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ABSTRACT

Thin film antiferromagnets have emerged as strong candidates for state-of-the-art spintronic ap-

plications, promising efficient spin current generation that is critical for the development of low

power non-volatile electronics [1–3]. Intrinsic spin current generation in thin films has been pri-

marily studied in systems with interfacial symmetry breaking [4, 5] (such as the Rashba-Edelstein

effect), surface spin current from a topological insulator state [6–8], or a bulk spin Hall effect in

heavy metal systems such as W, Ta, or Pt [9–12]. In general, the high symmetry of these nonmag-

netic systems limits the spin Hall conductivity tensor components to that of a left-handed polar-

ization texture around the applied current direction, with out-of-plane spin currents having only

ŷ polarization [13]. In contrast, the reduced symmetry of non-collinear antiferromagnets allows

for additional linear-response-driven spin conductivities, including longitudinal and out-of-plane

spin currents with x̂, ẑ polarization, though the measured effects so far have been small and non-

tunable [14,15]. Understanding the intrinsic origin of these out-of-plane spin currents with atypical

polarization could enable new developments in low power non-volatile spin-based electronics.

In this work, multi-component out-of-plane spin Hall conductivities σxxz, σ
y
xz,σ

z
xz are discov-

ered in L12 ordered antiferromagnetic PtMn3 thin films that are uniquely generated in the non-

collinear state. The maximum spin torque efficiencies (ξ = JS/Je ∼ 0.3) are found to be signifi-

cantly larger than in Pt (ξ ∼ 0.1), a canonical spin Hall effect material. Additionally, the spin Hall

conductivities in the non-collinear state exhibit an orientation-dependent anisotropy, which can be

used to select for a dominant component. The work presented here demonstrates symmetry control

through the magnetic lattice as a pathway to tailored functionality in magnetoelectronic systems.

viii



CHAPTER 1

Introduction

1.1 Electronic Spin Currents and The Spin Hall Effect

Many exotic physical phenomena in modern condensed matter physics arise in spintronic systems,
where an underlying mechanism results in a coherent and significant spin polarization of charge
carriers. In traditional electronic materials, charge carriers such as electrons or holes flow with no
coherent spin order, and there is some resulting current under an applied electric field J = σ̄E, as
per a generalized Ohm’s law. In contrast, spintronic systems have an additional degree of freedom
in the spin polarization of carriers, whether from some uniform average polarization or a more
complicated spin-momentum distribution. There are two categories of phenomena which lead to
coherent spin polarization of current: extrinsic, involving relativistic carrier-impurity scattering,
and intrinsic, where the band structure of the material itself causes either net spin polarization
through static band filling (e.g. in ferromagnets) or dynamic polarization of the carriers under
applied field through a linear response effect. The polarization efficiency of extrinsic spin con-
ductivity is generally quite small (<< 1%, though it can be brought higher with impurity doping,
within the same order of magnitude as heavy metals [16]), and the effect is well explained [17–19].
It is the intrinsic phenomena that are the most interesting from a physics perspective, and which
offer high spin polarization efficiencies for potential device applications. The main focus of this
work is intrinsic spin current generation in the different antiferromagnetic phases of L12 ordered
PtMn3 and how symmetry control through the magnetic lattice can enable nonstandard spin Hall
conductivity at a high efficiency and with directional anisotropy. To start, an overview is given of
intrinsic spin current generation in electronic materials, with a focus on the role of global symmetry
in determining the structure of linear response phenomena in spintronic systems.

The simplest intrinsic mechanism for a coherent spin polarization of charge carriers is that
in a conducting ferromagnet, where each band is split by the macroscopic internal field, leading
to a spin-dependent band filling in particular bands (Figure 1.1a). This is the driving physics

1



behind spin-transfer torque magnetic tunnel junction devices, where an electron current is spin
polarized by standard conduction through a pinned strong ferromagnet, and then transfers this spin
angular momentum via a scattering process in a subsequent, weaker strength “free” ferromagnet
(Figure 1.1b).

Another simple mechanism for intrinsic spin current generation is the Rashba-Edelstein Ef-
fect (REE) [19, 20], where a population of charge carriers is exposed to a strong electric field, say
in the ẑ direction. The total system Hamiltonian is then:

H =
~2k2

2m
+ λk × σ · Ez ẑ (1.1.1)

where λ is the Rashba coupling constant, k is the crystal momentum, σ is the Pauli spin matrix
vector, and Ez is the electric field amplitude. It’s clear from this expression that the energy mini-
mum in momentum space k is such that s ⊥ k̂ × ẑ. Statically, there is no net spin in the carrier
population, but when an exernal field is applied in the xy-plane, the momentum distribution shifts
so that there is a net carrier spin polarization (Figure 1.1c). This effect is readily realized in thin
film systems, for example in metal/oxide bilayers or metals on oxide substrates, where the out-
of-plane differences in carrier density cause a charge gradient and a resulting Ez = −∇V . The
degree of spin polarization from the REE can be readily measured in heterostructures of oxides and
metallic ferromagnets [21], and is particularly strong in metal/ferroelectric interfaces [22], where
it can be reversed by switching the ferroelectric, as outlined in (Figure 1.1d). Because of the ex-
plicit orthogonality between the out-of-plane charge gradient, forward carrier momentum, and spin
polarization, REE materials can not generate out-of-plane spin polarizations, and the the spin cur-
rent does flow out-of-plane. This greatly reduces their efficiency in thin film applications, which
revolve around out-of-plane magnetic structures with low total area such as MTJs with in-plane
or perpendicular anisotropy magnets. The REE in thin film systems is a simple example of how a
broken symmetry, here the out-of-plane mirror symmetry of the charge density, leads to breaking
of degeneracy between spin bands, and a dynamic response with a spin-momentum distribution.

The most relevant mechanism for intrinsic spin current generation in this work is the intrinsic
spin Hall effect (SHE), where under an applied electric field the ensemble of charge carriers picks
up an anomalous transverse momentum that is coupled to the spin degree of freedom. In contrast
to ferromagnetic polarization and the REE, which are equilibrium descriptions of perturbed state
energies, understanding the intrinsic SHE requires a dynamical theory of the response to carriers
to the applied field [12, 23, 24]. In the canonical SHE in heavy metal systems, there is no net
spin polarization in the ensemble of charge carriers in the static system. However, an applied
electric field leads to an outward diffusion of spin in a left handed circular texture orthogonal to
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Figure 1.1: Mechanisms for intrinsic spin currents in electronic systems. a, Conduction band spin

polarization from exchange splitting in a ferromagnetic metal, and b, example application in magnetic

tunnel junction (MTJ) device where induced polarization from a strongly magnetized (pinned) layer is

used to transfer angular momentum to a weakly magnetized (free) layer and flip its orientation. c, Rashba

polarization of charge carriers in a quasi-2D system with an internal out-of-plane electric field such as a

metal/ferroelectric (FE) oxide interface and the resulting net spin 〈S〉 vs. applied in-plane electric field

Ex. d, Sufficiently biasing the ferroelectric to induce switching will reverse the effect and flip the net

spin polarization. e, Transverse spin-momentum distribution of carriers under applied electric field in an

intrinsic spin Hall effect (SHE) material. f, The outward spin current diffusion is particularly useful in

thin film systems where, for example, SHE materials can be used for more efficient writing of MTJs in

vertical heterostructures.

the electric field direction, as shown in Figure 1.1e. In general, the polarization efficiency in heavy
metal SHE systems is more efficient than in traditional MTJs and they can be used as a separate
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write layer, as in (Figure 1.1f), allowing for more variation in magnetic heterostructure design.
Further, heterostructures of thin film magnets and heavy metal SHE systems offer approximately
10 times lower average switching energy compared to traditional MTJs, as per a recent survey of
modern works [25]. Unlike the other mechanisms for spin polarization, this behavior is not readily
intuitive, and requires a multi-state adiabatic time evolution formalism to understand completely.

For some system Hamiltonian H(R) with some slowly varying parameters R(t), at every
point in time there are some instantaneous set of eigenstatesH(R) |n(R)〉 = εn(R) |n(R)〉. Then,
if the parameters are being changed slowly enough that there is no significant inter-state tunneling
(adiabatic evolution), the evolved state |ψn(t)〉 is:

|ψn(t)〉 = eiγn(t) exp

[
− i
~

∫ t

0

dt′εn(R(t′))

]
|n(R(t))〉 (1.1.2)

where the right two terms are the standard dynamic phase factor from first-order time-dependent
perturbation theory and the instantaneous eigenstate, and the leading term is the geometric phase
factor. This geometric phase γn(t) is conveniently expressed as a path integral in the variable
parameter space:

γn(t) = i

∫ R(t)

R(0)

dR′ · 〈n(R′)| ∇R′ |n(R′)〉 =

∫
C
dR′ · An(R′) (1.1.3)

where An is referred to as the Berry connection. In general, γn(t) is of no physical consequence
in physical systems, as it is not gauge-invariant with choice of path in parameter space and can be
made to vanish. However, when the adiabatic evolution of the system is cyclical, that is, there is
a closed path in parameter space, γn(t) is independent of the exact path taken through parameter
space and is referred to as the Berry phase:

γn =

∮
C

dR · An(R) (1.1.4)

The physical significance of this term, and of cyclic adiabatic evolution in quantum many body
systems, was identified by its namesake in 1984 [26]. Unlike the geometric phase, the Berry phase
is a gauge-invariant physical quantity and has a measurable effect on quantum state evolution
(confusingly, the two terms are often used interchangably).

While the geometric phase is only of physical consequence in cyclical time evolution, there
is a corresponding quantity, the Berry curvature:

Ωn
µν =

∂

∂Rµ
Anν (R)− ∂

∂Rν

Anµ(R) (1.1.5)
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which is essentially the “phase-flux” for the system in parameter space, and has physical conse-
quence due to its gauge invariance. Particularly in the case of Bloch electrons, it can be shown that
under an applied electric field E , there emerges an anomalous transverse velocity that is an explicit
function of the Berry curvature:

vn(k) =
∂En(k)

~∂k
− e

~
E ×Ωn(k) (1.1.6)

where Ωn(k) is the vector Berry curvature vector for the |n,k〉 Bloch state, related to the tensor
form by Ωn

µν = εµνη(Ωn)η . In ferromagnets, Ω ‖M , the internal exchange field and the source of
band splitting [27], and so the wave packet formalism sufficiently explains their intrinsic anoma-
lous Hall conductivity, first observed in 1880 by its namesake [28, 29] and linked more explicitly
to the ferromagnetic anisotropy in 1953 [30]. In the non-magnetic case, where Bloch states of
opposite spin are degenerate in the equilibrium system, it can be shown that E × Ωn ∝ E × s
(see discussion around Equation (9.15) in Ref. [27]), which is exactly the canonical intrinsic SHE
described in Figure 1.1c. In heavy metal SHE systems, the large Berry curvature is attributed to
spin-orbit coupling. The Berry curvature is maximal near the high symmetry k-points where spin-
orbit coupling breaks band degeneracy. For the system to have a large SHE, it is ideal if this gap is
small, and that the Fermi level lies inside it [9,12,27]. In general, describing real physical systems
with simple models like Equation 1.1.6 is difficult, as it is not possible to derive a macroscopic
vector field that applies consistently to all Bloch states. To calculate accurate spin Hall conductiv-
ities σsij , it is most practical to use computational methods to calculate the energy spectrum for the
Bloch states, and to integrate the spin Berry curvature Ωs

ij,n(k) over all n bands and momenta in
the Brillouin zone (BZ):

σsij =
e

~
∑
n

∫
k∈BZ

d3k

(2π)3
fn(k)Ωs

ij,n(k) (1.1.7)

where fn(k) is the state occupancy, which is nonzero up to the Fermi momentum. It is important to
note that, somewhat nonintuitively, this does not scale with the strength of the spin-orbit coupling
directly. High spin Hall conductivity in heavy metal systems such as Ta, Pt, and W is thought
to be a consequence of the combined 4f -5d valence shell having more avoided crossings than
in lighter 3/4d systems, and the potential to contribute more high Berry curvature zones in the
momentum space to the total macroscopic integral [24, 31]. The structure and symmetry of the
Bloch bands in momentum space play a key role in the ultimate macroscopic spin or anomalous
Hall effect. Additional contributions to the system Hamiltonian, such as exchange interactions
between the conduction electrons and a magnetic lattice, can change the Bloch state energetics
(band degeneracy, Fermi level, state filling) as well as the total system symmetry (number of
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high symmetry k-points, additional degeneracy lifting), leading to different amplitudes for the
macroscopic spin Hall conductivity, or its outright suppression.

1.2 Linear Response in Electronic Materials

For multi-state adiabatic quantum evolution, the wave packet formalism as in Equation 1.1.6 is dif-
ficult to formulate outside of approximate or toy models, and with low band counts (as low as 2, but
up to 4 doubly degenerate bands [23, 32]). In general, precise evaluation of Equation 1.1.7 is done
with computational methods, first computing the Bloch band structure of the equilibrium Hamil-
tonian, and then the change to the relevant observable (usually σ, σs) through a linear response
formalism [24, 33]. In general, linear response theory defines how an observable of a multi-state
system will change with an applied perturbation that is slow enough to guarantee adiabatic evolu-
tion of states. Consider a system with some equilibrium Hamiltonian, H0, with an additional time
dependent perturbation. The total Hamiltonian is:

H = H0 + V̂ (t) (1.2.1)

where the additional V̂ (t) = B̂f(t), with B̂ being some quantum mechanical operator, and f(t)

being a time dependent scalar. In the most relevant case to solid state systems, the perturbation is an
applied electric field E(t) and V̂ (t) = eE(t)r̂. Assuming the perturbation is applied slowly enough
that the system evolves adiabatically, the linear response of some observable Â to the perturbation
is:

δAi = χAijVj (1.2.2)

where χAij is the linear response tensor for Â.

The adiabaticity condition for the linear response theory being valid is that the slew rate of
the perturbation is significantly lower than the natural state oscillation frequency (see discussion
in Ref. [34] around eq. (5.6.11)):

〈m(t)| Ḣ |n(t)〉
Enm

= 〈m(t)| r̂ |n(t)〉 e

Enm

∂E(t)

∂t
<< 〈m(t)| ∂

∂t
|m(t)〉 (1.2.3)

That is, there is a smooth adiabatic evolution of the quantum states under applied electric field with
no inter-state transitions. Violation of this condition is commonly referred to as “breakthrough”,
when the Bloch electrons transition to upper bands and undergo ballistic transport. The condition
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for electric field breakthrough is (see Ref. [35] (J.8)):

E2
nm

EF
>> eEa (1.2.4)

whereEF is the Fermi energy, E is the ultimate electric field in the steady state, and a is the unit cell
constant corresponding to one Brillouin zone. In the vast majority of plausible physical scenarios,
this condition is well satisfied. The theoretical Fermi energy for a wide range of metals ranges from
1.5-12 eV (see Table 2.1 in [35]), and Bravais lattice constants are typically 5 Å or less. Regarding
the band gap, a lower bound can be estimated for all possible materials by requiring it to be more
significant than the thermalization energy ET = kBT ∼ 25 meV at room temperature. Selecting
Enm > 10 kBT as a limit for significance, then, at room temperature:

E << (0.25 eV)2

12 eV · e · 0.5 · 10−7cm
≈ 105

kV

cm
(1.2.5)

Electric fields in excess of 100 kV/cm are not typical in well conducting systems, and are more
commonly seen in capacitive applications with strong insulators. In samples used in this work,
typical devices have channel lengths of no less than 10 µm, and the channel voltage is at most 5
V. This yields E ≤ 5 kV/cm, which satisfies the adiabaticity criteria well. An electric field of
5kV/cm in a typical metallic film with ρ ∼ 100µΩ · cm (well satisfied in this work) results in a
current density of J = 5 · 107 A/cm2, which is most likely destructive even in very thin films.
In this work J ≤ 5 · 106 A/cm2 for all transport measurements to reduce possible device damage
or excessive localized heating, and so the adiabaticity condition is satisfied by a further order of
magnitude.

In the context of solid state electronic systems, it is convenient to re-write χAij in the Bloch
band basis:

χAij = lim
ε→0

∑
k

∑
m,n

f(Em,k)− f(En,k)

Em,k − En,k − iε
〈n, k| Âi |m, k〉 〈m, k| B̂j |m, k〉 (1.2.6)

where m,n are band indices and k is the crystal momentum. If the full spectrum of Bloch states
and energies has been calculated already, it is easy to put together χAij for a choice of observable
Â. Usually the observable of most interest is the conductivity. In this case Â = −ev̂V , the current
density (normalized to total volume V), F̂ = eEr̂, and the linear response tensor corresponds
exactly to the Berry curvature [36]:

χAij,nk = Ωij,nk =
∑
m 6=n

1

Em,k − En,k
〈n, k| v̂i |m, k〉 〈m, k| v̂j |n, k〉 (1.2.7)
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If instead the spin conductivity is considered, then Â = (1/2){ŝ, v̂}/V is the spin current density,
and

χA,sij,nk = Ωs
ij,nk =

∑
m6=n

1

Em,k − En,k
〈n, k| Ĵsi |m, k〉 〈m, k| v̂j |n, k〉 (1.2.8)

which is often dubbed the spin Berry curvature, and used to compute the spin Hall conductivity
tensor as in Equation 1.1.7. The computed linear response tensor and ultimate conductivity can
correspond well with physical measurements, assuming the perturbation is indeed adiabatic (e.g.
the anomalous Hall conductivity of bcc Fe showing excellent correspondence between experiment
and theory at about 700-1000 Ω−1cm−1 [37]). Computing σsij explicitly is the definitive way to
gauge the intrinsic spin current generating capability of a particular material. However, this can be
intensive in both time and computing resources for a broad survey of materials. It turns out that
the global symmetry of a particular Hamiltonian can enforce a certain structure for σsij . For wide
classes of materials, simply knowing their global symmetry group is enough to determine whether
particular σsij components are allowed to exist without having to compute them explicitly.

1.3 Symmetry-enforced Structure of Linear Response Tensors
in Magnetic Systems

Separate from their ultimate numerical values, the structure of the linear response tensor compo-
nents is enforced by the global symmetry of the Hamiltonian under consideration. Specifically,
it must transform in a consistent way with the full set of symmetry operations of the system (see
discussion around eq. (39)-(44) in Ref. [13]). For magnetic systems, the operations are extended to
time reversal, or combinations of translation/rotation with time reversal, and there is a correspond-
ing magnetic Laue group. In general, high symmetry systems with a large number of symmetry
operators force most of the elements of σsij to be zero, for example in non-magnetic heavy metals
such as Pt (Laue group m3̄m1′, see Figure 1.2). In the particular case of cubic non-magnets, a
system with very high symmetry, the tensor structure is such that there is only the canonical SHE
which is completely isotropic (as in Figure 1.1). If spin-orbit coupling is a dominant contribution
to the Hamiltonian, then even weakly magnetic systems or systems with high magnetic symmetry
will be limited to this canonical SHE, unless an equally energetic interaction is present that reduces
global symmetry.

In systems with strong on-site magnetization, a separate contribution to the linear response
tensor arises from itinerant electron interaction with the magnetic lattice (s-d model). This ex-
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change can be significant, and is predicted to generate large intrinsic spin conductivities without
any contribution from spin-orbit coupling [14, 38]. There are four general classes of microscopic
magnetic lattices: collinear ferromagnets (e.g. Fe), collinear antiferromagnets/ferrimagnets (e.g.
Cr2O3), non-collinear antiferromagnets (e.g. XMn3 compounds, and the pyrochlore iridates), and
some combination of those, such as a non-coplanar ferromagnet with some chiral texture [38]. It is
the greatly reduced global symmetry of fully non-collinear antiferromagnetic systems, compared to
non-magnets or ferromagnets, which allows for unconventional non-zero components of the linear
response tensors for charge and spin currents. For instance, breaking two-fold rotational symmetry
or inversion permits out-of-plane spin currents with additional x̂, ẑ polarization, and even intrinsic
longitudinal spin currents [13, 14].

