
1. Introduction
Solar flares occur in regions of strong magnetic fields possessing concentrated free energy, which are susceptible 
to spontaneous reconnection that rapidly heats the plasma producing flare emission. At the photosphere these 
fields typically take the form of active regions that are characterized by strong horizontal field gradients, long and 
well-defined polarity inversion lines (PILs), and complex flux distributions (e.g., Barnes et al., 2007; Falconer 
et al., 2002, 2003, 2006; Schrijver, 2007). Vector magnetogram observations reveal that the magnetic field runs 
nearly parallel to the PIL, where the field is in a configuration that possesses significant free energy to drive 
flares. In addition to the free energy content, the other critical feature related to flare onset is the magnetic field 
complexity represented by the intermixing of opposing magnetic flux. At the simplest level, such complexity is 
found in strong gradients along the PIL (Falconer et al., 2003; Schrijver, 2007) to more extreme cases of flare 
production in delta spot active regions, which contain both polarities within single penumbra of uniform polarity. 
A well-known example is active region numbered 10,486, which produced a series of X-class flares in the fall 
of 2003.

The question naturally arises as to whether there are unique features which may serve as strong discriminators 
or predictors of flares. Schrijver (2007) found that the amount of unsigned flux within a distance of 15 Mm of 
the PIL was such a discriminator. Similar phenomenological studies have revealed a number of physical dis-
criminators for flare production based solely on the observed line-of-sight component of the field (e.g., Barnes 
et al., 2007; Falconer, 2001; Falconer et al., 2002, 2006; Leka & Barnes, 2003a, 2003b). These works describe 
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Plain Language Summary Our research is targeted at improving the accuracy of solar flare 
classification by training machine learning models with new interpretable features beyond well-known physics-
based predictors. We count the number of closed loops and calculate multiple summary statistics of the spatial 
distribution of high-resolution magnetic field images of solar active regions to boost the classification result of 
strong and weak flares. Our results reveal that the spatial distribution of local physical quantities derived from 
the magnetograms, beyond those commonly adopted, aggregated quantities, can be helpful to improve flare 
predictability.
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scalar quantities that are measures of the unsigned magnetic flux and the length of the PIL, which have proven 
useful for flare prediction. In the case of Falconer  (2001), four measures of magnetic free energy were de-
rived based on 3-component vector magnetograms: the length of the PIL exhibiting strong shear, vertical elec-
tric current, total unsigned flux, and the current helicity. These works were followed by more elaborate flare 
prediction studies employing more than 20 scalar quantities derived from Space-Weather HMI Active Region 
Patches (SHARPs), where HMI is the Helioseismic and Magnetic Imager for the Solar Dynamics Observatory 
(SDO), which we refer to as HMI/SDO hereafter. These SHARP variables are derived from largely uninterrupt-
ed high-resolution high-cadence full disk vector magnetograms, which provide sufficient data for successful 
application of machine learning for flare prediction (e.g., Bobra & Couvidat, 2015; Bobra et al., 2014; Y. Chen 
et al., 2019; Florios et al., 2018; Jiao et al., 2020; C. Liu et al., 2017; Nishizuka et al., 2018; J. Wang et al., 2020).

Statistical analysis typically strives to determine discriminant functions which may be linear or nonlinear func-
tions of variables constructed from the observed vector magnetic field, which are related to distributions of free 
energy in the system. Flares follow from two processes: first the buildup of free magnetic energy and second the 
release of that energy by magnetic reconnection. For the first component there are meaningful measures of build-
up of energy necessary for flare occurrences such as the active region (AR) size as denoted by unsigned magnetic 
flux and total electric current, current helicity or total free energy itself. Numerous studies illustrates (e.g., Barnes 
et al., 2016; Leka & Barnes, 2003b; Leka et al., 2019a, 2019b; Y. Chen et al., 2019). However, whether it is suf-
ficient to produce a flare involves much more subtlety as it relates to the complexity of the magnetic field which 
ties into the formation of current sheets, which initiates the flare energy release. Because of this complexity of the 
reconnection process, there can be a wide range of free energy densities found in flaring ARs, which emphasizes 
the challenging aspect of predicting flares.

In recent years, data-driven flare forecasting has caught much attention in the field of space sciences. Many 
machine learning algorithms have been adopted for solar flare prediction, either with or without operational fore-
casting in mind (Barnes et al., 2007). Bobra et al. (2014) introduced the Space-weather HMI Active Region Patch 
(SHARP) parameters, which are derived from HMI/SDO vector magnetograms and have been used by many solar 
flare prediction models in recent years (e.g., Barnes et al., 2016; Bobra & Couvidat, 2015; Camporeale, 2019; Y. 
Chen et al., 2019; Florios et al., 2018; Jiao et al., 2020; Leka & Barnes, 2018; Leka et al., 2019a, 2019b; H. Liu 
et al., 2019; Muranushi et al., 2016; Nishizuka et al., 2018, 2021). The success of using the SHARP parameters 
in solar flare forecasting showcases the importance of these parameters to the triggered solar eruptions. Despite 
this success, the SHARP parameters may not capture the full information of the HMI/SDO magnetogram im-
ages, which is relevant for flare forecasting. To directly analyze the magnetograms, there are efforts using deep 
neural network methods, which directly employ HMI/SDO magnetogram images to predict solar eruptions (e.g., 
the Long Short Term Memory network adopted by Y. Chen et al. [2019] and H. Liu et al. [2019]). The neural 
network models, however, suffer from poor interpretability, making it difficult to learn new insights of the under-
lying physics/mechanism of flare eruptions from those models. In an effort to obtain an interpretable solar flare 
forecasting model, while at the same time pushing the frontiers of discovering new physics of solar eruptions, we 
present our new results and findings on constructing spatial and topological features that are important for solar 
flare predictions, from the magnetograms of HMI/SDO.

In Y. Chen et al. (2019), it was shown that features derived from a deep neural network (autoencoder) can give 
similar performance to the SHARP parameters when adopted to solar flare predictions. However, one cannot 
conclude that the SHARP parameters contain all useful magnetogram information. Flare predictions for gener-
al-purpose image/video feature reduction techniques typically result in high-dimensional, highly correlated fea-
tures, many of which are redundant for flare predictions. To alleviate this issue, efficient dimension reduction and 
feature selection techniques are adopted in Y. Chen et al. (2019). However, the amount of random noise brought 
in with this high-dimensional feature construction with limited amount of training data still makes the perfor-
mance not ideal. Meanwhile, it is important to realize that even in this unfavorable situation of directly extracting 
features from magnetograms, we can achieve similar flare prediction performance when using only the SHARP 
parameters. This possibility makes it promising to further investigate alternative feature construction methods 
that result in information complementary to those already contained in the SHARP parameters.

More recently, some promising results have already been shown along this direction: in Deshmukh, Berger, 
Meiss, and Bradley (2021), topological features are derived for the Br component, which are shown to improve 
the performance of flaring active region predictions on top of SHARP parameters. More precisely, they count 
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the number of “loops” formed by high-Br pixels from the Br component as a flare predictor, a.k.a. the topological 
features referred therein.

Here, we extend this approach by combining both spatial and topological features of the polarity inversion line 
masked magnetograms (HMI/SDO active regions) with the SHARP parameters for solar flare predictions. We 
show that the results of the prediction models are better when we use all three sets of features, and that the spatial 
statistics features are of key importance. Furthermore, we point out the interpretations of the spatial statistics 
features and relate it back to the underlying mechanism of flare formation, thus using these features to inform the 
discovery of new physics.

The remainder of this paper is organized as follows. In Section 2, we first give a motivating example to show the 
potential of extracting shape information from HMI images for flare classification, then we describe the meth-
odology and details of constructing topological features and spatial statistics features out of HMI images and 
the distribution of SHARP quantities within active regions. In Section 3, we present the data used for empirical 
study and the prediction results based on newly constructed features and corresponding interpretations. Section 4 
concludes.

