clinical data on the PCA hulls.
Our focus is to identify groups that cluster consistently

among these methods, especially since they use different
concepts to group the data. If two HFpEF patients share
a PCA hull region, a k-means cluster, and a hierarchical
cluster, they are included in the same group. Since our
purpose here is to subdivide only the HFpEF patients,
all HFrEF patients are grouped according to their clinical
diagnosis independent of whether they may cluster with
HFpEF in one of the clusteringmethods used. The clusters
with the most HFrEF patients are considered the most
‘HFrEF-like’. Patients that switch between clusters for
different methods are deemed not consistently clustered
(NCC).
To classify theHFpEF patients that fall in the PCA over-

lap region, we rely on the clustering methods. If a HFpEF
patient in the overlap region falls in the k-means and
hierarchical clusters that contain a majority of the HFrEF
patients, we classify them as HFrEF-like HFpEF and thus
are part of HFpEF1. Conversely, if they fall in the k-means
and hierarchical clusters that contain a majority of HFpEF
patients, we classify them as classic HFpEF and are part of
HFpEF2.

Results

HF subgroups determined from clinical data

Our retrospective cardiovascular systems analysis consists
of a cohort of 31 patient records (10 HFrEF and 21

© 2021 The Authors. The Journal of Physiology © 2021 The Physiological Society
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HFpEF). First, we consider the clinical data explicitly
from the RHC and TTE (Fig. 5). Statistically significant
differences in the means of TTE derived measurements
(p < 0.001) such as EF, systolic and diastolic LV volumes,
and CO (p < 0.01) are found between HFrEF and
HFpEF patients (Fig. 5A–D). Consistent with their systolic
dysfunction phenotype, HFrEF patients have greater
ventricular volumes than the HFpEF cohort, with patients
1 and 6 showing particularly extreme ventricular dilation
(Fig. 5B and C). In the HFpEF cohort, pulmonary artery
systolic and diastolic pressures as well as RV systolic pre-
ssures are significantly higher (p < 0.01) than the HFrEF
cohort (Fig. 5E–G). Systolic arterial pressure is likewise
significantly higher (p < 0.05) in the HFpEF cohort when
compared to HFrEF patients (Fig. 5H).

To determine if novel subgroups of HF patients with
similar cardiovascular aetiologies could be discerned from
clinical data alone, we perform a PCA along with two
unsupervised clustering methods on the clinical data
available from the RHC and TTE (Fig. 6). All RHC and
TTE patient data to which the model was optimized
(Table 1) except EF, height, and weight were included
in the PCA. Since EF was a major factor used to
determine clinical diagnosis and LV diastolic and systolic
volumes are already included in the PCA analysis, EF was

excluded. In Fig. 6A, PCA scores for the first and second
principal components are plotted, and convex hulls are
drawn around each diagnosis. The first two principal
components of our clinical data PCA describe 52% of the
total variance. The convex hulls for HFrEF (orange) and
HFpEF (blue) overlap, consisting of HFrEF patients 2, 4,
5, 7 and 9 and HFpEF patients 11, 24 and 18. Since the
PCAonly captures the greatest variance across all patients,
the HFpEF patients in the overlap region required further
analysis.
To test if we could attribute the HFpEF patients that

fall in the PCA overlap region into a distinct phenotype
associated with the HFrEF or HFpEF clinical groups,
we employ k-means and hierarchical clustering (Fig. 6B
and C). We superimpose the k-means clusters on the PCA
convex hulls (Fig. 6B). Since all HFrEF patients except
patient 5 fall into k-means cluster A, we designate cluster
A as more HFrEF-like and, conversely, k-means cluster
B as more HFpEF-like. We observe in the overlap region
that HFpEF patient 11 is in k-means cluster A whereas
patients 18 and 24 are k-means cluster B. Also, HFrEF
patient 5 falls in k-means cluster B. Lastly, HFpEF patients
16, 17, 20, 21, 23 and 27 fall into k-means cluster A. In a
similar fashion, hierarchical clustering results are super-
imposed on the PCA convex hull (Fig. 6C). We specified
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Figure 5. Box plots of clinical data with significant differences between heart failure patients based on
their HFrEF and HFpEF diagnosis
A, ejection fraction (%). B, systolic left ventricular (LV) volume (mL). C, diastolic LV volume (mL). D, cardiac output
(L min–1) from the TTE data. E, systolic pulmonary arterial (PA) pressure (mmHg). F, diastolic PA pressure (mmHg).
G, systolic right ventricular (RV) pressure (mmHg). H, systolic systemic arterial (SA) pressure (mmHg). The light grey
dashed line denotes the group average, and the grey box contains one standard deviation above and below the
mean of each clinical value (∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001).
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hierarchical cluster A asmoreHFrEF-like and hierarchical
cluster B as more HFpEF-like. Of particular interest is the
observation that all HFpEF patients in the overlap region
now fall in hierarchical cluster B.
Among the clustering methods used here, Table 3

denotes which patients consistently cluster in the
following groups:
� classic HFrEF (n = 10) – patients that fall in the HFrEF
PCA hull.

