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Key Points:7

• We adopt a polarity inversion line (PIL) detecting algorithm to obtain PIL masks8

for the Br component and several SHARP parameter maps.9

• We construct two sets of spatial statistics features and a collection of topological10

features based on the PIL masks.11

• Our newly constructed features, by itself or joint with topological features, can12

significantly improve flare predictions than using SHARP parameters only.13

Plain Language Summary:14

Our research is targeted at improving the accuracy of solar flare classification by15

training machine learning models with new interpretable features beyond well-known physics-16

based predictors. We count the number of closed loops and calculate multiple summary17

statistics of the spatial distribution of high-resolution magnetic field images of solar ac-18

tive regions to boost the classification result of strong and weak flares. Our results re-19

veal that the spatial distribution of local physical quantities derived from the magnetograms,20

beyond those commonly adopted, aggregated quantities, can be helpful to improve flare21

predictability.22
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Abstract23

Many current research efforts undertake the solar flare classification task using the Space-24

weather HMI Active Region Patch (SHARP) parameters as the predictors. The SHARP25

parameters are scalar quantities based on spatial average or integration of physical quan-26

tities derived from the vector magnetic field, which loses information of the two-dimensional27

spatial distribution of the field and related quantities. In this paper, we construct two28

new sets of spatial features to expand the feature set used for the flare classification task.29

The first set uses the idea of topological data analysis to summarize the geometric in-30

formation of the distributions of various SHARP quantities across active regions. The31

second set utilizes tools coming from spatial statistics to analyze the vertical magnetic32

field component Br and summarize its spatial variations and clustering patterns. All fea-33

tures are constructed within regions near the polarity inversion lines (PILs) and classi-34

fication performances using the new features are compared against those using SHARP35

parameters (also along the PIL). We found that using the new features can improve the36

skill scores of the flare classification model and new features tend to have higher feature37

importance, especially the spatial statistics features. This potentially suggests that even38

using a single magnetic field component, Br, instead of all SHARP parameters, one can39

still derive strongly predictive features for flare classification.40

1 Introduction41

Solar flares occur in regions of strong magnetic fields possessing concentrated free42

energy, which are susceptible to spontaneous reconnection that rapidly heats the plasma43

producing flare emission. At the photosphere these fields typically take the form of ac-44

tive regions that are characterized by strong horizontal field gradients, long and well de-45

fined polarity-inversion lines (PILs), and complex flux distributions (Falconer et al., 2002,46

2003, 2006; Barnes et al., 2007; Schrijver, 2007, e.g.). Vector magnetogram observations47

reveal that the magnetic field runs nearly parallel to the PIL, where the field is in a con-48

figuration that possesses significant free energy to drive flares. In addition to the free en-49

ergy content, the other critical feature related to flare onset is the magnetic field com-50

plexity represented by the intermixing of opposing magnetic flux. At the simplest level,51

such complexity is found in strong gradients along the PIL (Falconer et al., 2003; Schri-52

jver, 2007) to more extreme cases of flare production in delta-spot active regions, which53

contain both polarities within single penumbra of uniform polarity. A well known ex-54

ample is active region numbered 10486, which produced a series of X-class flares in the55

fall of 2003.56

The question naturally arises as to whether there are unique features which may57

serve as strong discriminators or predictors of flares. (Schrijver, 2007) found that the amount58

of unsigned flux within a distance of 15 Mm of the PIL was such a discriminator. Sim-59

ilar phenomenological studies have revealed a number of physical discriminators for flare60

production based solely on the observed line-of-sight component of the field (e.g. (Falconer,61

2001; Falconer et al., 2002, 2006; Leka & Barnes, 2003a, 2003b; Barnes et al., 2007). These62

works describe scalar quantities that are measures of the unsigned magnetic flux and the63

length of the PIL, which have proven useful for flare prediction. In the case of Falconer64

(2002), four measures of magnetic free energy were derived based on 3-component vec-65

tor magnetograms: the length of the PIL exhibiting strong shear, vertical electric cur-66

rent, total unsigned flux, and the current helicity. These works were followed by more67

elaborate flare prediction studies employing more than 20 scalar quantities derived from68

Space Weather HMI Active Region Patches (SHARPs) , where HMI is the Helioseis-69

mic and Magnetic Imager for the Solar Dynamics Observatory (SDO), which we refer70

to as HMI/SDO hereafter. These SHARP variables are derived from largely-uninterrupted71

high-resolution high-cadence full disk vector magnetograms, which provide sufficient data72

for successful application of machine learning for flare prediction (e.g. Bobra et al. (2014);73

Bobra and Couvidat (2015); Nishizuka, Sugiura, Kubo, Den, and Ishii (2018); Liu, Deng,74
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Wang, and Wang (2017); Florios et al. (2018); Y. Chen et al. (2019); J. Wang et al. (2020);75

Jiao et al. (2020)).76

Statistical analysis typically strives to determine discriminant functions which may77

be linear or nonlinear functions of variables constructed from the observed vector mag-78

netic field, which are related to distributions of free energy in the system. Flares follow79

from two processes: firstly the buildup of free magnetic energy and secondly the release80

of that energy by magnetic reconnection. For the first component there are meaningful81

measures of buildup of energy necessary for flare occurrences such as the active region82

(AR) size as denoted by unsigned magnetic flux and total electric current, current he-83

licity or total free energy itself. Numerous studies illustrates (e.g. (Leka & Barnes, 2003b;84

Barnes et al., 2016; Leka et al., 2019b, 2019a; Y. Chen et al., 2019) . However, whether85

it is sufficient to produce a flare involves much more subtlety as it relates to the com-86

plexity of the magnetic field which ties into the formation of current sheets, which ini-87

tiates the flare energy release. Because of this complexity of the reconnection process,88

there can be a wide range of free energy densities found in flaring ARs, which empha-89

sizes the challenging aspect of predicting flares.90

In recent years, data-driven flare forecasting has caught much attention in the field91

of space sciences. Many machine learning algorithms have been adopted for solar flare92

prediction, either with or without operational forecasting in mind (Barnes et al., 2007).93

Bobra et al. (2014) introduced the Space-weather HMI Active Region Patch (SHARP)94

parameters, which are derived from HMI/SDO vector magnetograms and have been used95

by many solar flare prediction models in recent years (e.g. (Bobra & Couvidat, 2015; Barnes96

et al., 2016; Muranushi et al., 2016; Florios et al., 2018; Nishizuka et al., 2018; Leka &97

Barnes, 2018; Y. Chen et al., 2019; Liu et al., 2019; Leka et al., 2019b, 2019a; Campo-98

reale, 2019; Jiao et al., 2020; Nishizuka et al., 2021). The success of using the SHARP99

parameters in solar flare forecasting showcases the importance of these parameters to100

the triggered solar eruptions. Despite this success, the SHARP parameters may not cap-101

ture the full information of the HMI/SDO magnetogram images, which is relevant for102

flare forecasting. To directly analyze the magnetograms, there are efforts using deep neu-103

ral network methods, which directly employ HMI/SDO magnetogram images to predict104

solar eruptions (e.g. the Long Short Term Memory network adopted by Y. Chen et al.105

