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Summary: Environmental health studies are increasingly measuring multiple pollutants to characterize the joint

health effects attributable to exposure mixtures. However, the underlying dose-response relationship between toxicants

and health outcomes of interest may be highly nonlinear, with possible nonlinear interaction effects. Existing penalized

regression methods that account for exposure interactions either cannot accommodate nonlinear interactions while

maintaining strong heredity or are computationally unstable in applications with limited sample size. In this paper,

we propose a general shrinkage and selection framework to identify noteworthy nonlinear main and interaction effects

among a set of exposures. We design hierarchical integrative group least absolute shrinkage and selection operator

(HiGLASSO) to (a) impose strong heredity constraints on two-way interaction effects (hierarchical), (b) incorporate

adaptive weights without necessitating initial coefficient estimates (integrative), and (c) induce sparsity for variable

selection while respecting group structure (group LASSO). We prove sparsistency of the proposed method and apply

HiGLASSO to an environmental toxicants dataset from the LIFECODES birth cohort, where the investigators are

interested in understanding the joint effects of 21 urinary toxicant biomarkers on urinary 8-isoprostane, a measure

of oxidative stress. An implementation of HiGLASSO is available in the higlasso R package, accessible through the

Comprehensive R Archive Network.
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1. Introduction

1.1 Background and Motivation

Studying the effects of chemical exposures and their interactions in relation to adverse health

outcomes is an important topic in epidemiological and environmental research. Furthermore,

exposure to endocrine disruptors, such as phthalates and phenols, is of particular interest

due to the ubiquity of exposure in the U.S. general population (Crinnion, 2010). Phthalates

are a group of chemicals that are widely used as plasticizers or solvents in products such as

food packaging, cosmetics, and other industrial materials, which typically enter the human

body through daily ingestion and inhalation (Schettler, 2006). Phthalates are known for anti-

androgenic effects and reproductive toxicity and recent studies have reported that the modes

of their action include mechanisms such as oxidative stress (Ferguson et al., 2011, 2012).

Phenols are a class of chemical compounds used in the manufacture of polycarbonate plastics

and epoxy resins. Applications of some phenols include use in pesticides and personal care

products such as makeups and toothpastes (Darbre and Harvey, 2008). Phenols may possess

estrogenic activity and are linked to higher levels of maternal oxidative stress, inflammation

in pregnancy, and reduced fetal growth (Watkins et al., 2015; Ferguson et al., 2018).

Classical environmental epidemiology has focused on analyzing one toxicant at a time even

though, in truth, subjects are simultaneously exposed to a mixture of compounds which may

work in concert. Namely, potential synergistic and antagonistic effects of chemical mixtures

have been minimally addressed in human studies. The primary reasons behind single toxicant

analysis are the lack of studies with measures on multiple pollutants and a lack of a principled

analytic strategy for understanding effects of multiple pollutants and their interactions with

limited sample size. Modern assaying technology has made it possible to measure multiple

pollutants on the same subjects and advances in statistical learning have enabled us to

develop methods that capture nonlinearity and interactions in complex exposure-response
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surfaces. Commonly used approaches that characterize the joint effects of mixtures on health

outcomes in a flexible way include classification and regression tree (CART) (Loh, 2011) and

Bayesian kernel machine regression (BKMR) (Bobb et al., 2015). However, the number of

candidate effects, including main effects and interaction effects, may be much larger than

the number of observations (i.e., p >> n). To address this issue, one common approach is

to introduce sparsity during estimation to shrink coefficient estimates towards a subset of

variables that have stronger effects (Roberts and Martin, 2005; Liu et al., 2018; Li and Ding,

2019; Ashrap et al., 2020), although targeted selection of interaction effects have received less

attention in environmental applications. This paper proposes a variable selection framework

to handle potential nonlinearity and interactions between a set of multiple exposures. To

be clear, when we qualitatively describe a penalized regression method as nonlinear, we are

referring to the fact that the method is designed to estimate nonlinear exposure-response

surfaces, not that the method is nonlinear in the regression coefficients. We then apply this

framework to data from the LIFECODES study, an ongoing prospective pregnancy/birth

cohort at Brigham and Women’s Hospital (BWH), to identify important exposures and

two-way exposure interactions that are associated with 8-isoprostane, an oxidative stress

biomarker (Ferguson et al., 2015).

1.2 Overview of Interaction Selection Methods

There are two major classes of methods for variable selection: penalty-based methods and

forward/stepwise selection methods. The former adds a penalty term to an objective function

which, upon optimization, induces sparsity. Some examples include the L1 penalty in LASSO

(Tibshirani, 1996), the L0 penalty in nonnegative garrote (Breiman, 1995), the Lγ penalty

with γ > 1 in bridge regression (Fu, 1998), the mixture of L1 and L2 penalties in elastic-net