� classicHFpEF (n = 13) – patients that fall in theHFpEF
PCA hull, k-means cluster B, and hierarchical cluster B.

� NCC (n = 8) – patients that do not consistently cluster.

Note that this methodology shows no subgroups of
HFpEF. Also, almost half of the HFpEF patients fall in the
NCC designation. More details of the patient designation

based on the clinical measurement clustering analysis are
given in Table S6 in the Supplemental Material file in
Supporting Information.
HFrEF patients 1 and 6 show extreme ventricular

dilatation compared to otherHFrEFpatients in this cohort
with large systolic and diastolic volumes (outliers in
Fig. 5B and C). Therefore, these patients were excluded
from further analysis.

HF subgroups determined from optimized parameter
values

To learn about the underlying physiological differences
between our patient cohorts that cannot be determined
from clinical data alone, patient clinical measurements
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Figure 6. Clustering analysis of clinical
data
A, principal component analysis (PCA) of the
clinical data. Convex hulls for the HFrEF
(orange) and HFpEF (blue) patients are
determined by individual patient diagnosis. B,
k-means clustering of patient data
superimposed on the PCA hulls where cluster
A (purple) is more HFrEF-like and cluster B
(teal) is more HFpEF-like. C, hierarchical
clustering of patient data superimposed on
the PCA hulls where cluster A (purple) is more
HFrEF-like and cluster B (teal) is more
HFpEF-like.
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Table 3. Patient classification from clustering results based on clinical data (left) and optimized parameters (right)

Clinical data Optimized parameters

HFrEF HFpEF NCC HFrEF HFpEF1 HFpEF2 NCC

1 12 11 2 11 12 13
2 13 16 3 17 14 15
3 14 17 4 18 16 22
4 15 18 5 29 19 23
5 19 20 7 30 20 28
6 22 21 8 21
7 24 23 9 24
8 25 27 10 25
9 26 26
10 28 27

29 31
30
31

HFrEF, heart failure with reduced ejection fraction; HFpEF, heart failure with preserved ejection fraction; NCC, not consistently
clustered.

are used to parameterize a simplified cardiovascular
systems model. We conducted a global sensitivity analysis
exploring the entire permissible parameter space and
ranked the parameters due to their contribution to the
residual. Figure 7 displays the ranked total Sobol’ indices
for all 16 adjustable parameters. This analysis shows that
12 parameters are influential to the residual from which
we selected a subset of 9 parameters to optimize (eqn (3)).
Optimized parameter values for each patient are listed in
Table 4.

Our model simulations predict that the HFpEF cohort
has a much wider distribution of the parameter values
than the HFrEF cohort. We perform the same methods
applied to the clinical data to the optimized parameter
values to see if in the parameter space we could identify
subgroups of HFpEF patients with similar cardiovascular
aetiologies (Fig. 6). The first two principal components

of our optimized parameter PCA describe 59% of the
total variance. Since the clinical data and parameter space
are two entirely different representations of the patient
population, no conclusion should be drawn from the
fact that both PCA analyses represent an equivalent total
variance for the first two principal components.
The PCA scores of the optimized parameters show

that HFpEF patients 11, 17, 18, 29 and 30 fall in the
PCA overlap region (Fig. 8A). We conducted k-means
(Fig. 8B) and hierarchical (Fig. 8C) clustering on the
optimized parameters revealing amuch different structure
than clustering based on raw clinical data alone. In both
clustering methods, the majority of the HFrEF patients
fell into one cluster, which we designate as cluster A (all
HFrEF patients except 2 and 9 are in k-means cluster A
whereas all HFrEF patients are in hierarchical cluster A).
Notably, all HFpEF patients in the overlap region also fall

Parameters

Figure 7. Global sensitivity analysis
Ranked total Sobol′ indices for all 16
adjustable parameters with an index above
the threshold η = 10−2 were plotted with a
log-scaled y-axis. This analysis shows that 12
parameters are influential to changes in the
residual. From these, we selected a subset of
parameters to optimize, given in eqn (3).

© 2021 The Authors. The Journal of Physiology © 2021 The Physiological Society
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Table 4. Patient-specific optimized parameter values

Patient ELV λLV ERV λRV EPA EPV Rpul ESA Rsys

HFrEF 2 1.09 0.04 4.09 0.07 2.18 0.09 0.24 0.93 1.53
3 0.78 0.03 0.37 0.03 0.70 0.07 0.02 0.67 1.03
4 1.33 0.04 2.49 0.05 0.40 0.06 0.14 1.09 1.21
5 1.96 0.03 0.76 0.03 2.99 0.10 0.03 0.88 1.25
7 1.63 0.03 0.37 0.02 0.46 0.02 0.11 1.49 1.05
8 2.88 0.04 0.48 0.01 0.24 0.01 0.17 0.54 1.05
9 1.15 0.04 1.14 0.05 2.61 0.09 0.19 1.84 1.92
10 0.65 0.03 0.36 0.01 0.73 0.02 0.11 0.68 1.37

