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Abstract
Environmental health studies are increasingly measuring multiple pollutants
to characterize the joint health effects attributable to exposure mixtures. How-
ever, the underlying dose-response relationship between toxicants and health
outcomes of interest may be highly nonlinear, with possible nonlinear interac-
tion effects. Existing penalized regression methods that account for exposure
interactions either cannot accommodate nonlinear interactions while maintain-
ing strong heredity or are computationally unstable in applications with limited
sample size. In this article, we propose a general shrinkage and selection frame-
work to identify noteworthy nonlinear main and interaction effects among a
set of exposures. We design the hierarchical integrative group least absolute
shrinkage and selection operator (HiGLASSO) to (a) impose strong heredity con-
straints on two-way interaction effects (hierarchical), (b) incorporate adaptive
weights without necessitating initial coefficient estimates (integrative), and (c)
induce sparsity for variable selection while respecting group structure (group
LASSO). We prove sparsistency of the proposed method and apply HiGLASSO
to an environmental toxicants dataset from the LIFECODES birth cohort, where
the investigators are interested in understanding the joint effects of 21 urinary
toxicant biomarkers on urinary 8-isoprostane, a measure of oxidative stress. An
implementation of HiGLASSO is available in the higlasso R package, accessible
through the comprehensive R archive network.

K E Y W O R D S

environmental exposures, group LASSO, interaction, nonlinearity, strong heredity

Environmetrics. 2021;32:e2698. wileyonlinelibrary.com/journal/env © 2021 John Wiley & Sons, Ltd. 1 of 16
https://doi.org/10.1002/env.2698



2 of 16 BOSS et al.

1 INTRODUCTION

1.1 Background and motivation

Studying the effects of chemical exposures and their interactions in relation to adverse health outcomes is an important
topic in epidemiological and environmental research. Furthermore, exposure to endocrine disruptors, such as phthalates
and phenols, is of particular interest due to the ubiquity of exposure in the US general population (Crinnion, 2010). Phtha-
lates are a group of chemicals that are widely used as plasticizers or solvents in products such as food packaging, cosmetics,
and other industrial materials, which typically enter the human body through daily ingestion and inhalation (Schet-
tler, 2006). Phthalates are known for antiandrogenic effects and reproductive toxicity and recent studies have reported that
the modes of their action include mechanisms such as oxidative stress (Ferguson et al., 2011, 2012). Phenols are a class of
chemical compounds used in the manufacture of polycarbonate plastics and epoxy resins. Applications of some phenols
include use in pesticides and personal care products such as makeups and toothpastes (Darbre & Harvey, 2008). Phenols
may possess estrogenic activity and are linked to higher levels of maternal oxidative stress, inflammation in pregnancy,
and reduced fetal growth (Ferguson et al., 2018; Watkins et al., 2015).

Classical environmental epidemiology has focused on analyzing one toxicant at a time even though, in truth, peo-
ple are simultaneously exposed to a mixture of compounds which may work in concert. Namely, potential synergistic
and antagonistic effects of chemical mixtures have been minimally addressed in human studies. The primary reasons
behind single toxicant analysis are the lack of studies with measures on multiple pollutants and a lack of a principled
analytic strategy for understanding effects of multiple pollutants and their interactions with limited sample size. Modern
assaying technology has made it possible to measure multiple pollutants on the same subjects and advances in statistical
learning have enabled us to develop methods that capture nonlinearity and interactions in complex exposure-response
surfaces. Commonly used approaches that characterize the joint effects of mixtures on health outcomes in a flexible way
include classification and regression tree (Loh, 2011) and Bayesian kernel machine regression (Bobb et al., 2015). How-
ever, the number of candidate effects, including main effects and interaction effects, may be much larger than the number
of observations (i.e., p >> n). To address this issue, one common approach is to introduce sparsity during estimation to
shrink coefficient estimates towards a subset of variables that have stronger effects (Ashrap et al., 2020; Li & Ding, 2019;
Liu et al., 2018; Roberts & Martin, 2005), although targeted selection of interaction effects have received less attention
in environmental applications. This article proposes a variable selection framework to handle potential nonlinearity
and interactions between a set of multiple exposures. To be clear, when we qualitatively describe a penalized regression
method as nonlinear, we are referring to the fact that the method is designed to estimate nonlinear exposure-response
surfaces, not that the method is nonlinear in the regression coefficients. We then apply this framework to data from the
LIFECODES study, an ongoing prospective pregnancy/birth cohort at Brigham and Women’s Hospital, to identify impor-
tant exposures and two-way exposure interactions that are associated with 8-isoprostane, an oxidative stress biomarker
(Ferguson, McElrath, Chen, Loch-Caruso, et al., 2015).

