
Supporting Information for “A Hierarchical
Integrative Group LASSO (HiGLASSO)
framework for analyzing environmental

mixtures” by Boss et al.

Web Appendix A: HiGLASSO algorithm

A.1. Objective Function

The HiGLASSO objective function is:

arg min
βj ,ηjj′

1

2

∥∥∥y − S∑
j=1

Xjβj −
∑

1≤j<j′≤S

Xjj′ [ηjj′ � (βj ⊗ βj′)]
∥∥∥2
2

(1)

+ λ1

S∑
j=1

wj ||βj ||2 + λ2
∑

1≤j<j′≤S

wjj′ ||ηjj′ ||2,

wj ≡ exp

{
−
||βj ||∞
σ

}
for j = 1, · · · , S, (2)

wjj′ ≡ exp

{
−
||ηjj′ ||∞

σ

}
for 1 ≤ j < j′ ≤ S, (3)

A.2. Updating main effect coefficients

By substituting our weight function (2) into (1), given the current β̂j′ ’s with
j′ 6= j and η̂jj′ ’s, the objective function can be written as

arg min
βj

1

2

∥∥ỹ − X̃jβj
∥∥2
2

+ λ1exp

{
−
||βj ||∞
σ

}
||βj ||2, (4)

such that
ỹ = y −

∑
k 6=j

Xkβ̂k −
∑
k,l 6=j

Xkl[η̂kl � (β̂k ⊗ β̂l)],

X̃j = Xj +
∑
k<j

Xkj · diag(η̂kj)(β̂k ⊗ Ipj ) +
∑
l>j

Xjl · diag(η̂jl)(Ipj ⊗ β̂l),

where Ipj is pj dimensional identity matrix. X̃j and ỹ represent the design
matrix and response vector at current step. (4) can be directly solved using
gradient descent or the Newton-Raphson algorithm (Bauer and Cai, 2009).
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Alternatively, we obtain updating algorithm for βj in closed form using local
quadratic approximation (LQA) (Fan and Li, 2001). Let Pen1(βj) denote the
penalty term in (4). We approximate Pen1(βj) by

Pen1(βj) ≈ Pen1

(
β̂
(m)

j

)
+

1

2

pj∑
k=1

d
(m)
jk

[
β2
jk −

(
β̂
(m)
jk

)2]

where βjk is the kth element of βj , β̂
(m)

j is the estimate of βj from mth iteration,
and djk is defined through

∂Pen1(βj)

∂βjk
= djkβjk.

By calculating the derivative of Pen1(βj), we have

djk =

exp
{
− ||βj ||∞

σ

}(
||βj ||2

)−1
, if |βjk| 6= ||βj ||∞

exp
{
− ||βj ||∞

σ

}[(
||βj ||2

)−1 − ||βj ||2(|βjk|σ)−1], if |βjk| = ||βj ||∞.
(5)

The problem with LQA is that djk, which represents the second-degree deriva-
tive of Pen1(βj), might be negative when |βjk| = ||βj ||∞. Therefore, it is not
guaranteed that the approximated Penj(βj) will be convex.

Pan and Zhao proposed generalized local quadratic approximation (GLQA)
to employ convex quadratic approximation to the penalty function (Pan and
Zhao, 2016). Let P1(βj) denote GLQA of Pen1(βj) that satisfies the following
three properties

1. P1(βj) is convex,

2. P1

(
β̂
(m)

j

)
= Pen1

(
β̂
(m)

j

)
,

3.
∂P1(βj)

∂βjk

∣∣∣
βjk=β̂

(m)
jk

=
∂Pen1(βj)

∂βjk

∣∣∣
βjk=β̂

(m)
jk

∀ k.

A simple choice takes the form of

P1(βj) = Pen1

(
β̂
(m)

j

)
+

1

2

pj∑
k=1

∣∣d(m)
jk

∣∣[(β2
jk + c1)2 + c2

]
.

Solving c1 and c2 according to the second and third conditions gives

P1(βj) = Pen1

(
β̂
(m)

j

)
+

1

2

pj∑
k=1

∣∣d(m)
jk

∣∣[(β2
jk−

(
1−

d
(m)
jk

|d(m)
jk |

)
β̂
(m)
jk

)2

−
(
β̂
(m)
jk

)2]
.
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Rewriting the P1(βj) in matrix form, (4) can be approximated as

1

2
||ỹ − X̃jβj ||22 +

1

2
λ1β

>
j D

(m)
j βj − λ1c(m)>βj + Constant

where
D

(m)
j = diag

[(
d
(m)
j1 , · · · , d(m)

jpj

)]
and

c(m) =
{(∣∣d(m)

j1

∣∣− d(m)
j1

)
β̂
(m)
j1 , · · · ,

(∣∣d(m)
jpj

∣∣− d(m)
jpj

)
β̂
(m)
jpj

}>
.