Mean 1.44 0.04 1.26 0.03 1.29 0.06 0.13 1.02 1.30
Median 1.24 0.04 0.62 0.03 0.72 0.07 0.13 0.91 1.23

SD 0.68 0.00 1.27 0.02 1.04 0.03 0.07 0.42 0.29
HFpEF1 11 1.73 0.03 2.98 0.03 0.49 0.03 0.06 1.14 0.94

17 1.77 0.04 1.39 0.02 2.12 0.02 0.08 0.97 1.04
18 1.52 0.03 0.45 0.02 0.62 0.08 0.03 0.75 0.72
29 1.49 0.04 1.57 0.03 2.74 0.09 0.11 0.71 0.85
30 2.39 0.07 1.43 0.01 1.19 0.04 0.11 0.89 0.69

Mean 1.78 0.04 1.56 0.02 1.43 0.05 0.08 0.89 0.85
Median 1.73 0.04 1.43 0.02 1.19 0.04 0.08 0.89 0.85

SD 0.32 0.02 0.81 0.01 0.87 0.03 0.03 0.15 0.13
HFpEF2 12 2.55 0.06 1.77 0.05 1.29 0.05 0.74 1.02 1.90

14 6.84 0.06 1.31 0.03 0.65 0.10 0.59 1.36 1.50
16 8.65 0.09 2.16 0.05 0.89 0.02 0.29 3.16 2.70
19 5.38 0.06 1.09 0.03 1.11 0.10 0.05 1.34 1.39
20 7.67 0.08 2.00 0.04 1.75 0.03 1.00 2.07 2.13
21 6.11 0.09 1.01 0.03 0.73 0.02 0.17 2.01 2.11
24 5.77 0.07 1.20 0.05 0.60 0.10 0.30 1.33 1.51
25 5.63 0.07 3.13 0.05 2.18 0.10 0.29 1.38 1.39
26 9.99 0.09 3.40 0.06 0.88 0.10 0.32 1.29 1.72
27 5.60 0.06 2.21 0.01 0.77 0.01 0.45 1.15 1.67
31 5.68 0.08 3.19 0.07 1.90 0.03 0.08 2.26 1.81

Mean 6.35 0.07 2.04 0.04 1.16 0.06 0.39 1.67 1.80
Median 5.77 0.07 2.00 0.05 0.89 0.05 0.30 1.36 1.72

SD 1.85 0.01 0.84 0.02 0.52 0.04 0.27 0.61 0.38
NCC 13 3.58 0.05 0.07 0.10 0.91 0.04 0.11 1.97 1.18

15 4.30 0.05 2.74 0.04 0.42 0.05 0.14 1.21 1.12
22 6.69 0.05 3.26 0.04 0.89 0.04 0.15 1.36 1.02
23 6.32 0.04 0.62 0.02 0.26 0.03 0.09 1.08 0.95
28 3.40 0.06 4.48 0.06 0.74 0.10 0.44 0.86 1.34

Mean 4.86 0.05 2.23 0.05 0.64 0.05 0.19 1.30 1.12
Median 4.30 0.05 2.74 0.04 0.74 0.04 0.14 1.21 1.12

SD 1.38 0.00 1.65 0.03 0.26 0.03 0.13 0.38 0.13

HFrEF, heart failure with reduced ejection fraction; HFpEF, heart failure with preserved ejection fraction; NCC, not consistently
clustered.

into cluster A for both methods. Therefore, we conclude
that this is a distinct HFpEF subpopulation.
Table 3 shows that this independent analysis with PCA,

k-means clustering, and hierarchical clustering on the
optimized parameter values reveals that the 29 patients fall
into distinct groups:

� HFrEF (n = 8) – patients that fall in the HFrEF PCA
hull.

� HFpEF1 (n = 5) –HFpEF patients that fall in the PCA
overlap region, k-means cluster A, and hierarchical
cluster A.

� HFpEF2 (n = 11) – HFpEF patients that fall in the
HFpEF PCA hull, k-means cluster B, and hierarchical
cluster B.

� NCC (n = 5) – HFpEF patients that do not
consistently cluster.

© 2021 The Authors. The Journal of Physiology © 2021 The Physiological Society
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Since HFpEF1 shares most of the characteristics of the
classic HFrEF group, we consider this group as more
HFrEF-like, whereas HFpEF2 is classic HFpEF. All of the
patients belonging toNCCareHFpEFpatients. Additional
details about the hull location and clustering for each
patient based on the optimized parameter values are
shown in Table S7 in the Supplemental Material file in
Supporting Information.