Within the class of non-collinear antiferromagnets, the XMn3 compounds (X = Ga, Ge, Sn,
Ir, Pt, and Rh) have garnered considerable interest as a platform for studying intrinsic spin and
anomalous Hall effects. The combination of a strong s-d exchange with Mn (µ ∼ 3µB [39]) and
the reduced global symmetry of their low temperature non-collinear antiferromagnetic states opens
the possibility for large intrinsic spin Hall conductivities with unconventional components [33].
Already the hexagonal SnMn3 has been shown to generate large intrinsic anomalous and spin Hall
effects [40, 41], with the anomalous Hall effect’s dependence on spin order being used for proto-
type logic devices [42]. The L12 ordered cubic XMn3 compounds (X = Rh, Ir, Pt) offer additional
antiferromagnetic magnetic phases, with a possible intermediate-temperature collinear state (Laue
group 4′/mmm′), and low-temperature non-collinear state (Laue group 3̄m′1) with an alternat-
ing all-in-all-out Kagome lattice in the (111) planes (see Figure 1.2). Both of these phases have
been explicitly identified in bulk PtMn3 via neutron diffraction, and their existance and transition
temperatures were shown to vary with Mn composition [39]. The spin Hall conductivity tensor
of the low symmetry non-collinear ground state is significantly less restricted than in canonical
SHE systems, and there is no symmetry enforcement of an isotropic response in arbitrary crystal
orientations [13, 33]. Ideally, this would allow for x̂, ẑ polarized out-of-plane spin currents with
the right choice of crystal orientation, expanding the compatibility of intrinsic SHE materials to a
wider range of magnetic heterostructures.

Recent work with the non-collinear phase of cubic IrMn3 seems to validate this notion of
orientation dependence, showing a large and facet-dependent spin conductivity that is greater in
amplitude than typical heavy metal systems [43]. Unfortunately, it was not possible to directly link
this to the AFM order due to the large Néel temperature (TN ) for IrMn3 close to 1000 K [44]. PtMn3

shares the same non-collinear AFM ground state, but has a significantly lower Néel temperature
(TN ∼ 475 K in bulk) [39] as well as a unique intermediate collinear AFM state with a first order
phase transition around 360 K that is absent in IrMn3 and RhMn3 [45]. For the AHE, this link
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Pt CL PtMn3 NCL PtMn3

Laue Group m3̄m1′ 4′/mmm′ 3̄m′

σx

0 0 0
0 0 σzxy
0 −σzxy 0

 0 0 0
0 0 σxyz
0 σxzy 0

 σxxx σyxx σxxz
σyxx −σxxx −σyxz
σxzx −σyzx 0



σy

 0 0 −σzxy
0 0 0
σzxy 0 0

  0 0 σyxz
0 0 0
σyzx 0 0

  σyxx −σxxx σyxz
−σxxx −σyxx σxxz
σxzx −σyzx 0



σz

 0 σzxy 0
−σzxy 0 0

0 0 0

  0 σzxy 0
σzyx 0 0
0 0 0

  σzxx σzxy 0
−σzxy σzxx 0

0 0 σzzz



Figure 1.2: Symmetry-enforced spin Hall conductivity tensors for magnetic phases of PtMn3. The

allowed structure of spin Hall conductivity tensors σx, σy, σz versus magnetic Laue group for the three

possible magnetic phases of PtMn3. The tensors are most restricted in the high-temperature non-magnetic

fcc metal phase, equivalent to fcc Pt, where they equate to the canonical spin Hall effect. At the onset

of antiferromagnetism, the tensors become less restricted in the intermediate collinear (CL) and low-

temperature non-collinear (NCL) antiferromagnetic states, with the NCL tensors being significantly less

restricted. PtMn3 above the Néel transition is non-magnetic and has the same global symmetry as fcc Pt.

Symmetry-enforced tensor forms are pulled from [13].

with the magnetic order has been presently established, using both temperature and piezoelectric
strain to move a PtMn3 film out of the non-collinear AFM state and suppress the intrinsic AHE
entirely [46]. In the framework of the non-spin-orbit coupling symmetry-imposed restrictions on
the AHE/SHE, it is the intermediate collinear state that explicitly bars a non-zero AHE. If there is a
measured SHE in the collinear phase, it is attributed entirely to spin-orbit coupling and is expected
to be isotropic [38].
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The possibility of unconventional x̂, ẑ polarized out-of-plane spin currents was also recently
confirmed in the non-collinear antiferromagnets Mn3GaN [15] and Mn2Au [47]. Explicit com-
putation of the out-of-plane spin Hall conductivities σixz, i = (x, y, z) of Mn3GaN corresponded
well to their relative measured amplitudes, approximately 5-10% of the conventional σyxz. The x̂, ẑ
polarized spin currents were found to emerge smoothly through the Néel transition at TN ∼ 345
K, showing their explicit dependence on the magnetic texture [15]. As no general evaluation of the
full SHC tensor for Mn3GaN was performed, and electronic measurements were performed on a
single device orientation, it is undetermined whether there is any dependence on crystal orientation
to the σixz. In Mn2Au, the σzxz was found to be much more significant, up to 1.7x the conventional
σyxz [47]. In that study, devices were created with (Co/Pd) perpendicular anisotropy magnets, and it
was shown that the Mn2Au was able to deterministically switch them, although only at extremely
high current densities ∼ 108 A cm−2 (the switching result is somewhat controversial as current
densities that high have been shown to irreversably damage devices and cause persistent thermal
gradients which yield equivalent thermoelectric signals [48]). These initial works are exciting,
and seem to verify the existance of unconventional spin Hall conductivity in non-collinear anti-
ferromagnets. The PtMn3 system promises similar phenomena, but has additional intermediate
phases, which should make it possible to correlate these unconventional components not just with
antiferromagnetic order, but with a particular type of it, in order to deduce the exact level of sym-
metry dependence. Additionally, PtMn3 is expected to have an orientation-dependent anisotropy in
the spin Hall conductivity which is strongest in the lowest-symmetry single domain non-collinear
state. The near room temperature accessibility of three distinct magnetic textures (non-collinear,
collinear, and non-magnetic) makes PtMn3 a uniquely suitable material for studying the link be-
tween intrinsic AHE/SHE that originate from magnetic Berry curvature.

1.4 Orientation-dependent Composite Spin Hall Conductivity
in PtMn3

Detailed theoretical work computing the intrinsic spin Hall conductivities in the cubic XMn3

(X=Rh, Ir, Pt) materials shows highly isotropic spin conductivity, and large non-zero amplitudes
for all polarizations, comparable to or exceeding intrinsic SHE in high spin-orbit coupling metallic
systems [33]. Compared to high symmetry non-magnets with high spin-orbit coupling (e.g. fcc Pt,
Laue group m3̄m1′), which have spin Hall conductivity tensor components restricted to that of the
canonical spin Hall effect (e.g. only σyxz,−σzxy contributions for an applied current along x̂), the
reduced symmetry of the cubic PtMn3 non-collinear state (Laue group 3m̄′) allows for additional
transverse and also longitudinal spin conductivity for multiple spin polarizations [13]. Further-
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more, the conductivities can be anisotropic with respect to current orientation, potentially allowing
for selection of preferred spin current direction and polarization [33, 43].

Using previously calculated spin Hall conductivity tensors for the non-collinear antiferro-
magnetic state of L12 PtMn3 in the high symmetry basis [33], the out-of-plane σixz and longitudinal
σixx spin conductivities are calculated for (001)-oriented PtMn3 thin films with devices patterned
along an in-plane direction x̂ in Figure 1.3. For a single antiferromagnetic domain with (111)-
oriented Kagome planes, the orientation-dependent anisotropy in each spin polarization is high,
and allows for selection of a dominant component by orienting device channels appropriately.
Unfortunately, devices with multiple domains, where the Kagome planes are aligned to some com-
bination of (111)-eqivalent directions, increase the global symmetry and potentially eliminate the
unconvential components of the spin Hall conductivity entirely. For example, in the highest sym-
metry configuration where all eight possible domains are present, only the typical σyxz is non-zero
(see Figure A.1). The calculation methodology and source code for the orientation-dependent σixz,
σixx in the low-temperature non-collinear phase of PtMn3 is provided in section A.

Figure 1.3: Anisotropic spin Hall conductivity in (001)-oriented PtMn3. a Coordinate system for thin

film PtMn3 Hall bar devices with coordinates x̂, ŷ, ẑ patterned in the (001) plane with some angle φ100

from the [100] crystal orientation. b Estimated out-of-plane spin Hall conductivities σixz and c longitudinal

spin conductivities σixx for spin current polarizations i = x, y, z versus crystal orientation/φ100, assuming

a single non-collinear antiferromagnetic domain with (111)-oriented Kagome planes. Conductivity tensor

components were calculated using prior results [33], and rotating into the Hall device coordinates (see

section A, and calculations for multiple domains in Figure A.1).
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In this work, L12 ordered (001)-oriented PtMn3 thin films are synthesized in isolation and in
heterostructures with Permalloy (Py, here approximately Ni80Fe20) to measure the anomalous (σxy)
and out-of-plane spin conductivities (σixz, i ∈ (x, y, z)) in each of the accessible antiferromagnetic
phases, and to explicitly correlate them with magnetic order and show the expected anisotropy in
the spin Hall conductivity. The observed maximum spin torque efficiencies (ξ = JS/Je ∼ 0.3)
from the unconventional x̂, ẑ polarized out-of-plane spin currents are significantly larger than the
traditional ŷ polarized out-of-plane spin current in Pt (ξ ∼ 0.1), which is promising for efficient
switching of magnetic devices and devices with selectable spin polarization components.

The synthesis of L12 ordered PtMn3 thin films via RF magnetron sputtering is described
in detail in chapter 2, as is the structural and chemical characterization via X-ray and neutron
methods. The magnetic characterization of the antiferromagnetic phases of PtMn3 via neutron
diffraction, reflectometry, and anomalous Hall effect measurements is shown in chapter 3. The
measurement of spin torques in PtMn3/Py heterostructures is covered in chapter 4, as is the com-
ponent fitting and the extraction of spin torque effective fields from x̂, ŷ, ẑ polarized out-of-plane
spin currents versus temperature and antiferromagnetic phase of PtMn3. Finally, the complete
work is summarized in chapter 5, and an outlook is given for experimental advances in controlling
non-collinear antiferromagnetic domain formation, the prospect of quantum self-inductance, and
integration in heterostructures with perpendicular magnetic anisotropy ferromagnets.
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CHAPTER 2

Growth, Structural, and Chemical Characterization
of PtMn3 Thin Films

2.1 Growth of Ordered PtMn3 Thin Films via Magnetron
Sputtering

Growth of an ordered intermetallic thin film of a particular composition and ordering is
generally challenging due to complicated crystal phase spaces. For the Pt-Mn system below 1000
◦C (about the maximum possible in our thin film growth facilities), there are four ordered phases
in this temperature range [39,49,50], and large composition and temperature windows where dual
phases, solid solutions, and eutectic phases can exist [51]. This particular system is additionally
difficult due to the vastly different chemistry and growth kinetics of Pt and Mn. For example,
Mn will adhere readily to oxide substrates and template accordingly, and has a low vapor pressure
of 950-1350 ◦C at process gas pressures of 7-70 mTorr (∼1-10 Pa) [52], making precise control
challenging in high-energy growth methods like pulsed laser deposition. In contrast, Pt has a very
high vapor pressure of 2050-2350 ◦C in the same conditions (7-70 mTorr process gas) [52], and
is significantly less reactive. In general for Pt, the adatom-substrate adhesion is poor can lead
to discontinuous films and unwanted (111) phase formation if the film is not deposited at a high
enough growth rate [53]. Growth of high quality intermetallic Pt-Mn films requires a precise
tuning of deposition conditions, and the method of choice here is RF magnetron sputtering, due
to relatively low incident atom energy and a high degree of tunability. A schematic of a modern
magnetron sputtering system is shown in Figure 2.1a. There are many parameters that influence
film growth, including substrate temperature, process gas pressure and the plasma power density
on the surface of the sputtering target (an excellent resource on sputtering growth and the behavior
of the Ar plasma and target plumes can be found in Ref. [54]). For ordered PtMn3 growth, two
primary parameters are tuned. First, the relative Mn composition is tuned with Ar process gas
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pressure, as shown in Figure 2.1b. As Mn is a significantly lighter element that Pt, it preferentially
scatters in the transverse direction and the forward concentration of Mn in the sputtering plume
decreases with higher process gas pressure. Second, the crystallinity of a sample with a tuned
incident species stoichometry can be controlled with substrate temperature, shown in Figure 2.1c,
as per the bulk phase diagram [51] and surface adatom kinetics.

To obtain the desired low temperature non-collinear antiferromagnet state, and the spin Hall
conductivity behavior outlined in Figure 1.3, the thin films must have high L12 ordering, as per
Figure 2.2a. Intermetallics are generally challenging to characterize, due to the ease which con-
stituent elements can alloy into different phases, and the structural similarity between them. For
example, the simulated 2θ − ω XRD spectra for likely (001)-oriented Pt-Mn thin films in the rele-
vant growth parameter range is shown in Figure B.1. As seen in the temperature dependent profiles
in Figure 2.1c, it is easy to conflate these phases if the film is not the ideal single crystal. Generally,
both structural and chemical characterization must be done to confirm the film phase, though for
the lower temperature growths below 650 ◦C, the relative ratios of the 001 and 002 XRD peaks
suggest that the films are exclusively some combination of the L12 and γ phases (see discussion
around Figure 2.2b.

The (001)-oriented thin film PtMn3 samples in this work with the highest L12 ordering on
either SrTiO3 or MgO substrates were grown via RF magnetron sputtering from a 1” metallic target
of 6:1 Mn:Pt at 45 W gun power, 630-650 ◦C substrate temperature, 5” target-substrate distance,
and in 10-13 mTorr (1 mTorr = 0.133 Pa) of Ar at approximately 1.5 nm/min. For growths on
MgO, the substrate was pre-baked at 950 ◦C for 1h in high vacuum (typically < 10−6 Torr). For
growths on SrTiO3, the substrate was pre-baked at 630-650 ◦C for 30 minutes in 50 mTorr Ar to
reduce oxygen vacancy formation in the substrate surface. Permalloy films were deposited at room
temperature from a 2” target of Ni80Fe20 at 100 W, approximately 5” target-substrate distance, and
in 10 mTorr of Ar at approximately 2.5 nm/min. For capping with SiC or TiO2, the sample was
removed from the chamber and placed in a high vacuum pulsed laser deposition chamber within 1
minute of sample removal for capping film deposition.

2.2 Structural Characterization of PtMn3 Thin Films

The thin film PtMn3 crystal structure was characterized by X-ray diffraction (XRD) in a Rigaku
SmartLab diffractometer equipped with a Ge(220)×2 monochromator to select for Cu Kα X-rays.
XRD φ scans were obtained by aligning to 024 peaks of the substrates and film. Reciprocal space
mapping was done by aligning to the substrate 024 peaks and scanning in 2θ, ω in approximately
3 degree fields of view and 0.1 degree resolution. To quantify the ordering fraction, the relative
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Figure 2.1: Synthesis of Thin Film PtMn3 With RF Magnetron Sputtering. a General schematic of

RF magnetron sputtering system with sputtering gun/source target assembly (right), and substrate holder

assembly (left). The exact composition and crystallinity of the films can be tuned with multiple process

inputs including substrate temperature (Tsub), Ar process gas pressure (PAr), RF plasma power (Wgun),

gun-substrate distance (Dgun), and their relative angle (γ). b, The chemical composition can be tuned

with PAr due to the difference in relative scattering rates of Pt and Mn with Ar. c, The crystallinity is

generally tuned with substrate deposition temperature, which can also change the composition due to the

relatively low vapor pressure of Mn in high vaccuum conditions.

intensity of the out-of-plane 001 and 002 PtMn3 XRD peaks is compared to the ideal crystal with
100% ordering. To extract the intensities, Voigt profiles are fit to the substrate and PtMn3 XRD
peaks. For the 001, 002 XRD peaks, I001/I002 = S2r0, where S is the ordering fraction, and r0 =
0.938 is the ratio for the fully ordered crystal. In all samples used in this study, SSTO ∈ [0.7, 0.91],
with thinner films typically exhibiting higher ordering fractions. In contrast, SMgO ∈ [0.55, 0.65]

for all measured films, which is significantly lower. A representative X-ray diffraction (XRD)
2θ − ω scan of a 95 nm PtMn3 film on SrTiO3, as well as a ϕ scan of the substrate and PtMn3 024
peaks, is shown in Figure 2.2b. The PtMn3 films are predominantly (001)-oriented, with thicker
films showing detectable amounts of (111) oriented domains (though these are consistently < 1%
of the total film volume, as per their integrated XRD peak intensity ratios). The ordering fraction
of the PtMn3 film shown in Figure 2.2b is S = 0.91, with the rest of the film assumed to be the
solid solution γ-PtMn3.
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Figure 2.2: Atomic ordering of PtMn3 thin films on (001)-oriented SrTiO3. a, The low temperature

non-collinear AFM state of L12 ordered PtMn3 with Pt on the vertices (gray) and Mn on the face sites

(purple). b, XRD of 001 PtMn3 on SrTiO3 (STO) with φ scan (inset). c, HAADF-STEM micrograph

of representative PtMn3 thin film showing Pt (white), Mn (purple), and occasional Mn/Pt antisite defects

(white/purple). Thin films on SrTiO3 exhibit L12 ordering fractions of 0.70-0.91 with thinner films typi-

cally having higher ordering. HAADF-STEM data obtained in collaboration with G.A. Pan [55].

Ordered PtMn3 grown on SrTiO3 are largely single crystal (001) phase, with no in-plane
twinning (see Figure B.2b-c). Due to the near identical in-plane lattice constant of the PtMn3 film
to the SrTiO3 substrate, it is difficult to resolve peaks with higher relativeQx components. To com-
pensate, the higher-Qz 024 peaks are used for both XRD φ scans and reciprocal space mapping
(RSM). RSMs of the 024 peaks for PtMn3 on MgO and SrTiO3 are shown in (see Figure B.2d-e),
respectively, and provide fitted in-plane and out-of-plane lattice parameters from the peak cen-
ters. Due to the large in-plane lattice mismatch, the PtMn3 and MgO peaks are well separated,
but exhibit the highest tetragonal strain, approximately -1.1% out-of-plane and +1.8% in-plane
compared to the ideal cubic system (a = c = 3.84Å). The PtMn3 films on SrTiO3 have relatively
reduced strains of -0.6% out-of-plane and +1.6 % in-plane, and are exclusively used for transport
measurements in this work.

High-angle annular dark field scanning transmission electron microscopy (HAADF-STEM)
images of the same 95 nm PtMn3 film is shown in Figure 2.2c. Over the imaged region, the
films are single crystal, (001)-oriented, and L12 ordered, although occasional antisite defects are
observed. Further HAADF-STEM images of the SrTiO3/PtMn3(46.6 nm)/Py(6.8 nm)/SiC sample
used for harmonic Hall effect measurements are shown in Figure 2.3 (see Methods in Ref. [55]).
Overall, the PtMn3 exhibits high crystallinity persisting through the entire thickness of the thin
film (∼ 45 nm). The PtMn3 film is epitaxially templated to the SrTiO3, although there is disorder
observed at the interface (see Figure 2.3c). The films also have occasional half unit-cell offset
dislocations, as well as regions of solid solution face-centered-cubic γ-PtMn3 with a typical antisite
defect of top/bottom face manganese substituted with platinum which is most pronounced near the
substrate-film interface and less common defects appear less near the top PtMn3/Py interface. It
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Figure 2.3: HAADF-STEM of PtMn3/Py film stack for harmonic Hall effect measurements. a, Large

field-of-view HAADF-STEM image of SrTiO3/PtMn3(46.6 nm)/Py(6.8 nm)/SiC used for harmonic Hall

effect measurements. b, Top interface between PtMn3 and Py showing good L12 ordering and interface

smoothness. c, Bottom PtMn3 and SrTiO3 interface, showing increased solid solution phase with typically

reduced Mn stoichiometry ( PtMn2.0). Pockets of MnOx are present near the surface, here 1-2 unit cells

thick and in disconnected regions. HAADF-STEM data obtained in collaboration with G.A. Pan [55].

is possible that the prevalence of antisite defects near the substrate/PtMn3 interface is a method of
strain relaxation due to the substrate lattice mismatch (ε ∼ +1.7%), as platinum (a = c = 3.93 Å)
expands the lattice constant of PtMn3. It is possible that the larger strain relaxation requirements
for PtMn3 films on MgO is the cause of the consistently lower L12 ordering fraction in films on
MgO.