βj can be updated in closed-form as

β̂j =
(
X̃
>
j X̃j + nλ1D

(m)
j

)−1(
X̃
>
j ỹ + λ1 · c(m)

)
. (6)

A.3. Updating scalar terms associated with interactions

By substituting the specified weight function (3) into (1), given β̂j ’s, the objec-
tive function can be expressed as

arg min
ηjj′

1

2

∥∥∥ỹ −∑
j<j′

X̃jj′ηjj′
∥∥∥2
2

+ λ2
∑
j<j′

exp

{
−
||ηjj′ ||∞

σ

}
||ηjj′ ||2 (7)

where

ỹ = y −
S∑
k=1

Xkβ̂k

and
X̃jj′ = Xjj′diag

[
(β̂j ⊗ β̂j′)

]
for 1 ≤ j < j′ ≤ S.

Let Pen2(ηjj′) denote the individual penalty term in (7) and let P2(βjj′)
denote GLQA of Pen2(ηjj′). We have

P2(ηjj′) = Pen1

(
η̂
(m)
jj′

)
+

1

2

pjpj′∑
k=1

∣∣d(m)
jj′k

∣∣[(η2jj′k−
(

1−
d
(m)
jj′k∣∣d(m)
jj′k

∣∣
)
η̂
(m)
jj′k

)2

−
(
η̂
(m)
jj′k

)2]

where ηjj′k is the kth element of (pjpj′)−vector of ηjj′ and djj′k is similarly
defined through

∂Pen2(ηjj′)

∂ηjj′k
= djj′kηjj′k

as (5). (7) can be approximated as

1

2
||ỹ − X̃η||22 +

1

2
λ2η

>D(m)η − λ2C(m)>η + Constant

where X̃ = [X̃12, · · · , X̃S−1,S ], η =
(
η>12, · · · ,η>S−1,S

)>
,

D(m) = diag
[
d
(m)
121 , · · · , d

(m)
12(p1p2)

, · · · , d(m)
(S−1)S(pS−1pS)

]
,
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and C(m) is a [S(S − 1)/2] × [
∑
j<j′ pjpj′ ] block column vector such that the

block corresponding to the interaction between group j and group j′ is defined

as a vector of length pjpj′ with the kth element equal to
(∣∣d(m)

jj′k

∣∣− d(m)
jj′k

)
η̂
(m)
jj′k.

ηjj′s can then be updated in closed form as

η̂ =
(
X̃
>
X̃ + nλ2D

(m)
)−1(

X̃
>
ỹ + λ2 ·C(m)

)
. (8)

A.4. Algorithm

We describe the full algorithm for estimating βj ’s and ηjj′ ’s in (1). We first fix
ηjj′ to estimate βj , then fix βj to estimate ηjj′ , and iterate the two steps until
convergence. The algorithm can be summarized as follows:

1. Obtain basis-expanded main effect matrices for each covariate, denoted
by Xj for j = 1, . . . , S. Normalize Xj . Calculate interaction design
matrices Xjj′ from the normalized Xj for 1 ≤ j ≤ j′ ≤ S. Normalize
Xjj′ . Orthogonalize Xj and Xjj′ using QR decomposition and center
the response vector y. Scale Xj and Xjj′ to have unit variance.

2. Initialize β̂
(0)

j for j = 1, · · · , S and η̂
(0)
jj′ for 1 ≤ j < j′ ≤ S. Set m = 1.

A feasible choice for the initialization β̂
(0)

j and η̂
(0)
jj′ can be obtained using

the adaptive elastic-net estimator. We use this as the initialization in our
implementation.

3. For each j in 1, · · · , S, update β̂
(m)

j via closed-form formula in (6), given

η̂
(m−1)
kj and β̂

(m)

k for k < j, and η̂
(m−1)
jl and β̂

(m−1)
l for l > j. A back-

tracking line search algorithm is followed to guarantee that β̂
(m)

j leads to

a lower value of the objective function (4) than β̂
(m)

j .

4. Given β̂
(m)

j for j = 1, · · · , S, update the η̂
(m)
jj′ ’s via the closed-form formula

in (8). A backtracking line search algorithm is followed to guarantee that

the η̂
(m)
jj′ ’s lead to a lower value of the objective function in (7) compared

to the η̂
(m−1)
jj′ ’s.

