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Key points (3 max, 140 characters max)

• CYGNSS data is used to produce monthly maps of tropical wetlands at 0.01◦. The maps are used to drive the
WetCHARTs methane emission model.

• The seasonality of inundation-based model results lags two months behind the rainfall-based models and shows
larger dry-season emission.

• CYGNSS-based estimates, consistent with independent observations, show higher emissions with larger variability
than inundation-driven estimates.

Abstract (250 words max)

Wetlands are the single largest source of methane to the atmosphere and their emissions are expected to respond
to a changing climate. Inaccuracy and uncertainty in inundation extent drives differences in modeled wetland emissions
and impacts representation of wetland emissions on inter-annual and seasonal time frames. Existing wetland maps are
based on optical or NIR satellite data obscured by clouds and vegetation, often leading to underestimates in wetlands
extent, especially in the Tropics. Here, we present new inundation maps based on the CYGNSS satellite constellation,
operating in L-band that is not impacted by clouds or vegetation, providing reliable observations through canopy and
cloudy periods. We map the temporal and spatial dynamics of the Pantanal and Sudd wetlands, two of the largest wetlands
in the world, using CYGNSS data and a computer vision algorithm. We link these inundation maps to methane fluxes via
WetCHARTs, a global wetland methane emissions model ensemble. We contrast CYGNSS-modeled methane emissions
with WetCHARTs standard runs that use monthly rainfall data from ERA5, as well as the commonly used SWAMPS
wetland maps. We find that the CYGNSS-based inundation maps modify the methane emissions in multiple ways. The
seasonality of inundation and methane emissions is shifted by two months because of the lag in wetland recharge following
peak rainfall. Both inundation and methane emissions also respond non-linearly to wet-season precipitation totals, leading
to large interannual variability in emissions. Finally, the annual magnitude of emissions is found to be greater than
previously estimated.

Keywords (up to 6): CH4, flood, GNSS-R, Pantanal, Sudd, WetCHARTs
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1 Introduction1

Methane is a potent greenhouse gas whose concentrations have been increasing at an accelerating rate over the past decade2

[Fletcher & Schaefer, 2019, Nisbet et al., 2019]. After a decade of near-equilibrium [Turner et al., 2019], the drivers of3

renewed growth are still debated. Main anthropogenic sources of methane include fossil fuels leakage during extraction4

and transport or their incomplete burning, landfills, ruminant livestock, rice paddies, and waste water treatment plants5

[Miller et al., 2013, Ciais et al., 2013]. Natural sources consist predominantly of biogenic emissions from wetlands,6

either seasonally or permanently inundated areas, with smaller contributions from termites and geological sources such as7

geothermal vents [Ciais et al., 2013]. Among all these, emissions from wetlands are both the largest and most uncertain8

source [Saunois et al., 2016, Saunois et al., 2020] and methane emissions from wetlands around the globe are predicted to9

increase significantly with climate change [Zhang et al., 2017b]. Boreal ecosystems have been a source of concern because10

climate change has rapidly transformed these ecosystems into methane emitters [Treat et al., 2018, Post et al., 2019].11

However, tropical wetlands are both a much larger [Koffi et al., 2020] and more uncertain source in the global CH4 balance12

[Turner et al., 2019], where even modest shifts in methane production can affect the global budget on either inter-annual or13

decadal time frames. The largest source of uncertainty in tropical wetland emissions comes from the lack of information14

about their extent [Bloom et al., 2017, Parker et al., 2020]. But to understand how tropical wetlands are affected by15

climate change-induced shifts in precipitation and temperature, it is crucial to first be able to accurately represent how they16

respond to interannual variability in these parameters [Zhang et al., 2017a, Parker et al., 2018]. Capturing year-to-year17

variations in their extent should therefore be of the highest importance, but so far, the few available datasets have all had18

significant shortcomings for this application.19

20

Wetland mapping can be done from a variety of remote sensing platforms, from drones [Jeziorska, 2019] to air-21

planes [Zweig et al., 2015] and satellites [Zhang et al., 2017a]. However, with their regular return times, satellites are22

better suited to survey highly seasonal wetlands. Optical sensors such as Landsat or MODIS provide high resolution maps23

[Landmann et al., 2010, Pekel et al., 2016] but are obstructed by clouds and vegetation. Constructing a cloud-free map can24

require months of accumulated data, making this data ill-suited for the study of seasonal processes such as wetland inunda-25

tion. In the Tropics, these disadvantages become real issues, since small waterbodies are often covered by dense vegetation26

and the rainy season can be associated with month-long periods of continuous cloud cover [Martins et al., 2018], biasing27

optical-based maps towards dry season water levels. Synthetic aperture radar (SAR) microwave instruments are capable28

of seeing through clouds and vegetation [Hess et al., 2015], but their long return times and narrow tracks requires that data29

be accumulated over extended periods of time, making it difficult for these instruments to track short-term phenomena.30