2. Feature Construction
The SHARP parameters, as introduced in Bobra et al. (2014), contain several essential physical quantities calcu-
lated from the three-component, two-dimensional HMI magnetic field data of active regions. It is important to 
note that all the SHARP parameters are scalar values summarizing physical quantities of the whole active region, 
which are calculated based on spatial averages (e.g., the MEANGAM) or spatial integration (e.g., the TOTUS-
JH). As a result, the SHARP parameters do not contain any information regarding the spatial distribution of the 
physical quantities.

A refined version of the SHARP parameters taking into account some information of the spatial distribution is 
the SHARP parameters weighted by the polarity inversion line (PIL) mask, as given by J. Wang et al. (2020). We 
refer to these features as the PIL-weighted SHARP parameters in the following text. The PIL mask is a weighted 
mask which puts high weight on the region where the vertical component of the magnetic field is zero (Br = 0), 
between regions of strong opposite polarity. Empirically, it is not practical to accurately pinpoint all pixels with 
Br = 0, so adjacent regions are also given smaller weights and overall the PIL mask is giving high weights to 
regions around the PIL and near-zero weight to other regions.

However localized, the PIL-weighted SHARP parameters still cannot reflect the spatial characteristics of the 
magnetic field, but merely be selective to information based on position. In this section, we introduce two sets of 
features constructed with the aim of augmenting the SHARP parameters by considering local spatial distribution 
of the magnetic field components around the polarity inversion line: one based on persistence homology in topol-
ogy and the other is based on concepts from the field of spatial statistics. We will apply these newly constructed 
features to flare classification and develop their utility in context with existing literature on related topics, for 
example, the weighted SHARP parameters by J. Wang et al. (2020) and the topological data analysis enabled 
feature construction by Deshmukh, Berger, Bradley, and Meiss (2020).

2.1. Motivating Example and PIL Mask Construction

To motivate our feature construction machinery, we start with a concrete example: comparing a strong and a weak 
flare that occurred in HARP region 377. In Figure 1, we show two rows of images with HMI magnetograms of 
HARP region 377, and two derived quantities. The top row is for an M class flare and the bottom for a B class 
flare. All images are collected 1 hr prior to the moment of peak flare intensity. Focusing on (a and d) first, one can 
see that before the M flare, the high magnetic flux pixels of opposing polarities are more clustered and concen-
trated in close proximity to one another. This distribution coincides with the formation of a well-defined polarity 
inversion line (PIL) (where Br = 0) that separates the regions of opposing polarity. The PIL is picked up by the 
corresponding polarity inversion line mask shown in (b and e). PILs are the epicenter of flare activity and have 
been used as a discriminator of flare regions in prior studies (Falconer et al., 2006; J. Wang et al., 2019). We also 
focus on the PIL regions when distinguishing strong and weak flares.
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We derive the PIL mask based on the method given in Schrijver (2007), which follows three steps. First, we pro-
duce two bitmaps, one for the positive field where pixels with Br > 200G are set to 1 and 0 otherwise, one for the 
negative field where pixels with Br < −200 G are set to −1 and 0 otherwise. Second, we derive the positive and 
negative masks using a density-based clustering algorithm (Ester et al., 1996). Finally, we multiply the two masks 
after convolving each mask with a Gaussian kernel with a bandwidth of 10 pixels. Details of the derivations can 
also be found in J. Wang et al. (2019).

If one only compares the SHARP parameters, such as the total unsigned flux, the difference between the M flare 
and B flare is not necessarily significant because both flares have regions with relatively high Br values. But if one 
focuses on the spatial distributions of regions of high Br values, such as how clustered these regions are and what 
geometric shapes they form jointly and individually, then extra discriminating power for telling the flares apart 
would emerge. In the following two sub-sections, we will focus on the HMI magnetograms (the Br component in 
particular) restricted to the PIL region (non-zero PIL weight region), for which we derive topological and spatial 
features. We concentrate on the PIL region since it removes many irrelevant regions outside of the flaring region 
(J. Wang et al., 2020) that can potentially create noises for the derived features.

Figure 1. Two HMI magnetograms and derived images of HARP 377. The two rows consist of three related images: (left) the Br component, (middle) the PIL weight 
mask, and (right) bitmap labeling pixels with absolute values of Br over 200 G, which locate the PIL region. The top row is collected 1 hr before the M-class flare 
peaked at 2011.02.13 17:38:00 while the bottom row is collected 1 hr before the B-class flare peaked at 2011.02.13 00:42:00. Note the more energetic flare occurs at 
a later time when more flux has emerged and the PIL is significantly longer. Different scales are used to bring out structure in Br and the PIL mask. Panels (c and f) 
appear to have a larger mask region when compared to the PIL mask shown in panels (b and e), which is due to the fact that many pixels that are also part of the PIL 
mask but have near-zero PIL weights, leading to their invisibility in the PIL masks.
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Besides the Br component, we also derive eight additional 2D SHARP quan-
tity maps as follows. We still calculate the SHARP intensive physical quanti-
ties for every pixel, but instead of taking the averages or spatially integrating 
them to form the scalar SHARP parameters, we retain the 2D distribution 
of each of these maps and multiply it by the same Br PIL mask. And we 
refer to these maps as SHARP parameter maps hereafter. Table 1 gives a 
summary of all nine SHARP parameter maps we collect/construct. We only 
include these nine SHARP parameter maps because they: (a) can be localized 
to every pixel; (b) can be thresholded with easy interpretations; (c) cover 
most of the “important features” based on many machine learning studies.

The same feature construction procedure is then applied to all nine SHARP 
parameter maps, which are created by multiplying by the 2-D SHARP distri-
butions by the PIL mask. For the topological features alone, our work using 
all nine SHARP parameter maps can be seen as an extension to the topolog-
ical data analysis in Deshmukh, Berger, Bradley, and Meiss (2020), which 
mainly focused on the original Br component when constructing topological 
features. For spatial statistics features, which have not yet been adopted by 
others in literature as far as we are aware of, we only focus on the Br compo-
nent for the ease of interpretation. All of the features, both topological and 
spatial statistics features, are derived only for the PIL region. As a compari-
son, we use the PIL-weighted SHARP parameters as a benchmark feature set, 
which has been shown to improve flare predictions as compared to unweight-
ed SHARP parameters (J. Wang et al., 2020).

We formulate the machine learning task in this study as strong (M/X) versus 
weak (B) flare binary classification. We exclude C-class flare samples to 

create a strong contrast between the positive and negative classes, thus making the post-hoc interpretation more 
meaningful. We also exclude the non-flaring samples as it is hard to decide the amount of such “quiet time” 
samples in the training and testing set. An excessive amount of non-flaring samples would boost the final classi-
fication metrics. Also, including these samples would make the model interpretation harder because the signals 
picked up by the features can be a hybrid of discriminators against quiet times and against weak flares. We limit 
our sample sets to M/X and B flares only to make the interpretation straightforward. In Appendix A, we give 
results when C-class flares are also included as an extension.

2.2. Topological Features

The derivation of our topological features is based on the topological data analysis (TDA) in Deshmukh, Berger, 
Bradley, and Meiss (2020) and Deshmukh, Berger, Meiss, and Bradley (2021). They take the Br component from 
both flaring ARs and non-flaring ARs, apply a series of Br threshold values to every pixel and count the number 
of “loops” formed by the high-flux pixels above the thresholds. Loops are defined under the notion of cubical 
complex, which will be developed shortly. The number of loops under each threshold is used as a flaring region 
predictor.