(2019) and Liu et al. (2019)). The neural network models, however, suffer from poor in-106

terpretability, making it difficult to learn new insights of the underlying physics/mechanism107

of flare eruptions from those models. In an effort to obtain an interpretable solar flare108

forecasting model, while at the same time pushing the frontiers of discovering new physics109

of solar eruptions, we present our new results and findings on constructing spatial and110

topological features that are important for solar flare predictions, from the magnetograms111

of HMI/SDO.112

In Y. Chen et al. (2019), it was shown that features derived from a deep neural net-113

work (autoencoder) can give similar performance to the SHARP parameters when adopted114

to solar flare predictions. However, one cannot conclude that the SHARP parameters115

contain all useful magnetogram information. Flare predictions for general-purpose im-116

age/video feature reduction techniques typically result in high-dimensional, highly cor-117

related features, many of which are redundant for flare predictions. To alleviate this is-118

sue, efficient dimension reduction and feature selection techniques are adopted in Y. Chen119

et al. (2019). However, the amount of random noise brought in with this high-dimensional120

feature construction with limited amount of training data still makes the performance121

not ideal. Meanwhile, it is important to realize that even in this unfavorable situation122

of directly extracting features from magnetograms, we can achieve similar flare predic-123

tion performance when using only the SHARP parameters. This possibility makes it promis-124

ing to further investigate alternative feature construction methods that result in infor-125

mation complementary to those already contained in the SHARP parameters.126
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More recently, some promising results have already been shown along this direc-127

tion: in Deshmukh, Berger, Meiss, and Bradley (2020), topological features are derived128

for the Br component, which are shown to improve the performance of flaring active re-129

gion predictions on top of SHARP parameters. More precisely, they count the number130

of “loops” formed by high-Br pixels from the Br component as a flare predictor, a.k.a.131

the topological features referred therein.132

Here, we extend this approach by combining both spatial and topological features133

of the polarity inversion line masked magnetograms (HMI/SDO active regions) with the134

SHARP parameters for solar flare predictions. We show that the results of the predic-135

tion models are better when we use all three sets of features, and that the spatial statis-136

tics features are of key importance. Furthermore, we point out the interpretations of the137

spatial statistics features and relate it back to the underlying mechanism of flare forma-138

tion, thus using these features to inform the discovery of new physics.139

The remainder of this paper is organized as follows. In Section 2, we first give a140

motivating example to show the potential of extracting shape information from HMI im-141

ages for flare classification, then we describe the methodology and details of construct-142

ing topological features and spatial statistics features out of HMI images and the dis-143

tribution of SHARP quantities within active regions. In Section 3, we present the data144

used for empirical study and the prediction results based on newly constructed features145

and corresponding interpretations. Section 4 concludes.146

2 Feature Construction147

The SHARP parameters, as introduced in Bobra et al. (2014), contain several es-148

sential physical quantities calculated from the three-component, two-dimensional HMI149

magnetic field data of active regions. It is important to note that all the SHARP param-150

eters are scalar values summarizing physical quantities of the whole active region, which151

are calculated based on spatial averages (e.g. the MEANGAM) or spatial integration (e.g.152

the TOTUSJH). As a result, the SHARP parameters do not contain any information re-153

garding the spatial distribution of the physical quantities.154

A refined version of the SHARP parameters taking into account some information155

of the spatial distribution is the SHARP parameters weighted by the polarity inversion156

line (PIL) mask, as given by J. Wang et al. (2020). We refer to these features as the PIL-157

weighted SHARP parameters in the following text. The PIL mask is a weighted mask158

which puts high weight on the region where the vertical component of the magnetic field159

is zero (Br = 0), between regions of strong opposite polarity. Empirically, it is not prac-160

tical to accurately pinpoint all pixels with Br = 0, so adjacent regions are also given161

smaller weights and overall the PIL mask is giving high weights to regions around the162

PIL and near-zero weight to other regions.163

However localized, the PIL-weighted SHARP parameters still cannot reflect the spa-164

tial characteristics of the magnetic field, but merely be selective to information based165

on position. In this section, we introduce two sets of features constructed with the aim166

of augmenting the SHARP parameters by considering local spatial distribution of the167

magnetic field components around the polarity inversion line: one based on persistence168

homology in topology and the other is based on concepts from the field of spatial statis-169

tics. We will apply these newly constructed features to flare classification and develop170

their utility in context with existing literature on related topics, e.g. the weighted SHARP171

parameters by J. Wang et al. (2020) and the topological data analysis enabled feature172

construction by Deshmukh, Berger, Bradley, and Meiss (2020).173
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2.1 Motivating Example & PIL Mask Construction174

To motivate our feature construction machinery, we start with a concrete exam-175

ple: comparing a strong and a weak flare that occurred in HARP region 377. In Figure176

1, we show two rows of images with HMI magnetograms of HARP region 377, and two177

derived quantities . The top row is for an M class flare and the bottom for a B class flare.178

All images are collected 1 hour prior to the moment of peak flare intensity. Focusing on179

(a) and (d) first, one can see that before the M flare, the high magnetic flux pixels of op-180

posing polarities are more clustered and concentrated in close proximity to one another.181

This distribution coincides with the formation of a well-defined polarity inversion line182

(PIL) (where Br = 0) that separates the regions of opposing polarity. The PIL is picked183

up by the corresponding polarity inversion line mask shown in (b) and (e). PILs are the184

epicenter of flare activity and have been used as a discriminator of flare regions in prior185

studies (Falconer et al., 2006; J. Wang et al., 2019). We also focus on the PIL regions186

when distinguishing strong and weak flares.187

We derive the PIL mask based on the method given in Schrijver (2007), which fol-188

lows three steps. First, we produce two bitmaps, one for the positive field where pixels189

with Br > 200G are set to 1 and 0 otherwise, one for the negative field where pixels190

with Br < −200G are set to -1 and 0 otherwise. Second, we derive the positive and neg-191

ative masks using a density-based clustering algorithm (Ester et al., 1996). Finally, we192

multiply the two masks after convolving each mask with a Gaussian kernel with a band-193

width of 10 pixels. Details of the derivations can also be found in J. Wang et al. (2019).194

If one only compares the SHARP parameters, such as the total unsigned flux, the195

difference between the M flare and B flare is not necessarily significant because both flares196

have regions with relatively high Br values. But if one focuses on the spatial distribu-197

tions of regions of high Br values, such as how clustered these regions are and what ge-198

ometric shapes they form jointly and individually, then extra discriminating power for199

telling the flares apart would emerge. In the following two sub-sections, we will focus on200

the HMI magnetograms (the Br component in particular) restricted to the PIL region201

(non-zero PIL weight region), for which we derive topological and spatial features. We202

concentrate on the PIL region since it removes many irrelevant regions outside of the flar-203

ing region (J. Wang et al., 2020) that can potentially create noises for the derived fea-204

tures.205

Besides the Br component, we also derive eight additional 2D SHARP quantity maps206

as follows. We still calculate the SHARP intensive physical quantities for every pixel,207

but instead of taking the averages or spatially integrating them to form the scalar SHARP208

parameters, we retain the 2D distribution of each of these maps and multiply it by the209

same Br PIL mask. And we refer to these maps as SHARP parameter maps here-210

after. Table 1 gives a summary of all nine SHARP parameter maps we collect/construct.211

We only include these nine SHARP parameter maps because they: 1) can be localized212

to every pixel; 2) can be thresholded with easy interpretations; 3) cover most of the “im-213

portant features” based on many machine learning studies.214
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Figure 1. Two HMI magnetograms and derived images of HARP 377. The two rows consist

of 3 related images: (left) the Br component, (middle) the PIL weight mask, and (right) bitmap

labeling pixels with absolute values of Br over 200 G, which locate the PIL region. The top row

is collected 1 hour before the M-class flare peaked at 2011.02.13 17:38:00 while the bottom row is

collected 1 hour before the B-class flare peaked at 2011.02.13 00:42:00. Note the more energetic

flare occurs at a later time when more flux has emerged and the PIL is significantly longer. Dif-

ferent scales are used to bring out structure in Br and the PIL mask. Panel (c) and (f) appear

to have a larger mask region when compared to the PIL mask shown in panel (b) and (e), which

is due to the fact that many pixels that are also part of the PIL mask but have near-zero PIL

weights, leading to their invisibility in the PIL masks.
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Channel Formula Unit
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+
(
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√(
∂Bh

∂x

)2
+
(

∂Bh
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)2
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√(
∂Bz
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)2
+
(

∂Bz

∂y

)2
G× Mm−1

USJZ |
(

∂By
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∂Bx

∂y

)
| A

USJH |Jz ×Bz| G2 m −1

POT
(

(Bx −BPOT
x )2 + (By −BPOT

y )2
)

erg cm−3

SHR arccos

(
BPOT

x ×Bx+BPOT

y ×By+B2

z√
BPOT

x

2
+BPOT

y

2
+B2

z

√
B2

x+B2

y+B2

z

)
Degree

Table 1. SHARP parameter maps, where the formulas in the middle column are applied to

every pixel of the HMI magnetogram. Here, Bx,By,Bz are the x, y, z components of the mag-

netic field and BPOT
x ,BPOT

y the potential field components respectively. Detailed definition of

the SHARP parameters can be found in Table 3 of Bobra et al. (2014).