1.2 Overview of interaction selection methods

There are two major classes of methods for variable selection: penalty-based methods and forward/stepwise selection
methods. The former adds a penalty term to an objective function which, upon optimization, induces sparsity. Some
examples include the L1 penalty in LASSO (Tibshirani, 1996), the L0 penalty in nonnegative garrote (Breiman, 1995),
the L𝛾 penalty with 𝛾 ≥ 1 in bridge regression (Fu, 1998), the mixture of L1 and L2 penalties in elastic-net (Zou &
Hastie, 2005), and the smoothly clipped absolute deviation penalty (Fan & Li, 2001). These methods can be used to incor-
porate interactions by treating interaction terms as additional predictors. However, including interaction terms in the
absence of at least one corresponding main effect deviates from a naturally interpretable hierarchical interaction struc-
ture. Nelder (1977) and McCullagh and Nelder (1989) introduced the concepts of weak/strong heredity and marginality,
respectively, as conceptual constraints to simplify model interpretation (McCullagh, 1984) and improve statistical power
(Cox, 1984). Recent penalty-based methods that respect these heredity principles include the strong heredity interac-
tion model (SHIM) (Choi et al., 2010), the LASSO for hierarchical interactions (hierNet) (Bien et al., 2013), and the
group-LASSO interaction network (GLinternet) (Lim & Hastie, 2015). In addition to penalization-based methods, for-
ward selection methods (Boos et al., 2009; Luo & Ghosal, 2015; Wasserman & Roeder, 2009) are also commonly used
for variable selection in practice. Several forward selection methods which incorporate heredity constraints with linear
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and nonlinear interactions have been proposed (Crews et al., 2011; Hao & Zhang, 2014; Narisetty et al., 2018; Wu
et al., 2010).

1.3 Penalized regression with nonlinear exposure-response surfaces

Nonlinear exposure-response relationships have also been explored in environmental studies. Failure to account for non-
linearity could result in important variables being left out. Moreover, not properly adjusting for nonlinear main effects
might result in spurious detection of interaction effects (Cornelis et al., 2012; He et al., 2017; Mukherjee et al., 2012;
Zhang et al., 2020). For example, the quadratic main effect terms of two predictors and interaction terms between the
two predictors are not easily differentiable in practice, especially when the signal-to-noise level is low (He et al., 2017).
Group LASSO (Yuan & Lin, 2006) can be adopted to model nonlinear effects where each group of variables represents
the nonlinear expansion of a single predictor with respect to a chosen basis (Huang et al., 2010). Another work that con-
siders modeling nonlinear main effects using penalization is the component selection and smoothing operator (Lin &
Zhang, 2006). To our knowledge, variable selection using adaptive nonlinear interaction structures in high dimensions
(VANISH) (Radchenko & James, 2010) is the only existing method that accounts for both nonlinear main and interaction
effects with strong heredity enforced.

1.4 Weighted penalization and selection consistency

Using the same tuning parameter 𝜆 (degree of penalization) for each predictor/group without assessing their relative
importance may simultaneously reduce estimation efficiency and affect selection consistency (Leng et al., 2006). Adaptive
shrinkage has been extensively discussed in previous literature (Wang et al., 2007; Zhang & Lu, 2007). For example,
adaptive LASSO (Zou, 2006), adaptive elastic-net (Zou & Zhang, 2009), and adaptive Group LASSO (Wang & Leng, 2008)
assign a separate penalty to each predictor/group, usually determined by the reciprocal of the absolute values of the
corresponding coefficients. This ensures that smaller coefficients are shrunk to zero faster whereas larger coefficients are
less penalized. Ordinary least squares (OLS) can be used to estimate the coefficients, however, when p > n, OLS cannot
be implemented. In addition, in high-dimensional scenarios, it might be difficult to supply a

√
n-consistent estimate of

main and interaction effects to use as adaptive weights, implying that oracle properties are not maintained. In this article,
we bypass the need to specify a set of initial coefficient estimates by using integrative weighted group LASSO (Pan &
Zhao, 2016) which jointly estimates weights and coefficients.

1.5 Structure of the article

We propose hierarchical integrative group LASSO (HiGLASSO), to deal with both nonlinear main and interaction effects
under strong heredity while incorporating integrative weights for improving selection properties. The rest of the article is
organized as follows. We briefly review the existing penalty-based interaction selection methods with heredity constraints
in Section 2. In Section 3, we describe HiGLASSO, the optimization procedure, and prove sparsistency for the resulting
HiGLASSO estimator. We examine the performance of HiGLASSO by comparing it to other procedures that address
nonlinearity, interaction terms, and/or group structure in Section 4. In Section 5, we analyze data from the LIFECODES
study to identify important phthalates, phenols, and their possible interactions that associate with the oxidative stress
biomarker 8-isoprostane. We conclude with a discussion in Section 6.

2 REVIEW OF EXISTING PENALTY-BASED INTERACTION SELECTION
METHODS WITH HEREDITY CONSTRAINTS

First we overview existing penalized regression methods that select interaction terms subject to heredity constraints.
Consider the standard regression setting with p predictors and n observations where xj denotes the n × 1 predictor vector
corresponding to the jth regression coefficient 𝛽j, for j = 1, … , p. Let 𝛾kl be the coefficient of interaction effect between
xk and xl. Strong and weak heredity principles for interaction effects are defined as follows.
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• Strong heredity principle: If an interaction term is included in the model bothof its corresponding main effects must be
present in the model. That is, if 𝛾kl ≠ 0, then 𝛽k ≠ 0 and 𝛽l ≠ 0.

• Weak heredity principle: If an interaction term is included in the model,at least one of the corresponding main effects
must be present in the model. That is, if 𝛾kl ≠ 0, then 𝛽k ≠ 0 or 𝛽l ≠ 0.

2.1 Methods for linear interactions

A generic second-order model accounting for pairwise interaction effects with linear predictors is given as

y = X𝜷 + X(I)𝜸 + 𝜺, (1)

where X = [x1, … , xp] denotes the n × p design matrix for main effects, X(I) = [x1 ⊙ x2, … , xp−1 ⊙ xp] denotes the
n × [p(p − 1)∕2] design matrix for interactions where “⊙” indicates the elementwise product, 𝜷 = (𝛽1, … , 𝛽p)⊤, 𝜸 =
(𝛾12, … , 𝛾p−1,p)⊤, and 𝜺 is a multivariate Gaussian error vector. Without loss of generality, we assume all variables are stan-
dardized and exclude the intercept from our regression model. We first review existing methods for selecting interaction
effects which satisfy the strong heredity principle.