Compared to the previous works, we have these extensions:

1.  We expand the image set to be analyzed from just the Br mask to multiple other SHARP parameters maps.
2.  We restrict our TDA application to the PIL region only to remove noises in feature construction.
3.  We adopt the topological features for strong (M/X) versus weak (B) flare classification purpose.

In this subsection, we briefly review the methodology first and then highlight the differences of our data pipeline 
compared to existing literature.

Topological data analysis, a.k.a. TDA (see Wasserman [2018] for a brief review), is a field investigating the math-
ematical shape of a point cloud or a function. It establishes the concept of topological invariance between objects 
that share the same topological property, such as a ball and cube, or a cup and a donut. TDA can be applied to 
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of the SHARP parameters can be found in Table 3 of Bobra et al. (2014).

Table 1 
SHARP Parameter Maps, Where the Formulas in the Middle Column Are 
Applied to Every Pixel of the HMI Magnetogram
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analyze the 2D SHARP parameter maps since all SHARP parameters can be viewed as a 2D function with each 
pixel's x and y coordinate being the functional input.

It is not practical to summarize all shape information of a function or a point cloud, and a very simple summary 
statistics in TDA about the topology property is the Betti number (Munch, 2017). Betti numbers, typically de-
noted as β0, β1, β2, … , counts the number of holes of 0, 1, 2, … dimension. In 2D, β0, β1 represents the number 
of connected components and loops. These loops are closed curves formed at similar levels of Br attained in the 
magnetogram rather than the more familiar coronal loops observed in the extreme ultraviolet. In our analysis, we 
just focus on the β1 Betti number, counting the number of loops within the 2D SHARP parameter maps.

Because every 2D SHARP parameter map is a digitized image, it is not a continuous but a discretized surface. 
Therefore, we need a proper definition of loop in these 2D images. Take the Br component as an example, if one 
thresholds the Br image at various levels and only keeps pixels below the threshold and within the PIL region, 
forcing all other pixels as 0, one obtains distributions as found in Figure 2 shown below.

One can notice that around the center of each image, there are several closed loops coming into existence when 
one increases the threshold from 194.99 to 583.35 G; and that some of the loops disappear while others remain 
but shrink in size when the threshold level is further increased to 918.35 G. All these thresholds are the 30-th, 75-
th, and 90-th percentile of the pixel-level Br across all data. We will elaborate on how to choose these thresholds 
empirically shortly. Intuitively, these loops are regions of high |Br| values within the PIL region, or in other words, 
they surround the peaks/valleys of the spatial distribution of Br. This sequence of thresholded images forms a 
filtration, where the set of all nonzero pixels of one image is a subset of the nonzero pixels of the next image with 
a higher threshold.

To give these kinds of loops in a digitized image a rigorous definition, we invoke the concept of cubical complex, 
as suggested by Deshmukh, Berger, Bradley, and Meiss (2020). For every image with threshold τ as shown in 
Figure 2, we generate a corresponding bitmap. Each bitmap sets all pixels that are: (a) below the threshold τ, (b) 
within the PIL region, as 1, and 0 otherwise. The loops are then defined for these bitmaps.

As a schematic example, in Figure 3 we show two bitmaps with red pixels being 1 and white pixels being 0. 
Figures 3a and 3b show two bitmaps generated from a low and a high threshold value, respectively. In a cubical 
complex, two pixels are connected if they share an edge or vertex and a loop is a closed, hollow area surrounded 
by a series of connected pixels. In Figure 3a, we have two loops, labeled as 1 and 3. As we increase the threshold, 
those pixels above the low threshold but under the high threshold become red and some new loops are formed 
(loop 2 in Figure 3b), some remain but shrink in size (loop 1 in both Figures 3a and 3b) and some disappear (loop 
3 in Figure 3a).

Every loop in this cubical complex has its own life-cycle. Each has a birth time and a death time, represented 
by the threshold values at which the loop emerges and disappears. A graph showing the birth-death pair of all 
loops is called the persistence diagram (Ghrist, 2008; Kaczynski et al., 2004; Munch, 2017; Zomorodian, 2012). 
When a loop has its death time much larger than the birth time, this loop indicates a strong peak/valley in the 2D 
distribution of a SHARP parameter map. Such loops appear as scattered points away from the 45° line in the per-
sistence diagram. In Figure 4, we show the persistence diagrams for all loops of the Br component of three flares 
coming from HARP region 377. One can see that compared to the two M flares, the persistence diagram of the B 
flare has loops that are way off the 45° line, indicating that there are fewer intense Br regions prior to the B flare.

Figure 2. Br component of HARP 377, 2011.02.13 17:38:00. Panels (a–c) only keep pixels whose |Br| value is below the threshold (194.99, 583.35, 918.35 G) and 
within the PIL region. The three thresholds are the 30-th, 75-th, and 90-th percentile of the Br values, at pixel-level, across all data.
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In order to extract features, namely the Betti number β1, from such diagrams, we do the following. For every 
SHARP parameter map in Table 1, we first calculate the pixel-level percentiles at 5%, 10%, …, 90%, 95% across 
all pixels of our data set. For the Br, we do not distinguish between the positive and negative pixels but take the 
absolute value before calculating the Betti numbers. The percentiles for |Br| are: 19.4, 42.8, …, 918.3, 1,165.8 G. 
Other SHARP parameters have their corresponding percentiles. Then we derive the persistence diagram for every 
SHARP parameter map using the procedure above. Finally, we count, at each percentile, how many loops are still 
alive (Maria et al., 2014). Because we have 19 percentiles, we have 19 Betti number features, and since we have 
9 SHARP maps, in total we obtain 19 × 9 = 171 topological features for a single flare.

2.3. Spatial Statistics Features

In the previous subsection, we reviewed the TDA analysis on SHARP parameter maps, which is able to summa-
rize the shape information of the spatial distribution of the corresponding SHARP parameter maps. Using the 
Betti number β1 as a summary statistics, we can locate the peaks/valleys of a spatial distribution of any SHARP 
parameter. However, there are other aspects of the spatial distribution, such as the density of high Br pixels and the 
spatial variation of a SHARP quantity, that cannot be summarized by the TDA. Spatial statistics techniques (see 
Gelfand, Diggle, Guttorp, and Fuentes (2010) and references therein), on the other hand, provides natural tools 
to extract this information from spatial distributions. In our spatial statistics analysis, we focus on the Br maps 
only for the sake of interpretability. The two relevant spatial statistics tools that we adopt here are the Ripley's K 
function (Ripley, 1976) and the variogram (Cressie & Hawkins, 1980; Oliver & Webster, 2015).

Figure 3. Example of loops formed by cubical complexes. In a cubical complex, two pixels are connected if they share a 
vertex or an edge. Panel (a) at a low threshold, there are two loops formed, labeled as 1 and 3. Panel (b) at a higher threshold, 
more pixels are selected (marked red), and loop 3 is closed, loop 2 comes into existence and loop 1 remains alive.

Figure 4. Examples of persistence diagrams for two M flares and a B flare of HARP region 377. Every subplot has the flare peak time, flare class and flare intensity in 
the title. One can see that compared to the M flares, the B flare has less loops that are persistent, indicating that there are fewer regions of intense Br in the PIL region. 
All Br masks analyzed are collected 1 hr prior to the flare time. Both axes in each plot have the unit Gauss.
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2.3.1. Ripley's K Function

We briefly review the definition and interpretation of the Ripley's K function here. Interested readers can refer to 
Ripley (1976) for more details. The Ripley's K function is a functional summary of the density of a point cloud at 
various scales. Consider a set of points with coordinates 𝐴𝐴 {(𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖)}𝑛𝑛𝑖𝑖=1 , which are all located within an area of size 
A. The Ripley's K function is a function of the scale parameter d, defined as

𝐿𝐿(𝑑𝑑) =

√

√

√

√

√

√

𝐴𝐴
𝑛𝑛
∑

𝑖𝑖=1

𝑛𝑛
∑

𝑗𝑗=1,𝑗𝑗≠𝑖𝑖
𝑘𝑘𝑖𝑖,𝑗𝑗

𝜋𝜋𝑛𝑛(𝑛𝑛 − 1)
,

 (1)

where ki,j = 1 if point (xi, yi) and point (xj, yj) are within Euclidean distance d. Intuitively, the Ripley's K function 
calculates the proportion of pairs of points that are within distance d. Since d can take on any arbitrary value, the 
Ripley's K function reflects the clustering and dispersion properties of the points in the point cloud.