Analysis of the optimized parameter values from the
4 HF subgroups

Figure 9 illustrates the patient-specific values of keymodel
parameters representing LV active contractility (ELV), LV

passive stiffness (λLV), systemic arterial stiffness (ESA),
and systemic (Rsys) and pulmonary (Rpul) resistance when
broken out into the parameter-based HFrEF and HFpEF
groups. Parameter values that indicate normal cardio-
vascular function (listed in Table S1 in the Supplemental
Material file in Supporting Information) are indicated by
the dotted lines, and all parameter values are normalized
to these values in Fig. 9. When comparing ELV (Fig. 9A),
HFrEF andHFpEF1 tend to be below normal andHFpEF2
and NCC above normal. (Table 5). When compared to
both HFrEF and HFpEF1, HFpEF2 (p < 0.001) and NCC
(p < 0.001) show significantly higher ELV. No significant
differences were found between HFrEF and HFpEF1,
whereas HFpEF2 had a significantly higher ELV when
compared to NCC (p < 0.05).
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Figure 8. Clustering analysis of
optimized model parameter values
This analysis determines three distinct
groups of HFpEF patients. A, principal
component analysis (PCA) of the optimized
model parameters. Convex hulls for the
HFrEF (orange) and HFpEF (blue) patients are
determined by individual patient diagnosis.
B, k-means clustering of optimized
parameter values superimposed on the PCA
hulls where cluster A (purple) is more
HFrEF-like and cluster B (teal) is more
HFpEF-like. C, hierarchical clustering of
optimized parameter values superimposed
on the PCA hulls where cluster A (purple) is
more HFrEF-like and cluster B (teal) is more
HFpEF-like.
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Table 5. Subgroup optimized parameter mean values
compared to model-based norms listed in Table S1 in
Supporting information

Subgroup ELV λLV ERV λRV EPA EPV Rpul ESA Rsys

HFrEF 0.3 1.7 1.8 1.7 5.0 5.7 1.0 1.1 1.0
HFpEF1 0.4 2.1 2.2 1.2 5.5 5.2 0.6 1.0 0.7
HFpEF2 1.5 3.6 2.9 2.1 4.5 5.9 3.0 1.9 1.4
NCC 1.1 2.5 3.2 2.6 2.5 5.0 1.4 1.4 0.9

HFrEF, heart failure with reduced ejection fraction; HFpEF, heart
failure with preserved ejection fraction; NCC, not consistently
clustered.

When comparing λLV (Fig. 9B), all groups are
above normal levels (Table 5). Although no significant
differences were observed between HFrEF and HFpEF1,

λLV in HFpEF1 is double the normal value while HFpEF2
and NCC have a λLV almost triple the normal value
(Table 5). When compared to both HFrEF and HFpEF1,
HFpEF2 shows significantly higher λLV (p < 0.001). NCC
has higher λLV when compared to HFrEF (p < 0.001).
HFpEF2 had a significantly higher λLV when compared to
NCC (p < 0.01).
Looking at ESA (Fig. 9C), both HFrEF and HFpEF1 are

near normal whereas HFpEF2 andNCC are above normal
(Table 5). HFpEF2 shows significantly higher ESA when
compared to both HFrEF (p < 0.05) and HFpEF1 (p <

0.05). No significant differences were observed between
HFrEF and HFpEF1. Likewise, no significant differences
were observed between NCC and HFpEF2.
Strikingly, Rsys (Fig. 9D) in both HFrEF and NCC are

normal, whereas it is decreased in HFpEF1 and increased
in HFpEF2 (Table 5). This is the only parameter in which
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Figure 9. Box plots of the optimized parameter values with 4 heart failure groups
Analysis of the optimized parameters gives us an understanding of the mechanistic differences between the three
HFpEF groups that cannot be seen by analysing the clinical data alone.A, left ventricular (LV) active contractility (ELV ,
mmHg mL–1). B, LV passive stiffness (λLV, mL–1). C, systemic arterial (SA) stiffness (ESA, mmHg mL–1). D, systemic
resistance (Rsys, mmHg s mL–1). E, pulmonary resistance (Rpul, mmHg s mL–1). All values are plotted relative to
the normal model values given in Table S1 in the Supplemenal Material in Supporting Information, indicated by
the horizontal dashed blue line. The light grey dashed line denotes the average, and the grey box contains one
standard deviation above and below the mean of each parameter value (∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001).
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significant differences are observed between HFrEF and
HFpEF1 (p < 0.01). HFpEF2 shows significantly higher
Rsys when compared to HFrEF (p < 0.01), HFpEF1 (p <

0.001), and NCC (p < 0.001). NCC shows significantly
higher Rsys when compared to HFpEF1 (p < 0.05).

Of note,Rpul is normal inHFrEF and reduced by almost
half in HFpEF1 whereas it is increased in the HFpEF2
and NCC (Table 5). HFpEF2 shows significantly higher
levels of Rpul when compared to HFrEF (p < 0.05), and
HFpEF1 (p < 0.05) (Fig. 9E). No significant differences
were observed between HFrEF and HFpEF1. Likewise, no
significant differences were observed between NCC and
HFpEF2.