Recently, the combination of SAR data from Sentinel-1 with a classification algorithm showed promises for near-real time31

mapping of urban flooding [Shen et al., 2019], but Sentinel-1’s frequency is too high for the sensor to see through vegetation32

and the method can therefore not be applied to tropical wetlands. These approaches will therefore all tend to underestimate33

maximum extent and fail to capture seasonal dynamics that may dictate large interannual variability in wetland emissions in34

response to climate drivers. Finally, the latest version of the Global Inundation Estimate from Multiple Satellites [Prigent35

et al., 2007, Prigent et al., 2020], GIEMS-2, combines passive microwave observations at 19 and 37 GHz with NDVI data36

to provide monthly wetland maps. Water under vegetation is presumably captured by the different polarization of the37

passive sensors and a two-dimensional linear mixture model, but the authors acknowledge that the signal from the high38

frequency sensors gets highly attenuated by vegetation, and that the linear mixture model often overcompensates, leading39

to high uncertainty for water under vegetation, a key issue for studying tropical wetlands. In addition, the passive sensors40

used lead to a rather coarse resolution of 0.25◦ × 0.25◦ of the product, limiting the study of finer scale hydrological processes.41

42

Global Navigation Satellite System Reflectometry (GNSS-R) instruments have received a lot of attention in recent years43

for the strong signal coming from inland waterbodies due to the coherent reflection they are associated with [Camps,44

2020, Chew & Small, 2020, Wang & Morton, 2020]. Launched in December 2016 and the first science GNSS-R mission,45

the Cyclone Global Navigation Satellite System (CYGNSS) constellation of eight satellites [Ruf et al., 2018] combines the46

unique water-sensing abilities of GNSS-R with a short return time [Bussy-Virat et al., 2019], opening up new possibilities47

in the realm of short-term waterbody monitoring. While the footprint of a single CYGNSS sounding over land is of about48

1 km × 3.5 km, the random track sampling method often requires to downgrade the spatial resolution in order to obtain a49

higher temporal resolution [Bussy-Virat et al., 2019]. Many different approaches are actively being developed to extract50

information on the position of waterbodies from CYGNSS data including thresholding of the signal-to-noise ratio (SNR)51

data [Chew et al., 2018, Morris et al., 2019], computer vision techniques [Gerlein-Safdi & Ruf, 2019], and signal coherency52

analysis [Loria et al., 2020, Al-Khaldi et al., 2020]. Thresholding techniques are likely underestimating the waterbody53

extent because vegetation can attenuate the SNR from wetlands under vegetation [Nghiem et al., 2017, Carreno-Luengo54
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et al., 2020, Park et al., 2020]. The coherency analysis technique goes beyond the SNR and decomposes the signal55

into its coherent and incoherent components. While this technique is still being developed, it promises to increase the56

spatial resolution of CYGNSS-based wetland maps. However, this method is computationally demanding and requires the57

aggregation of CYGNSS data over multiple months, making it inadequate for the study of fast-changing waterbodies.58

59

Here we propose a new and enhanced analysis of CYGNSS SNR data applied to the whole three years of data60

combined with a computer vision algorithm initially presented in [Gerlein-Safdi & Ruf, 2019]. Wetland maps at 0.01◦61

× 0.01◦ resolution are produced on a monthly basis and assimilated into the WetCHARTs methane emissions model62

ensemble [Bloom et al., 2017]. Developed in 2017, WetCHARTs is a global wetland methane emission model ensemble for63

wetland emissions modeling [Mitchard, 2018, Ganesan et al., 2019, Turner et al., 2019, Parker et al., 2020]. WetCHARTs64

has the ability to directly assimilate dynamic wetland extent maps or to use a combination of static wetland maps and65

rainfall data to drive seasonal variations.66

67

In this study, we demonstrate 1) the ability for CYGNSS data to provide high resolution monthly maps of wet-68

lands and 2) the impact this new information has on both the timing and the magnitude of modeled methane emissions,69

especially when compared to model outputs driven by either rainfall data or other remotely sensed wetland maps. For this70

work, we focus on two specific wetlands: the Pantanal, located at the border between Brazil, Bolivia and Paraguay, and71

the South Sudanese Sudd wetland. The Pantanal is the largest wetland in the world and the largest single natural source72

of methane [Nisbet et al., 2019], contributing about 3.3 Tg CH4/year [Marani & Alvalá, 2007] and representing almost73