Typically, a post-growth annealing strategy would be employed to improve the ordering frac-
tion and overall crystallinity, as was done in a prior work with PtMn3 films on BaTiO3 [46]. Due to
the relatively low vapor pressure (∼ 950-1350 ◦C) [52] of Mn at high vacuum conditions however,
loitering at high temperatures post growth leads to the formation of a surface cubic manganese layer
with a depth of 2-5 nm, and forms sparse ridges of Mn across the film surface (see Figure B.5).
For this reason, post-growth annealing was not done for any samples destined for electronic mea-
surement in order to avoid large Mn ridges shunting current within or between patterned devices.
EELS spectroscopic imaging of an example surface manganese region is shown in Figure B.4.
The pockets of Mn at the surface are almost exclusively cubic MnOx, and therefore all electronic
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measurements are kept above 120 K to avoid a parasitic antiferromagnetic signal from potential
clusters of MnO (TN ∼ 115 K). As MnOx is a good insulator, the effect of these regions on the in-
terfacial spin current diffusion is expected to be minimal, as interfacial oxides have been shown to
have high interface spin transparency in the kinds of vertical heterostructures employed here [56].
The source of the oxidiation in the surface manganese is currently unclear, and may possibly occur
ex-situ during the transfer of the sample lamella into the STEM. Nevertheless, even if the man-
ganese were to be fully metallic in the as-grown state, only a fractional suppression of interface
spin current would be expected, both as per prior studies with continuous 3d transition metal spac-
ers of a similar thickness [57] and because it is discontinuous. To reduce possible inhibition of spin
current diffusion across the PtMn3/Py interface from an interfacial manganese layer, the samples
used for the harmonic Hall effect measurements were not subject to a post-deposition anneal, and
were cooled immediately to room temperature in 50 mTorr Ar process gas. Despite the precau-
tion, these samples still show discontinuous 1-2 nm thick surface manganese regions, as shown in
Figure 2.3a-b. In general, there is a direct tradeoff between lowering the growth temperature (and
therefore manganese diffusion) and L12 ordering fraction.

2.3 Chemical Characterization of PtMn3 Thin Films

In addition to crystalline order, the chemical composition of PtMn3 has a direct effect on magnetic
order. Small differences in Mn stoichiometry can move the Néel and first-order transition temper-
atures around by 50-100 K, and even suppress the formation of the noncollinear AFM phase [39].
Chemical characterization of PtMn3 thin films was done through X-ray photoelectron spectroscopy
(XPS) and neutron reflectometry. The primary use of XPS here was to gauge the film stoichiometry
within a few nm of the surface. Higher detail cross-sectional composition is obtained with neutron
reflectometry through the extracted nuclear scattering length density (SLD) profile.

XPS spectra were obtained using a Kratos Axis Ultra XPS with a monochromated Al source
and a charge neutralizer (neutralizing surface charge buildup is mandatory when samples are on
insulating substrates). High-resolution scans were taken about the Mn 2p and Pt 4f peaks, and the
integrated intensities of the Mn 2p 1/2 peak and both Pt 4f peaks were compared to those from a
reference 6:1 Mn:Pt target to establish film stoichiometry. The background of the full Mn 2p peak
is more difficult to consistently select boundaries for, and so only the Mn 2p 1/2 peak is chosen for
integration in order to make evaluation between samples more consistent. Sample XPS spectra for
the Mn 2p and Pt 4f peaks are shown in Figure 2.4, and are as expected for non-oxidized metallic
peaks (see Ref. [58] for expected spectra with Al Kα X-rays).
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Figure 2.4: X-ray Photoelectron Spectroscopy of Representative Mn and Pt Peaks for PtMn3 on
SrTiO3. a, The Mn 2p complex and quantification region (Mn 2p 1/2 peak, shaded purple), and b the Pt

4f complex and quantification region (shaded gray). Integrated peak intensity ratios are normalized to a

reference target for quantification (see Figure B.3).

In general, PtMn3 thin film samples were capped with SiC or TiO2 to prevent long-term oxi-
dation and required in situ rasterized ion milling with a beam of Ar ions during XPS measurements
in order to sample the Mn and Pt peaks with a high signal-to-noise ratio. As per the discussion
around Figure 2.1, there is a higher preferential sputtering rate for Mn, and so the ion milled area
is not representative of the bulk Mn stoichiometry of the surrounding film. To compensate for this,
a baseline calibration was performed on the backside of a 6:1 Mn:Pt sputtering target with known
composition. The XPS spectra for the reference target, as well as a broad survey showing the effect
of surface sputtering on the XPS profile, is shown in Figure B.3. Once the integrated peak areas
AMn,Pt shown in Figure 2.4 are obtained, the relative Mn stoichiometry R = XMn/XPt can be
quantified:

R = c
3 · AMn/2p/1/2/RSFMn

APt4f/RSFPt
(2.3.1)

where RSFMn,Pt are the relative sensitivity factors for each element to normalize for transition
probabilities per atom of each element (see Appendix F. in [58]. Note that the Mn contribution
is multiplied by 3 to account for the ignored Mn 2p 3/2 area). For the reference target, R is set
to 6.0, and a calibration constant of c = 1.306 is obtained. In subsequent thin film scans, this
constant is used to calculate R. For all grown PtMn3 films, deposition conditions were tuned (see
discussion around Figure 2.1b) to target a slight Mn deficiency (x = -0.07 for Pt1−xMn3+x) in
order to reduce transition temperatures below 400 K to make them more accessible for electronic
measurements(see Fig. 4 in Ref. [39]). For the PtMn3 thin films on SrTiO3 used for harmonic Hall
effect measurements, XPS spectra yield a stoichiometry of approximately PtMn2.77±0.07 (x = -0.06
± 0.02 for Pt1−xMn3+x) near the surface of the film, within the target range.
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In contrast to XPS, which is limited to the surface of the sample due to the high diffuse
scattering of emitted electrons, neutron reflectometry can yield full depth profile of the PtMn3

film composition due to the high neutron transparency of most materials. Unpolarized neutron
reflectometry measurements were performed on a SrTiO3/PtMn3(95 nm)/SiC(20 nm) heterostruc-
ture using the CANDOR instrument at the NIST Center for Neutron Research (see Methods in
Ref. [55]). The unpolarized neutron reflectivity, which is sensitive to the nuclear scattering length
density (SLD), was measured as a function of the momentum transfer vector Q along the film
normal. The reflectivity and resulting SLD profile for a SrTiO3/PtMn3(95 nm)/SiC(20 nm) sam-
ple are shown in Figure 2.5. The fitted scattering length density is related to the composition of
Pt1−xMn3+x by

SLD = 10
((3 + x)bMn + (1− x)bPt)

a2c
(2.3.2)

where bMn, bPt are the respective nuclear scattering lengths, in fm, and a, c are the lattice constants
in Å (a=c=3.84 Å for the cubic system). The resulting SLD profiles yield a Pt-rich transitional
growth region of 18.4 ± 0.3 nm with an approximate stoichiometry of PtMn2.0, followed by a
uniform “bulk-like” layer of near optimal stoichiometry, approximately PtMn2.7 (see Figure 2.5c).
This transition region likely exists due to the large lattice mismatch (∼ 1.8% in-plane lattice mis-
match between (001)-oriented SrTiO3 and bulk cubic PtMn3), which favors a γ phase with reduced
manganese stoichiometry to relax the epitaxial strain. The existence of this transition region ne-
cessitates PtMn3 films thicker than 20 nm for harmonic Hall effect measurements, to ensure high
L12 ordering near the top interface with Py. For XMn/XPt = 3.0, the expected SLD = -0.282 ·
10−6Å−2 for the bulk cubic system and SLD = -0.275 · 10−6Å−2 for tetragonal films on MgO and
SrTiO3 with the measured a, c from X-ray diffraction (see Figure B.2). There is a Pt-rich tran-
sitional growth region of thickness 18.4 nm ± 0.3 nm and nuclear SLD of 0.471 · 10−6Å−2 ±
0.007 · 10−6Å−2 near the SrTiO3 interface. The SLD of the thicker, more bulk-like, PtMn3 layer
in this case was -0.08 · 10−6Å−2 ± 0.02 · 10−6Å−2. Both SLD values indicate that the film grown
on SrTiO3 is slightly more Pt-rich than the sample grown on MgO, with x = -0.326 ± 0.003 for
the transition layer (Pt1−xMn3+x ∼ PtMn2.0) and x = -0.084 ± 0.019 for the bulk of the film (∼
PtMn2.70), in good agreement with the XPS result of PtMn2.77±0.07.
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Figure 2.5: Unpolarized Neutron reflectivity of PtMn3 on SrTiO3. a, Reflectivity profile of

SrTiO3/PtMn3(95 nm)/SiC(20 nm) and b, the resulting nuclear scattering length density (SLD). Both

MgO and SrTiO3 samples show a 15-20 nm transition region with reduced Mn stoichiometry, followed by

an approximately stoichiometric “bulk” region for the rest of the film. This data was obtained in collabo-

ration with A.J. Grutter and R.F. Need [55].
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CHAPTER 3

Magnetic Characterization of PtMn3 and PtMn3/Py
Thin Films

3.1 Neutron Diffraction of PtMn3 Thin Films on MgO

To probe the antiferromagnetic order in the PtMn3 thin films directly, neutron diffraction mea-
surements of the 101 peak on the BT-7 and BT-4 triple axis spectrometers were performed at the
NIST Center for Neutron Research (see Methods in Ref. [55]). Measurements were carried out
in a temperature range of 100-420 K in a closed-cycle refrigerator. Though the L12 ordering on
SrTiO3 is markedly higher, a distinct 101 PtMn3 peak was not resolved due to the high overlap with
the substrate. Unlike the XRD RSM measurements (see Figure B.2), the Q range of higher order
peaks (e.g. 024 or equivalent) is out of the measurement range. For this reason, the temperature
dependent neutron diffraction measurements were performed on MgO/PtMn3 samples as the in-
plane peak separation is higher than with the samples on SrTiO3 and MgO does not have 001 and
003 peaks. The temperature dependent neutron diffraction measurements of the 101 PtMn3 peak
are shown in Figure 3.1a. The integrated peak intensities and their standard errors are extracted
via gaussian fits to each profile using the DREAM algorithm [59] in the Bumps python package
(v0.8.0) [60] (see section E for example use). The peak intensities are plotted versus temperature
in Figure 3.1b. The order parameter M(T ) was fit to the temperature dependent intensity within

100 K of TN with I101 = M2
101

(
(TN−T )
TN

)2β

+ I0, where M101 is a scattering intensity proportional
to the Fourier component of the magnetic lattice for the 101 Q vector, and I0 is the background
intensity from incoherent scattering. The fit yields TN = 403± 2 K, and β = 0.358± 0.032, which
is within the expected range for a 3D Heisenberg AFM (β ∼ 0.37). The variance in β could be well
explained by the large γ-PtMn3 content in the MgO samples ( 40% by volume) and the tendency to
form isolated planes of Mn in this phase, as per Figure 2.2c, which would result in mixed 2D/3D
AFM behavior. Compared to the ideal bulk cubic material (TN = 450-475 K [39]), the PtMn3 films

23



on MgO also have a TN that is approximately 50 K lower.

Figure 3.1: Neutron diffraction of (001)-oriented PtMn3 on MgO. a, Temperature dependent neutron

diffraction of the 101 PtMn3 peak for MgO/PtMn3(152 nm)/Py(8.9 nm)/TiO2. b, Order parameter fit

to 101 peak amplitudes with TN = 403(2) K and β = 0.358(32) near TN , in good agreement with a 3D

Heisenberg system. In general, the PtMn3 films on MgO and SrTiO3 exhibit tetragonal strain and have

lower transition temperatures compared to the bulk cubic film. c, 101
2 and d, 1

201 diffraction peaks in

the same system on MgO showing no change in amplitude between 3 K - 400 K. The difference in peak

height between 101
2 and 1

201 is attributed to slight misalignment due to temperature dependent tetragonal

strain. The lack of Néel or first order transition for these peaks suggests total suppression of the collinear

AFM phase in films grown on MgO. Error bars represent ±1 standard deviation. Neutron diffraction data

was obtained in collaboration with A.J. Grutter and R.F. Need [55].

In the PtMn3 on MgO, there was no apparent first-order transition in the 101 neutron peak,
as there was in a prior bulk study [39]. To determine which antiferromagnetic phase was present
below the Néel transition, temperature dependent neutron diffraction of the half order 101

2
and

1
2
01, characteristic of the double-cell collinear AFM phase [39], was performed from 300-400 K.

Unlike the clear second-order behavior of the 101 peak shown in Figure 3.1a-b, the intensity of the
101

2
peak (Figure 3.1c) is temperature independent, as is the 1

2
01 peak (Figure 3.1d). This contrasts
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with neutron diffraction measurements of bulk PtMn3 crystals, which show an obvious first-order
transition between non-collinear and collinear phases between 300-400 K depending on the Mn
stoichiometry [39]. For the PtMn3 films on MgO, the evidence points towards a smooth second or-
der phase transition from the non-collinear phase to a magnetically disordered phase above 404 K.
The disappearance of the collinear phase for these highly strained films is not completely surpris-
ing, as it also disappears in other alloys in this family such as RhMn3 [61]. The emergence of the
collinear and non-collinear phases, as well as the associated Néel and transition temperatures are
clearly sensitive to chemical composition and lattice strain, commensurate with prior studies [39].

In contrast to films grown on MgO, neutron diffraction on SrTiO3/PtMn3 samples represents
a significant challenge, as the films are epitaxially strained in-plane to closely match the SrTiO3

lattice constant of 3.905 Å. Relative to films on MgO, the substrate/film peak separation is also
substantially reduced along the c-axis, with a PtMn3 lattice constants of 3.82 Å along this direction,
as shown in Figure B.2e. Such separation is generally insufficient to separately resolve a 101 thin
film peak using neutron diffraction. A high-resolution measurement of a 95 nm PtMn3 film on
SrTiO3 was attempted with CANDOR, the white beam reflectometer/diffractometer at the NIST
Center for Neutron Research. Unfortunately, the tail of the SrTiO3 101 peak overwhelmingly
dominates the signal near the PtMn3 101 peak position even for extremely tight beam collimation,
and it was not possible to separate the two for analysis.

3.2 Polarized Neutron Reflectometry of PtMn3 Thin films on
MgO

The neutron reflectometry measurements of PtMn3 films on STO (see discussion around Fig-
ure 2.5), gave a compositional profile of the film cross section that confirmed the desired stoi-
chiometry in the bulk portion of the film. In addition to confirming the stoichiometry, proving
that the PtMn3 thin films have no ferromagnetisim and are completely antiferromagnetic is impor-
tant in establishing the origin of the measured intrinsic spin Hall conductivity. Polarized neutron
reflectometry measurements were performed using the PBR instrument at the NIST Center for
Neutron Research (see Methods in Ref. [55]). The polarized measurements were performed on a
MgO/PtMn3 (150 nm)/Py (9 nm)/TiO2 (6 nm) heterostructure at room temperature in an applied
magnetic field of 3 T. Incident and scattered neutrons were spin-polarized parallel or antiparallel to
the applied magnetic field, and data was corrected for imperfect beam polarization and spin-flipper
performance. The spin-dependent reflectivity was measured as a function of the momentum trans-
fer vector Q along the film normal. The fitted neutron reflectivity profiles for a MgO/PtMn3(152
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nm)/Py(8.9 nm)/TiO2(6 nm) sample are shown in Figure 3.2a (see Methods in Ref. [55]). There is
no evidence for a net magnetization in the PtMn3, as per the spin asymmetry of the reflectivity pro-
files (Figure 3.2b) and the resulting magnetic SLD profile (Figure 3.2c). As with the fitting to the
unpolarized reflectivity from the films on SrTiO3, obtaining a high-quality fit to the data required
breaking up the PtMn3 into two separate layers, with a 15.5 nm ± 0.5 nm thick transition growth
region. This transitional growth region exhibits a higher nuclear SLD (0.317 · 10−6Å−2 ± 0.084
· 10−6Å−2 than the bulk PtMn3 layer (-0.30 · 10−6Å−2 ± 0.02 · 10−6Å−2). For the MgO sample,
we find that x = -0.258± 0.037 for the transition layer (Pt1−xMn3+x ∼ PtMn2.18) and x = 0.010±
0.008 for the bulk of the film (∼ PtMn3.04). As previously discussed in chapter 2, the lowered Mn
content near the substrate interface is postulated to be a method of lattice parameter relaxation.

Figure 3.2: Polarized neutron reflectivity of PtMn3/Py on MgO. a, Non-spin flip reflectivities of

MgO/PtMn3(152 nm)/Py(8.9 nm)/TiO2(6 nm), and b, the resulting spin asymmetry. c, The extracted

magnetic (red) and non-magnetic SLD (black). The magnetic SLD shows a clear lack of any net magneti-

zation in the PtMn3 layer, with only the Py layer showing a non-zero net magnetization as expected. Error

bars represent ±1 standard deviation. This data was obtained in collaboration with A.J. Grutter and R.F.

Need [55].

3.3 Probing the Magnetic Order Through the Anomalous Hall
Effect

Though the magnetic order of the PtMn3 films on SrTiO3 was not directly measurable with neutron
diffraction, it is possible to indirectly probe it through electronic measurement as antiferromagnets
with the appropriate symmetry can also host an intrinsic AHE (as discussed in chapter 1). Presum-
ably, as the PtMn3 goes through different magnetic transitions, the intrinsic AHE should behave as
an order parameter and go through a Néel and first-order transition if both bulk antiferromagnetic
phases are present. Electronic measurements of PtMn3, Py, and PtMn3/Py films were performed
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on Hall devices with 10 µm x 40 µm channels for all longitudinal and Hall resistivity measure-
ments in this work. Thin film samples were patterned using conventional UV photolithography
processes at the University of Michigan Lurie Nanofabrication Facility. Designs were written on
4” fused silica mask plates using a Heidelberg DWL-2000 mask maker with a 4 mm write head.
The photolithography for the ion milling and deposition patterns was done using a conventional
SPR 220 based process. All samples were ion milled using an Intivac Nanoquest II Ar ion mill at
the lowest beam setting of 200V/165 mA (the resulting plasma power density is approximately 0.7
W cm−2), a working temperature of 15 ◦C and an incident beam angle of 15◦. After all ion milling,
the backplane of the sample is measured for electrical conductivity with 5-10 µm probe tips placed
20-50 µm apart at assorted points on the sample. This ensures that there is no remnant PtMn3

backplane shunting current, or that the substrate was made conductive through defect or vacancy
formation from ion bombardment. The metal contact layers, either Ti(10 nm)/Pt(100 nm) or Cr(10
nm)/Pt(100 nm), were deposited onto a contact deposition lithography mask via pulsed laser depo-
sition or thermal evaporation within a standard metal lift-off process (for cryogenic measurements,
Cr seems to behave better as a wetting layer and is suggested over Ti, if available).