The same feature construction procedure is then applied to all nine SHARP pa-215

rameter maps, which are created by multiplying by the 2-D SHARP distributions by the216

PIL mask. For the topological features alone, our work using all nine SHARP param-217

eter maps can be seen as an extension to the topological data analysis in Deshmukh, Berger,218

Bradley, and Meiss (2020), which mainly focused on the original Br component when219

constructing topological features. For spatial statistics features, which have not yet been220

adopted by others in literature as far as we are aware of, we only focus on the Br com-221

ponent for the ease of interpretation. All of the features, both topological and spatial222

statistics features, are derived only for the PIL region. As a comparison, we use the PIL-223

weighted SHARP parameters as a benchmark feature set, which has been shown to im-224

prove flare predictions as compared to unweighted SHARP parameters (J. Wang et al.,225

2020).226

We formulate the machine learning task in this study as strong (M/X) versus weak227

(B) flare binary classification. We exclude C-class flare samples to create a strong con-228

trast between the positive and negative classes, thus making the post-hoc interpretation229

more meaningful. We also exclude the non-flaring samples as it is hard to decide the amount230

of such “quiet time” samples in the training and testing set. An excessive amount of non-231

flaring samples would boost the final classification metrics. Also, including these sam-232

ples would make the model interpretation harder because the signals picked up by the233

features can be a hybrid of discriminators against quiet times and against weak flares.234

We limit our sample sets to M/X and B flares only to make the interpretation straight-235

forward. In the appendix, we give results when C-class flares are also included as an ex-236

tension.237
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2.2 Topological Features238

The derivation of our topological features is based on the topological data analy-239

sis (TDA) in Deshmukh, Berger, Bradley, and Meiss (2020) and Deshmukh, Berger, Meiss,240

and Bradley (2020). They take the Br component from both flaring ARs and non-flaring241

ARs, apply a series of Br threshold values to every pixel and count the number of “loops”242

formed by the high-flux pixels above the thresholds. Loops are defined under the notion243

of cubical complex, which will be developed shortly. The number of loops under each thresh-244

old is used as a flaring region predictor.245

Compared to the previous works, we have these extensions:246

• we expand the image set to be analyzed from just the Br mask to multiple other247

SHARP parameters maps,248

• we restrict our TDA application to the PIL region only to remove noises in fea-249

ture construction,250

• we adopt the topological features for strong (M/X) versus weak (B) flare classi-251

fication purpose.252

In this subsection, we briefly review the methodology first and then highlight the dif-253

ferences of our data pipeline compared to existing literature.254

Topological data analysis, a.k.a. TDA, (see Wasserman (2018) for a brief review)255

is a field investigating the mathematical shape of a point cloud or a function. It estab-256

lishes the concept of topological invariance between objects that share the same topo-257

logical property, such as a ball and cube, or a cup and a doughnut. TDA can be applied258

to analyze the 2D SHARP parameter maps since all SHARP parameters can be viewed259

as a 2D function with each pixel’s x and y coordinate being the functional input.260

It is not practical to summarize all shape information of a function or a point cloud,261

and a very simple summary statistics in TDA about the topology property is the Betti262

number (Munch, 2017). Betti numbers, typically denoted as β0, β1, β2, . . . , counts the263

number of holes of 0, 1, 2, . . . dimension. In 2D, β0, β1 represents the number of connected264

components and loops. These loops are closed curves formed at similar levels of Br at-265

tained in the magnetogram rather than the more familiar coronal loops observed in the266

extreme ultraviolet. In our analysis, we just focus on the β1 Betti number, counting the267

number of loops within the 2D SHARP parameter maps.268

Because every 2D SHARP parameter map is a digitized image, it is not a contin-269

uous but a discretized surface. Therefore, we need a proper definition of loop in these270

2D images. Take the Br component as an example, if one thresholds the Br image at271

various levels and only keeps pixels below the threshold and within the PIL region, forc-272

ing all other pixels as 0, one obtains distributions as found in Figure 2 shown below.273

One can notice that around the center of each image, there are several closed loops274

coming into existence when one increases the threshold from 194.99G to 583.35G; and275

that some of the loops disappear while others remain but shrink in size when the thresh-276

old level is further increased to 918.35G. All these thresholds are the 30-th, 75-th and277

90-th percentile of the pixel-level Br across all data. We will elaborate on how to choose278

these thresholds empirically shortly. Intuitively, these loops are regions of high |Br| val-279

ues within the PIL region, or in other words, they surround the peaks/valleys of the spa-280

tial distribution of Br. This sequence of thresholded images forms a filtration, where the281

set of all nonzero pixels of one image is a subset of the nonzero pixels of the next image282

with a higher threshold.283

To give these kinds of loops in a digitized image a rigorous definition, we invoke284

the concept of cubical complex, as suggested by Deshmukh, Berger, Bradley, and Meiss285

(2020). For every image with threshold τ as shown in Figure 2, we generate a correspond-286
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Figure 2. Br component of HARP 377, 2011.02.13 17:38:00. (a), (b), (c) only keep pixels

whose |Br| value is below the threshold (194.99G, 583.35G, 918.35G) and within the PIL region.

The three thresholds are the 30-th, 75-th and 90-th percentile of the Br values, at pixel level,

across all data.

ing bitmap. Each bitmap sets all pixels that are: 1) below the threshold τ , 2) within the287

PIL region, as 1, and 0 otherwise. The loops are then defined for these bitmaps.288

As a schematic example, in Figure 3 we show two bitmaps with red pixels being289

1 and white pixels being 0. Sub-figures (a) and (b) show two bitmaps generated from290

a low and a high threshold value, respectively. In a cubical complex, two pixels are con-291

nected if they share an edge or vertex and a loop is a closed, hollow area surrounded by292

a series of connected pixels. In (a) we have two loops, labeled as 1 and 3. As we increase293

the threshold, those pixels above the low threshold but under the high threshold become294

red and some new loops are formed (loop 2 in (b)), some remain but shrink in size (loop295

1 in both (a) and (b)) and some disappear (loop 3 in (a)).296

Figure 3. Example of loops formed by cubical complexes. In a cubical complex, two pixels

are connected if they share a vertex or an edge. Panel (a) at a low threshold, there are two loops

formed, labeled as 1 and 3. Panel (b) at a higher threshold, more pixels are selected (marked

red), and loop 3 is closed, loop 2 comes into existence and loop 1 remains alive.

Every loop in this cubical complex has its own life-cycle. Each has a birth time and297

a death time, represented by the threshold values at which the loop emerges and disap-298

pears. A graph showing the birth-death pair of all loops is called the persistence diagram (Kaczynski299

et al., 2004; Ghrist, 2008; Zomorodian et al., 2012; Munch, 2017). When a loop has its300

death time much larger than the birth time, this loop indicates a strong peak/valley in301

the 2D distribution of a SHARP parameter map. Such loops appear as scattered points302

away from the 45 degree line in the persistence diagram. In Figure 4, we show the per-303

sistence diagrams for all loops of the Br component of 3 flares coming from HARP re-304
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gion 377. One can see that compared to the two M flares, the persistence diagram of the305

B flare has loops that are way off the 45 degree line, indicating that there are fewer in-306

tense Br regions prior to the B flare.307

Figure 4. Examples of persistence diagrams for two M flares and a B flare of HARP region

377. Every subplot has the flare peak time, flare class and flare intensity in the title. One can see

that compared to the M flares, the B flare has less loops that are persistent, indicating that there

are fewer regions of intense Br in the PIL region. All Br masks analyzed are collected 1 hour

prior to the flare time. Both axes in each plot have the unit Gauss.