4% of the annual CH4 emissions from wetlands. The Sudd wetland was recently pointed out as an underestimated and74

growing source of methane based on an analysis of column retrievals of atmospheric CH4 data collected by the Japanese75

Greenhouse gases Observing Satellite (GOSAT) [Lunt et al., 2019, Pandey et al., 2020]. In Section 2, we will describe76

the CYGNSS data, the algorithm used to extract wetland features from the data, as well as the WetCHARTs model. In77

Section 3, we will present our findings that show that using CYGNSS-based inundation maps instead of rainfall-based ones78

leads to a shift in the timing and the magnitude of modeled methane emissions at both locations. We will also compare79

our results to the commonly used Surface WAter Microwave Product Series (SWAMPS) wetland maps [Schroeder et al.,80

2015, Jensen & Mcdonald, 2019]. Finally, in Section 4, we will discuss how these results are in agreement with data from81

both in-situ experiments and satellites. We end by discussing the possible implications of these results on future tropical82

wetland methane emission evaluations.83

2 Methods84

2.1 CYGNSS-based watermasks85

2.1.1 CYGNSS data86

Here we use the SNR of the level 1, version 2.1 CYGNSS data freely available from the Physical Oceanography Distributed87

Active Archive Center (https://podaac.jpl.nasa.gov/) to produce a surface reflectivity (SR) signal based on [Gerlein-Safdi88

& Ruf, 2019]: assuming coherent scattering [Chew & Small, 2018], the SNR is corrected for receiving and transmitting89

antenna gains, transmitted power level, and propagation loss from transmitter to specular point and specular point to90

receiver. The average of the 5% lowest data are removed to provide a range of variation in SR data that is comparable to91

the initial SNR range, as has been done in previous work [Chew et al., 2018, Gerlein-Safdi & Ruf, 2019] and oceans are92

removed using CYGNSS’ QC flags.93

94

The algorithm developed in [Gerlein-Safdi & Ruf, 2019] to transform SR maps into watermasks was based on95

the standard deviation of a pixel with respect to the average of the neighboring pixels. This method proved an appropriate96

technique to look at permanent water bodies such as large rivers and lakes, but it required the aggregation of data over a97

large period of time (one year of data was presented in [Gerlein-Safdi & Ruf, 2019]) in order to have enough samples98

within the area used for background estimation. This made it difficult to use this method for the study of seasonal99

hydrological processes. Here, we propose a similar, but different approach: instead of determining whether a pixel is100

inundated based on its value compared to the spatial distribution (mean and standard deviation) of a box around the pixel,101

we look at how a single pixel looks compared to the distribution of values for that same pixel over two and half years102

of CYGNSS data (June 2017 until December 2019), the entire dataset available at the time this study was conducted.103

Accuracy is expected to improve as more data is assimilated into the algorithm.104
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Figure 1: Algorithm steps applied to two different months of data over the Pantanal: October 2019 (dry season), and
May 2019 (wet season). Top left: surface reflectivity from CYGNSS, bottom left: final watermask obtained. Top
right: map of the number of standard deviations above or below the 2.5 year average for each individual pixel.
Bottom right: markers for the random walker algorithm: red are dry, blue are wet, and white are unassigned
pixels.

2.1.2 Algorithm steps105

We start by gridding all the data from years 2017, 2018, and 2019 into a 0.01◦ × 0.01◦ grid. Each grid cell contains the106

whole distribution of CYGNSS overpasses that fell into that gridcell, producing a data cube, where the third dimension107

contains all the SR data accumulated at each gridcell over two and half year. Because of the CYGNSS’ orbit, the108

sampling density is highest at the edges of CYGNSS’ latitudinal band (around 38◦N and 38◦S) and lowest at the Equator109

[Bussy-Virat et al., 2019]. The average number of samples in a single grid-cell is 11, ranging from 0 to 40, but with only110

0.03% of pixels being actually empty.111

112

We then grid monthly CYGNSS data into the same 0.01◦ × 0.01◦ grid, making monthly SR maps from June 2017 until113

August 2020 (see Figure 1, top left). If a pixel has more than one sample associated with it, the SR value is set to the114

average of all samples falling within that pixel. SR values above 40 dB are filtered out as they appear to be mostly linked to115

specific tracks with variations in GPS satellite transmitted power, an issue that is expected to disappear with the upcoming116

v3 of the CYGNSS data. Using a nearest neighbor interpolation (SciPy, https://scipy.org/), we fill in any pixel without117

data. We then compare the value of each individual pixel for that month to the average and the standard deviation (STD)118

of the values for that pixel to produce maps of the number of STDs from the average (Figure 1, top right). In the final step,119

we use the random walker segmentation from the scikit-image library (https://scikit-image.org/) for Python [van der Walt120