(Zou and Hastie, 2005), and the smoothly clipped absolute deviation (SCAD) penalty (Fan

and Li, 2001). These methods can be used to incorporate interactions by treating interaction
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terms as additional predictors. However, including interaction terms in the absence of at least

one corresponding main effect deviates from a naturally interpretable hierarchical interaction

structure. Nelder (1977) and McCullagh and Nelder (1989) introduced the concepts of

weak/strong heredity and marginality respectively as conceptual constraints to simplify

model interpretation (McCullagh, 1984) and improve statistical power (Cox, 1984). Recent

penalty-based methods that respect these heredity principles include the strong heredity

interaction model (SHIM) (Choi et al., 2010), the LASSO for hierarchical interactions (hi-

erNet) (Bien et al., 2013), and the group-LASSO interaction network (GLinternet) (Lim

and Hastie, 2015). In addition to penalization based methods, forward selection methods

(Boos et al., 2009; Wasserman and Roeder, 2009; Luo and Ghosal, 2015) are also commonly

used for variable selection in practice. Several forward selection methods which incorporate

heredity constraints with linear and nonlinear interactions have been proposed (Wu et al.,

2010; Crews et al., 2011; Hao and Zhang, 2014; Narisetty et al., 2018).

1.3 Penalized Regression with Nonlinear Dose-Response Surfaces

Nonlinear exposure-response relationships have also been explored in environmental studies.

Failure to account for nonlinearity could result in important variables being left out. More-

over, not properly adjusting for nonlinear main effects might result in spurious detection of

interaction effects (Cornelis et al., 2012; Mukherjee et al., 2012; He et al., 2017; Zhang et al.,

2020). For example, the quadratic main effect terms of two predictors and interaction terms

between the two predictors are not easily differentiable in practice, especially when the signal-

to-noise level is low (He et al., 2017). Group LASSO (Yuan and Lin, 2006) can be adopted

to model nonlinear effects where each group of variables represents the nonlinear expansion

of a single predictor with respect to a chosen basis (Huang et al., 2010). Another work that

considers modeling nonlinear main effects using penalization is the COmponent Selection and

Smoothing Operator (COSSO) (Lin and Zhang, 2006). To our knowledge, Variable selection
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using Adaptive Nonlinear Interaction Structures in High dimensions (VANISH) (Radchenko

and James, 2010) is the only existing method that accounts for both nonlinear main and

interaction effects with strong heredity enforced.

1.4 Weighted Penalization and Selection Consistency

Using the same tuning parameter λ (degree of penalization) for each predictor/group without

assessing their relative importance may simultaneously reduce estimation efficiency and affect

selection consistency (Leng et al., 2006). Adaptive shrinkage has been extensively discussed

in previous literature (Wang et al., 2007; Zhang and Lu, 2007). For example, adaptive LASSO

(Zou, 2006), adaptive elastic-net (Zou and Zhang, 2009), and adaptive Group LASSO (Wang

and Leng, 2008) assign a separate penalty to each predictor/group, usually determined by the

reciprocal of the absolute values of the corresponding coefficients. This ensures that smaller

coefficients are shrunk to zero faster whereas larger coefficients are less penalized. Ordinary

least squares (OLS) can be used to estimate the coefficients, however, when p > n, OLS

cannot be implemented. Additionally, in high-dimensional scenarios, it might be difficult to

supply a
√
n-consistent estimate of main and interaction effects to use as adaptive weights,

implying that oracle properties are not maintained. In this paper, we bypass the need to

specify a set of initial coefficient estimates by using integrative weighted group LASSO (Pan

and Zhao, 2016) which jointly estimates weights and coefficients.

1.5 Structure of Article

We propose hierarchical integrative group LASSO (HiGLASSO), to deal with both nonlinear

main and interaction effects under strong heredity while incorporating integrative weights

for improving selection properties. The rest of the article is organized as follows. We briefly

review the existing penalty-based interaction selection methods with heredity constraints in

Section 2. In Section 3, we describe HiGLASSO, the optimization procedure, and prove spar-

sistency for the resulting HiGLASSO estimator. We examine the performance of HiGLASSO
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by comparing it to other procedures that address nonlinearity, interaction terms, and/or

group structure in Section 4. In Section 5, we analyze data from the LIFECODES study to

identify important phthalates, phenols, and their possible interactions that associate with

the oxidative stress biomarker 8-isoprostane. We conclude with a discussion in Section 6.

2. Review of existing penalty-based interaction selection methods with

heredity constraints

First we overview existing penalized regression methods that select interaction terms subject

to heredity constraints. Consider the standard regression setting with p predictors and n

observations where xj denotes the n× 1 predictor vector corresponding to the jth regression

coefficient βj, for j = 1, · · · , p. Let γkl be the coefficient of interaction effect between xk and

xl. Strong and weak heredity principles for interaction effects are defined as follows.

• Strong heredity principle: If an interaction term is included in the model both of its corre-

sponding main effects must be present in the model. That is, if γkl 6= 0, then βk 6= 0 and

βl 6= 0.

• Weak heredity principle: If an interaction term is included in the model, at least one of the

corresponding main effects must be present in the model. That is, if γkl 6= 0, then βk 6= 0

or βl 6= 0.