In order to extract features, namely the Betti number β1, from such diagrams, we308

do the following. For every SHARP parameter map in Table 1, we first calculate the pixel-309

level percentiles at 5%, 10%, . . . , 90%, 95% across all pixels of our dataset. For the Br,310

we do not distinguish between the positive and negative pixels but take the absolute value311

before calculating the Betti numbers. The percentiles for |Br| are: 19.4G, 42.8G, . . . , 918.3G, 1165.8G.312

Other SHARP parameters have their corresponding percentiles. Then we derive the per-313

sistence diagram for every SHARP parameter map using the procedure above. Finally,314

we count, at each percentile, how many loops are still alive (Maria et al., 2014). Because315

we have 19 percentiles, we have 19 Betti number features, and since we have 9 SHARP316

maps, in total we obtain 19× 9 = 171 topological features for a single flare.317

2.3 Spatial Statistics Features318

In the previous subsection, we reviewed the TDA analysis on SHARP parameter319

maps, which is able to summarise the shape information of the spatial distribution of320

the corresponding SHARP parameter maps. Using the Betti number β1 as a summary321

statistics, we can locate the peaks/valleys of a spatial distribution of any SHARP pa-322

rameter. However, there are other aspects of the spatial distribution, such as the den-323

sity of high Br pixels and the spatial variation of a SHARP quantity, that cannot be sum-324

marised by the TDA. Spatial statistics techniques (see Gelfand, Diggle, Guttorp, and Fuentes325

(2010) and references therein), on the other hand, provides natural tools to extract this326

information from spatial distributions. In our spatial statistics analysis, we focus on the327

Br maps only for the sake of interpretability. The two relevant spatial statistics tools328

that we adopt here are the Ripley’s K function (Ripley, 1976) and the variogram (Cressie329

& Hawkins, 1980; Oliver & Webster, 2015).330

2.3.1 Ripley’s K Function331

We briefly review the definition and interpretation of the Ripley’s K function here.
Interested readers can refer to Ripley (1976) for more details. The Ripley’s K function
is a functional summary of the density of a point cloud at various scales. Consider a set
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of points with coordinates {(xi, yi)}ni=1, which are all located within an area of size A.
The Ripley’s K function is a function of the scale parameter d, defined as

L(d) =

√√√√√A
n∑

i=1

n∑
j=1,j 6=i

ki,j

πn(n− 1)
, (1)

where ki,j = 1 if point (xi, yi) and point (xj , yj) are within Euclidean distance d. In-332

tuitively, the Ripley’s K function calculates the proportion of pairs of points that are within333

distance d. Since d can take on any arbitrary value, the Ripley’s K function reflects the334

clustering and dispersion properties of the points in the point cloud.335

The area size A is an important parameter in the calculation. In Figure 5 (a) and336

(b) we show two identical point clouds, generated from a 2D uniform distribution, lo-337

cated in areas of different sizes. In (a), the red bounding box shows the area considered338

when calculating the Ripley’s K function for the point cloud. In (b), the area is the whole339

region: [0, 20] × [0, 20]. With the same point cloud, one can see that their Ripley’s K340

function, plotted in (d), are very different. The Ripley’s K function for pattern A and341

B are relatively straight, meaning that points are nearly uniformly and randomly dis-342

tributed in the area. When all points are randomly distributed, the proportion of points343

within radius d grows linearly with the size the circle πd2, so L(d) ∼ O(d) and the slope344

is related to
√
A. In Figure 5 (c),we show another point pattern coming from a Gaus-345

sian mixture distribution. Its corresponding Ripley’s K function is plotted in (d) in green.346

With a relatively small d, the Ripley’s K function is concave and indicates a clustering347

pattern of points. As d becomes larger, the function becomes convex and indicates that348

at a relatively large scale, distribution of points are dispersed (scattered in five clusters).349

We need to define two key elements in order to calculate the Ripley’s K function350

that contains the spatial information we desire from the SHARP parameter maps: an351

area and a point cloud within the area. In our implementation, we take the PIL region,352

as the area, and the number of pixels of the PIL region as the size A. Within the PIL353

region, we select all pixels with |Br| above a threshold τ . In some active regions, there354

are many pixels with extremely large |Br| values, leading to many pixels being selected355

above the threshold τ .356

Based on the formula of Ripley’s K function, one can see that it involves the pair-357

wise distance matrix of all points. Empirically, we found that having over 500 points in358

the point cloud would make the computation of Ripley’s K very time consuming. There-359

fore, if there are more than 500 such pixels, we randomly select only 500 of them where360

the probability of each pixel getting selected is proportional to |Br|. When there are fewer361

than 500 pixels before the sub-sampling, we also sample with replacement to make the362

final point clouds having 500 points.363

The pixels selected are the point clouds and their (x, y) coordinates in the Br im-364

age specify their locations. The distance between any two pixels is the Euclidean dis-365

tance between their coordinates. Since we are using the Cylindrical Equal Area (CEA)366

version of the Br magnetogram, each pixel has the same physical size, so it makes sense367

to use the pixel coordinate instead of the true latitude and longitude as the pixel loca-368

tion.369

In Figure 6, we show the point clouds generated with thresholds being 400G, 1000G370

and 1600G (on the left, middle, right columns) for the Br component collected 1 hour371

prior to an M flare of HARP 377, without any sub-sampling for comparison purpose. The372

bottom row gives the corresponding Ripley’s K functions for all pixel distances within373

the range [0, 100]. As we increase the threshold value τ , the point clouds are more and374

more clustered into several small clusters, and the Ripley’s K function deviates more from375

a straight line ( straight line corresponds to a random distribution pattern) towards the376
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Figure 5. Schematic examples of Ripley’s K function. (a) a uniformly distributed point cloud

in a small area. (b) same point cloud but in a larger area, looking more like clustered in the

middle. (c) a non-uniform point cloud. (d) Ripley’s K function for all three point patterns. The

function is nearly a straight line for both pattern A and B, indicating that points are uniformly

randomly distributed in the area. But the different area sizes drastically scale the level of the

function. Concave function indicates that points are more clustered than random while convex

function indicates that points are more dispersed than random.
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line pattern indicating a clustering pattern of points at various scales. This is exempli-377

fied also in the top row of Figure 6.378

Figure 6. Point cloud and the corresponding Ripley’s K function for the Br component col-

lected from HARP 377, 1 hour before the M flare peaked at 2011.02.13 17:38:00. The top row

includes 3 point clouds generated by 3 thresholds at 400G, 1000G, 1600G. The bottom row shows

the 3 corresponding Ripley’s K functions.

Similar to the topological features, the Ripley’s K function also locates the clus-379

ters of high Br pixels. What sets it apart from the topological features is that it indi-380

cates at which scale (in terms of pixel distance) the clusters appear. In other words, the381

Ripley’s K function provides additional information of the size of the loops, whereas topo-382

logical features only captures the numbers of the loops.383

In practice, we implement the Ripley’s K function calculations for the Br compo-384

nent as follows. For every Br map, we use 11 thresholds at 0G, 200G, 400G, 600G, 800G,385

1000G, 1200G, 1400G, 1600G, 1800G, 2000G, for generating the point clouds. We choose386

these thresholds because they can filter high |Br| value pixels at various magnitudes. There387

are some considerable differences among the point clouds selected based on these thresh-388

olds so that different Ripley’s K functions do not have too much overlapping informa-389

tion.390

For every point cloud, we calculate the Ripley’s K function and evaluate the func-391

tion on the distance grid {1, 2, . . . , 99, 100}. We restrict the upper bound of the distance392

scale at 100 (pixel scale) to guarantee that it works for all Br images. Additionally, most393

PIL regions do not exceed 25, 000 pixels, so analyzing a neighborhood of radius 100 for394

every pixel covers a sub-region large enough to within the PIL region for a meaningful395

sample while still remaining localized. Thus in total we have 11 Ripley’s K functions and396

each function has 100 functional values, leading to 1, 100 raw features per Br map. When397

constructing the final feature, we divide all Ripley’s K functions by the number398

of PIL pixels, namely A, so finally the level of Ripley’s K function is inversely propor-399

tional to
√
A.400
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2.3.2 Variogram401