et al., 2014]. This computer vision technique is particularly recommended to segment noisy images [Grady, 2006] and has121

previously been successfully applied to CYGNSS data [Gerlein-Safdi & Ruf, 2019]. Here, water markers are set as pixels122

that are both one STD above the average for that pixel (over the 2.5 years of data) and that have a SR of at least 18 dB. Dry123

pixels are defined as pixels that are below the average for that pixel and that have a SR below 15 dB (Figure 1, bottom left).124
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The diffusion parameter of the scikit-image function is set to 0.5 and the wet and dry markers are then allowed to diffuse in125

random directions, diffusing further in directions with small variations in STD, and stopping when they encounter a sharp126

gradient. The remaining unassigned pixels are attributed to the wet and dry categories depending on what labeled marker127

has the highest probability to reach it first. Figure 1 shows the different steps of the algorithm over the Pantanal during a128

dry and a wet month and Figure 2 shows two examples of SR maps and final watermasks over the Sudd wetlands.129

130

Looking at the coherence of the signal, it has been established that coherent reflections from water bodies can131

have a range of SR values, depending on the topography, vegetation cover, and water surface roughness due to wind [Loria132

et al., 2020]. For this reason, it is key that our technique is actually based on STD maps for a given month, and not on the133

actual SR data. This allows the random walker algorithm to link together water pixels clearly identified as such, based on134

both their position within the distribution and their SR values, with unassigned pixels that might have low SR values but135

can be identified as wet from their high values in STD space.
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Figure 2: Inundation maps over the South Sudanese Sudd wetland for two different months of data ; left: February 2019
(dry season), and right: October 2019 (wet season). Top: surface reflectivity from CYGNSS. Bottom: final
watermask obtained.

136

2.2 WetCHARTs model137

2.2.1 Model description138

The WetCHARTs model was developed in 2017 [Bloom et al., 2017] to model methane emissions from wetlands139

globally that are then incorporated into atmospheric chemical transport models. The original model includes three140

temperature dependence parameterizations of CH4 respiration fraction and nine heterotrophic respiration simulations141

(eight carbon cycle models derived from the Multi-scale Synthesis and Terrestrial Model Intercomparison Project and one142
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data-constrained terrestrial carbon cycle analysis based on the global CARbon DAta MOdel fraMework (CARDAMOM))143

for a total of 18 different models for the extended ensemble. The model outputs monthly methane emission estimates at a144

0.5◦ × 0.5◦ resolution. The standard version of WetCHARTs uses static wetland extent maps based on the Globcover145

wetland and freshwater land cover types [Bontemps et al., 2011] combined with the the Global Lakes and Wetlands146

Database (GLWD) [Lehner & Döll, 2004]. Seasonal variations are introduced using either ECMWF Re-Analysis (ERA)147

rainfall data so that the monthly wetland extent is estimated as:148

Monthly extent [m2] = static wetland extent [m2] × precipitation anomaly [unitless],149

where the precipitation anomaly is the ratio of the monthly precipitation to mean or max precipitation, depending on150

whether the static wetland map provides a maximum or mean wetland extent estimate.151

152

Here, we use WetCHARTs version 1.3.1 and we introduce the CYGNSS-based inundation maps as a direct source of153

information for monthly inundation extent. For this purpose, the CYGNSS maps are downscaled to match WetCHARTs154

coarser resolution: the maps generated give a fractional water percentage that corresponds to the percentage of the 0.01◦155

× 0.01◦ pixels within a 0.5◦ × 0.5◦ that are marked as flooded in the CYGNSS watermasks [Gerlein-Safdi & Ruf, 2021].156

These inundation maps are available for download on Zenodo (https://doi.org/10.5281/zenodo.5621107). The full extended157

ensemble of 18 models is run for the June 2017 to December 2019 period using 1) ERA5 (see Section 2.2.2) rainfall data158

combined with the static wetland maps from Globcover and GLWD, 2) the dynamic CYGNSS-based inundation maps,159

and 3) the SWAMPS v3 wetland maps (see Section 2.2.3) that have so far been the standard dynamic inundation maps160

used to drive WetCHARTs [Zhang et al., 2017a, Pandey et al., 2020, Saunois et al., 2020].161

2.2.2 ERA5 rainfall162

The ERA5 rainfall dataset is used both in direct comparison with the inundation maps produced by CYGNSS and as a163

parameter for the WetCHARTs methane emissions. ERA5 combines historical observations into global estimates using164

advanced modeling and data assimilation systems. In particular, we use monthly rainfall estimates from June 2017 to April165

2020 at a 30km grid resolution. The data is regridded to 0.5◦ × 0.5◦ resolution when used as an input for WetCHARTs.166