These results show that the main cardiac parameters
influencing both HFrEF and HFpEF1 are reduced ELV
and slightly elevated λLV (Fig. 9A and B and Fig.
S5 in the Supplemental Material file in Supporting
Information), indicating that systolic dysfunction is the
primary driver for both patient cohorts. Consistent with
the classical definition ofHFpEF characterized by diastolic
dysfunction, our simulations show that HFpEF2 has
significantly increased λLV and ELV at rest (Fig. 9A and B).
When compared to model-based norms, HFpEF2 and

NCC show elevatedESA andRpul (Fig. 9C andTable 5), and
HFpEF2 has an elevatedRsys (Fig. 9D). Strikingly, HFpEF1
shows reduced levels of bothRpul andRsys, whereas HFrEF
patients show near normal levels of Rsys, Rpul and ESA
(Fig. 9C–E andTable 5). Taken together, these results stress
that changes in the systemic and pulmonary vasculature
coupled with changes in cardiac function paint a more
complete picture of the cardiovascular state of HFpEF
patients.

Analysis of the clinical data from the 4 HF subgroups

Using the 4 HF subgroups, we reanalyse the patient RHC
and TTE clinical data (Fig. 10) between groups. The EF
between the HF groups reveals very significant differences
between all distinct HF subgroups (Fig. 10A). The EF
in HFpEF1 is still significantly higher (p < 0.01) than
that of the HFrEF cohort even though they are the most
HFrEF-like. As expected, the EF in HFpEF2 and NCC are
significantly higher (p < 0.001) than the HFrEF cohort.
Of note, the different HFpEF groups have an EF above
50%, consistent with their HFpEF diagnosis yet significant
differences amongst EF between HFpEF subgroups are

E
je

ct
io

n 
F

ra
ct

io
n 

(%
)

D
ia

st
ol

ic
 L

V
 v

ol
um

e 
(m

L)

S
ys

to
lic

 P
A

 p
re

ss
ur

e 
(m

m
H

g)

D
ia

st
ol

ic
 P

A
 p

re
ss

ur
e 

(m
m

H
g)

S
ys

to
lic

 R
V

 p
re

ss
ur

e 
(m

m
H

g)

S
ys

to
lic

 S
A

 p
re

ss
ur

e 
(m

m
H

g)

HFrEFHFpEF1 HFpEF2 NCC HFrEFHFpEF1 HFpEF2 NCC HFrEFHFpEF1 HFpEF2 NCCHFrEFHFpEF1 HFpEF2 NCC

C
ar

di
ac

 o
ut

pu
t T

T
E

 (
L 

m
in

  )-1

BA DC

FE HG

***
*** ***

**
* ***

* *

0

20

40

60

80

100

S
ys

to
lic

 L
V

 v
ol

um
e 

(m
L)

1117

18

29

30

12

14

16
19

20

2124

25
26

27

31

2

9

3

4
5

7 8

10

13

15

2223

28

52

12

21242
551

0

20

40

60

80

100

120

140

160

11

17

18

29

30

12

142516
19

20 2124
26

27
31

2
9 3

4

5

7

8

10

5

13
15

2223

28

S
ys

to
lic

 L
V

 v
ol

um
e 

(m
L)

0

50

100

150

200
11

17

18
29

30 12
14

16

19

20
2124

25

26
27 31

2

9
3

4

5

7

8

10

1315 22

23

28

0

1

2

3

4

5

6

7

8

1117
18

29

30
1214

16

19 20

21

24

25 26

27

31

2

9

3

4
5

7

810

13

15
2223

28

0

20

40

60

80

100

11

17

18

29

30
12

14

16

19

20

21
24

25

26

27
31

2

9

3

4 5
7

8

10

1315

22

23

28

0

10

20

30

40

50

11

17

18

29

30
12

14

16

19

20

21

24

25

26

27
312

9
3

4

5
7

8

10
13

15
22

23

28

0

20

40

60

80

100

11

17

18

29

30

12

14

19

20

21

2416

25

26
27

31

2

9

3

4
5

7

8

10

13
15

22

23

28

0

20

40

60

80

100

120

140

160 11

17
18

29

30

12

1416 19

20
2124

25

26

27

31

29

3

4

5
7

8

10

13

15
22

23

28

***
***

***
*

***
***

***
*

*

* *
*

Figure 10. Box plots of the clinical data with 4 heart failure groups with significant differences between
heart failure patients based on their HFrEF and HFpEF diagnosis
A, ejection fraction (%). B, systolic left ventricular (LV) volume (mL). C, diastolic LV volume (mL). D, cardiac output
(L min–1) from the TTE data. E, systolic pulmonary arterial (PA) pressure (mmHg). F, diastolic PA pressure (mmHg).
G, systolic right ventricular (RV) pressure (mmHg). H, systolic systemic arterial (SA) pressure (mmHg). The light grey
dashed line denotes the group average, and the grey box contains one standard deviation above and below the
mean of each clinical value (∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001).
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observed. Although no significant differences were found
between HFpEF2 and NCC, the HFpEF2 and NCC have a
significantly higher EF (p < 0.05) than HFpEF1.
The HFrEF cohort displays significantly higher LV

systolic volumes (Fig. 10B) when compared with HFpEF2
(p < 0.001) and NCC (p < 0.001) yet no significant
difference is found between HFrEF and HFpEF1. Similar
to HFrEF, HFpEF1 shows significantly higher LV systolic
volumes than both HFpEF2 (p < 0.001) and NCC (p <