5. Stop if change in the penalized likelihood is less than a pre-specified margin
δ, namely

|P (m−1)
n − P (m)

n | < δ.

where P
(m)
n is the value of (1) evaluated at the β̂

(m)

j ’s and η̂
(m)
jj′ ’s.

Remark 2: We note that there is no guarantee that each of the S + 1 up-
dates decreases the value of penalized least squares criterion since we utilize
approximations to the original penalty. We therefore employ a backtracking
line search algorithm (Dennis and Schnabel, 1996) to ensure that the penalized
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least squares criterion monotonically decreases throughout the entire procedure.
The maximum amount to move along a given search direction is determined by
the Armijo-Goldstein condition (Armijo, 1966).

Remark 3: Steps (3) and (4) in the HiGLASSO algorithm could be easily
modified to accommodate objective functions without the least squares crite-
rion. However, closed-form updates may not be avilable, thus requiring one-step
gradient descent.
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Web Appendix B: Sparsistency proof

B.1. Notation

Let X = [X1, · · · ,XS ,X12, · · · ,XS,S−1] be the design matrix containing main
effect and interaction terms. Without loss of generality, we rearrange the group
indices so that the first s0 ≤ S groups of predictors have nonzero main effects.
Suppose there are i0 nonzero two-way interaction terms out of at most s0(s0 −
1)/2 possible pairs under strong heredity constraints.

The HiGLASSO estimator is defined as:

arg min
βj ,ηjj′

1

2

∥∥∥y − S∑
j=1

Xjβj −
∑

1≤j<j′≤S

Xjj′ [ηjj′ � (βj ⊗ βj′)]
∥∥∥2
2

+ λ1(n)

S∑
j=1

wj(βj)||βj ||2 + λ2(n)
∑

1≤j<j′≤S

wjj′(ηjj′)||ηjj′ ||2. (9)

B.2. Directional Derivatives of HiGLASSO Objective Function

Consider the following function

f(β1, ...,βS ,η12, ...,ηS−1,S) =
1

2

∥∥∥y − S∑
j=1

Xjβj −
∑

1≤j<j′≤S

Xjj′ [ηjj′ � (βj ⊗ βj′)]
∥∥∥2
2

First we will calculate the directional derivative in the u direction with
respect to βk. By definition the directional derivative is given by:

lim
t→0+

f(β1, ...,βk−1,βk + tu,βk+1, ...,βS ,η12, ...,ηS−1,S)− f(β1, ...,βS ,η12, ...,ηS−1,S)

t

f(β1, ...,βk−1,βk + tu,βk+1, ...,βS ,η12, ...,ηS−1,S)

=
1

2

∥∥∥y −Xk(βk + tu)−
∑
j 6=k

Xjβj −
∑

1≤k<j′≤S

Xkj′ [ηkj′ � (βk + tu⊗ βj′)]

−
∑

1≤j<k≤S

Xjk[ηjk� (βj ⊗βk + tu)]−
∑

1≤j<j′≤S:j,j′ 6=k

Xjj′ [ηjj′ � (βj ⊗βj′)]
∥∥∥2
2

Note that

ηjk � (βj ⊗ βk + tu) = ηjk � (βj ⊗ βk) + t(ηjk � (βj ⊗ u))

and

ηkj′ � (βk + tu⊗ βj′) = ηkj′ � (βk ⊗ βj′) + t(ηkj′ � (u⊗ βj′))
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Thus, the expression becomes

1

2

∥∥∥y − tXku−
S∑
j=1

Xjβj − t
∑

1≤k<j′≤S

Xkj′ [ηkj′ � (u⊗ βj′)]

−t
∑

1≤j<k≤S

Xjk[ηjk � (βj ⊗ u)]−
∑

1≤j<j′≤S

Xjj′ [ηjj′ � (βj ⊗ βj′)]
∥∥∥2
2

Observe that as we take the limit to 0 we get that the terms with a t2 term go to
0 and the terms without a t cancel with f(β1, ...,βS ,η12, ...,ηS−1,S). Therefore,
we only need to keep track of the terms that are linear in t. To simplify notation,
let

y −Xθ = y −
S∑
j=1

Xjβj −
∑

1≤j<j′≤S

Xjj′ [ηjj′ � (βj ⊗ βj′)]