SHIM: SHIM reparametrizes the interaction coefficients as scaled products of component main effect terms, namely,
𝛾ij = 𝜂ij𝛽i𝛽j for 1 ≤ i < j ≤ p, 𝜂ij ∈ R. A penalty is imposed on 𝜼 = {𝜂ij} rather than the interaction coefficients 𝜸 to preserve
heredity of the interaction terms in the selected model. SHIM minimizes the objective function

1
2
||y − X𝜷 − X(I)𝜸||22 + 𝜆1||𝜷||1 + 𝜆2||𝜼||1

using a coordinate descent algorithm that iterates between LASSO-type updates.
hierNet: hierNet is a LASSO-based approach which minimizes

1
2

‖‖‖‖‖y − X𝜷 −
p∑

k=1

p∑
l=1

(xk ⋅ xl)𝛾kl

‖‖‖‖‖
2

2

+ 𝜆1

p∑
j=1

|𝛽j| + 1
2
𝜆2

p∑
k=1

p∑
l=1

|𝛾kl|,
subject to symmetry constraints 𝛾kl = 𝛾lk, ∀ 1 ≤ k, l ≤ p, and heredity constraints

∑p
l=1|𝛾kl| ≤ |𝛽k|, ∀k = 1, … , p, which

ensure that the interaction effects are zero given that any of the corresponding main effects are zero. Alternating direction
method of multipliers (Boyd et al., 2011) is used to solve the constrained optimization.

GLinternet: GLinternet uses an overlapping group LASSO penalty to enforce strong heredity. The objective function
is given by

1
2

‖‖‖‖‖‖y − X𝜷 −
p∑

k=2

k−1∑
l=1

[xk, xl, xk ⋅ xl]𝜸∗kl

‖‖‖‖‖‖
2

2

+ 𝜆1||𝜷||1 + 1
2
𝜆2

p∑
k=2

k−1∑
l=1

||𝜸∗kl||2,
where each 𝜸∗kl is a three-dimensional vector with the first two elements corresponding to main effects and the third
element corresponding to the interaction effect. Note that the main effects appear multiple times inside the L2-norm
(parameterized by 𝛽k, 𝜸∗kl for l < k, and 𝜸∗lk for l > k) and hence are multiply penalized. An iterative soft thresholding
algorithm (Beck & Teboulle, 2009) can be used to solve the GLinternet optimization problem.

2.2 Methods for nonlinear interactions

Basis functions such as cubic splines are often used to incorporate nonlinear main effects and nonlinear interaction effects
into regression models. Consider S groups of predictors each of which corresponds to a prespecified nonlinear basis expan-
sion. Let Xj and 𝜷 j denote the n × pj design matrix and coefficient vector of length pj corresponding to group j of basis
size pj, respectively, for j = 1, … , S. Let Xkl be the n × (pkpl) design matrix for two-way interaction between group k and
group l and 𝜸kl be the corresponding (pkpl)−vector of interaction coefficients for 1 ≤ k < l ≤ S. Note that Xj and Xkl are
distinct from their section 2.1 counterparts, X and X(I), because we are now working with basis expansions of exposures
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rather than linear exposure terms. We focus on the second-order model with interaction effects for S groups of nonlinear
predictors as

y =
S∑

j=1
Xj𝜷 j +

∑
1≤k<l≤S

Xkl𝜸kl + 𝜺. (2)

VANISH is the only existing penalty-based method that imposes sparsity and strong heredity on model (2).
VANISH: VANISH optimizes

1
2

‖‖‖‖‖‖y −
S∑

j=1
Xj𝜷 j −

∑
1≤k<l≤S

Xkl𝜸kl

‖‖‖‖‖‖
2

2

+ 𝜆1

S∑
j=1

(||𝜷 j||22 +∑
k<j

||𝜸kj||22 +∑
l>j

||𝜸jl||22
)1∕2

+ 𝜆2
∑

1≤k<l≤S
||𝜸kl||2.

By construction, 𝜷 j’s and 𝜸kl’s are folded together in the first penalty term so main effect coefficients and inter-
action coefficients are either all zero or all nonzero, based on the property of the group LASSO penalty. The
same structure applies to all S groups of main effects so strong heredity is guaranteed. A block gradient descent
algorithm involving a single sweep through all the variables is applied to obtain a solution to the VANISH objective
function.

None of the existing variable selection methods described so far account for both strong heredity in interaction selec-
tion and differential penalization via adaptive weighting. We propose HiGLASSO as a novel approach to select two-way
interaction effects under strong heredity constraints using penalization with integrative weights, circumventing the need
for initial coefficient estimates.