0.05). NCC shows significantly higher LV systolic volumes
when compared to HFpEF2 (p < 0.05). LV diastolic
volumes show similar results as the LV systolic volumes.
No significant differences were found betweenHFrEF and
HFpEF1 (Fig. 10C). BothHFrEF (p < 0.001) andHFpEF1
(p < 0.001) show significantly higher diastolic volumes
when compared to HFpEF2. NCC has significantly larger
diastolic volumes when compared to HFpEF2 (p <

0.001). Comparing the TTE CO at rest between groups
did not reveal significant differences between HFrEF and
HFpEF1 (Fig. 10D). NCC has a significantly higher TTE
CO at rest when compared to HFrEF (p < 0.01) and
HFpEF2 (p < 0.001). HFpEF1 had significantly higher
values when compared to HFpEF2 (p < 0.05).
RHC pressure measurements revealed that HFpEF2

had significantly higher systolic and diastolic pulmonary
arterial pressures when compared to HFrEF (p < 0.05).
(Fig. 10E and 1F). Likewise, HFpEF2 shows higher
systolic RV pressures when compared to HFrEF
(p < 0.05) (Fig. 10G). Systolic arterial pressure in both
HFpEF1 and NCC is significantly higher when compared
to HFrEF (p < 0.05) (Fig. 10H).
Overall, analysis of the clinical data with 4 HF sub-

groups reveals that all patients have higher pressures at
rest, with HFpEF2 showing significantly higher pressures
when compared to HFrEF. Themain distinguishing factor
between groups are systolic and diastolic LV volumes
where HFrEF and HFpEF1 both have ventricular volume
overload, signifying that greater LV volumes could be used
as a biomarker for HFrEF-like HFpEF patients.

Discussion

From this analysis of optimized parameter values
representing patient-specific cardiovascular mechanics
coupled with unsupervised machine learning techniques,
we determine distinct HFpEF subgroups that share
similar deep mechanistic phenotypes. These groups could
not be determined from clinical data alone but reveal
that large LV volumes could be used as a biomarker to
indicate HFrEF-like HFpEF patients. Our methodology
distinguishing HFpEF groups describes not only the
functional details of the cardiovascular system for each
population but also for each patient in the population.
This approach not only considers mechanical function

and haemodynamics in the heart but also the pulmonary
and systemic vasculature providing a deeper under-
standing of the cardiovascular state for each population
and each patient.

Clustering of HFpEF groups

While HFrEF is characterized by a well-defined
phenotype, HFpEF comprises a large constellation of
changes at the cardiovascular system level. We found
that the HFpEF group presented here can be subdivided
into three subgroups: HFpEF1 described as ‘HFrEF-like
HFpEF’, HEpEF2 as ‘classic HFpEF’, and NCC as ‘HFpEF
patients that are not consistently clustered’ (Fig. 8A–C).
Using PCA and clustering techniques to analyse clinical
data alone, the same HFpEF distinctions cannot be
seen (Fig. 6A–C), suggesting that key discriminators of
HFpEF into distinct phenotypes reside at the mechanistic
level revealed only by using our methodology. Simply
looking at the underlying mechanistic parameters from
our patient-specific modelling (Fig. 9 for groups HFpEF1,
HFpEF2, andNCC), we see that the range of values for the
HFpEF population is widely heterogeneous. After finding
the 2-dimensional reduced space of parameters derived
from the patient-specific tuned models that produces the
largest variation across patients through PCA, we can
see that there are some HFpEF patients that lie in the
same region as the HFrEF patients (Fig. 8A). Extracted
physiological parameters, such as ELV and λLV, are shown
to play an important role in describing these distinct
patient populations.