Then, the expression becomes

1

2

∥∥∥y−Xθ−tXku−t
∑

1≤k<j′≤S

Xkj′ [ηkj′�(u⊗βj′)]−t
∑

1≤j<k≤S

Xjk[ηjk�(βj⊗u)]
∥∥∥2
2

Therefore, the directional derivative is:

−

(
Xku+

∑
1≤k<j′≤S

Xkj′ [ηkj′�(u⊗βj′)]+
∑

1≤j<k≤S

Xjk[ηjk�(βj⊗u)]

)>(
y−Xθ

)
Lastly, from the proof of Theorem 1 in (Pan and Zhao, 2016), we have that the
directional derivative of λ1(n)wk(βk)

∥∥βk∥∥2 in the u direction evaluated at zero
is λ1(n).

Next we will calculate the directional derivative in the u direction with
respect to ηkk′ . By definition the directional derivative is given by:

lim
t→0+

f(β1, ...,βS ,η12, ...,ηkk′ + tu, ...,ηS−1,S)− f(β1, ...,βS ,η12, ...,ηS−1,S)

t
,

f(β1, ...,βS ,η12, ...,ηkk′+tu, ...,ηS−1,S) =
1

2

∥∥∥y− S∑
j=1

Xjβj−Xkk′ [(ηkk′+tu)�(βk⊗βk′)]

−
∑

1≤j<j′≤S:(j,j′)6=(k,k′)

Xjj′ [ηjj′ � (βj ⊗ βj′)]
∥∥∥2
2

Again, note that

(ηkk′ + tu)� (βk ⊗ βk′) = ηkk′ � (βk ⊗ βk′) + t(u� (βk ⊗ βk′))
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Thus the expression becomes

1

2

∥∥∥y − S∑
j=1

Xjβj −
∑

1≤j<j′≤S

Xjj′ [ηjj′ � (βj ⊗ βj′)]− tXkk′ [u� (βk ⊗ βk′)]
∥∥∥2
2

=
1

2

∥∥∥y −Xθ − tXkk′ [u� (βk ⊗ βk′)]
∥∥∥2
2

Following the same argument as above the directional derivative of βk, as we
take the limit to 0 we get that the terms with a t2 term go to 0 and the terms
without a t cancel with f(β1, ...,βS ,η12, ...,ηS−1,S). Therefore, we only need
to keep track of the terms that are linear in t. That is, the directional derivative
is,

−
(
Xkk′ [u� (βk ⊗ βk′)]

)>(
y −Xθ

)
Again, from the proof of Theorem 1 in (Pan and Zhao, 2016), we have that the
directional derivative of λ2(n)wkk′(ηkk′)

∥∥ηkk′∥∥2 in the u direction evaluated at
zero is λ2(n).

B.3. Derivative of HiGLASSO Objective Function

First we calculate the derivative with respect to βk:

∂

∂βk
f(β1, ...,βS ,η12, ...,ηS−1,S) =

∂

∂βk

[
1

2

∥∥∥y− S∑
j=1

Xjβj−
∑

1≤j<j′≤S

Xjj′ [ηjj′�(βj⊗βj′)]
∥∥∥2
2

]

=

(
∂

∂βk

[
y −

S∑
j=1

Xjβj −
∑

1≤j<j′≤S

Xjj′ [ηjj′ � (βj ⊗ βj′)]

])>(
y −Xθ

)

=

(
∂

∂βk

[
−Xkβk−

∑
1≤k<j′≤S

Xkj′ [ηkj′�(βk⊗βj′)]−
∑

1≤j<k≤S

Xjk[ηjk�(βj⊗βk)]

])>(
y−Xθ

)

= −

[
Xk+

∑
1≤k<j′≤S

Xkj′
∂

∂βk
[ηkj′�(βk⊗βj′)]+

∑
1≤j<k≤S

Xjk
∂

∂βk
[ηjk�(βj⊗βk)]

]>(
y−Xθ

)

= −

[
Xk +

∑
1≤k<j′≤S

Xkj′

[
diag

(
ηkj′

) ∂

∂βk
(βk ⊗ βj′)

]
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+
∑

1≤j<k≤S

Xjk

[
diag

(
ηjk
) ∂

∂βk
(βj ⊗ βk)

]]>(
y −Xθ

)

= −
[
Xk+

∑
1≤k<j′≤S

Xkj′

[
diag

(
ηkj′

)
(I⊗βj′)

]
+

∑
1≤j<k≤S

Xjk

[
diag

(
ηjk
)
(βj⊗I)

]]>(
y−Xθ

)
The derivative of the penalty function is:

∂

∂βk
wk(βk)||βk||2 =

∂

∂βk
exp

(
− ||βk||∞

σ(n)

)
||βk||2

= ||βk||2
∂

∂βk
exp

(
− ||βk||∞

σ(n)

)
+ exp

(
− ||βk||∞

σ(n)

)
∂

∂βk
||βk||2

= ||βk||2

(
− 1

σ(n)
exp

(
− ||βk||∞

σ(n)

) pk∑
l=1

sign(βkl)~elI
(
βkl = ||βk||∞

))

+ exp

(
− ||βk||∞

σ(n)

)(
||βk||2

)−1
βk,

where ~el is the standard basis vector of dimension pk such that the l-th compo-
nent is equal to 1.

Next we calculate the derivative with respect to ηkk′ :

∂

∂ηkk′
f(β1, ...,βS ,η12, ...,ηS−1,S)

=
∂

∂ηkk′

[
1

2

∥∥∥y − S∑
j=1

Xjβj −
∑

1≤j<j′≤S

Xjj′ [ηjj′ � (βj ⊗ βj′)]
∥∥∥2
2

]

=

(
∂

∂ηkk′

[
y −

S∑
j=1

Xjβj −
∑

1≤j<j′≤S

Xjj′ [ηjj′ � (βj ⊗ βj′)]

])>(
y −Xθ

)

= −

(
∂

∂ηkk′

[
Xkk′ [ηkk′ � (βk ⊗ βk′)]

])>(
y −Xθ

)

= −

[
Xkk′

[
∂

∂ηkk′
ηkk′ � diag(βk ⊗ βk′)

]]>(
y −Xθ

)

= −

(
Xkk′

[
I � diag(βk ⊗ βk′)

])>(
y −Xθ

)
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= −
(
Xkk′

[
diag(βk ⊗ βk′)

])>(
y −Xθ

)
The derivative of the penalty function is:

∂

∂ηkk′
wkk′(ηkk′)||ηkk′ ||2 =

∂

∂ηkk′
exp

(
− ||ηkk′ ||∞

σ(n)

)
||ηkk′ ||2

= ||ηkk′ ||2
∂

∂ηkk′
exp

(
− ||ηkk′ ||∞

σ(n)

)
+ exp

(
− ||ηkk′ ||∞

σ(n)

)
∂

∂ηkk′
||ηkk′ ||2

= ||ηkk′ ||2

(
− 1

σ(n)
exp

(
− ||ηkk′ ||∞

σ(n)

) pkpk′∑
l=1

sign(ηkk′l)~elI
(
ηkk′l = ||ηkk′ ||∞

))

+ exp

(
− ||ηkk′ ||∞

σ(n)

)(
||ηkk′ ||2

)−1
ηkk′ ,

where ~el is the standard basis vector of dimension pkpk′ such that the l-th
component is equal to 1.

B.4. Sparsistency Proof

The proof closely follows the proof of Theorem 1 in (Pan and Zhao, 2016).
Define the HiGLASSO estimator of a re-parameterized version of (9) such that
only the covariates corresponding to the non-zero coefficient set are included:

arg min
θP

{
||y −XPθP ||22 + λ1(n)

∑
j∈P1

wj(θj)||θj ||2

+ λ2(n)
∑

(j,j′)∈P2

wjj′(ηjj′)||ηjj′ ||2
}
. (10)

Let θ̃P be the solution to (10). From the assumptions of the Theorem we have
that

1

n
X>y =

1

n
X>XPθP +

1

n
X>ε

=

[
E

(
1

n
X>XP

)
+Op

(
n−1/2

)]
θP +Op

(
n−1/2

)
= E

(
1

n
X>XP

)
θP +Op

(
n−1/2

)
,

which implies that

1

n
X>y − 1

n
X>XP θ̃P = E

(
1

n
X>XP

)
(θP − θ̃P) +Op

(
n−1/2

)
. (11)
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(11) can be decomposed as

1

n
X>Py −

1

n
X>PXP θ̃P = E

(
1

n
X>PXP

)
(θP − θ̃P) +Op

(
n−1/2

)
(12)

1

n
X>Pcy −

1

n
X>PcXP θ̃P = E

(
1

n
X>PcXP

)
(θP − θ̃P) +Op

(
n−1/2

)
(13)

From (12) we get

θP − θ̃P = E−1
(

1

n
X>PXP

)
1

n
X>P

(
y −XP θ̃P

)
+Op

(
n−1/2

)
and substituting into (13) we obtain

1

n
X>Pc

(
y −XP θ̃P

)
= E

(
1

n
X>PcXP

)
E−1

(
1

n
X>PXP

)
1

n
X>P

(
y −XP θ̃P

)
+Op

(
n−1/2

)
.