2.1 Methods for linear interactions

A generic second-order model accounting for pairwise interaction effects with linear predictors

is given as

y = Xβ +X(I)γ + ε (1)

where X = [x1, · · · ,xp] denotes the n × p design matrix for main effects, X(I) = [x1 �

x2, · · · ,xp−1 � xp] denotes the n × [p(p − 1)/2] design matrix for interactions where “ � ”

indicates the element-wise product, β = (β1, · · · , βp)>, γ = (γ12, · · · , γp−1,p)>, and ε is a
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multivariate Gaussian error vector. Without loss of generality, we assume all variables are

standardized and exclude the intercept from our regression model. We first review existing

methods for selecting interaction effects which satisfy the strong heredity principle.

SHIM: SHIM reparametrizes the interaction coefficients as scaled products of component

main effect terms, namely γij = ηijβiβj for 1 6 i < j 6 p, ηij ∈ R. A penalty is imposed on

η = {ηij} rather than the interaction coefficients γ to preserve heredity of the interaction

terms in the selected model. SHIM minimizes the objective function

1

2
||y −Xβ −X(I)γ||22 + λ1||β||1 + λ2||η||1

using an algorithm that iterates between LASSO and group LASSO.

hierNet: hierNet is a LASSO-based approach which minimizes

1

2

∥∥∥y −Xβ − p∑
k=1

p∑
l=1

(xk · xl)γkl
∥∥∥2
2

+ λ1

p∑
j=1

|βj|+
1

2
λ2

p∑
k=1

p∑
l=1

|γkl|,

subject to symmetry constraints γkl = γlk, ∀ 1 6 k, l 6 p, and heredity constraints∑p
l=1 |γkl| 6 |βk|, ∀k = 1, · · · , p, which ensure that the interaction effects are zero given that

any of the corresponding main effects are zero. Alternating Direction Method of Multipliers

(ADMM) (Boyd et al., 2011) is used to solve the constrained optimization.

GLinternet: GLinternet uses an overlapping group LASSO penalty to enforce strong

heredity. The objective function is given by

1

2

∥∥∥y −Xβ − p∑
k=2

k−1∑
l=1

[xk,xl,xk · xl]γ∗kl
∥∥∥2
2

+ λ1||β||1 +
1

2
λ2

p∑
k=2

k−1∑
l=1

||γ∗kl||2,

where each γ∗kl is a three dimensional vector with the first two elements corresponding to

main effects and the third element corresponding to the interaction effect. Note that the

main effects appear multiple times inside the L2-norm (parameterized by βk, γ
∗
kl for l < k,

and γ∗lk for l > k) and hence are multiply penalized. An iterative soft thresholding algorithm

(Beck and Teboulle, 2009) can be used to solve the GLinternet optimization problem.
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2.2 Methods for nonlinear interactions

Basis functions such as cubic splines are often used to incorporate nonlinear main effects and

nonlinear interaction effects into regression models. Consider S groups of predictors each of

which corresponds to a pre-specified nonlinear basis expansion. Let Xj and βj denote the

n × pj design matrix and coefficient vector of length pj corresponding to group j of basis

size pj, respectively, for j = 1, · · · , S. Let Xkl be the n × (pkpl) design matrix for two-way

interaction between group k and group l and γkl be the corresponding (pkpl)−vector of

interaction coefficients for 1 6 k < l 6 S. Note that Xj and Xkl are distinct from their

section 2.1 counterparts, X and X(I), because we are now working with basis expansions

of exposures rather than linear exposure terms. We focus on the second-order model with

interaction effects for S groups of nonlinear predictors as

y =
S∑
j=1

Xjβj +
∑

16k<l6S

Xklγkl + ε. (2)

VANISH is the only existing penalty-based method that imposes sparsity and strong heredity

on model (2).

VANISH: VANISH optimizes penalized least squares as

1

2

∥∥∥y − S∑
j=1

Xjβj −
∑

16k<l6S

Xklγkl

∥∥∥2
2

+ λ1

S∑
j=1

(
||βj||22 +

∑
k<j

||γkj||22 +
∑
l>j

||γjl||22
)1/2

+ λ2
∑

16k<l6S

||γkl||2.

By construction, βj’s and γkl’s are folded together in the first penalty term so main effect

coefficients and interaction coefficients are either all zero or all nonzero, based on the property

of the group LASSO penalty. The same structure applies to all S groups of main effects so

strong heredity is guaranteed. A block gradient descent algorithm involving a single sweep

through all the variables is applied to obtain a solution to the VANISH objective function.

None of the existing variable selection methods described so far account for both strong

heredity in interaction selection and differential penalization via adaptive weighting. We



8 Environmetrics, March 2020

propose HiGLASSO as a novel approach to select two-way interaction effects under strong

heredity constraints using penalization with integrative weights, circumventing the need for

initial coefficient estimates.

3. Hierarchical integrative group LASSO (HiGLASSO)

3.1 HiGLASSO formulation

Consider the regression model in (2). To enforce heredity constraints, we rewrite (2) as

y =
S∑
j=1

Xjβj +
∑

16j<j′6S

Xjj′ [ηjj′ � (βj ⊗ βj′)] + ε (3)

by reparameterizing γjj′ = ηjj′ � (βj ⊗ βj′) for 1 6 j < j′ 6 S. Here “ ⊗ ” denotes the

Kronecker product and ηjj′ is a (pjpj′)−vector of scalars for interactions between variables

in group j and group j′ following SHIM (Choi et al., 2010). Note that strong heredity

constraints are satisfied because γjj′ is non-zero only if both main effects are non-zero. To

see this, βj = 0 and/or βj′ = 0 implies that γjj′ = 0. Similarly, γjj′ 6= 0 implies that

ηjj′ 6= 0, βj 6= 0, and βj′ 6= 0.