All ERA5 data is free and available for download on the European Centre for Medium-Range Weather Forecasts website167

(https://www.ecmwf.int/).168

2.2.3 SWAMPS169

The SWAMPS wetland maps product was first released in 2015 [Schroeder et al., 2015] and provides maps of fractional170

surface water globally at 25 km resolution. The product combines active microwave scatterometer data from ERS,171

QuikSCAT, and ASCAT (each covering a different time period) with radiometer data from SSM/I and SSMI/S (again172

covering different time periods), environmental variables such as wind speed and precipitation from MERRA-2, and173

MODIS land cover types maps. Version 3 of the SWAMPS product was released in 2019 [Jensen & Mcdonald, 2019].174

The update extends the dataset until 2019, includes more dynamic land cover types, and improves the masking of surfaces175

types that might raise false positives (such as flat deserts or snow). The data is available freely for download on the176

website of the Alaska Satellite Facility (https://asf.alaska.edu). Because of the high frequency of the scatterometers used177

to detect waterbodies, the product is not recommended for use over canopy-obscured wetlands [Schroeder et al., 2015].178

Despite this, the SWAMPS maps have been used extensively in WetCHARTs as a driver of wetland extent dynamics179

[Zhang et al., 2017a, Pandey et al., 2020, Saunois et al., 2020], using the maps to inform relative change compared to the180

baseline provided by GLWD and GLlobcover. Here, we use SWAMPS v3.2 [Jensen & Mcdonald, 2019] to understand the181

added value contained in CYGNSS-based inundation maps.182

3 Results183

3.1 CYGNSS–based monthly watermasks184

3.1.1 Spatial patterns185

Monthly watermasks are produced for the Pantanal (Figure 1 and S1) and the Sudd (Figure 2 and S2) wetlands at 0.01◦ ×186

0.01◦ resolution. The inundation maps show strong seasonal dynamics, with a significant increase in the extent of the187

inundated area during the wet season over both the Pantanal and the Sudd. Over the Pantanal during the dry season, the188

6
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Figure 3: Monthly inundation extent (black solid lines) based on CYGNSS watermasks and monthly average rainfall rate
from ERA-5 data (red dashed line) over (a) the Pantanal and (b) the Sudd. The figures on the right show the
cross-correlations between rainfall and inundation extent, highlighting the one to two month lag between the
two timeseries.

maps show an inundation extent similar to that captured by the Global Surface Water Landsat-based product ([Pekel et al.,189

2016], Figure S3). However, during the wet season, during which the land surface is often invisible to Landsat because190

of cloud cover, the CYGNSS-based maps show a much larger inundated area. Over the Sudd, the CYGNSS-based data191

indicate a much larger inundated area than the Global Surface Water product during both the dry and the wet seasons.192

Note that the white streaks in the final watermasks are associated with large variations in GPS antenna gain that lead to193

occasional overpasses with very high SNR. This issue has been fixed in the version 3.0 of the CYGNSS data, released at194

the end of 2020.195

3.1.2 Seasonal dynamics196

The expected correlation between rainfall amount and inundation extent is apparent when comparing rainfall data to197

the CYGNSS inundation maps. The direct link between inter-seasonal variations in rainfall amount and the resulting198

extent of the wetlands is particularly striking when looking at the timeseries of inundation extent (Figure 3) averaged199

over the entire areas shown in Figures 1 and 2. A cross-correlation analysis shows that the seasonality of rainfall and200

inundation extent are highly correlated, with a maximum correlation coefficient of 0.84 in the Sudd and 0.65 over201

the Pantanal. At both locations, this maximum is obtained for a two month lag in inundation compared to rainfall (Figure 3).202

203

In addition, we find that inundation extent demonstrates more inter-seasonal variability than the rainfall rate: both locations204
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exhibit similar seasonal minimum and maximum rainfall rates, but the effect of small inter-seasonal variations in rainfall205

appear to have an amplified impact on inundation extent. For example in the Sudd, the 2018 wet season saw a close to206

15% decrease in peak rainfall compared to 2017, but peak inundation was only half the acreage of the 2017 peak area207

(Figure 3). In the Pantanal, the maximum inundation extent during the 2019/2020 wet season only reached about 20% of208

the 2017/2018 levels.209

3.2 Methane emissions from tropical wetlands210

The WetCHARTs extended ensemble is run using ERA5 rainfall data, the SWAMPS fractional water maps, and the211