Multiplying both sides by n/an, we get

n

an

(
1

n
X>Pc

(
y −XP θ̃P

))

= E

(
1

n
X>PcXP

)
E−1

(
1

n
X>PXP

)
1

an
X>P

(
y −XP θ̃P

)
+Op

(√
n

an

)
.

Therefore, when bn → 0, an/
√
n→∞, and an/n→ 0 we have

n

an

∥∥∥∥ 1

n
X>Pc

(
y −XP θ̃P

)∥∥∥∥
2

→p 0,

which also implies that

n

λ1(n)

∥∥∥∥ 1

n
X>[k]

(
y −XP θ̃P

)∥∥∥∥
2

→p 0, ∀k ∈ Pc
1

n

λ2(n)

∥∥∥∥ 1

n
X>kk′

(
y −XP θ̃P

)∥∥∥∥
2

→p 0, ∀(k, k′) ∈ Pc
2

where

X [k] =
(
Xk, Xk,k+1, · · · Xk,S , X1,k, · · · Xk−1,k

)
is the submatrix of the design matrix corresponding to the kth covariate. These
two convergence in probability statements imply that

P

(
∀k ∈ Pc

1,
nB1

λ1(n)

∥∥∥∥ 1

n
X>[k]

(
y −XP θ̃P

)∥∥∥∥
2

≤ 1

)
→ 1 (14)

11



P

(
∀(k, k′) ∈ Pc

2,
nB2

λ2(n)

∥∥∥∥ 1

n
X>kk′

(
y −XP θ̃P

)∥∥∥∥
2

≤ 1

)
→ 1 (15)

for any finite constants B1 and B2.

Define θ̃ as the concatenation of θ̃P1
, a vector of zeros with length equal to

the number of columns in X corresponding to Pc
1, θ̃P2

, and a vector of zeros
with length equal to the number of columns in X corresponding to Pc

2. The
assumption that the L2 norm of the HiGLASSO estimator is uniformly bounded
for all n coupled with (14) and (15) imply that with probability approaching
one

1

n
C̃
>
[k]X

>
[k]

(
y −Xθ̃

)
=
λ1(n)

n
Dk(β̃k), ∀k ∈ P1 (16)

1

n
diag(β̃k ⊗ β̃k′)X

>
kk′
(
y −Xθ̃

)
=
λ2(n)

n
Dkk′(η̃kk′), ∀(k, k′) ∈ P2 (17)

∥∥∥∥ 1

n
C̃
>
[k]X

>
[k]

(
y −Xθ̃

)∥∥∥∥
2

≤ λ1(n)

n
, ∀k ∈ Pc

1 (18)

∥∥∥∥ 1

n
diag(β̃k ⊗ β̃k′)X

>
kk′
(
y −Xθ̃

)∥∥∥∥
2

≤ λ2(n)

n
, ∀(k, k′) ∈ Pc

2 (19)

where

C̃ [k] =



Ipk×pk
diag(η̃k,k+1)(Ipk×pk ⊗ β̃k+1)

...

diag(η̃k,S)(Ipk×pk ⊗ β̃S)

diag(η̃1,k)(β̃1 ⊗ Ipk×pk)
...

diag(η̃k−1,k)(β̃k−1 ⊗ Ipk×pk)


Dk(β̃k) =

∂

∂βk
wk(βk)||βk||2

∣∣∣∣
βk=β̃k

Dkk′(η̃kk′) =
∂

∂ηkk′
wkk′(ηkk′)||ηkk′ ||2

∣∣∣∣
ηkk′=η̃kk′

The directional derivative with respect to βk in the u direction of (9) is

−

(
Xku+

∑
1≤k<j′≤S

Xkj′ [ηkj′ � (u⊗βj′)] +
∑

1≤j<k≤S

Xjk[ηjk � (βj ⊗u)]

)>
×

12



(
y −Xθ̃

)
+ λ1(n)

= −



u
ηk,k+1 � (u⊗ βk+1)

...
ηk,S � (u⊗ βS)
η1,k � (β1 ⊗ u)

...
ηk−1,k � (βk−1 ⊗ u)



>

X>[k]
(
y −Xθ̃

)
+ λ1(n).