The general electronic measurement scheme and coordinate system for patterned Hall de-
vices is shown in Figure 3.3a. The temperature dependent Hall resistance Rxy was measured from
120-400 K in a Quantum Design Dynacool PPMS using a standard ETO puck. Zero field Rxy

versus temperature of SrTiO3/PtMn3(95 nm) films is shown in Figure 3.3b. There is a clear inter-
mediate phase between 150-200 K where the films have significant remnant magnetization in the
out-of-plane direction that does not saturate for maximum fields up to 9 T (see Figure C.1). As
shown in Figure 3.3, an increase in the zero-field Hall resistance emerges smoothly below TN and
undergoes a first-order transition between 200-300 K, after which it diminishes. The temperature
difference between the first-order and Néel transition is ∼150 K, and the overall profile matches
that of the neutron diffraction intensity of the half-order

(
101

2

)
peaks in prior studies of bulk PtMn3

with stoichiometry that closely matches that of the PtMn3 films on SrTiO3 [39], as per the XPS and
unpolarized neutron reflectometry measurements discussed in chapter 2. These peaks correspond
well to the emergence of an intermediate collinear AFM state, which has a magnetic lattice sym-
metry between the high temperature non-magnetic metal and the low temperature non-collinear
AFM. With respect to the bulk material, the transition temperatures in the SrTiO3/PtMn3 samples
are shifted downwards 50-100 K, which is attributed to a combination of tetragonal strain from the
substrate lattice mismatch (c/a∼ 0.98 at 300 K) and reduced Mn stoichiometry. Despite the inabil-
ity to probe the phases directly with neutron diffraction, AHE measurements have shown that the
PtMn3 films on SrTiO3 plausibly have both of the bulk antiferromagnetic phases. As the Néel and
first-order transition are now electronically accessible, the spin Hall conductivity can be evaluated
in each explicit regime and its structure can be directly linked to the antiferromagnetic order.
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Figure 3.3: Collinear to non-collinear AFM transition in L12 ordered PtMn3 thin films. a, Schematic

of longitudinal and transverse measurement coordinates for patterned PtMn3 and PtMn3/Py Hall devices.

b, Anomalous Hall resistance of SrTiO3/PtMn3(95 nm) versus out-of-plane field Hz and temperature

T (offset for clarity). c, Remnant zero-field anomalous Hall resistance from 5 T training field versus

temperature of SrTiO3/PtMn3(95 nm). The intermediate state of large Rxy(Hz = 0) corresponds well

to a high susceptibility state with remnant ferromagnetic canting in the out-of-plane direction from field

cooling (inset). The observed first order transition between 250 K - 300 K is consistent with bulk PtMn3,

but shifted lower in temperature by 50 K - 100 K.

28



CHAPTER 4

Harmonic Hall Effect Measurement of Spin Transfer
Torques in PtMn3/Py Heterostructures

4.1 Theoretical Description of Spin Torque Measurement via
the Harmonic Hall Effect

The intrinsic spin Hall conductivity in PtMn3 can be probed through its effect on an adjacent ferro-
magnetic thin film via the anomalous and planar Hall resistances. Specifically, effective magnetic
fields from the spin current diffusion into the ferromagnet are measured through the harmonic Hall
effect, whereby a harmonic current is applied to the bilayer that induces deflections in the ferro-
magnet layer which are encoded in the second harmonic transverse magnetoresistance [62–64]. To
link the electronic measurement with the effect of the injected spin currents on the ferromagnet
magnetization m = MSm̂, it is necessary to understand its dynamics. When a spin current with
polarization p̂ is injected into a saturated ferromagnet with some orientation m̂, the macroscopic
dynamics are described by the Landau-Lifshitz-Gilbert-Slonczewski (LLGS) equation [65–67]:

˙̂m = −γm̂×Heff + αm̂× ˙̂m+ γH‖m̂× p̂× m̂+ γH⊥p̂× m̂ (4.1.1)

where Heff encapsulates crystal and shape anisotropy fields, as well as any external fields Hext,
and H‖ and H⊥ are the damping-like and field-like spin torque effective fields, respectively. For
a thorough review of spin transfer torque physics and the nuances of spin current diffusion across
magnetic interfaces see Ref. [68]. In general, solving Equation 4.1.1 requires a micromagnetic
computation model, but there are two analytical limits where the dynamics of m̂ can take nice
periodic forms and are readily useful in physical experiments. The first limit is near the ferro-
magnetic resonance frequency, and is employed in spin-torque ferromagnetic resonance (STFMR)
experiments with driving currents in the 1-10 GHz range [10, 11]. This technique is popular, but
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requires tightly constrained electrical signal pathways and device geometries to ensure delivery
of the expected RF power to the device. The other limit, is the quasistatic limit for low enough
frequencies where the precession is minimal and the equilibrium orientation of m̂ tracks with the
applied current (this is well satisfied in the low kHz range used here). In this regime, ˙̂m ∼ 0 and
the magnetization lines up with the total effective field:

m̂ ‖Heff +H‖m̂× p̂ = HA +HD +Hext (χ, φ) + ∆H (I, θ, ϕ) (4.1.2)

where HA is the crystal anisotropy field, HD is the demagnetization field from thin film shape
anisotropy, Hext is the applied external field, and ∆H contains contributions from spin current
torques and the Oersted field from film layers or interfaces adjacent to the ferromagnet layer.
In general, there is a complex relationship between the applied field coordinates (χ, φ) from the
magnetization coordinates (θ, ϕ) which depends on the external field magnitude and orientation
with respect to the equilibrium effective fields and their anisotropy. For example, in a canonical
SHE material such as Pt, W with only nonzero σyxz, when a current is applied in the x̂, direction,
the out-of-plane spin current polarization is p̂ = −ŷ [9–12]. The resulting effective field ∆H is:

∆H = (HFL −HOe) ŷ +HDLm̂× ŷ

= −HDL cos θx̂+ (HFL −HOe) ŷ +HDL sin θ cosϕẑ
(4.1.3)

Here, the notation H‖ = HDL and H⊥ = HFL −HOe is adopted to separate the damping-like and
field-like contributions from spin transfer torques (HDL, HFL) from that of the Oersted field from
an applied total current in adjacent film layers or interfaces (HOe). In this work, ferromagnetic
films and external field amplitudes are chosen so that the ferromagnetic layer is always saturated,
and these are taken to be the same. If the ferromagnet m̂ in the quasistatic regime has a well defined
equilibrum notation and the deflections from ∆H are perturbative, the magnetization deflection is
linear in |∆H| and the spin torque effective fields can be exactly quantified.

Given the link between incident spin currents with polarization p̂, and the deflection of the
magnetization m̂, if the deflection can be measured precisely then the spin torque effective fields
HDL, HFL can be extracted. This deflection is usually measured with optical methods, such as
polarized X-ray reflectivity [69] and the magneto-optical Kerr effect [70, 71], or electronically
through the effect of the deflection on the magnetoresistance. In this work, the quasistatic LLGS
behavior is measured through the anomalous and planar Hall resistance:

Rxy(θ, ϕ) = RA cos θ +RP sin2 θ sin 2ϕ (4.1.4)
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where the magnetization orientation is m̂ = cosϕ cos θx̂ + sinϕ sin θŷ + cos θẑ, with ẑ ‖ [001]

for all thin film samples in this work. When a current is applied to the heterostructure, the spin
currents generated in the PtMn3 layer diffuse upwards into the Py and deflect the magnetization
away from its equilibrium orientation by some small ∆θ,∆ϕ. The tilting of the magnetization
direction from equilibrium by the perturbative spin torque fields is generally small, and it would be
difficult to make a DC Hall measurement and fit for ∆θ,∆ϕ with a high accuracy. To demodulate
this component with a high signal-to-noise ratio, a harmonic current is used instead. Because the
spin torque fields are now harmonic, the perturbed magnetization now also harmonic, so there is a
mixing effect through the newly harmonic magnetoresistance and the applied current:

V (t) = Ia sinωtRxy(θ + ∆θ(sinωt), ϕ+ ∆ϕ(sinωt)) (4.1.5)

As a result, DC and second Harmonic signals are generated which encode the perturbative deflec-
tion. Of the two, the second Harmonic signal is typically chosen for analysis to avoid other general
parasitic DC signals. To first order in ∆θ,∆ϕ, the second harmonic response to the magnetization
deflection is:

V 2ω
xy ∝ ∇ϕ,θVxy|Hext,I,ϕ0,θ0

· (∆ϕ(H, I, ϕ0, θ0),∆θ(H, I, ϕ0, θ0)) (4.1.6)

A general schematic for this measurement is shown in Figure 4.1a, where typically a single lock-in
amplifier supplies the longitudinal harmonic drive current with frequency ω, and demodulates the
Hall voltage with frequency nω, n ∈ N.

The second harmonic response described by Equation 4.1.6 is generally complex, and to
derive an analytic form requires choosing ferromagnet layers with well behaved anisotropy and a
favorable path in ϕ, θ (though it has been caclculated with a recursive micromagnetic simulation
for semi-arbitrary external field orientations [64]). Thin film metallic ferromagnets such as Py that
are dominated by shape anisotropy are particularly convenient for second harmonic Hall effect
measurements. With an applied out-of-plane external field (Hext ‖ ẑ), the magnetization is linear
up to the saturation field HS , and for an in-plane external field (Hext ⊥ ẑ), the magnetization
follows the field exactly if the (weak) crystalline and shape aniosotropy is overcome [72]. For all
in-plane harmonic Hall effect scans in this work, the following condition is satisfied:

m̂ =
(
Hextĥ+Ha(m̂× b̂)b̂

) 1

Heff

≈ ĥ | Hext >> Hc, Ha (4.1.7)

whereHc is the in-plane coercive field from the magnetocrystalline anisotropy, andHa is the shape
anisotropy field for a pattern with a long axis in b̂. With ideal uniaxial in-plane anisotropy, and an
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external field that saturates the magnetization in-plane, the perturbative deflections to m̂ from the
spin torque effective fields can be readily defined to leading order in ∆H [62–64, 73]:

∆θ =
∆Hθ

Hext +HS + ∆Hr

≈ ∆Hθ

Hext +HS

∆ϕ =
∆Hϕ

Hext + ∆Hr

≈ ∆Hϕ

Hext

(4.1.8)

The experimental setup for such a configuration is shown in Figure 4.1b-c for a canonical spin
Hall material which induces in and out-of-plane spin torque effective fields as per Equation 4.1.3
for θ0 = π/2. The physical conditions for Equation 4.1.8 are well justified in this work by the
out-of-plane AHE scans in Figure C.2, and with the in-plane VSM data in Figure C.3, given that
Hext ≥ 250 Oe for all harmonic Hall effect measurements.

As the film plane in the (001)-oriented PtMn3 is not the high symmetry (111) orientation of
the non-collinear AFM state, there is an expected orientation-dependent anisotropy of spin Hall
conductivity which can be measured by orienting Hall devices along the [100], [110], [010], and
[1̄10] crystal axes. The expected anisotropy in each set of devices can be determined from the
symmetry transformations of spin Hall conductivity tensors as done previously [33], and projected
into the respective Hall devices coordinate system, as shown in Figure 1.3. In general, the σixz
components are highly anisotropic with respect to the crystal orientation, and each component
has a respective set of orientations where it is expected to dominate. In the most general case, a
single global AFM domain will generate some combination of p̂ = x̂, ŷ, ẑ polarized spin current.
Assuming some contribution from all possible polarization components, Equation 4.1.4, 4.1.6, and
4.1.8 can be combined to obtain an analytical form for the expected in-plane second harmonic
response:

V 2ω
xy = CR0I

2
a cosϕ

+
1

2

RAIFMJSHM
Hext +HS

(hxDL sinϕ− hyDL cosϕ+ hzFL)

+
RP IFMJSHM

Hext

cos 2ϕ (hxFL sinϕ− (hyFL − hOe) cosϕ+ hzDL)

(4.1.9)

where RA and RP are the anomalous and planar Hall resistances, respectively, JSHM is the current
density in the spin Hall material, here PtMn3, H i

FL,DL = JSHMh
i
FL,DL for i ∈ (x, y, z) are the

effective fields from components of spin current polarization, and the first term, CR0I
2
total cosϕ is

a separate contribution from the anomalous Nernst effect, which arises from out-of-plane thermal
gradients present in every thin film system [63, 74, 75]. For the spin torque effective fields used
here, a dependence on current density is used with units of Oe per 107 A cm−2(1 Oe = 79.6 A/m),
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instead of total film current. Due to the small spin diffusion lengths in metals (1 nm - 10 nm) [76],
only the PtMn3 close to the top interface is expected to significantly contribute to V 2ω

xy . In all
harmonic Hall effect measurements in this work, JSHM < 5·106 A cm−2 to reduce thermal drift
and the baseline thermoelectric contribution. This results in hOe < 30 Oe per 107 A cm−2 for the
SrTiO3/PtMn3(46.6 nm)/Py(6.8 nm) devices.

Figure 4.1: Electrical and coordinate schematic for harmonic Hall effect measurement of spin trans-
fer torques. a, Electrical setup for measuring the harmonic Hall resistance in a ferromagnet (FM) and

SHE material (SHM) bilayer Hall device, where a lock-in amplifier applies a longitudinal voltage with

frequency ω, and then demodulates the transverse Hall voltage of frequency nω | n ∈ N. b, The FM layer

magnetization is oriented with an external fieldHext to measure the resulting field-likeHFL and damping-

like HDL spin transfer torques from out-of-plane spin current injection from the SHM. c, Damping-like

“spin-transfer” torque is due to spin current interaction with the magnetic lattice versus the field-like

torque from local spin accumulation.

The harmonic Hall effect measurements in this work were done with heterostructures of
SrTiO3/PtMn3(46.6 nm)/Py(6.8 nm)/SiC, with the PtMn3 and Py layers deposited with RF mag-
netron sputtering, as discussed in chapter 2, and SiC deposited ex situ as a capping layer to prevent
oxidation (see Methods in Ref. [55]). The PtMn3 layer was purposefully grown > 40 nm, to en-
sure a large L12 ordering near the surface that is clear of the ∼ 20 nm transition region discussed
in chapter 2 and 3. It is also necessary to keep the Py layer below 10 nm thickness to minimize
any anomalous second harmonic response from out-of-plane spin texture formation due to interfa-
cial exchange and shape anisotropy [77]. To quantify the current distribution in bilayer PtMn3/Py
devices, 4-wire resistivity measurements were performed on isolated films and a parallel resistor
model was used to estimate the current splitting. The ratio of total longitudinal current in each
film in the SrTiO3/PtMn3(46.6 nm)/Py(6.8 nm)/SiC heterostructures is calculated by using mea-
sured resistivities from isolated films (see Figure D.2a) and combining them in a parallel resistor
model. Using the calculated resistances for the individual film channels, the ratio of total current in
each channel can be estimated, as shown in Figure D.2b. The total resistance of the 46 nm PtMn3
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and 6.8 nm Py layers in the Hall channel is calculated and combined in parallel to estimate the
2-wire resistance of the Hall device, as shown in Figure D.2c, and the calculations are in are in
excellent agreement with the explicit two wire measurements of the patterned SrTiO3/PtMn3(46.6
nm)/Py(6.8 nm)/SiC devices (this is also good evidence that the SrTiO3 backplane is not signifi-
cantly conducting across the full temperature range). The respective current ratios are used to cal-
culate IFM , JSHM at each temperature for the in-plane second harmonic model in Equation 4.1.9,
and are accounted for in the current-normalized effective fields hiDL,FL in units of Oe per 107 A
cm−2.

Figure 4.2: Second harmonic dependence on spin torque effective fields from x̂, ŷ, ẑ polarized spin
currents. a, Typical V 2ω

xy (ϕ) profile for only Hy
FL (black, in all subfigures) from SOT or ASOT, and

effect of ±Hy
DL (red/blue) from some σyxz . b, Effect of ±Hx

FL (ϕ asymmetry around 180◦), and c,

±Hx
DL (opposite ϕ asymmetry around 180◦). d, Effect of ±Hz

FL (voltage asymmetry), and e, ±Hz
DL

(voltage shift). Except for Hx
(DL,FL), which could be easily confused if not fit for precisely, any p̂ = ŷ, ẑ

spin currents of significant amplitude injected into the Py layer should be visibly apparent based on their

distinct effects on V 2ω
xy .

As the individual spin torque effective fields have different symmetry and field dependence,
the presence of the distinct components of Equation 4.1.9 can be visually identified in the V 2ω

xy

data if they are of sufficient magnitude. To provide a useful visual reference, the addition of
positive/negative components of these fields to a basic response from a p̂ = ŷ or Oersted-like field
is plotted in Figure 4.2. Of the six components, all but the Hx

FL,DL are uniquely identifiable due
to a distinct effect on the harmonic profile (satellite peak amplitude change, vertical shift, vertical
asymmetry). If high precision measurements of Hx

FL,DL are desired, then this geometry may not
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be optimal due to the similarity of the perturbative effect from the field and damping-like torques,
as shown in Figure 4.2b-c.

4.2 Extraction of Spin Torque Effective Fields in PtMn3/Py
with the Harmonic Hall Effect

If the ferromagnet in a spin Hall material/ferromagnet bilayer has ideal uniaxial in-plane anisotro-
py it is possible to extract all necessary physical parameters to extract the spin torque effective field
components hiFL,DL from Equation 4.1.9 at particular temperature with just two measurements: an
out-of-plane field sweep to extract the anomalous Hall resistance, and an in-plane first and second
harmonic scan versus ϕ,Hext to extract the planar Hall resistance and the field-scaling of the sec-
ond harmonic Hall signal. Luckily, for metallic ferromagnets such as Py, the shape anisotropy is
dominant, and the ideal in-plane anisotropy is always realized in the thin film limit. Out-of-plane
magnetization versus field for isolated Py films and PtMn3/Py bilayers is shown in Figure C.2, con-
firming the expected anisotropy. For all samples in this study, electronic measurements in the range
of 20-400 K were performed in a Quantum Design Dynacool PPMS with the standard ETO puck,
the horizontal rotator accessory option, and a custom breakout box for electronic instruments. For
harmonic Hall effect measurements, first and second harmonic components were demodulated si-
multaneously using an Ametek DSP 7265 lock-in amplifier running in dual harmonic mode at a
source frequency of 1937 or 2377 Hz for temperatures between 120-400 K. Samples were thermal-
ized at each temperature setpoint for 0.5-1.0 h with the standard ETO puck and up to 1.5 hours with
the horizontal rotator. Longitudinal and Hall resistances of patterned Hall devices were obtained
via DC 4-wire measurements with a Keithley 2450 sourcemeter.

Ensuring that there are no significant interfacial exchange effects on the Py magnetization
is crucial, as inadvertently training a large interfacial spin glass layer and changing the effective
ferromagnet thickness, anisotropy, or MS would make it difficult to quantify the spin torque effec-
tive fields, and claim that they originate from intrinsic spin Hall conductivity in the PtMn3 layer.
Anomalous Hall effect measurements of PtMn3/Py films show identical MS versus temperature
behavior as isolated Py films (see Figure C.2). Further, vibrating sample magnetometry of the
same sample used for harmonic Hall effect measurements establishes that there is no significant
exchange bias in the down to 120 K, the minimum temperature used in the study, as shown in
Figure C.3.

If the ferromagnetic layer has the ideal uniaxial in-plane magnetization, then the anomalous
Hall resistance term for Equation 4.1.9 can be extracted with an out-of-plane field scan of the first
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harmonic Hall voltage:

V ω
xy = IωtotalR0 + IωFM

RHHz +RA

1 Hz ≥ HS

Hz

HS
Hz ≤ HS

 (4.2.1)

where R0 is the base resistance, RH is the classical Hall resistance based on carrier density, carrier
mobility, and external field strength, and RA is the anomalous Hall resistance. Ideally, R0 = 0,
but there is usually a small parasitic longitudinal resistance due to contact pattern misalignment or
Hall bar pattern defects. Conveniently,RP is extracted in tandem with the in-plane V 2ω

xy (θ0 = π/2)
by running the lock-in amplifiers in dual harmonic mode:

V ω
xy = RP I

ω
FM sin 2ϕ+ IωtotalR0 (4.2.2)

With data for Equation 4.1.9, 4.2.1, and 4.2.2, as well as the current splitting between PtMn3 and
Py, the spin torque effective fields hiFL,DL for each σixz component can be extracted precisely.

