BIOMARKERS

POSTER PRESENTATION

World Trade Center neurotoxic exposures are associated with elevated plasma amyloid, total-tau and neurofilament light in responders

Erica D. Diminich¹ | Sean A.P. Clouston^{2,3} | Irving Vega⁴ | Samuel Gandy⁵ | Evelyn Bromet² | Benjamin J. Luft²

Correspondence

Erica D. Diminich, Renaissance School of Medicine at Stony Brook, Stony Brook, NY, USA

Email: erica.diminich@ stonybrookmedicine.edu

Abstract

Background: The collapse of the World Trade Center towers on September 11th 2001 resulted in a 16-acre environmental toxic disaster. More than 1.2 million tons of construction material and carcinogens including polycyclic aromatic hydrocarbons, gypsum and metals coalesced, resulting in a highly alkaline dust cloud. Police and Law enforcement were among the most highly exposed group.

Method: In this retrospective cohort study, we included a subset of high exposure Responders (n=424) with cross sectional plasma samples of amyloid β_{40} , amyloid β_{42} total-tau, neurofilament light and a baseline evaluation of cognitive functioning assessed with the Montreal Cognitive Assessment (MoCA) to examine long-term associations between WTC neurotoxic exposures (e.g. diesel exhaust, chemicals) with levels of proteins associated with neuropathological characteristics of Alzheimer's disease and neurodegeneration. Spearman rho p values adjusted for multiple comparisons using the false discovery rate (FDR=0.05) examined associations with participant characteristics and plasma concentrations. Multivariate regressions ascertained independent effects of WTC neurotoxic exposures in predicting plasma biomarker concentrations.

Result: Responders were on average 54.3 years at blood draw. Worse performance on the baseline MoCA was associated with higher levels of A β_{40} Plasma A β_{40} and NfL were inversely correlated with dust exposure, $A\beta_{42}$ and ratio $A\beta_{42-40}$ were inversely correlated with total hours on site during 9/11-9/14 and working in enclosed work areas was associated with higher concentrations of $A\beta_{40}$ and lower concentrations of ratio $A\beta_{42-40}$. Diesel exhaust exposure predicted levels of $A\beta_{40}$ total tau and NfL whereas early exposure predicted $\ensuremath{\mathsf{A}}\xspace\beta_{42}$ concentrations and dust exposure predicted

Conclusion: Differences across inhaled neurotoxins and time of arrival may have differential long-term effects on blood-based protein biomarkers of neuropathology and brain health.

¹ Renaissance School of Medicine at Stony Brook, Stony Brook, NY, USA

² Stony Brook University, Stony Brook, NY,

³ Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA

⁴ University of Michigan, Ann Arbor, MI, USA

⁵ Icahn School of Medicine at Mount Sinai, New York, NY, USA