3 HIERARCHICAL INTEGRATIVE GROUP LASSO

3.1 HiGLASSO formulation

Consider the regression model in (2). To enforce heredity constraints, we rewrite (2) as

y =
S∑

j=1
Xj𝜷 j +

∑
1≤j<j′≤S

Xjj′ [𝜼jj′ ⊙ (𝜷 j ⊗ 𝜷 j′ )] + 𝜺 (3)

by reparameterizing 𝜸jj′ = 𝜼jj′ ⊙ (𝜷 j ⊗ 𝜷 j′ ) for 1 ≤ j < j′ ≤ S. Here, “⊗” denotes the Kronecker product and 𝜼jj′

is a (pjpj′ )−vector of scalars for interactions between variables in group j and group j′ following SHIM (Choi
et al., 2010). Note that strong heredity constraints are satisfied because 𝜸jj′ is nonzero only if both main effects are
nonzero. To see this, 𝜷 j = 0 and/or 𝜷 j′ = 0 implies that 𝜸jj′ = 0. Similarly, 𝜸jj′ ≠ 0 implies that 𝜼jj′ ≠ 0, 𝜷 j ≠ 0, and
𝜷 j′ ≠ 0.

Consider the penalized least squares criterion

arg min
𝜷 j,𝜼jj′

1
2

‖‖‖‖‖‖y −
S∑

j=1
Xj𝜷 j −

∑
1≤j<j′≤S

Xjj′ [𝜼jj′ ⊙ (𝜷 j ⊗ 𝜷 j′ )]
‖‖‖‖‖‖

2

2

+ 𝜆1

S∑
j=1

||𝜷 j||2 + 𝜆2
∑

1≤j<j′≤S
||𝜼jj′ ||2, (4)

where 𝜆1 and 𝜆2 are tuning parameters that control the amount of main effect and interaction effect shrinkage toward
0, respectively. To remedy potential estimation inefficiency and selection inconsistency, we work with a modified ver-
sion of (4) to differentially penalize parameters in the spirit of adaptive group LASSO (Wang & Leng, 2008). We
consider
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β j1

β j2

wj

F I G U R E 1 Hierarchical integrative group least absolute shrinkage and selection operator weight function evaluated for a
two-dimensional vector in [−3, 3] × [−3, 3] with 𝜎 = 1

arg min
𝜷 j,𝜼jj′

1
2
‖‖‖y −

S∑
j=1

Xj𝜷 j −
∑

1≤j<j′≤S
Xjj′ [𝜼jj′ ⊙ (𝜷 j ⊗ 𝜷 j′ )]

‖‖‖2

2

+ 𝜆1

S∑
j=1

wj||𝜷 j||2 + 𝜆2
∑

1≤j<j′≤S
wjj′ ||𝜼jj′ ||2, (5)

where wj’s and wjj′ ’s are prespecified weight functions of unknown coefficients {𝜷 j} and {𝜼jj′ }.
To concurrently estimate weights and model parameters following Pan and Zhao (2016), we consider weight functions

based on the extreme values of each group, namely,

wj ≡ exp
{
−
||𝜷 j||∞

𝜎

}
for j = 1, … , S, (6)

wjj′ ≡ exp
{
−
||𝜼jj′ ||∞

𝜎

}
for 1 ≤ j < j′ ≤ S, (7)

where ||𝝁||∞ is the L∞ norm of 𝝁 and 𝜎 is a predetermined scale parameter. That is, the weights decay exponentially with
the extremum norm of the coefficients within a group. Figure 1 illustrates the weight function for a two-dimensional
coefficient vector. We adopt the L∞ norm, instead of the L0, L1, and L2 norms, because the groups in our motivating
example are basis expansions of each exposure. We do not want to impose sparsity within each group; therefore, to assess
the effect size of the entire basis expansion, taking the extremum of the coefficients within a group is more meaningful
than taking an “average” coefficient.

In summary, HiGLASSO has the following four features:

1. Imposes strong heredity on two-way interactions (Hierarchical);
2. Incorporates adaptive weights without requiring initial coefficient estimates (Integrative);
3. Induces sparsity for variable selection (LASSO);
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4. Maintains group structure (Group LASSO). The HiGLASSO framework is general and the group structure can be
defined based on the specific application. For example, the group structure could be:

• A set of basis functions representing nonlinear relationships,
• Dummy variables representing different levels of categorical variables,
• A natural grouping based on domain knowledge.

3.2 Optimizing the HiGLASSO objective function

The objective function in (5) is nonconvex and is difficult to globally minimize, however (Pan & Zhao, 2016) proposed
a generalized local quadratic approximation which we utilize to find a local minimum. The first term in (5) involves
the product of 𝜷 j’s and 𝜼jj′ ’s. We use an iterative approach to cycle through 𝜷1, … , 𝜷S, and the 𝜼jj′ ’s until convergence
using gradient descent. We first optimize over 𝜷 j given the current �̂� j′ ’s with j′ ≠ j and �̂�jj′ ’s. Then we iteratively obtain
�̂�jj′ estimates given current �̂� j’s. The optimization routine is summarized in Web Appendix A. The higlasso R package,
available on the comprehensive R archive network (CRAN), implements the proposed optimization routine.

3.3 Sparsistency of HiGLASSO estimator

We now establish sparsistency of the HiGLASSO estimator obtained as the minimizer of (5). Let 𝜽 denote the vec-
tor of all coefficients, including main effect coefficients and interaction coefficients. Namely, 𝜽 = (𝜷⊤, 𝜸⊤)⊤ where
𝜷 = (𝜷⊤

1 , … , 𝜷⊤
S )

⊤, 𝜸 = (𝜸⊤12, … , 𝜸⊤S−1,S)
⊤, and 𝜸jj′ = 𝜼jj′ ⊙ (𝜷 j ⊗ 𝜷 j′ ). Denote 𝜽 = (𝜷1

⊤, 𝜸2
⊤)⊤ and 𝜽c = (𝜷c

1
⊤, 𝜸c

2

⊤)⊤
where 1 is the true nonzero set for 𝜷, c

1 is the true zero set for 𝜷, 2 is the true nonzero set for 𝜸, c
2 is the true zero set

for 𝜸,  = 1 ∪ 2, and c = c
1 ∪ c

2 . Let an = min(𝜆1(n), 𝜆2(n)) and bn = 𝜎(n). That is, 𝜆1(n), 𝜆2(n), and 𝜎(n) depend on
sample size.