The extracted spin torque effective fields hiFL,DL detected in the Py layer are a direct measure
of spin current generated by the PtMn3. The field-like hiFL is simply a measure of local spin
accumulation, as the spin current acts on the magnetization just like an external field would. The
damping-like hiDL are typically used as a performance metric in SHE/FM bilayers, as they are taken
to be a measure of out-of-plane spin current diffusion through the ferromagnet interface [9,10,68].
With a measured hiDL, the out-of-plane spin current with polarization p̂ = î is taken to be:

J iS =

(
2e

~

)
MstFMJSHMh

i
DL (4.2.3)

The final figure of merit is usually the efficiency of generating this spin current ξiSTT = J iS/JSHM ,
which is expressed here in units common to this work:

ξiSTT = 3.039 · 10−6

[
A · cm

emu ·Oe · nm

]
·MS

[emu

cm3

]
· tFM [nm] · hiDL

[
Oe

107 A
cm2

]
(4.2.4)

As a standalone fun fact, a convenient relation can be found here if the Py layer is exactly 4.17 nm
thick (4-6 nm is a fairly common thickness) and MS ∼ 800 emu cm−3 (the bulk value, with HS ∼
1.0 T [78]), then ξSTT ≈ 0.01hDL when hDL is in units of Oe per 107 A cm−2. In prior literature,
it is common for ξiSTT to also be referred to as the spin Hall angle (θSH or θSHA), taken to be the
intrinsic generation efficiency of the spin Hall material. The contemporary understanding is that
it is difficult to obtain the true intrinsic efficiency due to complicated scattering of spin current
from different bilayer interfaces with varying quality and material types, a concept referred to as
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“interface transparency” [79]. The two parameters are related, with ξiSTT = ηθiSHA, where η ≤ 1

takes the interface transparency into account.

4.3 Effects of Antiferromagnetic Domain Degeneracy on In-
trinsic Spin Hall Conductivity in the Non-collinear PtMn3

State

As outlined in the chapter 1 discussion around Figure 1.3, the anisotropy of the intrinsic spin
Hall conductivity of PtMn3 can theoretically be used for orientation-dependent selectivity of a
dominant σixz component. In addition to current orientation, it is critical to consider the size and
orientation of antiferromagnetic domains. Below the first-order transition, the Kagome planes
of the low-temperature PtMn3 phase could be oriented in any [111] equivalent direction. If a
Hall device is rotated 90 degrees in-plane with respect to the crystal lattice, but the AFM lattice
is also rotated accordingly, then there is no change to the system from re-orienting the device,
as outlined in Figure 4.3c. In general, field-training non-collinear antiferromagnetic domains is
not a well-defined practice, and so multiple devices of the same crystal orientation are sampled
instead. Additionally, the size of AFM domains in thin films can range from 10s of nm to several
µm [80–82], and it is plausible that 10 µm wide Hall devices can contain multiple domains. In
general, multiple AFM domains in equivalent proportion serve to reduce the orientation dependent
anisotropy of the σixz, and in the case of having all possible domains equally present, quenches them
entirely (see section A and the discussion around Figure A.1). Despite the difficulties in orienting
the non-collinear AFM lattice, second harmonic Hall effect data is observed which yields a clear
contribution from +σxxz, σ

y
xz, −σxxz, and σzxz, respectively, in Figure A.1d-g. These profiles emerge

at temperatures below 200 K, below the observed first-order transition in the zero-field AHE data
in Figure 3.3, and suggest that these devices are mostly a single AFM domain. Whenever there
is a dominant σixz component, it is possible to visually identify it from the second harmonic data
due to the unique symmetry in ϕ for each spin torque effective field contribution to R2ω

xy , as per the
expected profiles in Figure 4.2.
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Figure 4.3: Current and domain orientation versus spin torque components in PtMn3/Py. a, Simpli-

fied schematic of out-of-plane spin current from σixz, i = (x, y, z) generated in the AFM spin Hall ma-

terial with net polarization p̂ diffusing into a ferromagnetic layer and causing field-like and damping-like

spin torques. b, Current orientation dependence of σixz for a PtMn3 thin film with a single (111)-oriented

antiferromagnetic domain, and with a Hall device x̂ oriented at an in-plane angle φ100 from the [100]

crystal direction using σi from Ref. [33] and transforming into the device coordinates. c, Schematic of

possible non-collinear AFM domain orientation in (001) plane (white arrows are in-plane [111] projec-

tions), and degeneracy with two Hall bars oriented orthogonally to the crystal lattice but with identical

magnetic lattices. Second harmonic sweeps at Hext = 250 Oe for temperatures between 120 K - 400 K for

devices with dominant d, +σxxz , e, σzxz , f, σyxz and g, −σxxz which emerge below 200 K. Aligning devices

to a preferred AFM texture orientation is difficult due to the AFM domain degeneracy highlighted in c,

though it is possible to find devices with a dominant p̂ = x̂, ŷ, ẑ component.

4.4 Spin Torque Effective Fields versus Temperature and An-
tiferromagnetic Phase of PtMn3

When fitting Equation 4.1.9 to temperature dependent in-plane second harmonic Hall effect data,
a fitting procedure must be used which includes parameter correlation and error analysis. The
specific forms for each hiFL,DL contribution for Equation 4.1.9 have a unique symmetry, but form
a set of sinusoidal functions on the ϕ ∈ [0, 2π] domain which almost mirrors a Fourier basis but
with only six of the first few components. For particular measurements, such as those with large
σxxz components, it may be difficult to find a good fit with common methods, as per the discus-
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sion around Figure 4.2. The fitting method of choice here is the Differential Evolution Adaptive
Metropolis (DREAM) algorithm [59] as implemented in the Bumps python package (v0.8.0) [60],
which loads the best parameter fits from a differential evolution burn-in run and performs Markov
chain Monte Carlo sampling of the parameter space as weighted by the χ2 error. Example fitting
scripts for second harmonic Hall effect data used in this work are included in section E. Fitting
with DREAM was performed for all datasets corresponding to Equation 4.1.9, 4.2.1, and 4.2.2.
An example of a good fit is shown in Figure E.1 for the free parameter fit shown in Figure 4.4a-h,
where the parameters have a well defined distribution that is not artificially constrained by their
bounds, and the relative error is small.

Figure 4.4: Second harmonic Hall effect and spin torque effective fields versus temperature in
PtMn3/Py Hall devices. Representative ϕ,Hext scans of a, first and b, second harmonic Hall resis-

tance of a PtMn3(46.6 nm)/Py(6.8 nm) device with prominent σzxz . c-h, A breakdown of components by

symmetry as a function of 1/Hext and 1/(Hext+HS). All components follow the expected field relations

well except for the vertical offset (hzFL) component, which is much larger and nonlinear in 1/(Hext+HS).

For the same device, the resulting i, field-like (hyFL) and j, damping-like (hyDL) spin torque effective fields

and efficiencies from σyxz vs. temperature, and damping-like spin torque effective fields (black circles)

and efficiencies ξ (purple triangles) from k, σxxz (hxDL) and m, σzxz (hDLz) vs. temperature. The torques

from the x̂, ẑ polarized spin currents are only significant below 200 K - 250 K, commensurate with the

emergence of the noncollinear PtMn3 AFM phase.
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The field and in-plane angle dependence of a representative first and second harmonic scan
is shown in Figure 4.4a-b for a SrTiO3/PtMn3(46.6 nm)/Py(6.8 nm)/SiC Hall device oriented in
a (100)-equivalent direction at 120 K. The first harmonic profile does not change significantly
with Hext and follows the expected sin 2ϕ profile with no change in amplitude, which indicates
good saturation of the Py layer for all Hext, and good thermalization. The corresponding second
harmonic profiles are drastically different from the typical spin Hall effect result, which only has
cos 2ϕ cosϕ and cosϕ components. Here, the dominant spin conductivity is σzxz and there is a
strong field-dependent cos 2ϕ and vertical offset instead. The dependence of each separate R2ω

xy

component versus 1/Hext (for in-plane deflections) and 1/(Hext + HS) (for out-of-plane deflec-
tions) is shown in Figure 4.4c-h for the same device at 120 K, and the extracted spin torque effective
fields and corresponding spin transfer torque efficiencies ξiSTT are shown in Figure 4.4i-m over the
full temperature range of 120-400 K. The components corresponding to fields from x̂, ŷ polarized
spin currents, when significant, follow the expected field relations well. The field like component
for the ẑ polarized current is expected to be a field-dependent offset that goes like 1/(Hext +HS),
but seems to scale inversely with field and does not have the expected linear behavior (Figure 4.4e).
For devices with field-dependent offsets and cos 2ϕ components, hzFL can be extracted by fitting
a slope to the coefficients shown in Figure 4.4e (ignoring the fact that the that the inverse field
scaling is nonlinear), but this yields ∼1000 Oe per 107 A cm−2, which is quite unlikely due to the
relatively smaller hyFL (< 100 Oe per 107 A cm−2 for all devices).

Though the exact origin of the anomalous scaling of the hzFL components in the high σzxz
samples remains undetermined, R2ω

xy may be complicated by either an additional thermoelectric
contribution from any anomalous spin textures near the interface, or by a spin polarization of the
charge current from field-induced canting of the PtMn3. From the VSM data in Figure C.3, there
is no evidence for an anomalous ferromagnetic component e.g. from a spin glass layer formed by
exchange interaction with the PtMn3. Further, any effective fields from injected spin current would
still be expected to follow 1/Hext, 1/(Hext + HS) field dependencies. Additionally, the Py layer
seems to be a well behaved uniaxial in-plane ferromagnet with no significant exchange bias in the
antiferromagnetic PtMn3 phases (Figure C.3). There is also a general over-fitting concern with
the hxDL,FL components due to their near identical but opposite polarity contributions to R2ω

xy as
per Figure 4.2b-c. It is likely that some amplitude is exchanged between the two components dur-
ing the fitting procedure, and that this is responsible for the low-temperature discrepancy between
the hxDL,FL amplitudes shown in Figure 4.5. In general, the interactions across a ferromagnet-
antiferromagnet interface may complicate the established second harmonic Hall effect model de-
scribed by Equation 4.1.9, due to interfacial transport phenomena being sensitive to small volumes
of anomalous spin texture across the interface. In all cases but the hzFL field-dependent offset,
effective fields can be reasonably be extracted from the in-plane second harmonic data across the
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full temperature range.

Figure 4.5: Spin torque effective field components in PtMn3/Py vs. Temperature. Extracted

spin torque effective fields from the in-plane second harmonic Hall effect measurements of the

SrTiO3/PtMn3(46.6 nm)/Py(6.8 nm)/SiC devices for damping-like torques from a, x̂, b, ŷ, and c, ẑ out-

of-plane spin currents, and for the field-like torques from d, x̂, and e, ŷ out-of-plane spin currents. In

general, the devices exhibit a typical spin Hall effect-like σyxz that follows the Néel transition and has an

amplitude exceeding typical Pt/Py devices by a factor of∼3. Components relating to σxxz , σ
z
xz arise below

the first-order transition at 200 K - 250 K, and the σyxz diverges as well, which can be attributed to the

anisotropic spin Hall conductivity expected in the non-collinear AFM phase.

The field-like and damping-like spin torque effective fields are shown for all devices in this
study as a function of temperature are shown in Figure 4.5. As with the fields from the (100)-
equivalent device, shown in Figure 4.4i-m, the effective fields from the spin Hall conductivities σxxz
and σzxz emerge suddenly below 200-250 K and are near zero at higher temperatures, corresponding
well to the phase transitions seen in the anomalous Hall conductivity profile in Figure 3.3. At 120
K, devices with significant σzxz yield hzDL = 8.07 ± 1.43 Oe per 107 A cm−2, and devices with
significant σxxz contributions yield hxDL = 26 ± 19 Oe per 107 A cm−2. In the large σxxz and σzxz
devices at 120 K, σzSTT = 0.056 ± 0.009 and ξxSTT = 0.18 ± 0.13. These values are comparable
to typical ξySTT reported for intrinsic SHE in single heavy element thin films [9, 76, 83] despite
the 75% reduction in Pt content, and are attributed to the stronger itinerant exchange physics from
the antiferromagnetic order. Unlike the corresponding p̂ = x̂, ẑ components, hyFL follows the
profile of a typical Néel transition, rising monotonically below 400 K, though there is a slight
bifurcation between devices below 200 K which is attributed to the onset of the intrinsic and
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orientation-dependent σyxz from the non-collinear state, the polarity of which can vary with AFM
lattice orientation. The baseline level of hyDL = 26 ± 8 Oe per 107 A cm−2 (ξySTT = 0.13 ± 0.03) at
400 K is attributed to the nonmagnetic SHE due to band spin-orbit coupling and is well within the
range reported for Pt [64] or Pt alloys [84]. At 120 K, hyDL = 42 ± 16 Oe per 107 A cm−2 (ξySTT
= 0.30 ± 0.12), an increase attributed to the intrinsic conductivity from onset of the AFM phases.
While there are no expected σxxz, σ

z
xz from the collinear AFM state, the symmetry does not prevent

an intrinsic isotropic σyxz [13, 38, 85] and the additional change from the onset of the non-collinear
phase is< 10% of the intermediate phase value. In contrast to other recent observations of p̂ = x̂, ẑ

spin currents in non-collinear AFMs [15, 47], the samples in this work yield higher hxDL/h
y
FL (up

to 0.8) and hzDL/hyFL (up to 0.2), and are highly anisotropic with respect to crystal/AFM domain
orientation. The notion that these components are exclusively tied to s-d exchange physics in the
non-collinear state is well supported by their lack of existence in the collinear and non-magnetic
states above 200 K - 250 K. This corresponds well with a recent study of Mn3GaN, which has
no intermediate collinear state, and where these components emerge smoothly through the Néel
transition [15].
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CHAPTER 5

Conclusion and Outlook

5.1 Summary of Results

This body of work has shown that thin film L12-ordered PtMn3 generates unconventional spin
Hall conductivity tensor components (σxxz, σ

z
xz) that have an orientation-dependent anisotropy, are

unique to the non-collinear antiferromagnet state, and are consistent with symmetry analysis. This
current direction-dependent anisotropy can be used to change the ratio of p̂ = x̂, ŷ, ẑ out-of-plane
spin current and select for a dominant polarization component. The mean spin transfer torque
efficiencies in the PtMn3/Py devices (ξxDL = 0.18, ξzDL = 0.06, ξyDL = 0.30) exceed that of the
canonical fcc Pt (ξyDL ∼ 0.1), which supports itinerant electron exchange with the magnetic lattice
as a stronger mechanism for spin current generation than spin-orbit coupling [38]. These results
suggest that non-collinear antiferromagnets could bridge the gap in spin torque efficiency between
heavy metals such as Pt, W and topological insulators such as 2D bismuth selenides [8] and tel-
lurides [73]. Moreover, the strong orientation-dependent anisotropy of the spin Hall conductivity
offers selectivity of out-of-plane spin current polarization, which may enable new developments in
low power non-volatile spin-based electronics.

The remainder of this thesis outlines prospective extensions of the existing work for further
materials development and for novel electronic applications. As discussed in chapter 4, an inability
to control antiferromagnetic domain formation can result in devices with higher global symmetry
where the expected linear response behavior is lost. Below, a proposal is outlined for controlling
antiferromagnetic domain formation by using exchange coupling with an adjacent ferromagnetic
thin film with favorable anisotropy. As the harmonic Hall effect data in chapter 4 shows, there
is an emergent σzxz in the low temperature non-collinear phase. This ẑ-polarized spin current
could be used to deterministically and efficiently switch ferromagnetic films with perpendicular
magnetic anisotropy (or as an efficient readout method through the inverse effect). An attempt
at integrating a Pt/Co PMA ferromagnet with PtMn3 and performing electric field switching is
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outlined, and guidance is issued for future experiments. Finally, the prospect of PtMn3 as a high
“quantum inductor” is outlined. In non-collinear antiferromagnets, self-induction from moment
canting under an applied internal current offers extraordinarily high inductance that has significant
potential in RF nanoelectronics.

5.2 Control of Non-collinear Domain Formation with Magnetic
Exchange

The control of antiferromagnetic domain formation in PtMn3 is critical to ensure that there is a
low global symmetry and to prevent cancellation of σixz via the existence of multiple domains in
one device, as per Figure A.1. It may be possible to guarantee a single global domain with suffi-
cient exchange coupling with a ferromagnetic substrate or interfacial layer that has an anisotropy
axis in a [110]-equivalent direction, which would serve to orient the Kagome planes in the low
temperature non-collinear state of PtMn3 in the [111] direction globally. A plausible option for
a compatible substrate with appropriate ferromagnetic geometry is BiFeO3, a well-studied mag-
netoelectric multiferroic with an orthogonal polarization and magnetization coupling that can be
oriented along [111]-equivalent directions with an external electric field [86]. The magnetic mo-
ment per iron atom in BiFeO3 is 0.1-1 µB per Fe, depending on the overall film quality [87, 88],
and exchange coupling to a ferromagnetic film has been previously demonstrated [89]. Epitaxially,
BiFeO3 should be compatible with PtMn3, as highly ordered growth was previously demonstrated
on a ferroelectric BiTiO3 substrate [46]. One likely caveat to this approach is that the magnetic and
ferroelectric ordering in multiferroics is linked directly to the crystal structure, and grain bound-
aries act as a hard limit on the maximum ordering length (these can be as low as 10s of nm in
poorly optimized BiFeO3 [90]). If epitaxial compatibility could be guaranteed, a metallic ferro-
magnet may be more conducive to the formation of a single global domain.

An excellent candidate for a ferromagnetic metal system that is both epitaxially compati-
ble with PtMn3 and can be grown to magnetically orient along the [110] direction is chemically
disordered Fe1−xGax (FeGa), a material this research group has significant experience with [91].
The lattice constant of bulk FeGa is around 2.9 Å, and it has a high magnetization of 1.8-2.2 µB
per Fe [92]. High quality epitaxial growth of FeGa was recently demonstrated on a ferroelectric
(PbMg0.33Nb0.67O3)1−x:(PbTiO3)x (PMN-PT, a = 4.02 Å) substrate [91], with the FeGa [100] axis
templating along the PMN-PT [110] direction for a better lattice match. This scheme is epitaxially
compatible with both MgO (a = 4.2 Å) and STO (a = 3.9 Å), and the diagonally oriented FeGa
could potentially be integrated with PtMn3 as per the proposed heterostructure in Figure 5.1a.
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Figure 5.1: Control of antiferromagnetic domain formation through exchange coupling with a fer-
romagnet. a, Proposed thin film heterostructure of PtMn3 with a FeGa alloy on MgO, which epitaxially

templates along the [110] MgO direction due to the significantly lower lattice constant (previously grown

in a prior work on PMN-PT [91]). b, As the FeGa Curie temperature (> 900 K, can be tuned with Ga

composition [92]) is higher than the PtMn3 first order transition temperature (< 400 K), it can be aligned

along [110] with a cooling field and potentially induce global ordering of the PtMn3 non-collinear texture

along the same axis through exchange coupling.

As the Curie temperature of FeGa (> 900 K [92]) is significantly higher than the PtMn3 Néel
transition, an applied external magnetic field along the substrate/PtMn3 [110] direction during
post-growth cooling would first align the FeGa to that direction. Then, due to exchange cou-
pling with the globally magnetized FeGa, the PtMn3 would ideally align to the same direction as it
passes through the first order transition temperature (see Figure 5.1b). This alignment could poten-
tially be done post film growth, assuming a vaccuum annealing apparatus existed that could assert
the required magnetic field while reaching sample temperatures of > 900 K. This method could
potentially result in a single global non-collinear AFM domain and large, orientation-selectable
out-of-plane spin current polarization, as per Figure A.1b.