Consider the penalized least squares criterion

arg min
βj ,ηjj′

1

2

∥∥∥y − S∑
j=1

Xjβj −
∑

16j<j′6S

Xjj′ [ηjj′ � (βj ⊗ βj′)]
∥∥∥2
2

(4)

+ λ1

S∑
j=1

||βj||2 + λ2
∑

16j<j′6S

||ηjj′ ||2,

where λ1 and λ2 are tuning parameters that control the amount of main effect and interaction

effect shrinkage toward 0, respectively. To remedy potential estimation inefficiency and

selection inconsistency, we work with a modified version of (4) to differentially penalize

parameters in the spirit of adaptive group LASSO (Wang and Leng, 2008). We consider

arg min
βj ,ηjj′

1

2

∥∥∥y − S∑
j=1

Xjβj −
∑

16j<j′6S

Xjj′ [ηjj′ � (βj ⊗ βj′)]
∥∥∥2
2

(5)

+ λ1

S∑
j=1

wj||βj||2 + λ2
∑

16j<j′6S

wjj′ ||ηjj′||2,
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where wj’s and wjj′ ’s are pre-specified weight functions of unknown coefficients {βj} and

{ηjj′}.

To concurrently estimate weights and model parameters following (Pan and Zhao, 2016),

we consider weight functions based on the extreme values of each group, namely,

wj ≡ exp

{
−
||βj||∞
σ

}
for j = 1, · · · , S, (6)

wjj′ ≡ exp

{
−
||ηjj′||∞

σ

}
for 1 6 j < j′ 6 S, (7)

where ||µ||∞ is the L∞ norm of µ and σ is a pre-determined scale parameter. That is,

the weights decay exponentially with the extremum norm of the coefficients within a group.

Figure 1 illustrates the weight function for a two-dimensional coefficient vector. We adopt the

L∞ norm, instead of the L0, L1, and L2 norms, because the groups in our motivating example

are basis expansions of each exposure. We do not want to impose sparsity within each group;

therefore, to assess the effect size of the entire basis expansion, taking the extremum of the

coefficients within a group is more meaningful than taking an “average” coefficient.

[Figure 1 about here.]

In summary, HiGLASSO has the following four features:

(1) Imposes strong heredity on two-way interaction (Hierarchical);

(2) Incorporates adaptive weights without requiring initial coefficient estimates (Integra-

tive);

(3) Induces sparsity for variable selection (LASSO);

(4) Maintains group structure (Group LASSO). The HiGLASSO framework is general and

the group structure can be defined based on the specific application. For example, the

group structure could be:

• A set of basis functions representing nonlinear relationships,
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• Dummy variables representing different levels of categorical variables,

• A natural grouping based on domain knowledge.

3.2 Optimizing the HiGLASSO objective function

The objective function in (5) is non-convex and is difficult to globally minimize, however

(Pan and Zhao, 2016) proposed a generalized local quadratic approximation which we utilize

to find a local minimum. The first term in (5) involves the product of βj’s and ηjj′ ’s. We

use an iterative approach to cycle through β1, · · · ,βS, and the ηjj′ ’s until convergence using

gradient descent. We first optimize over βj given the current β̂j′ ’s with j′ 6= j and η̂jj′ ’s.

Then we iteratively obtain η̂jj′ estimates given current β̂j’s. The optimization routine is

summarized in Web Appendix A. The higlasso R package, available on the Comprehensive

R Archive Network (CRAN), implements the proposed optimization routine.

3.3 Sparsistency of HiGLASSO estimator

We now establish sparsistency of the HiGLASSO estimator obtained as the minimizer of (5).

Let θ denote the vector of all coefficients, including main effect coefficients and interaction

coefficients. Namely, θ = (β>,γ>)> where β = (β>1 , · · · ,β>S )>, γ = (γ>12, · · · ,γ>S−1,S)>, and

γjj′ = ηjj′ � (βj ⊗ βj′). Denote θP = (βP1

>,γP2

>)> and θPc = (βPc
1

>,γPc
2

>)> where P1 is

the true nonzero set for β, Pc
1 is the true zero set for β, P2 is the true nonzero set for γ, Pc

2

is the true zero set for γ, P = P1 ∪ P2, and Pc = Pc
1 ∪ Pc

2 . Let an = min(λ1(n), λ2(n)) and

bn = σ(n). That is, λ1(n), λ2(n), and σ(n) depend on sample size.

Theorem (Sparsistency of HiGLASSO estimator): Suppose that the data are generated

from the model given by (3) with the errors ε following an i.i.d. normal distribution with

mean zero and variance τ 2 > 0. Assume that the design matrix X is random such that

1
n
XᵀX = 1

n
E (XᵀX) + Op(n

−1/2), 1
n
E (XᵀX) is invertible, all the eigenvalues of 1

n
XᵀX

are bounded away from 0 and ∞ with probability converging to one, and that there exists
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some constant U that uniformly bounds the L2-norm of the HiGLASSO estimator for all n.