CYGNSS-based inundation maps from June 2017 to December 2019.212

3.2.1 Comparison to rainfall-based emissions213

A first order comparison shows that the CYGNSS-based and rainfall-based modeled emissions at both locations display214

similarly marked seasonality (Figure 4). However, at both locations we find that inundation-driven emissions are215

systematically higher than rainfall-driven emissions. In particular, rainfall-driven emissions fall to 0 for several months216

during the dry season, whereas inundation-based emissions are still positive during the dry season and as high as 20217

mg CH4/m2/day over the Pantanal in 2018.218

219

In addition, we find that the use of CYGNSS-based watermasks shifts both the timing and the magnitude of the220

methane emissions when compared to the rainfall-driven emissions (Figure 4): similarly to inundation and rainfall,221

inundation-driven emissions exhibit more inter-seasonal variability than rainfall-driven emissions. A cross-correlation222

analysis shows that the seasonality of inundation-driven methane emissions is delayed by two month compared to223

rainfall-driven emissions (Figure 5, peak correlation coefficient in the Sudd: 0.74, in the Pantanal: 0.85), matching the224

delayed observed between CYGNSS-based inundation timeseries and ERA5 rainfall data (Figure 3).225

226

Maps of the emissions (Figure S5) show that over the Pantanal, the main area driving the difference between rainfall- and227

inundation-based emissions during the wet season is the south-eastern part of the wetland. Over the Sudd (Figure S6),228

inundation-based emissions during the wet season are consistently larger than rainfall-driven ones over the eastern side of229

the wetland.230
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Figure 4: Average monthly emissions over the whole area for (a) the Pantanal and (b) the Sudd wetlands based on
CYGNSS watermasks (red), SWAMPS wetland maps (blue), and ERA5 rainfall (black). Dotted lines are the
average of all 18 models and the shaded areas shows the spread between the 5th and the 95th percentiles.
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3.2.2 Comparison to SWAMPS-based emissions231

We find that the range of seasonal variation in the SWAMPS maps is much smaller than the CYGNSS maps, which232

is reflected in the smaller range of variation in the modeled emissions at both locations (Figure 4). In particular, we233

find that the maximum SWAMPS-based emissions are close to CYGNSS-based lowest emissions. The seasonality of234

SWAMPS-based emissions matches closely the rainfall-based ones in the Pantanal, but are three to four months early235

in the Sudd (Figure 4). Emissions maps (Figure S6) indicate that SWAMPS-based emissions are concentrated over the236

White Nile, at the center of the domain, whereas CYGNSS and rainfall-based emissions are contributed mostly from the237

western side of the wetland.238

4 Discussion239

4.1 Hydrological response of wetlands240

The CYGNSS satellite constellation provides a new, unique view of two tropical wetlands and their seasonal changes241

over the last three years. We find that both the Pantanal and the Sudd wetlands exhibit a clear response to the rainfall242

amount of their wet seasons (Figure 3). While the inundated area peaks about two months after peak rainfall, there243

are clear spatial patterns in the timing of the flooding that are apparent from Figures S1 and S2. Over the Pantanal,244

flooding starts early in the rain season along the three main rivers draining into the wetlands: the Cuiabá River to the245

North, the Taquari River in the Center, and the Rio Negro to the South. In situ measurements along these main rivers246

also show that the timing of inundation is synchronous to rainfall [da Silva et al., 2020]. The rest of the wetlands fills in,247

ending with the area along the Paraguay River in the South. In the Sudd, inundation appears to be more homogeneous248

throughout the valley, although the contribution from the many small tributaries in the western plateau becomes increasingly249

apparent as the rain season evolves. The time lag found alsomatches with [Prigent et al., 2020] results over tropical wetlands.250

251

Another interesting feature of the inundation timeseries (Figure 3) is that inundation extent is not only affected252

by wet season rain, but also dry season rain: this is especially evident during the last rainy season (winter 2019/2020) over253

the Pantanal during which the wetland stayed mostly dry despite a robust rainy season. This might be tied to the extremely254

dry season in summer 2019, with nearly no rain from June to September of that year, and that lead to unprecedented wild255

fires in September through November 2019 [Ionova, 2020]. In-situ data from river gauges indicate that rivers across the256

wetland were significantly lower than average during the wet season 2019/2020, as well as during the subsequent dry257

season of 2020 [Marengo et al., 2021]. The drought and post-fire hydrophobicity might have lead to increased surface258

runoff [Larsen et al., 2009] at the onset of the rainy season and decreased refilling of the wetland as a result, although the259

very flat topography of wetlands is also expected to limit runoff. Increased infiltration due to drier soils is also possible,260

but no data was available to confirm either hypotheses.261

262

One limitation of the CYGNSS-based maps is that it is unclear whether the method is capable of differentiating263

between saturated soils and actual standing water above the soil surface. This is in large part due to the lack of other264

datasets (in-situ or remotely sensed) that would allow us to validate the maps. However, while this remains an important265

question to use this data in other contexts, the inundation proxy generated from CYGNSS still provides an informative tool266