Both the topological features and the Ripley’s K function on the Br maps are aimed
at analyzing the clustering patterns of high |Br| pixels. Here we introduce another spa-
tial statistics quantity, called the variogram, which is a description of the spatial con-
tinuity of the data. The variogram of the Br map is a functional summary of the spa-
tial variation of Br at various scales. Again, we briefly introduce the definition and in-
terpretations here, and interested readers shall refer to Omre (1984) for details. For any
point cloud (xi, yi)

n
i=1, denote their Br values as z(xi, yi). At (Euclidean) distance d, the

variogram is defined as

γ(d) = γ(si, sj) =
1

2
Var[z(si)− z(sj)], (2)

where si = (xi, yi), sj = (xj , yj) are two arbitrary points in the point cloud that has402

a Euclidean distance d in-between, and Var denotes the variance of a random variable.403

The variogram measures the variance of the differences of Br values between any404

two arbitrary pixels that have a distance d in between. The variogram is similar to the405

structure function, which has been applied to active regions to measure the fragmented406

nature of the magnetic network and its relationship to flares (Uritsky & Davila, 2012).407

In the Br map, typically one would expect that when two pixels are close, their Br val-408

ues should be more similar. When two pixels are getting more distant, their Br values409

can be more different as well. The relationship of local similarity and correlation of Br410

and the scale d is captured by the variogram, which can provide extra spatial informa-411

tion on top of the topological features and the Ripley’s K function.412

In practice, it is hard to find a large number of pairs of pixels that are separated413

exactly by distance d. To estimate the empirical variogram, one would set a few disjoint414

bins of distance, and any pair of pixels would fall into one of the bins, depending on their415

distance. The variance is then calculated for all pairs of pixels belonging to the same bin.416

In our implementation of the variogram, we use the same point cloud for Ripley’s K func-417

tion calculation. In Figure 7, we show the corresponding variogram for the 3 point clouds418

shown in Figure 6.419

Figure 7. Variogram estimates for point clouds in Figure 6. Vertical dashed lines show the

center of each distance interval, and the scatter points are the semi-variance (see equation 2) of

Br values for all pairs of pixels separated by the distance within the interval. The green line is

the fitted curve for the variogram estimates (i.e. the scattered points). Note that the scales of x,y

axes are different across the three graphs with distinct thresholds.

In each variogram, there are multiple distance bins whose centers are indicated by420

a vertical dashed line. In each bin, there are many pairs of pixels whose distance lies in421
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the distance bin. The scatter points are the variogram estimates based on all pairs of422

pixels in the same bin. The blue line is the fitted curve of the scatter points using an ex-423

ponential parametric model:424

γ(d|C0, a) = C0

(
1− e− d

a

)
(3)

Since different point clouds may have all sorts of pairs of pixels whose distance may425

vary in a wide range. Different variograms can have different distance bins, making it426

hard to vectorize the variogram as a fixed-length feature vector. As a partial solution,427

we fit the exponential parametric model above with least-squares and take the fitted pa-428

rameter C0, a for each variogram as its features. The two parameters C0, a are termed429

as the sill and range parameter of the variogram. Since we have 11 point clouds per Br430

map, and each variogram has 2 parameters, we have 22 variogram features for a single431

Br map.432

2.4 Feature Set Summary433

In our feature construction, we use tools from TDA and Spatial Statistics to an-434

alyze the spatial distribution of SHARP parameters. For every flare, we first derive its435

nine SHARP parameter maps (Table 1). For each magnetogram, we detect the active436

region polarity inversion line (PIL) region and focus only on the PIL region for feature437

construction. Topology features are derived for all nine SHARP parameter maps, and438

each map has 19 Betti numbers counting the numbers of loops in the 19 bitmaps. Rip-439

ley’s K function is applied to the Br map only and every Br map has 11 Ripley’s K func-440

tions out of 11 thresholds, and every function is evaluated on a 100-point grid, leading441

to 1100 Ripley’s K features. Variogram is also applied only to the Br map and 11 var-442

iograms are calculated based on 11 thresholds, where each variogram only retains its sill443

and range parameter as features.444

In addition to all these features, there are some extra features that do not belong445

to any of the categories above, so we group all of them, including the width and height446

of the Br map, the size of the PIL region and the sum of PIL weights, as the auxiliary447

features. Figure 8 shows a workflow summary of all features constructed. The topology448

features and Ripley’s K functions have high dimensions as shown in Figure 8, so we also449

use principal component analysis (PCA) and functional principal component analysis450

(FPCA) to reduce their dimensions. And we use the reduced dimensions as features for451

classification tasks. See the next section for details of the data preparation for predic-452

tion models.453

3 Data Description and Prediction Results454

In this section, we first introduce the dataset used for feature construction. Then455

we elaborate on the model we use for flare classification and the data pre-processing steps456

for dimension reductions on the feature sets. Finally, we demonstrate the prediction per-457

formances of different combinations of features and show the extra prediction gains of458

using topological and spatial statistics features on flare classification.459

3.1 Description of Data460

We use the Geostationary Operational Environmental Satellites (GOES) flare list461

spanning 2010/12 - 2018/06 for collecting flare events. There are originally 11, 348 flares462

within this time range. For the purpose of flare classification, we only keep all B (weak),463

and M/X (strong) class flares. For each flare, we collect its corresponding high-resolution464

HMI magnetogram data from the JSOC at 4 time points: 1, 6, 12, 24 hours prior to the465
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Figure 8. A Workflow Illustration of Feature Construction. The workflow chart shows all 5

sets of features constructed based on the HMI magnetograms. All source data and data used in

the intermediate steps are colored in green and all output features are in blue. Small oval boxes

include either the names of the features/masks or the steps for deriving the features/masks. Both

of the topological features and Ripley’s K function have rather high dimensions, so we apply

dimension-reduction procedures to compress information before inputting them into the flare

classification model.

peak soft X-ray flux. These 4 time points lead to 4 datasets, and we perform feature con-466

struction and flare classifications separately for each of the 4 datasets.467

Some of the flares do not have available data for all 4 time points, especially for468

12-hour and 24-hour data due to the lack of records at exactly 12 or 24 hours before the469

flare peak time, so we drop them to make sure that every flare appears in all four datasets,470

for sake of fair comparison across the four datasets. Finally, we have 399 M/X class flares471

and 1,972 B class flares coming from 487 HARP regions in each of the 4 datasets.472

3.2 Data Pre-processing & Model Training473

The prediction task is to classify strong (M/X) from weak (B) flares. For binary474

classification, we use the XGBoost model (T. Chen & Guestrin, 2016), which is an ef-475

ficient gradient boosting (Friedman, 2002) method with a decision tree (Safavian & Land-476

grebe, 1991) base learner. The XGBoost model is implemented using the xgboost pack-477

age in R, with the maximum depth of a tree set to 2, the learning rate set to 1 and the478

maximum number of rounds of boosting to be 100. We do not tune the parameter to op-479

timize the performances to leave a fair ground for the comparison of features. We train480

the model with several different combinations of features from the feature set detailed481

in Figure 8.482

For topological features (T) and the Ripley’s K function features (Ripley K), we483

have very high dimensional feature spaces. To efficiently compress the information, we484

conduct dimension reduction on both sets of features. Specifically, for the 19 topology485

features of every SHARP map, we do a principal component analysis (PCA) and keep486

top 5 PCs in place of the original 19 features. We have confirmed that by choosing the487

top 5 PCs, we are able to explain 97.67% ∼ 99.61% variation of the topology features,488
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depending on the SHARP masks. For every Ripley’s K function, which is itself 100-dimensional,489

we carry out a functional principal component analysis (FPCA, Hall, Müller, and Wang490