For β̃j and η̃jj′ to be the minimizer’s of (9), we need

−



u

η̃k,k+1 � (u⊗ β̃k+1)
...

η̃k,S � (u⊗ β̃S)

η̃1,k � (β̃1 ⊗ u)
...

η̃k−1,k � (β̃k−1 ⊗ u)



>

X>[k]
(
y −Xθ̃

)
+ λ1(n) ≥ 0,

for all pk dimensional unit vectors u. To verify this we must substitute the
negative normalized gradient in for u, and see when the inequality holds. The
negative normalized gradient is given by

u∗ =

(
X [k]C [k]

)>(
y −Xθ̃

)∥∥∥(X [k]C [k]

)>(
y −Xθ̃

)∥∥∥
2

.

Then we have that
u∗>X>k

(
y −Xθ̃

)
=

(
y −Xθ̃

)>
X [k]C [k]I

>
pk×pkX

>
k

(
y −Xθ̃

)∥∥∥(X [k]C [k]

)>(
y −Xθ̃

)∥∥∥
2[

η̃>kj′ �
(
u∗> ⊗ β̃

>
j′
)]
X>kj′

(
y −Xθ̃

)
=

[
η̃>kj′ �

(((
y −Xθ̃

)>
X [k]C [k]

)
⊗ β̃

>
j′

)]
X>kj′

(
y −Xθ̃

)∥∥∥(X [k]C [k]

)>(
y −Xθ̃

)∥∥∥
2

=

(
y −Xθ̃

)>
X [k]C [k]

(
Ipk×pk ⊗ β̃

>
j′

)
diag

(
η̃kj′

)
X>kj′

(
y −Xθ̃

)∥∥∥(X [k]C [k]

)>(
y −Xθ̃

)∥∥∥
2

13



[
η̃>jk �

(
β̃
>
j ⊗ u∗>

)]
X>jk

(
y −Xθ̃

)

=

[
η̃>jk �

(
β̃
>
j ⊗

((
y −Xθ̃

)>
X [k]C [k]

))]
X>jk

(
y −Xθ̃

)∥∥∥(X [k]C [k]

)>(
y −Xθ̃

)∥∥∥
2

=

(
y −Xθ̃

)>
X [k]C [k]

(
β̃
>
j ⊗ Ipk×pk

)
diag(η̃jk)X>jk

(
y −Xθ̃

)∥∥∥(X [k]C [k]

)>(
y −Xθ̃

)∥∥∥
2

Substituting this result in, we get:

−



u∗

η̃k,k+1 � (u∗ ⊗ β̃k+1)
...

η̃k,S � (u∗ ⊗ β̃S)

η̃1,k � (β̃1 ⊗ u∗)
...

η̃k−1,k � (β̃k−1 ⊗ u∗)



>

X>[k]
(
y −Xθ̃

)

= −
(
y −Xθ̃

)>
X [k]C [k]I

>
pk×pkX

>
k

(
y −Xθ̃

)∥∥∥(X [k]C [k]

)>(
y −Xθ̃

)∥∥∥
2

−
∑
j′>k

[(
y −Xθ̃

)>
X [k]C [k]

(
Ipk×pk ⊗ β̃

>
j′

)
diag

(
η̃kj′

)
X>kj′

(
y −Xθ̃

)∥∥∥(X [k]C [k]

)>(
y −Xθ̃

)∥∥∥
2

]

−
∑
j<k

[(
y −Xθ̃

)>
X [k]C [k]

(
β̃
>
j ⊗ Ipk×pk

)
diag(η̃jk)X>jk

(
y −Xθ̃

)∥∥∥(X [k]C [k]

)>(
y −Xθ̃

)∥∥∥
2

]

= −
(
y −Xθ̃

)>
X [k]C [k]C

>
[k]X

>
[k]

(
y −Xθ̃

)∥∥∥(X [k]C [k]

)>(
y −Xθ̃

)∥∥∥
2

= −

∥∥∥(X [k]C [k]

)>(
y −Xθ̃

)∥∥∥2
2∥∥∥(X [k]C [k]

)>(
y −Xθ̃

)∥∥∥
2

= −
∥∥∥(X [k]C [k]

)>(
y −Xθ̃

)∥∥∥
2
.
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Therefore, for β̃j and η̃jj′ to be the minimizer’s of (9), we need

−
∥∥∥(X [k]C [k]

)>(
y −Xθ̃

)∥∥∥
2

+ λ1(n) ≥ 0,

which implies that ∥∥∥∥ 1

n
C>[k]X

>
[k]