If an/
√
n → ∞, an/n → 0, and bn → 0 as n → ∞, then we have P

(∥∥β̂Pc
1

∥∥
2

= 0
)
→ 1 and

P
(∥∥γ̂Pc

2

∥∥
2

= 0
)
→ 1.

Proof: See Web Appendix B.

The theorem ensures that spurious covariates will be eliminated by the HiGLASSO pro-

cedure when the number of covariates is fixed as n → ∞. However, the theorem assumes

conditions on the design matrix X which do not allow the number of covariates to diverge.

Generalizations of sparsistency of the HiGLASSO estimator in high dimensional settings, i.e.

when |P ∪ Pc| = o(n), are not discussed here.

4. Simulation study

The goal of the simulation study is to compare the performance of HiGLASSO with alterna-

tive approaches for selecting main and pairwise interaction effects. The competing methods

accounting for linear main effects and linear pairwise interaction terms include LASSO

and hierNet. An alternative method accounting for nonlinear main effects and, potentially,

nonlinear interaction terms is group LASSO. “Nonlinear” in this context refers to nonlinear

basis expansions of the original exposure variables. For the present simulation study we use

a cubic basis expansion, where each scalar exposure variable xj is expanded to (xj, x
2
j , x

3
j)
>.

Nonlinear interactions are therefore comprised of all pairwise multiples of individual terms in

the corresponding basis expansions. For all methods with group structure, i.e. group LASSO

and HiGLASSO, the full nonlinear basis expansions for each covariate define the groups

(ps = 3, ∀s = 1, · · · , S). Similarly, for pairwise nonlinear interactions, all pairwise multiples

of individual terms in the two basis expansions are considered a group. The R package glmnet

was used to implement LASSO, the R package hierNet was used to implement hierNet, the R

package gglasso was used to implement group LASSO, and the R package higlasso was used to
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implement HiGLASSO. VANISH was not considered in this simulation study because there

is no publicly available implementation on CRAN.

4.1 Simulation setting

For the present simulation study, we consider 9 different scenarios, each with 500 simulated

datasets and a sample size of either n = 1000 or n = 10000. The data generation mechanism

for the simulated datasets is to first generate covariate vectors from a N(0,Σ) distribution

where Σ is an compound symmetric matrix with unit variance and pairwise correlations

equal to 0.3 and then draw y|x1, ...,xp from the regression model

y = f(x1, · · · ,xp) + ε, ε ∼ N(0, 9I)

A list of the mean functions (f(·)) and the number of predictors (p = 10, p = 20), across the

six n = 1000 simulation scenarios are provided in Table 1. The n = 10000 simulation settings

have the same mean functions as the n = 1000 simulation settings, but were only considered

with p = 10 in order to assess the large sample behavior of each method. In the ‘Scenario’

column in Table 1, L refers to scenarios with true linear main and interaction effects, PL

refers to scenarios with true piecewise linear main and interaction effects, and NL refers to

scenarios with true nonlinear main and interaction effects.

[Table 1 about here.]

If we consider the cubic spline expansion with all possible two-way interactions, p = 10

corresponds to 435 = 10 ∗ 3 + C10
2 ∗ 3 ∗ 3 effective predictors in our design matrix and

p = 20 corresponds to 1770 = 20 ∗ 3 + C20
2 ∗ 3 ∗ 3 effective predictors in our design

matrix. All tuning parameters for each regularized regression method are selected via 10-

fold cross-validation, with the exception of fixing σ = 1 for HiGLASSO. For LASSO, group

LASSO, and hierNet, the largest tuning parameter value within one standard error of

the minimum cross-validation error is selected. Since HiGLASSO is naturally conservative
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with respect to interaction selection, the tuning parameter pair that results in the lowest

cross-validation error is selected. With these tuning parameter values, the corresponding

regularized regression methods are then re-fit on the full data.

4.2 Performance metrics

The simulation metrics that we will focus on are the following:

(1) False negative interaction effects rate (FNI): The average number of times that a

non-null interaction effect term is not selected by a model.

(2) False negative main effects rate (FNM): The average number of times that a non-

null main effect term is not selected by a model.

(3) False positive interaction effects rate (FPI): The average number of times that a

null interaction effect term is selected by a model.

(4) False positive main effects rate (FPM): The average number of times that a null

main effect term is selected by a model.

These four metrics are scaled to a range between 0 and 100, reflecting the average percent

error rate per simulated data set and per important/unimportant term. Note that smaller

values of all four metrics indicate better variable selection performance.