(2006)) and keep top 5 PCs in place of the original 100 features. We can also confirm491

that the choice of top 5 PCs is able to summarize > 99% of the functional variation for492

each Ripley’s K function across all samples. After both steps, we reduce the topologi-493

cal features from 171 to 45 dimensions, and the Ripley’s K function features from 1100494

to 55 dimensions. We denote these dimension reduced features as T PC (for topolog-495

ical features) and Ripley K PC, and the spatial statistics feature category as SP PC,496

which includes the Ripley’s K principal components and the original variogram param-497

eter estimates.498

To construct train and test sets for training and validating the classification model,499

we split the entire flare list according to their HARP regions. As a result, a flare from500

any HARP region appears in either train or test set only. On average, 70% of the HARP501

regions are assigned to the train set and the rest, 30%, go to the test set. The dimen-502

sion reduction of topological and Ripley’s K features are performed using the train set503

only and the test set PCs are predicted using the PCA and FPCA results from the train504

set. Other features are standardized based on the mean and standard deviation of the505

train set only to avoid information leaking.506

There is randomness in the process of deriving the spatial statistics features be-507

cause we always randomly pick a point cloud with 500 points from all candidate pixels.508

To guarantee the robustness of the features derived, we re-run the derivation of all these509

features 10 times and take the average as the final features. To make the feature com-510

parison more robust to different train/test split, we re-run the model training/testing511

procedure 20 times, each time with a different train-test split, and then take the aver-512

age performance for feature comparison. The model is trained separately for the 4 datasets,513

but the flares in the train/test set, in each iteration, is the same for all 4 datasets.514

3.3 Model Evaluation and Discussion515

To compare the discriminating power of different sets of features in the flare clas-516

sification task, we define the M/X flares as the positive class and the B flares as the neg-517

ative class. We use the test set True Skill Score (TSS), as the benchmark defined as fol-518

lows:519

TSS =
TP

TP + FN
− FP

FP + TN
,

where TP, TN are the positive (M/X), negative (B) samples that are classified cor-520

rectly, and FP, FN are the negative (B), positive (M/X) samples that are classified wrongly521

as being positive and negative, respectively. The range of TSS is from -1 to 1, and it is522

designed such that a random classifier or an unskilled classifier (always predicting the523

majority class) has TSS 0. In Table 2, we show the mean test-set TSS for different fea-524

ture sets across 20 iterations. In the Appendix, we include three extra tables for read-525

ers’ references. In Table A.1, we show the TSS with the same sets of features but trained526

with a totally random train-test split procedure. In Table A.2, we also show the mean527

test-set TSS with the same sets of features for a strong (M/X) vs. weak (B/C) flare clas-528

sification task. In Table A.3, we show the Heidke Skill Score (HSS) for the binary clas-529

sification (M/X vs. B) models.530
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Prediction Time (hour)

Feature Combination 1 6 12 24

S
0.553 0.555 0.539 0.489

(0.075) (0.071) (0.068) (0.077)

T
0.548 0.575 0.561 0.525

(0.069) (0.071) (0.063) (0.069)

SP
0.558 0.578 0.546 0.528

(0.066) (0.076) (0.071) (0.072)

S+T
0.578 0.581 0.554 0.536

(0.071) (0.072) (0.057) (0.052)

S+SP
0.56 0.58 0.538 0.533

(0.059) (0.073) (0.078) (0.074)

S+T+SP
0.586 0.599 0.558 0.57

(0.077) (0.068) (0.08) (0.06)

S+T PC+SP PC
0.554 0.561 0.53 0.533

(0.075) (0.077) (0.082) (0.076)

S+T+SP+A
0.587 0.605 0.551 0.55

(0.071) (0.063) (0.077) (0.059)

S+T PC+SP PC+A
0.578 0.561 0.533 0.521

(0.068) (0.071) (0.076) (0.089)

Table 2. Average True Skill Score (TSS), based on 20 train-test splits, for classifying strong

(M/X) vs. weak (B) flares using different sets of features. Standard errors calculated based on

a bootstrap procedure are given in brackets. Feature shorthand represents: SHARP parameter

(S); Topology feature (T); Spatial Statistics feature (SP); Auxiliary feature (A); Topology fea-

ture principal component score (T PC); Spatial statistics with functional principal component

score for Ripley’s K function (SP PC). Boldface numbers indicate that the TSS is significantly

higher than the benchmark model (S), which is fitted only with PIL-weighted SHARP parame-

ters, across the 20 iterations. The column names labeled by 1,6,12,24 stands for the 4 datasets

collected at 1,6,12,24 hours before the flare peak time.

We define the model fitted with SHARP parameters as the benchmark model, and531

compare all other feature combinations against it. We can see the average TSS differ-532

ences between some combinations of features against the benchmark. To formally test533

whether such TSS differences are significant, we apply a one-sided paired Student’s t-534

test to test the null hypothesis that a certain feature combination has the same TSS as535

the benchmark for any arbitrary train-test split. In Table ??, we highlight the TSS in536

boldface when the TSS of a certain feature combination is significantly higher than the537

benchmark, i.e. we reject the null hypothesis with 95% confidence. Since the sample size538

is small and we split the train and test set based on HARP regions, the uncertainty can539

be large. Given the high uncertainty of the TSS for every feature set, it is more infor-540

mative to look at the pairwise hypothesis testing result (pairing TSS score based on each541
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train/test split), which suggests the presence of performance improvement when adding542

new features.543

As one can see that when using the topological and spatial statistics features, we544

can improve the TSS of flare classification 12-24 hours before the flare peak time, and545

further improves when it is getting close to the flare peak time (i.e. 1,6 hours before).546

When combining all features together, we can do significantly better than only using the547

SHARP parameters. When we reduce the dimension of the topological and spatial statis-548

tics features, we can still maintain a margin of skill improvement in the 24 hour predic-549

tion time scenario. The improvement is even more salient for the Heidke Skill Score, as550

shown in Table A.3.551

Different from our topological features, in Deshmukh, Berger, Bradley, and Meiss552

(2020); Deshmukh, Berger, Meiss, and Bradley (2020), the authors split the Br mask into553

a positive component and a negative component and calculate the Betti numbers sep-554

arately for the two components. We tried the same method and replace the topology fea-555

tures of the Br channel with two sets of features corresponding to its positive/negative556

component but did not get any significantly different results. We contemplate that the557

reasons are: 1) other SHARP masks have taken the sign of flux into account; 2) the fea-558

ture space is very high-dimensional. So we still stick to our original topology features559

when we report our results.560

As discussed in Barnes et al. (2016) and subsequent related works on flare forecast-561

ing, it is impossible or unfair to compare skill scores directly with published work in lit-562

erature when the data preparation procedures are conducted differently. The same story563

goes for our case here. However, with the same data preparation adopted for various pre-564

diction models that we train and test, the conclusions that we make within the scope565

of this paper are based on fair comparisons. Our ultimate goal of this work is not to give566

the “best” prediction model for solar flare events, but to construct and interpret mean-567

ingful features that are useful for flare forecasting. Interested readers can refer to Barnes568

et al. (2016), Leka et al. (2019a), and X. Wang et al. (2020) for more thorough compar-569

isons of results for flare forecasting models published in literature.570

The performance improvement introduced by the new features is incremental and571

significant based on our significance testing results. Besides measuring the contribution572

of all new features using the TSS, we also calculate the individual feature importance573

using the Fisher score (F-score (Stork et al., 2001), as adopted by Bobra et al. (2014);574

Deshmukh, Berger, Bradley, and Meiss (2020)). The Fisher score measures the individ-575

ual feature’s discriminating power in a binary classification setting. For any feature, xi,576

the Fisher score is calculated as577

F (i) =
(x̄i

+ − x̄i)2 + (x̄i
− − x̄i)2

1
n+−1

∑n+

k=1(x+k,i − x̄i)2 + 1
n−−1

∑n−

k=1(x−k,i − x̄i)2
,

where x̄i
+, x̄i

− are the subgroup mean of xi for all positive, negative samples; n+, n−578

are the numbers of positive, negative samples; and x+k,i, x
−
k,i are the k-th observation of579

the positive, negative class. The Fisher score is the ratio of between-class variation and580

within-class variation. A high Fisher score indicates that the feature shows high sepa-581

rability for the two classes. We rank all features including the SHARP parameters (S),582

topological feature principal component scores (T PC), Ripley’s K functional principal583

component scores (Ripley K PC), variogram (V-gram) and auxiliary features (A) based584

on their F-score, for the 4 datasets separately. All scores are calculated using the full dataset.585

In Figure 9, we show the top 15 features in their order of F-score (normalized to range586

[0, 1]), and color them based on their feature categories.587

The feature ranking shows that the newly constructed features have equally good588

or even better individual discriminating power than the SHARP parameters. Among all589

–19–



A
ut

ho
r 

M
an

us
cr

ip
t 

This article is protected by copyright. All rights reserved.  