The area size A is an important parameter in the calculation. In Figures 5a and 5b we show two identical point 
clouds, generated from a 2D uniform distribution, located in areas of different sizes. In Figure 5a, the red bound-
ing box shows the area considered when calculating the Ripley's K function for the point cloud. In Figure 5b, the 
area is the whole region: [0, 20] × [0, 20]. With the same point cloud, one can see that their Ripley's K function, 
plotted in Figure 5d, are very different. The Ripley's K function for pattern A and B are relatively straight, mean-
ing that points are nearly uniformly and randomly distributed in the area. When all points are randomly distrib-
uted, the proportion of points within radius d grows linearly with the size the circle πd2, so L(d) ∼ O(d) and the 
slope is related to 𝐴𝐴

√

𝐴𝐴 . In Figure 5c, we show another point pattern coming from a Gaussian mixture distribution. 
Its corresponding Ripley's K function is plotted in Figure 5d in green. With a relatively small d, the Ripley's K 
function is concave and indicates a clustering pattern of points. As d becomes larger, the function becomes con-
vex and indicates that at a relatively large scale, distribution of points are dispersed (scattered in five clusters).

We need to define two key elements in order to calculate the Ripley's K function that contains the spatial infor-
mation we desire from the SHARP parameter maps: an area and a point cloud within the area. In our implemen-
tation, we take the PIL region, as the area, and the number of pixels of the PIL region as the size A. Within the 
PIL region, we select all pixels with |Br| above a threshold τ. In some active regions, there are many pixels with 
extremely large |Br| values, leading to many pixels being selected above the threshold τ.

Based on the formula of Ripley's K function, one can see that it involves the pairwise distance matrix of all points. 
Empirically, we found that having over 500 points in the point cloud would make the computation of Ripley's K 
very time consuming. Therefore, if there are more than 500 such pixels, we randomly select only 500 of them 
where the probability of each pixel getting selected is proportional to |Br|. When there are fewer than 500 pixels 
before the sub-sampling, we also sample with replacement to make the final point clouds having 500 points.

The pixels selected are the point clouds and their (x, y) coordinates in the Br image specify their locations. The 
distance between any two pixels is the Euclidean distance between their coordinates. Since we are using the 
Cylindrical Equal Area (CEA) version of the Br magnetogram, each pixel has the same physical size, so it makes 
sense to use the pixel coordinate instead of the true latitude and longitude as the pixel location.

In Figure 6, we show the point clouds generated with thresholds being 400, 1,000, and 1,600 G (on the left, 
middle, right columns) for the Br component collected 1  hr prior to an M flare of HARP 377, without any 
sub-sampling for comparison purpose. The bottom row gives the corresponding Ripley's K functions for all pixel 
distances within the range [0, 100]. As we increase the threshold value τ, the point clouds are more and more 
clustered into several small clusters, and the Ripley's K function deviates more from a straight line (straight line 
corresponds to a random distribution pattern) toward the line pattern indicating a clustering pattern of points at 
various scales. This is exemplified also in the top row of Figure 6.

Similar to the topological features, the Ripley's K function also locates the clusters of high Br pixels. What sets 
it apart from the topological features is that it indicates at which scale (in terms of pixel distance) the clusters 
appear. In other words, the Ripley's K function provides additional information of the size of the loops, whereas 
topological features only captures the numbers of the loops.
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In practice, we implement the Ripley's K function calculations for the Br component as follows. For every Br map, 
we use 11 thresholds at 0, 200, 400, 600, 800, 1,000, 1,200, 1,400, 1,600, 1,800, 2,000 G, for generating the point 
clouds. We choose these thresholds because they can filter high |Br| value pixels at various magnitudes. There 
are some considerable differences among the point clouds selected based on these thresholds so that different 
Ripley's K functions do not have too much overlapping information.

For every point cloud, we calculate the Ripley's K function and evaluate the function on the distance grid {1, 2, …, 
99, 100}. We restrict the upper bound of the distance scale at 100 (pixel scale) to guarantee that it works for all 
Br images. Additionally, most PIL regions do not exceed 25,000 pixels, so analyzing a neighborhood of radius 
100 for every pixel covers a sub-region large enough to within the PIL region for a meaningful sample while still 
remaining localized. Thus in total we have 11 Ripley's K functions and each function has 100 functional values, 

Figure 5. Schematic examples of Ripley's K function. (a) A uniformly distributed point cloud in a small area. (b) Same point cloud but in a larger area, looking more 
like clustered in the middle. (c) A non-uniform point cloud. (d) Ripley's K function for all three point patterns. The function is nearly a straight line for both pattern 
A and B, indicating that points are uniformly randomly distributed in the area. But the different area sizes drastically scale the level of the function. Concave function 
indicates that points are more clustered than random while convex function indicates that points are more dispersed than random.
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leading to 1, 100 raw features per Br map. When constructing the final feature, we divide all Ripley's K func-
tions by the number of PIL pixels, namely A, so finally the level of Ripley's K function is inversely proportional 
to 𝐴𝐴
√

𝐴𝐴 .

2.3.2. Variogram

Both the topological features and the Ripley's K function on the Br maps are aimed at analyzing the clustering 
patterns of high |Br| pixels. Here we introduce another spatial statistics quantity, called the variogram, which is 
a description of the spatial continuity of the data. The variogram of the Br map is a functional summary of the 
spatial variation of Br at various scales. Again, we briefly introduce the definition and interpretations here, and 
interested readers shall refer to Omre (1984) for details. For any point cloud 𝐴𝐴 (𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖)𝑛𝑛𝑖𝑖=1 , denote their Br values as z 
(xi, yi). At (Euclidean) distance d, the variogram is defined as

𝛾𝛾(𝑑𝑑) = 𝛾𝛾(𝒔𝒔𝑖𝑖, 𝒔𝒔𝑗𝑗) =
1
2
Var[𝑧𝑧(𝒔𝒔𝑖𝑖) − 𝑧𝑧(𝒔𝒔𝑗𝑗)], (2)

where si = (xi, yi), sj = (xj, yj) are two arbitrary points in the point cloud that has a Euclidean distance d in-between, 
and Var denotes the variance of a random variable.

The variogram measures the variance of the differences of Br values between any two arbitrary pixels that have a 
distance d in between. The variogram is similar to the structure function, which has been applied to active regions 
to measure the fragmented nature of the magnetic network and its relationship to flares (Uritsky & Davila, 2012). 
In the Br map, typically one would expect that when two pixels are close, their Br values should be more similar. 
When two pixels are getting more distant, their Br values can be more different as well. The relationship of local 
similarity and correlation of Br and the scale d is captured by the variogram, which can provide extra spatial 
information on top of the topological features and the Ripley's K function.

In practice, it is hard to find a large number of pairs of pixels that are separated exactly by distance d. To estimate 
the empirical variogram, one would set a few disjoint bins of distance, and any pair of pixels would fall into one of 
the bins, depending on their distance. The variance is then calculated for all pairs of pixels belonging to the same 
bin. In our implementation of the variogram, we use the same point cloud for Ripley's K function calculation. In 
Figure 7, we show the corresponding variogram for the 3 point clouds shown in Figure 6.