4.3 Simulation results

Simulation results for the n = 1000 and p = 10 simulation scenarios are presented in Figure

2. Panel (a) corresponds to case L10 with linear main and interaction effects, panel (b)

corresponds to case PL10 with piecewise linear main and interaction effects, and panel (c)

corresponds to case NL10 with nonlinear main and interaction effects (see Web Figure 1

for the n = 10000 simulation results). In L10, LASSO is correctly specified, and therefore

leads to relatively low FNI, FNM, FPI, and FPM. LASSO’s FNM, FPI, and FPM in PL10

are comparable to the respective metrics in L10, however the FNI is notably larger (FNI
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= 37%). For NL10, some of the main effects contain absolute values and quadratic terms,

which are more difficult for LASSO with only linear main and interaction terms to detect,

hence the elevated FNI (FNI = 29%) and FNM (FNM = 26%). hierNet tends to do well

with respect to FNI, FNM, and FPI, but on average has the highest FPM for L10 (FPM

= 64%), PL10 (FPM = 27%), and NL10 (FPM = 35%). Conversely, HiGLASSO has the

highest FNI rate for L10 (FNI = 16%), PL10 (FNI 55%), and NL10 (FNI = 45%), but

has relatively low FNM, FPI, and FPM. That is, HiGLASSO is conservative for interaction

selection, but when HiGLASSO selects interactions, they are almost always true interactions.

Group LASSO’s behavior is difficult to characterize across the three simulation scenarios.

One general theme is that the FPM for group LASSO is above 20% for L10, PL10, and

NL10. Group LASSO also has an FNI of 44% for PL10. The FNI, FNM, FPI, and FPM

patterns for the n = 10000 and p = 10 simulation scenarios are similar to the n = 1000 and

p = 10 simulation scenarios, however there is a general decrease in false negative and false

positive rates across all methods.

[Figure 2 about here.]

Figure 3 summarizes the simulation results for n = 1000 and p = 20 simulation scenar-

ios. Panel (a) corresponds to case L20 with linear main and interaction effects, panel (b)

corresponds to case PL20 with piecewise linear main and interaction effects, and panel (c)

corresponds to case NL20 with nonlinear main and interaction effects. Simulation results for

L20 and PL20 are nearly identical to the simulation results for L10 and PL10, however the

simulation results for NL20 are different from the simulation results for NL10. The notable

difference in NL20 is that HiGLASSO now has the lowest FNI (FNI = 31%), FNM (FNM =

1%), and FPI (FPI = 0.2%), but also has very low FPM (FPM = 4%). For NL20, hierNet

maintains an elevated FPM (FPM = 27%), LASSO has increased false negative rates (FNI
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= 36%, FNM = 28%), and group LASSO has a large FNI (FNI = 55%) as opposed to the

higher false positive rates from NL10.

[Figure 3 about here.]

When there are nonlinear main and interaction effects in the true exposure-response model

such that the nonlinear interactions obey the strong heredity principle, HiGLASSO has excel-

lent performance with respect to FNM, FPI, and FPM. HiGLASSO can be conservative for

interaction selection, as evidenced by elevated FNI in Figure 2 and Figure 3, for which there

are several explanations. When the true outcome-exposure association involves sufficiently

linear main and interaction effects, HiGLASSO overparameterizes the exposure-response

model and therefore unnecessarily introduces additional parameters that require estimation.

Estimating the additional parameters results in a loss of power to detect all of the true

interactions (although the false discovery rate for main and interaction effects is very low).

Another explanation is that using a cubic basis expansion to handle nonlinear main and

interaction effects involves a certain level of approximation error. Nevertheless, HiGLASSO

shows great promise in the NL20 setting, which is the scenario that it is specifically designed

for.

5. Application to the LIFECODES study

5.1 Data overview

LIFECODES is a biobank that longitudinally collects biospecimens and medical data across

pregnancy with the two-part goal of (a) understanding biophysiological processes underlying

fetal development and (b) identifying environmental risk factors for adverse birth outcomes.

A subset of pregnant women in the LIFECODES cohort (n = 482) had 21 phthalate, phenol,

and paraben concentrations (see Table 2) measured longitudinally at approximately, 10

weeks, 18 weeks, 26 weeks, and 35 weeks gestation. Due to known temporal variability in the
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analytes of interest, specific gravity adjusted geometric averages across the first three visits

for each contaminant and each subject were used as covariates to minimize measurement

error (Meeker et al., 2012). The fourth visit measurement was omitted because many women

with preterm deliveries had already delivered by 35 weeks. Of those 482 women, our working

dataset contains n = 477 women (128 preterm deliveries and 349 full-term deliveries) after

removal of subjects with no phenol measurements. Study details including exclusion criteria,

handling and storage of biological samples, assessment of contaminant concentrations, and

institutional review board approval can all be found in (Ferguson et al., 2015).

In this section, we apply LASSO, group LASSO, hierNet, and HiGLASSO to the data

collected as a part of LIFECODES where the covariates are the 21 phthalate, paraben, and

phenol geometric averages (log-transformed and standardized) and the outcome is specific

gravity corrected 8-isoprostane, a biomarker that is indicative of oxidative stress, averaged

over the first three visits (log-transformed and centered) (Montuschi et al., 1999). For the

nonlinear methods we expand each of the 21 exposure variables into a group of two variables

using a quadratic basis expansion. Tuning parameters for all methods are determined by

10-fold cross-validation.

[Table 2 about here.]