 

 

 

 

 

 

 

manuscript submitted to Space Weather

Figure 9. Normalized Fisher Score for selected features. Four panels correspond to the

1,6,12,24 hour dataset. In each panel, top 15 features in terms of F-score are plotted. Among

all 4 datasets, the top features are always the Ripley’s K function’s principal component score.

Some features from other categories also rank among the top 15 features. The F-score ranking

indicates that the spatial statistics features, especially the Ripley’s K function, have greater

individual discriminating power compared to SHARP parameters.

new features, the Ripley’s K function stands out as the features with the highest discrim-590

inating power. Specifically, the top features are the 1st PC score of Ripley’s K function591

generated based on different threshold values.592

To visualize the discriminating power of Ripley’s K function, we choose four rep-593

resentative cases, two for B flare and two for M flare, and show their Br, PIL mask, sam-594

pled point cloud at threshold 2000G and the corresponding Ripley’s K function (divided595

by the number of PIL pixels) in Figure 10. The most distinctive difference between the596

derived Ripley’s K functions, as one can see by comparing the four plots, is the level of597

the function value. There are two factors that create the level difference: PIL area size598

and concentration of high-Br pixels. Since we divide each function by the number of PIL599

pixels, the function value tends to be small when the PIL area is large. The B flare ex-600

amples have longer, wide-spread PIL regions, as suggested by the PIL mask, but only601

have small scattered pieces of high-Br regions along the PIL. Both of these facts would602

lead to a low functional value. The M flares, on the contrary, have smaller PIL areas,603

but the high-Br regions are close to each other and clustered into relatively bigger chunks.604

Both of these lead to higher functional values.605

Apart from the differences of the level of the functions, one may also notice that606

the shape of the functions differ. The B flares have two jumps in the function while the607

M flares have a constantly increasing trend prior to the plateau. This exactly corresponds608

to the scattered small pieces of high-Br regions shown in both B flare cases. Possibly some609

of the scattered small clusters of high-Br pixels for the B flare locate outside of the flar-610

ing area. The functions for the M flare have an increasing trend overall, suggesting that611

there is a region full of high-Br pixels (i.e. there are such pairs of high-flux pixels sep-612

arated by an arbitrary distance within range 0 ∼ 80). The flare discriminator, captured613

by the Ripley’s K function, is essentially the degree of concentration of high-flux regions614
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of an active region, along the polarity inversion line. An M-flare tends to have a larger615

proportion of high-flux Br pixels clustered spatially in the flaring area, leading to a dif-616

ferent Ripley’s K function in terms of both functional level and shape, as compared to617

a B-flare.618

The variogram effective range parameters also differ significantly between the B619

and M flares. For instance, the variogram of the B flare from HARP 1638 has a range620

parameter at 1.96 while the M flare from HARP 3311 has it at 75.95. This fact suggests621

that most of the Br spatial variations are observed within ∼ 2 pixel distances for the622

B flare point cloud and ∼ 76 pixel distances for the M flare point cloud. This further623

consolidates our argument that the B flare has small, scattered clusters of pixels with624

high Br values but the M flare has larger concentrations of such pixels.625

In conclusion, the spatial statistics features we derived tend to predict an onset of626

a strong flare when observing the following Br pattern: 1) small PIL area; 2) large clus-627

ters of high-Br pixels not locating far from each other; 3) large Br value variation be-628

tween clusters (e.g. between clusters of strongly positive and strongly negative flux). Such629

a pattern is not exhaustive for all strong flares, but it covers the majority of the cases630

and leads to features with high discriminating power.631

4 Conclusion632

In this paper, we investigate new features, on top of the SHARP parameters, for633

flare classification task. The first set of features is derived from persistence homology in634

topological data analysis, following the idea in Deshmukh, Berger, Meiss, and Bradley635

(2020). We extend the scope of HMI images from just the Br component to multiple SHARP636

parameter maps when conducting the analysis, and pay specific attention to the polar-637

ity inversion line region (PIL). The second set of features come from spatial statistics638

concepts. The Ripley’s K function analyzes the spatial clustering/dispersion patterns of639

pixels with high Br. The Variogram analyzes the spatial variation of the Br flux at var-640

ious distance scales. Both sets of features summarize some information regarding the spa-641

tial distribution of SHARP parameters, which adds additional information to the fea-642

ture set that SHARP parameters themselves cannot provide. We demonstrate how the643

new features can improve skills of the prediction model and also show that new features,644

especially the Ripley’s K functions, have great discriminating power.645

One major finding, besides the prediction performance gains, is that by focusing646

on the Br component only, one can still derive topological and spatial features that has647

equal or superior predictive power than the SHARP parameters. We find that the top648

features for discrimination are the Ripley’s K functions based on the Br component and649

topological features of the Br component. This result suggests that the spatial and shape650

information we derived from the Br component alone is a more powerful discriminator651

than the SHARP quantities derived from the horizontal magnetic field components. One652

of our future research goals is to analyze the spatial correlations of the Br component653

and the other SHARP quantities and check if there are systematic differences across dif-654

ferent classes of solar flares.655

We note that out findings of a strong correlation between the Br spatial distribu-656

tion and the flare productivity shows an inherent connection between the free energy buildup657

and release in solar flares that is related to the clustering and proximity of flux to the658

PIL. Such a connection has been established earlier by (Falconer et al., 2003) and (Schrijver659

et al., 2005; Schrijver, 2007) who respectively found the gradient and proximity of the660

magnetic flux (line-of-sight component) with respect to the PIL to be strongly correlated661

with flares and coronal mass ejections. Our work goes much further in establishing this662

relationship to such a degree that it has greater discriminating power for solar flares than663

the SHARP parameters derived from the full vector magnetic field.664
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Figure 10. Four flare examples (columns 1-4): B6.1 from HARP 5692 peaked at 04:36, Jun

26, 2015; B5.3 from HARP 1638 peaked at 02:23, May 09, 2012; M1.0 from HARP 3311 peaked

at 19:53, Oct 26, 2013; M1.0 from HARP 7115 peaked at 03:51, Sept 05, 2017. The four rows cor-

respond to their Br values, PIL masks, point clouds with Br > 2000 G within each PIL region,

and the Ripley’s K functions respectively. The K function differs, in terms of level and shape,

between two M flares and two B flares. The main reason is that there are only scattered small

clusters of high-Br regions for the B flares. On the contrary, M flares have a sub-region full of

high-Br pixels.