for wetland methane emissions. Indeed, since the L-band probes c. 5-10 cm depth in the soil, signals that are interpreted as267

inundated may represent total saturation at this depth instead of standing water. This is the depth at which biogeochemical268

processes are understood to drive methane production [Angle et al., 2017, Zhao et al., 2020] and evidence shows that the269

effect of water level on wetland methane emissions is non-linear [Shao et al., 2017, de Vicente, 2021], with only negligible270

differences in emissions between fully saturated and inundated soils.271

272

Finally, because the algorithm looks for times when a pixel has a higher SR value than average, the algorithm is273

especially suited to capture seasonal wetlands. Permanent wetlands for which pixels are always flooded and the SR always274

high will tend to be missed by the algorithm, as can be seen in Figure 1: the Paraguay River that flows directly south of275

the Pantanal is clearly seen in the SR map (Figure 1, top left) but does not get flagged as wet because the pixels over276

the river always have high SR. As a result, the river gets mostly missed in the final watermask (Figure 1, bottom left).277

However, many high resolution maps exist for permanent water bodies since their position is stable and therefore better278

known than that of seasonal wetlands. Datasets such as the ones proposed in [Pekel et al., 2016], [Yamazaki et al., 2019],279

or [Lin et al., 2021] are all potential candidates that we are planning to leverage to complement the current algorithm as280

we expend it to the entire CYGNSS latitudinal range (c. 40◦N to 40◦S).281
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Figure 5: Cross-correlations between rainfall-based and inundation-based WetCHARTs CH4 emissions, highlighting the
two months lag between the two timeseries over (a) the Pantanal and (b) the Sudd wetlands.

4.2 Impact of CYGNSS-based watermasks on modeled methane emissions282

The WetCHARTs model is a unique tool to understand what drives wetland methane emissions and how wetlands283

contribute to the global methane cycle.284

4.2.1 Improvements of CYGNSS maps over existing products285

The observed discrepancy in seasonality in SWAMPS-based emissions over the Sudd matches the results from [Pandey286

et al., 2020], which found that SWAMPS maps over the Sudd wetlands are more than three months ahead of the seasonality287

in rainfall and TROPOMI total column methane observations. They found that the SWAMPS seasonality was instead288

closely aligned with river height of the White Nile. This matches our results that showed that SWAMPS-based emissions289

where predominantly coming from the White Nile (Figure S6). [Pandey et al., 2020]. [Pandey et al., 2020] attributes290

the discrepancy to SWAMPS’ incapacity to map wetlands under vegetation [Schroeder et al., 2015]. This result along291

with the smaller wetland area estimates, that lead to significantly lower modeled methane emissions, confirm that high292

frequency microwave data, such as the one used for SWAMPS are not appropriate to map tropical wetlands accurately due293

to the presence of vegetation, but that CYGNSS data can help fill in this data gap.294

4.2.2 Assessing CYGNSS-based modeled emissions295

While the Pantanal and the Sudd are located in remote areas where in-situ data is sparse, we do have a few pieces of296

evidence indicating that inundation-based modeled emissions are in better agreement with measured fluxes.297

298

First, one of the striking characteristics of the rainfall-driven model is the absence of methane emissions during299

the dry season at both the Pantanal and the Sudd. In contrast, inundation-driven maps show a reduced but still significant300

flux during the dry season, corresponding to 0.1 to 0.3 Tg CH4/month in the Pantanal and 0.05 to 0.1 Tg CH4/month in301

the Sudd (Figure S4). Flux tower measurements made in the Pantanal between 2014 and 2017 [Dalmagro et al., 2019]302

confirm that the wetland effluxes CH4 even during the dry season. Here, we find that the residual fluxes are mainly coming303

from the western part of the wetlands (Figure S5) that is considered to be inundated year-round.304

305

Secondly, using the Japanese Greenhouse gases Observing Satellite (GOSAT) over the Sudd wetlands, [Lunt et al., 2019]306

found yearly emissions ranging from about 2.5 to 7 Tg/year between 2010 and 2016. We find that in 2018, the average307

yearly emissions for the rainfall-based WetCHARTs models was 1.09 ± 0.50 Tg (average across all 18 models ± standard308

deviation) and 1.23 ± 0.48 Tg in 2019 (Figure S4). For the inundation-based models, the average was 2.10 ± 0.94 Tg in309

2018 and 3.58 ± 1.43 Tg in 2019. While we only have a short timeseries, both the higher average and the larger range of310

year-to-year variation of the inundation-based emissions are in better agreement with the GOSAT analysis than are the311

rainfall-based emissions.312
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313