5.3 Switching of Perpendicular Magnetic Anisotropy
Ferromagnets

The primary target application of intrinsic spin current generating materials is the switching of
patterned magnetic devices, such as the SHE-assisted MTJ structure shown in Figure 1.1f with
in-plane anisotropy magnets such as CoFeB, Py, etc. In general, in-plane anisotropy magnets
rely on shape anisotropy to define their hard axes, which mandates specific patterning of MTJ
stacks and can be challenging for arbitrary device configurations and for dimensional scaling. In
contrast, the anisotropy of perpendicularly magnetized (PMA) ferromagnets can stem from internal
crystal anisotropy [93, 94], or interfacial exchange such as the Dzyaloshinskii–Moriya interaction
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(DMI) [95–97]. In the latter case, it is possible to have very strong PMA nanomagnets with films
that are only a few atomic layers thick, which is advantageous for device scaling. Additionally, the
different fundamental anisotropy means that PMA magnets have lower critical switching currents
[98]. Unfortunately, canonical SHE materials do not deterministically switch PMA magnets, as
they only have σyxz spin Hall conductivity in the out-of-plane direction. As shown in Figure 5.2a,
spin currents with polarization perpendicular to the anisotropy axis (in this case ẑ), can only cause
continual precession as there is no equilibrium precession around a stable direction. However,
for p̂ = ±ẑ spin currents, as observed in the low temperature non-collinear state of PtMn3, there
is a stable equilibrium direction that the PMA magnetic moment precesses around, and stable
deterministic switching can occur.

Preliminary attempts have been made to deposit a Pt/Co PMA stack onto PtMn3 thin films
and evalute the spin current switching ability at low temperature. The electrical schematic for this
experiment is shown in Figure 5.2b, where a patterned PtMn3(35 nm)/Pt(2 nm)/Co(1 nm)/Pt(3
nm) device is connected in parallel with a lock-in amplifier which measures the magnetization
direction through the anomalous Hall resistance, and a DC current source. In this configuration,
care must be taken to avoid electrical coupling between instruments, and so appropriate high/low-
pass filters are placed on all Hall bar terminals to route the DC and harmonic signals correctly. To
avoid anomalous switching and excess sample heating with the AC sense current with the lock-
in amplifier, the amplitude is kept small, usually 100 times less than the maximum DC current.
In Figure 5.2c-d, the field-dependent Rxy is measured for a Pt(2 nm)/Co(1 nm)/Pt(3 nm) PMA
control sample, and the stack on PtMn3, respectively. Both samples exhibit good perpendicular
anisotropy across the full temperature range from 120-400 K, and have increased MS and HC at
low temperature, as expected. The PMA stack on PtMn3 shows some slight in-plane anisotropy at
temperatures below 200 K, attributed to exchange with the non-collinear PtMn3 spin texture, which
has some in-plane projection in all domain orientations. For out-of-plane spin current switching,
it would be ideal if the magnetic film was directly on top of the PtMn3, but the first Pt layer
was deemed necessary due to inconsistent PMA with PtMn3/Co/Pt films. In general, the interface
chemistry and growth kinetics present a challenge for integrating DMI-based PMA films with
arbitrary materials. In this regard, further film growth development is required to get the Co layer
as close as possible to the PtMn3, and reduce the spin current dissipation in the interfacial Pt, which
has a spin diffusion length in the 1-10 nm range [76].

Current switching of the PtMn3(35 nm)/Pt(2 nm)/Co(1 nm)/Pt(3 nm) samples was attempted
at 120 K in a Quantum Design Dynacool PPMS using the standard ETO puck and a custom break-
out module to connect a lock-in amplifier and current source, as in Figure 5.2b. The Hall voltage
versus PtMn3 current density is shown in Figure 5.2e. Instead of the expected PMA switching
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Figure 5.2: Deterministic switching of a perpendicularly magnetized ferromagnet with PtMn3. a,

Process schematic for spin current switching of a perpendicular magnetic anisotropy (PMA) ferromagnet

with in-plane spin current p̂ = x̂, ŷ as from the canonical SHE (left), and unconventional out-of-plane

p̂ = −ẑ as found in the non-collinear PtMn3 system (right). The combined effect of the damping-like

(DL) and field-like (FL) torques with the in-plane p̂ = x̂, ŷ causes continous out-of-plane switching, while

the p̂ = −ẑ has a clear stable equilibrium near m̂ = −ẑ. b, Electrical measurement setup for DC PMA

switching experiemtn with a PtMn3/PMA heterostructure with a lock-in amplifier supplying small signal

V ω
x to measure the Hall resistance and a DC current source for switching. Sources are appropriately filtered

to prevent DC/AC current injection between instruments. Anomalous Hall resistance versus out-of-plane

external field Hz for patterned Hall devices of c, Pt(2 nm)/Co(1 nm)/Pt(3 nm) PMA control sample and,

d PtMn3(40 nm)/Pt(2 nm)/Co(1 nm)/Pt(3 nm) at 275 K and 120 K. The PMA stack on PtMn3 shows

broadening at high temperature and partial loss of perpendicular anisotropy at low temperature, perhaps

due to exchange interactions with the different antiferromagnetic phases of PtMn3. e, DC switching

attempt of PtMn3/PMA sample at 120 K showing only the standard heating response V ∼ J2 before

device destruction in the JPtMn3 ∼ 107 A cm−2 range. f, Measurement of DC current induced bias in

Hall voltage versus Hz loops, and g the extracted offset fields, which suggest a bias of ∼ 10 Oe per 107

A cm−2. In general, the expected effective field from σzxz in the PtMn3 layer is small compared to the

coercive field at 120 K, and devices are destroyed before a significant bias can be detected. Pt/Co PMA

control samples and heterostructures with PtMn3 were developed in collaboration with N.M. Vu.

curve from Figure 5.2d, only a quadratic signal is detected, due to excessive device heating when
the PtMn3 current density approaches 107 A cm−2. At JPtMn3 ∼ 107 A cm−2, irreversible damage
occurs, with full or partial loss of the magnetic response in Figure 5.2d. This current density limit
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is too low to expect any switching to occur, given the respective properties of the PtMn3 and the
PMA stack at low temperature. Though it was not possible to evalute the field-like torques from
p̂ = ẑ out-of-plane spin currents in the main PtMn3/Py study, the respective damping-like torques
were measured to be ≤ 10 Oe per 107 A cm−2. Assuming the a highly optimistic case that the
p̂ = ẑ, ŷ fields are of comparable value, the results in Figure 4.5 point to a maximum field strength
of any component in the range of ∼ 50 Oe per 107 A cm−2. As per the external field switching of
the PtMn3/Pt(2 nm)/Co(1 nm)/Pt(3 nm) shown in Figure 5.2d, the saturation field is∼ 250 Oe, and
would require JPtMn3 ≥ 5 · 107 A cm−2 in the best case, which is currently unreachable due to ex-
cessive heating. An attempt was made to detect even small shifts in the PMA hysteresis loop with
DC current biasing the Hall devices and measuring the offset in the field-dependent Rxy, shown in
Figure 5.2f. The hysteresis loops shift significantly from the excessive sample heating, and show a
perceptible bias in the range of 5 Oe (Figure 5.2g), but it is inexplicably unipolar with current, and
the relative uncertainty is high (the shifts could represent a constant offset from the remnant mag-
netization of the PPMS bore). Realization of successful PMA switching with PtMn3 will require
additional development to increase the p̂ = ẑ spin current reaching the Co without destroying the
devices. If high quality L12 ordered PtMn3 can be grown thinner, e.g. in the range of ∼ 5 nm, it
would decrease the power dissipated in the device for the same current density. Additionally, if the
non-collinear phase could be stabilized at higher temperatures, as was done in a prior work [46], the
PMA saturation field would be lower, approximately 50 Oe at room temperature. The potential for
deterministic PMA switching with PtMn3 is present, but will require further development to match
the ẑ-polarized spin current efficiency with the thermal, structural, and magnetic requirements of
the full device.

5.4 Quantum Self-Inductance

The main focus of this thesis is the spin Hall conductivity acquired by conduction electrons fron
a linear response due to itinerant electron exchange with the magnetic lattice. In a spintronics
mindset, it makes sense to focus on the spin current generation, and the structure of the spin Hall
conductivity tensor. There is however, a complementary set of effects in the charge conductivity
tensor. For conduction electrons travelling through an arbitrary spin texture with local magnetic
orientation n(x), there arises an internal electric field [99]:

Ei =
~
e
n · (∂in× ∂tn) (5.4.1)
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It is clear from this expression that ferromagnets and collinear antiferromagnets would not produce
large Ei due to the lack of significant spatial variation in the spin texture, encoded by ∂in, and the
overall low solid angle in the magnetization coordinate that their precession would cause. For non-
collinear antiferromagnets with simple enough textures, Equation 5.4.1 can be worked out exactly,
as in the case of helical antiferromagnets that spiral along a main anisotropy axis [100]. For that
system specifically:

Ei =
~
e

2πP

λ
∂tφ ∼ L∂tJ (5.4.2)

where φ is the moment tilt angle, proportional to the applied current density J , P is the spin po-
larization factor, and λ is the periodicity of the full spin structure. Because of the direct current
dependence of φ, this is equivalently a function of ∂tJ proportional to some effective inductance
L, as shown. This phenomenon has been termed “quantum self-inductance”, and has been recently
observed in assorted non-collinear magnets, with the largest effects being seen in the helical non-
collinear antiferromagnet Gd3Ru4Al12 [101]. In the case of Gd3Ru4Al12, the volumetric quantum
inductance (in H m−3) was shown to be ∼ 106 times larger in amplitude than the leading commer-
cial alternatives at the time, as well as negative [101].

Figure 5.3: Quantum self-inductance in PtMn3. a, Schematic of the antiferromagnetic sublattices of

PtMn3 deflecting under applied current in the [111] direction, and the resulting solid angle dΩ, which

is proportional to the quantum self-inductance. b, Hypothetical bar inductor device for a (001)-oriented

PtMn3 thin film, as in this work. c, If synthesis of (111)-oriented L12 PtMn3 film is possible, it could be

patterned into disk/pillar out-of-plane inductive devices, greatly reducing the device footprint.

The spin structure of the non-collinear antiferromagnetic phase of PtMn3 suggests that it may
be a good quantum inductor. The emergent electric field in the helical spiral texture in Gd3Ru4Al12

is inversely proportional to the periodicity, and directly proportional to the solid angle covered
by the magnetic moments during one oscillation. For PtMn3, the periodicity of the texture is
the distance between identical Kagome planes d =

√
3a ∼ 6.65 Å, significantly smaller than

the Gd3Ru4Al12 spiral period of ∼ 28 Å. Additionally, the magnetic moments in non-collinear
PtMn3 carve out a full hemisphere as per Figure 5.3a. With the existing (001)-oriented thin films,
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longitudinal measurements of the quantum inductance could be obtained at various orientations,
for example the [110]-oriented bar shown in Figure 5.3b. Additionally, if the lattice periodicity is
to be minimized, it may be worthwhile to explore growth of (111)-oriented L12 PtMn3, and pattern
pillar devices as shown in Figure 5.3c. There are a profound number of potential applications of a
nanoscale negative inductor with comparable amplitude to large-area patterned inductor elements.
For an example RF nanoelectronics application, a high density negatively inductive element can
be placed in series with a parasitic impedance to effectively eliminate it from the circuit.
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APPENDIX A

Calculations of Anisotropic Spin Hall Conductivity
in (001)-oriented PtMn3

Spin conductivity tensors for the XMn3 materials (X = Pt, Rh, Ir) were calculated via density
functional theory in a prior work [33]. In that work, the noncollinear Kagome phase was found
to have a strong anisotropic spin conductivity primarily along the [111] direction (charge current
along [111] creates transverse spin current in the orthogonal plane). For the epitaxially templated
systems in this work, current is applied within the (001) plane, and the coordinate system and spin
orientations must be mapped from the original basis. The original basis for the DFT calculations
is x̂′ = [11̄0], ŷ′ = [112̄], ẑ′ = [111] [33]. To calculate the generated spin currents in some Hall
device with coordinates x̂, ŷ, ẑ, as in Figure 1.3a, the applied electric field is projected into the
original basis, then the resulting spin current direction and polarization is projected back into the
Hall device basis. Specifically, for some applied field direction Ê = ε1x̂+ ε2ŷ + ε3ẑ, the resulting
spin current in the direction r̂ = r1x̂+ r2ŷ + r3ẑ with polarization î, i ∈ (x, y, z) is:

J iÊ,r̂ =
∑
i′

(
î · î′

) [
R · σi′ ·E

]
(A.0.1)

whereR =
∑

i′

(
r̂ · î′

)
î′,E =

∑
i′

(
Ê · î′

)
î′ are the projections of the spin current direction and

applied electric field into the original basis, respectively, and σi′ is the spin Hall conductivity tensor
for polarization along î′ in the original basis. There is a difference in spin projection between the
two bases that is accounted for in the

(
î · î′

)
term in Equation A.0.1. Finally, because the electric

field and spin current directions are already normalized in this formulation, σixz = J ix̂,ẑ directly.

As the magnetic heterostructures in this work are out-of-plane, the relevant conductivity is
σixz for each spin polarization, where the final x̂ · [100] = cosφ100 is the lengthwise orientation
of the Hall channel (and the direction of supplied current), and ẑ = [001] always. For a patterned
device with multiple AFM domains, the resulting spin conductivity is calculated by using the
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appropriate device coordinates and averaging by the number of domain types. For example, if
there are twin domains with (111) and (111̄) Kagome planes, the device bases are x̂111 = [100],
ŷ111 = [010], ẑ111 = [010], and x̂111̄ = [001], ŷ111̄ = [100], ẑ111̄ = [001̄]. The computed transverse
(σixz) and longitudinal (σixx) spin conductivities for assorted domain degeneracies are shown in
Figure A.1. The resulting transverse spin current texture for devices along various orientations is
shown in Figure A.2, and compared to a typical heavy metal spin Hall effect system. The python
code used to calculate the spin Hall conductivity tensor components for Figure 1.3, Figure 4.3b,
and Figure A.1 is shown in Source Code A.1. The python code used to generate the transverse spin
textures in Figure A.1 is shown in Source Code A.2.

Figure A.1: Orientation-dependent spin Hall conductivity in multi-domain noncollinear PtMn3. a,

Schematic of noncollinear phase of L12 ordered PtMn3 showing coordinate system for conductivity tensor

calculations. b, σixz tensor elements for i = x, y, z in the [100], [010], [001] basis for a single AFM domain

with Kagome planes with [111] surface normal (black arrow, in-plane projection), along a direction x̂ =

[100] + (cosφ[100], sinφ[100], 0) based on prior DFT results [33], and rotated into the proper basis. The

same for c [111],[111̄], d [111],[1̄11], e [111],[1̄1̄1], f [111],[1̄11],[11̄1],[1̄1̄1], and g all 8 [111]-equivalent

domains in equal proportion. In any patterned device, the composition of out-of-plane spin conductivity

is highly dependent on both crystal orientation and antiferromagnetic domaining. In general, the higher

the global symmetry, the more tensor elements are reduced or eliminated altogether.
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Figure A.2: Orientation-dependent transverse spin current textures in single-domain non-collinear
PtMn3. Transverse spin current polarization for all directions orthogonal to the applied current direction

x̂ for a, a typical heavy metal spin Hall effect system (HM SHM) such as Pt, W. The profile in a is the

typical left handed circular polarization and is isotropic for all orientations of x̂ in the crystal. For PtMn3

with a single AFM domain oriented along [111] the texture is anisotropic with orientation and has varying

p̂ = x̂, ŷ, ẑ components, as shown for b, x̂ ‖ [100], c, x̂ ‖ [110], and d x̂ ‖ [010].
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Source Code A.1: Calculation of orientation-depdendent longitudinal σixx, and transverse σixz spin Hall

conductivity tensor components of the non-collinear antiferromagnetic ground state of L12 PtMn3 with

respect to an applied external current along x̂. The anisotropy and amplitude of each element varies greatly

with antiferromagnetic domain composition, as shown in Figure A.1.

1 # pm3_shc.py

2 # Steve Novakov 2021-07-29

3 # Desc: spin Hall conductivity tensor calculations for patterned in-plane

4 # Hall devices of (001)-oriented PtMn3

5

6 import numpy as np
7 import numpy.linalg as la
8

9 b111 = [[1,0,0], [0,1,0], [0,0,1]]

10 b1n1 = [[0,1,0], [-1,0,0], [0,0,1]]

11 bn11 = [[0,-1,0], [1,0,0], [0,0,1]]

12 bnn1 = [[-1,0,0], [0,-1,0], [0,0,1]]

13 b11n = [[0,1,0], [1,0,0], [0,0,-1]]

14 b1nn = [[1,0,0], [0,-1,0], [0,0,-1]]

15 bn1n = [[-1,0,0], [0,1,0], [0,0,-1]]

16 bnnn = [[0,-1,0], [-1,0,0], [0,0,-1]]

17

18 # USER INPUT

19

20 # bases = [b111, b1n1, bn11, bnn1, b11n, b1nn, bn1n, bnnn]

21 # bbs = "all"

22

23 bases = [b111]

24 bbs = "111"

25

26 def Projector(x, y, z, jr):

27

28 x0 = np.array([1, -1, 0])

29 x0 = x0 / la.norm(x0)

30 y0 = np.array([1, 1, -2])

31 y0 = y0 / la.norm(y0)

32 z0 = np.array([1, 1, 1])

33 z0 = z0 / la.norm(z0)

34

35 shcx = np.array([[-66, 0,0], [0, 66, 108], [0, 7, 0]])

36 shcy = np.array([[0, 66, -108], [66, 0,0], [-7, 0,0]])
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37 shcz = np.array([[0, 32, 0], [-32, 0,0], [0,0,0]])

38

39 xproj = np.array([x0.dot(x), y0.dot(x), z0.dot(x)])

40 yproj = np.array([x0.dot(y), y0.dot(y), z0.dot(y)])

41 zproj = np.array([x0.dot(z), y0.dot(z), z0.dot(z)])

42 rproj = np.array([x0.dot(jr), y0.dot(jr), z0.dot(jr)])

43

44 jrx0 = rproj.dot(shcx.dot(xproj))

45 jry0 = rproj.dot(shcy.dot(xproj))

46 jrz0 = rproj.dot(shcz.dot(xproj))

47

48 jj = np.array([jrx0, jry0, jrz0])

49

50 jrx = jj.dot(xproj)

51 jry = jj.dot(yproj)

52 jrz = jj.dot(zproj)

53

54 return [jrx, jry, jrz]

55

56 def Rz(alpha):

57

58 mat = [[np.cos(alpha), -1*np.sin(alpha), 0],\

59 [np.sin(alpha), np.cos(alpha), 0],

60 [0,0,1]]

61

62 return np.array(mat)

63

64 # Rotate X,Y,Z from Zhang, Y., et al. (2017) into new x,y,z

65 # new x,y,z is std. caretsian coordinates rotated around z by phi

66

67 phis = np.linspace(-1*np.pi, np.pi, 360)

68 norm = 100.0

69

70 s_xz_x = []

71 s_xz_y = []

72 s_xz_z = []

73 s_xx_x = []

74 s_xx_y = []

75 s_xx_z = []

76

77 nb = len(bases)

78

79 for p in phis:
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80

81 xzx = 0

82 xzy = 0

83 xzz = 0

84 xxx = 0

85 xxy = 0

86 xxz = 0

87

88 for b in bases:

89

90 bb = np.array(b)

91 x = bb[0]

92 y = bb[1]

93 z = bb[2]

94

95 rm = Rz(p)

96

97 x = rm.dot(x)

98 y = rm.dot(y)

99 z = rm.dot(z)

100

101 sx, sy, sz = Projector(x,y,z,z)

102

103 xzx += sx/nb

104 xzy += sy/nb

105 xzz += sz/nb

106

107 sx, sy, sz = Projector(x,y,z,x)

108

109 xxx += sx/nb

110 xxy += sy/nb

111 xxz += sz/nb

112

113 s_xz_x.append(xzx)

114 s_xz_y.append(xzy)

115 s_xz_z.append(xzz)

116 s_xx_x.append(xxx)

117 s_xx_y.append(xxy)

118 s_xx_z.append(xxz)

119

120 s_xz_x = np.array(s_xz_x) / norm

121 s_xz_y = np.array(s_xz_y) / norm

122 s_xz_z = np.array(s_xz_z) / norm
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123 s_xx_x = np.array(s_xx_x) / norm

124 s_xx_y = np.array(s_xx_y) / norm

125 s_xx_z = np.array(s_xx_z) / norm

126

127 # output to files

128

129 head = "s_xzˆx,s_xzˆy,s_xzˆz,s_xxˆx,s_xxˆy,s_xxˆz"

130

131 outarray = np.array([s_xz_x, s_xz_y, s_xz_z, s_xx_x, s_xx_y, s_xx_z])

132 outarray = outarray.T

133

134 np.savetxt("shc_components.csv", outarray, header=head)

135 \end{python}

Source Code A.2: Calculation of transverse spin current texture of the non-collinear antiferromagnetic

ground state of L12 PtMn3 and a traditional spin Hall metal (e.g. Pt), with respect to an applied exter-

nal current along some arbitrary direction in the (001) plane.