Theorem (Sparsistency of the HiGLASSO estimator): Suppose that the data are generated from the model given
by (3) with the errors 𝜀 following an i.i.d. normal distribution with mean zero and variance 𝜏2 > 0. Assume that the
design matrix X is random such that 1

n
X⊺X = 1

n
E(X⊺X) + Op(n−1∕2), 1

n
E(X⊺X) is invertible, all the eigenvalues of 1

n
X⊺X are

bounded away from 0 and ∞ with probability converging to one, and that there exists some constant U that uniformly
bounds the L2-norm of the HiGLASSO estimator for all n. If an∕

√
n → ∞, an∕n → 0, and bn → 0 as n → ∞, then we have

P
(‖‖‖�̂�c

1

‖‖‖2
= 0

)
→ 1 and P

(‖‖‖�̂�c
2

‖‖‖2
= 0

)
→ 1.

Proof. See Web Appendix B. ▪

The theorem ensures that spurious covariates will be eliminated by the HiGLASSO procedure when the number of
covariates is fixed as n → ∞. However, the theorem assumes conditions on the design matrix X which do not allow the
number of covariates to diverge. Generalizations of sparsistency of the HiGLASSO estimator in high-dimensional settings,
that is, when | ∪ c| = o(n), are not discussed here.

4 SIMULATION STUDY

The goal of the simulation study is to compare the performance of HiGLASSO with alternative approaches for select-
ing main and pairwise interaction effects. The competing methods accounting for linear main effects and linear pairwise
interaction terms include LASSO and hierNet. An alternative method accounting for nonlinear main effects and, poten-
tially, nonlinear interaction terms is group LASSO. “Nonlinear” in this context refers to nonlinear basis expansions of
the original exposure variables. For the present simulation study we use a cubic basis expansion, where each scalar expo-
sure variable xj is expanded to (xj, x2

j , x3
j )

⊤. Nonlinear interactions are therefore comprised of all pairwise multiples of
individual terms in the corresponding basis expansions. For all methods with group structure, that is, group LASSO and
HiGLASSO, the full nonlinear basis expansions for each covariate define the groups (ps = 3, ∀s = 1, … , S). Similarly, for
pairwise nonlinear interactions, all pairwise multiples of individual terms in the two basis expansions are considered a
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T A B L E 1 Mean specifications for all simulation scenarios

Scenario p Mean function

L10, L20 10, 20 x1 + x2 + x3 + x4 + x5 + x1x2 + x1x3 + x1x4+

x1x5 + x2x3 + x2x4 + x2x5 + x3x4 + x3x5 + x4x5

PL10, PL20 10, 20 x1I(x1 > 0) + x2I(x2 < 0) + x3I(x3 > 0.5) + x4I(x4 > 0) + x5I(x5 < −0.5)+

x1x2I(x1 > 0)I(x2 < 0) + x1x3I(x1 > 0)I(x3 > 0.5) + x1x4I(x1 > 0)I(x4 > 0)+

x1x5I(x1 > 0)I(x5 < −0.5) + x2x3I(x2 < 0)I(x3 > 0.5) + x2x4I(x2 < 0)I(x4 > 0)+

x2x5I(x2 < 0)I(x5 < −0.5) + x3x4I(x3 > 0.5)I(x4 > 0)+

x3x5I(x3 > 0.5)I(x5 < −0.5) + x4x5I(x4 > 0)I(x5 < −0.5)

NL10, NL20 10, 20 x1I(x1 > 0) + exp(x2) + |x3| + x2
4 + (x5 + 1)2 + x1 exp(x2)I(x1 > 0)

x1|x3|I(x1 > 0) + x1x2
4I(x1 > 0) + x1(x5 + 1)2I(x1 > 0) + exp(x2)|x3|+

exp(x2)x2
4 + exp(x2)(x5 + 1)2 + |x3|x2

4 + |x3|(x5 + 1)2 + x2
4(x5 + 1)2

Note: In the scenario column, “L” indicates linear main and pairwise interaction effects, “PL” indicates piecewise linear main and
interaction effects, and “NL” indicates nonlinear main and interaction effects. p represents the number of predictors.

group. The R package glmnet was used to implement LASSO, the R package hierNet was used to implement hierNet, the
R package gglasso was used to implement group LASSO, and the R package higlasso was used to implement HiGLASSO.
VANISH was not considered in this simulation study because there is no publicly available implementation on CRAN.

4.1 Simulation setting

For the present simulation study, we consider nine different scenarios, each with 500 simulated datasets and a sample size
of either n = 1000 or n = 10 000. The data generation mechanism for the simulated datasets is to first generate covariate
vectors from a N(0,Σ)distribution whereΣ is an compound symmetric matrix with unit variance and pairwise correlations
equal to 0.3 and then draw y|x1, … , xp from the regression model

y = f (x1, … , xp) + 𝜺, 𝜺 ∼ N(0, 9I).

