
SUPPLEMENTARY INFORMATION

1. Raindrop Uptake of Noble Gas Model

We assume an initial uniform concentration defined as C1 and a drop radius of a, which is
half of the drop diameter. As the drop falls, its velocity will decrease as the ambient pressure
rises. The simplified model of Best (1950) was used for raindrop terminal velocity instead of
more precise models proposed later (e.g. Foote and Du Toit, 1969) as it has the advantage
that the formulation does not produce a negative terminal velocity event for extremely small
drop diameters.

The simplified atmosphere pressure model used in Ballentine and Hall (1999) was em-
ployed, where P0 = e−H/h0 , altitude is Hand the scale height h0 is 8350m. Also, an initial
uniform concentration is defined as C1.

The model assumes a linear rise in temperature as the drop falls (i.e., a constant lapse
rate), and we assume that the drop is always at the same temperature as the surrounding air.
In addition, we assume that transport into and within a raindrop is due solely to diffusion,
i.e., there is no mechanical mixing of concentrations within a raindrop. This is a gross
simplification, but it does mean that our noble gas uptake model is extremely conservative
in that it will always underestimate the dissolution of noble gases compared to the case of
water stirring within the drop due to air friction. Thus, all of the estimates of noble gas
concentrations derived from this model should be regarded as minimum estimates of noble
gas exchange.

Diffusive uptake of noble gases is based on eqn 3 in section 9.3 of Carslaw and Jaeger,
translated into diffusion instead of heat conduction:
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The first term on the second line is the solution for the case with zero boundary condition

but initial concentration profile given by f(r). The second term on the second line is a
solution with zero initial concentration, but with the boundary condition that the surface
concentration as a function of time is given by φ(t). The sum of the two terms is guaranteed
to have the appropriate initial condition and the correct boundary condition for all times.

In our case, D is a function of time as well, which complicates matters, but fortunately,
Crank (1979) points out that it is still possible use the constant D solutions if we replace
time by τ , with
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So the above general equation is just the same, but using τ instead of t and setting D to
1.
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In general, it is not practical to attempt an analytical solution for the above equation be-
cause not only is temperature a complex function of time and τ , but the boundary condition
(ASW) is in turn a complex non-linear function of temperature. We can, however, approxi-
mate φ(τ) by subdividing the atmosphere into j thin layers and approximate the function as
being made up of linear segments at locations 0 through j. Currently, the software divides
the atmosphere between the beginning altitude and the collection altitude into j = 10000
layers. At each level i, a diffusion coefficient Di is defined by the lapse rate determined tem-
perature Ti. The atmospheric pressure Pi defines the local drop velocity vi and this helps to
define the timeline of the drop’s fall. The time ti is given by:

ti =
i∑

k=1

dl
(0.5 × (vk + vk−1))

(3)

Here dl is the atmospheric layer thickness. The integral of the diffusion coefficient with
time is approximated by:
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The boundary condition as a function of the layer number can be calculated as:

φi = ASW (Ti, Pi) (5)

The boundary condition function is approximated by linear segments at each of the layer
boundary points. The critical issue is the second major term in the first equation that deals
with the integral of the boundary condition as a function of time. Let us define a new
function Λ(τ) to be

Λ(τ) =
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In the interval from τi−1to τi, the boundary condition is approximated as:

φ(λ) = miλ−miτi−1 + φi−1 (7)

Here mi = φi−φi−1

τi−τi−1
and it is the slope of the boundary condition function from τi−1to τi.

The integral can then be approximated by:
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A numerical approximation to the first equation can be written as:
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The average concentration at interval τj is given by:

Cav(τj) =
3

4πa3

ˆ a

0

4πr2C(r, τj)dr (11)

=
6

π2
C1

∞∑
n=1

1

n2
e−n

2π2τj/a
2

+
6

π2

j∑
i=1

∞∑
n=1

1

n2

×
{
en

2π2(τi−τj)/a2
(
φi −mi

a2

n2π2

)
− en

2π2(τi−1−τj)/a2
(
φi−1 −mi

a2

n2π2

)}
The first part of the equation deals with the initial conditions and the second part deals with
the variable boundary conditions.

In addition to the figure shown in the main text, figures S1 through S4 below are the results
of simulated uptake of noble gases at different lapse rates and at different temperatures at a
collection altitude of 1000m.