1 # pm3_shc.py

2 # Steve Novakov 2021-08-20

3 # Desc: transverse spin current texture calculation and film creation of

in-plane↪→

4 # Hall devices of (001)-oriented PtMn3, Pt

5

6 import numpy as np
7 import numpy.linalg as la
8 import matplotlib.pyplot as pt
9 from mpl˙toolkits.mplot3d import Axes3D

10 import matplotlib.gridspec as gridspec
11 from celluloid import Camera

12 from IPython.display import HTML

13

14 def Projector(x, y, z, jr):

15

16 x0 = np.array([1, -1, 0])

17 x0 = x0 / la.norm(x0)

18 y0 = np.array([1, 1, -2])

19 y0 = y0 / la.norm(y0)

20 z0 = np.array([1, 1, 1])

21 z0 = z0 / la.norm(z0)

22

23 shcx = np.array([[-66, 0,0], [0, 66, 108], [0, 7, 0]])
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24 shcy = np.array([[0, 66, -108], [66, 0,0], [-7, 0,0]])

25 shcz = np.array([[0, 32, 0], [-32, 0,0], [0,0,0]])

26

27 xproj = np.array([x0.dot(x), y0.dot(x), z0.dot(x)])

28 yproj = np.array([x0.dot(y), y0.dot(y), z0.dot(y)])

29 zproj = np.array([x0.dot(z), y0.dot(z), z0.dot(z)])

30 rproj = np.array([x0.dot(jr), y0.dot(jr), z0.dot(jr)])

31

32 jrx0 = rproj.dot(shcx.dot(xproj))

33 jry0 = rproj.dot(shcy.dot(xproj))

34 jrz0 = rproj.dot(shcz.dot(xproj))

35

36 jj = np.array([jrx0, jry0, jrz0])

37

38 jrx = jj.dot(xproj)

39 jry = jj.dot(yproj)

40 jrz = jj.dot(zproj)

41

42 return [jrx, jry, jrz]

43

44 def ProjectorPt(x, y, z, jr):

45

46 x0 = np.array([1, 0, 0])

47 y0 = np.array([0, 1, 0])

48 z0 = np.array([0, 0, 1])

49

50 shcx = np.array([[0,0,0], [0, 0, 1], [0, -1, 0]])

51 shcy = np.array([[0, 0, -1], [0,0,0], [1,0,0]])

52 shcz = np.array([[0, 1, 0], [-1, 0,0], [0,0,0]])

53

54 xproj = np.array([x0.dot(x), y0.dot(x), z0.dot(x)])

55 yproj = np.array([x0.dot(y), y0.dot(y), z0.dot(y)])

56 zproj = np.array([x0.dot(z), y0.dot(z), z0.dot(z)])

57 rproj = np.array([x0.dot(jr), y0.dot(jr), z0.dot(jr)])

58

59 jrx0 = rproj.dot(shcx.dot(xproj))

60 jry0 = rproj.dot(shcy.dot(xproj))

61 jrz0 = rproj.dot(shcz.dot(xproj))

62

63 jj = np.array([jrx0, jry0, jrz0])

64

65 jrx = jj.dot(xproj)

66 jry = jj.dot(yproj)
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67 jrz = jj.dot(zproj)

68

69 return [jrx, jry, jrz]

70

71 def Rz(alpha):

72

73 mat = [[np.cos(alpha), -1*np.sin(alpha), 0],\

74 [np.sin(alpha), np.cos(alpha), 0],

75 [0,0,1]]

76

77 return np.array(mat)

78

79 def ProjectionColor(spin):

80

81 aspin = np.abs(spin)

82 px, py, pz = aspin

83

84 if np.amax(aspin) == px:

85 return "#ffa81a"

86 elif np.amax(aspin) == py:

87 return "black"

88 elif np.amax(aspin) == pz:

89 return "#825cff"

90

91 b111 = [[1,0,0], [0,1,0], [0,0,1]]

92

93 theta = np.linspace(0, 2*np.pi, num=16, endpoint=False)

94 ry = np.cos(theta)

95 rz = np.sin(theta)

96

97 n = theta.shape[0]

98

99 fig = pt.figure(figsize=(30,15))

100 ax = fig.add_subplot(121, projection='3d', azim=-180, elev=0)

101 ax2 = fig.add_subplot(122, projection='3d', azim=-90, elev=0)

102

103 camera = Camera(fig)

104

105 degs = np.linspace(0,360,int(360/1.) + 1)

106

107 for deg in degs:

108

109 #print(deg)
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110

111 for i in range(0, n):

112

113 rr = np.array([0, ry[i], rz[i]])

114

115 bb = np.array(b111)

116 x = bb[0]

117 y = bb[1]

118 z = bb[2]

119

120 rm = Rz(np.radians(deg))

121

122 x = rm.dot(x)

123 y = rm.dot(y)

124 z = rm.dot(z)

125

126 rrr = rm.dot(rr)

127

128 sx, sy, sz = Projector(x,y,z,rrr)

129 #sx, sy, sz = ProjectorPt(x,y,z,rrr)

130

131 ss = np.array([sx, sy, sz])

132 ss /= np.linalg.norm(ss) * 5.0

133

134 pcolor = ProjectionColor(ss)

135

136 ax.quiver(*rr, *ss, color=pcolor, pivot="middle", linewidth=6)

137 ax2.quiver(*rr, *ss, color=pcolor, pivot="middle", linewidth=6)

138

139 for a in ax, ax2:

140 a.scatter(*rr, color=pcolor, s=300)

141

142 for a in ax, ax2:

143 a.set_xticks([])

144 a.set_yticks([])

145 a.set_zticks([])

146

147 a.set_xlim([-1,1])

148 a.set_ylim([-1,1])

149 a.set_zlim([-0.8,0.8])

150

151 a._axis3don = False

152
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153 ax.scatter(0,0,0, color='black', s=300)

154

155 ax.quiver(0, 0, 0, 0, 0.5, 0, color='black', linewidth=10)

156 ax.quiver(0, 0, 0, 0, -0.0005, 0.5, color='black', linewidth=10)

157

158 ax.text(0,0.5,-0.25, r"$\hat{y}$", size=60, zorder=1, color='black')

159 ax.text(0,-0.1,0.45, r"$\hat{z}$", size=60, zorder=1, color='black')

160

161 ax2.text(-1.3,0,0, r"$\phi$ = " + str(int(deg)).zfill(3) +

r"$ˆ\circ$", size=60, zorder=1, color='black')↪→

162 ax2.text(0.7,0,0.2, r"$\hat{x}$", size=60, zorder=1, color='black')

163

164 ax2.quiver(0.2, 0, 0, 0.6, 0, 0, color='black', linewidth=10)

165

166 fig.tight_layout()

167

168 camera.snap()

169

170 animation = camera.animate(interval=50, repeat = True)

171 animation.save("pm3_proj_1.mp4")

172 #animation.save("pt_proj_1.mp4")
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APPENDIX B

XRD, Structural, and Chemical Characterization of
PtMn3 Thin Films

Figure B.1: Simulated X-ray diffraction profiles of relevant (001)-oriented Pt-Mn intermetalltic thin
films. Theoretical out-of-plane X-ray diffraction profiles are shown for common Pt-Mn alloys and com-

pared to the ideal cubic L12 PtMn3 (001)-oriented thin film with a = c = 3.84 Å, and the tetragonally

strained films on SrTiO3 in this study. Depending on growth conditions, it is plausible to form any of the

solid solution γ phase, or the bcc-like or CuInPt2-like PtMn phase [49, 50]. Because of the qualitative

similarity, confirmation of the cubic L12 phase requires additional evidence such as electron microscopy,

chemical spectroscopy or neutron spectroscopy. XRD profiles were generated using structure factors

and PseudoVoigt profiles for a planar Cu Kα X-ray beam with 0.5 degree divergence in CrystalDiffract

(v6.9.2): a powder diffraction program for Mac and Windows. CrystalMaker Software Ltd, Oxford, Eng-

land (www.crystalmaker.com).
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Figure B.2: XRD of PtMn3 Thin Films on SrTiO3 and MgO. a, out of plane XRD for PtMn3 films of

similar thicknesses grown on MgO (blue) and SrTiO3 (black). Black vertical lines are placed at the PtMn3

peaks for the SrTiO3 (STO) sample, and show the increased tetragonality of the MgO samples. ϕ scans

for both b, MgO and c, SrTiO3 growths show epitaxial single-phase films with alignment to the substrate

lattice. Reciprocal space map (RSM) of 024 film and substrate peaks for d, MgO and e, SrTiO3 samples.

All PtMn3 films are templated to the substrate and exhibit large epitaxial strains, but the SrTiO3 growths

result in lower tetragonality due to the better lattice match. RSM data in d, e was obtained in collaboration

with P.B. Meisenheimer [55].
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Figure B.3: X-ray Photoelectron Spectroscopy of Reference PtMn6 Target. a, Broad survey XPS

spectra of the polished backside of a reference PtMn6 target pre (black) and post (blue) 600s ion beam

etch to remove surface contaminants. The post etch b, Mn 2p complex and quantification region (Mn

2p 1/2 peak, shaded purple), and c, the Pt 4f complex and quantification region (shaded gray). For thin

film quantification, the integrated peak intensity ratios are compared to these from the reference target to

establish stoichiometry.
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Figure B.4: EELS map of MnO pocket on top PtMn3 interface. a, EELS map of∼1.5 nm x 6 nm FOV

near top interface across MnO cluster from an SrTiO3/PtMn3(66 nm)/Py(15 nm) sample showing Mn, Ni

and O content. Mn diffusion to the surface is lowered by reducing high temperature exposure and not

annealing post-growth. Mn interfacial regions seem to be fully MnO. To avoid MnO antiferromagnetism

(TN ∼ 115 K), we perform all harmonic Hall effect measurements at T ≥ 120 K. This data was obtained

in collaboration with G.A. Pan [55].
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Figure B.5: Surface manganese diffusion from high temperature annealing of PtMn3 thin films.

a, Large field-of-view HAADF-STEM image of SrTiO3/PtMn3(120 nm)/Py(25 nm)/SiC sample grown

for neutron diffraction measurements which underwent a 1 hour anneal at 700 ◦C in 50 mTorr Ar after

deposition of the PtMn3 layer. Post-growth annealing at these temperatures results in diffusion of Mn

from the bulk of the PtMn3 film to the surface, and formation of sparse macroscopic ridges of Mn that b,

can be seen with an optical microscope. c, Topographic atomic force microscopy (AFM) of a small field

of view containing these ridges and d, a height profile across them showing a consistent 1-2 µm width

and up to 150 nm height (a likely overestimate due to scanning dynamics of the contact AFM tip). PtMn3

films used for transport measurements in this work did not undergo any post-growth annealing and do not

have visible ridges as in b, or significant Mn surface layers (though some diffusion does occur, and results

in disconnected Mn pockets of 1-2 nm thickness as per Figure 2.3).
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APPENDIX C

Magnetic Characterization of PtMn3, PtMn3/Py Thin
Films

Figure C.1: Anomalous Hall resistance in PtMn3 on SrTiO3 at 300 K]. Anomalous Hall resistance

of patterned SrTiO3/PtMn3(95 nm)/SiC vs. out-of-plane field Hz at 300 K under increasingly higher

maximum field. The remnant magnetization does not saturate up to maximum fields of 9 T, a response

typical of collinear antiferromagnets in the direction perpendicular to the main anisotropy axis.
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Figure C.2: Out-of-plane anomalous Hall effect scans of Py and PtMn3/Py. Out-of-plane field scans of

total deviceRxy for patterned a, Al2O3/Py(15.0 nm)/TiO2 and b, SrTiO3/PtMn3(46.6 nm)/Py(6.8 nm)/SiC

Hall devices from 120 K - 400 K, showing the expected out-of-plane behavior of a uniaxial in-plane

ferromagnet. b, saturation field HS , saturation magnetization MS = HS/4π. The near identical HS ,MS

indicate a similar quality of Py film across samples.

Figure C.3: In-plane vibrating sample magnetometry of PtMn3/Py. In-plane vibrating sample mag-

netometry (VSM) of a 5 mm x 3 mm piece of the same SrTiO3/PtMn3(46.6 nm)/Py(6.8 nm)/SiC sample

used for Hall devices from 120 K - 400 K and up to ±250 Oe under an applied 50 Oe training field during

temperature sweeps. VSM was performed in a Quantum Design Dynacool PPMS with the VSM option,

and the sample was thermalized at each temperature step for 1 hour. There is no significant exchange

bias and the Py is well saturated in-plane at 250 Oe, the minimum used for second harmonic Hall effect

measurements.
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APPENDIX D

Electronic Measurements of PtMn3, PtMn3/Py Thin
Films

Figure D.1: Device resistivity and current splitting in PtMn3/Py Hall devices. a, Resistivities of

standalone SrTiO3/PtMn3(95 nm) and Al2O3/Py(15 nm) films, calculated via longitudinal 4-wire mea-

surements of patterned Hall bar devices. b, The resulting current ratio in each film from 10 K - 400 K,

assuming a parallel resistor model. c, Resistances of each film layer and total Hall channel resistance

from 10 K - 400 K in the SrTiO3/PtMn3(46.6 nm)/Py(6.8 nm)/SiC devices used for harmonic Hall effect

measurements, calculated from resistivity measurements of individual films. The calculated total channel

resistance from the 4-wire resistivity scans closely matches the measured 2-wire device resistance (red

circles).
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Figure D.2: Harmonic Hall effect Py control measurement. a, In-plane second harmonic Hall resistance

R2ω
xy from 150-400 K for a patterned Al2O3/Py(15 nm)/TiO2 control sample withHext = 250 Oe. In-plane

b, first and c, second harmonic Hall resistance for the same sample at 150 K vs. Hext from 250-4000 Oe.

For all temperature and Hext, the control sample is well saturated, and the thermoelectric component of

R2ω
xy dominates (∼ cosϕ, no Hext dependence). There is often a small detectable field-like torque from

p̂ = ŷ spin current attributed to the Rashba effect from the interface symmetry breaking with the Py and

Al2O3 substrate, but it is consistently < 1 Oe per 107 A cm−2.
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APPENDIX E

Fitting Temperature Dependent Harmonic Hall
Effect Data with BUMPS/DREAM

Fitting code and parameter error plots are provided for the free parameter fitting to a single V 2ω
xy

frame as in Figure 4.4a-h. All such parameter fits in this work were done with the Bumps python
package (v0.8.0) and the built in DREAM implementation. The script provided in Source Code E.1
handles the data and assigns it to a fitter. The free parameter fitter initializes the parameters ac-
cording to the range of values in the data and then assigns them to individual V 2ω

xy (Hext, ϕ) curves
and executes the DREAM algorithm. The source code for the free parameter fitter is provided in
Source Code E.2. The final output contains the parameter paths for each iteration of DREAM, and
a distribution of final values, shown in Figure E.1. The fit is considered good if the values have a
distribution that is unconstrained by the bounds and a small relative error.

For the fixed scaling parameter model used to extract the data in Figure 4.5, the spin torque
effective field parameters are forced to follow strict 1/Hext, 1/(Hext+HS) scaling in a full dataset
of V 2ω

xy (Hext, ϕ) curves at a particular temperature. The vertical offset parameter is relaxed due
to the anomalous scaling discussed in chapter 4. The script provided in Source Code E.3 handles
the data and assigns it to a fitter. The strict scaling fitter initializes the parameters according to the
range of values in the data and then assigns them to individual V 2ω

xy (Hext, ϕ) curves and executes
the DREAM algorithm. The source code for the scrict fitter is provided in Source Code E.4.
The fitted curves and raw data for a V 2ω

xy (Hext, ϕ) frame at 300 K is shown in Figure E.2a. The
corresponding parameter distributions are shown in Figure E.2b.

71



Source Code E.1: Execution script for the free-parameter fit to the second harmonic Hall effect model.

1 # bumps_run_strict.py

2 # Steve Novakov 2021-07-29

3 # Desc: script to run differential evolution and DREAM fitting for second

4 # harmonic Hall effect data through the python BUMPS CLI. The fitter here

5 # has free parameter scaling for a each (p, H) curve at temperature tt

6

7 import subprocess as sp
8 import os
9 import sys
10 import time
11 import winsound
12 import json
13 import interpolants
14

15 de_steps = 2000

16 dream_steps = 3000

17

18 target_dir = "data_directory"

19 targets = ["DEVICE_ID_1", "DEVICE_ID_1", "DEVICE_ID_1"]

20

21 FITTER = "v2w_xyz_free"

22

23 DREAMS = False

24 #DREAMS = True

25

26 # DE ˜ 191 secs per

27 # DREAMS ˜ 600 secs per

28

29 start_time = time.time()

30

31 for target in targets:

32

33 dirs = os.listdir(target_dir + "/" + target)

34

35 for dir in dirs:

36

37 if "DREAMS_2w" not in dir:

38 continue

39

40 stuff = dir.split("_")
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41

42 tt = stuff[-1]

43

44 rootpath = target_dir + "/" + target

45 parampath = rootpath + "/DREAMS_2w_" + tt + "/" + \

46 FITTER + "-err.json"

47

48 wpath = target_dir + "/" + target + "/DE_2wPar_" + tt

49

50 command = ["python"]

51 command.append("-m")

52 command.append("bumps.cli")

53 command.append("./" + FITTER + "_params" + ".py")

54 command.append(rootpath)

55 command.append(parampath)

56 command.append(str(tt))

57 command.append("--overwrite")

58

59 if DREAMS:

60

61 dreampath = target_dir + "/" + target + "/DREAMS_2wPar_" + tt

62 parpath = wpath + "/" + FITTER + "_params" + ".par"

63

64 command.append("--fit=dream")

65 command.append("--burn=1500")

66 command.append("--steps={:}".format(int(de_steps)))

67 command.append("--init=lhs")

68 command.append("--trim=true")

69 command.append("--pars=" + parpath)

70 command.append("--store=" + dreampath)

71

72 else:

73

74 command.append("--fit=de")

75 command.append("--steps={:}".format(int(dream_steps)))

76 command.append("--store=" + wpath)

77

78 command.append("--batch")

79 sp.call(command, shell=True)

80

81 print("--- %s seconds ---" % (time.time() - start_time))

82

83 # play a sound when finished
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84 winsound.Beep(100,500); winsound.Beep(400,500); winsound.Beep(200,500);

Source Code E.2: Fitting model for differential evolution/DREAM for the free-parameter fit to the second

harmonic Hall effect model.

1 # v2w_xyz_free.py

2 # Steve Novakov 2021-07-29

3 # Desc: Actual fit model used for differential evolution and DREAM

fitting↪→

4 # to second harmonic Hall effect data through the python BUMPS CLI. The

fitter↪→

5 # here has free parameter scaling for a each (p, H) curve at temperature

tt↪→

6

7 import numpy as np
8 from bumps.names import Parameter, FitProblem, Curve

9 from bumps.parameter import Constant

10 import json
11 import sys
12

13 def V2WFit(phis, a, a_cp, a_c2pcp, a_c2p, a_sp, a_c2psp):

14

15 s = a_cp * np.cos(phis)

16 s += a_c2pcp * np.cos(2*phis) * np.cos(phis)

17 s += a_c2p * np.cos(2*phis)

18 s += a_sp * np.sin(phis)

19 s += a_c2psp * np.cos(2*phis) * np.sin(phis)

20 s += a

21

22 return s

23

24 curves = []

25

26 args = sys.argv

27

28 opath = args[1]

29 tt = args[2]

30 hs = Constant(float(args[3]))

31

32 data = json.load(open(opath, "r"))

33

34 fields = sorted(list(data[tt].keys()), reverse=True, key=lambda x:

float(x))↪→
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35

36 hmin = np.amin(np.array(fields).astype(np.float))

37

38 for ii in range(0, len(fields)):

39

40 hh = fields[ii]

41

42 field = float(hh)

43 hext = Constant(field)

44

45 phis = np.radians(np.array(data[tt][hh]["phi"]))

46 v2wy = np.array(data[tt][hh]["v2wy"])

47

48 span = np.amax(v2wy) - np.amin(v2wy)

49 mid = (np.amax(v2wy) + np.amin(v2wy))/2.