5.2 Initial analyses

To perform an interaction search, many analysts will proceed by adding linear pairwise

interaction terms one-at-a-time and then subsequently assess the statistical significance of

each interaction. Therefore, as a cursory analytical step, we will regress log-transformed 8-

isoprostane on every possible linear pairwise interaction term one at a time, keeping the

21 linear main effects for each exposure in the model throughout. Web Figure 2 provides a

visualization of the resulting p-values for each pairwise interaction (diagonal entries of the

heatmap are p-values for the addition of a squared term in the linear regression model). We
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observe that there are several interactions that fall below the p < 0.05 threshold, including

MBzP×MCPP (p = 0.026), BPS×2,4-DCP (p = 0.025), and BPS×2,5-DCP (p = 0.016).

Moreover, the Wald tests for inclusion of a 2,5-DCP squared term (p = 0.015) and MePB

squared term (p = 0.033) are significant at the α = 0.05 level. Lastly, looking at the

unadjusted, marginal exposure-response associations we can clearly identify several nonlinear

relationships (see Web Figure 3). These exploratory steps affirm that a model accounting for

nonlinearity and interaction structure in the exposure-response surface may be desired.

5.3 Variable selection results

The selected main effects and interaction effects for each method are enumerated in Table

3. The two methods that only account for linear pairwise interaction effects, LASSO and

hierNet, have very similar results. Namely, all 9 main effects and 2 out of 3 interaction

effects selected by LASSO are also selected by hierNet. The one interaction that is selected

by LASSO but not hierNet is MEP×TCS, which violates strong heredity. There are more

main effects selected by group LASSO than any other method. Moreover, the set of main

effects selected by all other methods is a proper subset of the main effects selected by group

LASSO. However, 4 of the 6 interactions selected by group LASSO violate strong heredity,

the only exceptions being MBzP×MCPP and BPS×2,5-DCP. HiGLASSO selects fewer main

effects and interaction effects than group LASSO, but the interactions both satisfy strong

heredity. In fact, the interactions selected by HiGLASSO are MBzP×MCPP and BPS×2,5-

DCP, which is consistent with group LASSO. One other interesting observation is that group

LASSO and HiGLASSO both select MePB, while LASSO and hierNet do not. Referring to

Web Figure 3, we can visually identify a marginal quadratic relationship between MePB

(log-transformed) and 8-isoprostane (log-transformed), which when modeled by a linear term

would be relatively flat. The quadratic term in the basis expansion facilitates detection of

an association between MePB and 8-isoprostane that would have been missed otherwise.
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[Table 3 about here.]

6. Discussion

This paper presents a new penalized variable selection algorithm to handle groups or sets of

correlated predictors and their possibly nonlinear interactions. HiGLASSO imposes strong

heredity, induces sparsity as in group LASSO, and maintains efficiency and sparsistency

through the use of integrative weights. The integrative weights in HiGLASSO also help select

a more parsimonious model compared to other penalized regression strategies, as seen in the

LIFECODES data example. By defining groups through basis expansions, the method can

handle nonlinear main effects and nonlinear pairwise interactions. Our simulation results in-

dicate that HiGLASSO controls false discovery rates while having competitive true discovery

rates for both main effects and interactions, particularly when there is true nonlinearity in

the exposure-response surface. Further extension of HiGLASSO to an elastic-net framework

is needed in order to handle highly collinear groups of environmental exposures. Additionally,

following the application of an initial interaction screening algorithm, principled post model

selection inference and robust replication strategies are other ares of statistical research that

require rapid development.

Although quadratic and cubic B-splines were used throughout the simulation and data

example, there are many other types of basis functions that could be considered. One

such type of basis functions are penalized smoothing splines, which are frequently used

in generalized additive models (Eilers and Marx, 1996). In the n = 1000 and p = 10

simulation settings we added a HiGLASSO implementation with penalized smoothing splines

and compared the performance against HiGLASSO with cubic B-splines (Web Figure 4). We

observe that the patterns and relative rankings across methods are largely similar, however

penalized smoothing splines tend to result in lower FNI and lower FPI compared to cubic

B-splines. FNM and FPI were small regardless of which basis functions were used. This
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brief comparison provides some initial evidence that penalized smoothing splines might be

a slightly more appropriate default choice, although a more comprehensive investigation of

different classes of basis functions is needed.

To choose the degree of nonlinearity, several tools can be adopted as a part of an exploratory

analysis. In particular, fitting a generalized additive model and examining the predictive

residual plots - analogous to partial residual plots in linear regression - the estimated degrees

of freedom - a higher departure from unity implying stronger evidence in favor of nonlinearity

- and model fit statistics, such as the Akaike information criterion and the genearlized cross-

validation score, can help gauge the need for nonlinearity. Formal tests comparing a series

of nested models with different smoothing terms using ANOVA type techniques can also aid

with choosing the degree of nonlinearity. An integrated one-step method with penalization

for variable selection as well as smoothness parameter selection is incredibly challenging and

beyond the scope of this paper. Thus our approach is to start with a rich set of basis functions

based on our exploratory analysis and primarily focus on variable selection given this chosen

set of basis functions.

In our simulations and data example, we set the integrative weight parameter to σ = 1.

This is an ad hoc choice and there are likely better approaches for determining σ. One option

is to treat σ as a tuning parameter, however tuning over a 3-dimensional grid of candidate

tuning parameter values is computationally cumbersome. In our view, a more promising

direction is to fix σ = o(n) in accordance with the sparsistency result.