2. ES Cluster Buoyancy Near the Surface of a Droplet

The internal pressure increase within a droplet of radius a is given by:

∆PY L =
2γ

a
(12)

Here γ is the surface tension of water. At 15◦C, γ is about 73.5 mN/m, and therefore
a droplet with a diameter of 3µm will have a pressure increase within the interior near 1
atmosphere (98000 Pa, or 0.98 Bar) above ambient atmospheric pressure. If one assumes that
liquid water is composed of a mixture of expanded structure (ES) clusters and condensed
structure (CS) clusters, then ES clusters, being lower density than the aggregate mixture of
ES and CS clusters should feel a buoyancy force in a manner completely analogous to that
of material floating in liquid water (e.g., Archimedes principle). If the bulk water density is
given as ρw and the ES cluster density is ρE, then the force pushing an ES cluster of mass
mE toward the surface of the droplet should be:

FE = mE
dP

dr
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1

ρE
− 1

ρw

)
(13)

In this equation, ρw is the local water density. It will be the bulk density of water at the
interface between the interior of the droplet, where the pressure is highest. Further out,
if the mass fraction of ES clusters increases due to the buoyancy effect, the local value of
ρw will diminish, thereby reducing the outward force on the ES cluster.
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If one assumes that the Young-Laplace pressure is distributed over roughly 2 nm, then for
a 3 µm diameter droplet, the pressure gradient would be 4.9×1013Pa/m, which is equivalent
to the acceleration induced pressure gradient in water from a centrifuge with a centripetal
acceleration of 5 billion g!

Conversely, CS clusters within the boundary layer with a significant pressure gradient will
feel a force causing them to sink inward toward the interior of the droplet. The force at the
boundary between the outer layer and the droplet interior is given by:
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As before, as ES clusters migrate outward to the surface of the droplet, the local ρw will
diminish until the mass fraction of CS clusters approaches zero. At this point, the maximum
inward force on a CS cluster would be:
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One can estimate the average drift velocity for an ES or CS cluster by employing equations
13 to 15 along with Stoke’s Law. Following Roos (2014):

Fdrag = 6πµRv (16)

where µ is the kinematic viscosity of water, R is the radius of the cluster and v is the velocity.
Equating Fdrag to the buoyancy forces above, one can solve for the velocity v.

The pressure gradient within the interior of the droplet should drop dramatically near the
surface at r = a and one can imagine that there is a radial position ri within which the
pressure gradient can be assumed to be zero. The potential energy lost for an ES cluster
mass mE moving from ri to the droplet surface will be
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and the potential energy lost when a CS cluster sinks from the surface into the interior is
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If a CS cluster forms at a droplet surface that is populated entirely by ES clusters, then its
potential energy relative to being in the interior of the droplet is given by

∆UCmax =
2γmC

a
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)
(19)

This potential energy would also be released if the CS cluster transformed its structure into
that of an ES cluster. Thus, it may not be necessary for clusters to be transported within
the droplet for the Young-Laplace pressure gradient to promote the formation of a surface
layer that is rich in ES clusters.

By making some simplifying assumptions, it is possible to make a rough estimate of the
thickness of an ES-rich shell that could form on the surface of a water droplet. As with
Vedamuthu et al. (1994), we assume that water clusters are either an ES variety with
minimal density or the CS variety with maximal density, without a range of configurations
in between. Second, we assume that the Laplace-Young pressure gradient is distributed
uniformly across a thin shell of thickness t. Finally, given a constant temperature and
pressure, no external work is done and thus the shell thickness will form with no change in
the Gibbs free energy relative to a droplet with zero surface tension. The change in enthalpy
will be the same as the change in potential energy, but averaging across the entire shell, the
change in potential energy for the movement of clusters will be half that given in equations
17 and 18. Also, for small diameter droplets, the movement of CS clusters into the interior
and ES clusters to the surface may slightly increase the water density in the interior of the
droplet.

The thickness of the surface ES-rich layer is nearly independent of droplet size. This
can be undersood because although the mass of material involved in forming the shell is
proportional to a2t, where a is the droplet radius, the pressure gradient is proportional to
1/a. Therefore the enthalpy change for the droplet is proportional to at. Assuming that the
entropy change is proportional to the natural logarithm of the reduction of volume allowed
for CS clusters, i.e., they now are confined within a sphere with radius a − t, then ΔS
will be proportional to ln ((a− t)/a)3), which simplifies to 3 ln (1 − t/a). To an excellent
approximation, when t � a, this expression equals −t/a. Therefore, ΔS times the mass
of CS clusters confined within the interior of the droplet is propotional to at2. To a first
approximation, the thickness that satisfies ΔG=0 can be given by:

at = Υat2 (20)

where the constant Υ is only weakly dependent on droplet diameter and temperature. Figure
S5 shows ΔG as a function of shell thickness for three different droplet diameters and they
all cross the ΔG=0 line at virtually the same thickness value. Although the ES-rich shell
thickness should be virtually independent of droplet size, the energy released per mole of
clusters in the shell is proportional to at/a2t, or just 1/a. Figure S6 displays the expected
release in enthalpy per mole of water molecule clusters as a function of droplet diameter.
Note that there is a dramatic reduction in the enthalpy release for droplets larger than
about 10 μ. This suggests that only the smallest droplets will have well defined and coherent
ES-rich shells that can resist the effects of random thermal fluctuations.
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3. Xenon Isotopic Fractionation

Xenon has a large number of isotopes and it has displayed both mass depentent frac-
tionation (MDF) as well as mass independent fractionation (MIF) in a variety of settings
(e.g., Robert, 2004; Thiemens, 2006). Xenon isotopic fractionation was calculated for the
subset of isotopes with masses 128, 129, 130, 131, 132, 134 and 136. Rather than plot de-
viations from an expected isotopic ratio based on a single reference isotope (e.g.132Xe), the
fractional isotopic composition of the entire set of measured Xe isotopes was calculated and
then compared with the expected fraction of the isotope within the same set for a standard
air sample. This avoids the problem that the reference isotope in the denominator of the
ratios may itself be subject to MIF. Thus, all isotopes are treated equally and patterns for
all of the measured isotopes can be revealed independently.

Figure 7 shows the results of all of the measured samples, except PR 3/24-15a, which
was measured using the Thermo Helix SFT mass spectrometer. Its Xe isotopic ratio data
are not nearly as precise as the data collected later from the Thermo Argus VI. Results are
plotted as parts per thousand (‰) deviations from the atmospheric Xe composition. Average
fractionation values for the isotopes are plotted as a green line along with estimated ±1σv
errors marked as dashed green lines. For both Puerto Rico and Shenandoah samples, masses
132, 134 and 136 are essentially unfractionated, while the two lighter isotopes that have an
even number of nucleons are significantly depleted. The deviation at mass 130 explains the
departure of the plotted Xe isotope ratios from the MDF line seen in Figure 4d of the main
text. Note that the two odd numbered isotopes (129 and 131) are significantly enriched
relative to the neighboring even numbered isotopes (128, 130, 132). This might be due to
optical effects that can become important for atoms with a non-zero nuclear spin, as is the
case for Hg isotopes (Bergquist and Blum, 2009). In any case, the complex fractionation
pattern for Xe isotopic solubility in cloud water suggests that there are important interactions
that take place on the surface of droplets and that this effect might be enhanced if small
droplets have a relatively rigid skin of ES molecular clusters.

4. Disclaimer

Any use of trade, firm, or product names is for descriptive purposes only and does not
imply endorsement by the U.S. Government.
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Figure S1. Simulated uptake of noble gases with a collection point altitude
of 1000m and a temperature of 200C assuming a wet lapse rate of 4.70C per
km.
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Figure S2. Modeled uptake of noble gases from snow that melts and falls to
an altitude of 1000m at a collection point temperature of 10°C. Lapse rate is
6.5°C per km.
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Figure S3. Modeled uptake of noble gases from snow that melts and falls to
an altitude of 1000m at a collection point temperature of 10°C. Lapse rate is
4.7°C per km.
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Figure S4. Modeled uptake of noble gases from snow that melts and falls
only 1m to an altitude of 1000m at a collection point temperature of 0°C.
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Figure S5. ΔG as a function of ES shell thickness for three different droplet
diameters using the assumptions in the text. T=15°C and the assumed cluster
size is 40 water molecules. The ES-rich shell should grow until ΔG=0, at a
thickness of about 2.66 nm.
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Figure S6. ΔH per mole of water clusters from the formation of an ES
cluster shell as a function of droplet diameter. Assumed water cluster size is
40 molecules. Values are given for two different temperatures.
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Figure S7. Fractionation pattern for the cloud water samples. See text for
the method of calculation. Black dashed best fit lines are displayed for average
MDF patterns for a selection of even numbered masses, one for 128, 130 and
132 along with one for 132, 134 and 136. The former set shows a possible
MDF enriched in heavy isotopes and the latter shows virtually no fractionation
between the 3 heaviest isotopes. The two odd numbered isotopes are distinctly
enriched relative to their even numbered neighbors. All error estimates 1σv.