Third, [Parker et al., 2018] found that the GOSAT total column methane over the Pantanal peaks about one month later314

than the rainfall-based WetCHARTs model. This delay is even clearer over the Paraná river in Argentina and this result is315

consistent with the delay we observed between rainfall-driven and inundation-driven emissions (Figure 5).316

317

Lastly, [Pandey et al., 2020] showed that over the Sudd wetlands, methane emissions models and methane con-318

centrations measured from the TROPOspheric Monitoring Instrument (TROPOMI, [Hu et al., 2018]) are out-of-sync. The319

authors came to the conclusion that the mismatch was due to a an issue with wetland extent maps and the discrepancy320

between rainfall and surface inundation, a result that is indeed confirmed by our study.321

4.3 Consequence for global methane emissions322

Wetlands are the largest natural emitters of methane and these emissions will likely increase with increasing temperatures323

due to climate change [Zhang et al., 2017b]. Understanding how methane will influence climate change and producing324

more accurate climate models is therefore dependent on improving our methane emissions models. Wetland extent has325

been identified time and time again as the largest source of uncertainty [Zhang et al., 2017a, Turner et al., 2019, Parker326

et al., 2020] and our work introduces a new, robust method for mapping wetlands based on CYGNSS data. The range of327

evidence coming from both the Sudd and the Pantanal indicates that these new inundation maps produce emissions that328

better capture the average and the temporal dynamics of both in-situ and remotely-sensed methane fluxes. This is crucial329

since many recent studies are finding that models are performing poorly at capturing the timing and the seasonal range of330

variations in wetland emissions when compared to new satellite methane data that has been becoming available [Parker331

et al., 2018, Lunt et al., 2019, Pandey et al., 2020]. Here, we demonstrated that what the community needs to significantly332

improve emissions models is more accurate wetland maps that are able to accurately capture the full range of variation in333

wetland extent.334

335

The CYGNSS-based wetland mapping technique presented here is currently being extended to the full CYGNSS336

coverage, about 40◦N and 40◦S, and could help improve wetland emissions models in this latitudinal range. However,337

how this new information will influence global emissions is not clear.On the one hand, our results indicate that improved338

inundation maps would lead to an overall increase in predicted wetland emissions during both the dry and wet seasons.339

On the other hand, evidence from the Pantanal shows that in some wetlands, there is more inter-seasonal variation in340

inundation than there is in rainfall, sometimes leading to a smaller-than-average wetland area even when rainfall amount341

is normal [Sandi et al., 2020]. This is due to the wetlands’ response to both wet and dry season rainfall, as well as342

upstream precipitation [Fossey et al., 2016, Karim et al., 2016]. Because existing wetland maps have been failing at343

capturing intra-seasonal dynamics, very little is know about the seasonal cycle of individual wetlands and their response344

to year-to-year variations in rainfall and evaporative conditions. However, accurately representing the wetland response to345

interannual variations in precipitation and temperature is the first step to properly characterize the effects that climate346

change will have on these ecosystems. In addition, the increasing pressure that many tropical ecosystems are facing from347

both land use change and climate change-induced increases in rainfall variability is likely to lead to a global reduction in348

wetland extent in the long run [Junk, 2002, Dixon et al., 2016, Inogwabini, 2020]. This would in turn drive a decrease349

in methane emissions. For this reason,the high quality maps of wetlands at high temporal and spatial resolution and350

unaffected by clouds or vegetation that we developed here based on CYGNSS data will be crucial to resolve seasonal351

dynamics [Rajib et al., 2020] and understand the resulting methane emissions and their sensitivity to variations in352

temperature and precipitation.353

5 Conclusion354

Wetlands are the largest natural source of methane on the planet. Uncertainty associated with wetland extent and tropical355

wetlands in particular is a leading source of inconsistency between models and existing data, an issue that the CYGNSS356

satellite data can help improve on. By providing monthly maps of inundated land at 0.01◦ × 0.01◦, we were able to357

capture wetlands seasonal dynamics and their response to wet and dry season rainfall input. We focused on two of the358

largest tropical wetlands: the Pantanal in Brazil and the Sudd in South Sudan. The new CYGNSS-based maps were359

incorporated into the WetCHARTs wetland methane emissions model and the results compared to WetCHARTs standard360

input that uses ERA5 rainfall data. We found that the inundation-based emissions have a seasonality shifted by about two361

months compared to the rainfall-driven emissions. In addition, dry season inundation-driven emissions were consistently362
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higher in both locations. Finally, we found that inundation experiences more inter-seasonal variability than rainfall does,363

resulting in more variable emissions for the inundation-driven models than for the rainfall-driven version. These results364

highlight the need to generate and include better wetland maps into emissions models in order to get an accurate picture of365

the effects of methane on climate change.366
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