A list of the mean functions (f (⋅)) and the number of predictors (p = 10, p = 20), across the six n = 1000 simulation
scenarios are provided in Table 1. The n = 10 000 simulation settings have the same mean functions as the n = 1000
simulation settings, but were only considered with p = 10 in order to assess the large sample behavior of each method.
In the “Scenario” column in Table 1, L refers to scenarios with true linear main and interaction effects, PL refers to
scenarios with true piecewise linear main and interaction effects, and NL refers to scenarios with true nonlinear main
and interaction effects.

If we consider the cubic spline expansion with all possible two-way interactions, p = 10 corresponds to 435 = 10 ∗
3 + C10

2 ∗ 3 ∗ 3 effective predictors in our design matrix and p = 20 corresponds to 1770 = 20 ∗ 3 + C20
2 ∗ 3 ∗ 3 effective

predictors in our design matrix. All tuning parameters for each regularized regression method are selected via 10-fold
cross-validation, with the exception of fixing 𝜎 = 1 for HiGLASSO. For LASSO, group LASSO, and hierNet, the largest
tuning parameter value within one standard error of the minimum cross-validation error is selected. Since HiGLASSO
is naturally conservative with respect to interaction selection, the tuning parameter pair that results in the lowest
cross-validation error is selected. With these tuning parameter values, the corresponding regularized regression methods
are then refit on the full data.

4.2 Performance metrics

The simulation metrics that we will focus on are the following:

1. False negative interaction effects rate (FNI): The average number of times that a nonnull interaction effect term is not
selected by a model.
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2. False negative main effects rate (FNM): The average number of times that a nonnull main effect term is not selected by
a model.

3. False positive interaction effects rate (FPI): The average number of times that a null interaction effect term is selected
by a model.

4. False positive main effects rate (FPM): The average number of times that a null main effect term is selected by a model.

These four metrics are scaled to a range between 0 and 100, reflecting the average percent error rate per simulated
dataset and per important/unimportant term. Note that smaller values of all four metrics indicate better variable selection
performance.

4.3 Simulation results

Simulation results for the n = 1000 and p = 10 simulation scenarios are presented in Figure 2. Panel (a) corresponds to
case L10 with linear main and interaction effects, panel (b) corresponds to case PL10 with piecewise linear main and
interaction effects, and panel (c) corresponds to case NL10 with nonlinear main and interaction effects (see Web Figure 1
for the n = 10 000 simulation results). In L10, LASSO is correctly specified, and therefore leads to relatively low FNI,
FNM, FPI, and FPM. LASSO’s FNM, FPI, and FPM in PL10 are comparable to the respective metrics in L10, however the
FNI is notably larger (FNI = 37%). For NL10, some of the main effects contain absolute values and quadratic terms, which
are more difficult for LASSO with only linear main and interaction terms to detect, hence the elevated FNI (FNI = 29%)
and FNM (FNM = 26%). hierNet tends to do well with respect to FNI, FNM, and FPI, but on average has the highest FPM
for L10 (FPM= 64%), PL10 (FPM= 27%), and NL10 (FPM= 35%). Conversely, HiGLASSO has the highest FNI rate for L10
(FNI = 16%), PL10 (FNI = 55%), and NL10 (FNI = 45%), but has relatively low FNM, FPI, and FPM. That is, HiGLASSO is
conservative for interaction selection, but when HiGLASSO selects interactions, they are almost always true interactions.
Group LASSO’s behavior is difficult to characterize across the three simulation scenarios. One general theme is that the
FPM for group LASSO is above 20% for L10, PL10, and NL10. Group LASSO also has an FNI of 44% for PL10. The FNI,
FNM, FPI, and FPM patterns for the n = 10 000 and p = 10 simulation scenarios are similar to the n = 1000 and p = 10
simulation scenarios, however there is a general decrease in false negative and false positive rates across all methods.

Figure 3 summarizes the simulation results for n = 1000 and p = 20 simulation scenarios. Panel (a) corresponds to
case L20 with linear main and interaction effects, panel (b) corresponds to case PL20 with piecewise linear main and
interaction effects, and panel (c) corresponds to case NL20 with nonlinear main and interaction effects. Simulation results
for L20 and PL20 are nearly identical to the simulation results for L10 and PL10, however the simulation results for NL20
are different from the simulation results for NL10. The notable difference in NL20 is that HiGLASSO now has the lowest
FNI (FNI = 31%), FNM (FNM = 1%), and FPI (FPI = 0.2%), but also has very low FPM (FPM = 4%). For NL20, hierNet
maintains an elevated FPM (FPM = 27%), LASSO has increased false negative rates (FNI = 36%, FNM = 28%), and group
LASSO has a large FNI (FNI = 55%) as opposed to the higher false positive rates from NL10.

When there are nonlinear main and interaction effects in the true exposure-response model such that the nonlinear
interactions obey the strong heredity principle, HiGLASSO has excellent performance with respect to FNM, FPI, and FPM.
HiGLASSO can be conservative for interaction selection, as evidenced by elevated FNI in Figures 2 and 3, for which there
are several explanations. When the true outcome-exposure association involves sufficiently linear main and interaction
effects, HiGLASSO overparameterizes the exposure-response model and therefore unnecessarily introduces additional
parameters that require estimation. Estimating the additional parameters results in a loss of power to detect all of the true
interactions (although the false discovery rate for main and interaction effects is very low). Another explanation is that
using a cubic basis expansion to handle nonlinear main and interaction effects involves a certain level of approximation
error. Nevertheless, HiGLASSO shows great promise in the NL20 setting, which is the scenario that it is specifically
designed for.