Figure 6. Point cloud and the corresponding Ripley's K function for the Br component collected from HARP 377, 1 hr before the M flare peaked at 2011.02.13 
17:38:00. The top row includes three point clouds generated by three thresholds at 400, 1,000, 1,600 G. The bottom row shows the three corresponding Ripley's K 
functions.
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In each variogram, there are multiple distance bins whose centers are indicated by a vertical dashed line. In each 
bin, there are many pairs of pixels whose distance lies in the distance bin. The scatter points are the variogram 
estimates based on all pairs of pixels in the same bin. The blue line is the fitted curve of the scatter points using 
an exponential parametric model:

𝛾𝛾(𝑑𝑑|𝐶𝐶0, 𝑎𝑎) = 𝐶𝐶0(1 − 𝑒𝑒−
𝑑𝑑
𝑎𝑎 ) (3)

Since different point clouds may have all sorts of pairs of pixels whose distance may vary in a wide range. Dif-
ferent variograms can have different distance bins, making it hard to vectorize the variogram as a fixed-length 
feature vector. As a partial solution, we fit the exponential parametric model above with least squares and take the 
fitted parameter C0, a for each variogram as its features. The two parameters C0, a are termed as the sill and range 
parameter of the variogram. Since we have 11 point clouds per Br map, and each variogram has two parameters, 
we have 22 variogram features for a single Br map.

2.4. Feature Set Summary

In our feature construction, we use tools from TDA and Spatial Statistics to analyze the spatial distribution of 
SHARP parameters. For every flare, we first derive its nine SHARP parameter maps (Table 1). For each mag-
netogram, we detect the active region polarity inversion line (PIL) region and focus only on the PIL region for 
feature construction. Topology features are derived for all nine SHARP parameter maps, and each map has 19 
Betti numbers counting the numbers of loops in the 19 bitmaps. Ripley's K function is applied to the Br map only 
and every Br map has 11 Ripley's K functions out of 11 thresholds, and every function is evaluated on a 100-point 
grid, leading to 1,100 Ripley's K features. Variogram is also applied only to the Br map and 11 variograms are 
calculated based on 11 thresholds, where each variogram only retains its sill and range parameter as features.

In addition to all these features, there are some extra features that do not belong to any of the categories above, so 
we group all of them, including the width and height of the Br map, the size of the PIL region and the sum of PIL 
weights, as the auxiliary features. Figure 8 shows a workflow summary of all features constructed. The topology 
features and Ripley's K functions have high dimensions as shown in Figure 8, so we also use principal component 
analysis (PCA) and functional principal component analysis (FPCA) to reduce their dimensions. And we use the 
reduced dimensions as features for classification tasks. See the next section for details of the data preparation for 
prediction models.

Figure 7. Variogram estimates for point clouds in Figure 6. Vertical dashed lines show the center of each distance interval, and the scatter points are the semi-variance 
(see Equation 2) of Br values for all pairs of pixels separated by the distance within the interval. The green line is the fitted curve for the variogram estimates (i.e., the 
scattered points). Note that the scales of x, y axes are different across the three graphs with distinct thresholds.
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3. Data Description and Prediction Results
In this section, we first introduce the data set used for feature construction. Then we elaborate on the model we 
use for flare classification and the data preprocessing steps for dimension reductions on the feature sets. Finally, 
we demonstrate the prediction performances of different combinations of features and show the extra prediction 
gains of using topological and spatial statistics features on flare classification.

3.1. Description of Data

We use the Geostationary Operational Environmental Satellites (GOES) flare list spanning 2010/12–2018/06 for 
collecting flare events. There are originally 11,348 flares within this time range. For the purpose of flare classi-
fication, we only keep all B (weak), and M/X (strong) class flares. For each flare, we collect its corresponding 
high-resolution HMI magnetogram data from the JSOC at four time points: 1, 6, 12, and 24 hr prior to the peak 
soft X-ray flux. These 4 time points lead to 4 datasets, and we perform feature construction and flare classifica-
tions separately for each of the 4 datasets.

Some of the flares do not have available data for all four time points, especially for 12 and 24-hr data due to the 
lack of records at exactly 12 or 24 hr before the flare peak time, so we drop them to make sure that every flare 
appears in all four datasets, for sake of fair comparison across the four datasets. Finally, we have 399 M/X class 
flares and 1,972 B class flares coming from 487 HARP regions in each of the four datasets.

3.2. Data Preprocessing and Model Training

The prediction task is to classify strong (M/X) from weak (B) flares. For binary classification, we use the XG-
Boost model (T. Chen & Guestrin, 2016), which is an efficient gradient boosting (Friedman, 2002) method with a 
decision tree (Safavian & Landgrebe, 1991) base learner. The XGBoost model is implemented using the xgboost 
package in R, with the maximum depth of a tree set to 2, the learning rate set to 1 and the maximum number of 
rounds of boosting to be 100. We do not tune the parameter to optimize the performances to leave a fair ground 

Figure 8. A Workflow Illustration of Feature Construction. The workflow chart shows all five sets of features constructed based on the HMI magnetograms. All source 
data and data used in the intermediate steps are colored in green and all output features are in blue. Small oval boxes include either the names of the features/masks 
or the steps for deriving the features/masks. Both of the topological features and Ripley's K function have rather high dimensions, so we apply dimension-reduction 
procedures to compress information before inputting them into the flare classification model.
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for the comparison of features. We train the model with several different combinations of features from the feature 
set detailed in Figure 8.

For topological features (T) and the Ripley's K function features (Ripley_K), we have very high-dimensional 
feature spaces. To efficiently compress the information, we conduct dimension reduction on both sets of features. 
Specifically, for the 19 topology features of every SHARP map, we do a principal component analysis (PCA) and 
keep top five PCs in place of the original 19 features. We have confirmed that by choosing the top five PCs, we 
are able to explain 97.67% ∼ 99.61% variation of the topology features, depending on the SHARP masks. For 
every Ripley's K function, which is itself 100-dimensional, we carry out a functional principal component anal-
ysis (FPCA, Hall et al. [2006]) and keep top five PCs in place of the original 100 features. We can also confirm 
that the choice of top five PCs is able to summarize >99% of the functional variation for each Ripley's K function 
across all samples. After both steps, we reduce the topological features from 171 to 45 dimensions, and the Rip-
ley's K function features from 1,100 to 55 dimensions. We denote these dimension reduced features as T_PC (for 
topological features) and Ripley_K_PC, and the spatial statistics feature category as SP_PC, which includes the 
Ripley's K principal components and the original variogram parameter estimates.

To construct train and test sets for training and validating the classification model, we split the entire flare list 
according to their HARP regions. As a result, a flare from any HARP region appears in either train or test set 
only. On average, 70% of the HARP regions are assigned to the train set and the rest, 30%, go to the test set. The 
dimension reduction of topological and Ripley's K features are performed using the train set only and the test set 
PCs are predicted using the PCA and FPCA results from the train set. Other features are standardized based on 
the mean and standard deviation of the train set only to avoid information leaking.

There is randomness in the process of deriving the spatial statistics features because we always randomly pick 
a point cloud with 500 points from all candidate pixels. To guarantee the robustness of the features derived, we 
re-run the derivation of all these features 10 times and take the average as the final features. To make the feature 
comparison more robust to different train/test split, we re-run the model training/testing procedure 20 times, each 
time with a different train-test split, and then take the average performance for feature comparison. The model 
is trained separately for the four datasets, but the flares in the train/test set, in each iteration, is the same for all 
four datasets.

