POSTER PRESENTATION

Cognitive, neuropsychiatric and imaging comparisons between early-onset and late-onset Alzheimer's disease participants from LEADS and ADNI3

Liana G. Apostolova ^{1,2,3} Ani Eloyan ⁴ Sujuan Gao ^{5,6} Leonardo Iaccarino ⁷
Alexandra Touroutoglou ^{8,9} Paul S Aisen ^{10,11} Laurel Beckett ¹² Bret J Borowski ¹³
Michael C Donohue ^{10,11} Anne M Fagan ^{14,15} Tatiana M. Foroud ^{2,16}
Constantine Gatsonis ¹⁷ Clifford R. Jack Jr. ¹⁸ Joel H Kramer ^{7,19}
Robert A. Koeppe ²⁰ Andrew J. Saykin ² Arthur W. Toga ^{21,22} Prashanthi Vemuri ¹³
Gregory S Day ²³ Neill R. Graff-Radford ²³ Lawrence S Honig ²⁴ David T. Jones ¹³
Joseph C Masdeu ²⁵ Mario Mendez ²⁶ Chiadi U Onyike ²⁷ Emily J Rogalski ²⁸
Stephen P. Salloway ²⁹ David A. Wolk ³⁰ Thomas S. Wingo ³¹ Maria C. Carrillo ³²
Gil D. Rabinovici ⁷ Brad C. Dickerson ⁹

¹ Indiana University School of Medicine, Indianapolis, IN, USA

² Indiana Alzheimer's Disease Research Center, Indianapolis, IN, USA

³ Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA

⁴ Department of Biostatistics, Brown University, Providence, RI, USA

⁵ Indiana Alzheimer Disease Research Center, Indianapolis, IN, USA

⁶ Department of Biostatistics, Indiana University School of Medicine, Indianapolis, IN, USA

⁷ Memory and Aging Center, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA

⁸ Frontotemporal Disorders Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA

⁹ Massachusetts General Hospital, Charlestown, MA, USA

¹⁰ Alzheimer's Therapeutic Research Institute, University of Southern California, San Diego, CA, USA

¹¹ University of Southern California, San Diego, CA, USA

Abstract

Background: The overarching goal of the Longitudinal Early-onset Alzheimer Disease study (LEADS) is to optimally characterize early-onset AD (EOAD) and establish an EOAD clinical trials network. Here we report the baseline demographic and imaging biomarker comparisons of the LEADS cohort to late-onset AD (LOAD) subjects from the Alzheimer's Disease Neuroimaging Initiative (ADNI3).

Method: 123 amyloid-positive EOAD, 47 amyloid-negative EOnonAD, 60 cognitively normal young controls were compared to 130 amyloid-positive LOAD, 110 amyloid-negative LOnonAD and 286 amyloid-negative cognitively normal older controls. To account for the effect of cognitive aging between EO and LO populations, each cognitive measure was Z-transformed. Cortical and hippocampal atrophy were quantified using W-scores adjusted for age, sex and total intracranial volume. Z-scores and W-scores were compared using t-test or Wilcoxson rank test as appropriate. All p-values were corrected for multiple comparisons using the false discovery rate correction.

Result: EOAD showed greater pathology burden and greater cortical atrophy (AD signature) relative to LOAD. EOAD also showed greater cognitive impairment across all cognitive tests. EOAD showed greater functional impairment, more depression but less neuropsychiatric behaviors overall compared to LOAD (**Table 1** and **Figure 1**, all ps<0.05). Repeating the analyses stratified by cognitive stage (MCI/dementia) or CDR global rating (0.5/1) did not result in any major differences.

EOnonAD differed from LOnonAD by also showing greater impairment on all cognitive and functional measures There were no significant differences in amyloid and tau

Alzheimer's & Dementia

¹² University of California-Davis, Davis, CA, USA

¹³ Mayo Clinic, Rochester, MN, USA

¹⁴ Washington University School of Medicine, St. Louis, MO, USA

¹⁵ Knight Alzheimer Disease Research Center, St. Louis, MO, USA

¹⁶ Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA

¹⁷ Brown University, Providence, RI, USA

¹⁸ Mayo Clinic, Radiology, Rochester, MN, USA

¹⁹ University of California, San Francisco, San Francisco, CA, USA

²⁰ University of Michigan, Ann Arbor, MI, USA

²¹ University of Southern California, Laboratory of Neuroimaging (LONI), Los Angeles, CA, USA

²² Laboratory of Neuro Imaging, Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA

²³ Mayo Clinic, Jacksonville, FL, USA

²⁴ Columbia University Irving Medical Center, New York, NY, USA

²⁵ Houston Methodist Neurological Institute, Houston, TX, USA

²⁶ David Geffen School of Medicine at UCLA, Los Angeles, CA, USA

²⁷ Johns Hopkins University School of Medicine, Baltimore, MD, USA

²⁸ Northwestern University Feinberg School of Medicine, Chicago, IL, USA

²⁹ Butler Hospital, Providence, RI, USA

³⁰ Penn Memory Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA

³¹ Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA

³² Alzheimer's Association, Chicago, IL, USA

Correspondence

Liana G. Apostolova, Indiana University School of Medicine, Indianapolis, IN, USA Email: lapostol@iu.edu burden, or atrophy W-scores between these groups. EOnonAD were more depressed and showed more functional impairment compared to LOnonAD (**Table 2** and **Figure 2**, all ps<0.05). Repeating the analyses split by cognitive stage (MCI/dementia) or CDR global rating (0.5/1) did not result in any major differences.

Conclusion: Consistent with our preexisting hypotheses, EOAD and EOnonAD perform much worse relative to their LO counterparts. EOAD also show greater pathological burden as expected. The reported analyses were done in chronological rather than disease time (time since disease onset). Benchmarking individuals along the disease spectrum might prove to be a better strategy especially when conducting analyses on rate of disease progression.