50

51 dv2wy = 2e-7 * np.ones(v2wy.shape) * (field / hmin)**0.5

52 # increased error on lower amplitude points

53

54 a = Parameter(name="a_"+str(hh), value=mid).range(mid - span/2., mid +

span/2.)↪→

55 a_cp = Parameter(name="a_cp_"+str(hh), value=span/3.).range(-3*span,

3*span)↪→

56 a_c2pcp = Parameter(name="a_c2pcp_"+str(hh),

value=span/3.).range(-3*span, 3*span)↪→

57 a_c2p = Parameter(name="a_c2p_"+str(hh), value=span/3.).range(-3*span,

3*span)↪→

58 a_sp = Parameter(name="a_sp_"+str(hh), value=span/3.).range(-3*span,

3*span)↪→

59 a_c2psp = Parameter(name="a_c2psp_"+str(hh),

value=span/3.).range(-3*span, 3*span)↪→

60

61 if float(tt) > 390:

62

63 a = Parameter(name="a_"+str(hh), value=mid).range(-1*span/4,

span/4.)↪→

64 a_cp = Parameter(name="a_cp_"+str(hh),

value=span/3.).range(-1*span, span)↪→

65 a_c2pcp = Parameter(name="a_c2pcp_"+str(hh),

value=span/3.).range(-1*span, span)↪→

66 a_c2p = Parameter(name="a_c2p_"+str(hh),

value=span/3.).range(-1*span, span)↪→
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67 a_sp = Parameter(name="a_sp_"+str(hh),

value=span/3.).range(-1*span, span)↪→

68 a_c2psp = Parameter(name="a_c2psp_"+str(hh),

value=span/3.).range(-1*span, span)↪→

69

70 designator = "T{:d}_H{:d}".format(int(tt), int(hh))

71

72 curves.append(Curve(V2WFit, phis, v2wy, dy=dv2wy, name=designator,\

73 a=a, a_cp=a_cp, a_c2pcp=a_c2pcp, a_c2p=a_c2p, a_sp=a_sp,

a_c2psp=a_c2psp))↪→

74

75 problem = FitProblem(curves)

Figure E.1: Parameter distributions from DREAM for free parameter fit to in-plane second har-
monic Hall effect data. Final distribution of fitted parameters from the DREAM algorithm for the device

shown in Figure 4.4 in the free parameter scheme. Here, each amplitude for a particular component (e.g.

cosϕ, sinϕ, etc) is unconstrained, and is found for each Hext, ϕ profile for Hext = (250, 400, 600, 800,

4000) Oe. The parameters and their errors are used to determine the scaling with respect to 1/Hext,

1/(Hext +HS).

Source Code E.3: Execution script for the strict parameter fit to the second harmonic Hall effect model with

enforced 1/Hext, 1/(Hext +HS) field scaling.

1 # bumps_run_strict.py

2 # Steve Novakov 2021-07-29

3 # Desc: script to run differential evolution and DREAM fitting for second
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4 # harmonic Hall effect data through the python BUMPS CLI. The fitter here

5 # has fixed parameter scaling for a single (p, H) frame at temperature tt

6

7 import subprocess as sp
8 import os
9 import sys
10 import time
11 import winsound
12 import json
13

14 de_steps = 2000

15 dream_steps = 3000

16

17 target_dir = "data_directory"

18 targets = ["DEVICE_ID_1", "DEVICE_ID_1", "DEVICE_ID_1"]

19

20 FITTER = "v2w_xyz_strict"

21

22 DREAMS = False

23 #DREAMS = True

24

25 # DE ˜ 400 secs per

26 # DREAMS ˜ 1900 secs per

27

28 start_time = time.time()

29

30 for target in targets:

31

32 raw_data_path = target_dir + "/" + target + "/CORRECTED_DATA.json"

33 root_path = target_dir + "/" + target

34

35 tar_data = json.load(open(raw_data_path, "r"))

36 temps = sorted(list(tar_data.keys()), key=lambda x: int(x))

37

38 for tt in temps:

39

40 wpath = root_path + "/DE_2w_" + tt

41

42 command = ["python"]

43 command.append("-m")

44 command.append("bumps.cli")

45 command.append("./" + FITTER + ".py")

46 command.append(raw_data_path)
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47 command.append(root_path)

48 command.append(str(tt))

49 command.append("--overwrite")

50

51 if DREAMS:

52

53 dreampath = root_path + "/DREAMS_2w_" + tt

54 parpath = wpath + "/" + FITTER + ".par"

55

56 command.append("--fit=dream")

57 command.append("--burn=1500")

58 command.append("--init=lhs")

59 command.append("--steps={:}".format(int(dream_steps)))

60 command.append("--pars=" + parpath)

61 command.append("--store=" + dreampath)

62

63 else:

64

65 command.append("--fit=de")

66 command.append("--steps={:}".format(int(de_steps)))

67 command.append("--store=" + wpath)

68

69 command.append("--batch")

70

71 sp.call(command, shell=True)

72

73 print("--- %s seconds ---" % (time.time() - start_time))

74

75 # play a sound when finished

76 winsound.Beep(100,500); winsound.Beep(400,500); winsound.Beep(200,500);

Source Code E.4: Fitting model for differential evolution/DREAM for the strict parameter fit to the second

harmonic Hall effect model with enforced 1/Hext, 1/(Hext +HS) field scaling.

1 # v2w_xyz_strict.py

2 # Steve Novakov 2021-07-29

3 # Desc: Actual fit model used for differential evolution and DREAM

fitting↪→

4 # to second harmonic Hall effect data through the python BUMPS CLI.

5 # The fitter here has fixed parameter scaling for a single (p, H) frame

6 # at temperature tt with a relaxed offset due to anomalous behavior of

z-pol↪→
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7 # field like component.

8

9 import numpy as np
10 from bumps.names import Parameter, FitProblem, Curve

11 from bumps.parameter import Constant

12 import json
13 import sys
14 import interpolants
15

16 def V2WFit(phis, delta, h_off, hext, hs, vt, v_ra, v_rp, hoe,\

17 hy_fl, ry_dl, rx_fl, rx_dl, rz_dl):

18

19 a_ra = v_ra /(h_off + hext + hs)

20 a_rp = v_rp / (h_off + hext)

21

22 s = (vt - a_ra * ry_dl * hy_fl) * np.cos(phis)

23 s += -1 * a_rp * (hy_fl - hoe) * np.cos(2*phis) * np.cos(phis)

24 s += a_rp * rz_dl * hy_fl * np.cos(2*phis)

25 s += a_rp * rx_fl * hy_fl * np.cos(2*phis) * np.sin(phis)

26 s += a_ra * rx_dl * hy_fl * np.sin(phis)

27 s += delta

28

29 return s

30

31 curves = []

32

33 # open data

34

35 args = sys.argv

36

37 raw_data_path = args[1]

38 root_path = args[2]

39 tt = args[3]

40

41 data = json.load(open(raw_data_path, "r"))

42

43 fields = sorted(list(data[tt].keys()), reverse=True, key=lambda x:

float(x))↪→

44

45 mean_hoe = 29.3 # Oe per 1e7 A/cm2

46 hoe = Constant(mean_hoe)

47

48 # fit parameters and limits
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49

50 yfl0 = 10.0 # Oe Per 1e7 A/cm2

51 yrange = 1e3 # Oe Per 1e7 A/cm2

52

53 xrange = 2.0 # relative to hfl_y

54 zrange = 2.0 # relative to hfl_y

55

56 hy_fl = Parameter(name="hy_fl", value=yfl0).range(-1*yrange, yrange)

57 ry_dl = Parameter(name="ry_dl", value=1e-1).range(0.0, 2.0)

58

59 # e.g. hx_fl = rx_fl * hy_fl in units of Oe Per 1e7 A/cm2

60 rx_fl = Parameter(name="rx_fl", value=-1e-1).range(-1*xrange, xrange)

61 rx_dl = Parameter(name="rx_dl", value=1e-1).range(-1*xrange, xrange)

62 rz_dl = Parameter(name="rz_dl", value=1e-1).range(-1*zrange, zrange)

63

64 # compensate for small remnant magnetization in the bore

65 h_off = Parameter(name="h_off", value=10.0).range(-50.0, 50.0)

66

67 # set vt range

68

69 hmax = fields[0]

70 v2wy_max = np.array(data[tt][hmax]["v2wy"])

71 amp_max = (np.amax(v2wy_max) - np.amin(v2wy_max))/2.

72 mid_max = (np.amax(v2wy_max) + np.amin(v2wy_max))/2.

73

74 vt = Parameter(name="vt", value=amp_max/4.).range(amp_max*0.02, amp_max)

75

76 path1w = root_path + "/DREAMS_1w_" + str(tt) + "/first_harmonic-err.json"

77 rpdata = json.load(open(path1w, "r"))

78

79 # calculate constant factors

80

81 vps = []

82

83 for key in rpdata.keys():

84

85 if "vp" in key:

86 if "4000" not in key:

87 vps.append(rpdata[key]['mean'])

88

89 vps = np.array(vps)

90

91 hs, dhs = interpolants.GetHs([float(tt)])
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92 hs = hs[0]

93

94 ra, dra = interpolants.GetRa([float(tt)])

95 ra = ra[0]

96

97 rl, drl = interpolants.GetRL([float(tt)])

98 rl = rl[0]

99

100 rfm, rnm = interpolants.GetCurrentRatios([float(tt)])

101 rfm = rfm[0]

102 rnm = rnm[0]

103

104 t_fm = 6.8e-7 # in cm

105 t_nm = 46.6e-7 # in cm

106 width = 10e-4 # in cm

107

108 i_total = 3.5 / rl # in Amps rms

109 i_fm = i_total * rfm # in Amps rms

110 i_nm = i_total * rnm # in Amps rms

111

112 a_shm = t_nm * width

113

114 rp = np.mean(vps) / i_fm

115

116 j_shm = 1e-7 * i_nm / a_shm # in units of 1e7 A/cm2

117

118 # set up fitting curves

119

120 for ii in range(0, len(fields)):

121 hh = fields[ii]

122 hext = float(hh)

123

124 v_ra = Constant(0.5 * ra * i_fm * j_shm)

125 v_rp = Constant(rp * i_fm * j_shm)

126

127 phis = np.radians(np.array(data[tt][hh]["phi"]))

128 v2wy = np.array(data[tt][hh]["v2wy"])

129

130 span = np.amax(v2wy) - np.amin(v2wy)

131 mid = (np.amax(v2wy) + np.amin(v2wy))/2.

132

133 dv2wy = 2e-7 * np.ones(v2wy.shape) * (hext / float(hmax))**0.5

134 # increased error on lower amplitude points
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135

136 delta = Parameter(name="delta_" + str(int(hh)),

value=mid).range(mid-span, mid+span)↪→

137

138 h_ext = Constant(hext)

139

140 designator = "T{:d}_H{:d}".format(int(tt), int(hh))

141

142 curves.append(Curve(V2WFit, phis, v2wy, dy=dv2wy, name=designator,\

143 delta=delta, h_off=h_off, hext=h_ext, hs=hs, vt=vt, v_ra=v_ra,

v_rp=v_rp, hoe=hoe,\↪→

144 hy_fl=hy_fl, ry_dl=ry_dl, rx_fl=rx_fl, rx_dl=rx_dl, rz_dl=rz_dl,

s2t=s2t))↪→

145

146 problem = FitProblem(curves)

Figure E.2: Parameter distributions from DREAM for strict parameter fit to in-plane second har-
monic Hall effect data. a The result of a stricter fitting method which takes the parameter field scaling

confirmed by the free fitting method, and enforces the 1/Hext, 1/(Hext +HS) scaling for all parameters

except for the offset, shown for a device at T = 300 K with mostly σyxz . b, the corresponding parameter

distribution for the fitted curves in a. This is a more efficient fitting routine that can be consistently applied

to all devices at all temperature setpoints, including devices with anomalous offset scaling as in Figure 4.4,

with the caveat that information is lost about any hzFL spin torque effective fields.
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[71] Soldatov, I. V. & Schäfer, R. Advances in quantitative kerr microscopy. Physical Review B
95 (2017).

[72] (John Wiley & Sons, Ltd, 2008).

[73] Fan, Y. et al. Magnetization switching through giant spin-orbit torque in a magnetically
doped topological insulator heterostructure. Nat. Mater. 13, 699–704 (2014).

[74] Xiao, D., Yao, Y., Fang, Z. & Niu, Q. Berry-phase effect in anomalous thermoelectric
transport. Phys. Rev. Lett. 97, 026603 (2006).

[75] Lee, W. L., Watauchi, S., Miller, V. L., Cava, R. J. & Ong, N. P. Anomalous hall heat current
and nernst effect in the CuCr2Se4−xBrx ferromagnet. Phys. Rev. Lett. 93, 226601 (2004).

[76] Nguyen, M. H., Ralph, D. C. & Buhrman, R. A. Spin torque study of the spin Hall con-
ductivity and spin diffusion length in platinum thin films with varying resistivity. Phys. Rev.
Lett. 116, 126601 (2016).

[77] Wang, W. et al. Anomalous spin-orbit torques in magnetic single-layer films. Nat. Nan-
otechnol. 14, 819–824 (2019).

[78] Nahrwold, G. et al. Structural, magnetic, and transport properties of Permalloy for spin-
tronic experiments. Jour. of Appl. Phys. 108, 013907 (2010).

87



[79] Zhang, W., Han, W., Jiang, X., Yang, S.-H. & S. P. Parkin, S. Role of transparency of plat-
inum–ferromagnet interfaces in determining the intrinsic magnitude of the spin hall effect.
Nat. Phys. 11, 496–502 (2015).

[80] Fitzsimmons, M. R. et al. Antiferromagnetic domain size and exchange bias. Phys. Rev. B
77 (2008).

[81] Kim, M. G. et al. Imaging antiferromagnetic antiphase domain boundaries using magnetic
Bragg diffraction phase contrast. Nat. Comm. 9, 5013 (2018).

[82] Sapozhnik, A. A. et al. Direct imaging of antiferromagnetic domains in Mn2Au manipulated
by high magnetic fields. Phys. Rev. B 97 (2018).

[83] Hoffmann, A. Spin hall effects in metals. IEEE Trans. on Magn. 49, 5172–5193 (2013).

[84] Zhu, L., Ralph, D. C. & Buhrman, R. A. Highly efficient spin-current generation by the spin
Hall effect in Au1−xPtx. Phys. Rev. Appl. 10 (2018).

[85] Ou, Y., Shi, S., Ralph, D. C. & Buhrman, R. A. Strong spin Hall effect in the antiferromagnet
PtMn. Phys. Rev. B 93 (2016).

[86] Heron, J. T., Schlom, D. G. & Ramesh, R. Electric field control of magnetism using BiFeO3-
based heterostructures. Appl. Phys. Rev. 1, 021303 (2014).

[87] Ederer, C. & Spaldin, N. A. Weak ferromagnetism and magnetoelectric coupling in bismuth
ferrite. Phys. Rev. B 71 (2005).

[88] Wang, J. et al. Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 299, 1719–
22 (2003).

[89] Trassin, M. et al. Interfacial coupling in multiferroic/ferromagnet heterostructures. Phys.
Rev. B 87 (2013).

[90] Drera, G. et al. Grain size and stoichiometry control over RF-sputtered multiferroic BiFeO3

thin films on silicon substrates. Thin Sol. Film. 589, 551–555 (2015).

[91] Meisenheimer, P. B. et al. Engineering new limits to magnetostriction through metastability
in iron-gallium alloys. Nat. Comm. 12, 2757 (2021).

[92] Borrego, J. M., Blazquez, J. S., Conde, C. F., Conde, A. & Roth, S. Structural ordering and
magnetic properties of arc-melted FeGa alloys. Intermetallics 15, 193–200 (2007).

[93] Avci, C. O. et al. Current-induced switching in a magnetic insulator. Nat. Mater. (2016).

[94] Vlietstra, N. et al. Simultaneous detection of the spin-hall magnetoresistance and the spin-
Seebeck effect in platinum and tantalum on yttrium iron garnet. Phys. Rev. B 90 (2014).

[95] Liu, L. et al. Symmetry-dependent field-free switching of perpendicular magnetization. Nat.
Nanotechnol. (2021).

88



[96] Liu, L., Lee, O. J., Gudmundsen, T. J., Ralph, D. C. & Buhrman, R. A. Current-induced
switching of perpendicularly magnetized magnetic layers using spin torque from the spin
Hall effect. Phys. Rev. Lett 109, 096602 (2012).

[97] Yun, S. J., Lee, K. J. & Lim, S. H. Critical switching current density induced by spin Hall
effect in magnetic structures with first and second-order perpendicular magnetic anisotropy.
Sci. Rep. 7, 15314 (2017).

[98] Peng, S., Zhang, Y., Wang, M., Zhang, Y. & Zhao, W. Magnetic Tunnel Junctions for
Spintronics: Principles and Applications, 1–16 (Amer. Canc. Soc., 2014).

[99] Nagaosa, N. & Tokura, Y. Topological properties and dynamics of magnetic skyrmions.
Nat. Nanotechnol. 8, 899–911 (2013).

[100] Nagaosa, N. Emergent inductor by spiral magnets. Jap. Jour. of Appl. Phys. 58, 120909
(2019).

[101] Yokouchi, T. et al. Emergent electromagnetic induction in a helical-spin magnet. Nature
586, 232–236 (2020).

89


	Acknowledgements
	Table of Contents
	List of Figures
	List of Appendices
	Abstract
	Introduction
	Electronic Spin Currents and The Spin Hall Effect
	Linear Response in Electronic Materials
	Symmetry-enforced Structure of Linear Response Tensors in Magnetic Systems
	Orientation-dependent Composite Spin Hall Conductivity in PtMn_3

	Growth, Structural, and Chemical Characterization of PtMn_3 Thin Films
	Growth of Ordered PtMn_3 Thin Films via Magnetron  Sputtering
	Structural Characterization of PtMn_3 Thin Films
	Chemical Characterization of PtMn_3 Thin Films

	Magnetic Characterization of PtMn_3 and PtMn_3/Py Thin Films
	Neutron Diffraction of PtMn_3 Thin Films on MgO
	Polarized Neutron Reflectometry of PtMn_3 Thin films on MgO
	Probing the Magnetic Order Through the Anomalous Hall Effect

	Harmonic Hall Effect Measurement of Spin Transfer Torques in PtMn_3/Py Heterostructures
	Theoretical Description of Spin Torque Measurement via the Harmonic Hall Effect
	Extraction of Spin Torque Effective Fields in PtMn_3/Py  with the Harmonic Hall Effect
	Effects of Antiferromagnetic Domain Degeneracy on Intrinsic Spin Hall Conductivity in the Non-collinear PtMn_3 State
	Spin Torque Effective Fields versus Temperature and Antiferromagnetic Phase of PtMn_3

	Conclusion and Outlook
	Summary of Results
	Control of Non-collinear Domain Formation with Magnetic Exchange
	Switching of Perpendicular Magnetic Anisotropy  Ferromagnets
	Quantum Self-Inductance

	Appendices
	Calculations of Anisotropic Spin Hall Conductivity in (001)-oriented PtMn_3
	XRD, Structural, and Chemical Characterization of PtMn_3 Thin Films
	Magnetic Characterization of PtMn_3, PtMn_3/Py Thin Films
	Electronic Measurements of PtMn_3, PtMn_3/Py Thin Films
	Fitting Temperature Dependent Harmonic Hall Effect Data with BUMPS/DREAM
	Bibliography