3.3. Model Evaluation and Discussion

To compare the discriminating power of different sets of features in the flare classification task, we define the 
M/X flares as the positive class and the B flares as the negative class. We use the test set True Skill Score (TSS), 
as the benchmark defined as follows:

TSS = TP
TP + FN

− FP
FP + TN

, 

where TP, TN are the positive (M/X), negative (B) samples that are classified correctly, and FP, FN are the neg-
ative (B), positive (M/X) samples that are classified wrongly as being positive and negative, respectively. The 
range of TSS is from −1 to 1, and it is designed such that a random classifier or an unskilled classifier (always 
predicting the majority class) has TSS 0. In Table 2, we show the mean test-set TSS for different feature sets 
across 20 iterations. In Appendix A, we include three extra tables for readers' references. In Table A1, we show 
the TSS with the same sets of features but trained with a totally random train-test split procedure. In Table A2, we 
also show the mean test-set TSS with the same sets of features for a strong (M/X) versus weak (B/C) flare classifi-
cation task. In Table A3, we show the Heidke Skill Score (HSS) for the binary classification (M/X vs. B) models.

We define the model fitted with SHARP parameters as the benchmark model, and compare all other feature com-
binations against it. We can see the average TSS differences between some combinations of features against the 
benchmark. To formally test whether such TSS differences are significant, we apply a one-sided paired Student's 
t-test to test the null hypothesis that a certain feature combination has the same TSS as the benchmark for any ar-
bitrary train-test split. In Table 2, we highlight the TSS in boldface when the TSS of a certain feature combination 
is significantly higher than the benchmark, that is, we reject the null hypothesis with 95% confidence. Since the 
sample size is small and we split the train and test set based on HARP regions, the uncertainty can be large. Given 
the high uncertainty of the TSS for every feature set, it is more informative to look at the pairwise hypothesis 
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testing result (pairing TSS score based on each train/test split), which suggests the presence of performance im-
provement when adding new features.

As one can see that when using the topological and spatial statistics features, we can improve the TSS of flare 
classification 12–24 hr before the flare peak time, and further improves when it is getting close to the flare peak 
time (i.e., 1 and 6 hr before). When combining all features together, we can do significantly better than only using 
the SHARP parameters. When we reduce the dimension of the topological and spatial statistics features, we can 
still maintain a margin of skill improvement in the 24 hr prediction time scenario. The improvement is even more 
salient for the Heidke Skill Score, as shown in Table A3.

Different from our topological features, in Deshmukh, Berger, Bradley, and Meiss (2020) and Deshmukh, Berger, 
Meiss, and Bradley (2021), the authors split the Br mask into a positive component and a negative component 
and calculate the Betti numbers separately for the two components. We tried the same method and replace the 
topology features of the Br channel with two sets of features corresponding to its positive/negative component 
but did not get any significantly different results. We contemplate that the reasons are: (a) other SHARP masks 
have taken the sign of flux into account and (b) the feature space is very high-dimensional. So we still stick to our 
original topology features when we report our results.

As discussed in Barnes et al. (2016) and subsequent related works on flare forecasting, it is impossible or unfair 
to compare skill scores directly with published work in literature when the data preparation procedures are con-
ducted differently. The same story goes for our case here. However, with the same data preparation adopted for 
various prediction models that we train and test, the conclusions that we make within the scope of this paper are 
based on fair comparisons. Our ultimate goal of this work is not to give the “best” prediction model for solar flare 
events, but to construct and interpret meaningful features that are useful for flare forecasting. Interested readers 
can refer to Barnes et al. (2016), Leka et al. (2019a), and X. Wang et al. (2020) for more thorough comparisons 
of results for flare forecasting models published in literature.

The performance improvement introduced by the new features is incremental and significant based on our sig-
nificance testing results. Besides measuring the contribution of all new features using the TSS, we also calcu-
late the individual feature importance using the Fisher score (F-score [Stork et al., 2001], as adopted by Bobra 
et al. (2014) and Deshmukh, Berger, Bradley, and Meiss [2020]). The Fisher score measures the individual fea-
ture's discriminating power in a binary classification setting. For any feature, xi, the Fisher score is calculated as

Prediction time (hour)

Feature combination 1 6 12 24

S 0.553 (0.075) 0.555 (0.071) 0.539 (0.068) 0.489 (0.077)

T 0.548 (0.069) 0.575 (0.071) 0.561 (0.063) 0.525 (0.069)

SP 0.558 (0.066) 0.578 (0.076) 0.546 (0.071) 0.528 (0.072)

S + T 0.578 (0.071) 0.581 (0.072) 0.554 (0.057) 0.536 (0.052)

S + SP 0.56 (0.059) 0.58 (0.073) 0.538 (0.078) 0.533 (0.074)

S + T + SP 0.586 (0.077) 0.599 (0.068) 0.558 (0.08) 0.57 (0.06)

S + T_PC + SP_PC 0.554 (0.075) 0.561 (0.077) 0.53 (0.082) 0.533 (0.076)

S + T + SP + A 0.587 (0.071) 0.605 (0.063) 0.551 (0.077) 0.55 (0.059)

S + T_PC + SP_PC + A 0.578 (0.068) 0.561 (0.071) 0.533 (0.076) 0.521 (0.089)

Note. Standard errors calculated based on a bootstrap procedure are given in brackets. Feature shorthand represents: SHARP 
parameter (S); Topology feature (T); Spatial Statistics feature (SP); Auxiliary feature (A); Topology feature principal 
component score (T_PC); Spatial statistics with functional principal component score for Ripley's K function (SP_PC). 
Boldface numbers indicate that the TSS is significantly higher than the benchmark model (S), which is fitted only with 
PIL-weighted SHARP parameters, across the 20 iterations. The column names labeled by 1, 6, 12, and 24 stands for the four 
datasets collected at 1, 6, 12, and 24 hr before the flare peak time.

Table 2 
Average True Skill Score (TSS), Based on 20 Train-Test Splits, for Classifying Strong (M/X) Versus Weak (B) Flares Using 
Different Sets of Features
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𝐹𝐹 (𝑖𝑖) =
(𝑥𝑥𝑖𝑖

+ − 𝑥𝑥𝑖𝑖)2 + (𝑥𝑥𝑖𝑖
− − 𝑥𝑥𝑖𝑖)2

1
𝑛𝑛+−1

∑𝑛𝑛+
𝑘𝑘=1 (𝑥𝑥

+
𝑘𝑘𝑘𝑖𝑖 − 𝑥𝑥𝑖𝑖)2 + 1

𝑛𝑛−−1

∑𝑛𝑛−
𝑘𝑘=1 (𝑥𝑥−

𝑘𝑘𝑘𝑖𝑖 − 𝑥𝑥𝑖𝑖)2
𝑘 

where 𝐴𝐴 𝐴𝐴𝐴𝑖𝑖
+, 𝐴𝐴𝐴𝑖𝑖

− are the subgroup mean of xi for all positive, negative samples; n+, n− are the numbers of positive, 
negative samples; and 𝐴𝐴 𝐴𝐴+

𝑘𝑘𝑘𝑘𝑘𝑘 𝐴𝐴
−
𝑘𝑘𝑘𝑘𝑘 are the kth observation of the positive, negative class. The Fisher score is the ratio 

of between-class variation and within-class variation. A high Fisher score indicates that the feature shows high 
separability for the two classes. We rank all features including the SHARP parameters (S), topological feature 
principal component scores (T_PC), Ripley's K functional principal component scores (Ripley_K_PC), vari-
ogram (V-gram) and auxiliary features (A) based on their F-score, for the 4 datasets separately. All scores are 
calculated using the full data set. In Figure 9, we show the top 15 features in their order of F-score (normalized 
to range [0, 1]), and color them based on their feature categories.

The feature ranking shows that the newly constructed features have equally good or even better individual dis-
criminating power than the SHARP parameters. Among all new features, the Ripley's K function stands out as 
the features with the highest discriminating power. Specifically, the top features are the first PC score of Ripley's 
K function generated based on different threshold values.