5 APPLICATION TO THE LIFECODES STUDY

5.1 Data overview

LIFECODES is a biobank that longitudinally collects biospecimens and medical data across pregnancy with the two-part
goal of (a) understanding biophysiological processes underlying fetal development and (b) identifying environmental
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F I G U R E 2 Simulation results for the n = 1000 and p = 10 cases: (a) L10, (b) PL10, (c) NL10. FNI, FNM, FPI, and FPM are defined in
Section 4.2

risk factors for adverse birth outcomes. A subset of pregnant women in the LIFECODES cohort (n = 482) had 21
phthalate, phenol, and paraben concentrations (see Table 2) measured longitudinally at approximately, 10, 18, 26, and
35 weeks gestation. Due to known temporal variability in the analytes of interest, specific gravity adjusted geomet-
ric averages across the first three visits for each contaminant and each subject were used as covariates to minimize
measurement error (Meeker et al., 2012). The fourth visit measurement was omitted because many women with
preterm deliveries had already delivered by 35 weeks. Of those 482 women, our working dataset contains n = 477
women (128 preterm deliveries and 349 full-term deliveries) after removal of subjects with no phenol measurements.
Study details including exclusion criteria, handling and storage of biological samples, assessment of contaminant
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F I G U R E 3 Simulation results for the n = 1000 and p = 20 cases: (a) L20, (b) PL20, (c) NL20. FNI, FNM, FPI, and FPM are defined in
Section 4.2

concentrations, and institutional review board approval can all be found in (Ferguson, McElrath, Chen, Mukherjee, and
Meeker (2015)).

In this section, we apply LASSO, group LASSO, hierNet, and HiGLASSO to the data collected as a part of LIFECODES
where the covariates are the 21 phthalate, paraben, and phenol geometric averages (log-transformed and standardized)
and the outcome is specific gravity corrected 8-isoprostane, a biomarker that is indicative of oxidative stress, averaged
over the first three visits (log-transformed and centered) (Montuschi et al., 1999). For the nonlinear methods we expand
each of the 21 exposure variables into a group of two variables using a quadratic basis expansion. Tuning parameters for
all methods are determined by 10-fold cross-validation.
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T A B L E 2 List of 21 exposure measurements including 10 phthalates
and 11 phenols in the LIFECODES dataset

Exposure class Full name Acronym

Phthalates mono-n-butyl MBP

monobenzyl MBzP

mono(3-carboxypropyl) MCPP

mono(2-ethyl-5-carboxypentyl) MECPP

mono(2-ethyl-5-hydroxyhexyl) MEHHP

mono(2-ethylhexyl) MEHP

mono(2-ethyl-5-oxohexyl) MEOHP

monoethyl MEP

monoisobutyl MiBP

Summed di(2-ethylhexyl) DEHP

Phenols 2,4-Dichlorophenol 2,4-DCP

2,5-Dichlorophenol 2,5-DCP

benzophenone-3 BP3

Bisphenol A BPA

Bisphenol S BPS

butyl paraben BuPB

ethyl paraben EtPB

methyl paraben MePB

propyl paraben PrPB

triclocarban TCC

triclosan TCS

5.2 Initial analyses

To perform an interaction search, many analysts will proceed by adding linear pairwise interaction terms one-at-a-time
and then subsequently assessing the statistical significance of each interaction. Therefore, as a cursory analytical step,
we regress log-transformed 8-isoprostane on every possible linear pairwise interaction term one at a time, keeping the
21 linear main effects for each exposure in the model throughout. Web Figure 2 provides a visualization of the resulting
p-values for each pairwise interaction (diagonal entries of the heatmap are p-values for the addition of a squared term in
the linear regression model). We observe that there are several interactions that fall below the p < 0.05 threshold, includ-
ing MBzP×MCPP (p = 0.026), BPS×2,4-DCP (p = 0.025), and BPS×2,5-DCP (p = 0.016). Moreover, the Wald tests for
inclusion of a 2,5-DCP squared term (p = 0.015) and MePB squared term (p = 0.033) are significant at the 𝛼 = 0.05 level.
Finally, looking at the unadjusted, marginal exposure-response associations we can clearly identify several nonlinear
relationships (see Web Figure 3). These exploratory steps affirm that a model accounting for nonlinearity and interaction
structure in the exposure-response surface may be desired.

5.3 Variable selection results

The selected main effects and interaction effects for each method are enumerated in Table 3. The two methods that only
account for linear pairwise interaction effects, LASSO and hierNet, have very similar results. Namely, all nine main effects
and two out of three interaction effects selected by LASSO are also selected by hierNet. The one interaction that is selected
by LASSO but not hierNet is MEP×TCS, which violates strong heredity. There are more main effects selected by group
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T A B L E 3 Selected main effects and interaction effects from the LIFECODES study

Selected term LASSO hierNet Group LASSO HiGLASSO

MBP ✓ ✓ ✓

MBzP ✓ ✓ ✓ ✓

MCPP ✓ ✓ ✓

MECPP ✓ ✓ ✓ ✓

MEP ✓ ✓ ✓ ✓

MiBP ✓ ✓ ✓

BuBP ✓ ✓ ✓ ✓

BPS ✓ ✓ ✓ ✓

2,5-DCP ✓ ✓ ✓ ✓

EtPB ✓

MePB ✓ ✓

TCC ✓ ✓ ✓ ✓

MBP×BPA ✓

MBP×MBzP ✓

MBP×MCPP ✓ ✓

MBzP×MCPP ✓ ✓ ✓ ✓

MECPP×BP3 ✓

MECPP×BPA ✓

MEP×TCS ✓

MiBP×MBzP ✓

BP3×BPA ✓

BPS×2,5-DCP ✓ ✓

Note: Candidate main and interaction effects that were not selected are omitted for brevity.