A reviewer pointed out that the HiGLASSO may naturally extend to spatio-temporal

modeling, where the distinction between separable and non-separable spatio-temporal auto-

correlation can be mathematically framed as interactions between spatial and temporal main

effects. Parallels could be drawn between LASSO-style approaches that are already being

utilized in this area (Hefley et al., 2017) and a re-branding of HiGLASSO may have some
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additional applications in this context. That being said, a more computationally efficient

algorithm for optimizing the HiGLASSO objective function would be necessary to practically

extend HiGLASSO to spatio-temporal applications.

Because exposures never occur in isolation, identifying exposure by exposure and exposure

by covariate interactions is crucial to advancing the understanding of how the environment

holistically influences health. We show that nonlinearity in exposure-response associations

and interactions, a common feature in epidemiologic studies, can make these effects difficult

to quantify. HiGLASSO is useful in this space as a pairwise interaction detection tool that

can help identify possibly nonlinear interaction effects and, ultimately, advance research

on environmental chemical mixtures beyond models that strictly assume additive exposure

effects or linear interaction effects.
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Figure 1. HiGLASSO weight function evaluated for a two-dimensional vector in [−3, 3]×
[−3, 3] with σ = 1.
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Figure 2. Simulation Results for the n = 1000 and p = 10 cases: (a) L10 (b) PL10 (c)
NL10. FNI, FNM, FPI, and FPM are defined in Section 4.2.
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Figure 3. Simulation Results for the n = 1000 and p = 20 cases: (a) L20 (b) PL20 (c)
NL20. FNI, FNM, FPI, and FPM are defined in Section 4.2.
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Scenario p Mean Function
L10, L20 10, 20 x1 + x2 + x3 + x4 + x5 + x1x2 + x1x3 + x1x4+

x1x5 + x2x3 + x2x4 + x2x5 + x3x4 + x3x5 + x4x5

PL10, PL20 10, 20 x1I(x1 > 0) + x2I(x2 < 0) + x3I(x3 > 0.5) + x4I(x4 > 0) + x5I(x5 < −0.5)+
x1x2I(x1 > 0)I(x2 < 0) + x1x3I(x1 > 0)I(x3 > 0.5) + x1x4I(x1 > 0)I(x4 > 0)+

x1x5I(x1 > 0)I(x5 < −0.5) + x2x3I(x2 < 0)I(x3 > 0.5) + x2x4I(x2 < 0)I(x4 > 0)+
x2x5I(x2 < 0)I(x5 < −0.5) + x3x4I(x3 > 0.5)I(x4 > 0)+
x3x5I(x3 > 0.5)I(x5 < −0.5) + x4x5I(x4 > 0)I(x5 < −0.5)

NL10, NL20 10, 20 x1I(x1 > 0) + exp(x2) + |x3|+ x2
4 + (x5 + 1)2 + x1 exp(x2)I(x1 > 0)

x1|x3|I(x1 > 0) + x1x
2
4I(x1 > 0) + x1(x5 + 1)2I(x1 > 0) + exp(x2)|x3|+

exp(x2)x
2
4 + exp(x2)(x5 + 1)2 + |x3|x2

4 + |x3|(x5 + 1)2 + x2
4(x5 + 1)2

Table 1
Mean specifications for all simulation scenarios. In the scenario column, “L” indicates linear main and pairwise

interaction effects, “PL” indicates piecewise linear main and interaction effects, and “NL” indicates nonlinear main
and interaction effects. p represents the number of predictors.
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Exposure Class Full Name Acronym
Phthalates

mono-n-butyl MBP
monobenzyl MBzP
mono(3-carboxypropyl) MCPP
mono(2-ethyl-5-carboxypentyl) MECPP
mono(2-ethyl-5-hydroxyhexyl) MEHHP
mono(2-ethylhexyl) MEHP
mono(2-ethyl-5-oxohexyl) MEOHP
monoethyl MEP
monoisobutyl MiBP
Summed di(2-ethylhexyl) DEHP

Phenols
2,4-Dichlorophenol 2,4-DCP
2,5-Dichlorophenol 2,5-DCP
benzophenone-3 BP3
Bisphenol A BPA
Bisphenol S BPS
butyl paraben BuPB
ethyl paraben EtPB
methyl paraben MePB
propyl paraben PrPB
triclocarban TCC
triclosan TCS

Table 2
List of 21 exposure measurements including 10 phthalates and 11 phenols in the LIFECODES dataset.
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Selected Term LASSO hierNet Group LASSO HiGLASSO
MBP X X X
MBzP X X X X
MCPP X X X

MECPP X X X X
MEP X X X X
MiBP X X X
BuBP X X X X
BPS X X X X

2,5-DCP X X X X
EtPB X
MePB X X
TCC X X X X

MBP×BPA X
MBP×MBzP X
MBP×MCPP X X
MBzP×MCPP X X X X
MECPP×BP3 X
MECPP×BPA X

MEP×TCS X
MiBP×MBzP X

BP3×BPA X
BPS×2,5-DCP X X

Table 3
Selected main effects and interaction effects from the LIFECODES study. Candidate main and interaction effects

that were not selected are omitted for brevity.
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