To visualize the discriminating power of Ripley's K function, we choose four representative cases, two for B 
flare and two for M flare, and show their Br, PIL mask, sampled point cloud at threshold 2,000 G and the corre-
sponding Ripley's K function (divided by the number of PIL pixels) in Figure 10. The most distinctive difference 
between the derived Ripley's K functions, as one can see by comparing the four plots, is the level of the function 
value. There are two factors that create the level difference: PIL area size and concentration of high-Br pixels. 
Since we divide each function by the number of PIL pixels, the function value tends to be small when the PIL 
area is large. The B flare examples have longer, wide-spread PIL regions, as suggested by the PIL mask, but only 
have small scattered pieces of high-Br regions along the PIL. Both of these facts would lead to a low functional 
value. The M flares, on the contrary, have smaller PIL areas, but the high-Br regions are close to each other and 
clustered into relatively bigger chunks. Both of these lead to higher functional values.

Apart from the differences of the level of the functions, one may also notice that the shape of the functions differ. 
The B flares have two jumps in the function while the M flares have a constantly increasing trend prior to the 
plateau. This exactly corresponds to the scattered small pieces of high-Br regions shown in both B flare cases. 

Figure 9. Normalized Fisher Score for selected features. Four panels correspond to the 1, 6, 12, and 24 hr data set. In each 
panel, top 15 features in terms of F-score are plotted. Among all four datasets, the top features are always the Ripley's K 
function's principal component score. Some features from other categories also rank among the top 15 features. The F-score 
ranking indicates that the spatial statistics features, especially the Ripley's K function, have greater individual discriminating 
power compared to SHARP parameters.
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Possibly some of the scattered small clusters of high-Br pixels for the B flare locate outside of the flaring area. 
The functions for the M flare have an increasing trend overall, suggesting that there is a region full of high-Br pix-
els (i.e., there are such pairs of high-flux pixels separated by an arbitrary distance within range 0 ∼ 80). The flare 
discriminator, captured by the Ripley's K function, is essentially the degree of concentration of high-flux regions 
of an active region, along the polarity inversion line. An M-flare tends to have a larger proportion of high-flux Br 
pixels clustered spatially in the flaring area, leading to a different Ripley's K function in terms of both functional 
level and shape, as compared to a B-flare.

The variogram effective range parameters also differ significantly between the B and M flares. For instance, the 
variogram of the B flare from HARP 1638 has a range parameter at 1.96 while the M flare from HARP 3311 has 
it at 75.95. This fact suggests that most of the Br spatial variations are observed within ∼2 pixel distances for the 
B flare point cloud and ∼76 pixel distances for the M flare point cloud. This further consolidates our argument 
that the B flare has small, scattered clusters of pixels with high Br values but the M flare has larger concentrations 
of such pixels.

In conclusion, the spatial statistics features we derived tend to predict an onset of a strong flare when observing 
the following Br pattern: (a) small PIL area; (b) large clusters of high-Br pixels not locating far from each other; 
(c) large Br value variation between clusters (e.g., between clusters of strongly positive and strongly negative 

Figure 10. Four flare examples (columns 1–4): B6.1 from HARP 5692 peaked at 04:36, 26 June 2015; B5.3 from HARP 1638 peaked at 02:23, 9 May 2012; M1.0 
from HARP 3311 peaked at 19:53, 26 October 2013; M1.0 from HARP 7115 peaked at 03:51, 5 September 2017. The four rows correspond to their Br values, PIL 
masks, point clouds with Br > 2,000 G within each PIL region, and the Ripley's K functions respectively. The K function differs, in terms of level and shape, between 
two M flares and two B flares. The main reason is that there are only scattered small clusters of high-Br regions for the B flares. On the contrary, M flares have a sub-
region full of high-Br pixels.
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flux). Such a pattern is not exhaustive for all strong flares, but it covers the majority of the cases and leads to 
features with high discriminating power.

4. Conclusion
In this paper, we investigate new features, on top of the SHARP parameters, for flare classification task. The first 
set of features is derived from persistence homology in topological data analysis, following the idea in Deshmukh, 
Berger, Meiss, and Bradley (2021). We extend the scope of HMI images from just the Br component to multiple 
SHARP parameter maps when conducting the analysis, and pay specific attention to the polarity inversion line 
region (PIL). The second set of features come from spatial statistics concepts. The Ripley's K function analyzes 
the spatial clustering/dispersion patterns of pixels with high Br. The Variogram analyzes the spatial variation of 
the Br flux at various distance scales. Both sets of features summarize some information regarding the spatial 
distribution of SHARP parameters, which adds additional information to the feature set that SHARP parameters 
themselves cannot provide. We demonstrate how the new features can improve skills of the prediction model and 
also show that new features, especially the Ripley's K functions, have great discriminating power.

One major finding, besides the prediction performance gains, is that by focusing on the Br component only, one 
can still derive topological and spatial features that has equal or superior predictive power than the SHARP pa-
rameters. We find that the top features for discrimination are the Ripley's K functions based on the Br component 
and topological features of the Br component. This result suggests that the spatial and shape information we 
derived from the Br component alone is a more powerful discriminator than the SHARP quantities derived from 
the horizontal magnetic field components. One of our future research goals is to analyze the spatial correlations 
of the Br component and the other SHARP quantities and check if there are systematic differences across different 
classes of solar flares.

We note that out findings of a strong correlation between the Br spatial distribution and the flare productivity 
shows an inherent connection between the free energy buildup and release in solar flares that is related to the clus-
tering and proximity of flux to the PIL. Such a connection has been established earlier by Falconer et al. (2003), 
Schrijver (2007), and Schrijver et al. (2005) who respectively found the gradient and proximity of the magnetic 
flux (line-of-sight component) with respect to the PIL to be strongly correlated with flares and coronal mass 
ejections. Our work goes much further in establishing this relationship to such a degree that it has greater discrim-
inating power for solar flares than the SHARP parameters derived from the full vector magnetic field.

From a theoretical perspective, our work suggest that the necessary components for flares, complexity and also 
free energy are intrinsically related to one another through the photospheric Br distribution. The relationship to 
Br and coronal free energy is not immediately obvious. However, we may infer that the energized coronal field 
may result from the evolution of non-force-free fields in the convection zone that produce signatures in the Br 
distribution detected by our statistical analysis. Such forces may affect the way individual flux tubes find cohe-
sion from magnetic twist or emerge through the convection zone. A physical basis for this conjecture is found in 
simulations of flux emergence of kink-unstable flux ropes that form delta spots, which are highly prone to flar-
ing (Fang & Fan, 2015; Linton et al., 1998; Toriumi & Hotta, 2019). Simulations of flux emergence also show 
the development of strong shear along forming PILs (Archontis & Török, 2008; Fan, 2001; Fang et al., 2010; 
Manchester, 2001, 2007; Török et al., 2014), as well as producing eruptive behavior (Manchester et al., 2004). 
Our spatial and topological analysis suggest a more subtle and universal process may be at work developing the 
photospheric magnetic field and coronal free energy in a related way.