HFpEF1 as HFrEF-like HFpEF

In the HFrEF population, we observe elevated λLV, an
observation in accordance with the increased diastolic
myocardial stiffness reported in HFrEF patients (Wang
et al. 2018). This is coupled with a reduced ELV at rest
(Fig. 9A and B). Our observations are consistent with
the current understanding of HFrEF, where systolic
dysfunction is the main pathological characteristic
describing this phenotype (Pinilla-Vera et al. 2019).
In the heterogeneous HFpEF population, we

surprisingly found that HFpEF1 (HFrEF-like HFpEF)
shares the same overall mechanistic parameter trends
as the HFrEF group except with lower Rpul and Rsys
(Table 5). Patients in the HFpEF1 group have significantly
higher EF than HFrEF patients but a significantly lower
EF than the other two HFpEF groups (Fig. 10A). This
could be explained by the fact that both HFrEF and
HFpEF1 show systolic and diastolic LV volume over-
load when compared to HFpEF2 and NCC (Fig. 10B
and C). These results suggest a possible biomarker in
high LV volumes for HFpEF patients, identifying patients
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belonging to HFpEF1. Since they share such similar
physiological characteristics with the HFrEF cohort,
therapeutic strategies currently employed to alleviate
systolic dysfunction inHFrEF patientsmight be employed
in HFpEF1 patients.

HFpEF2 and NCC

HFpEF2, the classic HFpEF group, has very high
λLV coupled with increased in ELV at rest (Fig. 9A
and B, Table 5). These patients have reduced ventricular
filling during diastole, which leads to low systolic
volumes (Fig. 10B and C). This phenotype presents
a particular challenge in situations such as exercise
where the normal physiological response involves the
recruitment of increased SV along with an increased HR
requiring a rapid ventricular relaxation for proper filling.
The elevated ventricular stiffness in this cohort could
explain the increased levels of systolic and diastolic PA
pressure, systolic RV pressure, and SA pressure observed
in the clinical data of these patients (Fig. 10E–H). The
combination of λLV, ESA, and higher pressures in the
pulmonary and systemic vasculature may account for the
increased Rsys and Rpul also observed in this patient cohort
(Fig. 9C–E).

The NCC group was created out of the need to
cluster patients that were distinct from HFrEF but did
not fall clearly into HFpEF1 or HFpEF2. In falling
between two more clearly defined groups, the NCC
group may represent a spectrum of patients more than
a clearly defined subgroup. Perhaps, this is a population
of HFpEF undergoing remodelling and given time may
decompensate toHFrEF-likeHFpEF. Individuals from the
NCC group clearly do not behave like individuals from
HFrEF or HFpEF1, as they show high λLV coupled with
elevated ELV at rest (Fig. 9A and B, Table 5). Despite
this, NCC displays a milder phenotype than that of the
classic HFpEF2 group. From the clinical data, NCC EF
is the highest among the HFpEF groups, with a systolic
LV volume similar to HFpEF2 but diastolic LV volumes
similar to HFpEF1 (Fig. 10A–C).

Possible clinical presentation of HFpEF subgroups

The distinct HFpEF populations found here are
consistent with recent studies describing HFpEF as a
disparate phenotype. In three of these studies, machine
learning methods were used on a variety of clinical and
experimental data (Shah, 2019; Cohen et al. 2020b; Hahn
et al. 2021). In one such study, analysis of RNA sequencing
of RV septal endocardial biopsies on control, HFrEF and
HFpEF patients through unsupervised machine learning
identified three HFpEF transcriptome subgroups with

distinctive pathways and clinical correlations (Hahn et al.
2021). These HFpEF subgroups include:

(I) A HFpEF group close to HFrEF showing the worst
clinical outcomes when coupled with metabolic
dysfunction

(II) A HFpEF cohort with smaller hearts and
inflammatory and matrix signatures.

(III) A heterogeneous phenotype with pronounced
HF symptoms and smaller hearts but lower
N-terminal-proB-type natriuretic peptide
(NT-proBNP) levels.

Patients in Hahn-I had higher LV volumes, perhaps
consistent with the ventricular volume overload we
observe in both the HFrEF and HFpEF1 patients in our
study. The transcriptome of HFpEF Hahn-I is potentially
the closest to HFrEF. Patients in Hahn-II were all female
and had the smallest LV size, which is in accordance
with the very small LV volumes observed in our HFpEF2
patients, the only group in our study that has a majority of
female patients. Likewise, our NCC group could belong to
the heterogeneous Hahn-III.
In a second study, Shah et al. utilized quantitative

echocardiography phenotyping with unsupervised
machine learning to identify 3 HFpEF phenogroups with
differing clinical and echocardiographic characteristics
and outcomes (Shah, 2019):

(I) A group with natriuretic peptide deficiency
syndrome.

(II) A group with extreme cardiometabolic syndrome.
(III) A group with right ventricular cardio-

abdomino-renal syndrome

One of the characteristics of Shah-II was that it had the
most severely impaired cardiac relaxation compared to the
other HFpEF groups. Our HFpEF2 group shows very high
λLV and perhaps falls in this same category.
A third study used plasma protein profiling coupled

with latent class clustering analysis identifying 3
HFpEF clinical phenotypes characterized by distinct
echocardiographic parameters and large artery stiffness
(Cohen et al. 2020b):

(I) A group with the least concentric LVs, largest
LV cavities, lowest absolute and relative LV wall
thickness, lowest LA volumes, lowest values of
resistive arterial load (systemic vascular resistance),
pulsatile arterial load (total arterial compliance), and
large artery stiffness (carotid-femoral pulse wave
velocity).