LASSO than any other method. Moreover, the set of main effects selected by all other methods is a proper subset of the
main effects selected by group LASSO. However, four of the six interactions selected by group LASSO violate strong hered-
ity, the only exceptions being MBzP×MCPP and BPS×2,5-DCP. HiGLASSO selects fewer main effects and interaction
effects than group LASSO, but the interactions both satisfy strong heredity. In fact, the interactions selected by HiGLASSO
are MBzP×MCPP and BPS×2,5-DCP, which is consistent with group LASSO. One other interesting observation is that
group LASSO and HiGLASSO both select MePB, while LASSO and hierNet do not. Referring to Web Figure 3, we can
visually identify a marginal quadratic relationship between MePB (log-transformed) and 8-isoprostane (log-transformed),
which when modeled by a linear term would be relatively flat. The quadratic term in the basis expansion facilitates
detection of an association between MePB and 8-isoprostane that would have been missed otherwise.

6 DISCUSSION

This article presents a new penalized variable selection algorithm to handle groups or sets of correlated predictors and
their possibly nonlinear interactions. HiGLASSO imposes strong heredity, induces sparsity as in group LASSO, and main-
tains efficiency and sparsistency through the use of integrative weights. The integrative weights in HiGLASSO also help
select a more parsimonious model compared with other penalized regression strategies, as seen in the LIFECODES data
example. By defining groups through basis expansions, the method can handle nonlinear main effects and nonlinear
pairwise interactions. Our simulation results indicate that HiGLASSO controls false discovery rates while having com-
petitive true discovery rates for both main effects and interactions, particularly when there is true nonlinearity in the
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exposure-response surface. Further extension of HiGLASSO to an elastic-net framework is needed in order to handle
highly collinear groups of environmental exposures. In addition, following the application of an initial interaction screen-
ing algorithm, principled post model selection inference and robust replication strategies are other areas of statistical
research that require rapid development.

Although quadratic and cubic B-splines were used throughout the simulation and data example, there are many other
types of basis functions that could be considered. One such type of basis functions are penalized smoothing splines,
which are frequently used in generalized additive models (Eilers & Marx, 1996). In the n = 1000 and p = 10 simulation
settings we added a HiGLASSO implementation with penalized smoothing splines and compared the performance against
HiGLASSO with cubic B-splines (Web Figure 4). We observe that the patterns and relative rankings across methods are
largely similar, however penalized smoothing splines tend to result in lower FNI and lower FPI compared with cubic
B-splines. FNM and FPI were small regardless of which basis functions were used. This brief comparison provides some
initial evidence that penalized smoothing splines might be a slightly more appropriate default choice, although a more
comprehensive investigation of different classes of basis functions is needed.

To choose the degree of nonlinearity, several tools can be adopted as part of an exploratory analysis. In particular,
fitting a generalized additive model and examining the predictive residual plots—analogous to partial residual plots in
linear regression—the estimated degrees of freedom—a higher departure from unity implying stronger evidence in favor
of nonlinearity—and model fit statistics, such as the Akaike information criterion and the generalized cross-validation
score, can help gauge the need for nonlinearity. Formal tests comparing a series of nested models with different smoothing
terms using ANOVA type techniques can also aid with choosing the degree of nonlinearity. An integrated one-step method
with penalization for variable selection as well as smoothness parameter selection is incredibly challenging and beyond
the scope of this article. Thus, our approach is to start with a rich set of basis functions based on our exploratory analysis
and primarily focus on variable selection given this chosen set of basis functions.

In our simulations and data example, we set the integrative weight parameter to 𝜎 = 1. This is an ad hoc choice and
there are likely better approaches for determining 𝜎. One option is to treat 𝜎 as a tuning parameter, however tuning
over a three-dimensional grid of candidate tuning parameter values is computationally cumbersome. In our view, a more
promising direction is to fix 𝜎 = o(n) in accordance with the sparsistency result.

A reviewer pointed out that the HiGLASSO may naturally extend to spatio-temporal modeling, where the distinc-
tion between separable and nonseparable spatio-temporal autocorrelation can be mathematically framed as interactions
between spatial and temporal main effects. Parallels could be drawn between LASSO-style approaches that are already
being utilized in this area (Hefley et al., 2017) and a rebranding of HiGLASSO may have some additional applications in
this context. That being said, a more computationally efficient algorithm for optimizing the HiGLASSO objective function
would be necessary to practically extend HiGLASSO to spatio-temporal applications.

Because exposures never occur in isolation, identifying exposure by exposure and exposure by covariate interactions is
crucial to advancing the understanding of how the environment holistically influences health. We show that nonlinearity
in exposure-response associations and interactions, a common feature in epidemiologic studies, can make these effects
difficult to quantify. HiGLASSO is useful in this space as a pairwise interaction detection tool that can help identify
possibly nonlinear interaction effects and, ultimately, advance research on environmental chemical mixtures beyond
models that strictly assume additive exposure effects or linear interaction effects.
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