From a theoretical perspective, our work suggest that the necessary components665

for flares, complexity and also free energy are intrinsically related to one another through666

the photospheric Br distribution. The relationship to Br and coronal free energy is not667

immediately obvious. However, we may infer that the energized coronal field may result668

from the evolution of non-force-free fields in the convection zone that produce signatures669

in the Br distribution detected by our statistical analysis. Such forces may affect the way670

individual flux tubes find cohesion from magnetic twist or emerge through the convec-671

tion zone. A physical basis for this conjecture is found in simulations of flux emergence672

of kink-unstable flux ropes that form delta spots, which are highly prone to flaring (Linton673

et al., 1998; Fang & Fan, 2015; Toriumi & Hotta, 2019). Simulations of flux emergence674

also show the development of strong shear along forming PILs (Manchester, 2001; Fan,675

2001; Manchester, 2007; Archontis & Török, 2008; Fang et al., 2010; Török et al., 2014),676

as well as producing eruptive behavior (Manchester et al., 2004). Our spatial and topo-677

logical analysis suggest a more subtle and universal process may be at work developing678

the photospheric magnetic field and coronal free energy in a related way.679
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The analysis of the Br component at multiple thresholds and multiple spatial scales680

can also be found in the thread of research on the fractal dimensions of flaring areas (Aschwanden681

et al., 2016; Aschwanden & Aschwanden, 2008; McAteer et al., 2005). They found that682

typically M/X flares have higher 2D fractal dimensions, indicating a larger flaring ar-683

eas of high Br. The key difference between the spatial statistics tools we adopted and684

the fractal dimensions is that, after we choose Br areas above a threshold, we measure685

the spatial clustering pattern of high Br pixels , rather than the size of the area, since686

we always randomly sample 500 pixels in the high flux areas for analysis. We do believe687

that our work complements the researches on fractal dimensions to further quantify the688

shape complexity of strong Br areas at multiple scales, and our result suggests that there689

are more discriminating features to be found in the shape (i.e. clustering pattern) of the690

strong Br areas, beyond their size.691

With this paper, we also want to popularize the application of spatial statistics tools,692

which can provide both interpretable and predictive features for various machine learn-693

ing tasks. The biggest advantage of the Ripley’s K function and Variogram in our pa-694

per is that they can summarize the spatial patterns at various scales and give functional695

summary of the spatial distributions of the physical quantities. Focusing on various spa-696

tial scales can potentially uncover the multi-level patterns that are relevant for the ini-697

tiation of flares. In the future, we want to apply the same or similar tools to analyze not698

just snapshots of HARP regions, but time-series of HARP regions magnetograms to see699

if there are temporal trends of such spatial information that can further benefit flare pre-700

dictions.701
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A Appendices883

A.1 TSS based on random train-test split884

Here are the results of TSS scores when we split train and test set randomly:885

Prediction Time (hour)

Feature Combination 1 6 12 24

S
0.613 0.619 0.588 0.554

(0.033) (0.04) (0.046) (0.037)

T
0.621 0.627 0.601 0.59

(0.041) (0.037) (0.038) (0.05)

SP
0.606 0.642 0.587 0.593

(0.039) (0.032) (0.046) (0.046)

S+T
0.647 0.653 0.612 0.587

(0.044) (0.048) (0.034) (0.044)

S+SP
0.624 0.648 0.605 0.579

(0.03) (0.033) (0.032) (0.039)

S+T+SP
0.647 0.66 0.625 0.608

(0.037) (0.039) (0.042) (0.045)

S+T PC+SP PC
0.616 0.624 0.6 0.591

(0.036) (0.048) (0.054) (0.039)

S+T+SP+A
0.665 0.66 0.64 0.615

(0.04) (0.043) (0.042) (0.039)

S+T PC+SP PC+A
0.628 0.621 0.608 0.589

(0.046) (0.043) (0.046) (0.043)

Table A.1. Average True Skill Score (TSS), based on 20 random train-test split, for classifying

strong (M/X) vs. weak (B) flares using different sets of features. Standard error in brackets.

Feature shorthand represents: SHARP parameter (S); Topology feature (T); Spatial Statis-

tics feature (SP); Auxiliary feature (A); Topology feature principal component score (T PC);

Spatial statistics with functional principal component score for Ripley’s K function (SP PC).

Boldface numbers indicate that the TSS is significantly higher than the benchmark model (S),

which is fitted only with SHARP parameters in the PIL region, across the 20 iterations. The

column names labeled by 1,6,12,24 stands for the 4 datasets collected at 1,6,12,24 hours before

the flare peak time.
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A.2 TSS for M/X vs. B/C886

The following table shows the result of TSS scores when we classify M/X flares against887

B/C flares. The TSS, when compared to our main result in Table 2, is much lower due888

to the inclusion of C-class flares. But the area under curve (AUC) for all feature com-889

binations remain at a high level at around 0.69 ∼ 0.78 and the statistical significance890

is also consistent with our main result: the new features can improve on top of the SHARP891

parameters, especially when one wants to predict flares 6, 12, 24 hours ahead.892

Prediction Time (hour)

Feature Combination 1 6 12 24

S
0.234 0.198 0.182 0.146

(0.082) (0.069) (0.075) (0.089)

T
0.224 0.233 0.310 0.263

(0.124) (0.097) (0.084) (0.109)

SP
0.244 0.192 0.186 0.200

(0.086) (0.09) (0.047) (0.058)

S+T
0.266 0.214 0.302 0.253

(0.099) (0.072) (0.08) (0.11)

S+SP
0.253 0.188 0.186 0.209

(0.096) (0.07) (0.086) (0.071)

S+T+SP
0.276 0.216 0.302 0.289

(0.101) (0.098) (0.08) (0.081)

S+T PC+SP PC
0.256 0.231 0.208 0.236

(0.074) (0.076) (0.078) (0.116)

S+T+SP+A
0.276 0.215 0.303 0.287

(0.101) (0.098) (0.08) (0.083)

S+T PC+SP PC+A
0.256 0.231 0.208 0.236

(0.074) (0.076) (0.078) (0.116)

Table A.2. Average True Skill Score (TSS), based on 20 train-test split, for classifying strong

(M/X) vs. weak (B/C) flares using different sets of features. Feature shorthand represents:

SHARP parameter (S); Topology feature (T); Spatial Statistics feature (SP); Auxiliary feature

(A); Topology feature principal component score (T PC); Spatial statistics with functional prin-

cipal component score for Ripley’s K function (SP PC). Boldface numbers indicate that the TSS

is significantly higher than the benchmark model (S), which is fitted only with SHARP parame-

ters in the PIL region, across the 20 iterations. The column names labeled by 1,6,12,24 stands for

the 4 datasets collected at 1,6,12,24 hours before the flare peak time.
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A.3 Heidke Skill Score Results for Binary Classification893

Here, as a supplemental result for Table 2, we show the Heidke Skill Score for the894

binary classification problem. The Heidke Skill Score (HSS) is calculated as:895

HSS = 2 · TP× TN− FN× FP

(FN + TP)× (FN + TN) + (FP + TN)× (TP + FP)

where TP,TN,FN,FP are the true positive, true negative, false positive and false neg-896

ative samples in the confusion matrix of the classification result.897

Prediction Time (hour)

Feature Combination 1 6 12 24

S
0.473 0.478 0.467 0.413

(0.069) (0.067) (0.06) (0.073)

T
0.501 0.525 0.504 0.473

(0.058) (0.071) (0.06) (0.061)

SP
0.508 0.529 0.485 0.478

(0.058) (0.073) (0.068) (0.068)

S+T
0.529 0.526 0.495 0.478

(0.072) (0.069) (0.056) (0.053)

S+SP
0.514 0.532 0.481 0.485

(0.06) (0.076) (0.074) (0.075)

S+T+SP
0.544 0.548 0.502 0.521

(0.071) (0.067) (0.069) (0.06)

S+T PC+SP PC
0.525 0.52 0.486 0.489

(0.066) (0.067) (0.07) (0.067)

S+T+SP+A
0.535 0.545 0.488 0.496

(0.066) (0.059) (0.065) (0.059)

S+T PC+SP PC+A
0.542 0.51 0.488 0.478

(0.059) (0.064) (0.064) (0.075)

Table A.3. Average Heidke Skill Score (HSS), based on 20 random train-test split, for classify-

ing strong (M/X) vs. weak (B) flares using different sets of features. Standard error in brackets.

Feature shorthand represents: SHARP parameter (S); Topology feature (T); Spatial Statis-

tics feature (SP); Auxiliary feature (A); Topology feature principal component score (T PC);

Spatial statistics with functional principal component score for Ripley’s K function (SP PC).

Boldface numbers indicate that the HSS is significantly higher than the benchmark model (S),

which is fitted only with SHARP parameters in the PIL region, across the 20 iterations. The

column names labeled by 1,6,12,24 stands for the 4 datasets collected at 1,6,12,24 hours before

the flare peak time.
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