(II) A group with a distinct pattern characterized by
small concentric LVswith the lowest LVmass among
the groups, the largest left atria, the lowest mitral
annular tissue velocities, the stiffest large arteries,
and the highest pulsatile and resistive arterial load.
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(III) A group with a distinct pattern of concentric LV
hypertrophy with the highest values of LV wall
thickness, LVmass, and LVmass indexed for height;
this phenogroup also exhibited relatively low values
of resistive arterial load but high pulsatile arterial
load indexed for body size (total arterial compliance
index).

In our study, when compared to the otherHFpEF patients,
HFpEF1 has the lowest Rsys. Hence, HFpEF1 matches
Cohen-I. Similarly, HFpEF2 has the highest Rsys and ESA
and is similar to Cohen-II.
These studies show novel classifications of HFpEF

subgroups based on transcriptomic analysis of end-
omyocardial biopsy obtained through RHC (Hahn
et al. 2021), a detailed clinical, laboratory, ECG, and
echocardiographic data phenotyping (Shah, 2019), and
plasma biomarker profiling (Cohen et al. 2020b). These
studies point out clinical markers that may describe
these novel HFpEF classifications (i.e. NT-proBNP
marker, inflammatory signal differences between groups).
However, the nature of cardiovascular haemodynamics, its
relationshipwith the pulmonary and systemic vasculature,
and the uniqueness of each patient within a group
requires a deep phenotyping approach using clinical data
combined with cardiovascular model-informed machine
learning to define HFpEF subgroups. The methodology
presented here identifies similar groupings to these three
studies using advanced clinical data and in one case
endomyocardial biopsies. However, only routine clinical
data is needed, making this methodology more amenable
in the clinic once validated.

Role of the systemic vasculature in heart failure

The physiological parameters derived from our cardio-
vascular systemmodel aligns with the understanding that
HFrEF patients have reduced ELV, slightly increased ESA,
and normalRpul when compared to normal cardiovascular
function (Fig. 9). This alignment of the underlying
mechanistic cardiovascular parameters of the model with
the conventional wisdom concerning HFrEF suggests that
the clinical data used here is sufficient to describe HFrEF.
This also gives us confidence in the profile of the deep
phenotypes of HFpEF that are revealed here. Our results
reveal that that focusing purely on cardiac function may
consistently capture the underlying dysfunction in HFrEF
but is not a good approach for understanding HFpEF.
For example, HFpEF2 patient 20 has increased Rpul and
Rsys, exhibiting large deviations from normal function
in the systemic and pulmonary vasculature. Likewise,
NCC patient 28 shows increased λLV and Rpul but has
similar ELV and ESA to HFrEF. In both patients, addressing
the cause for increased resistances in the systemic and

pulmonary vasculaturemay reduce the burden of the heart
in HF.

Limitations

In this study, a general HFrEF group was used as the
only reference patient population. This methodology
determined five HFpEF1 (HFrEF-like HFpEF) patients.
Though this is a small cohort of subjects, this accounts
for 25% of the total HFpEF patients in our study. It is
of interest to see if this percentage holds with a larger
patient cohort in the future. Here, two clustering methods
were selected that used different approaches, but we could
have used other common unsupervised methods (e.g.
mean-shift). The selection of k-means and hierarchical
clustering in this study was made since these are robust
and complementary approaches that can be applied to a
wide variety of data sets. Applying a thorough clustering
analysis with not just HFpEF and HFrEF phenotypes
but other clinical diagnoses such as pulmonary hyper-
tensionmight provide greater clarity into the physiological
differences between groups.
Based on theTTE systolic and diastolic volumes,HFrEF

patients 1 and 6 have severe ventricular dilation. Our
cardiovascular systems model was unable to account
for these large volumes. Hence, making appropriate
changes, such as recruiting different stressed volumes
for each patient, decreasing ventricular elastance, or
implementing a more detailed model, may capture the
pathological complexity of these patients. Regardless of
future directions taken, the physiological parameters
derived from this simple cardiovascular systemmodel can
still be useful determinants for HF classification purposes
beyond EF.

Conclusions

HFrEF and HFpEF have classically been defined based
on ejection fraction. The HFrEF diagnosis itself is
much more understood than HFpEF, which is largely
heterogeneous. In accordance with other recent studies,
we have determined three subgroups of HFpEF with
our methodological deep phenotyping approach that
uses cardiovascular model-informed machine learning: a
HFrEF-like HFpEF group, a classic HFpEF group, and
a group that exhibits characteristics of both. Moreover,
our methodology reveals that potential biomarkers for
identifying HFpEF-like HFrEF patients are elevated left
ventricular systolic and diastolic volumes. However,
these biomarker differences determining HFpEF sub-
groups could not be distinguished based on the clinical
data alone. Ultimately, the combination of mathematical
modelling analysis and machine learning techniques
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provides immense insight into the classifications of HF as
a pathology.
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