The analysis of the Br component at multiple thresholds and multiple spatial scales can also be found in the 
thread of research on the fractal dimensions of flaring areas (Aschwanden & Aschwanden, 2008; Aschwanden 
et al., 2016; McAteer et al., 2005). They found that typically M/X flares have higher 2D fractal dimensions, indi-
cating a larger flaring areas of high Br. The key difference between the spatial statistics tools we adopted and the 
fractal dimensions is that, after we choose Br areas above a threshold, we measure the spatial clustering pattern 
of high Br pixels, rather than the size of the area, since we always randomly sample 500 pixels in the high-flux 
areas for analysis. We do believe that our work complements the researches on fractal dimensions to further 
quantify the shape complexity of strong Br areas at multiple scales, and our result suggests that there are more 
discriminating features to be found in the shape (i.e., clustering pattern) of the strong Br areas, beyond their size.
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With this paper, we also want to popularize the application of spatial statistics tools, which can provide both 
interpretable and predictive features for various machine learning tasks. The biggest advantage of the Ripley's 
K function and Variogram in our paper is that they can summarize the spatial patterns at various scales and give 
functional summary of the spatial distributions of the physical quantities. Focusing on various spatial scales can 
potentially uncover the multi-level patterns that are relevant for the initiation of flares. In the future, we want 
to apply the same or similar tools to analyze not just snapshots of HARP regions, but time-series of HARP re-
gions magnetograms to see if there are temporal trends of such spatial information that can further benefit flare 
predictions.

Appendix A
Appendix A1: TSS Based on Random Train-Test Split

Here are the results of TSS scores when we split train and test set randomly (Table A1):

Appendix A2: TSS for M/X Versus B/C

The following table shows the result of TSS scores when we classify M/X flares against B/C flares. The TSS, 
when compared to our main result in Table 2, is much lower due to the inclusion of C-class flares. But the area 
under curve (AUC) for all feature combinations remain at a high level at around 0.69 ∼ 0.78 and the statistical 
significance is also consistent with our main result: the new features can improve on top of the SHARP parame-
ters, especially when one wants to predict flares 6, 12, and 24 hr ahead (Table A2).

Prediction time (hour)

Feature combination 1 6 12 24

S 0.613 (0.033) 0.619 (0.04) 0.588 (0.046) 0.554 (0.037)

T 0.621 (0.041) 0.627 (0.037) 0.601 (0.038) 0.59 (0.05)

SP 0.606 (0.039) 0.642 (0.032) 0.587 (0.046) 0.593 (0.046)

S + T 0.647 (0.044) 0.653 (0.048) 0.612 (0.034) 0.587 (0.044)

S + SP 0.624 (0.03) 0.648 (0.033) 0.605 (0.032) 0.579 (0.039)

S + T + SP 0.647 (0.037) 0.66 (0.039) 0.625 (0.042) 0.608 (0.045)

S + T_PC + SP_PC 0.616 (0.036) 0.624 (0.048) 0.6 (0.054) 0.591 (0.039)

S + T + SP + A 0.665 (0.04) 0.66 (0.043) 0.64 (0.042) 0.615 (0.039)

S + T_PC + SP_PC + A 0.628 (0.046) 0.621 (0.043) 0.608 (0.046) 0.589 (0.043)

Note. Standard error in brackets. Feature shorthand represents: SHARP parameter (S); Topology feature (T); Spatial Statistics 
feature (SP); Auxiliary feature (A); Topology feature principal component score (T_PC); Spatial statistics with functional 
principal component score for Ripley's K function (SP_PC). Boldface numbers indicate that the TSS is significantly higher 
than the benchmark model (S), which is fitted only with SHARP parameters in the PIL region, across the 20 iterations. The 
column names labeled by 1, 6, 12, and 24 stands for the four datasets collected at 1, 6, 12, and 24 hr before the flare peak time.

Table A1 
Average True Skill Score (TSS), Based on 20 Random Train-Test Split, for Classifying Strong (M/X) Versus Weak (B) Flares 
Using Different Sets of Features

Prediction time (hour)

Feature combination 1 6 12 24

S 0.234 (0.082) 0.198 (0.069) 0.182 (0.075) 0.146 (0.089)

T 0.224 (0.124) 0.233 (0.097) 0.310 (0.084) 0.263 (0.109)

SP 0.244 (0.086) 0.192 (0.09) 0.186 (0.047) 0.200 (0.058)

Table A2 
Average True Skill Score (TSS), Based on 20 Train-Test Split, for Classifying Strong (M/X) Versus Weak (B/C) Flares Using 
Different Sets of Features
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Appendix A3: Heidke Skill Score Results for Binary Classification

Here, as a supplemental result for Table 2, we show the Heidke Skill Score for the binary classification problem. 
The Heidke Skill Score (HSS) is calculated as:

HSS = 2 ⋅ TP × TN − FN × FP
(FN + TP) × (FN + TN) + (FP + TN) × (TP + FP) 

where TP, TN, FN, and FP are the true positive, true negative, false positive, and false negative samples in the 
confusion matrix of the classification result (Table A3).

Data Availability Statement
All codes and data are included in our Github repository at https://github.com/husun0822/spat_feature_flare_pred.

Table A2 
Continued

Prediction time (hour)

Feature combination 1 6 12 24

S + T 0.266 (0.099) 0.214 (0.072) 0.302 (0.08) 0.253 (0.11)

S + SP 0.253 (0.096) 0.188 (0.07) 0.186 (0.086) 0.209 (0.071)

S + T + SP 0.276 (0.101) 0.216 (0.098) 0.302 (0.08) 0.289 (0.081)

S + T_PC + SP_PC 0.256 (0.074) 0.231 (0.076) 0.208 (0.078) 0.236 (0.116)

S + T + SP + A 0.276 (0.101) 0.215 (0.098) 0.303 (0.08) 0.287 (0.083)

S + T_PC + SP_PC + A 0.256 (0.074) 0.231 (0.076) 0.208 (0.078) 0.236 (0.116)

Note. Feature shorthand represents: SHARP parameter (S); Topology feature (T); Spatial Statistics feature (SP); Auxiliary 
feature (A); Topology feature principal component score (T_PC); Spatial statistics with functional principal component 
score for Ripley's K function (SP_PC). Boldface numbers indicate that the TSS is significantly higher than the benchmark 
model (S), which is fitted only with SHARP parameters in the PIL region, across the 20 iterations. The column names labeled 
by 1, 6, 12, and 24 stands for the four datasets collected at 1, 6, 12, and 24 hr before the flare peak time.

Prediction time (hour)

Feature combination 1 6 12 24

S 0.473 (0.069) 0.478 (0.067) 0.467 (0.06) 0.413 (0.073)

T 0.501 (0.058) 0.525 (0.071) 0.504 (0.06) 0.473 (0.061)

SP 0.508 (0.058) 0.529 (0.073) 0.485 (0.068) 0.478 (0.068)

S + T 0.529 (0.072) 0.526 (0.069) 0.495 (0.056) 0.478 (0.053)

S + SP 0.514 (0.06) 0.532 (0.076) 0.481 (0.074) 0.485 (0.075)

S + T + SP 0.544 (0.071) 0.548 (0.067) 0.502 (0.069) 0.521 (0.06)

S + T_PC + SP_PC 0.525 (0.066) 0.52 (0.067) 0.486 (0.07) 0.489 (0.067)

S + T + SP + A 0.535 (0.066) 0.545 (0.059) 0.488 (0.065) 0.496 (0.059)

S + T_PC + SP_PC + A 0.542 (0.059) 0.51 (0.064) 0.488 (0.064) 0.478 (0.075)

Note. Standard error in brackets. Feature shorthand represents: SHARP parameter (S); Topology feature (T); Spatial Statistics 
feature (SP); Auxiliary feature (A); Topology feature principal component score (T_PC); Spatial statistics with functional 
principal component score for Ripley's K function (SP_PC). Boldface numbers indicate that the HSS is significantly higher 
than the benchmark model (S), which is fitted only with SHARP parameters in the PIL region, across the 20 iterations. The 
column names labeled by 1, 6, 12, and 24 stands for the four datasets collected at 1, 6, 12, and 24 hr before the flare peak time.

Table A3 
Average Heidke Skill Score (HSS), Based on 20 Random Train-Test Split, for Classifying Strong (M/X) Versus Weak (B) 
Flares Using Different Sets of Features

https://github.com/husun0822/spat_feature_flare_pred
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