3 of 6

Figure 1. EOAD vs LOAD

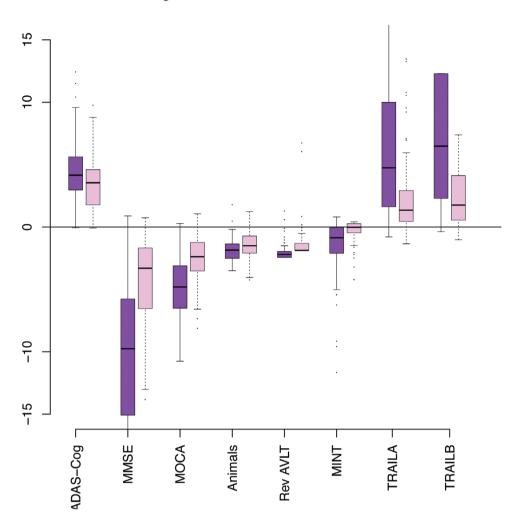


FIGURE 1

Figure 2. EOnonAD vs LOnonAD

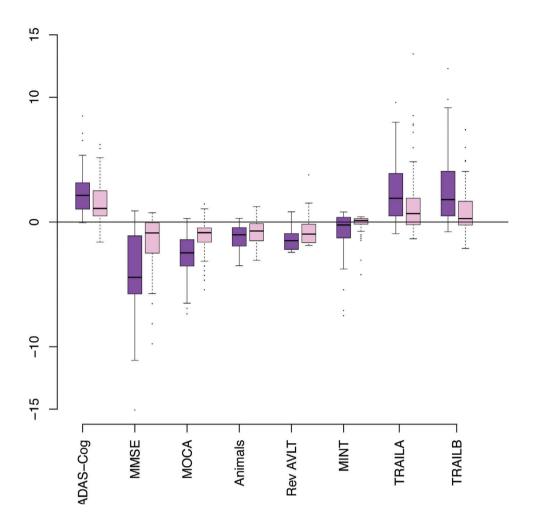


FIGURE 2

TABLE 1

Table 1. EOAD vs LOAD

	LEADS EOAD	ADNI LOAD	Standardized	Standardized	p-value
	(N = 123)	(N = 130)	LEADS	ADNI	
Age (years), Mean (SD)	58.89 (3.81)	77.34 (6.82)			<0.0001
Age at Onset, (years), Mean (SD)	55.63 (4.20)	76.48 (6.29)			<0.0001
Disease Duration, (years), Mean (SD)	3.21 (2.08)	0.85 (2.49)			<0.0001
Education (years), Mean (SD)	15.53 (2.45)	15.86 (2.51)			0.3148
Sex, females, N (%)	66 (53.66%)	58 (44.62%)			0.1763
FBB mean SUVR, Mean (SD)	1.56 (0.16)	1.50 (0.18)			0.0056
FTP metaROI SUVR, Mean (SD)	2.06 (0.44)	1.52 (0.33)			<0.0001
Hippocampus, W- score	-1.40 (0.90)	-1.18 (0.19)			0.1531
Entorhinal, W- score	-1.59 (1.52)	-1.59 (1.80)			0.9929
AD Signature, W- score	-2.42 (1.62)	-0.98 (1.19)			<0.0001
CDRGlobal 0.5/1, %	61%/39%	72%/28%			0.076
ADAS-Cog, Mean (SD)	33.64 (9.79)	26.96 (8.30)	4.42 (2.42)	3.46 (2.01)	0.0010*
MMSE, Mean (SD)	21.70 (4.65)	23.67 (5.28)	-10.16 (6.18)	-4.38 (4.27)	<0.0001*
MOCA, Mean (SD)	16.02 (5.77)	19.53 (4.63)	-4.80 (2.45)	-2.56	<0.0001*
Animal fluency, Mean (SD)	12.02 (5.30)	14.76 (5.65)	-1.84 (0.87)	-1.35 (1.11)	0.0002*
RevAVLT DR, Mean (SD)	1.80 (2.61)	2.23 (5.02)	-2.01 (0.61)	-1.37 (1.13)	<0.0001*
MINT, Mean (SD)	26.75 (5.27)	27.00 (6.00)	-1.38 (2.19)	-0.32 (0.87)	<0.0001*
Trails A, Mean (SD)	70.09 (43.55)	49.95 (27.18)	6.45 (6.18)	2.24 (3.05)	<0.0001*
Trails B, Mean (SD)	196.0 (94.74)	152.0 (83.20)	7.04 (4.78)	2.60 (2.69)	<0.0001*
FAQ, Mean (SD)	14.34 (7.59)	8.54 (7.60)			<0.0001
GDS, Mean (SD)	4.00 (2.50)	2.00 (2.00)			0.0070
NPI, Mean (SD)	3.12 (2.24)	5.76 (7.04)			0.0002
* p-value was calculated bas	ed on standardized	d Z-scores			

p-value was calculated based on standardized Z-scores

TABLE 2

Table 2. EOnonAD vs LOnonAD

	LEADS EOnonAD (N = 47)	ADNI LOnonAD (N = 110)	Standardized LEADS	Standardized ADNI	p-value
Age (years), Mean (SD)	56.94 (6.65)	76.81 (6.23)			<0.0001
Age at Onset, (years), Mean (SD)	54.17 (6.32)	75.86 (5.67)			<0.0001
Disease Duration, (years), Mean (SD)	3.32 (1.70)	0.95 (2.55)			< 0.0001
Education (years), Mean (SD)	15.60 (2.59)	16.45 (2.75)			0.1281
Sex, females, N (%)	34 (72.34)	75 (68.18)			0.6510
FBB mean SUVR, Mean (SD)	0.99 (0.06)	1.01 (0.08)			0.1344
FTP metaROI SUVR, Mean (SD)	1.22 (0.30)	1.21 (0.16)			0.8707
Hippocampus, W- score	-0.75 (1.14)	-0.56 (1.41)			0.5241
Entorhinal, W- score	-0.85(2.0)	-0.85 (2.03)			0.9869
AD Signature, W- score	-0.83 (1.81)	-0.39 (1.25)			0.1162
CDRGlobal 0.5/1, %	93%/7%	92%/8%			0.2052
ADAS-Cog, Mean (SD)	26.30 (6.80)	18.78 (6.43)	2.40 (1.87)	1.48 (1.56)	0.0048*
MMSE, Mean (SD)	26.04 (3.04)	27.42 (2.75)	-4.38 (4.04)	-1.35 (2.22)	<0.0001*
MOCA, Mean (SD)	21.13 (4.31)	23.15 (3.60)	-2.63 (1.83)	-1.18 (1.38)	<0.0001*
Animal fluency, Mean (SD)	15.62 (5.85)	17.92 (5.15)	-1.25 (0.96)	-0.74 (1.01)	0.0089*
RevAVLT DR, Mean (SD)	4.23 (3.48)	4.58 (4.26)	-1.45 (0.81)	-0.84 (0.96)	0.0007*
MINT, Mean (SD)	27.85 (4.74)	28.57 (5.29)	-0.92 (1.97)	-0.09 (0.77)	0.0007*
Trails A, Mean (SD)	45.00 (28.45)	40.59 (20.30)	2.89 (4.04)	1.19 (2.28)	0.0034*
Trails B, Mean (SD)	110.2 (60.28)	103.4 (63.21)	2.71 (3.04)	1.03 (2.04)	0.0007*
GDS, Mean (SD)	3.00 (3.00)	1.00 (2.00)			0.0004
FAQ, Mean (SD)	7.62 (5.86)	4.00 (5.55)			0.0037
NPI, Mean (SD)	4.28 (3.07)	4.62 (6.85)			0.7452