(
y −Xθ̃

)∥∥∥∥
2

≤ λ1(n)

n
. (20)

The directional derivative with respect to ηkk′ in the u direction of (9) is

−
(
Xkk′ [u� (βk ⊗ βk′)]

)>(
y −Xθ

)
+ λ2(n)

For β̃j and η̃jj′ to be the minimizer’s of (9), we need

−
(
Xkk′ [u� (β̃k ⊗ β̃k′)]

)>(
y −Xθ̃

)
+ λ2(n) ≥ 0,

for all pkpk′ dimensional unit vectors u. To verify this we must substitute the
negative normalized gradient in for u, and see when the inequality holds. The
negative normalized gradient is given by

u∗ =

(
Xkk′

[
diag(β̃k ⊗ β̃k′)

])>(
y −Xθ̃

)
∥∥∥(Xkk′

[
diag(β̃k ⊗ β̃k′)

])>(
y −Xθ̃

)∥∥∥
2

.

Substituting this into our expression for the we get

−
(
Xkk′ [u

∗ � (β̃k ⊗ β̃k′)]
)>(

y −Xθ̃
)

= −

[(
diag(β̃k ⊗ β̃k′)X

>
kk′
(
y −Xθ̃

))
� (βk ⊗ βk′)

]>
X>kk′

(
y −Xθ̃

)
∥∥∥(Xkk′

[
diag(β̃k ⊗ β̃k′)

])>(
y −Xθ̃

)∥∥∥
2

= −

(
diag(β̃k ⊗ β̃k′)diag(β̃k ⊗ β̃k′)X

>
kk′
(
y −Xθ̃

))>
X>kk′

(
y −Xθ̃

)
∥∥∥(Xkk′

[
diag(β̃k ⊗ β̃k′)

])>(
y −Xθ̃

)∥∥∥
2

= −
(
y −Xθ̃

)>
Xkk′diag(β̃k ⊗ β̃k′)diag(β̃k ⊗ β̃k′)X

>
kk′
(
y −Xθ̃

)
∥∥∥(Xkk′

[
diag(β̃k ⊗ β̃k′)

])>(
y −Xθ̃

)∥∥∥
2
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= −

∥∥∥(Xkk′

[
diag(β̃k ⊗ β̃k′)

])>(
y −Xθ̃

)∥∥∥2
2∥∥∥(Xkk′

[
diag(β̃k ⊗ β̃k′)

])>(
y −Xθ̃

)∥∥∥
2

= −
∥∥∥(Xkk′

[
diag(β̃k ⊗ β̃k′)

])>(
y −Xθ̃

)∥∥∥
2
.

Therefore, for β̃j and η̃jj′ to be the minimizer’s of (9), we need

−
∥∥∥(Xkk′

[
diag(β̃k ⊗ β̃k′)

])>(
y −Xθ̃

)∥∥∥
2

+ λ2(n) ≥ 0,

which implies that∥∥∥∥ 1

n
diag(β̃k ⊗ β̃k′)X

>
kk′
(
y −Xθ̃

)∥∥∥∥
2

≤ λ2(n)

n
. (21)

Since (20) is equivalent to (18) and (21) is equivalent to (19), this concludes
the proof.
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Method: Group LASSO hierNet HiGLASSO LASSO

Web Figure 1: Simulation Results for the n = 10000 and p = 10 cases: (a)
Linear main and interaction effects (b) Piecewise linear main and interaction
effects (c) Nonlinear main and interaction effects. FNI, FNM, FPI, and FPM
are defined in Section 4.2.
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Web Figure 2: Heatmap for Wald test p-values corresponding to all pair-
wise linear interactions. Each p-value is obtained from a multiple regression
model with 21 exposure main effect terms and a single pairwise linear interac-
tion term. Diagonal elements indicate the addition of a squared term instead of
an interaction.
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Web Figure 3: Scatterplots between four exposures and 8-isoprostane super-
imposed with a Locally Weighted Scatterplot Smoothing (LOWESS) curve. The
four exposures are mono(3-carboxypropyl) phthalate (MCPP), methyl paraben
(MePB), Bisphenol S (BPS), and 2,5-Dichlorophenol (2,5-DCP).
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Web Figure 4: Simulated comparison between HiGLASSO with cubic B-
splines and HiGLASSO with penalized smoothing splines for the n = 1000 and
p = 10 cases: (a) L10 (b) PL10 (c) NL10. FNI, FNM, FPI, and FPM are defined
in Section 4.2 of the main text.
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